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Abstract

The current study illustrates the utilization of artificial neural network in statistical method-

ology. More specifically in survival analysis and time series analysis, where both holds an

important and wide use in many applications in our real life. We start our discussion by

utilizing artificial neural network in survival analysis. In literature there exist two impor-

tant methodology of utilizing artificial neural network in survival analysis based on discrete

survival time method. We illustrate the idea of discrete survival time method and show how

one can estimate the discrete model using artificial neural network. We present a compar-

ison between the two methodology and update one of them to estimate survival time of

competing risks.

To fit a model using artificial neural network, you need to take care of two parts; first

one is the neural network architecture and second part is the learning algorithm. Usually

neural networks are trained using a non-linear optimization algorithm such as quasi New-

ton Raphson algorithm. Other learning algorithms are base on Bayesian inference. In this

study we present a new learning technique by using a mixture of the two available method-

ologies for using Bayesian inference in training of neural networks. We have performed

our analysis using real world data. We have used patients diagnosed with skin cancer in the

United states from SEER database, under the supervision of the National Cancer Institute

The second part of this dissertation presents the utilization of artificial neural to time

series analysis. We present a new method of training recurrent artificial neural network with

Hybrid Monte Carlo Sampling and compare our findings with the popular auto-regressive

integrated moving average (ARIMA) model. We used the carbon dioxide monthly average

emission to apply our comparison, data collected from NOAA.
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Chapter 1

Introduction

Artificial intelligence (A.I) is an important academic field study that studies methods of

making machines and software that possess human intelligence and even more. For exam-

ple, AI is used to develop robots that can do duties making human life more easier. The

development in the field of AI is growing exponentially and includes the combination of

several subjects such as; Mathematics,Physics, Engineering, Health Sciences, etc. Recently

Statistics was found one of the important subjects that AI should include. Peter Norvig said:

AI had some early success by ignoring probabilities, but once we started to run up against

the real-world, we had to re-tool and move away from logic towards probability, statistics,

and game theory [1]. In the same article we refer to another quote by Yee Whye Teh:

Twenty years ago the dominant ideas in AI were logic-based reasoning. Now the exciting

ideas are around intelligent behaviour from noisy examples, often based around statistical

principles [1]. The attention in AI has been drawn to Statistical principles lately, and one of

the important tools in AI utilizing statistical methods is Artificial Neural Networks (ANN).

ANN is a mapping of human biological nervous system. It learns by example like humans

and may also be given the opportunity of self learning.

In this dissertation we study the use of ANN in statistical methods such as survival

analysis and time series analysis, giving an example for making machines think statistically

and have the capabilities of solving real world problems that our society faces on a daily

bases. ANN is popular for capturing non-linear complex patterns within a set of data,

especially if we are facing huge data sets, which makes ANN a strong competitive among

other methods in dealing with BIG DATA. ANN has applications in several fields in life
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such as engineering, predicting time for traffic signals, and in economics, forecasting stock

markets and home appraisals saving time on buyers and loaners inspection among other

vital fields in life. We highlight in the next section the use of ANN in medical sciences. In

which there exist a rich literature materials covering the significant finding of using ANN

in solving medical scientific problems.

1.1 The Use of Artificial Neural Network in Health Sciences

In medical sciences, most of the proposed applications of ANN were on prognostic models.

For example, one of the most paramount research entities is cancer. Classifying a tumor

as malignant or benign is important in cancer research. Chen et al in 2002 used ANN to

diagnose breast cancer tumors, [2]. Ercal in 1994 presented an ANN model to distinguish

between three benign skin cancer categories and malignant melanoma, [3]. But fitting a

complex non-linear modeling such as ANN in regression problems is less prevalent. De-

termining the risk factors that cause cancer or modeling the survival time of a patient once

he/she is diagnosed with cancer using ANN is less common.

We are interested in utilizing ANN in survival time modeling of skin cancer (melanoma)

patients. Soong et. al. [4] in 2010 developed a statistical model to predict the survival

time of localized melanoma patients. They used the proportional hazard model developed

by Cox [5], but the assumptions of hazard function proportionality may not be applicable

to a different set of data. Moreover, they did not study the effect of interaction terms.

Thus, applying ANN is more applicable and efficient, especially when the data does not

satisfy Cox PH assumptions. One of the basic approaches in utilizing ANN in survival

analysis is by classification, whether a patient will survive over a fixed time interval or

not [6]. However, the latter classification method lacks the information about the survival

probability function estimates. In 1995, P. Lapuerta et. al. proposed the use of multiple

neural networks one for each time interval [7]. This model predicts the survival probability

of each time period based on a neural network trained on the observations of the same time
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period only. The pitfall of this approach is the large number of networks that will be trained

if one studies the survival time over immense time intervals.

Another methods of ANN applied to survival times are by D. Faraggi and R. Simon in

1995 [8] and another by Machado in 1996 [9]. We consider in this dissertation the approach

presented by E. Biganzoli et. al. in 1998 [10] named Partial Logistic Artificial Neural Net-

work (PLANN). PLANN is a modification of an earlier study done by P. Ravdin and G.

Clark in 1992 [11]. The second approach presented by Mani et. al. in 1999 [12] (we called

it Discrete Hazard Artificial Neural Network (DHANN)). In Chapter 3, we present a com-

parison between the two models and discuss relevant findings for predicting the survival

time of melanoma patients.

1.2 Skin Cancer (Melanoma)

Melanoma is the most fatal type of skin cancer. It is ranked first in death among skin

cancer diseases. Melanoma is a malignant tumor associated with skin cancer. If melanoma

is detected at a late stage, it can spread to other parts of the body at the point of being a lethal

form of cancer. More general information about melanoma can be found in (Markovic &

et. Al, 2007) [13] and (Mackle & et. Al, 2009)[14]. Over the last decades, the incidence

of melanoma has been rapidly increasing in the United States. It appears more in white

populations than other races. According to clinical studies, risk factors of melanoma are

but not limited to, ultraviolet light exposure, moles, light hair, freckling and family history

of melanoma. Some of the statistical analyses done on the risk factors are shown in (Sara

Gandini & et. Al, 2005, Luigi Naldi & et. al, 2000, and Eunyoung Cho & et al., 2005)[15–

18].

We focus in the current study on survival time for the melanoma patients, which is the

time it takes a patient once he/she is diagnosed with melanoma till death occurs. The

study includes questioning the effect of several risk factors that we believe contribute to

the survival time of melanoma patient using artificial neural network trained with Bayesian

3



inference. Using Bayesian inference has several advantages that we summarize in the next

chapter; one of the advantages is that it helps in finding the relative importance of risk fac-

tors towards the outcome. Among those risk factors are: age at diagnosis, tumor thickness

and tumor behaviour (invasive or non-invasive). Other factors are gender and sequence

number (a number that indicates how many tumors the patient had prior to being diagnosed

with melanoma). Seng-jaw Soong, et.al, 2010, developed an electronic prediction tool

based on the AJCC melanoma database, to predict survival outcome of localized melanoma

[4]. Other predictive models of survival for localized melanoma have been developed in

the United States and other countries (Clark & et al, 1989, Mackie & et al, 1995, Bamhill

et al, 1996, Schuchter & et al., 1996, Sahin & et al., 1997)[19–23]. Soong, et.al, used the

Cox survival function model, which considers the survival time as a continuous random

variable, where in fact most of survival times are recorded in discrete form as number of

month or years. They used the same three risk factors in their analysis beside the primary

melanoma site and primary tumor ulceration. We performed an initial study that address

the concern of having a common model for male and female patient or should gender be

treated separately [24]. We used discrete survival time methodology and came up to the

conclusion that male and female patients should have separate models of predicting sur-

vival. Additionally, more variables need to be included with the four variables used by

Soong for predicting survival time.

One of our goals in future is to model the incident of melanoma. Detecting the con-

tributing variables to the incident of melanoma, in order to have a better understanding of

these variables and to make decision regrading the prevention of be being diagnosed by

melanoma.

1.3 Survival Analysis

Survival analysis is concerned with statistical methods that investigate time to event data,

in which, the variable of interest is time until an event takes place (known as survival time).
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This arises in various applications such as in clinical studies; time until death, time until

disease incidence or recurrence. In engineering; time until machine malfunction, time until

electronic component fails, etc. In some cases, one may be investigating time until the

occurrence of more than one event, the statistical method is referred to as either a compet-

ing risks (for example: death from several causes) or recurrent events (for example: tumor

recurrence after treatment). There exist several statistical methods that estimate the proba-

bility function that characterize the behavior of survival time (base line survival function)

or conditional on some explanatory variables (risk factors). Some of these models treat sur-

vival time as a discrete random variable such as in Allison 1982 [25] or in Sharaf & Tsokos

2014 [24], others consider the distribution of the outcome (i.e., the time to event) to be

specified in terms of unknown parameters (Kleinbaum & Klein, 2012 ) [26]. In the mean-

time, the non-parametric Kaplan-Meier (Kaplan & Meier, 1958) [27] method is the most

widely used method to estimate time to event. In case of competing risks Kaplan Meier

method tends to overestimate event rates (Southern, et al., 2006) [28]. Another popular

method is the Cox proportional hazard model (Cox, 1972) [29], that can also estimate the

survival time given specification of a set of explanatory variables (risk factors). However,

Cox PH has some limitations similar to most of conventional statistical methods , which is

a set of assumptions that need to be satisfied by the data before applying Cox PH to it.

1.3.1 Discrete Survival Time

In most data, survival time is recorded in discrete form either as number of months or

number of years. Another methodology for survival analysis is used, that consider time as

discrete. Haiyi Xie, et.al (2003) [30] , summarized the advantages of using discrete-time

survival analysis, as first, useful for many longitudinal studies in clinical settings where

data are often collected at discrete time periods. Secondly, it facilitates the examination

of the shape of the hazard function. Third, is simple and convenient to use, because it

is a modification of the logistic regression model. Lastly, and most important advantage,
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one can include the time-varying covariates easily in the model. After Cox presented the

discrete time survival model, two basic versions of logistic models were introduced, the

ordinal version and the dichotomous version. The dichotomous version (Allison,1982,

Singer & Willett, 1993, Xie, Mchugo, Drake, and Sengupta, 2003)[25, 30, 31] where each

survival time is represented as a set of indicators of whether or not an individual failed at

each time point until a person either experiences the event or is censored.

A discrete survival time method was proposed in [25], and in [31]. The method starts by

dividing the continuous time into an infinite sequence of contiguous time (0, t1), (t1, t2), ..., (t(k−

1), tk), ... and so on. Let k represent the number of time intervals. For example, consider a

time variable recorded in months over 20 years period. Then, time is divided into 20 inter-

vals each consists of 12 months; (1, 12), (12, 24), , (228, 240). So, If a subject survival time

is 7 months, then this subject’s event is classified as taking place during the 1st time inter-

val, if another subject survival time is 50 months then is classified as taking place during

the 5th time interval.

To estimate the survival function, we start with the discrete-time hazard model given by:

hik =
1

1 + exp{−(α1T1ik + ...+ αJTJik)− (β1X1ik + ...+ βpXpik}
(1.1)

where, [T1ik, T2ik, · · · , TJik] are sequence of dummy variables, with values

[t1ik, t2ik, · · · , tJik] indexing time periods, where J refers to the last time period observed

for any individual in the sample. If individual i was observed (experienced the event or

censored) in fourth period, then J = 4, the time periods dummy variables are defined iden-

tically for each individual; t1ik = 1 , when j = 1 and 0 when j takes any other value. The

coefficients (α1, α2, · · · , αJ) Act as the intercept parameters for the baseline hazard in each

time period, and the coefficients (β1, β2, · · · , βp) describes the effect of the predictors on

the baseline hazard in the logit scale. Singer and Willett, (1993) discussed briefly the pro-

cedures to construct the likelihood function (in terms of the discrete hazard function) used

to estimates the latter intercepts and slope parameters. The likelihood function presented
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by Singer and Willett is given by:

L =
n∏
i=1

ji∏
k=1

hyikik {1− hik}
(1−yik) (1.2)

Where, Yik is a sequence of dummy variables that records the event history for subject i,

whose values are defined as:

Yik =


1 if the ith subject experinced the event in period k

0 if the ith subject did not experince the event in period k

The likelihood function in (1.2) is identical to the likelihood function to a sequence of

N = (k1 + k2 + + kn) independent Bernoulli trials with parameters hik. Using results by

Allison (1982), we can consider the Yik values as the outcome variable in a logistic regres-

sion analysis, which provides a simple model to obtain the maximum likelihood estimate

rather than finding the solution by maximizing equation (1.2).

For discrete event history data, each record consists of the information for one sub-

ject such as; survival time, age and whether or not the subject time is censored. In order

to apply the logistic model discussed previously, the data need to be converted into new

person-period data, in which each subject will have multiple records, one per time period

of observation. As shown by Singer and Willett, the new person-period data will contain

the information about the kth time period as follows:

• The time indicators: the set of dummy variables [T1ik, T2ik, · · · , TJik].

• The predictors. The covariates that are under study, where we have the ability of using

the time-varying covariates have values that differ from time period to time period.

• The event indicator (response variable in the logistic model). This variable records

whether the event of interest occurred in period j or not. The variable takes value 1 if

the event occurred, takes 0 if did not.
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Table 1: Information of three melanoma patients

Patient ID Survival Time Age Diagnosis Tumor Ext. of Tumor

1 49 84 120 10

2 3 66 230 30

3 86 61 134 30

For illustration purposes consider a record of three melanoma patients as shown in table

1. By picking first subject we can see that his survival time is equal to 49 months, which

means that this subject information will repeated for 5 time intervals whether the event took

place or the subject is censored.

In the new data setting the first patient will have five records, record for corresponding to

every time period (from the first to the fifth). The event indicator variable will take 0 for the

first four records and 1 in the fifth record where the event took place. The transformation

of these 3 subjects information in presented on table 2. The variables D1, D2, · · · , DT

represents the T dummy variables of time intervals. Each row shows subject i information

during each time interval until the event occurs or he/she is censored. The first column

in Table 2 (Indc.) represents the indicator variable which takes 0 if the event did not take

place during the current time period interval, and takes 1 if the event occurs during the time

period interval. The setting of the data shown in table 2 can allow us to use time varying

covariates easily, which is one of the advantages of using discrete time survival method. On

the other hand, repeating subject’s information causes redundancy forcing variables to be

correlated (which also is not practical with today’s huge amount of data). As we will show

in chapter three that the likelihood function in (1.2) can be maximized using artificial neural

network (PLANN) to predict (1.1). As readers will find on chapter 3 that the ANN method

based on the discrete time method (explained above), does not perform better compared to

the second method DHANN.
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Table 2: Information of three melanoma patients

Indc. ID ST Ag TS D1 D2 D3 D4 D5 D6 D7 D8 ... DT

0 1 49 84 120 1 0 0 0 0 0 0 0 ... 0

0 1 49 84 120 0 1 0 0 0 0 0 0 ... 0

0 1 49 84 120 0 0 1 0 0 0 0 0 ... 0

0 1 49 84 120 0 0 0 1 0 0 0 0 ... 0

1 1 49 84 120 0 0 0 0 1 0 0 0 ... 0

1 2 3 66 230 1 0 0 0 0 0 0 0 ... 0
0 3 86 61 134 1 0 0 0 0 0 0 0 ... 0

0 3 86 61 134 0 1 0 0 0 0 0 0 ... 0

0 3 86 61 134 0 0 1 0 0 0 0 0 ... 0

0 3 86 61 134 0 0 0 1 0 0 0 0 ... 0

0 3 86 61 134 0 0 0 0 1 0 0 0 ... 0

0 3 86 61 134 0 0 0 0 0 1 0 0 ... 0

0 3 86 61 134 0 0 0 0 0 0 1 0 ... 0

1 3 86 61 134 0 0 0 0 0 0 0 1 ... 0

The rest of the dissertation goes as follows, on next chapter we highlight some parts

of neural network theory used throughout the remainder of the dissertation. To make

the reader familiar with the terms used, with neural network structures, and neural net-

work training algorithms. On Chapter three we present a comparison between PLANN

and DHANN on data collected from SEER. We discuss the procedure of developing both

models and illustrate how different neural network structures can be used for same pur-

pose. Additionally we talk about significant findings regarding the survival time of male

and female melanoma patients.

In Chapter four we introduce new artificial neural network for modeling survival time

in the presence of competing risk. This new neural network is an update on DHANN.
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Moreover, we study two different Bayesian learning methods for ANN on the DHANN

for competing risks, and propose a new method for Bayesian learning. In Chapter five,

we study a different structure of neural network used in forecasting time series data. We

examine Bayesian learning techniques on predicting the monthly carbon dioxide emission

in the atmosphere in the United States.
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Chapter 2

Artificial Neural Networks

Artificial neural networks (ANN) are inspired by the human nervous system. In 1943, War-

ren McCulloch and Walter Pitts [32] presented the first artificial neurons used to simulate

human biological nervous system. Since that time ANN were developed in several fields

independently. It is now an important tool of artificial intelligence and are used extensively

in machine learning. In statistics, ANN is considered as a non-linear modeling tool, that

possesses high accuracy in prediction and a strong identifier of complex patterns within a

set of data.

Figure 1.: One possible structure for Artificial Neural Network

A neural network consists of several layers of interconnected units called neurons. The

way those neurons are connected differs according to the application ANN is used for. Fig-
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ure 1, shows an ANN with three layers; Input layer, hidden layer and output layer. Each unit

in the input layer is directly connected to every unit in the hidden layers. Those connections

are done by the weights (which acts as the synaptic connection in the human nervous sys-

tem). A definition of Neural Network by D. Kriesel [33] as follows: “A neural network is

a sorted triple (N, V, ω) with two sets N, V and a function ω, where N is the set of neurons

and V a set {(i, j) | i, j ∈ N} whose elements are called connections between neuron i and

neuron j”. The set of weights acts as the connection that transfer data between neurons.

Each neuron has main two functions; one function to transfer the input of the neuron and

other responsible for the output of the neuron. The first function normally called combina-

tion function or sometimes propagation function (Wj) transfer the inputs of the neuron to

one value and the most popular function is the weighted sum which for a given neuron j is

given by:

Wj =
I∑
i=1

ai ∗ ωi (2.1)

where ai is the output of the previous layer, I: is the number of neurons in the previous layer.

The second function is called the output function or sometimes the activation function.

There exist several functions used as activation functions, some of the popular functions

are linear function, sigmoid (logistic function) given by:

Oi =
1

1 + exp−x
(2.2)

and the hyberbolic tangent given by:

Oi = tanhx =
1− exp−2x

1 + exp−2x
(2.3)

The choice of which function to use depends on the application ANN is used for. For

instance, if ANN is used for linear regression problem then the proper activation function

12



for the output neuron would be the linear function. If ANN is used for predicting Hazard

probability (as we will show next chapter) then the logistic function is used for hidden and

output neurons.

Due to wide areas and fields which ANN is utilized in, there exist several ANN archi-

tecture (Structure or topology). In this chapter we are going to give a brief introduction on

two different ANN architecture. In addition discuss the training algorithms and methods

used in the training purpose of ANN.

2.1 Types of Artificial Neural Networks

In this section we are going to explore some of the popular networks types in terms of it’s

design (topology/architecture). We will start with the most popular and widely used design,

the Feedforward Network.

2.1.1 Feedforward Networks

Feedforward ANN is the most widely used network design in classification and regression

problems. Feedforward networks typically consist of one input layer, H hidden layers (H

refers to number of hidden layers), and one output layer. A Feedforward network with

one hidden layer is called three layer feedforward network, which is represented by Figure

1. On the left side is the input layer, representing the starting point of data flow. Input

layer represents covariates(input variables). Neurons of the input layer feed every neuron

in the hidden layer (not opposite), then data are processed by each neuron of the hidden

layer and then feed to the third layer (output layer). In some case neurons in the first layer

can feed neurons in third or above layers (known as shortcut connections), but flow of

data/information remains same going from left to right.

To illustrate how feedforward networks can be used to model in linear regression will

consider the next model:
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Y = β0 + β1X1 + β2X2 (2.4)

The previous model can be estimated using two layer feedforward network(Figure 2).

One input layer representing two independent variables X1 and X2 and one output layer

with one neuron representing the response variable Y .

Figure 2.: Two Layer Feedforward Network for estimating the Linear regression model in
equation 2.4

First layer of the neural network in Figure 2, consist of two nodes for the two independent

variables X1 and X2 and the orange colored node for the bais term. Then we have one

neuron in the output layer with weighted sum as combination function and linear function

as the activation function. The output of such network is given by:

Y = f(b+ ω1X1 + ω2X2) (2.5)

where f() is a linear function. equation 2.5 is equivalent to equation 2.4, and how the

parameters b, ω1, and ω2 are estimated will be discussed later in this chapter. More on how

we can use Feedforward networks in modeling linear and generalized linear regression can

be found in C. Bishop book [34].
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2.1.2 Recurrent (Recursive) Networks

Neurons in a Feedforward networks feeds only neurons of the next layers. Other types of

networks are formed such that neurons are feeding themselves or neurons of the preceding

layers or neurons of same layer, such networks are called recurrent networks. There are

several types of recurrent networks, such as the most two popular types are Hopfield neural

networks [35] and Bi-directional networks [36]. In some cases recurrent networks do not

have explicit definition of input and output layers(as in figure 3).

Figure 3.: Recurrent neural network, where doted lines represent indirect recurrences

Speech recognition and language learning are two of popular application of recurrent

networks [37–39]. Other important use of recurrent networks (Known as Real-Time Re-

current Networks) is in the modeling of time series data as we will show later in chapter

five. Figure 4 displays feedforward network with output going back as one of the inputs

which is used in modeling non-linear auto-regressive models.

In this dissertation we will see the utilization of feedforward neural network and re-

current neural networks (the one in Figure 4) in performing statistical modeling such as

survival analysis and time series analysis.
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Figure 4.: Type of feedforward network with recurrent property. Either output is going
back as one of the inputs or the error.

2.2 Learning method of Neural Networks

Neural networks are inspired by the human nervous system making them learn in the same

way as human learns, which is by example. This type of learning is called supervised

learning, that is, neural network is given set of examples (data). Consider some data (X, t) ,

whereX is a matrix of information (covariates) and t is vector of targets, response variable,

that acts as a teacher forcing neural network to find the best approximated output to the

target values. Another type of learning for neural network is called unsupervised learning,

in which a network decide on its own what would be the best output fit for a set of data

without external help [40].

In this section we summarize the idea of training neural network from C. Bishop books

“Neural Network for Pattern Recognition” [41] and “Pattern Recognition and Machine

Learning” [34]. To train a neural network we need to estimate the weights that minimize

error function chosen for the certain task of the neural network. One of the most popular

algorithms to do so is called back-propagation, and it took this name as it is based on

propagating the errors backward from output neurons to neurons of first layer. For example,

consider similar structure of neural network as in Figure 1, that will be used in a linear
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regression problem. We have data in the form of set of covariates and targets {Xs, ts} ,

where s = 1, 2, . . . , N number of observations. The network activation function for the

output unit in this case would be the linear (identity) function, and therefore the best choice

of error function E will be the mean square error given by:

E =
1

2

N∑
s=1

(y(xs, ω)− ts)
2 (2.6)

where y(xs, ω) is the network output for observation s, which can be expressed in terms

of probability. For instance (In regression problem), if our target follows a Gaussian distri-

bution then network output can be expressed as:

p(t | x, ω) ≈ N (t | y(x, ω),
1

β
) (2.7)

where β is the inverse variance of the Gaussian (noise) distribution. From equation (2.7)

one can find the likelihood function for the whole N observations on the form {Xs, ts} as :

p(t | X, ω, β) = ΠN
s=1p(ts | xs, ω, β) (2.8)

So one can estimate network weights ω by maximizing the negative logarithm of (2.8),

which in neural networks literature is equivalent to minimizing the error function in (2.6).

The most popular algorithm used in minimizing the error function is back-propagation that

consists mainly of two parts.

2.2.1 Evaluating derivatives of Error function

The first part of training neural networks through back-propagation is to evaluate the deriva-

tives of the error function with respect to the network weights.

To evaluate the derivatives we will introduce some notations first:

• The first function for a given neuron j as we explained earlier is the weighted sum given
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Figure 15.: Errors distribution for neural networks trained with 11 different values of
hidden nodes with ten different data, using Evidence Procedure

Figure 16.: Errors distribution for neural networks trained with 11 different values of
hidden nodes with ten different data, using E-Hybrid Monte Carlo

We wish to mention that this amount of error is for predicting the hazard probability

function for 6644 patients, that is, the total number of predictions is 6644*11=73084 for
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the female data. The average error using the Hybrid Monte Carlo Sampling is between

13.092 and 14.282, which is not what we expect for an average error to be. In addition,

the errors for the same neural network structures are not constant, having variations, rather

than having constant behavior on different data sets.

This explains what we mentioned before using HMC requires the knowledge of the cor-

rect prior values. One could get better models using HMC by trying different initial values

for hyperparameters, but the cost of computational time it takes to run HMC for one model

makes it unrealistic to continue. We must mention that Neal [45] had generated 2 million

networks to fit a function with 6 data points. In Figure 15, we present the errors distribu-

tion using evidence procedure on the same data set as HMC. Note that the errors decreased

compared to networks trained with HMC, their variance is with less variability compared

to HMC. Figure 16 shows the errors of neural networks prediction, that was trained with

our newly proposed method, which is Using the evidence to re-estimate hyperparameters

based on the data and then use Hybrid Monte Carlo sampling to obtain samples of the

weights distribution from its posterior. As we can see, errors are fewer compared to neural

networks trained with Evidence and HMC. Also, errors seems more consistent for different

data groups. As the number of hidden nodes increases, error also increase, giving an advan-

tage for using Bayesian learning with neural network no need for large number of hidden

units. By looking at the errors of neural networks with five hidden units in the hidden layer

(of figure 15) possesses errors with lower variance, have approximately constant variance

compared to others. The best fit neural network model for predicting survival time of com-

peting risks is the model trained with E-HMC with five hidden units in hidden layer. All

results shown above are for female melanoma patient data, similar results were obtained

for male patient data.
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4.6 Conclusion

In the current Chapter, we have obtained several important results using artificial neural

network for predicting survival time of competing risks. We summarize our findings in the

following points:

1. We have presented a new method that utilize artificial neural network in predicting the

hazard function of competing risks.

2. We are introducing (proposing) a solution to help use the Hybrid Monte Carlo simula-

tion learning algorithm for neural network in a more efficient way.

3. Using Bayesian inference in the learning of neural networks avoids the need of large

number of hidden units in hidden layer.

The DHANN-CR is a new method of utilizing ANN in survival analysis. It’s more useful

compared to PLANN,and PLANN-CR especially with the existence of huge data set. The

use of Bayesian inference in learning neural network, gives neural network more chance to

learn than to memorize, increasing the number of hidden units in neural networks makes

it more memorizing tool rather than learning tool. Our future goal is to see if our new

proposed learning method can be utilized with artificial neural network in other statistical

analysis methods, such as time series analysis, and Categorical data analysis, among others.

In the next Chapter, we introduce a new approach of using Hybrid Monte Carlo Sampling

with recurrent neural network for the modeling of time series data.
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Chapter 5

Artificial Neural Network for Forecasting Carbon Dioxide Emission in the

Atmosphere

In this Chapter, we develop an artificial neural network model utilizing time series approach

for forecasting Carbon dioxide, CO2, in the atmosphere . In Chapter three and four we saw

the use of Feedforward artificial neural network in survival analysis, however, Feedforward

networks can be used in other generalized linear statistical modeling [65–68]. One of the

important statistical analysis methods is time series analysis, which deals with forecasting

observation in the future for a certain time period that mainly depends on the same reading

of that observation on previous time periods. That is, the future predictions depends on

previous observations of the same data. Modeling of such situations in ANN requires

the use of recurrent neural networks. In this Chapter we will present a new method of

using Hybrid Monte Carlo Sampling in the learning of recurrent networks for time series

forecasting. We will validate the new proposed model on a popular and vital problem our

society is facing, which is carbon dioxide emission in the atmosphere.

Carbon dioxide is strongly connected to climate change, but the impact of carbon diox-

ide varies according to the source and level of emissions and also according to regional

effects,[69]. As we know, the most dominant source for carbon dioxide emission is fossil

fuels, making it a major contributing factor in global warming. Other variables that con-

tribute towards the emission of carbon dioxide in the atmosphere are given in Figure 16,

[70]. Our future goal is to use artificial neural network to build a model that better under-

stand the contribution of each of the variables in Figure 17 , and hence be able to make

policies and control the emission of carbon dioxide. United States comes in second place
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after China in the ten largest carbon dioxide emitters. United States shares about 14.69%

of Global carbon dioxide emission compared to China of 23.43% in year 2014, [71]. Our

work starts by fitting a neural network model for predicting the monthly average carbon

dioxide emission in United States.

Figure 17.: Emission of Carbon Dioxide in the Atmosphere in U.S.A.

5.1 Literature Review

There is a number of studies utilizing artificial neural network for the prediction of time

series data, making it too hard to track. Models ranging from the use of Feedforward net-

works to recurrent networks and lately using what is called by wavelet neural network,

[72]. One of the most popular series used for forecasting time series is the sunspot series,
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a recent study on using neural network with quantum gate was proposed by X. Guan et. al,

[73]. The authors of the study presented an improvement for predicting sunspot number

series, however no further investigation for testing their model on other time series data.

This has been the issue of utilizing neural networks in time series for the last decade. The

use of neural networks in time series depends heavily on the data, different models, differ-

ent architecture of networks were presented some showed better performance compared to

the popular ARIMA model others did not, [74]. Fitting ANN model for time series data

involves not only finding optimal numbers of hidden units, as it was the case in Chapters 3

& 4, but also the number of input units is variant. The number of input units in forecast-

ing models corresponds to number of previous observations that one would use to predict

future outcome. There is no specific method of choosing the number of input units, while

researchers tried to find a solution to this problem, one was a claim of choosing the number

of hidden units is equal to number of auto-regressive(AR) terms in Box-Jenkins [75]. How-

ever, this approach can not be useful as for moving average of order one, MA(1), model

there is no autoregressive terms. Another solution was to use Box and Jenkins model iden-

tification procedure and then use the number of input terms corresponding to the identified

terms. For example, if Box and Jenkins model identification step found AR(2) and MA(1),

then the ANN used for such a model would probably have three input nodes, for Xt−2 and

et−1. In a study by Zou et al. [76], compared between performance of ARIMA, ANN and

a combined ARIMA, ANN model. In which they used ARIMA to identify AR and MA

terms, then use ANN with number of input units equal to number of identified terms from

ARIMA model. According to their comparison it was found that the combined ANN and

ARIMA model resulted in less mean square error, however, results may vary with different

data set. In general there is no specific procedure for the choice of a certain neural net-

work structure for time series analysis, it all depends on the data series. The second part

of utilizing ANN in time series involves the choice of learning algorithm. Several learn-

ing algorithms were used and proposed in literature, like the use of genetic algorithms as
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in, [77–80], while others used regular back-propagation algorithms that were summarized

along with results in [74]. On the other hand some other models used the evidence proce-

dure that was proposed by Mackay [43]. J. Ticknor used evidence procedure along with

a three layer Feedforward network to forecast the stock market, [81]. However, Ticknor

did not use the evidence, as explained in Chapter 2, to compare between neural network

models to chose the optimal number of hidden units.

The aim of the present study is to reduce the issues that needs attention for utilizing ANN

in time series. We propose the use of recurrent neural network that utilizes Hybrid Monte

Carlo sampling learning algorithm by applying it online. In other words, for each input we

update the learning of neural networks. The purpose of using HMC is to fix the number of

hidden units,as we discussed in Chapter 4 that the networks trained with HMC, does not

require large number of hidden units. In the coming sections we highlight the important

points of the ARIMA model, then we explain the proposed neural network structure and

the developing of a new learning algorithm written for this specific task. The learning

algorithm involves the use of HMC algorithm written by Nabney in the NETLAB package

for MATLAB software.

5.1.1 Auto-Regressive Integrated Moving Average Models: ARIMA

The auto-regressive integrated moving average (ARIMA) models are the most popular time

series methods for modeling stationary time series. ARIMA initially was presented by Box

and Jenkins in 1970 [82]. Let {Xt, Xt−1, Xt−2, ..., X1} be a time series data, the general

mathematical expression of the ARIMA model is given by:

Φp(B)(1−B)dXt = a+ Θq(B)εt (5.1)

where Φp(B) is the autoregressive operator with order p defined as
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Φp(B) = 1− φ1B − φ2B
2 − · · · − φpBp

where Θq(B) is the moving average operator with order q defined as

Θp(B) = 1− θ1B − θ2B2 − · · · − θqB q

where B is the back shift operator, εt is the error term that is normally distributed with

mean zero and constant variance. If the time series data shows a seasonal trend, then a

generalization of the ARIMA model is to fit seasonal data is called Seasonal autoregressive

integrated moving average model (SARIMA) given by:

Φp(B)ΦP (Bs)(1−B)D(1−B)dXt = a+ Θq(B)ΘQ(Bs)εt (5.2)

where ΦP (Bs) and ΘQ(Bs) are the seasonal autoregressive and moving average, respec-

tively. The procedure that we follow to fit the ARIMA or SARIMA models know as the

Box and Jenkins procedure can be summarized into the following steps.

1. Model Identification: In which the order of AR(p) and MA(q) are identified. By com-

puting and plotting the autocorrelation function (ACF) and the partial autocorrelation

function (PACF). If the series is non-stationary then it may requires filtering (either by

non-seasonal or seasonal difference), and if series possesses a non constant variance

over time then a transformation may take place.

2. Model Estimation: After step 1 is done, and the series is made sure to be station-

ary (As required by ARIMA procedure), then it follows estimation of the parameters

φ1, φ2, ..., φp and/or θ1, θ2, ..., θq using maximum likelihood estimation to minimize the

mean square error function.

3. Model Validation: Includes tests for white noise errors (making sure errors follows

the assumed distribution) by checking errors autocorrelation and partial autocorrelation

functions. Additionally, the use of Akaike information criterion, [83](AIC), to compare

among several models.
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4. Forecasting: After model validation, the selected (best) model is used for forecasting

and forecasting errors are calculated.

After these four steps, one can use the fitted model to perform forecasting. We will discuss

those steps practically on our data set of CO2 in the atmosphere. And explain how we

picked the number of terms for AR and MA, along with non-seasonal or seasonal difference

that took place.

5.2 The Data

The monthly average carbon dioxide emission that we use was collected by the National

Oceanic & Atmospheric Administration (NOAA). The data contains monthly average car-

bon dioxide emission from March 1958 to February 2015. The data from March 1958

through April 1974 have been obtained by C. David Keeling of the Scripps Institution of

Oceanography as mentioned by NOAA in the data description file, while NOAA started

there own measurements through Mauna Loa Observatory station starting in 1974. The

carbon dioxide emissions is expressed as parts per million (ppm) which is the number of

molecules of CO2 in every one million molecules of dried air [84].

Figure 18.: Monthly Average Emission of Carbon Dioxide in the Atmosphere in U.S.A.
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Figure 18 , displays the monthly average emissions of CO2 in the atmosphere in the

U.S.A, obtained from NOAA website [84]. In the current analysis we use information

from January 1960 to December 2008 to train the ANN model, and left the remaining to

test the forecasting accuracy of our models. Data entering neural network is required to be

on small scale to smooth and faster conversion. We did standarized carbon dioxide data

using the following formula:

xnewi =
xi −min{xt, xt−1, · · · , x1}

max{xt, xt−1, · · · , x1} −min{xt, xt−1, · · · , x1}
(5.3)

5.3 Time Series Data Modeling

In this study we present a model by combining both the ARIMA and ANN. We are going to

use the first step in the ARIMA procedure to identify the number of input units in the input

layer. Then, we will train a recurrent neural network using Hybrid Monte Carlo Sampling

using online learning. First we start with model identification.

5.3.1 Model Identification

Based on Box and Jenkins methodology, a time series data should be stationary, so the first

step in model identification is to make sure that the series is stationary, and this is done by

looking at the time series plot of the data.

By looking at Figure 19, we notice that as time increases the series also increase suggest-

ing a possible first nonseasonal difference(filtering) is needed as the average of the series is

not constant over fixed time periods. So we take the first difference and then plot the series

again. As we can see in Figure 20, the series now shows constant mean making it station-

ary with respect to mean. It also appear that there exist a seasonal trend, in which its order

will be determined by looking at the autocorrelation function and partial autocorrelation

function.
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Figure 19.: Time Series plot for Average CO2 Emission

Figure 20.: CO2 Series after first nonseasonal difference(filtering)

Figure 21, displays the autocorrelation function for the series after taking the first dif-

ference. This results indicates the need of seasonal difference as the series express non-

stationary in seasonal lags(12, 24,...). Figure 22, after taking additional seasonal difference

gives an indication of AR in nonseasonal term and either the presence of seasonal AR of

MA for lags (12, 24, 36,..). The graph for partial autocorrelation function (Figure 23) con-
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Figure 21.: Autocorrelation function of CO2 Series after first difference

firms that we have AR of order one in the non-seasonal part and a MA of order one in sea-

sonal part. Figure 22, plots the autcorrelation function for series after taking 1 non-seasonal

difference and one seasonal difference. Figure 23 plots the partial autocorrelation function

for the same series. The ACF behavior for AR model and MA model is the same, while

the difference will be obtained from the partial autocorrelation function. Since, in partial

autocorrelation function we have one term above zero, then it is an indication of AR(1)

model. The seasonal lags in Figure 22 and Figure 23 gives the indication of a seasonal

term in SMA(1). Overall, model identification suggests the best model of the following

form

SARIMA(1,1,0)x(0,1,1)12, that is,

Φ1(B)(1−B)1(1−B)1Xt = a+ ΘQ(B)εt (5.4)

with 1 nonseasonal difference and one seasonal difference, and with one nonseasonal

AR(1) with one seasonal MA (SMA(1)).

So for fitting the neural network model to CO2 data, we are going to use three input

units in the input layer. Since we have identified one nonseasonal difference we will take

69



Figure 22.: Autocorrelation function after taking one seasonal difference

Table 11: SARIMA model Estimates using Minitab

Parameter Estimate SE T-value P-Value
AR(1) -0.2858 0.0398 -7.17 0.000

SMA(12) 0.9190 0.0166 55.32 0.000

constant 0.00283 0.00119 2.37 0.018

MSE 0.0864

into consideration two previous valuesXt−1andXt−2 to predictXt along with one seasonal

moving average εt−12. The moving average term will be represented by the recursive prop-

erty of neural network. We have fitted the model in (5.3) using Minitab Statistical Software

and obtained the results in Table 11.

5.3.2 Recurrent Neural Network for CO2 Data

To fit the CO2 data we decided to choose three input units in the input layer, two for two

successive data points in the past to predict the next outcome. The third one is fed from the

error observed by the neural network outcome as it is shown in Figure 24. We will discuss

how the data is restructured to be trained correctly using the recurrent neural network in
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Figure 23.: Partial autocorrelation function after taking one seasonal difference

Figure 24. In which, the third input for the first eleven patterns will be zero, since our

Moving average starts from lag 12.

Figure 24.: Recurrent Neural Network Structure

To train neural network in Figure 24, to fit the time series model, the data need to be re-

structured in forms of patterns. The patterns should be formed such that the column vector

of time series data is changed to a matrix with three columns with each row representing a
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pattern.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %%% Restructuring of Time Series data for Neural Network%%%%%%%%

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 function [Xtrain, YTrain] = restructure(nin,nout,data,nloop,lag)

5 k1 =1;

6 n = size(data);

7 r=lag-1

8 t=nin-nloop

9 Xtrain=zeros(1,nin);

10 YTrain=zeros(nout,1);

11 while (k1≤n)

12 target(nout,1)=data(k1+t,1);

13 for i = 1:(t)

14 tem(1,i)=data(k1+i-r,1);

15 end

16 if(nloop = 1)

17 tem(1,nin)=0; % If you will be looping an error or predicted ...

value

18 end;

19 Xtrain=vertcat(Xtrain,tem);

20 YTrain=vertcat(YTrain,target);

21 k1=k1+1;

22 i=1;

23 end

For example, the first row will consist of

X1, X2, and (ε−9 = 0) to predict X3,

next row will consist of

X2, X3, and (ε−8 = 0) to predict X4,
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and so on till we reach the row that consists of

X10, X11, and (ε1 = X̂3 −X3) to predict X12,

the following row consist of the pattern:

X11, X12, and (ε2 = X̂4 −X4) to predict X13,

and so on till you reach the end of the data. In our case we created 600 pattern for training

proposes and 58 pattern to check forecasting. The linear function was used as activation

function for output unit in Figure 24. We have created a MATLAB function that can be

used for general number of input units.

The code on previous page titled: Restructuring of Time Series data for Neural Networks,

is for a function that will form the patterns of data to be modeled with neural network.

Function restructure takes a number of input units (nin), number of output units (nout),

training data column vector of size n, number of units (nloop) in input layer that are fed

from output units (recursive structure), and finally the number of lags that present the AR

terms identified from first step of Box and Jenkins procedure. In lines 6 and 7 the function

is obtained the sample size and the number (t) of previous observation that the predicted

value depends on (as in case we have two AR terms 1 and 2). Although the code currently

works for successive terms only but can easily be generalized to non-successive terms. In

lines 9 and 10 we are initiating the matrix of patterns that acts as our predictor variables,

and the target outcome vector, acting as our response,, and both are based on the number of

input units and the number of output units, in our case we have nin = 3 and nout = 1. The

rest of the code loops over the vector of data forming the patterns as explained earlier and

the function returns the matrix of observations and its corresponding targets. The matrix

of observations will have its last column all zeros, the last column is reserved for error

obtained from prediction of the neural network for each single pattern, representing the

SMA(1) wih S = 12. Neural networks usually takes its input data from a matrix, where

each column corresponds to one of the input units and each row represents a pattern. To

preform learning online after each pattern, then we need to store each row of Xtrain in a
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separate row vector and this is done by storing Xtrain in a cell array as it is shown in the

following code, same is also made for the target vector.

1 for i = 1:n

2 Xi{i,1}=Xtrain(i,1:nin);

3 Ti{i,1}=YTrain(i,1);

4 end

Once we have the cell array ready, next initialize the network and start training it using

Hybrid Monte Carlo Sampling as follows:

1 %initialize neural network

2 nin= 3;

3 nout=1;

4 nhidden=10;

5 %Assigning values for hyperparameters

6 aw1 = [0.01, 0.01, 0.5]; %3 different distributions for input units

7 ab1 = 0.01; %hyperparameter for bias of first layer

8 aw2 = 0.01; %hyperparameter for weights fanning from hidden to ...

output layer

9 ab2 = 0.01; %hyperparameter for bias of hidden layer

10 beta = 50; % hyperparameter for data error

11 prior = mlpprior(nin, nhidden, nout, aw1, ab1, aw2, ab2);

12 net = mlp(nin, nhidden, nout, 'linear',prior,beta);

13 % Start loop to preform Online training

14 for j =1:600

15 seed = 10; % Seed for random weight ...

initialization.

16 rng(seed,'v5uniform');

17 rng(seed,'v5normal');

18 % Set up vector of options for hybrid Monte Carlo.
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19 nsamples = 500; % Number of retained samples.

20 options = foptions; % Default options vector.

21 options(1) = 1; % Switch on diagnostics.

22 options(5) = 1; % Use persistence

23 options(7) = 25; % Number of steps in trajectory.

24 options(14) = nsamples; % Number of Monte Carlo samples returned.

25 options(15) = 200; % Number of samples omitted at start of chain.

26 options(17) = 0.75; % Alpha value in persistence

27 options(18) = 0.002; % Step size.

28 w = mlppak(net);

29 % Initialise HMC

30 hmc('state', 42);

31 %Calling HMC after feeding network with each pattern (Online ...

learning)

32 [samples, energies] = hmc('neterr', w, options, 'netgrad', net, ...

Xi{j}, Ti{j});

33 pred = zeros(size(Ti{j}));

34 Ed = 0;

35

36 for k = 1:nsamples

37 w2 = samples(k,:);

38 net2 = mlpunpak(net, w2);

39 network11{1,k}=net2;

40 Y = mlpfwd(net2, Xi{j});

41 [Err, edata, eprior] = mlperr(net2, Xi{j},Ti{j});

42 % Average sample predictions as Monte Carlo estimate of true ...

integral

43 pred = pred + Y;

44 Ed = Ed + edata;

45 end

46 pred = pred./nsamples;

47 Ed=Ed./nsamples;
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48 err(j)=Ed;

49 %Updating the patterns with error obtained from previous predictions

50 Xi{j+11,1}(1,3)=Ed;

51 end

Lines 2-12: the network is being structured and the prior object is built up. We used the

automatic relevance determination to assign different distribution of weights for each of

our three input units, line 6, error hyperparameter value is 0.5. Line 12: the neural network

is set with the choice of input units, output units, linear function as activation function for

output unit and prior structure. Then online learning is applied by calling the Hybrid Monte

Carlo sampling for each record of the cell array Xi with corresponding targets Ti. Errors

are computed after each pattern and input cell array is updated, lines 46-50. In the current

analysis the error obtained from the first pattern of Xi is returned and stored in the 12th

pattern of Xi completing the third input information, corresponding to SMA(1). Lines 15-

44 are taken from Nabney algorithm for HMC implementation, more details can be found

in his book [62]. We sampled 500 samples for each pattern using HMC.

5.4 Results

As we mentioned in Chapter 2 the use of Hybrid Monte Carlo Sampling requires several

trails to obtain initial values for hyperparameters. We will present two graphs to illus-

trate the difference between the initial values of hyperparameters. After training the neu-

ral network with the previously mentioned procedure we obtained a mean square error of

0.000616, by comparing it with the one obtained from using SARIMA model in Table 9

(MSE = 0.0864) we can tell that the recurrent neural network model outperformed the

SARIMA model. After we compared SARIMA and the recurrent neural network trained

with HMC, we also compare their forecasting accuracy. As we mentioned in the data sec-

tion that we left five years for determining the forecasting accuracy.
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Figure 25.: Comparison between forecasting accuracy of RANN with (0.01 hyperparame-
ters) and SARIMA

Figure 26.: Comparison between forecasting accuracy of RANN and SARIMA
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In Figure 25, Black dots are for observed CO2 average monthly emission, while red dots

from the SARIMA model. The green series is the forecasting from (RANN) trained with

initial values of hyperparameters of the input units all equal to 0.01. We have realized that

the third input unit that corresponds to the error needs to have higher value of hyperparam-

eter, meaning errors have less weight compared to X1 and X2 in forecasting X3. The final

neural network we developed is the one trained with initial values of hyperparameters of

0.01 for two data inputs and 0.5 for the error input.

Figure 26, displays the final outcome of the best fit neural network. The red series here

represents the forecasting of the RANN, it is either similar to SARIMA model in some

cases and in others it outperform it.

5.5 Conclusion

Our main objective in this Chapter is to introduce a general framework for utilizing neural

network in time series analysis. Step 1 in achieving our objective, we proposed a new

methodology for utilizing ANN in fitting stationary time series data. The proposed method

resulted in better performance compared to the popular ARIMA model. Step 2 is to model

non-stationary time series data using same method (Taking into account the high capability

of neural network in fitting non-linear patterns). We would like to mention that we first

tried using the evidence HMC method (The new proposed Bayesian learning presented in

chapter 4) in training the recurrent neural network in Figure 24, but we could not observe

any accepted samples from the HMC after re-estimating the hyperparameters using the

evidence. Thus, the evidence procedure do not perform well with online learning.

The secondary objective of the current study, is to better understand the behavior of CO2

in the atmosphere. Additionally form a model that predicts carbon dioxide emission from

the various source in Figure 17. Also, use the automatic relevance determination to rank

these sources based on their percentage of contribution to carbon dioxide emission.
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5.5.1 Contributions

The development of ANN models for time series analysis revealed some very important

findings that can be summarized as follows:

1. The use of ARMIA model identification step is important in determining the number

of input units in neural networks used to model time series data.

2. Best neural network structure to model time series data is recurrent (recursive) neural

networks.

3. The Hybrid Monte Carlo Sampling proposed by Neal, train perfectly recurrent neural

networks.

4. Carbon dioxide emission in the atmosphere can be better explained through a recurrent

neural network model trained with Hybrid Monte Carlo Sampling compared to popular

ARIMA model.
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Chapter 6

Future Work

Our future work consist of two main goals, first is to introduce Bayesian techniques to

other artificial intelligence methods such as genetic algorithm, among others. The second

is to use artificial neural network with Bayesian techniques to find a solution for other vital

problems our society is facing.

6.1 Neural Network models in Cancer research

Our proposed model can be used with other cancer diseases, such as lung cancer, breast

cancer, brain cancer, among others. For example, in survival studies, treatment options can

be added to risk factors, and by the use of automatic relevance determination, doctors can

suggest patients their suitable course of treatment that would make them survive longer. Of

course these kind of models need to be trained on more specialized data than the one with

used in chapters three and four. Additional information needed to be able to come up with

decisions on individual bases. Same idea can be extended to all cancer types.

In breast cancer especially (and for other types too), studying the factors that causes

cancer has great attention among medical doctors now a days. An artificial neural network

model can be built to study the effect of several factors on the incident of cancer. The use

of ARD will help tremendously in finding the most contributing factors to the incident of

cancer.
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6.2 Neural Network for Time Series Forecasting

The area of building neural network models for time series forecasting is still open. The

challenges that exists needs more research to find a suitable answers for it. Our future work

in this area is to build a framework to use artificial neural network in time series forecasting.

Special attention will be given to non-stationary time series, due to the wide existence in

real life of such time series. We will be working on a time series model that predicts carbon

dioxide emission in the atmosphere conditioning on the source of emission. The use of

automatic relevance determination will help in ranking the sources of emission based on

their contributions, allowing policy makers and government agencies to better control these

sources to reduce or control carbon dioxide emission in the atmosphere. WE can extend

this study by examining the regional effect and use one of neural network advantages in the

capability of predicting several variables at once. A similar neural network architecture to

DHANN-CR can be used to predict the carbon dioxide emission of several regions. The

input layer will present the different sources of emission, and the output layer represents

the different regions.
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