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ABSTRACT 

 

The protein folding problem involves understanding how the tertiary structure of a 

protein is related to its primary structure. Hence, understanding the thermodynamics associated 

with the rate-limiting steps for the formation of the earliest events in folding is most crucial to 

understanding how proteins adopt native secondary and tertiary structures. In order to elucidate 

the mechanism and pattern of protein folding, an extensively studied protein, Cytochrome-c 

(Cc), was chosen as a folding system to obtain detailed time-resolved thermodynamic profiles for 

the earliest events in the protein folding process. Cytochrome-c is an ideal system for 

understanding the folding process for several reasons. One being that the system can unfold and 

refold reversibly without the loss of the covalently attached heme group. A number of studies 

have shown that under denaturing conditions, ferrous Cc (Fe
2+

Cc) heme group in the presence of 

carbon monoxide (CO) results in a disruption of the axial heme Methionine-80 (Met80) bond 

ultimately unfolding the protein. CO-photolysis of this ferrous species results in the formation of 

a transient unfolded protein that is poised in a non-equilibrium state with the equilibrium state 

being that of the native folded Fe
2+

Cc complex. This allows for the refolding reaction of the 

protein to be photo-initiated and monitor on ns - ms timescales. While CO cannot bind to the 

ferric form, nitrogen monoxide (NO) photo-release has been developed to photo-trigger ferric 

Cc (Fe
3+

Cc) unfolding under denaturing conditions. Photo-dissociation of NO leaves the 

Fe
3+

complex in a conformational state that favors unfolding thus allowing the early unfolding 

events of Fe
3+

Cc to be probed. Overall the results presented here involve the use of the ligands 

CO and NO along with photoacoustic calorimetry (PAC) to photo-trigger the folding/unfolding 

xii 
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reaction of Cc (and modified Cc). Thus, obtaining enthalpy and molar volume changes directly 

associated with the initial folding/unfolding events occurring in the reaction pathways of both 

Fe
2+

 and Fe
3+

Cc systems that are most essential to understanding the driving forces involved in 

forming the tertiary native conformation. The PAC data shows that folding of proteins results 

from a hierarchy of events that potentially includes the formation of secondary structures, 

hydrophobic collapse, and/or reorganization of the tertiary complex occurring over ~ns – tens of 

s time ranges. In addition, the PAC kinetic fits presented in this work is the first to report Cc 

folding exhibiting heterogeneous kinetics (in some cases) by utilizing a stretched exponential 

decay function. 

xiii 
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CHAPTER 1: INTRODUCTION 

1.1 The Protein Folding Problem 

In general, protein folding is defined as a process through which a protein assumes its 

native conformation. The structural descriptions of proteins are traditionally described in terms 

of four levels of protein structure: primary (1), secondary (2), tertiary (3), and quaternary (4) 

(Figure 1.1). The 1 structure is the amino acid sequence while the 2 structure is the local spatial 

arrangement of a polypeptide organized into regular structure elements such as  helices,  

sheets, loops, turns and coils. The 3 structure is the 3-D arrangement of the 2 structure and, 

finally, the 4 structure involves the assembly of its subunits. While it is clear that that the amino 

acid sequence has all the essential information for a protein to achieve its native conformation, 

the way in which such information is encoded to the protein is not fully understood. Hence, the 

protein folding problem is in understanding how the 3 structure of a protein is related to its 1 

structure (see Figure 1.1).  

Questions that remain unclear and may enhance our understanding of the protein folding 

problem would include: in what order do the structural motifs form? What are the kinetic barriers 

that set the rate in which the motifs are formed? What are the energetics associated with those 

barriers? Does the 3 structure fold prior to complete formation of the 2 structure or does the 2 

structure template the 3 structure, how does a random coil form a compact 3 structure in which 

performs its physiological function?
[1,2] 

Each question is equally significant in addressing the 

protein folding problem and most likely the answers differ from one protein to another. None the 
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less, one thing to note from different protein systems is that it is the initial events that drive the 

folding of the protein to its native conformation. While this exact folding mechanism is not 

known, the rates of formation associated with the hierarchy of protein folding are, to some 

extent, resolved. Specifically, the formation of 2 structures are associated with the fastest 

folding events occurring on nanoseconds – microsecond (ns – s) timescales
[3.4]

 and depending 

on the conditions and size of the protein, the tertiary structure can fold to its native conformation 

on timescales ranging milliseconds – seconds (ms – sec) (Figure 1.1). Since the initial events are 

a key component in resolving the protein folding problem, it is necessary to be able to examine 

these events on sub-s timescales while obtaining thermodynamic information that corresponds 

to each kinetic event.  

 

Figure 1.1: General Levels of Protein Structures and the Protein Folding Problem scheme 

(Protein structures: PBD 10EL, 1PRB, and 1C52). 
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1.2 Protein Misfolding/Errors and Biological Relevance 

Proteins perform their physiological function only when in their correct native structure 

(most thermodynamically stable conformation). However, a key event associated with protein 

folding that has increased interest in research is proteins mis-folding. Such errors in protein 

folding have been linked to a number of human diseases such as: Alzheimer’s, some forms of 

cancer, and other degenerative diseases (Table 1.1).
[5]

 To understand the cause of such diseases 

as well as potentially develop advance therapeutic agents, a molecular level understanding of the 

mechanism of protein folding into its physiological conformation is of utmost importance. In 

particular, Alzheimer’s disease will kill ~100,000 Americans a year, and cost society billions to 

care for its patients.
[6]

 One pathway to Alzheimer’s disease is the excessive build-up of a protein 

known as -amyloid.
[7]

 Accumulation of the protein on human neural tissue forms deposits 

(neuritic plaques), eventually causing the formation of fibrils. This build up is believed to be 

toxic 
[8]

 and ultimately interferes with the functioning of the brain. Consequently, it is the folding 

preceding the accumulation of the -amyloid aggregates that inhibits certain enzyme functions 

that affects the brain.
[9]

 Hence, it is extremely important to have a detailed understanding of the 

folding process, as results from protein folding studies will have a long term impact that could 

lead to treatments for diseases caused by inhibited pathways.  
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Table 1.1: Examples of Diseases linked to abnormalities in protein folding 

Diseases Affected Protein Mechanism 

Alzheimer’s Disease -Amyloid peptide Misfold -amyloid peptide 
accumulates in human neural 

tissue, forming deposits know 
an neuritic plaques 

Cancer P53 Prevents cells with damage 

DNA from dividing. One class 
of p53 mutation leads to 

misfolding 

Cystic Fibrosis CFTR 

(Cystic-Fibrosis 

transmembrane conductance 

regulator) 

Folding intermediates of 

mutant CFTR forms don’t 
dissociate freely from 

Chaperones, preventing the 

CFTR from reaching its 
destination in the membrane 

Hereditary Emphysema 1-Antitrypsin Mutated forms of this protein 

folds slowly, allowing its 

target, Clastase, to destroy 
lung tissue 

*Table adapted from Reference 5. 

 

1.3 Paradigms of Folding 

 The simplest way in which to think about how a protein fold into its native conformation 

was first described by Levinthal.
[10] 

This description involves a peptide sampling every possible 

amino acid contact until a native contact is made and continues to search its conformational 

space until the native protein is formed.
[10-12] 

For example, a small protein composed of 130 

amino acid residues that has 10 conformations per side chain can fold 10
130 

times.
[10-12] 

However, 

in order to sample each conformation, even in femtoseconds (fs), would take thousands of years. 

Since a protein folds on the order of seconds, it is clear that the folding process must fold by 

some ordered pathway. Two paradigms have been advance to describe possible pathways for 

protein folding known as the multi-state folding model and energy landscape model.  

The multi-state folding model assumes to be a homogenous population of unfolded 

protein molecules that have a short lifetime with the relaxation occurring as a uni-molecular 
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process (A  B, 
    

  
  -k[A]).

[13-16]
 The model suggest that the unfolded protein population 

proceeds through a specific pathway accumulating distinguishable folding intermediates that 

ultimately crosses over activation barriers, leading to the folded native conformation (Figure 

1.2). 
[13-16]

  

 In contrast, the energy landscape model assumes that the unfolded protein begins with an 

ensemble of unfolded conformations that are high in energy relative to the native structure.
[4]

 

Thus, folding is assumed to be a many-state kinetic process (
   

  
            Pb 

            Pa, with Pa and Pb being fractions of protein in a conformational state “a or 

b”).
[17]

 The model suggest that the protein does not follow a specific folding path through the 

configurational space, but instead, may travel through a number of pathways taking on various 

partially folded structures that form down the free energy landscape to its native conformation 

(that is lowest in energy).
[18]

 Specifically, the (heterogeneous) unfolded population is rapidly 

interconverting between conformations as the funnel is going down a smooth energetic pathway 

unless trapped in a non-native energy well creating an irreversible trap.
[19,20]

 This is interpreted 

as being a “frustrated pathway” creating a “rough” energy landscape. As the unfolded molecule 

makes a native contact the system reduces in energy as well as in the number of accessible 

conformations until it reaches a single low energy, native conformation (Figure 1.2). However, 

the debate within each model is if the nature of the protein folding pathway best described as a 

well-defined pathway with sequential intermediates or does folding follow multiple pathways 

without passing through a unique transition state.
[3]
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Figure 1.2: Protein Folding Paradigms. 

 

1.4 Experimental Studies Triggering the Fast Folding/Unfolding of Small Peptide/Protein 

Systems Coupled with Time-Resolved Photo-thermal Methods  

 The early events of protein folding are a crucial part of the folding pathway, yet our 

understanding towards the process remains very limited.
[4]

 This is due to experimental 

limitations such as limited time windows of traditional methods (i.e. stopped-flow, etc.).
[21,22] 

Information such as the thermodynamics of the initial events would assist in completing an entire 

picture of the protein folding process. Specifically, the energetics associated with the steps 

leading to the native structure is critical, as energetic pathways ultimately drive the folding 

process.
[4]

  

 To date, there is an extensive database of folding systems that have been used to describe 

the mechanism of protein folding. A number of these studies started with simple peptide folding 

systems as a model in order to understand the folding of more complex systems. In addition, this 

kinetic data is available for small peptides and proteins folding into 2 structures and, more 

recently, corresponding thermodynamic data for such processes. This is due to the recent 

advances in photo-thermal methods including photoacoustic calorimetry (PAC). One of the 
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advantages of using PAC is the fact that triggering the reaction with light allows for the 

resolution of the earliest folding process in time (on ns to 10’s of µs timescales). A second 

advantage is that PAC has the ability to accurately measure direct enthalpy and molar volume 

changes for reactions, which are important thermodynamic parameters. A third advantage of 

PAC is that it allows for the detection of optically silent conformational changes and, finally, 

structural information on molar volume changes, enthalpy, and kinetics of protein 

folding/unfolding can be obtained in a single experiment. The enthalpy constitutes the heat 

component of the free energy whereas molar volume changes describe changes in solvation, and 

protein:solvent interaction. Thus, coupling PAC together with fast triggering techniques (i.e. pH 

jump and “caged” photo-cleavable groups) has been successful in elucidating energetics 

involved with the folding mechanism of systems examined.  

 

1.4.1 Poly-L-Glutamic Acid and Apomyoglobin Fast Folding 

 An example of a fast triggering method used in conjunction with photo-thermal techniques 

is the laser induced pH jump unfolding/folding reaction of two previously studied systems 

conducted by Abbruzzetti et al: horse heart apomyoglobin (apoMb) and Poly-L-glutamic acid 

(PLG).
 [23,24]

   

 In the case of PLG (82 Glu residues), the system is known to change its structure from a 

random coil to a -helix as the pH decreases from pH ~7 to <5.
[24-26]

 Abbruzzetti et al.
[24]

 took 

advantage of this by utilizing PAC together with laser induced pH jump to probe the kinetics and 

thermodynamics of the coil-to-helix transition. Briefly, the proton concentration is rapidly 

increased using a ns UV laser pulse to photolyze o-nitrobenzaldehyde (oNBA, caged proton).
[24]

 

Photolysis of oNBA is irreversible and the magnitude of the pH jump depends on the pre-pulse 
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pH. The protons released (within ~10 ns) react with proton acceptors through diffusion mediated 

processes.
[24]

 Due to the large excess of acceptors, the pH returns to the pre-pulse value before 

the next laser flash
[24]

 and the refolding events of the system is monitored using PAC (see Figure 

1.3). The data obtained indicated that at a pH near the pKa of PLG (5.4), protonation of the Glu 

side chains was followed by a kinetic process of ~100 ns.
[24]

 The ~100 ns process was not 

thermally activated and was suggested to be the result of local hydrogen bond formation near the 

site of protonation. This kinetic phase resulted in a change in enthalpy (H) ~ –1.5 kcal mol
-1

 

and activation energy (Ea) = 1.6 kcal mol
-1

. In addition, a molar volume change (V) of ~7 mL 

mol
-1

 was observed that was suggested to be inconsistent with the formation of hydrogen bonds 

only.
[24]

 The authors concluded that additional local -helical structures formed that were rate-

limiting in the formation of -helical PLG.  

 

Figure 1.3: Schematic representation for laser induced jump of -helical PLG (*Similar figure 

can be found in Reference 27). 

 

The second system, apoMb, is a heme free form of the small oxygen binding naturally 

occurring protein, Myoglobin (Mb). Native Mb contains eight  helices designated as A-H that 

form a hydrophobic pocket around the heme.
[23]

 Removal of the heme group from Mb results in a 

peptide retaining most of the structural topology as the native form including a compact 

hydrophobic core and helices A, B, E, G and H (designated native (N) state for apoMb) (see 

Figure 1.4).
[23]

 At pH 4 and 3 apoMb is described as a molten globule (MG) conformation 
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(referred to intermediate (I) and (E) state, respectively) and at an even lower pH (<3) is 

characterized as being consistent with a random coil conformation (unfolded (U) state).
[23]

 Thus, 

apoMb represents a versatile protein folding system in which to study the mechanism and 

kinetics of folding through well-defined (folding) intermediates. Abbruzzetti et al. utilized laser 

induced pH jump techniques together with PAC to probe the N  I unfolding transition. In this 

experiment, the rapid acidification upon photolysis of oNBA resulted in a shift of the equilibrium 

towards the I state and allowed for the kinetic and thermodynamic parameters for the unfolding 

reaction to be obtained. Upon photolysis two kinetic reactions were observed. The first process 

occurred with a lifetime of ~100 ns and was accompanied by a V of –82 mL mol
-1

 and an H 

of 8 kcal mol
-1

 that was attributed to protonation of His24 and/or His119.
[23]

 The second process 

was attributed to neutralization of carboxylic acid residues occurring with a lifetime of ~2.4 s 

but was accompanied by an volume expansion of 3.4 mL mol
-1

 and an H of only 2 kcal mol
-

1
.
[23]

 The Ea for the protonation of His24/119 and the -carboxylates was 16 kcal mol
-1

 and 9 kcal 

mol
-1

, respectively. It was suggested that the high Ea and large volume contraction for the His 

protonation represented the rate-limiting step in the N  I transition.
[23]

  

 A more recent study by the Larsen group
[28]

 utilized PAC as well as PBD to study apoMb 

unfolding (N  I state). The PAC data reveal two kinetic phases. The first phase occurred faster 

than the resolution time of the PAC instrument in that study (<50 ns) with a expansion in V = 

~9 mL mol
-1

 and a heat release (Q) of –24 kcal mol
-1

 (where ∆H = (Eh – Q)/). In addition, a 

slower phase (~600 ns) was resolved with a V and H of –22 mL mol
-1

 and 77 kcal mol
-1

, 

respectively (Ea = 6.2 kcal mol
-1

).
[28]

 The PAC data differ in reference to the results obtained by 

Abbruzzetti et al. The main reason was due to Abbruzzetti et al.
[23]

 utilized guanidine 

hydrochloride (GdnHCl) to destabilize the N conformation, whereas Larsen et al. did not use 
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chemical denaturants. Hence, in the absence of denaturants the fast phase involved ion formation 

and solvation (from o-NBA photolysis) and potentially protonation of protein carboxylic 

acids.
[28]

 The slower phase was suggested to arise from global protein conformational changes. 

In addition, the PBD results showed no conformational changes on longer timescales. Thus, all 

the transitions associated with the N  I transition in apoMb appear to be complete in <10 

ms.
[28]

 

 

Figure 1.4: Structure of horse heart ApoMb (PBD 1AZ1) with the location of disordered helices 

of “I” state shown as ribbons and the AGH core helices are shown as cartoon. (*Similar Figure 

can be found in Reference 27). 

 

1.4.2 Caged Peptide Fast Folding Systems 

The experiments described above rely on the use of a perturbant  

(pH) to initiate the folding and unfolding process. It is unclear the extent to which the 

folding/unfolding reactions represent physiologically relevant folding processes, which do not 

involve denaturants bound to the protein. An alternative method to initiate protein folding 

(without the use of denaturants) is to use a photo-cleavable protecting groups or a “cage” on a 

specific segment of the protein and/or peptide in such a way that the caged derivative of the 

complex is either folded or unfolded and the photo-product shifts the unfolded/folded 

equilibrium, depending on which way the system is being studied.  
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To date, a number of research groups have explored the use of caged peptides and 

proteins to probe protein folding.
[29-33] 

In these systems, a small synthetic peptide/protein is 

modified using a photo-cleavable group in such a way that the caged system disrupts the native 

conformation and unfolds the complex. Photo-cleavage of the linker (from an unfolded system) 

spontaneously folds into a well-defined 2 or 3 structure.
[29-33]

 Specifically, refolding was 

achieved by cleavage of the “cage” within 10
-9 

s by irridation pulses from a UV laser. Chan’s 

group pioneered the synthesis of several small synthetic peptide systems designed in such a way 

that a portion of the peptide was constrained with a photo-cleavable linker.
[29-33]

 The folding 

systems developed include basic 2 structural motifs found in proteins. Specific systems include 

a modified -helical villin headpiece
[30,31]

 as well as a -sheet model system, 19-merE11C.
[29,31]

 

Both synthetic peptide systems thermodynamics were probed on fast timescales upon photo-

cleavage of the linker utilizing PAC in collaboration with Larsen’s group.  

In the case of the modified villin headpiece, the peptide is best characterized as a three 

helical segment (35 residues) that surrounds a hydrophobic core (see Figure 1.5).
[30,31]

 The 

peptide contains a Met12 that is mutated to a Cys12 in order to covalently link the N-terminus of 

the villin headpiece to the benzoin-based linker (3’, 5’-dimethoxy benzoin).
[30,31]

 The small 

helical segment between the Cys12 and the N-terminus adopts a random coil-like conformation 

in the modified peptide. Photo-cleavage of the linker allowed for kinetics and energetics to be 

probed through PAC. The results from PAC revealed two kinetic phases, one with a rate (<40 ns) 

faster than the resolution time of the PAC instrumentation and the second with a lifetime of ~100 

ns.
[31]

 The first event is associated with photochemistry of the linker with an endothermic H of 

41 kcal mol
-1

 and a V of –2.6 ml mol
-1

.
[31]

 The second event was described as the N-terminal 
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helix of the villin headpiece refolding to its 2 structure yielding a volume expansion of 3.3 ml 

mol
-1

 and an H = –50 kcal mol
-1

 for this process.
[31]

 

 

 

Figure 1.5: Ribbon structure of the F-actin binding villain headpiece (PBD 1VII). 

 

The second synthetic system, 19merEC11, is the -hairpin sequenced 

VFIVDGOTYTCV
D
PGOKILQ.

[29,31]
 In addition, the synthetic peptide is an analogue of a 

Gellman -sheet where the first hairpin turn sequence has been replaced with “VDGO” turn 

sequence.
[29,31]

 The 19merEC11 peptide contains a Glu11 residue that is mutated to Cys11 and 

cyclized with a photo-labile linker, bromoacetyl-carboxymethoxybenzoin (BrAcCMB), on the 

N-terminal of the peptide chain (see Figure 1.6).
[29,31]

 Refolding kinetics and thermodynamics 

were obtained through PAC following photo-cleavage of the linker. The PAC data revealed a 

refolding event with a lifetime of 600 ns following the first kinetic phase that occurred faster 

than the resolution time of the authors PAC instrument (<40 ns).
[29,31]

 The <40 ns phase was 

associated with a volume expansion of ~7 ml mol
-1

 and an corresponding endothermic ∆H of ~50 

kcal mol
-1

, where as the slower process exhibited a volume contraction of –6.3 ml mol
-1

 and an 

exothermic ∆H of –36 kcal mol
-1 

(Ea = -1.8 kcal mol
-1

).
[29,31]

 The fast phase photochemistry 

represented the breakage of the linker and, in addition, initial folding events (potentially the 

nucleation step) occurring within 40 ns. The authors indicated that the 600 ns phase 
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corresponded to the refolding of the peptide in which the volume decrease reflects contraction 

arising from a structural collapse and reburial of hydrophobic residues, and included the turn 

amino acid sequence.
 [29,31] 

  

 

Figure 1.6: Representation of c-19merE11C cyclized with a photo-liable linker (Br-AcCMB) 

and the thio-glutamate residue produced after UV photolysis (*Similar figure can be found in 

Reference 31). 

 

 In principle, it is possible to extend the ‘‘caging’’ strategy to larger protein systems 

beyond just structural motifs using multiple photo-labile linkers suitably placed in the protein 

structure. However, the synthesis is ideal in protein systems consisting of ≤30 amino acid 

residues and becomes more difficult with larger systems. As a result, the larger proteins systems 

becomes challenging to constrain with photo-cleavable protecting groups as well as accurately 

interpret the data from photo-thermal studies. Hence, there is a need to be able to study the 

folding process of more complex and larger systems. 

 

1.4.3 Cytochrome-c Fast Folding 

Photo-triggering the folding of a larger protein system was accomplished by Jones and 

co-workers. The authors utilized the photo-triggerable heme protein, Cytochrome-c (Cc) as a 

model system for folding.
[34]

 Cytochrome-c is a 12 KDa (104 amino acids) heme protein whose 

primary role in aerobic organisms is in the transport of electrons between cytochrome-bc1 to 

cytochrome-oxidase. The heme group of Cc is covalently attached to the polypeptide via two 

Cys thioether linkages and is 6-coordinate low spin with His18/Met80 serving as axial ligands 
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that occupy the heme iron 5
th
 and 6

th
 coordination sites, respectively (Figure 1.7).[35,36]

 The 

protein is known to unfold and refold reversibly while the heme group remains covalently 

attached to the protein and possesses a single Tryptophan residues, hence a spectroscopic probe. 

Therefore, the system is amenable to measurements by a variety of methods allowing for native 

and non-native interactions to be identified along the folding pathway.  

 

 

Figure 1.7: Ribbon Structure of Horse Heart Cytochrome-c (PBD 1HRC) with key residues 

Met80 and His18 around the heme pocket highlighted. 

 

The idea is to utilize CO as a photo-trigger to initiate the relatively fast folding of ferrous 

Cc. Native ferrous Cc (Fe
2+

Cc) does not bind other ligands to the heme group since the heme 

iron is six-coordinate. However, in the presence of a denaturant, the axial heme Met80 bond is 

destabilized and can be displaced by CO leading to the unfolding of the protein (Figure 1.8, top). 

Upon photolysis, a transient species is formed in which the unfolded protein is poised in a non-

equilibrium state with the equilibrium state being that of the native folded Fe
2+

Cc complex
[34]

 

(Figure 1.8, bottom). 

Jones and co-workers demonstrated that in the presence of 4.5 M guanidine 

hydrochloride (GdnHCl) in pH~7 buffer solution, Fe
2+

Cc destabilizes in the presence of CO 
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allowing photo-initiation of the folding process to occur.
[34]

 Using time-resolved optical 

absorption (TROA) and kinetic modeling, the authors concluded that the early events associated 

with Fe
2+

Cc folding were due to the binding of Met80 or 65 and His18 or 33 binding to the heme 

before folding of the 3 structure occurred.
[34]

 In addition, their model suggested that the Met 

ligand coordinates to the heme ten times faster than that of the His ligand contrary to the fact that 

both His residues are positioned closer to the heme.
[34] 

Overall,
 
this study was a major advance 

for initiating the folding process of Fe
2+

Cc folding. In addition, CO photo-initiation method has 

led to a number of Fe
2+

Cc folding studies that have provided information on the kinetics and 

structural assignments associated with the early events occurring in Cc folding process discussed 

below.  

 

Figure 1.8: Schematic of Fe
2+

Cc: (Top) Met80 residue destabilized under denaturing conditions 

and in the presence of CO (Bottom) fast folding using CO a photo-trigger. 
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A study later conducted by Chen and co-workers
[37]

 followed up Jones et al. work using 

near/far UV time-resolved circular dichroism (TRCD) in order to probe the 2 structural changes 

that occurred upon CO photolysis. The data showed that only ~8% of a native-like formation 

took place within ~2 s and was interpreted as the N-/C- terminal helices being formed.
[37]

 This 

native-like formation occurs following a hydrophobic collapse (burst phase) versus being a 

distinctive folding intermediate.
[37,38]

  Kumar et al.
[21]

 termed this collapse phase U*  U’ (a 

phase between U  I of the U  I  N stages of protein folding) but could not directly 

characterized this process due to the event occurring during the dead-time of their 

experimentation. In any case, the authors suggested that this phenomenon proceeds in which the 

protein contracts or expands until it crosses over a rate-limiting barrier in order to attain its native 

conformation.
[21]

 In addition, they were able to contribute additional kinetics that occurred during 

the refolding process of ferrous Cc. Specifically, using stopped-flow and laser flash photolysis (0 

– 4 M GdnHCL, pH ~12.8) Kumar et al. were able to resolve, in time, four processes involving a 

Met80/65 coordination to the heme with a lifetime of (1) 300 ns, a His26/33 coordination with a 

much slower lifetime of (2) 2.5 s, followed by a (3) 700 s phases associated with CO 

rebinding to the heme, and finally a (4) 2.5 ms phase assigned to the protein achieving its native 

conformation (Figure 1.9).
[21]
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Figure 1.9: Generic mechanism for ligand rebinding in Fe
2+

Cc folding (*Similar schematic 

described in Reference 21). 

 

A study conducted by the Terazima group
[39]

 utilized laser-induced transient grating (TG) 

techniques to measure the change in diffusion coefficient (D) for Fe
2+

Cc refolding process (U  

N). Refolding of the system was triggered by photo-injection of electrons from β-nicotinamide 

adenine dinucleotide (NADH) to unfolded ferric Cc (Fe
3+

Cc) in the presence of denaturant 

concentrations ranging from 2.5 M – 4.25 M GdnHCl and temperatures of ~14ºC – ~35ºC.
[39]

 

The protein stability is different in its reduced form versus oxidized form against various 

concentration of GdnHCl. For example, at 3.5 M GdnHCl Fe
2+

Cc is relatively folded versus 

Fe
3+

Cc at this same concentration which resembles more of denatured structure. Thus photo-

injection of the electrons to the unfolded ferric system initiated Fe
2+

Cc folding. The authors 

reported that at 3.5 M GdnHCl D increases with the protein refolding process.
[39-41]

 The increase 

was interpreted as the hydrogen bonding network changing in the protein, including inter-

molecular to intra-molecular bonding, movement of the amino acid residues, and water 

molecules controlling the folding dynamics.
[39-41]

 In addition, the diffusion change was consistent 

with a two-state model over a wide time range (~ms) and what the author considered were from 
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two conformations.
[39-41]

 The two conformations (a local structural change and a global 

conformational change) were proposed to differ in rate constants but have similar transition 

states and activation energies (values not reported) with an m
‡
-value of ~ –1.9

[39]
.  

On the other hand, Choi et al.
[42,43]

 also utilized TG but used CO as a photo-trigger to 

probe Fe
2+

Cc folding in various concentration of denaturant. The TG signals showed changes in 

D supporting Cc folding as a three-state folding mechanism with detectable intermediates instead 

of a two-state mechanism proposed by Terazima’s group
[39]

 (that involved U  N without any 

detectable intermediates). The mechanism involved an initial collapse phase that included CO 

dissociation and Met80 coordination followed by additional folding dynamics of Cc that 

proceeded to the native conformation.  In addition, the authors obtained rates and activation 

energies for the U  I and I  N transition for Cc folding by utilizing quantitative global 

analysis of the TG signals. The U  I transition occurred with a rate of ~290 µs – ~940 µs and 

with an Ea of 8.7 kcal mol
-1

. For the I  N transition, the observed rates were ~10 ms - ~50 ms 

with an Ea of 7.1 kcal mol
-1[42,43]

. 

Up to this point, data that contains mainly the kinetic contributions have been acquired 

for most of the events occurring in the Fe
2+

Cc folding process. However, direct enthalpy and 

molar volume changes associated with the earliest events in folding have not been well 

characterized due to the limitation of the techniques used in those specific studies.
[44-46]  

A significant body of research is also available on the folding of Fe
3+

Cc.
[47-60]

 Overall, 

studies have determined that folding/unfolding in Fe
3+

Cc is guided by a hierarchy of specific 

domains referred to as “foldons”.
[53]

 Foldons are characterized as five folding units in which 

folding of the protein proceeds by a stepwise assembly of these units progressively building the 

native structure. Unfolding of the native structure is achieved in this same way but the units go in 
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opposite direction.
[53]

 In addition, nearly all of the studies on Fe
3+

Cc folding have concluded that 

the system folds to near-native conformation on a timescale on the order of seconds, with bis-His 

coordination being the rate-limiting step. The studies also concluded that reorganization of the 

ferric complex did not bind with either Met ligands (80 or 65) during the initial stages of folding 

(as seen in the ferrous form).
[51] 

The authors suggested that this is likely due to the slow 

dissociation rate of the non-native His (~100 s
-1

) that is trapped into a frustrated folding 

intermediate.
[48]

 Dissociation of His ultimately led to the completion of the folding process to its 

native conformation at a rate of ~10 s
-1

.
[48,52] 

However, information regarding the 

thermodynamics associated with ligand rebinding as well as early events occurring in Fe
3+

Cc 

folding/unfolding process are less well characterized. One main reason is due to methods not yet 

available to initiate Fe
3+

Cc folding on sufficiently fast timescales. 

 

1.5 Dissertation Research/Objectives  

The objective of this dissertation was two-part. The first part of the work presented here, 

utilizes PAC to obtain enthalpy and molar volume changes directly associated with the ferrous 

form of Cc (and modified Fe
2+

Cc) under denaturant conditions that allow refolding of the 

complex subsequent to CO photo-dissociation. The data obtained from these studies have been 

used to construct a detailed thermodynamic profile for the folding pathway and allow for a 

linkage between the energetics and structural assignments of kinetically identifiable intermediate 

states in Fe
2+

Cc (see Figure 1.5).  

The second part of this study focuses on ferric Cc (and modified Fe
3+

Cc) 

unfolding/folding. Here modification of the Jones et al. method was done by using NO as a 

photo-trigger to initiate the unfolding/folding process of the oxidized forms. Direct measurement 
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of the kinetics, enthalpy, and molar volume changes associated with each transition state that 

occur within the response time of the PAC detector (20 ns – 20 s) are probed in order to 

construct a detailed thermodynamic profile for the fast unfolding or folding pathway of Fe
3+

Cc.  

It is the initial folding/unfolding events occurring in the reaction pathways of both Fe
2+

 

and Fe
3+

Cc systems that are most crucial to understanding the driving forces involved in forming 

the 3 native structure in the protein folding process. Hence, the overall results will provide a 

more detail understanding of the energetics involved with the steps leading to the native 

conformation. 
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CHAPTER 2: EXPERIMENTAL METHODOLOGY 

 

2.1 Photo-thermal Methods 

 As previously stated in Chapter 1, PAC is a powerful technique for determining the 

timescales and magnitude of enthalpy and molar volume changes associated with physiological 

events such as the protein folding process. The technique takes advantage of photo-excited 

molecules that results from a transition from the ground electronic state to some higher excited 

state governed by Fermi’s Golden Rule.
[1]

 Following excitation, the molecules may relax via 

radiative decay resulting in emission of a photon, intersystem crossing to an excited triplet state 

or non-radiative resulting in heat deposition to the solvent (see Figure 2.1). In addition, excited 

state molecules may undergo photo-chemical processes that can alter the molecular dimensions 

of molecules (i.e., changes in van der Waals volume), as well as alter the charge distribution 

(electrostatic effects) of the sample in question.
[2,3]

  

 

Figure 2.1: Perrin-Jablonski diagram. 
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2.2 Photoacoustic Calorimetry 

 In this work, PAC is the method utilized for elucidating the fast folding events occurring 

subsequent to CO or NO photo-dissociation in each Cc folding system investigated. The set-up, 

theory and analysis for PAC has been extensively described in detail elsewhere.
[2-22]

 The physical 

principle behind PAC is that the photo-excited molecules dissipate excess energy via vibrational 

relaxation (non-radiatively) to the ground state which is accompanied by thermal heating to the 

surrounding solvent
[5,14,23]

. For solvents such as water, this excess energy causes a rapid volume 

expansion within the illuminated volume resulting in a pressure wave (acoustic wave) which can 

be expressed as: 

 

  P = -kTdV/V        (2.0) 

 

where k is the isothermal bulk modulus, dV is the change in volume subsequent to excitation, 

and V is the unperturbed volume. In addition, volume changes in the system of interest (resulting 

from a photo-initiated reaction) also contribute to the acoustic wave and the overall volume 

change
[5,23] 

(VOverall) is expressed as: 

 

    VOverall = Vth + Vcon           (2.1). 

 

This acoustic wave can be detected with a piezo-electric crystal (2 MHz transducer). The 

resulting acoustic signal can be written as: 

 

S = KEa(Vth + Vcon)                                (2.2) 

 

where K is an instrument response parameter (unique with every experiment), Ea is the number 

of Einsteins absorbed, Vth is the volume change due to thermal expansion, and Vcon is the 



26 

 

change in volume due to ligand binding/release, protein conformational changes, van der Waals 

volumes, electrostatic contributions, etc. The thermal expansion term can be described by: 

 

Vth= Q*(/Cp)                                 (2.3) 

 

where Q is the heat released to the solvent (kcal mol
-1

),  is the thermal expansion coefficient of 

the solvent (K
-1

), Cp is the solvents heat capacity (kcal g
-1

 K
-1

), and  is the solvent density (g 

mL
-1

). In order to determine the Q and associated Vcon for the sample being investigated 

subsequent to excitation, a calorimetric reference was employed. The acoustic wave of the 

reference is measured under identical experimental conditions as the sample to eliminate K. As 

the reference molecules do not undergo any photochemistry and are non-fluorescent (i.e., Vcon = 

0) the energy of the photon absorbed, Eh, is converted into heat with a unity quantum yield (Q = 

Eh).
[5]

 Thus, the amplitude of the PAC reference acoustic wave (R) can be expressed as: 

 

R = KEa (/Cp)Eh                      (2.4) 

 

Taking a ratio of the sample and reference acoustic amplitudes (S/R = ) and scaling to the 

energy of absorbed photon gives:  

  

     (S/R)Eh= Eh= Q + (Vcon)/(Cp/)     (2.5). 

 

Plotting Eh versus Cp/ (temperature dependent for water and weakly buffered solutions) 

gives a line allowing for the determination of Q (intercept) and Vcon (slope). Since Q is the 

amount of heat released to the solvent associated with a reaction step, (Eh – Q)/ = H) for 

reactions taking place within the integrated time (< 20 ns) resolution of the instrument and  is 
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the quantum yield for the photochemical process.  

 

2.2.1 PAC Deconvolution: Homogenous Decay Model      

 The acoustic transducer is also sensitive to the frequency of the acoustic signal. Hence, if 

a photo-initiated process has multiple kinetic events occurring slower than the response time of 

the piezoelectric crystal (between ~20 ns - ~20 s), the resulting sample acoustic wave is shifted 

in frequency relative to the reference waveform (See in Chapter 3). Thus, the observed acoustic 

signal is composed of a series of acoustic signals each having a distinct amplitude and lifetime. 

This is due to the fact that the observed acoustic signals are a convolution of the instrument 

response function (an under damped oscillator) and exponential heat decay functions. The 

individual contributions of Vcon and Q for each step can be resolved using deconvolution 

methods. In order to extract the relevant Qi, Vcon,i , rate constants (ki) corresponding to the 

observed kinetic processes, the sample acoustic wave, E(t)obs, is treated as a convolution of an 

instrument response function, T(t), and time-dependent heat generating function, H(t), according 

to 

                                  E(t)obs=H(t)T(t)                          (2.6) 

 

where 

                                H(t)=(iti)exp(-t/ti)                        (2.7). 

 

In practice, the instrument response function T(t) is taken to be the calorimetric reference 

waveform. The amplitudes, i, and lifetimes, i, of the resolvable kinetic processes are extracted 

using a simplex parameter estimation algorithm within software developed in our laboratory 

(LarsenWare2009V1). Subtracting Qp (obtained from the <20 ns phase) from Eh and scaling to 
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the reaction quantum yield () gives the reaction enthalpy (HP) for the initial (prompt) phase of 

the reaction while Qi = – Hi for each additional step resolved in the deconvolution. The 

corresponding Vcon values are obtained from the slopes of the plots described in Equation 2.5 

(with Vcon for the prompt phase being the slope/).  

 In nearly all PAC applications reported in the literature, the exponential decay model is 

applied to the heat source function. The heat release is assumed to be a uni-molecular process 

and give rise to homogenous relaxation (chemical processes that are separated by energy barriers 

well above kbT, (i.e. uni-molecular or pseudo-first order processes)). 

 

2.2.2 PAC Deconvolution: Heterogeneous Decay Model 

 Many biological processes (i.e., protein folding) may display heterogeneous kinetics and, 

therefore, cannot be expressed as a single exponential decay model. In this case, the system has 

low energy barriers (similar to or just below kbT) between energetic states that give rise to an 

ensemble of species or rapidly interconverting states that lead to a heterogeneous population
[24]

 

(i.e. energy landscape model)).  

 A different approach for modeling kinetic events occurring slower than the resolution time 

of the piezoelectric crystal (between 20 ns - 20 s) is that deconvolution is treated as a 

probability lifetime distribution convoluted with the instrument response function T(t), with the 

lifetime distribution being:  

 

                                  P(t) = Aexp[-(t/)
β
]                          (2.8) 

 

where 

                             A = t
-1

(i/ti)

                              (2.9) 


