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ABSTRACT 

Biomaterials have evolved over the years from the passive role of mere biocompatibility to an 

increasingly active role of presenting instructive cues to elicit precise responses at the molecular 

and cellular levels. Various characteristics common to synthetic biomaterials in vitro and 

extracellular matrices in vivo, such as immobilized functional or peptide groups, mechanical 

stiffness, bulk physical properties and topographical features, are key players that regulate cell 

response. The dynamics in the cell microenvironment and at the cell adhesive interface trigger a 

web of cell-material and cell-cell information exchanges that have a profound impact in directing 

the ultimate cell fate decision. Therefore, comprehension of cell substrate interactions is crucial to 

propel forward the evolution of new instructive biomaterials. Combinatorial biomaterials that 

encompass a wide range of properties can help to recapitulate the complexity of a cell 

microenvironment. The objective of this research was to fabricate combinatorial biomaterials with 

properties that span wide ranges in both surface chemistries and mechanical moduli. These 

materials were based on polydimethyl siloxane (PDMS), an elastomeric silicone biomaterial with 

physiologically relevant stiffness. After developing these mechano-chemical gradient 

biomaterials, we conducted high throughput screening of cell responses on them to elucidate cell 

substrate interactions and material directed behaviors.  

 

Our central hypothesis was that materials encompassing monotonic gradients in mechanical elastic 

modulus and orthogonal surface chemistry gradients could be engineered using the soft 

biomaterial, polydimethyl siloxane (PDMS) and that these gradient biomaterials would evoke a 
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varied cell response. Furthermore, we expected high throughput screening of cell-material 

interactions using these materials would elucidate patterns and thresholds of synergy or 

antagonism in the overall cell response to the increased complexity presented by combinatorial 

materials. First, reproducible gradients in surface chemistry were generated on PDMS through 

surface modification techniques. Cell response to PDMS surface chemistry gradients was then 

screened in a rapid high throughput manner. Additionally, characteristics of the adhesive interface 

were probed to understand its role in cell response. Finally, a 2D combinatorial gradient with a 

gradient in mechanical elastic modulus and an orthogonal gradient in surface chemistry was 

fabricated with PDMS. High throughput screening of the synergistic influence of the varied 

mechanical and biochemical extracellular signals presented by the combinatorial biomaterial on 

cell response was conducted in a systematic manner. This research demonstrates the fabrication of 

combinatorial biomaterials with a wide range of mechanochemical properties for rapid screening 

of cell response; a technique that will facilitate the development of biomaterial design criteria for 

numerous biomedical engineering applications including in vitro cell culture platforms and tissue 

engineering. 
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CHAPTER 1  

INTRODUCTION 

1.1 Project Significance 

Commercial scale production of tissue engineered constructs depends on, among many other 

aspects, optimization of biomaterials that can persuade cells to perform desired functions. The 

process that ensues from the time a product is conceptualized to the preliminary testing period and 

latter stages of detailed, rigorous testing followed by clinical trials is a complex procedure that 

may extend to years before the product finally reaches market. This is because cell response is a 

multifaceted and very complex phenomenon. Cell fate decision is the end result of an orchestrated 

and inter connected network of events that involves cell-cell and cell-cell communications. 

Furthermore, multiple elements comprising the cell microenvironment ranging from mechanical 

stiffness, biochemical properties, physical or topographical attributes, soluble and immobilized 

factors contribute to the dynamic interactions in the interfacial cell adhesive layer and cell 

mechanotransduction events.  

 

Biomaterials are also increasingly expected to have more functionality. Next generation 

biomaterials are expected to be instructive biomimetic substrates that can precisely control specific 

cellular functions by mimicking the extracellular environment. Therefore, information regarding 

how multiple stimuli both independently and synergistically evoke cellular response is imperative 

to understanding and controlling cell-material interactions. In this regard, a combinatorial high 

throughput platform that allows rapid broad spectrum analysis of the effect of single and multiple 
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factors either independently or in combination provides several advantages: (i) Rapid screening of 

variables in a systematic manner leads to faster acquisition of data; (ii) Potential for large volume 

of data acquisition from a single experiment compared to traditional method of conducting 

manifold individual experiments; (iii) Trends and patterns in cell responses to continuous gradients 

emerge as positive hit zones that may be pursued further (with greater resolution) to test potential 

for developing new design criteria for greater therapeutic value. Furthermore, the synergistic effect 

of two variables may be different from an outcome from independent influence of each variable, 

similar to the complex interplay of variables in native cell microenvironments.  

 

Although some of the previous studies have highlighted the prospective of different gradient 

materials to screen cell response, a significant portion of the reported work used either very rigid 

or very soft materials. In this research, we use polydimethyl siloxane (PDMS), a soft biomaterial 

having physiologically relevant stiffness to produce gradient materials. 

 

1.2 Project Objective and Specific Aims 

The overall objective of this dissertation research was to fabricate combinatorial biomaterials 

which exhibit properties that span wide ranges in surface chemistries and mechanical moduli in 

monotonically varying gradient formats for the high throughput screening of cell response to 

matrix properties.  

 

The central hypothesis was that materials encompassing monotonic gradient properties in both 

mechanical elastic modulus and surface chemistry could be engineered on a single substrate using 

polydimethyl siloxane (PDMS), an elastomeric silicone biomaterial with physiologically relevant 
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stiffness. Additionally, it was expected that using these combinatorial biomaterials for high 

throughput screening of cell-material interactions would yield patterns of synergy or antagonism. 

The overall objective was accomplished by testing this central hypothesis through the following 

specific aims. 

 

 Aim 1 was to fabricate a gradient material with continuous and monotonically changing 

surface chemistry on a soft biomaterial for the purpose of screening cell-material 

interactions.  

Gradients in surface chemistry have been created previously on conventional rigid surfaces like 

glass and silicon wafers. The surface of PDMS was modified through the deposition of an 

alkylsilane monolayer followed by ultraviolet ozone oxidation (UVO) of the monolayer in a 

spatiotemporally controlled manner.  

 

The hypothesis was that a gradient in monotonically varying surface chemistries can be generated 

on PDMS, a soft biomaterial with physiologically relevant stiffness, for high throughput screening 

of cell response. This can be achieved through tightly controlled procedures involved in 

modification of the PDMS surface through alkylsilanization and its subsequent spatiotemporal 

UVO treatment. 

 

 Aim 2 was to screen cell morphological response to surface chemistry gradients upon the 

soft biomaterial in a systematic high throughput manner and investigate the contributory 

role of protein interfacial layer to specific cell response.  
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Two different cell types, NIH3T3 fibroblasts and Human Umbilical Vein Endothelial Cells 

(HUVEC), were cultured on fibronectin coated PDMS surface chemistry gradients. The cells were 

fluorescently stained to determine the effect of varying surface chemistry on cell spreading and 

adhesion.  High throughput and automated data extraction procedures were developed to control a 

Nikon fluorescent microscope with a computer controlled stage and analyze large volumes of 

acquired image data. This high content data analysis approach enabled the identification of 

predominant patterns or tendencies in cell response on the gradient material. Additionally, the 

adhesive interface was analyzed through the fluorescent labeling of adsorbed fibronectin. 

Furthermore, the molecular conformational aspects of fibronectin were examined through a 

modified ELISA procedure. In this manner, the effect of surface chemistry on both the 

macroscopic cell response and the intermediary events of cell substrate interactions were 

thoroughly investigated. 

 

The hypothesis was that a monotonically varying surface chemistry gradient fabricated on PDMS 

will modulate adhesive protein adsorption and thereby regulate cell response.  

 

 Aim 3: To fabricate a two dimensional (2D) combinatorial gradient platform that 

encompasses a gradient in physiologically relevant mechanical stiffness on one axis and a 

gradient in surface chemistry on the orthogonal axis for screening synergistic cell response 

to the mechano-biochemical cues in a high throughput manner.  

The material PDMS was modified through manipulating its crosslinker concentrations to obtain 

PDMS with varying stiffness to fabricate a gradient in elastic modulus.  This was achieved using 

a pair of programmable syringe pumps with inverse ramping profiles each carrying a different 
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composition of PDMS with a different crosslinker concentration that were joined and mixed 

downstream and deposited on a substrate placed on a translational moving stage. Gradients in 

mechanical stiffness obtained upon curing were later subjected to surface modification through 

alkylsilane deposition and subsequent controlled UVO treatment in the orthogonal direction to 

obtain surface chemistry gradient. The resulting 2D combinatorial gradient was then cultured with 

fibroblast NIH3T3 cells to screen cell response. High throughput data acquisition using a custom 

made macro with NISE software on Nikon fluoroscope enabled high content data extraction. A 

vast variation of combined stiffness and surface chemistry gradients were screened and regions of 

interest or ‘hot spots’ were identified. This demonstrated the potential of the fabricated 2D 

combinatorial substrates to elucidate cell response to multiple microenvironmental parameters as 

an important step in moving toward developing complete combinatorial biomaterials. 

 

The hypothesis was that a 2D combinatorial gradient biomaterial can be fabricated using the same 

soft material PDMS through manipulation of its bulk mechanical properties by varying the 

crosslinker concentration in a linear manner to obtain the stiffness gradient, followed by 

modification of surface properties via silane deposition and spatiotemporal UVO treatment atop 

the mechanical gradient to obtain the orthogonal surface chemistry gradient. Combinatorial high 

throughput screening has the potential to recognize ‘hot spots’ or ‘thresholds of positive hit zone’ 

regions of synergistic cell response to multiple stimuli on the 2D gradient platform. 

 

The tasks undertaken to achieve these specific aims are detailed in following chapters of this 

doctoral thesis. Background information and a detailed review of literature are presented in 

Chapter 2. Preliminary investigations of PDMS involving modification of its surface and bulk 



 

6 

 

physical properties are discussed in Chapter 3. The principal work to accomplish the objectives 

addressed in Aim1, Aim2 and Aim 3 are described in Chapter 4, Chapter 5 and Chapter 6, 

respectively. Finally the major conclusions from this dissertation and possible future 

considerations are detailed in Chapter 7. 
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CHAPTER 2  

BACKGROUND AND SIGNIFICANCE 

 

The structures, interactions, organizations and functions from the lowest molecular and cellular 

level all the way to the highest organism level are awe inspiring in their elegance and complexity 

and represent an unparalleled architectural wonder. Therefore, when a loss of tissue/organ function 

due to pathological conditions occurs in higher order animals that have limited capacity for 

regeneration, scientists and engineers face the uphill task of designing, building and optimizing 

bioengineered implant replacements to restore that lost function. This is an emerging process that 

involves deciphering the intercellular and cell interfacial interactions in vitro based on events that 

take place in vivo, connecting the dots and simultaneously translating that knowledge to 

manufacture biomedical products with enhanced biocompatibility and improved functionality. 

 

2.1 Factors that Determine Cell Fate  

It is widely appreciated that a multitude of factors contribute to determination of cell fate or cell 

response. Several elements in the environment of a cell such the physical, mechanical and chemical 

properties of the resting/supportive substrate/basement membrane, topographical features, and 

soluble factors trigger a web of events both between individual cells and in combination with the 

basement membrane, that ultimately results in events such as cell growth, cell differentiation, 

proliferation, division etc (Oliveira and Mano 2014; Wong, Leach, and Brown 2004). 
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The role of biochemical signals such as chemokines and hormones to initiate both short range and 

long range signaling events in cells with significant response in vivo (example: wound healing 

process, angiogenesis) and cues in the form of soluble and immobilized factors affect cell behavior  

in in vitro have been long appreciated and recognized (Shen et al. 2015; Walters and Gentleman 

2015; Kasuya and Tokura 2014). Upregulation of certain biochemical cues such as growth factors 

are also associated with pathological conditions such as cancer (Lössner et al. 2008; Shang, Li, 

and Li 2007). 

 

It has been reported that the presence of topographical features in the form of grooves and ridges 

with even finer details of features such as width, aspect ratio, depth and pitch  that have an impact 

on cell morphology and other higher functions such as proliferation, gene expression  as an effect 

of  ‘contact guidance’ (Saito et al. 2014; Gerecht et al. 2007; Biela et al. 2009; Martínez et al. 

2009). This is when the cells align themselves and/ or exhibit changes in cell function that are 

attributed to presence of the features. Microfabrication is the process of patterning features with 

the aim of controlled cell adhesion on substrates and may be used to conduct co culture of different 

cell types to study cell substrate and cell-cell interactions (Brunette et al. 2005; Kaji et al. 2011; 

Goubko and Cao 2009). 

 

Surface properties of biomaterials also form an integral design parameter to obtain optimum 

functionality and cell response. Foreign body reactions to implant biomaterials depend on 

numerous material properties like porosity, composition, degradation rate, surface chemistry and 

roughness (Onuki et al. 2008). Upon implantation of a biomaterial in vivo, different proteins in 

varied concentrations and conformations adsorb on material surface that dictate adhesion and 
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survival of different cell types (Anderson, Rodriguez, and Chang 2008). The effect of different 

surface chemistry on endothelial cell migration was investigated by Shen et al. It was found that 

cell migration was in the order of CH3 > NH2 > OH > COOH(Shen et al. 2015). Surface 

functionality has also shown to affect cell adhesion strength, matrix mineralization by osteoblasts 

and also shown to influence degree of osteogenic differentiation marked by variation in the gene 

expression of osteogenic markers (Keselowsky, Collard, and Garcia 2004; Keselowsky, Collard, 

and Garcia 2005; Keselowsky, Collard, and García 2003). Similarly, different functional surface 

chemistries have shown to influence skeletal myoblast proliferation and myogenic differentiation 

(Lan et al. 2005). Iluliano et al reported that, under serum free conditions bovine endothelial cell 

adhesion on preadsorbed fibronectin hydrophilic glass and hydrophobic silane surfaces were 

similar though focal adhesion formation was  higher on hydrophilic glass (Iuliano, Saavedra, and 

Truskey 1993). Substrates that had wettabilities ranging from 43°-96° and  different intensity of 

shear stresses under flow conditions on bovine pulmonary endothelial cells was studied by Lee et 

al which indicated surface wettability was an important regulator of preferential cell adherent 

fractions and also affected cell adhesion strength (Lee et al. 2000). However, how multiples signals 

like biomechanical cues are transduced and bring about specific cell response is largely unknown 

(Yeung et al. 2005). Also, there is generally no clear theory that predicts correlation between the 

surface chemistry of materials to cellular responses (Hook et al. 2010). 

 

Local matrix stiffness, acting through transmembrane integrins, focal adhesion complexes, 

cytoskeletal forces and molecular signaling pathways, has a profound impact on determining cell 

fate (adhesion, spreading, survival, differentiation, pathology) (Discher, Janmey, and Wang 2005; 

Byfield et al. 2009; Peyton et al. 2007; Engler et al. 2004). In general, cells tend to spread more 
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on and migrate toward stiffer substrates over softer surfaces. This ability of cells to perceive 

difference in rigidity of synthetic matrix beneath, was first demonstrated by Pelham and Wang 

using fibroblasts on collagen coated soft and stiff polyacrylamide gels (Pelham and Wang 1997). 

NIH3T3 fibroblasts exhibit durotaxis from softer to stiffer polyacrylamide gels with corresponding 

increase in cell spreading area (Lo et al. 2000). Engler et al showed that matrix stiffness determined 

mesenchymal stem cell differentiation to different cell types with substrates with least stiffness 

giving rise to neurogenic, intermediate to myogenic and stiffest to osteogenic lineage respectively 

(Engler et al. 2006). Recently, studies of EC stiffness in single, group and monolayers 

demonstrated that cell stiffness is a function of cell spreading area and that the stiffness of cells in 

a monolayer approaches the stiffness of a single cell. Interestingly, the density of fibroblasts and 

EC is an important player in ability of cells to sense the underlying substrate stiffness. Detectable 

differences in fibroblast and EC spreading on soft versus stiff substrates in the absence of cell-cell 

contacts disappear when a confluent cell layer is attained (Yeung et al. 2005). Therefore, cell-cell 

and cell–matrix interactions are suggested to be important for maintaining cell tension homeostasis 

(Stroka and Aranda-Espinoza 2011). Most studies reported on stiffnesses that are not in the 

physiologically relevant range. For example, studies with EC response to stiffness is in the range 

of 0.2kPa-75kPa mostly using polyacrylamide gels. However, human saphenous vein and arterial 

wall have tissues whose rigidity lie in the range of 25 kPa-1.25 MPa and 10 kPa- 7 MPa 

respectively (Nemir and West 2010). The range of stiffness reported by using 

polydimethylsiloxane, (PDMS), a silicone elastomer, to tune the crosslinking density lies between 

50 kPa to 1.78 MPa which is within the physiological range of stiffness.(Brown, Ookawa, and 

Wong 2005) The research presented in this dissertation is focused on the influence of surface 

chemistry and matrix stiffness on cell functions. 
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2.2 Cell-Substrate Interactions 

Cells interact with biomaterial surfaces through the intermediate adhesive layer that comprises of 

a network of adsorbed proteins including adhesion proteins and growth factors. In tissues, a highly 

organized but similar protein matrix supports cell adhesion, stores and presents growth factors to 

cells, and interacts with cells to transduce signaling events (Rozario and DeSimone 2010). There 

are many different proteins found in the basement membrane, the ECM supporting epithelial 

tissues, include fibronectin, fibrinogen, collagen I, collagen IV, vitronectin etc (Alberts B et al. 

2002). For instance, the endothelial cell basement membrane contains several ECM proteins like 

Laminin, Collagen IV, Fibronectin (Herbst et al. 1988). Integrins, a class of mechanosensory 

proteins, recognize and bind specifically to certain motifs with a specific sequence of aminco acids 

like the arginine-glycine-aspartic acid (RGD) tripeptide in ECM proteins like fibronectin, laminin, 

and vitronectin (Hernandez et al. 2007) Among these, fibronectin is a protein found in both soluble 

form in body fluids like blood plasma and insoluble form in stromal connective tissue like the 

basement membrane (Mosher and Furcht 1981). The structure and functional aspects of fibronectin 

has been extensively studied and characterized (Bradshaw and Smith 2014; Hynes 2009; Pankov 

and Yamada 2002; Potts and Campbell 1996). This makes it advantageous to study cell response 

on engineered biomaterials since modifications in fibronectin may be tracked down more 

efficiently. It has been reported that protein adsorption favors hydrophobic surfaces in comparison 

with hydrophilic surfaces (Elwing 1998; Elwing et al. 1987; Ma, Mao, and Gao 2007; Gugutkov 

et al. 2010). Surface chemistry has been shown to impact fibronectin adsorption, induce unfolding 

and molecular level conformational changes causing downstream regulation integrin function, 

recruitment of mechanosensory complexes and higher order functions of cells (Keselowsky, 
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Collard, and Garcia 2004; Keselowsky, Collard, and Garcia 2005; Keselowsky, Collard, and 

García 2003; Michael et al. 2003; Gugutkov et al. 2010; Ma, Mao, and Gao 2007).  

 

Apart from the molecular changes in the protein, properties of the bulk protein such as the stiffness 

of the fibronectin fibers both at the more ‘individual’ fiber level and the ‘population’ matrix level 

may be sensed by attachment receptors on cells (Bradshaw and Smith 2014). Also, fibronectin can 

withstand remarkable extension, a strain greater than 700% before failure occurs in about one-half 

of the fibers tested. The extension has effects on the rigidity or modulus of the fibers which 

increases to the MPa range and also cause conformational changes at the molecular level with 

increased exposure of buried binding sites on FNIII modules that are acknowledged to affect 

cellular functions (Klotzsch et al. 2009). Consequently, different properties of the basement 

membrane or substrate are a source of stimuli that effect dynamics of protein turnover and 

positioning/presentation for cell interaction. Eventually, the manner in which cells perceive this 

protein interface affects cell functionality (Bradshaw and Smith 2014; Hynes 2009). 

 

2.3 Cell Mechanobiology 

Specific proteins found in the cell membrane called integrins and cadherins mediate cell-substrate 

and cell-cell communications respectively (Weber, Bjerke, and DeSimone 2011). Integrins are a 

major class of adhesion proteins with heterodimeric α and β subunits which are involved in both 

outside-in and inside-out cell signaling events. They are transmembrane proteins and have domains 

in the outer region of the cell membrane, extending through the membrane and into the cytoplasm. 

These integrins tether cells to the adhesive extracellular matrix discussed in the previous section. 

There are about 24 dimers of integrins (Hynes 2002; Humphries, Byron, and Humphries 2006; 
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Chen et al. 2003). Integrins associated with cell-fibronectin connectivity include the α5β1 ,αvβ3 and 

αvβ6 (Lee and Gotlieb 2003; Scatena et al. 1998; Garcia and Garcia 2014). Integrin adhesion of 

cell on a substrate evolved from the initial weaker attachment to a more strengthened grip (Garcia 

and Gallant 2003). This is concurrent with clustering together of multiple integrins and positioning 

of different protein subsets such as paxillin, vinculin, talin, α actinin and enzyme kinases connected 

to deeper cell architectural elements such as the cytoskeleton. Such an arrangement/formation is 

called a focal adhesion complex and information is signaled to and fro between the cell and 

substrate through a series of short lived phophorylations, signal amplifications and modifications. 

Collectively, these events are called mechanotransduction (Gallant, Michael, and Garcia 2005; 

Geiger et al. 2001). The cytoplasmic region of integrins induce intracellular signal transduction, 

cell cytoskelatal organization and also modulate gene expression (Shyy and Chien 2002).  

 

Cell-cell connections, on the other hand are sustained by cadherins, occludins and connexins. 

Among these, cadherins are of prime importance for mechanotransduction between cells linked 

through adherent junctions. Cadherins are hemophilic cell-cell adhesive proteins that require 

divalent cations like Ca+2 for their homotypic activity and are connected to the cell cytoskeleton 

(Chen, Tan, and Tien 2004).  

 

Both integrins and cadherins are wired to the the actin filaments of the cytoskeleton. The signaling 

events have the capacity to switch on/off genetic materials within the cell nucleus. Existence of 

cross-talk between integrins and cadherins/ cell-cell and cell-matrix adhesions has been reported 

and this once again highlights the interconnected and interdependent nature in the different levels 

of cell communications (Weber, Bjerke, and DeSimone 2011). For instance, it has been shown that 
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while vascular smooth muscle cells are affected by substrate stiffness through integrin mediated 

adhesion, an increase in cell to cell contacts make them less sensitive to the stiffness (Sazonova et 

al. 2011). Endothelial cells (EC) are anchorage dependent cells, require integrin mediated 

attachment to ECM for their survival and display several integrins on their surfaces that bind to 

different proteins in ECM like fibronectin, laminin, Collagen I and IV (Stromblad and Cheresh 

1996). At the same time, EC make cell-cell connections through Vascular Endothelial (VE)-

cadherins junctions. An EC monolayer forms the protective inner lining of every blood vessel in 

the body exposed to continuous blood flow or shear stress, cyclic strain and hydrostatic from the 

luminal side and is also anchored to the basal lamina on the other side. The forces these cells 

experience are transduced by both cadherins and integrins (Califano and Reinhart-King 2010; 

Weber, Bjerke, and DeSimone 2011). And overall, endothelial mechanobiology is characterized 

by both chemical and mechanical aspects like matrix stiffness, substrate ligands, shear forces and 

soluble biochemical factors (Stroka and Aranda-Espinoza 2010). This example truly highlights the 

need for engineering scaffolds and biomaterials for biomedical engineering applications to factor 

in the structural, mechanical and biochemical aspects of a cell microenvironment along with the 

dynamic interplay between cells and with the substrate in order to provide instructive cues to elicit 

specific response for optimum functionality (Edalat et al. 2012). 

 

2.4 High Throughput Techniques to Screen Cell Response 

The numerous aspects that affect cell behavior have been discussed in earlier sections. The design, 

production and testing of new biomaterials have to consider all these elements related to cell 

functionality and biocompatibility.  The expectations from a biomaterial have also increased over 

the years to now requiring very specific functions in addition to a prolonged shelf life, more 
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bioactivity, specific interactions at the molecular level, easy implantation and continuous 

monitoring (Hench and Polak 2002). Checking all the boxes individually of such a very long list 

would mean a very large investment in terms of money, time and resources. Instead of individual 

parameter testing, a more time efficient approach is the implementation of high throughput 

platforms with discrete arrays, or spatially controlled gradient properties to screen cell response. 

(Peters, Brey, and A. 2009; Simon and Lin-Gibson 2011). Such a screening technique is more 

efficient and effective than individual testing of parameters (Yliperttula et al. 2008; Moraes et al. 

2010; Mei, Goldberg, and Anderson 2007; Kim, Khang, and Lee 2008). In this manner detailed 

studies can be focused on positive hits identified from a large screening field of variables and an 

optimal blend of different variables for a certain biomedical application can be identified (Hook et 

al. 2010; Neuss et al. 2008; Rasi Ghaemi et al. 2013). Based on the experimental conditions used 

in a particular study, combinatorial gradient materials could have the potential to pave the way for 

optimization of design parameters for a new generation of biomaterials. For example, unraveling 

facets of angiogenesis, more specifically endothelial cell behavior in blood vessel formation, will 

directly impact vascularization of complex tissue engineered constructs which still poses a big 

challenge in all tissue engineering applications. Along the same lines, optimizing design 

parameters in cardiovascular implants that support complete re-endothelialization of implant 

materials is essential for enhanced performance, durability and biocompatibility (Lv et al. 2008). 

Another prospect of working with gradient materials includes comprehending factors or events 

that contribute to specific pathological conditions (example cancer, cardiovascular disease) 

through screening for possible variations in the form of upregulation or downregulation of specific 

cell markers.  
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In a landmark study, Anderson et al demonstrated the power of high throughput screening of cell-

material interaction through creating nanoscale array of polymeric biomaterials to screen 

approximately 1700 human embryonic stem cell-biomaterial interface reactions (Anderson, 

Levenberg, and Langer 2004). Some of the studies conducted using high throughput gradients; to 

investigate different factors of cell behavior are described in the next two sections. These include 

gradients in physical aspects such as biomaterial stiffness, topography and biochemical features 

such as surface chemistry and bioactive agents (Oliveira and Mano 2014). 

 

2.5 1D Gradient Materials 

A single gradient material in which one property is varied can be used to study how the variations 

in that parameter affect cell response. Gradients in physical parameters have been investigated for 

their effect on cell response (Obregón et al. 2015; Bailey, Nail, and Grunlan 2013). Physical 

gradients are engineered with variations in topographical attributes such as porosity gradients 

where pore size variation could range from micro to nano scale. Porosity gradients have been 

utilized to study the effect of osteoblast related functions for application in bone tissue engineering 

(Tampieri et al. 2001; Collart Dutilleul et al. 2014). Porosity gradients in nanometer scale have 

been studied to understand neuroblastoma cell growth (Khung, Barritt, and Voelcker 2008). 

Similarly gradients in surface roughness, crystallinity, and swelling have been employed to study 

cell functions (Washburn et al. 2004; Kunzler et al. 2007; Faia-Torres et al. 2014; Han et al. 2013, 

2013). A spatial stepwise gradient with PDMS microchannels that are wide on one side and tapered 

on the other side has been used to study cell invasion where it was found that 87% metastatic breast 

cancer cells were invasively migrated to the narrower zone compared to the lower 25% of the 

normal breast epithelial cells (Mak, Reinhart-King, and Erickson 2011). 
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The effect of a gradient in applied mechanical shear forces in the form of hydrodynamic shear 

assay to quantify strength of cellular adhesion has been reported. It is a high throughput cell 

adhesion assay that applies a range of shear stresses on cells population under uniform chemical 

conditions using a spinning disk device. A cell population on circular substrates is mounted on a 

spinning shaft and is subjected to a well characterized linear range of hydrodynamic forces using 

a solution of known viscosity and density (Elineni and Gallant 2011; Garcia and Gallant 2003; 

Garcia, Ducheyne, and Boettiger 1997). The magnitude of applied shear stress increases linearly 

with the radial position (Gallant and García 2007) from the center of disc to its rim. After spinning, 

the ratio of the number of cells at a specific radial position r to the number of cells in the center 

that experience least shear forces represents the fraction of adhered cells. The cell detachment 

profile of adhered cell fraction vs. shear stresses is fit using a sigmoid curve in which the inflection 

point of the curve gives the shear stress required to detach 50% of cells and represents the mean 

cell adhesion strength of the population. 

 

Gradients in mechanical property such elastic modulus gradients have shown to be a significant 

player in directing cell response. Polymers with  a ‘step gradient’ containing stiffer regions through 

contact printing was demonstrated using two polymers, poly acrylamide (PA) and polydimethyl 

siloxane (PDMS) which were then fibronectin coated for fibroblast NIH3t3 and bovine endothelial 

cell culture. Both cell types showed preferential migration and accumulation toward the stiffer 

regions of the polymers (PA 34 kPa, PDMS 2.5 MPa) than the softer regions (PA 1.8kPa, 

PDMS12kPa) (Gray, Tien, and Chen 2003). Lo et al created a polyacrylamide sheet with a soft 

and stiff end through manipulation of crosslinker concentration and discovered that while NIH3t3 

cells readily migrated from the soft to the stiff end, cells that were migrating in the direction toward 



 

18 

 

soft side stopped short at the transition boundary and ‘turned’ around (Lo et al. 2000). Similarly, 

microelasticity gradients having soft and stiff regions have been produced through 

photolithography using photocurable gelatin  and it was concluded that mechanotaxis was more 

favorable when the elasticity ratio of hard and soft regions were higher (Karageorgiou and Kaplan 

2005). Isenberg et al made stiffness gradients using polyacrylamide hydrogels surface modified 

with collagen and ranging from 1 to 80kPa in modulus of elasticity. The gradient substrate itself 

was made using a microfluidic device with a three channel inlet carrying monomer, crosslinker 

and initiator with several dividing and converging channels downstream for mixing. It was 

concluded that vascular smooth muscle cell orientation and durotaxis was affected by the presence 

of a stiffness gradient  and that cell spreading and polarization was correlated with higher stiffness 

(Isenberg et al. 2009). A mechanical gradient (~12-28 kPa) in polyacrylamide hydrogels in a 

circular geometry was generated through controlled photopolymerization with the use of a radially 

patterned mask that either transitioned from light to dark grey scale from center to periphery or an 

inverse mask with gradient in the opposite direction. It was found that vascular smooth muscle 

cells exhibited durotaxis and later increased cell accumulation on the stiffer regions (Wong et al. 

2003). A cylindrical hydrogel with a stiffness gradient with a 1 kPa to 24 kPa range produced 

through a freeze thaw procedure has also been to study stem cell differentiation (Kim et al. 2015). 

While several mechanical elasticity moduli materials and results have been obtained, the number 

of studies that used materials with physiologically relevant stiffnesses (~MPa range) and especially 

a continuous mechanical stiffness gradient was rare. Recently, Wang et al made a stiffness gradient 

using PDMS generated through controlling the directionality of heating during the curing process 

of PDMS to study mesenchymal cell response. This study is discussed in more detail in section 

2.7 (Wang, Tsai, and Voelcker 2012). 
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Material surfaces are also altered in a controlled manner to obtain gradients biochemical aspects 

to screen cells. Polymeric gradients, plasma polymerized polymer brush gradients and gradients 

obtained through corona discharge have been reported to obtain gradients different chemical 

functional groups (Zelzer et al. 2008; Lee et al. 1998; Lee et al. 2000; Coad, Bilgic, and Klok 2014; 

Neuhaus, Padeste, and Spencer 2011; Ekblad et al. 2009; Zelzer, Alexander, and Russell 2011). 

Gradients in immobilized peptide density groups such as RGD, ligands, and proteins like 

fibronectin, collagen and laminin have also been demonstrated to impact cell functions (Wu et al. 

2014; Mimura et al. 2008; Li, Wu, and Gao 2011; Herman et al. 2011; Maheshwari et al. 2000). 

In an interesting study that looked at the influence of a chemotactic gradient in the form of VEGF 

oriented perpendicular to the presence of electrospun hyaluronic fibers on HUVEC motility, and 

it was found that the topographical cues was the more potent regulating factor (Sundararaghavan 

et al. 2013). 

 

The availability of plentiful types of self-assembled monolayer (SAM) molecules and their 

deposition and further modifications upon different types of substrates offers more options of 

making gradient materials. Microfluidic lithography techniques have been used to prepare 

dynamic hydroquinone-terminated SAM gradients that supports an RGD peptide density gradient 

which guided cell migration to the end higher peptide density (Lamb, Westcott, and Yousaf 2008). 

 

Roberson et al demonstrated the creation of surface energy gradients with water contact angle 

ranging from ~5° to 95° by chemically modifying the chlorodimethyl octylsilane deposited on Si 

wafers using controlled UV ozone radiation through varying density mask filter. In the presence 

of oxygen, the UV ozone treatment generates atomic oxygen by dissociating ozone with the 257 
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nm and molecular oxygen with the 185 nm wavelength of the lamp. The atomic oxygen in turn 

oxidizes the silane monolayer and generates oxygenated species. Analysis of the chemistry through 

time-of-flight secondary ion mass spectroscopy (ToF SIMS) was also investigated and found 

changes in SiCH3+, SiOH+ and COOH- (Roberson et al. 2002). This method was later adopted by 

Kennedy et al to study osteoblast cell response to a gradient in surface chemistry coated with 

fibronectin protein. They found that maximum cell proliferation occurred at hydrophobic end of 

gradient (Kennedy et al. 2006). Gallant et al observed that smooth muscle adhesion correlated with 

increases in hydophobicity on a surface chemistry gradient and with increase in RGD 

concentration on a peptide density gradient (Gallant et al. 2007). A similar gradient approach was 

adopted by Acharya et al who performed a systematic characterization of dendritic cell adhesion 

on RGD peptide density gradients fabricated through biofunctionalization of peptides on glass 

slides with linear surface energy gradients. Dendritic cell activation of cytokines and integrin αV 

subunit binding as a function of peptide density gradient were also assessed using these universal 

gradient substrates (Acharya et al. 2010). We chose a similar UVO treatment of ODMS discussed 

in the above mentioned studies to create gradients on PDMS surface due to the inherent similarity 

of the siloxane backbone in PDMS to the structure of glass. 

 

2.6 2D Gradient Materials  

Combinatorial and high throughput methods have the potential to screen cell responses to multiple 

parameters (Smith Callahan et al. 2013; Peters, Brey, and A. 2009). A combinatorial high 

throughput platform that allows screening of different combinations of various physical, 

biological, chemical and mechanical properties in a systematic manner is highly advantageous 

(Thasneem and Sharma 2013; Oliveira and Mano 2014). The data obtained helps illustrate the 
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added or synergistic effect of the factors involved on cells rather than the effect of one single 

parameter. And as discussed extensively in the previous sections, multiple cues provide stimuli in 

a cell microenvironment. Also, the use of high throughput and automated techniques to screen cell 

response, such as automated microscopy, supports multi parameter, rich content data collection 

and analysis (Liu et al. 2009; Simon Jr et al. 2005).  

 

Following is a brief review of work done where 2D gradients were utilized for cell and protein 

assays. The review includes 2D chemistry gradients where both the gradients are variations in a 

chemical factor and 2D physic-chemical gradients where at least one among the two gradients 

presents a variation in a physical parameter.  

 

2D gradient with a linear gradient in compositions of two polymers along an axis was annealed on 

a stage with graded temperature in the orthogonal direction that in turned induced a phase 

separation in polymers (Meredith et al. 2003). A region of enhanced osteogenic marker expression 

was identified for an intermediate polymer blend exposed to ~105°C. Two sets of dual axis 

polymer brush gradients with one varying molecular weight of two polymers and the other that 

varied molecular weight and grafting density of a polymer were generated and were used to study 

protein adsorption and  cell adhesion (Bhat, Tomlinson, and Genzer 2005).Plasma polymerization 

of allylamine on polyethylene through a two-step diffusion controlled process was done to achieve 

a 2D amine gradient. Cell morphology was examined and found to correlate with the higher 

nitrogen content on the substrate (Mangindaan, Kuo, and Wang 2013). Other examples include a 

fibrinogen and lysozyme two protein gradients by subjecting poly ethylene glycol (PEG) to 

controlled surface grafting density (Vasilev et al. 2010), 2D orthogonal gradients immobilized with 
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peptide density gradients through ‘click’ chemistry on silane coated silicon and glass wafers  to 

assay cell functions (Ma et al. 2013), 2D gradients in polymer brush grafting density and molecular 

weight to study lysozyme adsorption (Genzer et al. 2011) and orthogonal gradients with functional 

groups through modification of several silanes to study adsorption of proteins like albumin and 

fibrinogen (Beurer et al. 2012). 

 

A 2D physico-chemical gradient having an orthogonal gradient platform varying physical cues 

with a micrometer roughness gradient on one axis and a nanometer scale roughness on the other 

axis induced higher levels of osteopontin production, a marker of osteogenesis, at highest 

micrometer roughness and a midway nanometer roughness region (Zink et al. 2012), a 2D physical 

gradient featuring groove depth and pitch gradients to study endothelial and fibroblast cell 

adhesion  has also been demonstrated (Reynolds et al. 2012). A nanoporosity gradient combined 

with peptide ligand density gradient has shown mesenchymal stem cell response being stronger 

toward the peptide gradient (Clements et al. 2012). A strip based discrete blend gradients of two 

polymers were annealed on graded temperature stage that induced a gradient in increasing 

roughness and modulus  correlating with one of the polymer concentration to study osteoblast 

functions (Simon Jr et al. 2005). An interesting study where the effect of the combination of low 

Collagen concentration with higher elastic modulus and a higher Collagen concentration with a 

lower modulus was conducted using polyacrylamide hydrogels to study cell migration. It was 

essentially a 2D ‘step’ non continuous gradient where equal volume of each of the two blends were 

added beside one another on glass and allowed to crosslink resulting in an interface between the 

two zones. Varying crosslinker concentration allowed making 2D ‘step’ gradients with different 

sets of moduli. It was found that the biochemical stimuli were more overpowering than the stiffness 
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stimuli for fibroblast migration. The stiffness was ~35 kPa for the low modulus and 55 kPa or 85 

kPa represented the high modulus (Hale, Yang, and Rajagopalan 2010). 

 

Some of the 1D and 2D gradients described in this chapter are not truly continuous in nature, rather 

discrete blends beside another with a clear transition boundary layer. Overall, combined gradient 

materials that incorporate stiffness gradients with another parameter are limited. Specifically, 2D 

continuous long range gradients engineered to incorporate a bulk mechanical stiffness in the 

physiologically relevant range along with another variable gradient on its orthogonal axis is 

virtually quite nonexistent. 

 

2.7 Silicone Elastomer PDMS as a Model Biomaterial 

The objective of this project is to fabricate a 2D gradient material with a continuous gradient in 

surface chemistry along one axis and a continuously varying modulus of elasticity along the 

orthogonal axis. Toward this objective, polydimethylsiloxane (PDMS), a silicone elastomer was 

chosen as the model biomaterial. PDMS offers a long list of beneficial properties. It is a material 

that is fairly inexpensive, easy to procure and manufacture since it is commercially available in 

two components with one being a base and the other a crosslinker that undergoes a hydrosilation 

reaction with Pt as a catalyst (Simpson et al. 2004). Its other characteristics include being thermally 

stable, having a high modulus of elasticity, chemical resistance, low toxicity, being water 

impermeable optically transparent (Li, Wang, and Shen 2012; Ng et al. 2002; McDonald and 

Whitesides 2002). Unsurprisingly therefore, PDMS is a widely used material in multiple fields of 

applications including microfluidics, photolithography, biomaterials and tissue engineering to 

name a few.(Lih et al. 2014; Ai et al. 2003; Jo and Guldiken 2014; Xia and Whitesides 1998). 



 

24 

 

However, PDMS has some inconvenient features such as poor surface energy properties that do 

not support cell adhesion and while the surface may be modified by plasma processing, the changes 

made are lost quickly due to hydrophobic recovery (Evaraert, Mei, and Busscher 1996; Everaert 

et al. 1995; Zhao, Lee, and Sen 2012). This is where the low molecular weight species make its 

way back to the surface and buries the altered surface. The shelf life of the superior plasma cleaned 

PDMS surface has been extended further through several days of curing the PDMS at elevated 

temperatures, solvent extraction for an extended time period and by immersion of substrate in 

water or ethanol (Mata, Fleischman, and Roy 2005; Wang et al. 2010; Vickers, Caulum, and Henry 

2006; Tan et al. 2010; Almutairi, Ren, and Simon 2012). 

 

PDMS surfaces may also be altered through silanization and UV crosslinking (Almutairi, Ren, and 

Simon 2012; Beltran et al. 2011; Bhagat, Jothimuthu, and Papautsky 2007; Efimenko, Wallace, 

and Genzer 2002; Berdichevsky et al. 2004). The elastic modulus may be tweaked with variations 

in time and temperature of curing, chemical interventions and also in the more typical way when 

the base and crosslinker concentrations are changed (Brown, Ookawa, and Wong 2005; Fuard et 

al. 2008; Palchesko RN et al. 2012; Wang, Tsai, and Voelcker 2012). The Dow Corning 184 

Sylgard PDMS in which the base component is made of vinyl terminated dimethlysiloxane 

oligomers to which the curing crosslinker agent of dimethyl methylhydrogen siloxane (silicon 

hydride) reacts through a hydrosilylation reaction which results in a Si-C bond (Esteves et al. 2009; 

Oulad Hammouch, Beinert, and Herz 1996).The base also contains silica filler in the form of 

dimethylvinylated and trimethylated silica and the curing crosslinker agent carries tetramethyl 

tetravinyl cyclotetrasiloxane as an inhibitor to control the curing rate (Lee et al. 2004). PDMS 
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materials have also been used for cell studies which investigated the phenomena of chemotaxis 

and durotaxis (Isenberg et al. 2009; Gray, Tien, and Chen 2003; Sia and Whitesides 2003). 

 

Palchesko et al made discrete blends of two commercially available PDMS, the Sylgard 184 and 

Sylgard 527 in varying ratios of the two to with the softest blend having a modulus of 5 kPa and 

the stiffest blend with a modulus of 1.72 MPa. There was no significant variation in surface 

roughness or wettabilities in the crosslinked networks made from mixing the two types of PDMS.  

Myoblast differentiation into myotubes and neurite extension length were both sensitive to the 

variations in the change in substrate stiffness (Palchesko RN et al. 2012). In another study where 

Sylgard 184 was use to modify the base to crosslinking ratios to make discrete PDMS networks 

varying stiffness ranging from 1.8 to 0.05 MPa followed by surface treatment using layer-by layer 

treatment with positively and negatively charged solutions (Ai et al. 2003) affected cell functions 

attachment, spreading and growth of vascular smooth muscle cells (Brown, Ookawa, and Wong 

2005). 

 

Wang et al have created stiffness gradients using PDMS to study rat mesenchymal stem cell 

(rMSC) response. Three separate stiffness gradients were prepared with one using PDMS in the 

conventional 10 to 1 ratio of base and crosslinker, the other with 20 to 1 and finally a combination 

of the two blends to obtain a wider range of stiffness. This last combination gradient was made by 

pouring PDMS, first the mixture containing 10 to 1 ratio of base and curing agent and then other 

with 20 to 1on top of that, into teflon spacer clamped by two glass slides and the placed vertically 

on a hot surface (120°C) for about 2 hours. The directional variation in the heating intensity over 

the 12mm length of combination PDMS obtained the widest  stiffness range of 0.2 MPa to 3.1MPa 
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on which osteogenesis of the rMSC occurred more at the stiffer end (Wang, Tsai, and Voelcker 

2012). And while this one study has been reported where the PDMS material has been used to 

create mechanical gradients, surface gradients on PDMS and 2D gradients with PDMS have not 

been attempted before. To our knowledge, it is the for the first time in the presented study that 

surface chemistry gradients are generated on PDMS through surface modifications to screen cell 

response and study the interfacial adhesive layer. Also presented in this study for the first time is 

a 2D gradient combinatorial biomaterial fabricated using PDMS, that encompasses an elastic 

modulus gradient portraying a range of physiologically relevant stiffness and an orthogonal surface 

chemistry gradient for the purpose of a systematic screening of synergistic cell response to the 

engineered mechanochemical cues. 
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CHAPTER 3  

MODULATION OF SILICONE ELASTOMER PROPERTIES TO ENGINEER 

COMBINATORIAL MATERIALS 

 

3.1 Introduction 

Polydimethyl Siloxane (PDMS) is the material of popular choice for a variety of applications 

including microfluidics, Biomicroelectromechanical Systems  (BioMEMS) and photolithography 

(Maji, Lahiri, and Das 2012; Xia and Whitesides 1998; Almutairi, Ren, and Simon 2012; Wheeler 

et al. 2004). PDMS is cost effective and also possesses attractive material properties such as being 

very easy to manufacture, chemical and biological compatibility, thermal stability over a wide 

range of temperatures, optical transparency and non-toxicity (Jo and Guldiken 2014; Zhou, Ellis, 

and Voelcker 2010). Since PDMS offered the prospective for surface modifications and tuning of 

its bulk elastic modulus, it was chosen for this project to fabricate combinatorial gradient materials 

with varying surface and mechanical properties. 

  

In this chapter, different aspects regarding modification of PDMS material properties with a 

special emphasis on surface chemical and bulk mechanical characteristics of PDMS are studied. 

PDMS offers the prospective of relatively easy surface modifications by protein adsorption, 

silanization, UV radiations, plasma processing, (Bhagat, Jothimuthu, and Papautsky 2007; 

Efimenko, Wallace, and Genzer 2002; Almutairi, Ren, and Simon 2012; Wang et al. 2010). Silane 

chemistry on oxides or Self Assembled Monolayers of alkanethiols on gold is immensely popular 
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means for modification of functional groups and altering surface chemistry of materials (Jo, Yu, 

and Yang 2011; Hong and Park 2005; Hemmilä et al. 2012). Silane modification of PDMS, 

particularly with organosilanes such as chlorodimethyloctylsilane, has also been reported (Beltran 

et al. 2011). For example, silanization of PDMS has been studied for  improving surface properties 

of self-expandable stents to reduce stent migration post implantation (Karakoy et al. 2014).  

 

The mechanical properties of PDMS may also be altered with ease through adjusting the 

crosslinker concentration and curing conditions (Wang, Tsai, and Voelcker 2012; Brown, Ookawa, 

and Wong 2005; Fuard et al. 2008; Tzvetkova-Chevolleau et al. 2008). PDMS is an elastomer that 

has been demonstrated to have a physiologically relevant range of elastic moduli (Wong, Leach, 

and Brown 2004; Wang, Tsai, and Voelcker 2012; Brown, Ookawa, and Wong 2005). Several 

tissue structures in our body have high modulus of elasticity in the range of ~1 to 2 MPa such as 

the ECM basement membrane, the thoracic aorta, abdominal aorta, iliac and carotid arteries 

(Candiello et al. 2007; Wong, Leach, and Brown 2004; Wang et al. 2010).  

 

The main objective of this project was to make combinatorial 2D gradient materials using PDMS 

through surface and mechanical modifications of the materials. The preliminaries of this objective 

have been addressed in this chapter which details surface modifications including silane deposition 

on PDMS substrate, Ultraviolet Oxidation (UVO) treatment of PDMS surface, and solvent 

extraction of PDMS using a polar solvent, as well as tuning of mechanical properties of PDMS by 

varying the crosslinker concentration to achieve a wide range in modulus of elasticity. 
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3.2 Experimental Section 

 Cross-linked networks of PDMS for surface modification and mechanical testing 

Cross-linked networks of PDMS were prepared using Sylgard®184 purchased from Dow Corning 

Corporation. The kit is provided with a base and cross-linker that is mixed in a standard 10:1 ratio 

as per manufacturer’s recommendations. 0.9 ml of mixed PDMS was dispensed on to glass slides 

(Fisher brand) using a 1 ml syringe. PDMS was cured at 65°C overnight. Plain glass slides and 

PDMS substrates were sonicated for 15 minutes to remove physical impurities and were then dried 

with a stream of N2 or under vacuum in a desiccator.  

 

Some of the cross-linked PDMS networks were Soxhlet extracted (Figure 3.1) to study the effect 

extraction on surface modifications such as recovery after plasma cleaning and gradient fabrication 

on PDMS. Samples were refluxed in 90% ethanol for 48 hrs, followed by baking at 65°C for 2.0 

hrs and then stored in ambient air till further processing.  

 

For further surface modifications, PDMS substrates were oxidized using an oxygen plasma cleaner 

(Plasma Etch PE-50, 011810 1D-678, Carson City, NV) at 100 watts for 5 minutes, to render 

sample surfaces hydrophilic and conducible for silane deposition. Physical vapor deposition was 

used for assembling a hydrophobic monolayer, chlorodimethyloctylsilane (ODMS) (Sigma 

Aldrich) via silane chemistry on glass and PDMS substrates. Samples were placed under vacuum 

for 24 hours in a glass desiccator that contained ODMS and toluene mixed in a 1:1 ratio. Silane 

deposition time was varied to study the kinetics of ODMS coverage on PDMS. After samples were 

removed from the desiccator, they were rinsed with 90% proof ethanol and baked for one and half 

hours at 65 °C.  
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 Ultraviolet oxidation of alkylsilane deposited PDMS to generate surface gradients 

The procedure to obtain surface chemistry gradients on PDMS was adopted from previously 

published work (Gallant et al. 2007, Kennedy et al. 2006 and Roberson et al. 2002). Briefly, 

alkylsilane coated PDMS samples were placed on an accelerating linear translation stage 

(Aerotech, Inc.) controlled by LabVIEW (National Instruments) for modification of the alkylsilane 

surface layer as shown below in Figure 3.2. Residence time of the substrates beneath a stationary 

UV lamp (with emission at frequencies 254nm and 185nm) directly correlated with the extent of 

hydrophilicity at any given position on the sample. The stage advanced in 0.1 mm steps and was 

accelerated by decreasing the dwell time at each step. The result was a linear variation in exposure 

time over the length of the sample. A 1 cm zone with no UVO treatment acted as the internal 

control for each sample. The surface modified PDMS was characterized by contact angle analysis 

of water drops using the Young-La Place fit algorithm. 

 

 Effect of curing time and temperature on PDMS elastic modulus 

Two combinations of PDMS base and cross-linker (10% and 2% mass fraction cross-linker) were 

mixed, degassed and cured for varying times at either 65°C or 90°C. Cured polymeric samples 

were first subjected to a creep test (twenty four hours) to confirm their elastic behavior. This was 

followed by tensile testing of samples as done by Pelham and Wang (Pelham and Wang 1997) to 

determine elastic modulus using Hooke’ s Law (σ = E.ε) where σ is stress in Pascals, ε is the strain 

and E the elastic modulus in Pascals. The number of replicates varied from a minimum of N=2 to 

a maximum of N=5 in the various treatment groups. 
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3.3 Results and Discussion 

 Alkylsilane deposition kinetics on PDMS surface 

Time of chlorodimethyloctyl silane (ODMS) vapor deposition on crosslinked 10% weight 

crosslinker PDMS networks was varied and its effect on surface chemistry was evaluated through 

water contact angle measurements. The water contact angle gives an indication of the relative 

strength of cohesive forces and adhesive forces between the water and the material surface (Figure 

3.3). When the forces between molecules (cohesive force) within a droplet are stronger than the 

attractive forces between droplet and the surface (adhesive force), then the water does not wet the 

surface and it is described as hydrophobic, and vice versa (Ratner et al. 2013).  

 

ODMS forms a covalent Si-OH bond with PDMS and HCl is released as a byproduct (Chruściel 

and Leśniak 2014). The objective of this experiment was to adopt an optimum alkylsilane 

deposition time to be followed for all future experiments related to PDMS surface modification, 

one that achieves a homogenous monolayer surface coverage on PDMS.  

 

The results are illustrated in Figure 3.4, where the error bars represent deviation from mean of N=4 

samples in each treatment group. It was found that the plasma cleaned PDMS surface which was 

very hydrophilic changed to a hydrophobic surface (97°±0.6) with just an hour long exposure. This 

rapid coverage by alkylsilane monolayers, on the order of a few minutes for chlorosilanes, has 

been reported previously (Kulkarni et al. 2005; Hussain, Krim, and Grant 2005). Longer exposure 

times conducted in this study were 3 hours, 24 hours, 48 hours, 6 days and 11 days, which yielded 

average measurements of 99°±3, 103°±3, 104°±1, 105±0.2 and 105±0.3 respectively. Full 

coverage of ODMS an monolayer on silicon is indicated by a contact angle of approximately 104° 
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(Gallant et al. 2007; Arkles 2006). A systematic pairwise comparison between the many groups 

revealed that there were statistically significant differences (p value<0.05) only for the shortest 

depositions times (1 and 3 hour) compared to the longer time depositions. The difference between 

the 24 hour and higher deposition times was insignificant; therefore, a 24 hour long exposure was 

chosen for all future experiments that followed. Spatially regulated ultraviolet ozone (UVO) 

oxidation treatment of the PDMS samples with the one hour and 3 hour alkylsilane deposition 

times resulted in sharp, step changes in hydrophobicity such that a position on the surface was 

either very hydrophilic or very hydrophobic (data not shown). Smooth and gradual gradients were 

obtained for PDMS samples that were exposed to alkylsilane vapor deposition for 24 hours or 

longer. 

 

 Ultraviolet oxidation of alkylsilanes deposited on PDMS and characterization of surface 

chemistry 

Monotonically increasing surface chemistry gradients were reproducibly generated on 10% weight 

crosslinker PDMS substrates. Detailed experiments and analysis of the surface gradients on these 

10% weight crosslinker PDMS samples is the central focus of Chapter 4.  In this chapter, surface 

chemistry gradients on the softer formulations of PDMS containing 2%, 1.67% and 1.43% weight 

crosslinker are illustrated. It was important to ascertain that surface gradients that were generated 

on the 10% weight PDMS could be easily translated to the softer formulation of PDMS that had 

lesser crosslinker weight%. This would be particularly important and useful for fabrication of 

combinatorial biomaterial with both a mechanical and surface chemistry gradient detailed in 

Chapter 6. Therefore, this preliminary experiment was conducted as a proof of concept 
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demonstrating monotonic gradients on PDMS formulations having 2%, 1.6% and 1.43% weight 

crosslinker concentration (Figure 3.5). 

 

 Effect of Soxhlet extraction on PDMS surface modifications  

The process of Soxhlet extraction of uniform silane deposited PDMS substrates does not 

significantly alter the hydrophobic (~102°) surface chemistry which was confirmed by water 

contact angle measurements. Figures 3.6 to 3.8 show the variations in surface chemistry for PDMS 

substrates that were Soxhlet extracted in 90% ethanol compared to non-extracted PDMS 

substrates. It was decided not to use more typical and organic solvents with higher solubility for 

PDMS such as toluene due to the possible problem from extensive swelling (55%) of PDMS, 

(Mata, Fleischman, and Roy 2005) which would be especially detrimental to the ~0.5mm thick 

PDMS cured on glass slide used in this study. Ideal solvents recommended for PDMS that is 

bonded to glass are low solubility solvents, alcohols such as ethanol being one of them. In fact, 

use of high solubility solvents can cause PDMS to undergo non uniform swelling and delaminate 

from glass, sometimes causing mechanical tears of PDMS (Lee, Park, and Whitesides 2003). 

Another independent study that investigated swelling caused to thin PDMS films cured on glass 

slide from solvent hexane showed that the degree of swelling in inversely proportional to the 

concentration of crosslinker in PDMS (Ogieglo et al. 2013). Use of ethanol for immersion of 

plasma treated PDMS has also been reported to prevent hydrophobic recovery (Wang et al. 2010). 

 

UVO of unmodified (no alkylsilane) Soxhlet extracted (N=4) and non-extracted PDMS (N=4) 

substrates is reported in Figure 3.6. These experiments were performed as a control experiment to 

demonstrate that UVO treatment modifies the silane layer bound to PDMS surface and not the 
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bulk PDMS. This is evident from the negligible difference in surface chemistry for both extracted 

and non-extracted substrates prior to and post UVO treatment.  

 

Plasma treatment of the PDMS surface makes it hydrophilic which is usually a short lived process 

with hydrophobic chains migrating back to surface (Evaraert, Mei, and Busscher 1996; Everaert 

et al. 1995; Zhao, Lee, and Sen 2012). It was found that non-extracted PDMS substrates (N=4) 

underwent recovery quicker than the Soxhlet extracted samples (N=2). Error bars depict standard 

deviation from mean. The recovery for extracted samples was 35% less than for the non-extracted 

samples (Figure 3.7). Extracted oxidized PDMS samples have shown to exhibit reduced recovery 

compared to oxidized non extracted  PDMS (Lee, Park, and Whitesides 2003). Hydrophobic 

recovery after surface plasma treatment of PDMS has shown to be been delayed  (Contact Angle 

30° to 40° in 7 days) through immersion extraction of PDMS in multiple batches of trimethylamine 

and ethyl acetate prior to surface treatment (Vickers, Caulum, and Henry 2006). 

 

Gradients generated on PDMS samples also were also short lived (detailed in Chapter 4) and 

underwent recovery. Since it was found that Soxhlet extracted samples had a delayed recovery rate 

after plasma treatment, the effect of extraction on gradient recovery of PDMS was investigated 

next. It was determined that extraction process did not prevent or delay the hydrophobic recovery 

of gradients on extracted PDMS (N=2, Figure 3.8). In fact, the recovery was identical to that of 

the control non-extracted PDMS gradient (N=1). Error bars represent standard deviation from the 

mean. The final decision to not extract PDMS for future experiments was made by also factoring 

in the extension of time it would incur to conduct an experiment each time since the extraction 

process is 48 hours long.  
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 Effect of time and temperature of curing on elastic modulus 

The effect of variations in curing conditions, specifically lower or higher temperatures of curing 

and length of curing time itself on the elastic modulus of 10% and 2% weight crosslinker 

concentration containing PDMS networks were studied. The formulation with crosslinker of  

1.67 weight% exhibited creep and therefore formulations softer than 2 weight% crosslinker 

concentration were excluded from this study since they exhibited some viscoelastic behavior. The 

elastic modulus was determined from tensile testing (Pelham and Wang 1997) and application of 

Hook’s Law. This experiment was done to examine if differences in curing conditions were 

significant enough to yield an appreciable and wide range in elastic modulus. The aim was to 

obtain a difference in three orders or higher magnitude difference between the least and most stiff 

PDMS that would be great for making mechanical gradients spanning the widest possible range. 

The data in Figure 3.9 documents measurements for 65°C and 90°C for 1, 2, 4 and 8 days. The 

number of replicates varied from a minimum of N=2 to a maximum of N=5 in the various treatment 

groups with the error bars indicating standard deviation from mean. There exists an independent 

Y axis for the 10% and 2% crosslinker weight PDMS samples. 

 

In general, a higher stiffness was measured for a higher temperature of curing for both 10% and 

2% crosslinker weight PDMS samples. With respect to time of curing, the increase in stiffness 

mostly plateaued at day 4. It was concluded that prolonged storage at room temperature will not 

lead to an appreciable increase in modulus of elasticity. Most importantly, the difference in elastic 

modulus between the 10% and 2% formulations were of a two orders of magnitude for any time 

and/or temperature of curing. In fact, it was observed that the whole profile of the elastic modulus 

would trend slightly up or down for a given temperature. Therefore curing at an elevated 
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temperature did not provide a significantly wider range of elastic moduli between the stiff and soft 

PDMS formulations. Overall, the elastic moduli ranged from 1.68±0.4 to 0.02±0.004 MPa for the 

10% and 2% respectively, including data from all different times and temperatures of curing. The 

range of modulus we obtained is comparable to the 1.8 MPa (10% PDMS ) to 0.5 MPa (2% PDMS) 

previously reported in literature (Brown, Ookawa, and Wong 2005).  

 

3.4 Conclusions 

Alkylsilane deposition kinetics on PDMS surfaces was optimized for a time period of 24 hours. 

Soxhlet extraction of PDMS substrates in ethanol delayed and exhibited lower hydrophobic 

recovery after plasma treatment but did not prevent, delay or lessen the extent of recovery after 

gradient fabrication. The capability of surface modifications on softer formulations of PDMS 

including 2%, 1.67% and 1.43% crosslinker weight PDMS were demonstrated by generating 

monotonic increasing profiles of surface chemistry. Different curing conditions of 10% and 2% 

crosslinker weight PDMS formulations at varied time periods and temperatures produced a two 

order magnitude range in elastic moduli spanning from 1.68±0.4 MPa for 10weight% to 

0.02±0.004 MPa for 2 weight%. Overall, these results provided a stepping stone for the 

experiments detailed in later chapters. 
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Figure 3.1 Photograph of PDMS substrates undergoing Soxhlet extraction in ethanol. 

 

 

Figure 3.2 Image of PDMS substrates on moving stage beneath stationary UV lamp source. 
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Figure 3.3 Illustration of the interplay of Cohesive Forces (CF) and Adhesive Forces (AF) of a 

water droplet on a hydrophobic vs hydrophilic surface. 

 

 

Figure 3.4 Effect of alkylsilane deposition time on hydrophobicity. 
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Figure 3.5 SAM gradients on softer PDMS formulations. 
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Figure 3.6 UVO treatment of unmodified, non silane deposited PDMS. 
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Figure 3.7 Rate of hydrophobic recovery of plasma treated PDMS in extracted and non extracted 

PDMS. 
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Figure 3.8 Gradient recovery on extracted vs non extracted PDMS. 
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Figure 3.9 Effect of curing conditions on elastic modulus of PDMS. 
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CHAPTER 4  

SURFACE CHEMISTRY GRADIENT FORMULATION ON CROSS-LINKED  

PDMS NETWORKS 

 

4.1 Note to Reader 

Contents in this chapter have been published in the Journal of Biomedical Materials Research 

Part A, 2014. The Permission is included in Appendix A. 

 

4.2 Introduction 

A comprehensive understanding of cell-substrate interactions is imperative for the advancement 

of functional biomaterials. The effectiveness of materials at biological interfaces depends on, 

among many other aspects, the optimization of properties that can instruct cells to perform desired 

functions (Griffith and Naughton 2002). However, cell fate decisions are the consequence of 

extremely complex networks of events that depend on a multitude of factors present in a cell’s 

microenvironment. Some of these, including biochemical signals (e.g. concentration of a growth 

factor, protein conformation), mechanical signals (e.g. rigidity of basement matrix) and 

biophysical cues (e.g. curvature, ridges on surface), can be incorporated into biomaterials that 

mimic native microenvironments (Nikkhah et al. 2012; Wong, Leach, and Brown 2004; Rape, 

Guo, and Wang 2011; Shekaran and Garcia 2011; Smeal et al. 2005). 
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Factors that influence cellular response are both numerous and complex. High throughput 

combinatorial platforms that allow rapid, broad spectrum analysis of the effect of physical, 

biological, chemical and mechanical properties provide several advantages for testing these 

responses. Such screening techniques, when available, are more efficient and effective than 

individual testing of parameters (Yliperttula et al. 2008; Moraes et al. 2010; Mei, Goldberg, and 

Anderson 2007). In this approach, detailed studies can be focused on positive hits identified from 

a large screening field of variables, or an optimal blend of multiple variables for a certain 

biomedical application may be identified (Hook et al. 2010; Neuss et al. 2008). 

 

Surface wettabilities of biomaterials are an important parameter of biocompatibility. The 

interaction of plasma with surface of materials contributes to kind and quantity of protein 

adsorption and long term effect on cell functionality (Simon and Lin-Gibson 2011; Anderson, 

Rodriguez, and Chang 2008; Liu et al. 2007). Varying wettablities on soft substrates by Corona 

discharge from electrode has been shown to produce a gradient in surface wettabilities on 

Polyethylene (Lee et al. 2000; Lee et al. 1998). Plasma polymerization of dimethyl ether on 

coverslips and Si wafer coated with acrylic acid with use of a mask has been done to obtain surface 

chemistry gradients to study stem cell response (Harding et al. 2012). Surface chemistry gradients 

have been generated by controlled oxidation of a hydrophobic silane monolayer on conventional 

surfaces like glass and silicon wafers before (Roberson et al. 2002; Gallant et al. 2007; Kennedy 

et al. 2006). In this study, we fabricated surface chemistry gradients atop polydimethylsiloxane 

(PDMS), a silicone elastomer widely used in medical implants and other biomedical applications. 

PDMS was chosen as the model biomaterial for its ease of use and its amenability to surface 

modification. We successfully modified PDMS surfaces via silanization followed by spatially 
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controlled oxidation, which has been exploited in this study for constructing a surface chemistry 

gradient on this “soft” material. 

 

4.3 Experimental Section 

 Elastic biomaterial substrates 

PDMS, a silicone elastomer, was used in this study as a biomaterial with “tissue-like” stiffness 

(Palchesko RN et al. 2012). Cross-linked networks of PDMS were prepared by mixing the 

precursor base and curing agent components (Sylgard 184; Dow Corning, Midland, MI) 

thoroughly in a 10:1 mass ratio and then degassing to remove air bubbles. 0.9 ml was dispensed 

onto a plasma cleaned 25x75 mm glass slide using a 1 ml syringe and cured overnight at 65 °C to 

obtain a 0.5 mm thick layer of PDMS on the supporting slide. Mechanical testing of PDMS strips 

was done according to the tensile test method described by Pelham and Wang to estimate its elastic 

modulus (Pelham and Wang 1997). 

 

 Surface chemistry gradient fabrication 

Gradients in surface chemistry were generated on glass slides according to the original procedure 

described and characterized by Roberson et al (Roberson et al. 2002). which has been used to 

investigate several cell-biomaterial interactions on rigid surfaces (Acharya et al. 2010; Gallant et 

al. 2007; Kennedy et al. 2006; Moore et al. 2010, 2011). Here this procedure was also adapted to 

fabricate similar gradients on PDMS. Although surface gradients have been generated on glass 

slides and silicon wafers previously, to our knowledge this is the first time they have been produced 

on PDMS, a material with elastic modulus of ~1.8 MPa or less (Brown, Ookawa, and Wong 2005). 
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Gradients on glass were also included in the experimental design to provide a direct comparison 

to previously published studies.  

 

The fabrication process is illustrated in Figure 4.1. Briefly, plain glass slides or PDMS substrates 

were sonicated for 15 minutes in 75% ethanol and then vacuum dried in a desiccator. The dry 

samples were oxidized using a plasma cleaner (Plasma Etch PE-50, Carson City, NV) at 100 watts 

for 5 minutes to render the sample surfaces hydrophilic and conducive to silane functionalization. 

Chemical vapor deposition was used to modify the surfaces with a hydrophobic self-assembled 

monolayer (SAM) of chlorodimethyloctylsilane (ODMS) (Sigma-Aldrich). Glass and PDMS 

substrates were placed under vacuum for 24 hours in a glass desiccator that contained ODMS and 

toluene mixed in a 1:1 ratio, followed by rinsing with 70% ethanol and baking for one and half 

hours at 65 °C to drive out residual solvent and volatile species.  

 

The alkylsilane monolayers were then spatially modified in a tightly regulated manner that created 

monotonically varying gradients of surface chemistry (Gallant et al. 2007). The samples were 

placed on an accelerating linear motion stage (Aerotech, Inc., Pittsburgh, PA) to undergo 

ultraviolet ozone (UVO) oxidation beneath a stationary low pressure Mercury (Hg) vapor lamp 

with a fused silica envelope (part #84-285-7, Jelight, Irvine, CA) enclosed in an aluminum casing. 

This UV wand lamp had a primary emission at 254 nm and a secondary emission at 185 nm. The 

UV light impinged on the substrate surfaces through a 2 mm wide aperture that ran along the length 

of the casing. The hydrophobic alkylsilane SAM was subjected to dose dependent ozonolysis from 

the UV lamp which generated oxygen containing species including, predominantly, carboxyl 

terminal groups (Kennedy et al. 2006; Roberson et al. 2002). The rate of stage motion, and 
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therefore the residence time of each position under the UV light, was controlled by a custom 

LabVIEW user interface. The stage advanced in 0.1 mm steps and was accelerated by decreasing 

the dwell time at each step. The result was a linear variation in exposure time over the length of 

the sample. The maximum UVO exposure occurred at the starting end and the exposure dose 

decreased over the length of the sample to zero exposure. The resulting hydrophobicity/COOH 

gradient correlated with the linear UVO exposure profile of the surface. Maximum exposure times 

of 300 s and 100 s were required on the PDMS and glass surfaces, respectively, to obtain similar 

hydrophobicity gradients. Accelerating exposure altered the surface over 4 cm, while a 1 cm zone 

with no UVO treatment served as the internal control for each sample. 

 

 Characterization of surface chemistry gradients 

Gradients fabricated by this procedure have been previously characterized with static and 

advancing water contact angle measurements to quantify surface energy and time-of-flight 

secondary ion mass spectrometry (ToF-SIMS) to analyze composition (Acharya et al. 2010; 

Gallant et al. 2007; Kennedy et al. 2006; Moore et al. 2010, 2011; Roberson et al. 2002). 

Hydrophobicity was characterized via static water contact angle goniometry with a CAM101 

(KSV Instruments, Monroe, CT) and surface elemental composition was analyzed by x-ray 

photoelectron spectroscopy (XPS) with a PHI 5000 Versa Probe II (ULVAC-PHI, Inc.). Readings 

were taken every 5 mm along the entire length of gradient substrates for both characterization 

procedures.  

 

For goniometry readings, the contact angle between the droplet and surface was estimated by the 

Young-Laplace fitting algorithm available in the CAM software. The presence of a homogenous 
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surface chemistry on substrates was confirmed by consistent water contact angle measurements 

along length of alkylsilane coated samples prior to the UVO exposure. Gradients in surface 

chemistry produced on substrates were similarly characterized through spatially resolved contact 

angle measurements. Surface modifications on PDMS are typically short lived due to the migration 

of lurking polymeric chains from the bulk material to surface (Brown, Ookawa, and Wong 2005; 

Evaraert, Mei, and Busscher 1996; Everaert et al. 1995). Hydrophobic recovery was quantified on 

N=4 gradient substrates characterized repeatedly at specific time points (Figure 4.2). This inherent 

hydrophobic recovery in PDMS necessitated immersion of gradient substrates in deionized H2O 

before use (Figure 4.3) (Mata, Fleischman, and Roy 2005). Submerged gradients on glass and 

PDMS were used for subsequent experiments within 24 hours of fabrication. Hydrophobicity for 

cell adhesion samples was analyzed for four independent experiments (N=4) with two to six 

replicates in a single independent experiment for each of the treatment groups (Figure 4.5). 

 

XPS measurements were performed using a PHI 5000 Versa Probe II spectrometer at the 

University of Florida Major Analytical Instrumentation Center. The x-ray source employed was 

monochromated aluminum, scanning over a binding energy range of 0 eV to 1100 eV with a dwell 

time of 20 ms. Each spectrum was collected over a 200 μm diameter sample area. The survey 

spectra were collected at each position with an analyzer pass energy of 93.9 eV, and the relative 

concentrations of O, C, and Si were obtained from the O 1s (532.5 eV), C 1s (285.0 eV), Si 2p 

(103.0 eV) peaks using a pass energy of 23.5 eV and 10 sweeps of 0.1 eV per step. Prior to XPS 

analysis, samples were Soxhlet extracted in ethanol (190 proof) for 48 hours before UVO exposure 

to remove volatile species that could interfere with achieving ultra-low vacuum operation.  

 



 

62 

 

The ratio of oxygen content on UVO-exposed surfaces to control no-UVO samples was quantified 

after the oxygen values were normalized to silicon for each specific position of the gradient. 

Controls consisted of uniform alkylsilane-coated PDMS in addition to the 40 mm positions of each 

gradient sample surface, which was subjected to zero UVO exposure. XPS data represent N=4 

gradients for characterization to supplement data obtained from water contact angle measurements 

(Figure 4.6) and N=2 gradients for hydrophobic recovery of gradients when expose to ambient air 

overnight (Figure 4.7). The error bars in all the figures display standard deviation from the mean. 

 

4.4 Results and Discussion 

 Surface chemistry gradient fabrication on a “soft” biomaterial 

Spatiotemporal UVO exposure of hydrophobic monolayers has previously been used to fabricate 

surface chemistry gradients on silicon wafers and glass slides (Gallant et al. 2007; Kennedy et al. 

2006; Acharya et al. 2010; Moore et al. 2010, 2011; Roberson et al. 2002) and this procedure was 

modified to generate similar hydrophobicity gradients on flexible cross-linked networks of the 

silicone elastomer PDMS. The surface modification of PDMS involved oxygen plasma treatment, 

hydrophobic alkylsilane layer deposition and spatiotemporally regulated UVO exposure to obtain 

monotonic surface energy gradients (Figure 4.5). Error bars display the standard deviation from 

the mean among N=4 independent experiments with two to six replicates within each of the 

treatment group. Consistent with other treatments of PDMS, (Brown, Ookawa, and Wong 2005; 

Evaraert, Mei, and Busscher 1996; Everaert et al. 1995; Mata, Fleischman, and Roy 2005) this 

covalently bound and oxidized surface modification layer was short lived as rapid hydrophobic 

recovery was observed (Figure 4.2 ). XPS confirmed there was an average 13±4 % drop in surface 

oxygen from day 1 to day 2 (Figure 4.7, N=2 PDMS gradients). To overcome the challenge of 
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hydrophobic recovery, submerging the substrates in deionized H2O (Mata, Fleischman, and Roy 

2005) preserved the hydrophobicity gradients for at least 8 days (Figure 4.3). There were N=4 

replicates in each treatment group in Figure 4.2 and 4.3 and the error bars show standard deviation 

from the mean. 

 

After optimizing the gradient preservation and UVO exposure program for PDMS, water contact 

angle measurements were recorded using sessile drop goniometry before and after UVO treatment 

of glass and PDMS substrates (Figure 4.5). Gradients were generated on glass substrates to verify 

the surface gradients on PDMS were equivalent, and also for comparison of cell response on 

similar surface gradients on soft and stiff materials. Hydrophobic alkylsilane monolayers deposited 

on glass and PDMS substrates had a surface wettability of approximately 100°. Following UVO 

exposure, a range of surface wettabilities was obtained on glass and PDMS substrates with contact 

angles varying from ~10° to ~100° over 40 mm. Interestingly, longer exposure times were required 

to produce gradients on PDMS that are similar in profile to the gradients on glass. While it took 

only a 100 s maximum exposure time to render one end of the monolayer maximally hydrophilic 

on the glass substrates, PDMS substrates required 300 s of UVO exposure to obtain a hydrophilic 

end comparable to that on a glass slide. The 0 mm position corresponded to maximum UVO 

exposure which decreased linearly to the minimum (0 s) exposure at 40 mm. A one cm region 

beyond 40 mm that experienced no UVO exposure served as an internal control for each sample.  

 

In addition to goniometry measurements, PDMS gradient surfaces were also characterized with 

XPS (Figure 4.6, N=4 PDMS gradients) to quantify oxygen content variation with respect to 

position on PDMS gradients. XPS analysis taken at 5 mm intervals on PDMS surface gradients 
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revealed that oxygen concentration was maximum at the hydrophilic end and decreased steadily 

toward the hydrophobic end. The normalized oxygenation at the hydrophilic end of gradient was 

1.19 ± 0.12 compared to 0.97 ± 0.05 at the hydrophobic end of gradient. The relative increase in 

surface oxygen over no-UVO controls was quantified after the values were normalized to position-

specific silicon quantities. This effectively corrected for measurement errors because silicon 

concentration should theoretically be invariant (Figure 4.6 Inset, N=4 PDMS gradients).  

 

Additionally, native PDMS controls without any surface treatment maintained hydrophobicity 

(~115° water contact angle) following up to 5 min UVO exposure (results displayed in Chapter 3). 

This confirmed that the gradient was a result of the UVO oxidation of the alkylsilyl monolayer 

and not the oxidation of the PDMS surface. From data obtained from XPS characterization of 

gradients and the inability to obtain gradients on unmodified PDMS, it can be inferred that the 

surface chemistry profile trends of the PDMS gradients were similar to the gradients fabricated on 

glass, which have been previously characterized with ToF-SIMS to display linearly increasing 

concentrations of carboxylic acid spanning ~100 to ~400 pmol/cm2 (Gallant et al. 2007; Moore et 

al. 2011). 

 

Versatile combinatorial screening techniques can significantly contribute to a more rapid evolution 

of functional biomaterials for biomedical applications. We have successfully constructed surface 

chemistry gradients on PDMS, an elastomeric biomaterial with stiffness in the physiological range 

of numerous tissues, e.g. wall of aortic arch ~1.0 MPa (Wong, Leach, and Brown 2004; Brown, 

Ookawa, and Wong 2005). The elastic modulus of 1.55 MPa estimated from tensile testing PDMS 

is in agreement with the value of 1.78 MPa reported by Brown et al (Brown, Ookawa, and Wong 
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2005). Surface chemistry gradients were generated by adapting the technique reported by 

Roberson et al (Roberson et al. 2002) whereby alkylsilane monolayers on SiOx were 

spatiotemporally modified by UVO exposure and were characterized through contact angle 

measurements and ToF-SIMS. The similarities in the structure of glass which is composed of 

abundant silica and PDMS that has repetitive siloxane units enabled this translation of surface 

chemistry from one material to the other. In this manner, we were able to generate equivalent 

gradient materials that varied monotonically in surface chemistry by UVO oxidation of alkysilyl 

monolayers on PDMS. Surface hydrophobicity spanned a range from ~10° to ~100° in water 

contact angle which arose from an approximately 23% difference in normalized oxygen content 

over the length of the gradients. Surface characterization was complicated by the similar 

compositions of the bulk PDMS and UVO-modified surface layer. However, UVO of bare PDMS 

(no alkylsilane monolayer) did not result in any significant change in hydrophobicity and 

confirmed that the variation of surface chemistry occurred in the hydrocarbon surface monolayer. 

Therefore it was concluded that these gradients had a profile in surface chemistry similar to those 

generated on alkylsilane-coated glass. The difference in the UVO exposure times required to 

modify PDMS and glass was perhaps due to the inherent hydrophobicity difference between the 

underlying bulk material properties: native PDMS is hydrophobic (~115°) while glass is 

hydrophilic (~25°). It is also possible that a difference in ODMS layer packing density exists 

between the PDMS and glass substrates. Determining the reason proportionally longer UVO 

exposure on PDMS was required to generate the same concentration of hydrophilic species (i.e. 

COOH) is beyond the scope of this study. These gradient materials were employed to gain a better 

insight into fundamental cell-material interactions, by the high throughput investigation of the 

morphological response to surface chemistry on a “soft” biomaterial using an automated 
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fluorescent microscopy system. The findings from cell based experiments are presented in  

Chapter 5. 

 

4.5 Conclusions 

Surface chemistry of alkylsilane monolayers on PDMS can be modified by UVO treatment which 

was demonstrated for the first time by the fabrication of continuous and monotonically increasing 

gradients in surface oxidation. The presence of gradients was successfully characterized using 

goniometric and XPS measurements. 
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Figure 4.1 Schematic illustration of fabrication of surface chemistry gradients on cross-linked 

PDMS networks. PDMS samples were (1) oxidized by plasma treatment and then (2) modified 

with a hydrophobic alkylsilane SAM. (3) The SAM was spatiotemporally exposed to UVO to 

generate a surface chemistry gradient with oxygenated species increasing with UVO exposure. 
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Figure 4.2 Hydrophobic recovery of modified PDMS surfaces. Surface chemistry gradients on 

PDMS rapidly degraded when stored in ambient atmosphere (N = 4). Time-course data represent 

repeated measurements on the same samples for each experiment. 
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Figure 4.3 Hydrophobic recovery was avoided by water immersion of gradient substrates which 

preserves the surface chemistry gradients. Hydrophobic recovery was avoided by water 

immersion of gradient substrates which preserves the surface chemistry gradients (N = 4). Time-

course data represent repeated measurements on the same samples for each experiment. 

 

 

 

 

Figure 4.4 Photograph of spreading water droplet profiles along PDMS surface gradient. The 

spreading of water drops on PDMS and glass surface gradients indicate the variation of the SAM 

chemistry induced by spatiotemporal UVO exposure. 
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Figure 4.5 Contact angle measurements along glass and PDMS substrates before and after UVO. 

The measurements show the transformation from a uniform hydrophobic surface chemistry to a 

gradient on both PDMS and glass substrates. Data were obtained from N = 4 independent 

experiments with two to six replicates in each experiment. 
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Figure 4.6 Surface oxygen concentration (relative to uniform controls and normalized to silicon) 

decreased with UVO exposure (N=4). Inset: Atomic fraction of silicon on gradient surface.  
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Figure 4.7 Surface oxygen concentration (relative to uniform controls and normalized to silicon) 

decreased over 24 h ambient atmosphere. Inset: Atomic fraction of silicon on gradient surface. 

Time-course data represent repeated measurements on the same samples for each experiment.  
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CHAPTER 5  

CELL RESPONSES TO SURFACE CHEMISTRY GRADIENTS AND THE 

SIGNIFICANCE OF THE PROTEIN ADHESIVE INTERFACE 

 

5.1 Note to Reader 

Parts of this chapter have been published in the Journal of Biomedical Materials Research Part 

A, 2014. The Permission is included in Appendix A. 

 

5.2 Introduction 

High-throughput and combinatorial approaches developed previously for pharmaceutics and 

material science are now finding applications in synthesis of biomaterials and screening cell-

material interactions. Both combinatorial material microarrays and gradient materials have 

demonstrated potential for optimization of cell microenvironments for cell adhesion, proliferation 

and differentiation (Yliperttula et al. 2008). For instance, Anderson et al. (Anderson, Levenberg, 

and Langer 2004) screened embryonic stem cell attachment and spreading and other cell-material 

interactions with an array of more than 1700 polymeric materials. In another example, a gradient 

approach for immunomodulation was demonstrated by Acharya et al (Acharya et al. 2010) who 

performed a systematic characterization of dendritic cell adhesion and activation on arginine-

glycine-aspartic acid (RGD) peptide density gradients.  
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Surface properties of biomaterials, including the extracellular matrix mimicking parameters 

described earlier, have shown to be key modulators of cell functionality. Adsorbed proteins or 

tethered biomolecules form the interfacial adhesive layer that cells interact with primarily using 

specialized receptors called integrins (García 2005; Hynes 2002). Therefore, the biomaterial 

surface properties and how they modulate the structural and functional characteristics of adsorbed 

proteins have been shown to have a predominant role in regulating cell behavior (Garcia, Vega, 

and Boettiger 1999; Lan et al. 2005; Michael et al. 2003). Fibronectin is one such important protein 

which is found in soluble form in blood and insoluble form in stromal connective tissues and 

basement membranes (Mosher and Furcht 1981; Ruoslahti 1988). Integrin receptors recognize and 

bind specifically to adhesion motifs with specific sequences of amino acids such as the RGD 

tripeptide found in numerous extracellular matrix proteins including fibronectin, laminin, and 

vitronectin (Hernandez et al. 2007; Elineni and Gallant 2011). Differential binding of integrins is 

caused by structural and functional changes to the ligand upon adsorption (e.g. α5β1 specific 

binding to adsorbed fibronectin) and results in tight regulation of cell functions such as adhesion, 

differentiation and proliferation (Michael et al. 2003; Iuliano, Saavedra, and Truskey 1993; Lan et 

al. 2005; Garcia, Vega, and Boettiger 1999). For instance, Keselowsky et al (Keselowsky, Collard, 

and Garcia 2005; Keselowsky, Collard, and García 2003) showed that surfaces with different 

chemistries induce differences in fibronectin adsorption and conformation which influence initial 

osteoblast cell adhesion and have different capacities to mature osteoblasts and up-regulate matrix 

mineralization. The unique surface properties of a biomaterial, therefore, are central design 

parameters that must be investigated to obtain optimum functionality and direct cell response. 

However, few studies have combined the application of high throughput methods to screen cell 

response with variations in surface properties of materials, especially low modulus biomaterials 



 

75 

 

(Lee et al. 2000; Lee et al. 1998; Kennedy et al. 2006; Acharya et al. 2010; Gallant et al. 2007; 

Moore et al. 2010, 2011; Zapata et al. 2007; Chatterjee et al. 2010).  

 

Surface chemistry gradients were generated on alkylsilane coated cross-linked networks of PDMS 

and the influence of hydrophobicity on NIH3T3 and HUVEC cell functionality was investigated 

through screening cell-material interactions in terms of fibroblast cell morphology on adsorbed 

fibronectin coatings. In addition, structural and functional changes in the adhesive protein interface 

were examined to gain insight into the intermediary events that translate the chemical and physical 

properties of the underlying substrate into this specific cell response. This technology will enable 

the development of multifunctional materials that can be surface functionalized with instructive 

cues (Gallant et al. 2007; Moore et al. 2010, 2011) on substrates with mechanical properties that 

are tunable over a physiologically relevant range (Palchesko RN et al. 2012). 

 

5.3 Experimental Section 

 Cell culture 

NIH/3T3, a mouse embryonic fibroblast cell line, was purchased from American Type Culture 

Collection (ATCC) and cultured on tissue culture polystyrene in Dulbecco’s Modified Eagle’s 

Medium (DMEM, Invitrogen) that contained 100 units/ml penicillin and 100 ug/ml streptomycin 

(Invitrogen) and 10% new born calf serum (Invitrogen). HUVEC, human umbilical cord vein 

endothelial cells, a primary cell line was purchased from Lonza and was cultured in EBM-2 basal 

medium (CC-3156) and EGM-2 SingleQuot Kit Suppl. & Growth Factors (CC-4176) as per 

manufacturer’s instructions. 
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Control and gradient substrates were sterilized for 10 min in 70% ethanol and then rinsed with 

Dulbecco’s phosphate buffered saline (DPBS, Invitrogen) three times. The substrates were first 

precoated with 10 μg/ml human plasma fibronectin (Gibco, Invitrogen) for 30 minutes and 

subsequently blocked with 1% bovine serum albumin (BSA, Fisher Scientific) for 30 minutes. 

Cells released from tissue culture dishes using Trypsin/EDTA (Invitrogen) were seeded cells at 40 

cells/mm2. Freshly seeded cells were left undisturbed in the biosafety cabinet for 30 minutes to 

facilitate cell attachment before transfer to the incubator. Plain glass slides acted as a control to 

confirm that changes in cell morphology were due to underlying gradients and not an artifact of 

the seeding procedure  

 

 High throughput cell morphology analysis: automated image capture and data extraction 

After incubation for 16 hours, cells were fixed with 3.7% by mass formaldehyde (Invitrogen) in 

DPBS and permeabilized for 10 minutes using 0.5% by mass Triton X-100 in buffered saline. For 

high throughput imaging, cell nuclei (Hoechst 33342, Invitrogen) and bodies (AlexaFluor 488 

maleimide, Invitrogen) were fluorescently labeled for one hour. Cells were imaged and analyzed 

using NIS Elements software and a Nikon Eclipse Ti-U microscope (Nikon Instruments, Melville 

NY) equipped with fluorescence filter sets. A computer controlled stage was automated to capture 

3 non overlapping images every 2 mm along the gradient axis over 50 mm starting from the point 

of maximum UVO exposure extending to 10 mm beyond the point of minimum UVO treatment. 

Approximately 96 mm2 was analyzed on each sample. A binary mask was created by automatically 

applying contrast thresholding to each image so that cell spreading area and nuclei count could be 

automatically extracted. The spreading data for NIH3T3 cells presented in this paper represents 

four independent experiments (N=4) with two to six replicates in a single independent experiment 
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for each of the treatment groups, unless mentioned otherwise. The spreading and adhesion data for 

HUVEC cells are from N=3 replicates for each of the treatment groups. 

 

 Characterization of fibronectin adsorption on PDMS for a range of hydrophobicity  

PDMS networks on glass coverslips with discrete surface chemistries were created by uniform 

UVO exposure of the entire alkylsilane coated sample surface (Efimenko, Wallace, and Genzer 

2002; Efimenko et al. 2005; Toworfe et al. 2004) and characterized with water contact angle 

measurements. These measurements were made on small uniform samples (~500 mm2, 0.5 mm 

thick) to minimize the required quantity of labeled fibronectin and to facilitate the use of a soluble 

enzymatic substrate to study protein conformation. Three independent experiments (N=3) were 

conducted for both fibronectin adsorption and conformation studies. 

 

Adsorption on PDMS samples was quantified using AlexaFluor 488 labeled fibronectin. The 

instructions provided in the protein labeling kit (A10235, Invitrogen) were followed to conjugate 

and purify the fluorescent fibronectin (Figure 5.1). Protein concentration and degree of labeling 

were determined and the final product was stored at 4°C (Williams et al. 2011). Discrete PDMS 

substrates were washed in 70% ethanol, rinsed three times with DPBS, and then incubated in 10 

μg/ml AlexaFluor 488 conjugated fibronectin for 30 minutes. All samples were thoroughly rinsed 

twice with DPBS and deionized H2O for five minutes each prior to mounting in a preservative 

medium (Fluoro-gel, Fisher Scientific) under a coverslip. A Nikon Ti-U microscope equipped with 

a FITC filter cube was used to capture 5 images on each sample. The average intensity of 

fluorescent protein adsorbed on sample substrate was recorded for each image. The background 
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intensity measured on a plain glass control slide at the time of each analysis was subtracted from 

experimental sample measurements. 

 

The conformation of the adsorbed fibronectin was examined by adopting the approach described 

in Keselowsky et al (Keselowsky, Collard, and García 2003) using mouse anti-human monoclonal 

antibody HFN7.1 (Developmental Studies Hybridoma Bank, Iowa City, IA) which is specific to 

the cell binding domain of fibronectin. Differences in HFN7.1 binding indicates a change in the 

spatial relationship between the RGD and PHSRN sequences on the 9th and 10th type III repeats of 

the fibronectin and correlates to integrin α5β1 binding (Garcia, Vega, and Boettiger 1999; 

Keselowsky, Collard, and García 2003; Lan et al. 2005) which requires optimal positioning of 

these motifs. Briefly, PDMS samples (~500 mm2) modified with a range of wettabilities were 

precoated with 10 μg/ml fibronectin for 30 minutes followed by blocking with 1% BSA. Samples 

were incubated with HFN7.1 for an hour at 37°C, washed three times with 1% BSA, and then 

incubated in goat anti-mouse secondary antibody conjugated with alkaline phosphatase (Jackson 

Immunoresearch Laboratories, West Grove, PA) for an hour at 37°C. After washing, an equal 

volume of the substrate p-nitrophenylphosphate (pNPP) (Sigma Aldrich) was added to each 

sample. After incubation for 45 minutes at 37°C, 125 μl from each supernatant was transferred to 

a 96 well plate and the absorbance at 405 nm was detected using a microplate spectrophotometer 

(Biotek, Winooski, VT). 

 

 Statistical and correlation analyses 

SigmaPlot 11.0 (Systat Software, San Jose, CA) was used to perform regression analyses and curve 

fits on obtained data. A p-value of <0.01 obtained for the regression line slope was considered a 
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significant correlation between the concerned variables. All plotted data for NIH3T3 indicate the 

mean of N independent experiments ± one standard deviation. The error bars in HUVEC data 

shows standard deviation from mean among replicates. It is noted that the method of unbiased 

binning of data for distance or contact angle intervals from multiple quantification techniques 

caused some mismatch between some variables and therefore resulted in the unequal distribution 

of data points within correlation plots. However, no data points were neglected and data spanning 

the complete range of surface chemistries was included in order to identify trends and correlations. 

 

5.4 Results and Discussion 

 Cell spreading area on gradient substrates 

Cell spreading and morphology is considered to be an important regulator of cell functionality 

(Chen et al. 1997). It is also an indication of initial differential adhesion to the proteins adsorbed 

or matrix assembled on a biomaterial surface which can modulate long term function. (Gallant, 

Michael, and Garcia 2005; Garcia, Vega, and Boettiger 1999; Keselowsky, Collard, and Garcia 

2005; Keselowsky, Collard, and García 2003; Lan et al. 2005). Initial cell response in terms of 

morphology was analyzed against position along the length of the gradient substrate (Figure 5.2). 

As expected, cell spreading area on control plain glass slides (~20° water contact angle) did not 

show any specific trend thereby indicating that the observed trends in cell morphology were in 

response to the underlying gradients and not an artifact of the cell seeding procedure. On gradients, 

in general, NIH3T3 cell spreading was lowest at the hydrophilic end and highest at the hydrophobic 

end. The last one cm on each gradient, which was the hydrophobic zone between 40 mm and 50 

mm, represented an internal control that equally supported maximal spreading. The spreading area 

on the stiffer glass gradients demonstrated a 76% (1.8 fold) rise in spreading by increasing from 



 

80 

 

1398 ± 175 μm2 to 2467 ± 295 μm2. On the softer PDMS gradient substrates, this phenomenon of 

increasing cell spreading was more pronounced as it increased 127% (2.3 fold) from 1010 ± 326 

μm2 to 2294 ± 218 μm2. Comparing the different supporting materials, NIH3T3 cell spreading on 

the hydrophilic zone was 38% greater on glass gradients than PDMS gradients, although the 

spreading areas at the hydrophobic end on both glass and PDMS gradients were comparable.  

 

HUVEC spreading with respect to position on gradient is displayed in Figure 5.3 Spreading on the 

control plain glass did not follow any specific trend. Cell spreading of HUVECs showed a similar 

trend to that of NIH3T3 in that cell spreading was minimum at the hydrophilic end and maximum 

at the hydrophobic end. However, this phenomenon was much sharper on PDMS gradients with a 

193% (2.9 fold) increase in spreading from 1644±529 μm2 to 4824±299 μm2. The spreading 

increase on glass gradients was much more subdued with a modest increase of 42% (1.4 fold) from 

2963±687 μm2 to 4206±763 μm2. Representative low (10x) and high magnification (60x) images 

of fluorescently stained cells are shown at selected positions on both glass gradients and PDMS 

for NIH3T3 in Figure 5.4 and 5.5 respectively and on PDMS for HUVECs in Figure 5.6. The 

position and the surface wettability for each image are reported. (Scale bar of all images is 100μm). 

 

 Correlation between cell spreading area and surface chemistry  

Gradients in surface chemistry were obtained as illustrated in Figure 4.5 of Chapter 4, and the 

trend of NIH3T3 and HUVEC cell spreading area at regular intervals along the entire length of 

substrates are shown in Figure 5.2 and Figure 5.3. However, spreading data of NIH3T3 and 

HUVEC were binned methodically for 5 mm increments to match contact angle measurements 

reported every 5 mm to obtain correlation plots which showed increasing cell spreading with rising 
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hydrophobicity on both glass and PDMS gradients. In fact, for NIH3T3 cells (Figure 5.7), the 

correlation was almost identical for both glass and PDMS gradients with R values of 0.97 and 

0.98, respectively, and p-values <0.0001. The correlation was equally strong for HUVEC  

(Figure 5.8) on PDMS and glass gradients with R value of 0.96 for both and p values of <0.0001 

and 0.002 respectively. Furthermore, the slope of the linear fit was considerably higher for 

HUVEC on PDMS gradients than a slope of ~12 for HUVEC on glass gradients and NIH3T3 on 

PDMS and glass gradients. The bidirectional error bars show standard deviations of the binned 

data corresponding to the respective axes. These results showing the exceptionally strong 

correlation between cell spreading and increasing hydrophobicity on gradient substrates led to 

further investigation of the effect of surface chemistry on the adsorbed fibronectin which mediated 

adhesion at the interface.  

 

 Cell shape on surface gradients 

Cell circularity is a coefficient that is generated based on the area and perimeter of selected objects 

and its value ranges from 0 to1. It is an indication of relative comparison to a circular object with 

a value of 1 indicating that object has shape of a circle. Cell circularity for NIH3T3 (N=4) and 

HUVEC (N=3) cells with respect to position on PDMS gradients are plotted in Figure 5.9 and 

Figure 5.10, respectively. The circularity followed a sigmoid curve with more a pronounced trend 

for HUVEC than for NIH3T3. The R2 value of sigmoid curve fit was only 0.49 for NIH3T3 with 

a p value of 0.0005 while it was 0.88 with a p value of <0.0001 for HUVEC. 
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 Cell adhesion on surface gradients 

NIH3T3 adhesion in terms of cell density (cells/µm^2) on control, glass and PDMS gradients did 

not follow any particular trend or pattern (data not shown). However, with HUVECs, while there 

was no significant pattern for cells on glass gradients; the adhesion on PDMS gradients followed 

a trend that was lesser on the hydrophilic part of the gradient and higher on the hydrophobic part 

of the gradient (Figure 5.11). The lowest cell density was 32±9 cells/µm2 and the highest was 

88±15 cells/µm2. Similar to the correlation plot for cell spreading, correlation for HUVEC 

adhesion (Figure 5.12) with surface chemistry was also determined. A high correlation with R of 

0.94 for PDMS gradients and lower R value of 0.69 for glass gradients with p values of <0.0001 

and 0.06 respectively were obtained. 

 

 Adsorption of fibronectin on surface modified PDMS 

Since human plasma fibronectin pre-adsorbed onto the gradients primarily mediated the specific 

interactions between the biomaterial and cells, the density and conformation of the fibronectin 

were investigated. Fluorescence imaging of AlexaFluor-488 dye conjugated fibronectin coated on 

PDMS substrates with a range of uniform surface chemistries were analyzed to quantify adsorption 

(Figure 5.13). Values of relative fluorescence intensity reflect the proportional density of 

fibronectin adsorbed on PDMS substrates with a range of surface wetting properties. Fibronectin 

adsorption increased monotonically with hydrophobicity. A line fit reveals a proportional 

relationship (R2=0.69) between fibronectin adsorption and hydrophobicity with a p-value <0.0001. 

Fitting higher order polynomials did not yield better correlations. Figure 5.14 shows the difference 

in fibronectin absorbance in relative fluorescence intensity at the two extreme ends of the surface 
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chemistry gradients. An analysis of variance yielded that the difference was statistically significant 

with a p value of 0.002 (p<0.05). 

 

To understand the relationship between NIH3T3 cell spreading area and fibronectin adsorption, 

data were systematically binned for 15 degree intervals of water contact angle. The regression 

indicated cell spreading has a strong correlation with fibronectin adsorption (R=0.80) with a p-

value of 0.06 (Figure 5.15). The bidirectional error bars show standard deviations of the binned 

data corresponding to the respective axes.  

 

 Conformation of fibronectin on surface modified PDMS 

The functional activity of the protein fibronectin on surfaces with different chemistries was also 

evaluated by assessing the accessibility of the cell binding domain with HFN7.1, a monoclonal 

antibody that mimics the binding affinity of integrin α5β1 (Keselowsky, Collard, and García 2003; 

Llopis-Hernandez et al. 2011). HFN7.1 binds to the cell binding domain of fibronectin between 

the RGD and PHSRN sequences and is sensitive to relative spatial changes between these two 

motifs. HFN7.1 antibody binding was quantified with a modified ELISA procedure on PDMS 

substrates with uniform surface chemistry (Figure 5.16). Open symbols represent raw absorbance 

values of the substrate product normalized to control. The symbol shapes correspond to the 

samples from N = 3 independent experiments which demonstrated similar biphasic trends. The 

closed symbols represent the same data binned into 15 degree increments and then normalized to 

the corresponding fibronectin adsorbed quantity to decouple the roles of quantity and 

conformation. HFN7.1 binding increased from negligible amounts for extremely hydrophilic 

surfaces (<15°) to maximum at approximately 75°. However, a marked decrease was observed for 
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highly hydrophobic surfaces (>90°). Since this measurement does not account for the variation in 

the density of the adsorbed protein, the analysis was extended to normalize the ELISA data to 

account for differences in fibronectin density and represent only relative differences in 

conformation. Thus, all conformation and adsorption data were methodically binned for 15 degree 

contact angle intervals and the conformation mean values were scaled by the adsorption values to 

estimate the relative influence of conformation alone (Figure 5.17). A similar biphasic trend was 

observed, and accordingly the Pearson’s correlation coefficient (R) was 0.24. When only the data 

up to 75° contact angle were considered, cell spreading and fibronectin conformation were highly 

correlated (R = 0.99, p-value = 0.001).  

 

 NIH3T3 spreading and adhesion on soft and stiff PDMS 

PDMS with less crosslinker (1.43% weight crosslinker), the soft PDMS, and more (10% weight 

crosslinker), the stiff PDMS, in discrete forms were used to study NIH3T3 cell response. An 

analysis of variance based on the numerous images (no. of images = 66) taken on the soft and stiff 

PDMS show statistical difference for cell spreading (Figure 5.18) and cell adhesion (Figure 5.19) 

with the same p  value of <0.001 for both. 

 

Cell spreading has been established as a critical regulator of cell functions including survival and 

transcription (Chen et al. 1997; Li et al. 2008). The spreading area of NIH/3T3 fibroblasts 

increased with hydrophobicity over a range of ~10° to ~100° water contact angle. It was interesting 

to note that although spreading area was minimum at the extremely hydrophilic region with <15°, 

it did not deter cell adhesion in that region. Kennedy et al (Kennedy et al. 2006) found that 

maximum osteoblast spreading was reached at an intermediate wettability on fibronectin coated 
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surface gradients on glass while the osteoblast proliferation was highest on the most hydrophobic 

end of the gradient. This differs from our observations that NIH/3T3 fibroblast spreading 

continued to rise with increasing hydrophobicity on both glass and PDMS substrates, though the 

difference is likely attributed to numerous dissimilarities in the experimental systems including 

the cell type, fibronectin coating concentration, and substrate material. 

 

One of the most striking and definitive results from this study is the strong dependence of cell 

spreading on surface chemistry (Figure 5.7 and Figure 5.8). Although this correlation was similar 

on the glass gradients and PDMS gradients, the cell spreading was lower on the PDMS gradients 

compared to the glass gradients for the entire range of hydrophobicity. Despite the fact that the 

surface chemical interfaces on both were comparable, there existed a vast difference in their 

underlying stiffnesses. The elastic modulus of glass is ~ 50 GPa, while cross-linked PDMS is  

~1.8 MPa. The role of substrate stiffness in cell functionality has been well documented in previous 

studies,(Pelham and Wang 1997; Brown, Ookawa, and Wong 2005; Engler et al. 2006; Discher, 

Janmey, and Wang 2005; Discher DE 2009; Ghosh et al. 2007) and enhanced fibroblast spreading 

on and durotaxis toward stiffer substrates in comparison with softer substrates has also been 

reported (Lo et al. 2000; Pelham and Wang 1997; Georges and Janmey 2005; Discher DE 2009). 

The differences in matrix mechanical properties are sensed by transmembrane integrin receptors 

that transmit information back and forth between the inside of cell and the extracellular matrix. 

This process is called mechanotransduction and involves integrin binding and clustering, focal 

adhesion complex formation, and signaling processes linked to the actin-myosin contractile 

machinery (Dumbauld et al. 2010; Gallant, Michael, and Garcia 2005; Geiger B. 2001; Hynes 

2002).  
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Cells interact with biomaterial surfaces as they do in their native microenvironments – through 

binding the proteins at the interface. Cell adhesion to extracellular matrices is mediated primarily 

through integrin receptor binding to proteins such as fibronectin (Hynes 2002). In this work, prior 

to cell attachment, both experimental and control samples were coated with fibronectin. This was 

done to introduce a common adhesive environment where fibronectin would be the predominant 

protein cells interacted with over the time course of these experiments. Both fibronectin adsorption 

density and fibronectin conformation on different material surfaces are established key players that 

have profound impacts on cell functionality (Leahy DJ 1996; Keselowsky, Collard, and García 

2003; Michael et al. 2003; Phillips et al. 2010; Allen et al. 2006). Therefore, fibronectin adsorption 

behavior on PDMS with varied wettablities was probed in this study to understand the adhesive 

environment mediating the correlation between surface chemistry and cell spreading. Using 

fluorescently labeled fibronectin, it was found that maximum adsorption occurred on the most 

hydrophobic surfaces whereas minimum adsorption was measured on the most hydrophilic 

surfaces, which is in good agreement with many previously reported studies (Lee et al. 2006; 

Keselowsky, Collard, and García 2003; Llopis-Hernandez et al. 2011). For instance, fibronectin 

adsorption on surfaces with different self-assembled monolayer (SAM) chemistries was 

established to follow the trend OH<COOH<NH2<CH3 (Lee et al. 2006). Similarly, the surfaces 

investigated here contain a spatially controlled continuous variation from completely CH3 to 

predominantly COOH (and to a lesser degree, other oxygen containing entities) proportional to the 

UVO exposure time, (Moore et al. 2011; Roberson et al. 2002) which regulated adsorption. 

Subsequently, regression analysis revealed that a positive correlation exists between cell spreading 

and fibronectin adsorption. However, the p-value of 0.06 in the linear regression indicates some 
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uncertainty in the fit parameters (i.e., slope) and suggests a linear model may not accurately predict 

the dependence of spreading on fibronectin adsorption for these surfaces.  

 

Fibronectin conformation on PDMS with UVO modulated surface chemistries was assessed with 

an antibody based assay for the cell binding domain between the 9th and 10th type III repeats that 

corresponds to α5β1 integrin binding, the primary fibronectin receptor for NIH/3T3 fibroblasts. The 

affinity of the antibody was highly sensitive to an optimum distance between the RGD and PHSRN 

motifs of fibronectin (Keselowsky, Collard, and García 2003; Leahy DJ 1996). Unlike the 

adsorption studies, the results from these conformation experiments yielded a biphasic trend where 

the amount of antibody bound increased with hydrophobicity up to about 75° before sharply 

decreasing on the most hydrophobic (91°-105°) surfaces. After normalizing to the fibronectin 

density, the HFN 7.1 binding on the most hydrophobic surface was ~3 fold less than the maximum 

binding. The absence of a correlation (R = 0.24) between cell spreading and fibronectin 

conformation over the entire gradient range was primarily due to the hydrophobic end of the 

gradient where spreading was maximum but the HFN7.1 binding was low. An analysis of only the 

range of contact angle up to 75° revealed a strong correlation (R = 0.99) between cell spreading 

and fibronectin conformation for hydrophilic to intermediate hydrophobicity on PDMS substrates. 

Together these results on fibronectin functional activity suggest that α5β1 does not dominate cell 

interactions at the hydrophobic end of the gradient. One possible explanation is that total integrin 

binding may regulate spreading, rather than an individual receptor class, on the denatured 

fibronectin that is present in high density on the hydrophobic region of these materials, suggesting 

further investigation into the specific binding of all fibronectin receptors and their role in 

regulating cell functions such as spreading is warranted. Recently, Llopis-Hernandez et al. 
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examined both fibronectin adsorption and conformation on SAM surfaces with different 

wettabilities obtained using mixtures of distinct terminal OH and CH3 alkanethiols (Llopis-

Hernandez et al. 2011). Their results on fibronectin adsorption and conformation follow similar 

profiles and corroborate our results; however, their findings on fibronectin conformation, 

following normalization, did not display the distinct biphasic trend that our results have shown. 

 

Collectively, these results reflect the level of complexity in protein adsorption and adhesive 

interactions at the cell-biomaterial interface that leads to a specific cell response. The strong linear 

correlation observed in this study, between steady-state cell spreading and surface chemistry is a 

surprising outcome given the complexity of the interactions at the interface. As discussed earlier, 

the factors that influence cell fate are numerous and are a combination of surface chemistry and 

other additional matrix properties. For instance, although not the focus of the present work, it can 

also be inferred that elastic modulus may have led to the difference in cell spreading on PDMS 

gradients versus the glass gradients in this study. These factors are not independent in that the 

specificity of integrin binding (e.g., α5β1 instead of αvβ3) can regulate the cellular mechanosensory 

machinery which influences cell shape and therefore higher order functions such as proliferation or 

matrix production.  

 

5.5 Conclusions 

Using these gradient materials as adhesive substrates demonstrated that cell morphology strongly 

depended on surface hydrophobicity, and that this correlation arose from complex interactions 

with the surface. Analysis of the fibronectin at the adhesive interface showed a strong correlation 

between cell spreading and fibronectin density, and a distinctly biphasic relationship between 
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spreading and fibronectin conformation over the range of approximately 10-100° contact angle on 

PDMS. These findings provide insight into what regulates the strong positive correlation between 

surface chemistry and fibronectin-mediated cell shape control on elastic surfaces. This study also 

demonstrated the potential of soft combinatorial biomaterials to identify significant trends or 

patterns in biological responses over large ranges of matrix properties. 
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Figure 5.1 Column chromatography purification of fluorescently labeled fibronectin. 
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Figure 5.2 Steady-state (16 h) NIH3T3 spreading on surface chemistry gradients. Automated 

image analysis of cell morphology indicates cell spreading on fibronectin coated surfaces varies 

with position on surface chemistry gradients. Data were obtained from N = 4 independent 

experiments with two to six replicates in each experiment. 
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Figure 5.3 Steady-state (16 h) HUVEC spreading on surface chemistry gradients. Automated 

image analysis of cell morphology indicates cell spreading on fibronectin coated surfaces varies 

with position on surface chemistry gradients. Data were obtained from N = 3 replicates in each 

treatment group. 
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Figure 5.4 Representative NIH3T3 images on glass gradients are shown. The top row images 

were taken at lower magnification (10x) and higher magnification (60x). Scale bar 100 µm. 

 

 

 

Figure 5.5 Representative NIH3T3 images on PDMS gradients are shown. The top row images 

were taken at lower magnification (10x) and higher magnification (60x). Scale bar 100 µm. 
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Figure 5.6 Representative HUVEC images on PDMS gradients are shown. The top row images 

were taken at lower magnification (10x) and higher magnification (60x). Scale bar 100 µm. 
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Figure 5.7 Correlation of NIH3T3 spreading with surface chemistry gradients. Spreading area 

and contact angle measurements on surface chemistry gradients were binned into 5 mm 

increments to examine their correlation. The linear regression analyses on PDMS (long dash) and 

glass (short dash) substrates had coefficients of correlation of 0.98 (p< 0.0001) and 0.97 

(p<0.0001), respectively. The bidirectional error bars show standard deviations of the binned 

data corresponding to the respective axes.  
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Figure 5.8 Correlation of HUVEC spreading area with surface chemistry gradients. Spreading 

area and contact angle measurements on surface chemistry gradients were binned into 5 mm 

increments to examine their correlation. The linear regression analyses on PDMS (red line) and 

glass (blue line) substrates had coefficients of correlation of 0.96 (p<0.0001) and 0.96 (p=0.002), 

respectively. The bidirectional error bars show standard deviations of the binned data 

corresponding to the respective axes. 
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Figure 5.9 NIH3T3 circularity on PDMS surface chemistry gradients. A sigmoid trend (R2=0.49) 

was observed with respect to circularity for an increase in PDMS surface hydrophobicity for N=4 

replicates. 
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Figure 5.10 HUVEC circularity on PDMS surface chemistry gradients. A prominent sigmoid 

trend (R2=0.88) was observed with respect to circularity for an increase in PDMS surface 

hydrophobicity for N=3 replicates. 
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Figure 5.11 HUVEC adhesion on surface chemistry gradients. An increase in cell density with 

hydrophobity was observed for cells on PDMS gradients. N=3 replicates in each treatment 

group. 
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Figure 5.12 Correlation of HUVEC adhesion with surface chemistry gradient. Cell density and 

contact angle measurements on surface chemistry gradients were binned into 5 mm increments to 

examine their correlation. The linear regression analyses on PDMS (red line) and glass (blue 

line) substrates had coefficients of correlation of 0.94 (p<0.0001) and 0.69 (p=0.06), 

respectively. The bidirectional error bars show standard deviations of the binned data 

corresponding to the respective axes. 
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Figure 5.13 Fibronectin adsorption on PDMS with varying hydrophobicities. The adsorption of 

fluorescently labeled fibronectin was quantified by image analysis of the relative fluorescence 

intensity (N=3 independent experiments). A linear regression (dashed line, y= 187+1.2 x) 

had an R2=0.69. 
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Figure 5.14 Fibronectin adsorption on hydrophilic and hydrophobic PDMS. The difference in 

fibronectin absorbance in relative fluorescence intensity at the two extreme ends of the surface 

chemistry gradients is shown. An analysis of variance yielded that the difference was statistically 

significant with a p value of 0.002 (p<0.05) 
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Figure 5.15 Correlation of NIH3t3 spreading with fibronectin adsorption on PDMS gradients. 

NIH/3T3 fibroblast spreading area and fibronectin adsorption measurements were binned into 

15° contact angle increments to examine their correlation ( R=0.80, p=0.06). The bidirectional 

error bars show standard deviations of the binned data corresponding to the respective axes. 
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Figure 5.16 Conformation of fibronectin adsorbed on PDMS with varied surface chemistries. 

HFN7.1 antibody binding was quantified by ELISA. Open symbols represent raw absorbance 

values of the substrate product normalized to control. The symbol shapes correspond to the 

samples from N=3 independent experiments which demonstrated similar biphasic trends. The 

closed symbols represent the same data binned into 15° increments and then normalized to the 

corresponding fibronectin adsorbed quantity to decouple the roles of quantity and conformation. 

  



 

103 

 

Bound HFN 7.1 Ab / Fn Adsorption

0.000 0.001 0.002 0.003 0.004

C
e

ll 
S

p
re

a
d

in
g

 A
re

a
 (

m

2
)

800

1000

1200

1400

1600

1800

2000

2200

2400

 

Figure 5.17 Correlation of NIH/3T3 spreading and fibronectin conformation (normalized to 

adsorption). Measurements were binned into 15° contact angle increments to examine their 

correlation (open and closed circles; R=0.24, p=0.65 over the entire range). The dashed line 

represents the regression for contact angles spanning 0–75 only (closed circles; R5 0.99, 

p=0.001). The bidirectional error bars show standard deviations of the binned data corresponding 

to the respective axes. 
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Figure 5.18 NIH3T3 cell spreading on discrete stiff and soft PDMS. 

 

Figure 5.19 NIH3T3 cell adhesion on discrete stiff and soft PDMS. 
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CHAPTER 6  

FABRICATION OF COMBINATORIAL BIOMATERIALS TO SCREEN CELL 

MECHANOTRANSDUCTION 

6.1 Introduction 

Biomaterials for tissue engineering have evolved over the years and increasingly need to be 

functional materials that elicit specific responses at the cellular and molecular levels. Cells 

constantly perceive and respond to multiple stimuli in the context of the microenvironment which 

influences cell behavior. Some important factors include soluble chemical signals, interacting 

protein sequences and the mechanical properties of the extracellular matrix: both the topography 

of the surface and the inherent bulk material properties (Wong, Leach, and Brown 2004). These 

signals can trigger migration in the form of chemotaxis, mechanotaxis and haptotaxis (Redd et al. 

2006; Haga et al. 2005). Also, cell-matrix adhesion is a dynamic process that includes both outside-

in and inside-out signaling events at the interface (Gallant ; Garcia and Gallant 2003). This makes 

it imperative to comprehend the multifaceted aspects of cell-biomaterial interfacial 

communication.  

 

Matrix property gradients are also seen naturally in vivo in the form of graded differences in 

mineral density and porosity of core bone structure to outer trabecular bone (Karageorgiou and 

Kaplan 2005), structural variations in teeth, interfacial tissues like cartilage to bone and ligament 

to bone, and in physiological processes such as embryogenesis and wound healing (Wu et al. 2012; 

Singh, Berkland, and Detamore 2008; Seidi et al. 2011). 
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Fabrication of single gradient materials, especially surface chemistry, and their effect on cell 

functionality was discussed in Chapter 5. For instance, gradients in growth factors have shown to 

have an impact on cell migration as exhibited by directionality and migration of vascular smooth 

muscle cells toward high density regions of basic fibroblast growth factor (Wu et al. 2014). Since 

numerous factors contribute to cell response, sorting through each of them individually can cause 

considerable delay to move a new product from conception to reaching market (Simon and Lin-

Gibson 2011). Therefore, multifactor materials that have variations in two or more different 

properties allow for obtaining more information from an experiment with a gradient of a single 

independent variable. Moreover, there is the additional advantage of assessing cell response in a 

more comprehensive manner that more closely mimics the complexity of the native extracellular 

matrix. 

 

While there have been some studies with multiple gradients, many of them involve the gradients 

varying in chemical properties and blends of different polymers. 2D gradient materials that have 

biaxial or dual gradients in bulk physical properties in combination with another parameter 

gradient, especially using the same principal material are limited to the following. Orthogonal 

gradients with thiol based surface chemistry gradients on gold with different terminal functional 

groups have been reported (Beurer et al. 2010; Venkataraman et al. 2014). A two dimensional 

gradient was made with plasma polymerization of allylamine on polypropylene material and was 

used to screen cell adhesion which correlated with amine content on gradients.(Mangindaan, Kuo, 

and Wang 2013). Another instance of 2D surface gradients through plasma polymerization was 

used to study mesenchymal stem cells adhesion that correlated with acrylic acid coating. (Wang 

et al. 2015) Meredith et al developed an orthogonal combinatorial gradient with two polymeric 
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blends that was orthogonally annealed with a gradient in temperature which was instrumental in 

finding increased osteoblast differentiation at equal blend of both polymers at 105°C.(Meredith et 

al. 2003). Osteoblast proliferation was found to be enhanced on the smoother polymer of a two 

polymer orthogonal strip film gradient that was also annealed to obtain a gradient in roughness 

(Simon Jr et al. 2005). 

 

Our aim was to fabricate 2D gradient biomaterials with gradients of surface chemistry cues and 

matrix stiffness to screen cell response. Discrete compositions of PDMS with varying stiffness 

have been investigated before by combining different formulations of commercially available 

PDMS (Palchesko RN et al. 2012) or by varying the concentration of crosslinking agents (Brown, 

Ookawa, and Wong 2005). A gradient in mechanical stiffness using PDMS has been reported by 

controlling the directionality of the curing process of PDMS by placing the PDMS base and 

crosslinker mixture vertically on hot plate, although the resulting range of stiffness was narrow 

(Wang, Tsai, and Voelcker 2012).  In chapters 4 and 5, the fabrication of a single gradient 

biomaterial with a gradient in surface chemistries on PDMS and cell interactions with it were 

discussed in detail. Since cells respond to multiple cues in vivo, a biomaterial for in vitro 

investigations that has both a physical parameter gradient in the form of mechanical stiffness and 

a surface chemistry gradient takes us a step closer to recapitulating the complexity of cell 

microenvironment and understanding how cells process multiple signals. To our knowledge, this 

is the first time that a 2D gradient platform with mechanical stiffness and surface chemistry 

gradients has been engineered using PDMS. 
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6.2 Experimental Section 

 Tensile testing of discrete PDMS formulations with varying crosslinker concentrations 

Mechanical characterization of discrete PDMS having varying crosslinking concentrations were 

done to estimate their Elastic Moduli. This was done to estimate elastic modulus and 

approximately ensure a wide range of stiffness in the future PDMS material that would have a 

continuous Young's modulus gradient. Crosslinked networks of PDMS samples with varying 

stiffness were created with modulation of base to cross linker ratio. Mechanical testing to estimate 

elastic modulus of these samples was performed using conventional tensile testing method and 

elastic moduli of discrete samples were determined (Brown, Ookawa, and Wong 2005; Pelham 

and Wang 1997). 

 

Varying combinations of base to cross-linker ratios of PDMS were mixed, degassed and cured for 

4 days at 65°C.Cured polymeric samples were first subjected to a creep test (twenty four hours) to 

confirm their elastic behavior. This was followed by tensile testing of samples as done by Pelham 

and Wang(Pelham and Wang 1997) to determine elastic modulus using Hooke’s Law (σ = E.ε) 

where σ is stress in Pascals, ε is the strain and E the elastic modulus in Pascals. Samples with 

varying cross linker concentrations of 10% (n=5), 5% (n=4), 3.3% (n=4), 2.5% (n=2) and 2% (n=3) 

mass fraction were found to be elastic. The formulation with crosslinker of 1.67 weight % 

exhibited creep and therefore was excluded from tensile testing since it exhibited some viscoelastic 

behavior.  
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 Combinatorial biomaterial fabrication 

The assembly of combinatorial biomaterial using PDMS was done in two phases. Briefly, the first 

phase involved the fabrication of mechanical gradient material using PDM having a bulk stiffness 

gradient where one end had the highest modulus of elasticity that gradually tapered to the least 

modulus of elasticity at the other end. In the second phase, the surface of a crosslinked mechanical 

stiffness gradient material was modified with silane chemistry and ultraviolet oxidation treatment 

to obtain a surface chemistry gradient atop the stiffness gradient. In this manner, a truly 

spatiotemporal combinatorial biomaterial was procured, encompassing wide ranges of both 

mechanical and chemistry gradients. The details of fabrication are furnished below. 

 

 Mechanical stiffness gradient fabrication 

Two formulations of the PDMS (Sylgard 184, Dow corning) was used to create the mechanical 

gradient. One formulation contained 10% by weight crosslinker (stiff PDMS) while the other 

mixture had 1.43% by weight crosslinker (soft PDMS).  The base and crosslinker was mixed 

thoroughly and then degassed under vacuum to remove air bubbles.  A red dye, Sudan IV (Sigma 

Aldrich, St Louis, MO) was added to the soft PDMS mixture to aid in visualization of the gradient 

after deposition. The dye itself was dissolved in toluene (~35mg in 2000 ul) and filtered using a 

0.45 µm syringe filter after which 500 ul was added to 50 ml of soft PDMS. 

 

The soft and stiff PDMS fractions/combinations were then separately loaded in two 10 ml syringes 

(BD, New Jersey) and mounted on NE 1000 single syringe pumps (New Era Pump Systems, Inc, 

Farmingdale, NY).  The experimental set up used to fabricate mechanical gradients is shown in 

Figure 6.1. The two pumps were run using the software SyringePumpPro, where one had a linearly 
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increasing profile from 0 to 125 ml/hr while the other ramped down linearly from 125 to 0 ml/hr 

over 50 s (plus 14 s constant pressure to expel the mixed solution). These inverse ramping profiles 

of the syringe pumps were adapted from method described in Smith Callahen et al (Smith Callahan, 

Ganios, et al. 2013; Smith Callahan, Policastro, et al. 2013).  The contents from both syringes 

flowed into a Y connecter and were mixed well downstream using a static mixer (Omega 

Engineering Inc., Stamford, CT). The combined gradient was deposited onto a glass slide (75x50, 

Fisher Scientific) that was placed/perched on a moving stage (PHD 2000 Syringe Pump, Instech 

Laboratories Inc., PA).The gradient was deposited on 50 x 50 mm of the original 75 x 50 mm of 

glass slide. The PDMS mechanical gradients were cured overnight in the oven at 65°C.  

 

 Surface chemistry gradient fabrication on mechanical gradient 

The mechanical gradient was first sonicated in 75% ethanol to remove physical impurities. After 

drying the gradient substrate under vacuum, it was oxygen plasma cleaned (Plasma Etch PE-50, 

Carson City, NV) for 5 minutes at 100 watts. A monolayer of silane, octyldimethylcholorosilane 

(ODMS) was deposited through 24 hours of chemical vapor deposition. This was done under 

vacuum with the sample exposed to vapor of 1:1 mixture of ODMS and toluene solution. The 

silane layer on the mechanical gradient was then subjected to a stringently controlled Ultraviolet 

Oxidation (UVO) treatment. Ultraviolet light with 254 and 185 nm wavelength from a /fixed 

immobile lamp shone on sample placed on a moving stage that was controlled via LabVIEW 

interface The orientation of the newly generated surface chemistry gradient was perpendicular to 

the original mechanical stiffness gradient. Extended exposure time with a maximum of 380s 

seconds at one end of sample, that systematically reduced to a minimum of 0s exposure at the other 
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end In this manner a combinatorial biomaterial was fabricated with a mechanical gradient running 

across the ‘x’ axis and a surface chemistry gradient along the ‘y’ axis. 

 

 Combinatorial biomaterial characterization 

Mechanical gradients were characterized using a combination of compression tests and 

spectrophotometric analysis based on the Sudan IV dye added to the soft PDMS mixture during 

manufacture of mechanical gradient to facilitate visualization of the gradient. This meant that one 

end of gradient was a darker red with the color fading out across the length with the other end 

being clear typical of PDMS. 

 

A standard curve was created using discrete blends of the 10% weight stiff PDMS and the 1.43%  

weight soft PDMS which contained the Sudan IV dye (Sigma Aldrich) in a 0.01% weight 

composition. The six discrete compositions had the following crosslinker concentrations: 10%, 

7.9%, 5.7%, 3.6%, 2.5% and 1.43 crosslinker weight. Both compression testing and 

spectrophotometric analysis were conducted on each of these six discrete samples to obtain a 

standard curve that deduced the correlation between the measured elastic modulus and 

spectroscopic reading. This was followed by statistical curve fit on the standard curve data 

obtained from compression test and spectrophotometric analyses using Sigma Plot 11.2. The 

statistical data fit allowed for estimation of elastic modulus from spectrophotometric analysis of 

mechanical gradients. Spectroscopic analysis of mechanical gradient generated readings from 5 x 

5 points on the gradient. This was preferred over the more labor intensive and time consuming 

process of compression tests. However, a comparison of data from direct compression testing and 

the indirect spectroscopic analysis on a mechanical gradient was also performed. 
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Spectroscopic scans involved a  full visible spectrum scan (300 nm-700 nm) with an interval of 10 

nm was performed on the discrete samples containing stiff and soft PDMS blends and  three 

mechanical gradient samples. The entire 50x50 mm area was scanned during spectroscopic 

analysis of the three mechanical gradients. Spectroscopy analysis of the mechanical gradients 

enabled to indirectly gauge the stiffness gradient The maximum absorbance peak at 520 nm is 

distinctive of the Sudan 1V dye (Di Anibal et al. 2009).  

 

During the compression testing procedure, strain was limited up to 10% by using different weight 

loads. This was to ensure that displacement occurred within the elastic range of PDMS.  The elastic 

modulus is obtained using the following equation that has been previously used to determined 

modulus of soft tissue (Krouskop et al. 1998). 

 
w

qa
E

212 
  

The elastic modulus is represented by E, radius of loaded area is a, q is the stress and ʋ is the 

poisson ratio with a value of 0.5. While the above mentioned spectroscopic analyses and 

compression tests characterization techniques gives a trend in mechanical properties of the 

gradient, a more detailed, automated and thorough characterization of the mechanical gradient 

using other procedures such as nanoindentation is still warranted. 

 

The surface chemistry gradient was characterized through water goniometry/ contact angle 

measurements. Readings were taken along multiple columns and rows in a grid like pattern to 

ensure a comprehensive characterization. Water droplets were released from a syringe on the 

combinatorial sample every 5 mm along y axis and every 10 mm apart on the x axis. The Young 

Laplace fitting algorithm was then used to measure the contact angles. 
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 Cell culture 

NIH/3T3 , a mouse embryonic fibroblast cell line, was purchased from American Type Culture 

Collection (ATCC) and cultured on tissue culture polystyrene in Dulbecco’s Modified Eagle’s 

Medium (DMEM, Invitrogen) that contained 100 units/ml penicillin and 100 ug/ml streptomycin 

(Invitrogen) and 10% new born calf serum (Invitrogen).  

 

Control and 2D combinatorial gradient substrates were sterilized for 10 min in 70% ethanol and 

then rinsed with Dulbecco’s phosphate buffered saline (DPBS, Invitrogen) three times. The 

substrates were first precoated with 10 μg/ml human plasma fibronectin (Gibco, Invitrogen) for 30 

minutes and subsequently blocked with 1% bovine serum albumin (BSA, Fisher Scientific) for 30 

minutes. Cells released from tissue culture dishes using Trypsin/EDTA (Invitrogen) were seeded 

cells at 40 cells/mm2. Freshly seeded cells were left undisturbed in the biosafety cabinet for 30 

minutes to facilitate cell attachment before transfer to the incubator. Plain glass slide (50x75mm) 

acted as a control to confirm that changes in cell morphology were due to underlying gradients on 

2D combinatorial platform and not an artifact of the seeding procedure.  

 

 High throughput cell functionality analysis: automated image capture and data extraction 

After incubation for 16 hours, cells were fixed with 3.7% by mass formaldehyde (Invitrogen) in 

DPBS and permeabilized for 10 minutes using 0.5% by mass Triton X-100 in buffered saline. For 

high throughput imaging of NIH3t3 cells, nuclei (Hoechst 33342, Invitrogen) and bodies 

(AlexaFluor 488 maleimide, Invitrogen) were fluorescently labeled for one hour.  
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Cells were imaged and analyzed using NIS Elements software and a Nikon Eclipse Ti-U 

microscope (Nikon Instruments, Melville NY) equipped with fluorescence filter sets. A computer 

controlled stage was automated to capture 90 images on the 2D gradient. This included 3 non 

overlapping images at 30 points along 5 rows and 6 columns spread over the 50 x 50 mm substrate. 

A binary mask was created by automatically applying contrast thresholding to each image so that 

cell spreading area and nuclei count could be automatically extracted.  

 

 Statistical and correlation analyses 

SigmaPlot 11.0 (Systat Software, San Jose, CA) was used to perform regression analyses and curve 

fits on obtained data. A p-value of <0.05 obtained for the regression line slope was considered a 

significant correlation between the concerned variables. Error bars in all graphs indicate standard 

deviation from the mean. 

 

6.3 Results and Discussion 

 Tensile testing of discrete PDMS formulations with varying crosslinker concentrations 

Initial creep testing of differently crosslinked polymeric specimens indicated elastic behavior for 

formulations containing 10, 5, 3.3, 2.5 and 2.0 weight% crosslinker concentration. Formulations 

with less crosslinking agent such as the 1.67% exhibited viscoelastic behavior and were excluded 

from the tensile testing study. Figure 6.2 depicts elastic moduli of different PDMS compositions 

ranging from 1.55 ± 0.12 MPa to 0.02±0.001 MPa. A hundred fold magnitude of mechanical 

stiffness range was obtained by varying crosslink density. These values concur with reports of 

Brown et al for mechanical characterization of PDMS networks that ranged from 1.78MPa for 10 

weight% to 0.05 for 2.0 weight% (Brown, Ookawa, and Wong 2005). 
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 Combinatorial biomaterial characterization 

Compression testing of the discrete blends of soft and stiff PDMS in different ratios yielded their 

elastic moduli respective to the total crosslinker concentration in the blend and this data is shown 

in Figure 6.3. Error bars show standard deviation from n=5 measurements on each sample. 

Spectroscopic analysis was also conducted on these discrete blends of stiff and soft PDMS based 

on the absorbance of the Sudan IV dye at 520 nm that was mixed into the soft PDMS, and this is 

illustrated in Figure 6.4. The error bars represent standard deviation among n=16 readings on each 

of the 6 samples. The data from Figure 6.3 and 6.4 was utilized to generate a standard curve as 

shown in Figure 6.5. Multiple types of data fitting were attempted with the inverse third order 

fitting emerging with the highest coefficient of determination R2 of 0.97. The coefficient of 

correlation obtained was 0.98 showing dependence of elastic modulus on the absorbance at 520 

nm for each crosslinker concentration.  

 

Spectrophotometric analysis was used to scan mechanical gradients (N=3) over the entire visible 

spectrum, with the peak at 520 nm. As expected, the highest peak was observed at the least stiff 

end of the gradient which had the maximum amount of the Sudan IV dye since it was added to the 

soft PDMS. Absorbance readings were obtained from 25 points along 5 rows and 5 columns on 

each mechanical gradient. The dye concentration which progressively diminished across the 

sample as the blend composition changed to stiff (10% crosslinker weight) PDMS was well 

reflected in the trend of decreased absorbance at 520 nm. Figure 6.6 shows the reduction in the 

absorption peak from a mechanical gradient. The absorbance data obtained from three mechanical 

gradients is shown in Figure 6.7 with the variation within each gradient displayed by error bars. 

The equation of the fitted inverse third order curve obtained from Figure 6.5,  
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f=y0+ (a/x) + (b/x^2) +(c/x^3), was used to estimate the elastic moduli indirectly for mechanical 

gradients from their spectrophotometric measurements depicted in in Figure 6.7. The estimated 

stiffness of three mechanical gradients ranged from 1.97±0.24 MPa to 0.06±0.004 MPa (Figure 

6.8).  

 

Compression tests were performed on a mechanical gradient for comparison with the indirect 

estimated stiffness of the same gradient from spectroscopic measurements (Figure 6.9). It was 

observed that while there was a major variation at one position on the mechanical gradient, the 

other values were in close agreement. Also, the overall range of stiffness in a mechanical gradient 

from the direct compression tests (1.9 to 0.004 MPa) and indirect estimation from spectroscopic 

characterizations (2.2 to 0.06 MPa) indicated a similar trend.  

 

The direct compression test measurements and indirect spectroscopic measurements provided the 

trend and an approximate range of elastic modulus from one end of gradient to the other. However, 

a more accurate and high throughput mode of characterization, such as nanoindentation, is required 

for accurate characterization of fabricated mechanical gradients. 

 

Contact angle measurements were taken along three columns with five readings separated by 

10mm on alkylsilane deposited mechanical gradients. The average contact angle was 107±1°. 

After UVO treatment, water contact angle measurements were taken along four columns that spans 

the 50mm width on each sample. Nine measurements were taken every 5 mm apart in each column. 

The variation in surface chemistry gradients between different columns within one 2D gradient 

can be viewed in Figure 6.10. The hydrophilic end was 16±6° and the hydrophobic end was 91±9°. 
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Figure 6.11 displays alkylsilane deposited chemistries and surface gradient chemistries of N=3 2D 

gradients. The average uniform chemistry was at 107±1°. Post UVO, the surface chemistries 

ranged from 16±1° to 92±4°. Figure 6.12 shows the experimental set up for fabricating surface 

gradients on mechanical gradients. Also, it shows the flexibility of making different types of 2D 

combinatorial materials by tweaking the directionality of the surface gradient with respect to the 

mechanical gradient. For instance, Figure 6.13 demonstrates a 2D gradient with the surface 

gradient that runs along the direction parallel to the mechanical gradient. The hydrophilic end of 

the surface gradient is at the stiffest end while the hydrophobic is at the softest end. The surface 

gradient directionality may also be reversed as well with maximum UVO at the softest end of the 

mechanical gradient. 

 

 NIH3T3 spreading on 2D combinatorial gradients 

Fibroblast cells were seeded on both a control plain glass slide (50x75 mm, N=1) and 2D 

combinatorial biomaterials (50x50 mm, N=2). This was done as a preliminary experiment to gauge 

the scope of the newly fabricated 2D combinatorial gradient. Cell spreading on the control plain 

glass (Figure 6.14) was largely invariant and ranged from approximately 900-1200 µm^2. On the 

2D combinatorial gradients, the maximum cell spreading was observed in the most hydrophobic 

region in an area of intermediate stiffness (2255±449 µm2 at 20mm along mechanical gradient and 

0mm on surface chemistry gradient) while the minimum cell spreading was on the hydrophilic 

region of the softer stiffness zone (716±391 µm2 at 10 mm on mechanical gradient and 20mm on 

surface chemistry gradient). Another secondary region of enhanced spreading was also seen at a 

more hydrophilic zone of intermediate stiffness. These findings also highlight the fact that the 

maximum spreading was surprisingly not at the stiffest and most hydrophobic corner of the 2D 
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sample. This contrasts to the maximum fibroblast spreading on the hydrophobic regions on the 

stiff PDMS which represented the 1D surface chemistry gradients reported in Chapter 5 and the 

generally higher fibroblast spreading reported in literature on stiffest substrates used in each study 

(Gray, Tien, and Chen 2003; Lo et al. 2000; Pelham and Wang 1997).  It was positive to note that 

regions of synergy and antagonism or ‘hot spots’ could be easily identified on the experimental 

samples and that cells responded differently to the presented combination of the dual gradients in 

surface chemistry and mechanical stiffness. Another important take away was that cell response 

on a 2D gradient substrate may vary from predictions based on observations of response to 1D 

material property gradients. 

 

6.4 Conclusions 

Tensile testing of differently cross linked PDMS networks through regulation of cross linker 

concentration yielded substrates that spanned a wide and physiologically relevant range of stiffness 

(1.55 ± 0.12 MPa to 0.02±0.001 MPa). A combinatorial biomaterial was successfully fabricated 

by computer controlled mixing of high and low crosslinker concentration solutions of the model 

biomaterial PDMS. This combinatorial biomaterial, 50mm by 50mm, encompasses within it two 

orthogonal gradients. One is a mechanical stiffness gradient that has been estimated indirectly to 

range from approximately 1.97±0.24 MPa to 0.06±0.004 MPa, and the second along the axis 

perpendicular to this stiffness gradient is a surface chemistry gradient ranging from 16±1° to 92±4° 

in water contact angle. The efficient methods in which the physical and chemical properties of the 

model material PDMS were modulated enabled the engineering of the final combinatorial platform 

presented in this study. Preliminary results from fibroblast spreading on the combinatorial 

biomaterial demonstrated that cell response was varied across the 2D gradient platform and also 
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displayed the potential to identify regions of synergy and antagonism that influence cell behavior. 

The findings also underscored the fact that cell response to two independently varied matrix 

properties will likely differ from superposition of cell responses to two single material properties. 
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Figure 6.1 Experimental apparatus setup for mechanical gradient fabrication. 
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Figure 6.2 Elastic moduli of discrete PDMS networks with different formulations of crosslinker 

concentrations. 
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Figure 6.3 Elastic moduli from compression testing of discrete polymeric blends of stiff and soft 

PDMS. 
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Figure 6.4 Absorbance at 520nm of discrete polymeric blends of stiff and soft PDMS. The 

differences in Sudan IV concentration in the discrete samples were measured using 

spectrophotometric analyses. 
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Figure 6.5 An inverse third order fit on a standard curve to obtain estimated elastic modulus on 

mechanical gradients. The standard curve was generated from a combination of direct 

compression testing and indirect spectroscopic absorbance measurements on discrete polymeric 

blends of stiff and soft PDMS. 
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Figure 6.6 UV-vis absorbance spectra across a mechanical gradient sample. Higher absorbance 

peak correlates to higher dye concentration and lower modulus. 
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Figure 6.7 Variation in absorbance at 520 nm within and between three mechanical gradients. 

Highest absorbance is at the softest end of mechanical gradient that gradually decreases to a 

minimum at the stiffest end. 
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Figure 6.8 Estimated elastic moduli of three mechanical gradients. The moduli were indirectly 

estimated from absorbance values obtained from spectrophotometric analyses and further 

calculated from an inverse third order fit of a standard curve.  
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Figure 6.9 Comparison of moduli values measured directly from compression test vs absorbance 

from spectroscopy on a mechanical gradient.  

  



 

133 

 

 

Position (mm)

0 10 20 30 40 50

C
o
n
ta

c
t 

A
n
g
le

 (
d
e
g
re

e
)

0

20

40

60

80

100

120

column 1 soft end

column 2 

column 3 

column 4 stiff end

 

Figure 6.10 Photograph and graph of a 2D gradient surface chemistry gradient running 

perpendicular to bulk mechanical gradient on 2D combinatorial gradient. 
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Figure 6.11 Surface chemistry gradients (orthogonal to bulk mechanical gradients) on three 2D 

combinatorial gradients.  

 

 
Figure 6.12 Generation of surface chemistry gradients with different directionalities on 

mechanical gradients. 
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Figure 6.13 Photograph and graph of a 2D gradient with surface chemistry gradient running 

parallel to bulk mechanical gradient. 
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Figure 6.14 Contour plot of cell spreading on a control plain glass sample with uniform material 

properties. 
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Figure 6.15 Contour plot of cell spreading on 2D combinatorial gradient biomaterials. 

 

6.6 References 

Beurer, Eva, Nagaiyanallur V. Venkataraman, Antonella Rossi, Florian Bachmann, Roman 

Engeli, and Nicholas D. Spencer. 2010. Orthogonal, Three-Component, Alkanethiol-

Based Surface-Chemical Gradients on Gold. Langmuir 26 (11):8392-8399. 

Brown, Xin Q, Keiko Ookawa, and Joyce Y Wong. 2005. Evaluation of polydimethylsiloxane 

scaffolds with physiologically-relevant elastic moduli: interplay of substrate mechanics 

and surface chemistry effects on vascular smooth muscle cell response. Biomaterials 26 

(16):3123-3129. 



 

138 

 

Di Anibal, Carolina V., Marta Odena, Itziar Ruisánchez, and M. Pilar Callao. 2009. Determining 

the adulteration of spices with Sudan I-II-II-IV dyes by UV–visible spectroscopy and 

multivariate classification techniques. Talanta 79 (3):887-892. 

Gallant, Nathan. Proposal: Combinatorial Biomaterial for Endothelial Cell Mechanobiology. 

Garcia, Andrés, and Nathan Gallant. 2003. Stick and grip. Cell Biochemistry and Biophysics 39 

(1):61-73. 

Gray, Darren S., Joe Tien, and Christopher S. Chen. 2003. Repositioning of cells by 

mechanotaxis on surfaces with micropatterned Young's modulus. Journal of Biomedical 

Materials Research Part A 66A (3):605-614. 

Haga, Hisashi, Chikako Irahara, Ryo Kobayashi, Toshiyuki Nakagaki, and Kazushige Kawabata. 

2005. Collective Movement of Epithelial Cells on a Collagen Gel Substrate. Biophysical 

Journal 88 (3):2250-2256. 

Karageorgiou, Vassilis, and David Kaplan. 2005. Porosity of 3D biomaterial scaffolds and 

osteogenesis. Biomaterials 26 (27):5474-5491. 

Krouskop, Thomas A., Thomas M. Wheeler, Faouzi Kallel, Brian S. Garra, and Timothy Hall. 

1998. Elastic Moduli of Breast and Prostate Tissues under Compression. Ultrasonic 

Imaging 20 (4):260-274. 

Lo, Chun-Min, Hong-Bei Wang, Micah Dembo, and Yu-li Wang. 2000. Cell Movement Is 

Guided by the Rigidity of the Substrate. Biophysical journal 79 (1):144-152. 

Mangindaan, Dave, Wei-Hsuan Kuo, and Meng-Jiy Wang. 2013. Two-dimensional amine-

functionality gradient by plasma polymerization. Biochemical Engineering Journal 78 

(0):198-204. 

Meredith, J. Carson, Joe- L. Sormana, Benjamin G. Keselowsky, Andrés J. García, Alessandro 

Tona, Alamgir Karim, and Eric J. Amis. 2003. Combinatorial characterization of cell 

interactions with polymer surfaces. Journal of Biomedical Materials Research Part A 

66A (3):483-490. 

Palchesko RN, Zhang L, Sun Y, and Feinberg AW. 2012. Development of Polydimethylsiloxane 

Substrates with Tunable Elastic Modulus to Study Cell Mechanobiology in Muscle and 

Nerve. PLoS ONE 7 ((12): e51499. doi:10.1371/journal.pone.0051499). 

Pelham, Robert J, and Yu-li Wang. 1997. Cell locomotion and focal adhesions are regulated by 

substrate flexibility. Proceedings of the National Academy of Sciences 94 (25):13661-

13665. 

Redd, Michael J., Gavin Kelly, Graham Dunn, Michael Way, and Paul Martin. 2006. Imaging 

macrophage chemotaxis in vivo: Studies of microtubule function in zebrafish wound 

inflammation. Cell Motility and the Cytoskeleton 63 (7):415-422. 

Seidi, Azadeh, Murugan Ramalingam, Imen Elloumi-Hannachi, Serge Ostrovidov, and Ali 

Khademhosseini. 2011. Gradient biomaterials for soft-to-hard interface tissue 

engineering. Acta Biomaterialia 7 (4):1441-1451. 

Simon, Carl G., and Sheng Lin-Gibson. 2011. Combinatorial and High-Throughput Screening of 

Biomaterials. Advanced Materials 23 (3):369-387. 

Simon Jr, Carl G., Naomi Eidelman, Scott B. Kennedy, Amit Sehgal, Chetan A. Khatri, and 

Newell R. Washburn. 2005. Combinatorial screening of cell proliferation on poly(l-lactic 

acid)/poly(d,l-lactic acid) blends. Biomaterials 26 (34):6906-6915. 

Singh, Milind, Cory Berkland, and Michael S. Detamore. 2008. Strategies and Applications for 

Incorporating Physical and Chemical Signal Gradients in Tissue Engineering. Tissue 

Engineering. Part B, Reviews 14 (4):341-366. 



 

139 

 

Smith Callahan, Laura A., Anna M. Ganios, Erin P. Childers, Scott D. Weiner, and Matthew L. 

Becker. 2013. Primary human chondrocyte extracellular matrix formation and phenotype 

maintenance using RGD-derivatized PEGDM hydrogels possessing a continuous 

Young’s modulus gradient. Acta Biomaterialia 9 (4):6095-6104. 

Smith Callahan, Laura A., Gina M. Policastro, Sharon L. Bernard, Erin P. Childers, Ronna 

Boettcher, and Matthew L. Becker. 2013. Influence of Discrete and Continuous Culture 

Conditions on Human Mesenchymal Stem Cell Lineage Choice in RGD Concentration 

Gradient Hydrogels. Biomacromolecules 14 (9):3047-3054. 

Venkataraman, Nagaiyanallur V., Clément V. M. Cremmel, Christian Zink, Rebecca P. Huber, 

and Nicholas D. Spencer. 2014. Chapter 6 - Patterning Gradients. In Methods in Cell 

Biology, edited by P. Matthieu and T. Manuel: Academic Press. 

Wang, Peng-Yuan, Lauren R. Clements, Helmut Thissen, Wei-Bor Tsai, and Nicolas H. 

Voelcker. 2015. Screening rat mesenchymal stem cell attachment and differentiation on 

surface chemistries using plasma polymer gradients. Acta Biomaterialia 11 (0):58-67. 

Wang, Peng-Yuan, Wei-Bor Tsai, and Nicolas H. Voelcker. 2012. Screening of rat mesenchymal 

stem cell behaviour on polydimethylsiloxane stiffness gradients. Acta Biomaterialia 8 

(2):519-530. 

Wong, Joyce Y., Jennie B. Leach, and Xin Q. Brown. 2004. Balance of chemistry, topography, 

and mechanics at the cell-biomaterial interface: Issues and challenges for assessing the 

role of substrate mechanics on cell response. Surface Science 570 (1-2):119-133. 

Wu, Jindan, Zhengwei Mao, Lulu Han, Yizhi Zhao, Jiabin Xi, and Changyou Gao. 2014. A 

density gradient of basic fibroblast growth factor guides directional migration of vascular 

smooth muscle cells. Colloids and Surfaces B: Biointerfaces 117 (0):290-295. 

Wu, Jindan, Zhengwei Mao, Huaping Tan, Lulu Han, Tanchen Ren, and Changyou Gao. 2012. 

Gradient biomaterials and their influences on cell migration. Interface Focus 2 (3):337-

355. 

 



 

140 

 

 

 

 

CHAPTER 7 

 CONCLUSIONS AND FUTURE CONSIDERATIONS 

 

The overall objective of this research was to fabricate combinatorial biomaterials with properties 

that span wide ranges in surface chemistries and mechanical moduli in monotonically varying 

gradient format for the high throughput screening of cell response to matrix properties. Our central 

hypothesis was that materials encompassing monotonic gradient properties in both mechanical 

elastic modulus and surface chemistry could be engineered on a single substrate using PDMS. 

Additionally, it was expected that using these combinatorial biomaterials for high throughput 

screening of cell-material interactions would yield patterns in the overall cell response to the 

increased level of complexity mimicking the extracellular matrix. While some previous work 

highlighted the use of gradient materials, a vast majority used rigid materials such as glass or very 

soft polymeric materials such as hydrogels as substrates. The use of biomaterials to manufacture 

gradients with physiologically relevant ranges of stiffness is very limited. In this study PDMS, a 

soft silicone elastomeric biomaterial with physiologically relevant stiffness and an easily modified 

surface, was used to fabricate combinatorial gradient materials. 

 

This research is novel because the fabrication of continuous surface chemistry gradients on PDMS, 

a soft material and the fabrication of a 2D combinatorial material with gradients in mechanical 

modulus and surface chemistries using PDMS to conduct high throughput screening of cell 

response have been illustrated for the first time. Moreover, the combinatorial material approach 
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also demonstrated the capacity to identify thresholds or patterns in cell response to multiple matrix 

properties. This implementation of combinatorial gradient biomaterials to conduct research on 

cell-material interactions is an important milestone for mimicking the extracellular matrix and 

understanding the complex interplay of multiple simultaneous signals that may direct cell 

behavior. 

 

The PDMS surface was modified through deposition of a hydrophobic alkylsilane monolayer. A 

very tightly spatiotemporally regulated ultraviolet ozone oxidation treatment of the alkysilane 

layer generated a monotonically varying profile of surface chemistries on PDMS. One end of the 

substrate had a very hydrophilic surface that gradually transitioned over the 40 mm distance to a 

hydrophobic surface at the other end. This correlated with the extent of oxygenation of the surface 

whereby the normalized oxygen content declined about 23% from the hydrophilic end to the 

hydrophobic end. The PDMS surface gradients were prone to hydrophobic recovery and this was 

circumvented by immersing the gradient substrates in water that preserved the gradient chemistry 

for more than a week. 

 

Morphological response of two cell types, mouse embryonic fibroblasts and human endothelial 

cells, were investigated on surface chemistry gradients using automated high throughput imaging 

and data extraction. Overall, the cell spreading correlated strongly with hydrophobicity of the 

substrate.  This cell response, in turn was mediated by the changes in adsorbed amount and 

conformational changes in fibronectin to the variations in surface chemistries of gradient substrate. 

There was a 127% (2.3 fold) increase in cell spreading for fibroblasts on PDMS gradients in 

contrast to a 76% (1.8 fold) increase on glass gradients. In turn, the HUVECs showed a higher 
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193% (2.9 fold) increase in spreading area for gradients on PDMS compared to a smaller 42% (1.4 

fold) increase on glass gradients. Also, in the case of both cells, spreading on hydrophilic glass 

was significantly higher than on hydrophilic PDMS. This suggests the importance of the matrix 

stiffness which presents a different dimension in addition to the surface chemistry gradient. 

Exploring the dynamics of the protein adhesive layer revealed that while the fibronectin density 

correlated with increasing hydrophobicity of matrix surface, there existed a biphasic relation for 

fibronectin conformation with surface chemistry and spreading. The increasing trend of cell 

spreading with hydrophobicity and a sigmoid curve of cell circularity on the PDMS surface 

chemistry gradients demonstrated the potential for identifying dominant patterns of cell behavior 

over wide range of surface properties. 

 

A 2D combinatorial biomaterial was fabricated with PDMS encompassing a gradient in 

mechanical elastic modulus on one axis and gradient in surface chemistry on the orthogonal axis. 

Within the combinatorial biomaterial (50mm x 50mm), the mechanical stiffness gradient spanned 

a difference in two orders of magnitude in the elastic modulus and ranged from very hydrophilic 

to a hydrophobic surface chemistry gradient along the perpendicular axis. Fibroblasts were 

cultured on fibronectin coated 2D gradient biomaterials to study the synergistic influence of a 

range of mechanical and biochemical cue combinations. Automated data extraction from a custom 

made microscopic imaging macro for the 2D gradient material aided in generating a phase map of 

cell response based on the position on the 2D gradient. Cells showed a varied response to the 

presented combination of matrix properties indicating that both mechanics and chemistry 

influenced in cell morphology; specifically the potential for identifying thresholds of synergy was 
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confirmed by the observations of maximum spreading on regions that were highly hydrophobic 

and with intermediate stiffness.  

 

The combinatorial materials platform developed in this project is flexible so that it is easily 

modified for specific applications. For example, our lab plans to use this technology for 

cardiovascular applications such as screening mechanotransduction events which could lead to the 

development of biomaterials for improved endothelialization. Of particular interest is the influence 

of cell-matrix adhesion on cell-cell adhesion and signaling that occurs within endothelial layers. 

This could be studied by screening variations in expression of vascular endothelial (VE) cadherin 

connections between endothelial cells on 2D combinatorial gradient. The independent and 

synergistic influence of mechanical and chemical cues on cells may also be dissected by 

conducting experiments separately on 1D and 2D gradients. Another extension of this study could 

include conducting dynamic endothelial culture assays using a parallel plate chamber.  

 

The roles of wide variations in matrix properties that take place in pathogenesis conditions may 

also be studied. For example, normal endothelial cells and diseased endothelial cells may be 

exposed to proinflammatory chemokines and/or anti-inflammatory factors like vasodilators in the 

culture medium and their respective responses can be investigated as a function of the underlying 

matrix properties. Similarly, experimental conditions could be adjusted to observe the transition 

of cancer cells to the more aggressive metastatic state in the so-called epithelial to mesenchymal 

transition.  
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From the gradient fabrication point of view, the range of stiffness in a mechanical gradient maybe 

changed by altering the boundaries. For instance if a ‘hot spot’ were found at the softer end, new 

mechanical gradients may be attained  with ‘stiff’ end having a 2% weight crosslinker and ‘soft’ 

end having a 1.43% weight crosslinker. Gradients in peptides density or growth factors may also 

be generated by the UVO exposure method instead of the surface chemistry gradients.  

 

In conclusion, we successfully fabricated 1D and 2D gradient biomaterials having a wide range of 

physiologically relevant mechanical stiffness and/or surface chemistries using PDMS and 

spatiotemporal surface modification. Cell response on these gradients materials were conducted 

with a systematic and high throughput approach, with custom macros and automation procedures 

that were developed to analyze the information rich acquired data. Finally, this approach enabled 

us to identify variations, patterns and thresholds in cell response that may provide guiding 

principles for developing biomaterial design criteria for specific biomedical engineering 

applications. 
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