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ABSTRACT 

 

In order to cope with system complexity and dynamic environments, modern industries 

are investing in a variety of sensor networks and data acquisition systems to increase information 

visibility. Multi-sensor systems bring the proliferation of high-dimensional functional Big Data 

that capture rich information on the evolving dynamics of natural and engineered processes. 

With spatially and temporally dense data readily available, there is an urgent need to develop 

advanced methodologies and associated tools that will enable and assist (i) the handling of the 

big data communicated by the contemporary complex systems, (ii) the extraction and 

identification of pertinent knowledge about the environmental and operational dynamics driving 

these systems, and (iii) the exploitation of the acquired knowledge for more enhanced design, 

analysis, monitoring, diagnostics and control. 

My methodological and theoretical research as well as a considerable portion of my 

applied and collaborative work in this dissertation aims at addressing high-dimensional 

functional big data communicated by the systems. An innovative contribution of my work is the 

establishment of a series of systematic methodologies to investigate the complex system 

informatics including multi-dimensional modeling, feature extraction and selection, model-based 

monitoring and root cause diagnostics.  

This study presents systematic methodologies to investigate spatiotemporal informatics 

of complex systems from multi-dimensional modeling and feature extraction to model-driven 

monitoring, fault identification and root cause diagnostics. In particular, we developed a 



ix 

 

multiscale adaptive basis function model to represent and characterize the high-dimensional 

nonlinear functional profiles, thereby reducing the large amount of data to a parsimonious set of 

variables (i.e., model parameters) while preserving the information. Furthermore, the complex 

interdependence structure among variables is identified by a novel self-organizing network 

algorithm, in which the homogeneous variables are clustered into sub-network communities.  

Then we minimize the redundancy of variables in each cluster and integrate the new set of 

clustered variables with predictive models to identify a sparse set of sensitive variables for 

process monitoring and fault diagnostics. We evaluated and validated our methodologies using 

real-world case studies that extract parameters from representation models of vectorcardiogram 

(VCG) signals for the diagnosis of myocardial infarctions. The proposed systematic 

methodologies are generally applicable for modeling, monitoring and diagnosis in many 

disciplines that involve a large number of highly-redundant variables extracted from the big data. 

The self-organizing approach was also innovatively developed to derive the steady 

geometric structure of a network from the recurrence-based adjacency matrix. As such, novel 

network-theoretic measures can be achieved based on actual node-to-node distances in the 

self-organized network topology.



 

1 

CHAPTER 1: INTRODUCTION AND BACKGROUND 

 

Rapid advancement of sensing and information technology brings the spatially and 

temporally big data. Facing the massive data and spatiotemporal signals (usually nonlinear and 

nonstationary), there is a pressing need to develop advanced methodologies that will enable and 

assist (i) the modeling and characterization of the big data communicated by the complex 

systems, (ii) the extraction and identification of pertinent knowledge about the environmental 

and operational dynamics driving these systems, and (iii) the exploitation of the acquired 

knowledge for more enhanced monitoring, diagnosis, and control of them. However, addressing 

this need is very challenging because of a collection of factors, which include the inherent 

complexity of the system and the uncertainty associated with the system’s operation and its 

environment, the high dimensionality of the data communicated by the system, and the 

increasing expectations and requirements posed by real-time decision-making. 

The objective of this dissertation is to develop a series of systematic methods to 

investigate the complex system informatics with respect to high-dimensional modeling, pertinent 

knowledge discovery, system diagnostics, performance monitoring and control. 

1.1 Motivation and Needs 

With the rapid advances in sensor technology and data acquisition systems, multichannel 

sensing is capable of providing us with comprehensive information about complex systems. The 

all-round sensing and high-powered computing lead to a spatially and temporally data-rich 

environment. Facing the massive data and spatiotemporal signals (usually nonlinear and 
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nonstationary), there are urgent needs to efficiently handle big data and systematically 

investigate the complex systems, including signal representation and characterization, 

informative feature selection, performance monitoring and root cause analysis.  An effective 

data dimensionality reduction is critical to handle massive data. A sparse representation model 

with significant accuracy characterizes both spatial and temporal behaviors of spatiotemporal 

systems. The characteristics of multichannel sensory signals are depictured by the features 

extracted from the sparse representation model. An effective feature selection method optimally 

selects informative features for optimal decision-making. An integrative monitoring for 

spatiotemporal system identifies the change points of the complex system and the out-of-control 

states.  The root-cause analysis detects the physical or environmental variation that leads to the 

out-of-control states. A series of systematic methods are in need to address these issues. 

1.2 Multichannel Sensing of Spatiotemporal Dynamics 

A multichannel sensing, with sensors distributed at different positions on the complex 

system, can facilitate the all-round data collection and comprehensive investigation of complex 

system. Multichannel sensing is widely used in meteorology, oceanography, geology, physiology 

and manufacturing systems. For example, the sensing system of forging process in Fig. 1a 

contains four strain gage sensors located spatially to measure the forces at different parts on the 

machine. The sensing signals provide rich information about the product quality and process 

condition. Fig. 1b shows a patient connected to the 10 electrodes necessary for a 12-lead 

Electrocardiography (ECG) system, which observes the heart from 12 different angles. It is 

widely used for the diagnosis of cardiovascular diseases in the clinical practice. The differences 

among the characteristics of the signals from a variety of sensors show the spatial diversity of the 

system. The changes along the time in each signal from one sensor explain the temporal 
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variation. Only the integrative study of both spatial and temporal behaviors will discover the 

underlying system mechanisms.  

 

                 (a) Forging Process            (b) 12-lead ECG 

Figure 1 Examples of spatiotemporal sensing. 

1.3 Research Background and Challenges 

The research on spatiotemporal sensing and complex system informatics are challenging 

due to a variety of environmental and operational dynamics including the nonlinear and 

nonstationary systems, high-dimensional representation, complex interdependence structure 

among the extracted features. 

1.3.1 Nonlinear and Nonstationary Systems 

The previous methods that were used in various fields of data analysis simply assumed 

the linearity and stationarity of the underlying processes. It is now extensively accepted that the 

complex physical systems often have nonlinear and nonstationary properties as follows: 

1) Nonlinearity: In mathematics, a nonlinear system is one that does not satisfy the 

superposition principle, or one whose output is not directly proportional to its input. Most 



 

4 

physical systems are inherently nonlinear in nature, which makes the systems different to 

represent and analyze. This is because the parameter estimation and model inference are 

somewhat more involved for nonlinear systems than they are in the linear cases. For 

example, when the model of least squares is applied to a nonlinear system, the resulting 

normal equations are nonlinear and often difficult to solve [1]. The usual approach is to 

directly minimize the residual sum of squares by an iterative procedure. Furthermore, the 

normal-theory inference used in the linear system does not apply exactly to nonlinear 

systems. Instead, inference based on asymptotic or large-sample theory must be 

employed to address this issue. 

2) Nonstationarity: Besides the nonlinearity, the nonstationarity is another challenge in 

data analysis because the nonstationarity of the complex systems means that the system 

varies from time periods to time periods. The typical statistical methods require 

stationarity. For example, in the theory of statistics expectation values are defined 

through ensemble averages and for a stationary process the ergodic theorem enables one 

to replace an ensemble average by a time average [2]. However, in a nonstationary 

process, the average of two time scales fails to find the mean value and bring the loss of 

precise meanings. To explicitly represent and characterize the complex systems with both 

nonlinear and nonstationary properties is a challenging and necessary. 

1.3.2 Sparse Representation of Spatiotemporal Profiles 

In various scientific fields, the analysis of spatiotemporal patterns emerging from 

complex systems plays an important role. An investigation of multidimensional data allows us to 

learn more about the internal dynamics of the system. An effective representation model of the 

spatiotemporal signals is a general and crucial issue in the investigation. Depending on the 
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intended use, in the previous researches the spatiotemporal signals were transformed to other 

domains for analysis, i.e., time domain, frequency domain, time-frequency domain and state 

space domain. This transformation often brings the information loss, i.e., the projection of 

spatiotemporal signals onto 1-dimensional time domain will diminish the spatial information. 

The representations using these methods often suffered from the incompactness because they are 

not adaptive. The representation methods are not designed smartly with respect to the 

characteristics of the spatiotemporal signals. A systematic method for sparse and effective 

representation of spatiotemporal signals is not presented in the literature. 

The previous methods have the drawback in the following aspects: (i) The representations 

are not compact; (ii) The representations are not adaptive and (iii) The methods transform the 

spatiotemporal signals into a specific domain and may cause important information loss. 

1.3.3 Feature Redundancy and Irrelevancy 

The principle of parsimony requires the simplest models with a satisfied accuracy. In the 

analysis of a complex system, a variety of features can be extracted from the system itself or 

descriptive models or analytical models. The extracted feature sets are often suffered from the 

redundant features and some of the features are irrelevancy with respect to system performance. 

1) Feature Redundancy: Redundant features are those which provide no more information 

than the currently selected features. Fig. 2a shows the redundancy between two features. 

It is noted that the two features are highly correlated. Therefore, one of them should be 

excluded from the mathematical model that characterizes the system.  

2) Feature Irrelevancy: Irrelevant features provide no useful information in any context, 

i.e., describing the system performance, classifying two categories or predicting the 
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output. Fig. 2b shows the irrelevant feature with respect to the model performance. It is 

seen from the figures that the change of input2 does not affect the target value.  

Thus in the descriptive models or the analytical models, input2 should be excluded to 

satisfy the principle of parsimony. In the literature, the maximum relevancy and minimum 

redundancy method is proposed. However, a systematic method to efficiently eliminate the 

feature redundancy and irrelevancy for multichannel signals at both sensor level and individual 

feature level is not found. 

 

Figure 2 Examples of (a) feature redundancy and (b) feature irrelevancy. 

1.3.4 Feature Selection 

The motivation of informative feature selection is the feature redundancy and irrelevancy 

as described in section 1.3.3. The feature selection in the literature was often investigated using 

regression and classification models, because the incorrect inclusion of unimportant variables in 

the model may seriously affect the prediction accuracy of the models. Moreover, the importance 

of a feature can be reflected by the magnitude of the coefficient for it. From the viewpoint of 

regression and classification models, a parsimonious one is preferred and thus the number of 

(a)  (b)  
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importance features is small. A general regression model with the group variable structure is 

presented as follows: 

𝑦𝑖 = 𝛽0 + ∑ ∑ 𝛽𝑘𝑗𝑥𝑖,𝑘𝑗
𝑝𝑘
𝑗=1

𝐾
𝑘=1 + 𝜀𝑖                         (1) 

where yi denotes the response variable, xi,kj is predictor j (j = 1,… , pk), belonging to group k 

(k = 1, … , K), β0 and βkj are the corresponding model parameters, εi is the random error and 

index i (i = 1,… , n) indicates the sample number. The general regularization method for 

estimation the parameters of model (1) can be written as: 

min𝛽0,𝛽𝑘𝑗
𝑎 ∑ (𝑦𝑖 − 𝛽0 − ∑ ∑ 𝛽𝑘𝑗𝑥𝑖,𝑘𝑗

𝑝𝑘
𝑗=1

𝐾
𝑘=1 )2𝑛

𝑖=1 + 𝑏𝐽(𝛽𝑘𝑗)            (2) 

where J(βkj) is penalty function, a and b are the tuning parameters. a is the significance 

assigned to the model performance on representing the response variable and 𝑏  is the 

significance assigned to the penalty function for adjustment. 

In the literature, different types of penalty function and values of a and b were used to 

generate different models. For example, Yuan and Lin [3] extended the regular lasso and 

developed the group lasso by using an L2-norm penalty in the form of J(βkj) = ∑ ‖βk‖
K
k=1  with 

the ‖βk‖ = √∑ βkj
2pk

j=1 . Zhao et al. [4] proposed an alternative method using an L∞-norm 

penalty, i.e., J(βkj) = ∑ ‖βk‖
K
k=1 ∞ with ‖βk‖∞= maxj{|βkj|}. The unimportant feature group 

can be removed from the model by choosing appropriate tuning parameters. Yuan and Lin [5] 

developed group non-negative garrote (GNNG) method for group variable selection. In their 

model, the predictors are transformed such that ∑ xi,kj
n
i=1 = 0  and ∑ xi,kj

2n
i=1 = 1  and the 

response variable is centered such that ∑ yi
n
i=1 = 0. When the non-negative shrinking factor is dk 

introduced for group k, the coefficients βkj =  dkβkj
olŝ, where βkj

olŝ is the ordinary least square 

estimate of βkj. In the GNNG model, the following penalized least square criterion is used: 
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min 𝑑𝑘
𝑎 ‖𝒚 − ∑ 𝑿𝑘𝜷𝑘

𝑜𝑑�̂�𝑑𝑘
𝐾
𝑘=1 ‖

2

+ 𝑏 ∑ 𝑑𝑘
𝐾
𝑘=1 , 

𝑠. 𝑡.    𝑑𝑘 ≥ 0, 𝑘 = 1,2, … , 𝐾                 

(3) 

where y is the vector of the observed response variable, Xk is the matrix of the predictor 

variables for group k, βk
odŝ is the vector of estimated coefficients using the ordinary least 

square method corresponding to group k, a and b are tuning parameters. 

The above models were developed to select the important groups. Another important task 

is to select the important features at individual level in the selected groups, because the 

unimportant features in the selected group may affect both prediction performances and model 

parsimony if all the features in the selected groups are used. To address this issue, Huang et al. 

[6] and Zhou and Zhu [7] proposed the group bridge and hierarchical lasso by using the 

following penalty: ∑ ‖βk‖
K
k=1 1 with ‖βk‖1 = √∑ |βkj|

pk
j=1 . Paynabar et al. [8] proposed the 

hierarchical non-negative garrote (HNNG) based on the GNNG to first select the important 

groups and then select the significant individual features. In the group level, the method is the 

same as GNNG in equation (3). In the individual level, the following criterion is defined: 

min𝒅 𝑎‖𝒚 − �̃�(𝜷�̂� ∙ 𝒅)‖
2
+ 𝑏1‖𝒅‖1 + 𝑏2‖𝒅‖2, 

𝑠. 𝑡.    𝒅 ≥ 𝟎              

(4) 

where βr̂ is the vector of ridge estimates calculated by (X̃TX̃ + Ib2)
−1X̃Ty, X̃ is the matrix of 

all predictors whose groups are identified as important in the group level, d is the vector of 

shrinking factors of individual features and the operator ∙ represents the element-wise vector 

product. The vector of coefficients of all individual features β can be calculated by β = (βr̂ ∙

d). Paynabar compared his methods with the previous methods by extensive study and show the 

priority of his method. 
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In the regression models, it often happens that individual features are highly correlated 

both within and between groups. If two features are highly correlated, their corresponding 

coefficients in the regression model should tend to be the same (up to a sign change if negatively 

correlated). This is called similar effects in [8]. Some methods have been proposed to work on 

this issue. For example, Zou and Hastie [9] proposed the elastic net with a combined L1- and 

L2-norm penalty function J(βkj) = ∑ ∑ |βkj|
pk
j=1

K
k=1 + ∑ ∑ βkj

2pk
j=1

K
k=1  and showed that the elastic 

net benefits from the similar effects property. However, their method does not consider the group 

feature selection. HNNG considers both group level and individual level selection and gains the 

similar effect property. However, according to the discussion in feature redundancy in section 

1.3.5, an effective and parsimony model should not have two high correlated features. The high 

correlated features should have one representative to achieve model sparsity. It is worth 

mentioning that most of existing variable selection methods focus on the relevancy between 

predictors and response variables. Interdependence structures among predictors are often 

overlooked, or not explicitly investigated. The interdependence structures among variables are 

investigated by variable clustering. 

1.3.5 Variable Clustering 

The motivation of feature clustering is to estimate the feature redundancy as discussed in 

the above section. The feature clustering is different from the traditional data clustering. The 

typical data clustering methods and their probabilistic mixture models consider how close the 

entities are (e.g. in terms of Euclidean distance).  Fig. 3a is an example of data clustering, in 

which the working systems of air-conditioner are clustered according to the scaled temperature 

and scaled pressure. As shown in Fig. 3a, one point represents a working system and the 

coordinates of one point are the real values of scale temperature and  scaled pressure for a that 
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working system. The similar working systems are clustered into one group considering the 

Euclidean distances among this data points. However, the feature clustering algorithm, on the 

other hand, clusters the correlated features into one group. Fig. 3b is an example of feature 

clustering, in which the features extracted from a multiscale adaptive basis function model of 

spatiotemporal vector cardiogram signals are clustered. As shown in Fig. 3b, one point represents 

a feature which changes with time. Or rather each point represents a time series of the feature. 

The feature clustering algorithm clusters the feature considers how dependent they are, either 

linearly or nonlinearly. 

 

Figure 3 Examples of (a) data clustering and (b) feature clustering 

Variable clustering depends on similarity measurements between variables such as linear 

correlation or mutual information. Nonetheless, linear correlation cannot capture nonlinear 

interdependences among variables. Mutual information characterizes linear and nonlinear 

correlation, but requires the stationarity assumption. Note that latent-variable methods are also 

commonly used for variable clustering, e.g., oblique principal component clustering. However, 

both oblique rotation and principal component analysis are based on linear projections of 

variables. As such, nonlinear interdependences among variables are not fully considered. Also, 

(a)  (b)  
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variable clustering mainly focuses on the redundancy among variables while neglecting the 

relevancy between predictors and the response. New methodologies that integrate variable 

clustering with variable selection to improve effectiveness and efficiency of predictive analytics 

are urgently needed. In this dissertation, we developed a new methodology of self-organizing 

network that leverages merits of variable clustering and variable selection to investigate both 

relevancy and redundancy structures among variables for improving the performance of 

predictive modeling. 

1.4 Research Objectives 

My research is motivated by the urgent needs to efficiently handle big data and extract 

useful information for system informatics investigation including complex system modeling, 

diagnostics, monitoring and root cause analysis. The detailed objectives are described as 

following four: 

1) Representation and Characterization of Multichannel Spatiotemporal Signals: This 

work aims: i) to develop a systematic method for multi-channel spatiotemporal signal 

representation using multiscale adaptive basis function modeling, ii) to characterize the 

temporal behaviors of spatiotemporal signal, iii) to investigate the practical issues in 

multiscale adaptive basis function modeling, i. e., optimal basis selection, model 

complexity vs. model performance, model robustness. 

2) Model-driven Parametric Monitoring of High-dimensional Nonlinear Functional 

Profiles:  This study aims: i) to develop a sparse basis function model of 

high-dimensional profiles, thereby reducing the large amount of data to a parsimonious 

set of model parameters while preserving the information; ii) to select a low-dimensional 

set of sensitive predictors for fault diagnostics. 
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3) Self-organizing Network for Variable Clustering and Predictive Analytics: This study 

aims: i) to  develop a new approach of nonlinear coupling analysis to measure nonlinear 

interdependence structures among variables; ii) to develop a self-organizing approach to 

identify the interdependence structures among a large number of variables; iii) to 

leverage the advantages of variable clustering and variable selection to investigate both 

redundancy and relevancy among variables for improving the performance of predictive 

analytics and diagnosis. 

4) Self-organized Recurrence Networks: The self-organizing network approach is 

extended to the recurrence analysis. In this study, I will derive the steady geometric 

structure of a network from the recurrence-based adjacency matrix.  

1.5 Research Contributions 

The project is creative and original, because: (1) Spatiotemporal signal representation: 

The previous representation methods for spatiotemporal signal representation have the 

drawbacks of information loss (because the spatiotemporal signal is transform to other domains) 

and incompactness (because the representation is not adaptive). The proposed research will 

develop an innovative multiscale adaptive basis function model of spatiotemporal signals, which 

is new and solves the drawbacks of the previous methods. (2) Pertinent knowledge/feature 

discovery: The previous informative feature selection physically choose the feature groups (i.e., 

from one sensor), ignoring the feature redundancy. The proposed research introduces a smart 

feature clustering algorithm to informative feature selection for estimating the feature 

redundancy. And the theoretically-justified tuning parameter selection in the mathematical model 

shows the priority over the previous empirical selection. (3) Model-based real-time monitoring: 

The traditional monitoring focused on the mean shift or significant variation changes in the 
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process. However, the monitoring on a complex system should be comprehensive to detect the 

detailed changes in either spatial or temporal behaviors. The proposed model-based monitoring 

bridges this gap by examining the changes not limited to mean shift and variation change. (4) 

Root cause analysis: The previous studies on root cause analysis are all static models. For a 

complex system with varying environmental or system’s operational factors, a dynamical causal 

inference combined with system performance monitoring and optimal decision-making is 

innovative and challenging. 

The project has the potential to broadly impact the society because it will yield a 

fundamental understanding of complex system informatics with respect to system modeling, data 

compression, informative feature selection, performance monitoring, diagnostics and control. 

When the representation model is used to medical records, the highly reduced data 

dimensionality will facilitate the store of huge medical data. When the model-based real-time 

monitoring system assists the smart healthy system, a lower death rate is expected. The patient 

specific monitoring will improve the personal medicine and in-time medical care. Therefore the 

expense on the healthcare would be reduced for in-time treatment. When the methods are 

introduced to the manufacturing systems, the informative selection of sensors will reduce the 

expense because the unimportant sensory signals are not necessary. Meanwhile, the monitoring 

system and the root cause analysis will high improve the system reliability and the quality of 

products. A variety of areas with the complex system will receive the benefits of the proposed 

systematic methodologies and its associated tools. 

1.6 Dissertation Organization 

The dissertation is organized is organized as following: Chapter 2 presents multiscale 

adaptive basis function modeling of spatiotemporal vectorcardiogram signals, Chapter 3 
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introduces a model-driven parametric monitoring of high-dimensional nonlinear functional 

profiles, Chapter 4 presents a self-organizing network for variable clustering and predictive 

analytics, Chapter 5 shows a self-organized recurrence network and Chapter 6 derives the 

conclusions arising out of this dissertation. 
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CHAPTER 2: MULTISCALE ADAPTIVE BASIS FUNCTION MODELING OF 

SPATIOTEMPORAL SIGNALS
1
 

 

Mathematical modeling of cardiac electrical signals facilitates the simulation of realistic 

cardiac electrical behaviors, the evaluation of algorithms, and the characterization of underlying 

space-time patterns. However, there are practical issues pertinent to model efficacy, robustness, 

and generality. This paper presents a multiscale adaptive basis function modeling approach to 

characterize not only temporal but also spatial behaviors of vectorcardiogram (VCG) signals. 

Model parameters are adaptively estimated by the "best matching" projections of VCG 

characteristic waves onto a dictionary of nonlinear basis functions. The model performance is 

experimentally evaluated with respect to the number of basis functions, different types of basis 

function (i.e., Gaussian, Mexican hat, customized wavelet and Hermitian wavelets), and various 

cardiac conditions, including 80 healthy controls and different myocardial infarctions (i.e., 89 

inferior, 77 anterior-septal, 56 inferior-lateral, 47 anterior, 43 anterior-lateral). Multi-way 

Analysis of Variance shows that the basis function and the model complexity have significant 

effects on model performances while cardiac conditions are not significant. The customized 

wavelet is found to be an optimal basis function for the modeling of space-time VCG signals. 

The comparison of QT intervals shows small relative errors (<5%) between model 

representations and real-world VCG signals when the model complexity is greater than 10. The 

proposed model shows great potentials to model space-time cardiac pathological behaviors, and 

                                                        

1 This chapter was published in IEEE Journal of Biomedical and Health Informatics [32]. Permission is included in Appendix A. 
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can lead to potential benefits in feature extraction, data compression, algorithm evaluation and 

disease prognostics. 

2.1 Introduction and Motivation 

Cardiac electrical signals, e.g., electrocardiogram (ECG), are widely used for the 

diagnosis of cardiovascular diseases in the clinical practice. The surface ECG is usually obtained 

by recording the potential difference between electrodes placed on the skin surface. The most 

commonly used clinical ECG system, i.e., 12-lead ECG, monitors the underlying cardiac 

electrical activities from 12 different measurement angles. In 1956, Ernst Frank designed a new 

vectorcardiogram (VCG) lead system to capture cardiac electrical activities in the form of spatial 

vectors. The 3-lead VCG is observed along three orthogonal X, Y, Z planes of the body (i.e., 

frontal, transverse, and sagittal) and shows cardiac electrical activities in space and time [1].  

VCG signals are not as broadly used in the medical practice as 12-lead ECG because, 

among other reasons, the interpretation of 3-dimensional VCG is not commonly taught and 

requires specialized knowledge of space-time decomposition of cardiac vectors. Dower et al. [2] 

and our previous investigation [3] showed that 12-lead ECG is derivable from 3-lead VCG with 

a linear transform matrix. Although this transform matrix may need to be personalized, such a 

linear transform shows the preservation of clinically useful information between 12-lead ECG 

and 3-lead VCG. However, when it comes to the development of computer algorithms, 12-lead 

ECG has higher dimensionality than 3-lead VCG and potentially introduces the “curse of 

dimensionality” problem. Hence, the 3-lead VCG surmounts not only the information loss from 

only one or two ECG signals but also the dimensionality problems induced by all the 12-lead 

ECG signals. Therefore the 3-lead VCG signals are adopted in this investigation of 

spatiotemporal nonlinear profiles. 
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Traditionally, most previous investigations focused on discovering cardiac pathological 

behaviors from the ECG signals. A large amount of algorithms were developed to delineate the 

ECG patterns pertinent to cardiac disorders in time domain [4], frequency domain [5], 

time-frequency domain [6] or state space domain [7]. In contrast, this paper presents a 

mathematical model (i.e., multiscale adaptive basis function model) for the representation of 

real-world spatiotemporal VCG signals. Such mathematical models is applicable to simulate the 

VCG signals from a specific cardiovascular disease, to evaluate biomedical signal processing 

algorithms, to characterize space-time patterns of cardiac electrical signals and to study specific 

regions of interest pertaining to cardiac pathological behaviors.  

However, there are four practical issues pertinent to the construction of VCG basis 

function models. (1) What kind of function form should be used? There exist different types of 

basis functions including polynomials, Hermite function [8], Fourier bases [9], Gaussian function 

[10] and wavelet basis functions [7]. The selection of function form will directly impact the 

model parameters needed and fitting performances. (2) How to adaptively estimate model 

parameters based on the morphology of VCG signals? It is well known that cardiac electrical 

activity is initiated at the sinoatrial (SA) node, conducted in both atria, and then relayed through 

the atrioventricular (AV) node to further propagate through bundle of His and Purkinje fibers 

toward ventricular depolarization and repolarization. Such a sequential function provides an 

advantage to adaptively estimate the model parameters based on the patterns of VCG 

characteristic waves.  (3) How many parameters should be involved in the model? The model 

complexity2 depends on the number of basis functions involved. Based on the principles of 

parsimony, a desirable modeling strategy is to choose simpler models with sufficient explanatory 

                                                        

2
 Model complexity refers to the number of unknown parameters involved in the model. Equivalently, it is pertinent to the number of basis 

functions and parameters in each basis function. 
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power (i.e., simpler models are generally better than complex ones when the modeling 

performances are equal,). (4) How does the model performance (i.e., goodness of fit) vary with 

respect to uncertainty factors? It may also be noted that real-world ECG signals often show 

vastly different patterns because of cardiac conditions, human subject differences and other 

distortion factors. A robust model should yield the persistence of modeling characteristic 

behaviors in real-world ECG signals under perturbations or other uncertainty conditions. 

The objective of this paper is to develop a multiscale adaptive basis function model of 

spatiotemporal VCG signals. We will experimentally investigate the four aforementioned 

practical issues for the efficacy, robustness, and generality in the mathematical modeling of 

real-world VCG signals. The remainder of this paper is organized as follows: Section II presents 

literature review of previous modeling studies, the developed research methodology is presented 

in Section III, Section IV contains the ECG database description and experimental design, 

Section V presents the experimental results, and Section VI includes the discussion and 

conclusions arising out of this investigation.  

2.2 Research Background 

Many recent investigations have focused on the mathematical modeling of ECG signals 

[11-15]. It may be noted that PhysioNet [16, 17] provides open-source software, i.e., ECGSYN 

to generate the realistic ECG waveform. This software is based on the ECG dynamical model 

firstly proposed by McSharry and Clifford et al. [11]. This dynamical model is composed of 

three ordinary differential equations as follows: 

  �̇� = 𝛼𝑥 −  𝜔𝑦 

�̇� = 𝛼𝑦 +  𝜔𝑥                                             (1) 

�̇� =  − ∑ 𝑎𝑖∆𝜃𝑖 exp(−
∆𝜃𝑖

2

2𝑏𝑖
2) − (𝑧 − 𝑧0)

𝑖𝜖{𝑃,𝑄,𝑅,𝑆,𝑇}
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where α = 1 − √x2 + y2 , ∆θi = (θ − θi)mod 2π , θ = atan2(y, x), and ω is the angular 

velocity of the trajectory. This model simulate the 1-dimensional ECG signals z(t) around the 

limit cycle formed by x and y.  The baseline wander z0(t) is simulated as a sinusoid function 

of the respiratory frequency f2, z0(t) = A sin(2πf2t)  and A = 0.15mV. 

Furthermore, Clifford et al. [12, 13] showed that the T wave is often asymmetrical and 

needs two Gaussian functions to correctly model this asymmetry. Hence, they added an extra 

parameter to the T feature, thereby adopting the convention of 6 events as iϵ{P, Q, R, S, T−, T+}. 

The nonlinear least-square optimization was also employed to fit the model with real-world ECG 

signals, but an eighteen-dimensional gradient descent search is required to solve this 

optimization problem. Sayadi et al. [15] proposed the wave-based dynamical model of ECG 

temporal dynamics and used separate state variables for each characteristic waves, namely, the P 

wave, QRS complex and the T wave. The model has 7 events, i.e., iϵ{P−, P+, Q, R, S, T−, T+} 

and two additional Gaussian waves are used to deal with the asymmetry in P waves. Sameni et 

al. [14] extended the McSharry’s model to 3- dimensional VCG signals together with an 

autoregressive (AR) model simulating the ECG noises. Sameni et al. also generalize their model 

to analyze maternal and fetal ECG mixtures recorded from the abdomen of pregnant women in 

single and multiple pregnancies.  

It may be noted that Gaussian function form is unanimously adopted in the previous 

investigations. The four aforementioned practical issues have not been fully addressed for the 

mathematical modeling of ECG signals. It may also be noted that most of previous investigations 

focused on modeling the temporal dynamics of ECG signals. This presented paper is aimed at 

developing the basis function models of both temporal and spatial cardiac electrical dynamics. 

Given N time points in 1: t1, ..., tN, and their corresponding target values of cardiac vectors in 
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d: v1 , ..., vN , we are seeking a function :1 d, so that 1iN, v⃗ (t, w) = w⃗⃗⃗ 0 +

∑ w⃗⃗⃗ jφ⃗⃗ j((t − μj) σj⁄ ) + εM
j=1 , where φ(t) is the general basis function form. Spatiotemporal 

model will not only help us gain a deeper understanding of underlying heart dynamics but also 

characterize space-time ECG patterns pertinent to pathological cardiac behaviors. The main 

contributions of this present paper and its differences from previous studies are as follows:  

1) Selection of basis function – We experimentally compare model performances with 

different types of basis function φ(t) including Gaussian function, Mexican hat wavelet, 

customized wavelet and other wavelet basis functions. This facilitates the identification 

of an optimal basis function φ(t) for the mathematical modeling of ECG signals. In 

addition, this paper presents the customized design of wavelet basis function for a 

specific patient. 

2) Adaptive model parameter estimation – Matching pursuit is utilized to adaptively 

model the ECG signals based on the "best matching" projections of ECG characteristic 

waves onto the dictionary of nonlinear basis functions. 

3) Balance between model complexity and model performance – It may be noted that 

most previous investigations proposed either 5, 6, 7 or 11 Gaussian functions to deal with 

asymmetrical events and real-world ECG variations. We conduct further experiments to 

compare the variations of model performances (i.e., goodness of fit) when the number of 

basis functions is varied from 1 to 20.  

4) Model robustness to cardiac conditions – The characteristics of ECG signals heavily 

depend on the subjects as well as cardiac conditions. Even in the same category of 

cardiac condition, e.g., healthy control, human subjects can generate vastly different ECG 

patterns. The robustness of basis function model is statistically tested under six cardiac 
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conditions, i.e., healthy control, MI inferior, MI inferior-lateral, MI anterior, MI 

anterior-lateral, and MI anterior-septal.  

2.3 Research Methodology 

Cardiac electrical dynamics are initiated and propagated spatiotemporally. Such 

spatiotemporal activities are traditionally projected onto 1-dimensional time domain for the 

identification of cardiac pathological patterns. This kind of projection diminishes important 

spatial information underlying cardiac electrical activities. Hence, some medical decisions that 

are made can be significantly influenced by such an information loss. This present study 

develops new mathematical models of spatiotemporal VCG signals that can characterize specific 

regions of interest pertinent to space-time cardiac pathological behaviors.  

2.3.1 Spatiotemporal Characterization 

One-dimensional ECG signals capture the projected temporal view of space-time cardiac 

electrical activities from a particular measurement angle. Multiple lead ECG systems, for e.g., 

12-lead ECG and 3-lead vectorcardiogram (VCG), are designed to obtain the multi-directional 

view and spatial information. Considering the cardiac electrical activity varying across both 

space and time, we denote the cardiac process as {V(s, t): s(t) ∈ R ⊂ ℝd, t ∈ T}, where the 

dependence of spatial domain R on time T symbolizes the condition where the spatial domain 

changes over time. It may be noted that traditional ECG algorithms focus heavily on the 

temporal domain signal analysis and tend to have limitations to capture the space and time 

correlations. The presented study takes advantage of the increasing availability of spatiotemporal 

cardiac signals, and model both spatial and temporal variations of cardiac electric events.  

As shown in Figure 1 (a), we utilized the Poincaré section to characterize the 

spatiotemporal cardiac topology in the form of ensembles as well as detailed beat-to-beat 
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variations. Poincaré section is a dE-1 dimensional hyperplane intersecting with the dE 

dimensional state space trajectories (see Figure 1 (a)). The 3D display of cardiac vector loops 

from several cycles commonly show the near-periodic patterns but with hidden temporal 

variations between heart cycles. The aligned ECG ensembles contribute to the gathering of 

homogeneous majority clusters of ECG signals for selective averaging. For near-periodic signals, 

each strand emanating from an intersection point Pi of Poincaré section and lasting 

approximately till the next intersection Pi+1 along the trajectory may be treated as a realization 

of a stochastic process from an invariant probability space [7]. Heart rate variability makes some 

ensembles move faster, i.e., the two successive intersections occur over shorter intervals, 

compared to the others. Figure 4 (b-d) shows the aligned heart beats along the X, Y, Z axes. It 

may be noted that heart cycles in the same direction, i.e., any of three orthogonal directions X, Y, 

or Z, are sharing similar morphologies but there exist remarkable beat-to-beat variations due to 

the heart rate variability.  

It has long been understood that a metronomic heart rate is pathological, and healthy 

heart is influenced by multiple neural and hormonal inputs that result in variations in interbeat 

(RR) intervals [18]. There were evidences showing that the underlying heart beat dynamics may 

have a multi-fractal temporal structure, which has complex interdependencies at different scales. 

Random cascade model was used for modeling the multifractal self-similar behaviors in the heart 

beat dynamics [18]. Heart rate time series r(t) is taken as a  product of J cascade components: 

rJ(t) = ∏ ωj(t)
J
j=1  and ωj(t) = 1 + ξj , where ξj’s are independent Gaussian variables with 

〈ξj〉 = 0 and 〈ξiξj〉 = δijσj
2 (δij is the Kronecker delta). In addition, ωj(t) is only varied on 

discrete times {tk
(j)

}: ωj(t) = ωj(tk
(j)

)  for tk
(j)

≤ t ≤ tk+1
(j)

, where tk
(j)

=
kN

2j
, k = 1,⋯ , 2j  and 

N = 2j  is the total number of the data points. The power law is simulated as 
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σj = σ02
−α(j−1)~τj

α, where τj = tk
(j)

− tk−1
(j)

= N/2j. Hence, RR interval time series is modeled 

as a multifractal self-similar process. The mathematical model of VCG morphology within each 

RR interval will be detailed in the next section.  

 
Figure 4 Poincaré sectioning of 3D VCG trajectory (a), and one-dimensional projected 

VCG ensembles along X axis (b), Y axis (c) and Z axis (d) [2] 

2.3.2 Multiscale Basis Function Modeling 

On the basis of McSharry’s dynamical ECG model [11], we propose to model the 

3-dimensional VCG morphology as the superposition of M multiscale basis functions: 

v⃗ (t, w) = w⃗⃗⃗ 0 + ∑ w⃗⃗⃗ jφ⃗⃗ j((t − μj) σj⁄ ) + εM
j=1 , where φ(t) is the general basis function form that 

is not limited to Gaussian function, μj is the shifting factor and σj is the scaling factor. The 

objective is to minimize the representation error between VCG signals and basis function models 

  

(a) (b) 

(c) (d) 
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as argmin [‖v⃗ (t) − w⃗⃗⃗ 0 − ∑ w⃗⃗⃗ jφ⃗⃗ j(t)
M
j=1 ‖

2
, {w,M,φ(t)} ]. In the matrix form, this basis function 

model can be rewritten as V = WTφ, where the corresponding weight matrix W and basis 

function matrix φ are 

𝑽 = [

𝑣𝑥1 𝑣𝑥2 ⋯
𝑣𝑦1 𝑣𝑦2 ⋯
𝑣𝑧1 𝑣𝑧2 ⋯

      

𝑣𝑥𝑁

𝑣𝑦𝑁

𝑣𝑧𝑁

]                                 (2) 

 

𝑾 = [

𝑤11 𝑤21 𝑤31

𝑤12 𝑤22 𝑤32

⋮ ⋮ ⋮
𝑤1𝑀 𝑤2𝑀 𝑤3𝑀

]                                   (3) 

 

𝝋 = [

𝜑1(𝑡1|𝜇1, 𝜎1) ⋯ 𝜑1(𝑡𝑁|𝜇1, 𝜎1)
𝜑2(𝑡1|𝜇2, 𝜎2) ⋯ 𝜑2(𝑡𝑁|𝜇2, 𝜎2)

⋮             ⋮               ⋮
𝜑𝑀(𝑡1|𝜇𝑀, 𝜎𝑀) ⋯ 𝜑𝑀(𝑡𝑁|𝜇𝑀, 𝜎𝑀)

]                              (4) 

 

This is analogous to express the spatiotemporal VCG signals v⃗ (t, w)  using a 

combination of words (i.e., φj(t)) from the dictionary D. For a selected basis function φ(t), the 

dictionary D is composed by shifting and scaling the basis function D = {φj((t − μj) σj⁄ ), j =

1,2, … , N}. Mathematically, shifting a basis function φ(t) by μ is equivalent to delay its onset 

and is represented by φ(t − μ). Scaling a basis function φ(t) means either "stretching" or 

"shrinking" the function by the scale factor σ and is represented by φ(t/σ). The smaller the 

scale factor is, the more "compressed" the wavelets are. The higher scales correspond to the most 

"stretched" basis function. The more stretched the basis function is, the longer the portion of the 

signal is modeled. In addition, if the dictionary D contains a set of orthonormal bases, e.g., 

orthogonal wavelet functions, then the signal representation will be sparser. In other words, the 

coefficient set {w⃗⃗⃗ j} will has lower entropy and can be simply computed by the inner products of 

the basis function with the signal < φ(t), v(t) >. It is desirable that such a signal representation 

yields the least model complexity but higher accuracy.  
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In order to optimize the sparsity of representation, it requires a combinatorial search of M 

possible basis functions from the dictionary D to find the global minimum. As this problem is 

potentially intractable for a moderate size of dictionary, we have utilized an iterative procedure, 

i.e., Matching Pursuit algorithms [19, 20] to search the sub-optimal solution based on the 

characteristic wave patterns in the VCG/ECG signals. The VCG Matching Pursuit method is 

started from an initial approximation s(0) = 0 , residual R(0) =  v⃗ (t) , and dictionary D =

{φj(t), j = 1,2, … , N}. The first step identifies the basis function in the dictionary that best 

correlates with the residual, that is, finding γ0 such that |〈R(0), φ(γ0)〉| = max|〈R(0), φ(γ)〉|, 

γ ∈ ℕ and φ(γ0) ∈ D. Then the current approximation will be s(1) = s(0) + 〈R(0), φ(γ0)〉φ(γ0) 

and the residual is defined as R(1) = R(0) − 〈R(0), φ(γ0)〉φ(γ0). If the orthogonal wavelet bases 

are used, it may be noted that φ(γ0) is orthogonal to R(1) because 

〈𝝋(𝛾0), 𝑹(1)〉 = 〈𝝋(𝛾0), 𝑹(0) − 〈𝑹(0), 𝝋(𝛾0)〉𝝋(𝛾0)〉 

                             = 〈𝝋(𝛾0), 𝑹(0)〉 − 〈𝝋(𝛾0), 〈𝑹(0), 𝝋(𝛾0)〉𝝋(𝛾0)〉 

                             = 〈𝝋(𝛾0), 𝑹(0)〉 − 〈𝑹(0), 𝝋(𝛾0)〉 = 0 

Hence, 〈R(0), φ(γ0)〉φ(γ0) is also orthogonal to R(1) so that 

‖𝑹(0)‖
2
= ‖𝑹(1)‖

2
+ ‖〈𝑹(0), 𝝋(𝛾0)〉𝝋(𝛾0)‖

2
                        (5) 

 

At step j+1, the residual R(j+1) is treated similarly as R(0)  in the first step, yielding 

𝑹(𝑗+1) = 𝑹(𝑗) − 〈𝑹(𝑗), 𝝋(𝛾𝑗)〉𝝋(𝛾𝑗)  and  𝒔(𝑗+1) 

= ∑ 〈𝑹(𝑖), 𝝋(𝛾𝑖)〉𝝋(𝛾𝑖)𝒋
𝒊=𝟏                            (6) 

After M such steps, one has a representation of the form of additive decomposition.  

𝒗(𝑡) = ∑ 〈𝑹(𝑖), 𝝋(𝛾𝑖)〉𝝋(𝛾𝑖)𝑴−𝟏
𝒊=𝟏 +𝑹(𝑀)                             (7) 

 

An intrinsic feature of the matching pursuit algorithm is that when the dictionary has 

orthogonal bases, it works perfectly after a few steps yielding a sparse adaptive representation 

using only a few basis functions. Section II.C will detail the design of customized basis function 
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φ(t) for ECG application, and the performance comparison with many standard wavelet basis 

functions will be shown in the section of results.  

2.3.3 Customized Wavelet Basis Function Design 

As mentioned in the section of Background, many previous ECG modeling algorithms 

unanimously selected the non-orthogonal Gaussian basis function φ(t) =  exp (−
‖t−μ‖

2σ2 ). The 

shifting factor μj′s are either adaptively distributed at the locations of ECG characteristic 

PQRST waves or uniformly distributed along the time axis. The table of parameters (i.e., weights, 

locations, and widths) was given based on the visual analysis of a segment of normal ECG 

signals [11]. These previous approaches show satisfactory results for the healthy ECG signals 

with apparent Gaussian shape PQRST waves. Furthermore, Clifford and Sameni [12-14] 

proposed to utilize the nonlinear least-square error (NLSE) method and radial basis neural 

network for the estimation of parameter μj′s and σj′s using real-world ECG signals. However, 

ECG signals are often varied due to many different factors, e.g., cardiac conditions, human 

subjects, and locations of recording sensors. For example, P wave may be biphasic, or wavy in 

the case of atrial fibrillation. Ventricular fibrillation will totally recompose the Gaussian shape T 

wave into non-Gaussian forms. ECG characteristic waves are not necessarily shown to be 

bell-shaped waves along some measurement directions, e.g., frontal, transverse, and sagittal 

directions in 3-lead VCG. Although the sum of Gaussian functions is capable of fitting any curve 

shape, this requires an increasing number of Gaussian functions, thereby potentially leading to a 

more complex model.  

In this paper, we hypothesized that wavelet functions, e.g., Mexican hat or customized 

wavelet functions based on intrinsic ECG patterns, will not only yield a sparser representation of 

spatiotemporal VCG signals but also increase robustness to the aforementioned variable factors. 
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Our previous investigation [7] detailed the theoretical study of customized wavelet basis function 

design for biomedical applications. It is generally agreed that the closer the wavelet basis 

functions φ(t) match the ECG signal patterns ζ(t), the sparser the representation will be. 

Therefore, the design of customized wavelet functions is formulated as a minimization of the 

distance from φ(t)  to ζ(t) , i.e., min‖φ(t) − ζ(t)‖2 , subject to the constraints that φ(t) 

satisfies the wavelet admissibility conditions. The signal pattern ζ(t) is obtained from the ECG 

ensembles as shown in Figure 1 (b-d). The admissibility requirements for any valid real or 

complex-value continuous-time function φ(t) to be a wavelet basis function are as follows: 

reconstruction, zero mean, finite energy and regularity constraints. The first three defines the 

wave, and the last condition determines the rate of decay or the let. A function satisfied with all 

the four conditions can be a valid wavelet for continuous wavelet transformation [7]. Since the 

ECG signal pattern ζ(t) is a finite length signal, the finite energy requirement is automatically 

met. The zero mean condition ∫ φ(t)dt = 0
+∞

−∞
 implies that the Fourier transform of φ(t) 

vanishes at the zero frequency |Fφ(ω)|
2
|
ω=0

= 0 , where Fφ(ω)  stands for the Fourier 

transform of φ(t). So, it will also make sure that ∁φ= ∫
|Fφ(ω)|

2

|ω|
dω = 0

+∞

−∞
 is finite to guarantee 

inverse continuous wavelet transform in the signal reconstruction. If the function’s first i 

moments are zero ∫ ti
+∞

−∞
φ(t)dt = 0, for 0<i<(k-1), then the number of vanishing moment of 

the function φ(t) is k. By imposing the wavelet admissibility constraints in the objective 

function, the customized wavelet was designed to further optimize the mathematical modeling of 

spatiotemporal VCG signals. The customized wavelet will be adopted in the multiscale basis 

function modeling of spatiotemporal VCG signals and compared with other standard basis 

functions, e.g., Gaussian basis and Mexican hat basis. 
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2.3.4 Customized Lead Transformation 

Dower et al. [2] previously demonstrated that 3-lead VCG can be linearly transformed to 

12-lead ECG without significant losses of clinical information pertaining to heart dynamics. If 

we have the VCG data in matrix V (3×N), eight leads (I, II, v1-v6) E (8×N) can be derived by 

E=V*H except the mathematical calculated and augment leads (III, aVR, aVL, aVF). H is the 

Dower transformation coefficient matrix with size 8×3. However, our previous investigation [21] 

shows that the generalized Dower transformation matrix tends to have limitations to yield 

consistent results for a variety of healthy control (HC) and myocardial infarction (MI) subjects. 

Therefore, a customized transformation matrix is necessary for a given cluster of subjects, e.g., 

healthy control subjects in certain age and gender group. The linear affine transformation E=H0+ 

V*H =Ṽ ∗ H̃ statistically customizes the H̃ for each individual through the maximum likelihood 

estimation H̃ = (Ṽ TṼ )−1ṼE. Thus, H̃ is the proposed linear affine transform matrix with 

dimension 8×4. The additional column of intercept term H0 is to compensate the baseline 

wander and other constant biases in the long ECG data streams, so that the resulting statistical 

transforms are more consistent and accurate. As such, this paper presents a customized modeling 

framework, including customized basis function model and linear affine transformation, for 

multiple lead ECG systems (i.e., 3-lead VCG and 12-lead ECG). 

2.4 Materials and Experimental Design       

A 3-way layout experiment was designed to test the variations of model performances 

due to three factor groups, i.e., model complexity, basis function, and cardiac conditions. As 

shown in Figure 5, the number of basis functions (i.e., model complexity) is varied from M=1 to 

M=20. The group of 10 basis functions includes Gaussian function, customized wavelet, 

Mexican hat, and hermitian wavelets (i.e., the nth derivative of Gaussian). Six cardiac conditions 



 

29 

included are healthy control (80), MI inferior (89), MI inferior-lateral (56), MI anterior (47), MI 

anterior-lateral (43), and MI anterior-septal (77), available in the PhysioNet PTB Database [28]. 

Each recording contains 15 simultaneous heart monitoring signals, i.e., 12-lead ECG and 3-lead 

VCG signals.  

Model Performance (R2)

Model Complexity Basis Functions

Cardiac Conditions

Customized wavelet
Mexican hat

Hermitian wavelets
Gaussian

Symlet

...MI, anterior
MI, inferior

MI, inferior-lateral

Healthy control
MI, anterior-septal

...

M = 1

M = 2

M = 20

...

 
 

Figure 5 Cause-and-effect diagram for performance evaluation of multiscale adaptive basis 

function model of cardiac electrical signals 

The R-square (R2) is used to statistically measure the model performance, i.e., how well 

the basis function model fits the real-world VCG signals. The R2 is defined as  

𝑹𝟐 = 1 −
𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑆𝑆𝑡𝑜𝑡𝑎𝑙
= 1 −

∑ (𝑣𝑖𝑖 −�̃�𝑖)
2

∑ (𝑣𝑖𝑖 −�̅�)2
                          (8) 

where vi is the real-world value of VCG signals, ṽi is the predicted value of basis function 

models, v̅ is the average of real-world data, SSresidual is the sum of squares of residuals, and 

SStotal is the total sum of squares. In other words, the R2 is a statistic measuring the proportion 

of variability in a data set that can be explained by the basis function model, thereby providing 

the information about the goodness of fit. The range of 𝑹𝟐 is from 0 to 1. When the value of 𝑹𝟐 

is approaching 1, the representation is closer to the original spatiotemporal and nonlinear profiles 

and vice versa. 
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2.5 Results 

This present investigation made an attempt to address four practical issues pertinent to 

the construction of nonlinear basis function models of spatiotemporal VCG signals, i.e., adaptive 

parameter estimation and how the model performance (i.e., goodness of fit) is impacted by the 

basis function form, the number of basis function, and cardiac conditions. Furthermore, we have 

extracted and compared a clinic ECG metric (i.e., QT intervals) from both model representations 

and real-world VCG signals. 

2.5.1 Multi-way Analysis of Variance 

Based on the 3-way layout experiments, the data of model performances, R2, is collected 

for 10 basis functions, 6 cardiac conditions and the number of basis functions from 1 to 20 (i.e., 

model complexity). The Analysis of Variance (ANOVA) is utilized to investigate which factor 

group has significant effects on the performance of basis function models. Results from ANOVA 

were obtained by separating the total variability of the R2, which was the sum of the squared 

deviations from the grand mean, into contributions by the cardiac conditions, basis function form, 

model complexity and random errors. 

In the ANOVA table, the mean squares (MS) are computed by dividing the sums of 

squares (SS) by the corresponding degree of freedom (DOF). The F statistic is calculated by 

dividing the factor’s mean squares by the residual mean square. The null hypothesis assumes that 

a factor has no significant effect on model performances. The F test statistically shows at a 

reasonable level of probability whether each of the three factor groups has a significant effect on 

the model performance. Generally, a smaller p value (<0.05) indicated that this factor has a 

significant effect. Table I shows the results of three-way ANOVA, indicating that the basis 

function and the model complexity have significant effects on model performances (i.e., p values 
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= 0, 0 and are less than the significant level 0.05) while the cardiac conditions are not significant 

(i.e., p value = 0.619). Therefore, it is important to investigate how the basis function and model 

complexity influence the performance of models (i.e., R2 - goodness of fit). 

Table 1 ANOVA Analysis of Model Performances (R
2
) 

Sources SS DOF MS F stat. p 

Cardiac Conditions 44.1 5 8.83 0.71 0.619 

Basis Function 3183.4 9 353.71 28.29 0 

Model Complexity 128732 19 6775.3 541.8 0 

Residual 14579.2 1166 12.5 
 

 

Total 146539 1199    

 

2.5.2 Adaptive Basis Function Modeling 

Figure 6 shows the 1-dimensional and 3-dimensional stepwise modeling of 3-lead VCG 

signals. The model performance R2 is shown to monotonically increase with respect to the 

number of basis functions involved in the model. At each step, the matching-pursuit algorithm 

will scale and shift the basis function (i.e., Mexican hat function in Figure 3) to find the 

best-matching unit that adaptively captures the predominant wave in the VCG signals. As shown 

in Figure 6 (a), the matching-pursuit algorithm firstly captures the R wave with 1 basis function. 

This first step yields a model performance R2 of 67.18%. It may be noted that P wave and T 

wave are sequentially captured in the 2nd and 3rd step. The model performance R2 achieves 

89.62% when 3 predominant waves (i.e., P, QRS, T waves) are captured. When the number of 

basis functions exceeds 6, the R2 is greater than 97% showing a good representation. The 

matching-pursuit algorithm improves the modeling performance step by step, and captures the 

fine-grained details in 3-lead VCG when more and more basis functions are involved.  
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Furthermore, we have compared the model performance of 10 different basis functions 

(i.e., Gaussian function, customized wavelet, Mexican hat, and Hermitian wavelets). The model 

performance (R2) is calculated for 392 recordings in the PTB database. Figure 7 shows the mean 

and standard deviation of R2 for three basis functions, namely, customized wavelet (red), 

Mexican hat (blue), and Gaussian (green) when the number of basis functions is increased from 1 

to 20. Gaussian basis function is widely used in previous research work, the Mexican hat is 

found to have a superior performance among standard basis functions. In addition, the 

customized wavelet basis is shown to yield better performance than Gaussian, Mexican hat and 

other basis functions.  

It may be noted that the average of R2 is ascending, and the standard deviation of R2 is 

decreasing when more and more basis functions are included in the model. The experimental 

results show that the Mexican hat yields a better performance than Gaussian and other standard 

wavelet basis functions. However, the customized wavelet function evidently outperforms all 

other basis functions when the model complexity is within the range from 1 to 10. When the 

model complexity is greater than 15, the model performance (R2) is approximately the same for 

3 basis functions (i.e., close to 100%). Because the customized wavelet is personalized designed 

for a specific subject, it captures more characteristic pattern in the 3-lead VCG than other basis 

functions. As a result, the model performance (R2) of customized wavelet is superior to all other 

basis functions when the model is sparse (i.e., from 1 to 10). When the model complexity is 

higher (e.g., >18), the differences of model performance (R2) are smaller among all the basis 

functions. It may be noted that a sparser model with sufficient explanatory power is preferable 

according to the principles of parsimony. Therefore, the customized wavelet is an optimal basis 

function for the modeling of space-time VCG signals. 
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2.5.3 Model Robustness to Cardiac Conditions 

The 3-way ANOVA analysis shows that cardiac conditions do not have significant effects 

on the model performance (i.e., p value = 0.619). In other words, multiscale adaptive basis 

function models are robust to various cardiac conditions. In fact, the proposed model is not only 

applicable to the VCG signals, but also to various nonlinear and nonstationary signals. 

Figure 8 shows the box plots of model performances (R2) for different cardiac conditions 

(i.e., healthy control - HC, MI anterior - AN, MI anterior-lateral - ANLA, and MI anterior-septal 

- ANSP, MI inferior - IN, MI inferior-lateral – INLA). The red line in the middle of boxplot 

represents the median, the blue box shows the lower quartile and upper quartile of performance 

distributions, and the black dash lines represent the most extreme values within 1.5 times the 

interquartile range.  

As shown in Figure 8 (a), significant differences are found in the modeling performances 

for three basis functions (i.e., customized wavelet, Gaussian and Mexican hat) when the model 

complexity is 3. However, the modeling performances of each basis function show random 

variations among various cardiac conditions. When the model complexity reaches 6, the 

differences of modeling performances become smaller (approximately 2% ~ 6%) among 3 basis 

functions. As shown in Figure 8 (b), there are only random variations among various cardiac 

conditions for each basis function. The random variations across cardiac conditions are 

consistent for three basis functions in the model complexity of 3 and 6. As aforementioned in 

Figure 4, the differences of model performance (R2) are smaller (<0.5%) for all the basis 

functions when the model complexity is greater than 18. The results demonstrated the 

effectiveness and robustness of the proposed multiscale adaptive basis function modeling of 

spatiotemporal VCG signals for a variety of cardiac conditions.  
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Figure 6 Stepwise performance of matching pursuit algorithms with the Mexican hat 

function for a MI Patient (patient006/S0064lre). (a) 𝐑𝟐 is 67.18% with 1 basis function; (b) 

𝐑𝟐 is 81.20% with 2 basis function; (c) 𝐑𝟐 is 89.62% with 3 basis function; (d) 𝐑𝟐 is 

99.27% with 10 basis function. The blue solid line denotes real-world VCG signals and the 

red dashed line is from model representation. 

 

 

Figure 7 The mean and standard deviation of model performances for 3 basis functions (i.e., 

Gaussian, Mexican hat, and customized wavelet) when the model complexity is increased 

from 1 to 20. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
40

50

60

70

80

90

100

R
-s

q
u

a
re

(%
)

Model Complexity

 

 

Gaussian

Mexican hat

Customized wavelet

(a) (b) (c) (d) 

R2:67.18%

Vy

Vx

Vz

R2:81.20%

Vy

Vx

Vz

R2:99.75%

Vy

Vx

Vz

R2:89.62%

Vy

Vx

Vz



 

35 

Therefore, the increase of model complexity also makes the differences of modeling 

performances smaller and smaller for various cardiac conditions. It may be noticed that the 

proposed basis function model is robust to various cardiac conditions because it adaptively 

captures the characteristic patterns in the VCG signals. From Figure 8, it is seen that the values 

of R-square for Gaussian basis, Mexican hat and Customized wavelet are around 85%, 90% and 

96% respectively at model complexity 3. And the values of R-square are around 92%, 96% and 

98% at model complexity 6. 

 
                         (a)                                             (b) 

Figure 8 The variations of model performance (R2) with respect to cardiac conditions (i.e., 

healthy control - HC, MI anterior - AN, MI anterior-lateral - ANLA, and MI anterior-septal 

- ANSP, MI inferior - IN, MI inferior-lateral – INLA). (a) model complexity 3; (b) model 

complexity 6. 

2.5.4 Model Validation with ECG Clinic Metrics 

The performance metric (R2) gives the goodness-of-fit in the model representation. When 

the R2 is close to 100%, the model will achieve a perfect representation of real-world VCG 

signals. It may be noted that ECG metrics (e.g., QT intervals) are widely used in the clinical 

practice for the diagnostic purposes. Therefore, we have extracted the QT intervals from both 

real-world VCG signals and basis function representations for the model validation. The relative 

error is defined as 
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𝛿𝑄 =  
∆𝑄

𝑄𝐴
=

|𝑄𝐴−𝑄𝑀|

𝑄𝐴
                                           (9) 

where QA is the feature extracted from actual signals, QM is the feature extracted from model 

representations, and ∆Q is the absolute error between QA and QM. The QT interval represents 

the duration of ventricular depolarization and subsequent repolarization, and is a measure of the 

time between the onset of the Q wave and the offset of the T wave. A shortened or prolonged QT 

interval is recognized as biomarkers for the development of cardiac arrhythmias and sudden 

cardiac death.  

As shown in Figure 9, the box plot is used to visualize the distributions of relative errors 

between QT intervals that are extracted from real-world VCG signals and model representation 

(i.e., customized wavelet, Mexican hat and Gaussian basis function models). It may be noted that 

the model is inadequate to capture 3 predominant waves (i.e., P, QRS and T) in the ECG signals 

when the number of basis functions is less than 3. Therefore, the relative errors of ECG features 

are large when the model complexity is smaller than 3. Figure 6 shows that the QT relative errors 

are decreasing when the model complexity is increased from 3 to 12. In addition, the QT relative 

errors of customized wavelet are smaller than Mexican hat and Gaussian when the model 

complexity is small (i.e., from 3 to 10). The QT relative errors of three basis functions are 

comparable (<5%) for all 392 subjects in PTB database when the model complexity is greater 

than 10. It may be noted that customized wavelet and Mexican hat are superior to the Gaussian 

function, which was widely adopted in many previous investigations. This experiment shows that 

multiscale basis function models yield small relative errors in the feature extraction from ECG 

signals under various cardiac conditions. It is suggested that the proposed multiscale adaptive 

basis function modeling effectively represents the spatiotemporal morphology of ECG signals 

and stores the critical information of clinic metrics. 
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Figure 9 The mean and standard deviation of model performances for 3 basis functions (i.e., 

Gaussian, Mexican hat, and customized wavelet) when the model complexity is increased 

from 3 to 12. 

2.6 Discussion and Conclusions 

Mathematical modeling of cardiac electrical signals facilitates the simulation of realistic 

cardiac electrical behaviors, the evaluation of biomedical signal processing algorithms, and the 

characterization of underlying space-time patterns. However, there are practical issues pertinent 

to the construction of nonlinear basis function models of spatiotemporal VCG signals, i.e., 

adaptive parameter estimation and how the model performance (i.e., goodness of fit) is impacted 

by the basis function form, the number of basis function, and cardiac conditions.  

This present investigation developed a multiscale basis function modeling approach to 

characterize not only temporal but also spatial behaviors of VCG signals. The proposed basis 

function models were experimentally validated using real-world VCG signals acquired from 

different cardiac conditions, including 80 healthy controls, 89 MI inferior, 56 MI inferior-lateral, 

47 MI anterior, 43 MI anterior-lateral, and 77 MI anterior-septal. This 3-way layout ANOVA 

analysis shows the basis function and the model complexity have significant effects on model 

performances (i.e., p values = 0, 0 and are less than the significant level 0.05) while cardiac 
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conditions are not significant (i.e., p value = 0.619). In addition, the matching pursuit algorithms 

are developed to adaptively estimate the model parameters based on the "best matching" 

projections of ECG characteristic waves onto the dictionary of nonlinear basis functions. The 

model performance R2 achieves 89.62% when 3 predominant waves (i.e., P, QRS, T waves) are 

captured with 3 basis functions. When the number of basis functions exceeds 6, the R2 is 

greater than 97% showing a good representation.  

Furthermore, the customized wavelet function is shown to outperform other basis 

functions when the model complexity is from 1 to 10. When the model complexity is greater 

than 15, the model performance (R2) is approximately the same for customized wavelet, 

Mexican hat and Gaussian basis functions (i.e., close to 100%). Also, the 3-way ANOVA 

analysis shows that the proposed basis function models are robust to various cardiac conditions, 

and the modeling performances of each basis function show random variations among various 

cardiac conditions. The comparison of a ECG metric (i.e., QT intervals) between model 

representations and real-world VCG signals shows that the relative errors with customized 

wavelet are smaller than Mexican hat and Gaussian when the model complexity is small (i.e., 

from 3 to 10). The relative errors of three basis functions are comparable (<5%) for all 392 

subjects in PTB database when the model complexity is greater than 10.  

The proposed model shows great potentials to model and analyze specific regions of 

interest that are related to space-time cardiac pathological behaviors. Such an effective model of 

3-dimensional VCG topology will lead to the following benefits: (1) Feature extraction: The 

model parameters such as weights, shifting and scaling factors in the basis functions can be 

potentially used as features for the diagnostic application. As a result, large amount of VCG and 

ECG data is reduced to limited amount of features (i.e., model parameters) while preserve the 
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same information. (2) Data compression: It is well known that hundreds of gigabytes VCG and 

ECG data will be stored in the real-time cardiac monitoring. Since the basis function model 

yields a good representation (>99%) of real-world VCG signals, model parameters can be saved 

instead of the long-term VCG signals. (3) Algorithm evaluation: This proposed basis function 

model is data-driven and can be fitted to ECG signals from different kinds of cardiovascular 

diseases. The fitted model for different pathologies can generate large amount of VCG/ECG 

signals that can be used to test the algorithms of QRST cancellation, adaptive filtering, and 

classification etc. (4) Disease prognostics: Because the basis function model captures all the 

characteristics from the actual data, real-time ECG monitoring signals can be compared with the 

model representation trained in the healthy condition. The differences of pattern similarity can be 

used as a performance measure for the prognostic purpose. Our future research will focus on 

exploring the applications of multiscale adaptive basis function models of VCG signals.  
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CHAPTER 3: MODEL-DRIVEN PARAMETRIC MONITORING OF NONLINEAR AND 

HIGH-DIMENSIONAL PROFILES
3
 

 

In order to cope with system complexity and dynamic environments, modern industries 

are investing in a variety of sensor networks and data acquisition systems to increase information 

visibility. Multi-sensor systems bring the proliferation of high-dimensional functional profiles 

that capture rich information on the evolving dynamics of natural and engineered processes. This 

provides an unprecedented opportunity for online monitoring of operational quality and integrity 

of complex systems. However, the classical methodology of statistical process control is not 

concerned about high-dimensional sensor signals and is limited in the capability to perform 

multi-sensor fault diagnostics. It is not uncommon that multi-dimensional sensing capabilities are 

not fully utilized for decision making. This paper presents a new model-driven parametric 

monitoring strategy for the detection of dynamic fault patterns in high-dimensional functional 

profiles that are nonlinear and nonstationary. First, we developed a sparse basis function model 

of high-dimensional functional profiles, thereby reducing the large amount of data to a 

parsimonious set of model parameters (i.e., weight, shifting and scaling factors) while preserving 

the information. Further, we utilized the lasso-penalized logistic regression model to select a 

low-dimensional set of sensitive predictors for fault diagnostics. Experimental results on 

real-world data from patient monitoring showed that the proposed methodology outperforms 

                                                        

3 This chapter was published on proceedings of 2014 IEEE International Conference on Automation Science and Engineering (CASE), Taipei, 
Taiwan, 18-22 Aug, 2014 [24]. Permission is included in Appendix A. 
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traditional methods and effectively identify a sparse set of sensitive features from 

high-dimensional datasets for process monitoring and fault diagnostics.  

3.1 Introduction 

In order to cope with system complexity and dynamic environments, modern industries 

are investing in a variety of sensors and data acquisition systems to increase information 

visibility. For examples, multiple strain gauge sensors are often installed on stamping machines 

to collect tonnage signals for process quality improvement. Each cycle of tonnage signals 

measures the stamping force for producing one stamped part over a complete press stroke, 

indicating a series of operations such as draw, notch, blanking, cutoff and bulging [1, 2]. In 

addition, electrocardiogram (ECG) sensors are used to capture a wealth of dynamic information 

pertinent to cardiac function. Fig. 10 shows one cycle of ECG signals that corresponds to 

sequential stages of cardiac operations (i.e., P wave, QRS wave, and T wave) [3]. Each 

segmented wave is closely associated with specific physical activities of heart components. 

Notably, atrial depolarization (and systole) is represented by the P wave, ventricular 

depolarization (and systole) is represented by the QRS complex, and ventricular repolarization 

(and diastole) is represented by the T wave. However, a single sensor only captures 

1-dimensional view of space-time dynamics of complex systems. Therefore, multi-sensor 

systems are usually designed to provide multi-directional views of the evolving dynamics of 

natural and engineered processes. 

As such, multi-dimensional sensing, in days, months and even years, generates enormous 

amounts of data, which contains multifaceted information pertinent to the evolving dynamics of 

process operations. Indeed, both manufacturing and healthcare domains are facing spatially and 

temporally data-rich environments. Big data poses significant challenges for human experts (e.g., 



 

44 

physicians, nurses, quality technicians) to accurately and precisely examine all the generated 

high-dimensional sensor signals for fault diagnosis and quality inspection. However, the 

proliferation of sensing data also provides an unprecedented opportunity to develop sensor-based 

methodologies for realizing the full potential of multi-dimensional sensing capabilities towards 

real-time process monitoring and fault diagnosis. 

   

Figure 10 Examples of sensing functional profiles from human heart (electrical-mechanical 

biomachine) [3]. 

3.2 Monitoring of Functional Profiles 

Existing methodologies tend to have limitations to address fundamental issues important 

to instantaneously transforming multi-sensor signals into useful knowledge for effective process 

monitoring and control. Traditional statistical process control (SPC) is not concerned with 

time-varying sensor signals but key product or process quality variables. Recently, the 
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advancement of sensing technology has fueled increasing efforts to extend SPC methods from 

monitoring individual data points to linear functional profiles to nonlinear functional profiles. 

3.2.1 Monitoring of Linear Profiles 

In the literature, extensive studies have been conducted on the monitoring of linear 

profiles. Kang and Albin used linear regression models to characterize linear profiles, and further 

monitored the variations of model parameters to describe process and product quality [4]. Kim, 

Mahmoud and Woodall studied the performance of various control charts for the monitoring of 

linear profiles and recommended optimal charts for Phase I or Phase II monitoring [5]. Further, 

Mahmoud and Woodall proposed linear structured model for Phase I analysis of linear profiles in 

calibration applications [6]. Zou et al. designed a change-point model for monitoring linear 

profiles by detecting the shifts in the slope, intercept and standard deviation of linear models [7]. 

In addition, Mahmoud et al. reported a change-point model for monitoring linear profiles by 

segmented regression approaches [8].  

3.2.2 Monitoring of Nonlinear Profiles 

Furthermore, monitoring nonlinear profiles received increasing attentions as 

manufacturing processes generate more and more nonlinear data that cannot be adequately 

represented by linear models. Koh and Shi et al. developed a series of methods that integrate 

engineering knowledge with statistical methods (i.e., wavelet transformation) for tonnage signal 

analysis and fault detection in stamping processes [1, 2]. Jin and Shi developed 

“feature-preserving” data compression of stamping tonnage signals using wavelets [9], and 

further decompose press tonnage signals to obtain individual station signals in transfer or 

progressive die processes [10].  Huang and Kim et al. used principal curves and latent variable 

modeling methods to analyze tonnage signals for in-line monitoring of forging processes [11].  
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In addition, Zhou et al. developed an SPC monitoring system for cycle-based waveform 

signals that not only detect a process change, but also identify the location and estimate the 

magnitude of the process mean shift within the signal [12]. Zou et al. employed non-parametric 

regression, generalized likelihood ratio test, and multivariate exponentially weighted moving 

average (EWMA) to detect the changes in nonlinear profiles [13]. Paynabar and Jin investigated 

both within-profile and between-profile variations using mixed-effect model and wavelet 

transformation [14]. 

3.2.3 Limitations of Previous Methods 

However, most of previous work primarily focused on sample-based profiles in 

discrete-part manufacturing, but did not consider time-varying profiles in nonlinear dynamic 

processes (e.g., cardiovascular systems). Existing methods are not well suited for the detection of 

dynamic fault patterns in high-dimensional functional profiles from biological systems that are 

highly nonlinear and nonstationary.  

It may be noted that cardiac ECG signals possess some common characteristics: a) 

Within one cycle, the waveform shows nonlinear variations and different segments change 

significantly that correspond to different stages of cardiac operations. b) Between cycles, the 

waveform is similar to each other but with variations. c) Cardiac electrical activity is varying 

across space and time. Current practice predominantly utilizes time-domain projections (e.g., 

temporal ECG tracing) of space-time cardiac electrical activity. Such a projection does not fully 

utilize multi-dimensional sensing capabilities for decision making [15].  

As shown in Fig. 11, vectorcardiogram (VCG) signals monitor cardiac electrical activity 

along three orthogonal X, Y, Z planes of the body, namely, frontal, transverse, and sagittal 

[15-18]. Notably, VCG trajectories of myocardial infarction (red/dashed) yield a different spatial 
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path from the healthy controls (blue/solid). However, most previous works focused on the 

patterns (e.g., heart rate, ST segment, QT interval) in time-domain ECG signals, but overlooked 

spatiotemporal VCG signals. Therefore, in this study, we proposed the model-driven monitoring 

strategy for spatiotemporal functional profiles. 

 

Figure 11 VCG signals of control (blue/solid) and diseased subjects (red/dashed) [15]. 

3.2.4 Proposed Model-driven Strategy 

In this chapter, we developed a new model-driven parametric monitoring strategy for the 

detection of dynamic fault patterns in high-dimensional functional profiles that are both 

nonlinear and nonstationary.  

1) Sparse modeling of high-dimensional nonlinear profiles: A sparse basis function 

model is developed to represent high-dimensional functional profiles, which minimizes 

the number of basis functions involved but maintains sufficient explanatory power. As 

such, large amounts of data are reduced to a parsimonious set of model parameters (i.e., 
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weight, shifting and scaling factors in basis functions) while preserving the information. 

The model parameters and their derivatives can be used as features for the detection of 

process faults. However, the dimensionality of these features is high and can potentially 

lead to sensitive predictive models.  

2) Lasso-penalized feature selection for process monitoring and fault diagnosis: 

Therefore, we further utilize lasso-penalized logistic regression model to investigate 

“redundancy” and “relevancy” properties between these parameter-based features and 

fault patterns, so as to identify a sparse set of sensitive predictors from the large number 

of features for process monitoring and fault diagnostics.  

This chapter is organized as follows: Section II introduces the research methodology. 

Section III presents the materials and experimental results, and Section IV includes the 

discussion and conclusions arising out of this investigation.  

3.3 Research Methodology 

This paper is aimed at developing a new approach of model-driven parametric monitoring 

of high-dimensional nonlinear functional profiles that are nonlinear and nonstationary. Notably, 

the information hidden in large amount of sensing data is preserved in a parsimonious set of 

model parameters. In other words, nonlinear functional profiles can be reconstructed with the 

parameters and model structures.  As such, this provides a great opportunity to take advantage 

of sparse model parameters for the objectives of process monitoring and fault detection.  

Fig. 12 shows the overall flow chart of the proposed model-driven parametric monitoring 

methodology that is supported by sparse basis function modeling and lasso-penalized feature 

selection. Notably, multi-dimensional sensing gives rise to process data that are 

high-dimensional, nonlinear and nonstationary (also see Figs. 1 and 2). The present investigation 
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is embodied by two core components focusing on the development of model-driven parametric 

monitoring methodology. First, a sparse basis function model is designed to represent 

high-dimensional nonlinear functional profiles, thereby reducing large amount of data into a 

sparse set of parameters. Second, we utilized the lasso-penalized logistic regression model to 

investigate the “redundancy” and “relevancy” properties between features and fault patterns, 

thereby identifying a sparse set of sensitive predictors for process monitoring and fault 

diagnostics. It is remarkable that the proposed method is efficient in detecting the changes 

between cycles of the nonstationary profiles when it is applied to one single subject for real-time 

monitoring. In this paper, the 2-stage model is static because we aimed at classifying the faults 

from controls and the average profile is adopted. 

 

Figure 12 Flow diagram of the research methodology. 
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3.3.1 Model-driven Parametric Features 

Multi-sensor systems provide multi-directional views of the evolving dynamics of natural 

and engineered processes, thereby giving rise to high-dimensional functional profiles. If d 

sensors are used to record the cycle profile of length T, then the dimensionality of functional 

profiles is d × T. Notably, human heart is near-periodically beating to maintain vital living 

organs, and stamping machines are cyclically forming sheet metals during production. 

Monitoring process quality and fault conditions are more concerned with the variations of 

nonlinear waveforms between cycles. Here, we propose to represent the high-dimensional 

nonlinear profiles with the basis function model, and then monitor the variations of 

low-dimensional model parameters instead of the big data itself. In order to capture intrinsic 

characteristics in the data, we modeled the high-dimensional nonlinear profiles (see Fig. 4) as the 

superposition of M basis functions:  

𝒗(𝑡,𝒘) = 𝒘0 + ∑ 𝒘𝑗𝝍𝑗((𝒕 − 𝝁𝒋) 𝝈𝒋⁄ ) + 𝜺
𝑀

𝑗=1
 (1) 

where ψ(t) is the basis function, wj is the weight factor, μj is the shifting factor and σj is the 

scaling factor. Mathematically, shifting a basis function ψ(t) by μ means delaying its onset 

and is represented by ψ(t − μ). Scaling a basis function ψ(t) means either "stretching" or 

"shrinking" the function by a scale factor σ, i.e., ψ(t/σ).  

The objective is to optimize the representation of high-dimensional nonlinear profiles 

with a sparse basis function model: 

argmin [‖𝒗(𝑡) − 𝒘0 − ∑ 𝑤𝑗𝝍𝑗(𝒕)
𝑀

𝑗=1
‖

2

, {𝒘,𝑀,𝝍(𝒕)} ] (2) 
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Compact topological representation calls upon the minimization of the number of basis 

functions M and the optimal placement of basis function ψ(t). Model parameters w, μ, σ are 

adaptively estimated by the "best matching" projections of characteristic waves of 

high-dimensional profiles onto a dictionary of nonlinear basis functions (see Fig. 13). Our 

previous work has detailed the optimization algorithms to develop a sparse basis function 

representation of high-dimensional profiles [3]. Such a sparse representation reduces large 

amount of data to a limited number of model parameters while preserving the same information. 

Our previous experiments show that model goodness-of-fit is greater than 99.9% (R2) with a 

parsimonious set of 20 basis functions [3]. In this study, these parameters, i.e., weight, shifting 

and scaling factors, will be further investigated for the applications of process monitoring and 

fault detection.  

 

Figure 13 3D trajectory of VCG signals from basis function model (red/solid) and 

real-world data (blue/dashed) [3]. 

This present paper focuses on the extraction of parametric features from the sparse basis 

function model, and their further applications for fault detection. If M basis functions are used 
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to represent functional profiles of the dimensionality d × T, then the set of parameters is 

{wd×M, μd×M, σd×M}. The total number of parameters will be 3 × d × M.  In this study, the 

number of sensors d is 3 and the number of basis function M is selected to be 20 in order to 

achieve >99.9% goodness-of-fit. Hence, we have a total of 180 parameters that are adaptively 

estimated from the 3D VCG trajectory with d × T = 3 × 1000 data points. In addition, we 

added the absolute values of weights, residual sum of squares (RSS) and the RR interval (i.e., 

heart rate) in this present investigation. The absolute weights indicate the amplitudes of a 

heartbeat. They provide different information from the original weights which is combined with 

the directions. The residual sum of squares (RSS) indicates the remaining pattern after the model 

representation. It is the complement to the basis function modeling and they together form the 

entire original profiles. The RR interval shows the temporal beat-to-beat time of profiles. Thus 

the complete feature matrix is: 

𝑿 = {𝒘3×20,𝛍3×20,𝝈3×20,|𝒘|3×20,𝑹𝑺𝑺3×1, 𝑅𝑅1×1}                 (3) 

The lasso-penalized logistic regression model will be detailed in the next section for selecting a 

sparse set of sensitive predictors for process monitoring and fault detection. 

3.3.2 Lasso-penalized Logistic Regression 

Due to the high dimensionality of features x in the vector form of (x1, x2, … , xp)
T, there 

is an urgent need to select a sparse set of predictors that are sensitive to the process fault, i.e., the 

binary response variable y (0 or 1). Let p(x, β) be the probability for y to be a success 

(y = 1) and thus 1 − p(x, β) is the probability for y  to be a fault (y = 0), where β =

(β0, β1, β2, … , βp)
T is the coefficient vector. The logistic regression model is: 

𝑙𝑜𝑔 (
𝑝(𝒙,𝜷) 

1−𝑝(𝒙,𝜷) 
) = 𝜷𝑇𝒙                           (4) 
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The likelihood function of β = (β0, β1, … , βp)
T  given the observation data 

X = (x1, x2, . . , xn)
T, y = (y1, … , yn)

T is 

∏ 𝑝(𝒙𝑖, 𝜷)𝑦𝑖(1 − 𝑝(𝒙𝑖, 𝜷))1−𝑦𝑖𝑛
𝑖=1                       (5) 

As such, the log likelihood function becomes: 

𝐿(𝜷|𝑿, 𝒚) = ∑[𝑦𝑖 log(𝑝(𝒙𝑖, 𝜷)) + (1 − 𝑦𝑖) log(1 − 𝑝(𝒙𝑖, 𝜷))]

𝑛

𝑖=1

= ∑[𝑦𝑖𝜷
𝑇𝒙𝒊 − log(1 + 𝑒𝜷𝑇𝒙𝒊)]

𝑛

𝑖=1

 

(6)  

The lasso-panelized logistic regression is formulated to minimize the following objective 

function with the constraint that the upper limit of L1-norm of β is less than C, 

min
𝜷

−𝐿(𝜷|𝑿, 𝒚) 

subject to ‖𝜷‖1 ≤ 𝐶 

(7) 

This is equivalent to solve the following unconstrained optimization problem with λ be the 

regularization parameter: 

min
𝜷,𝜆

−𝐿(𝜷|𝑿, 𝒚) + 𝜆‖𝜷‖1 (8) 

Notably, there is a one-to-one correspondence between C in equation (7) and λ in equation (8). 

The optimal solution β of the unconstrained optimization problem given λ also solves (7) with 

C = ‖β‖1 = ∑ |βi|
p
i=1 . To solve this constrained optimization problem, let’s first obtain the 

solution to the unregularized logistic regression model. The objective function of unregularized 

logistic regression model is: 

min
𝜷

−𝐿(𝜷|𝑿, 𝒚) (9) 

From the Newton-Raphson algorithm, it may be noted that the update of parameters is obtained 

by approximating the objective function with the second-order Taylor expansion. Let β(k) be 
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the current parameters, then Newton-Raphson method finds the new set of parameters γ(k) 

based on the quadratic approximation as follows: 

 𝜸(𝑘) = (𝑿𝑇𝑾𝑿)−1𝑿𝑇𝑾𝒛 (10) 

where z = Xβ + W−1(y − p)  and W  is the diagonal matrix with (W)ii = p(xi, β)(1 −

p(xi, β)). As such, solving for γ(k) is equal to find the solution to the following weighted least 

squares problem: 

𝜸(𝑘)  = 𝑎𝑟𝑔 min
𝜸

‖(𝑾
1
2𝑿)𝜸 − 𝑾

1
2𝒛‖

2

2

 (11) 

For lasso-penalized logistic regression, there is a need to add the L1  constraint to the 

unregularized logistic regression so as to ensure ‖γ‖1 ≤ C, i.e., 

min
𝜸

‖(𝑾
1
2𝑿)𝜸 − 𝑾

1
2𝒛‖

2

2

 

subject to ‖𝜸‖1 ≤ 𝐶 

(12) 

As a result, the lasso-penalized logistic regression is transformed to an iteratively 

reweighted least square problem [19]. At each iteration, we update the W
1

2X and W
1

2z based on 

the new estimate of coefficients. After γ(k) is obtained, we update β(k) by  

𝜷(𝑘+1) = (1 − 𝜃)𝜷(𝑘) + 𝜃𝜸(𝑘) (13) 

where θ ∈ [0,1] is the learning rate for the parameter update. In this study, we adopted the 

coordinate descent algorithm [20] to solve the regularized problem in equation (12). If we 

write W
1

2X = X̌ and W
1

2z = y̌, only one βj is changed at each time while the other parameters 

βk (k ≠ j) stay the same. Table 2 summarizes the lasso-penalized logistic regression algorithms 

used in this study. It is suggested that the weighted average is the fastest way to find the next 

most appropriate vector of coefficients. 
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Table 2 Lasso-penalized Logistic Regression Algorithm 

Step 1:   Initialize β(0) = 0 

Step 2:   Start from k = 1, compute matrix W and  vector z  

Step 3: Coordinate descent algorithm to solve the L1 constrained least squares problem in 

equation (12) and find γ(k)  

3.1 Standardize the predictors, the columns of X̌ to have mean zero and unit norm.  

3.2  Initialize the coefficient vector γ = 0. 

3.3  For j = 1 to p 

γj
lasso = S(γj

ols, δ) = {

γj
ols − δ, if γj

ols > 0 and δ < |γj
ols| 

γj
ols + δ, if γj

ols < 0 and δ < |γj
ols| 

0,                                                 if δ ≥ |γj
ols|

 

where γj
ols  is the least squares estimation of γj  and γj

ols = ∑ x̌ij(y̌i −
n
i=1 y̌i

(j)) in which 

y̌i
(j) = ∑ x̌ikk≠j γk. 

3.4  Repeat step 3.3 until converge 

Step 4:  Set  β(k+1) = (1 − θ)β(k) + θγ(k)  

Step 5:  Evaluate the objective function in equation (7) at β(k+1) 

Step 6:  Stop if the stopping criterion is satisfied; otherwise, repeat step 2 to step 5 until the 

stopping criterion is satisfied. 

 

3.4 Materials and Experimental Results 

In this present investigation, we used the 3-dimensional nonlinear profiles from 388 

subjects (79 controls and 309 faults), available in the PhysioNet Database [21, 22]. Each 

functional profile recorded near-periodic electrical activity of human heart, and was digitized at 1 

kHz sampling rate with a 16-bit resolution over a range of 16.384 mV. We have developed the 

sparse basis function model for each functional profile. For modeling details, see our previous 

investigation [3]. Model-driven parametric features (see equation 3) include the weights wi for 

each basis, the shifting factor μi and the scaling factor σi of each basis, the absolute value of 

weights |wi|, the residual sum squares (RSS) and the RR interval. In total, there are 244 features 

for each subject. As shown in the following sections, we will further delineate the structures 

inherent to these features and identify a parsimonious set of sensitive predictors for process 

monitoring and fault diagnosis. 
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3.4.1 Parametric Feature Analysis 

First, we tested the statistical significance of parametric features using the 

Kolmogorov-Smirnov (KS) test. Two-sample KS test is utilized to test the differences in 

cumulative distribution function (CDF) between Controls and Faults [23]. Let Fi(x)and Fj(x) 

denote cumulative distribution functions of the ith and jth groups respectively and the hypotheses 

of KS test are: 

𝐻0: 𝐹𝑖(𝑥) = 𝐹𝑗(𝑥)  or  𝐻1: 𝐹𝑖(𝑥) ≠ 𝐹𝑗(𝑥) 

The test statistics (KS stat.) and critical values (KS crit.) are shown in the Fig. 5. The KS test 

statistic is compared with the corresponding critical value given by cα√
n1+n2

n1n2
= 1.36√

79+309

79×309
=

0.17, where n1 and n2 are the number of independent observations in corresponding groups, the 

significant level is α = 0.05, and cαis approximated as 1.36. If the KS statistic is greater than 

the critical value, the null hypothesis H0  will be rejected and the cumulative distribution 

functions of two groups are declared to be different at significant level of 0.05. Hence, the bigger 

the KS statistic, the more significant the feature is.  

 

Figure 14 The KS statistics for model-driven parametric features. 
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As shown in Fig. 14, there are more than 60% of features that have the KS statistic 

greater than 0.17. In particular, three significant groups have the KS statistic greater than 0.5 that 

are highlighted in purple circles. It may be noted that three features, namely WX2 (the weight of 

the second basis in X direction), ABSWX3 (the absolute value of weight of the third basis in X 

direction) and RSSx (Residual sum squares in X direction), yield the KS statistic > 0.58. The 

results of KS test show that most of model-driven parametric features are significantly different 

between control and fault conditions. It is worth mentioning that weight factors are the most 

significant group of features among all parametric features. 

     

Figure 15 The visualization of 𝐀𝐁𝐒𝐖𝐗𝟑 (i.e., the feature with highest KS statistic 0.73) in 

the forms of (a) scatter plot and (b) histogram. 
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Fig. 15 shows the visualization of ABSWX3 (i.e., the feature with highest KS statistic 

0.73) in the forms of time-series plot (a) and histogram (b). The values of ABSWX3 from the 

control group are marked in red, and the fault group is marked in blue. Both plots show distinct 

differences between the control and fault groups. Notably, the control group yields a bigger mean 

and variation than the fault group. It is remarkable because biomachine is operating in a vastly 

different way from mechanical machines. When the heart is healthy, it tends to be more active 

and dynamic. On the contrary, if the heart is diseased, degree of freedom is lost and its activity 

will not be as versatile as the healthy one. 

3.4.2 Feature Selection via Lasso-penalized Logistic Regression 

However, a large number of predictors tend to bring the “curse of dimensionality” 

problem, as well as the overfitting for the predictive modeling. Therefore, we adopted the 

lasso-penalized logistic regression model to shrink the number of predictors and identify a sparse 

set of sensitive features. By regularized learning, lasso-penalized logistic regression can also 

increase the model interpretability, as opposed to the transformed features with dimensionality 

reduction methods (e.g., principal component analysis). Fig. 16 shows the coefficient paths of all 

the predictors when the L1 constraint of parameters is increased. Three bolded paths indicate 

the first three predictors entered the model, i.e.,  ABSWX3, WX2 and ABSWX6. This selection is 

consistent with the results of Kolmogorov–Smirnov test in section III.A. If we only use these 3 

selected predictors, the logistic regression model yields an accuracy of 86.77% (with sensitivity 

88.90% and specificity 84.63%). The vertical blue line indicates an optimal regularization 

parameter that is identified using cross validation. 

Fig. 17 shows the variations of prediction errors with respect to the regularization 

parameter. Notably, as the number of selected features increases, the prediction error decreases to 
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a certain point and then increases. The optimal regularization parameter λopt is identified as the 

point with minimal cross-validation error plus one standard deviation, which is indicated in Fig. 

8 as the blue dashed line and the blue circle. Notably, the optimal regularization parameter λopt 

suggested the selection of 81 features, and achieved the accuracy of 97.13% (sensitivity 94.68% 

and specificity 99.60%). In addition, we also experimented to select the set of 10 features using 

lasso-penalized logistic regression and achieve the accuracy of 91.15% (sensitivity 89.70% and 

specificity 92.61%). It may also be noted that if we use all the 244 features and the logistic 

regression model without lasso penalization, the prediction accuracy is about 88.77%. It is 

evident that feature selection via Lasso penalization yields not only a simpler model but also 

much better performances. 

 

Figure 16 Coefficient path for lasso-penalized logistic regression model. 
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Figure 17 The variations of prediction errors vs. the regularization parameter in 

lasso-penalized logistic regression. 

3.5 Conclusion and Discussion 

Few, if any, previous works considered model-driven parametric monitoring strategy for 

high-dimensional nonlinear functional profiles generated from the operation of biomachine (e.g., 

human heart) that is highly nonlinear and nonstationary. Current practice predominantly utilizes 

time-domain projections (e.g., temporal ECG tracing) for diagnostic and prognostic applications. 

In addition, traditional SPC methods are not concerned about high-dimensional sensor signals 

and are limited in the capability to perform multi-sensor fault diagnostics. Notably, 

multi-dimensional sensing capabilities are not fully utilized for real-time process monitoring and 

fault diagnosis.  

This present study developed a new approach of model-driven parametric monitoring of 

high-dimensional nonlinear functional profiles. First, a sparse basis function model is designed to 

represent high-dimensional nonlinear functional profiles, thereby reducing large amount of data 
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into a sparse set of parameters. Second, we utilized the lasso penalized logistic regression model 

to investigate the “redundancy” and “relevancy” properties between features and fault patterns, 

thereby identifying a sparse set of sensitive predictors for fault diagnostics. Experimental results 

show that there are more than 60% of features that have the KS statistic greater than the critical 

value 0.17, indicating significantly differences between control and fault conditions. Further, the 

lasso-penalized logistic regression model yields a superior accuracy of 97.13% with a 

parsimonious set of 81 features. The developed sensor-based methodology for model-driven 

parametric monitoring facilitates the modeling and characterization of high-dimensional 

nonlinear profiles and provides effective predictors for real-time fault detection, thereby 

promoting the  understanding of fault-altered spatio-temporal patterns in the complex natural 

and engineered systems. 
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CHAPTER 4: SELF-ORGANIZING NETWORK FOR VARIABLE CLUSTERING AND 

PREDICTIVE ANALYTICS 

 

Rapid advancement of sensing and information technology brings the big data, which 

presents a gold mine of the 21st century. However, big data also brings significant challenges for 

data-driven decision making. In particular, it is not uncommon that a large number of variables 

(or features) underlie the big data. Complex interdependence structures among variables 

challenge the traditional framework of predictive modeling. This paper presents a new 

methodology of self-organizing network for variable clustering and predictive modeling. 

Specifically, we developed a new approach, namely nonlinear coupling analysis to measure 

nonlinear interdependence structures among variables. Further, all the variables are embedded as 

nodes in a complex network. Nonlinear-coupling forces move these nodes to derive a 

self-organizing topology of network.  As such, variables are clustered as sub-network 

communities in the space. Experimental results on simulation studies and real-world data 

demonstrated that the proposed methodology not only outperforms traditional variable clustering 

algorithms such as hierarchal clustering and oblique principal component analysis, but also 

effectively identify interdependent structures among variables and further improves the 

performance of predictive modeling. The proposed new idea of self-organizing network is 

generally applicable for predictive modeling in many disciplines that involve a large number of 

highly-redundant variables and the complex interdependence structures among the variables, e.g., 

nonlinear and asymmetric interdependence. 
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This paper is motivated by the need to handle complex interdependence structures among 

a large number of variables that underlie the big data. This paper presents a novel approach of 

self-organizing variable clustering that embeds each variable as a node in the complex network, 

and then leverages nonlinear-coupling forces to derive a self-organizing network. As a result, 

sub-network communities delineates the cluster communities delineates the cluster structure of 

variables. Experimental results in both simulation studies and real-world case studies 

demonstrated effectiveness and robustness of the proposed model to improve the performance of 

predictive modeling. 

4.1 Introduction 

Predictive analytics leverages information and patterns extracted from large amounts of 

data to predict outcomes and drive decisions or actions. It is extensively used in a variety of areas, 

e.g., business, healthcare and manufacturing. Predictive outcomes can be categorized into three 

different types: rankings, decisions or estimations. In business, online retailers strive to increase 

sales by using predictive analytics to rank the profitable levels of customers and further provide 

them with favorite products [1]. In healthcare, professionals use predictive analytics to extract 

information from clinical data and exploit data-driven patterns for better medical decision 

making [2, 3]. In manufacturing, predictive analytics helps estimate the degradation trajectory so 

as to prevent potential failures of manufacturing equipment and defective products [4]. Indeed, 

predictive analytics is critical to increasing the companies’ profits, improving the health of our 

society, and enhancing the performance of manufacturing systems. 

As a result, modern industries are investing a variety of sensing technology, data centers 

and information systems to increase the information visibility. For examples, retail companies 

collect large amounts of transactional data about their customers, suppliers and store operations 
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to facilitate marketing research and drive revenue improvements [1]. Large-scale manufacturing 

systems deploy thousands of networked sensors to record intrinsic details of production 

operations for performance improvements [4]. Healthcare systems in the 21st century 

increasingly adopt electronic health records, advanced biomedical sensing and patient 

monitoring systems to assist in the process of clinical decision making [2, 3]. Advanced sensing 

and data acquisition technology bring the new era of big data. This provides an unprecedented 

opportunity for predictive analytics. 

However, high dimensionality and complex structures of big data pose significant 

challenges on traditional methodologies in predictive analytics. Realizing the full potentials of 

big data for predictive analytics hinges upon the development of new methodologies that 

effectively handle the high dimensionality of variables and complex interdependencies among 

variables (predictors). It is not uncommon that a large number of variables underlie the big data, 

which brings the issue of “curse of dimensionality” in predictive analytics. When the 

dimensionality increases, large amounts of training data are required to learn predictive models. 

Notably, the “curse of dimensionality” increases means squared errors (MSE) and the bias of 

predicted responses [5]. On the other hand, complex interdependence structures among variables 

pose a new challenge on predictive analytics. It is well known that a higher correlation (>0.90) 

between variables (collinearity) leads to more sensitive estimations of parameters in predictive 

models (i.e., increased variances of estimation) [6]. In addition, complex systems often exhibit 

nonlinear coupling and synchronization behaviors [7]. As such, there are nonlinear 

interdependence structures among process variables of complex systems. Linear and nonlinear 

redundancies among variables impact the performance of predictive analytics. Therefore a 

predictive strategy considering interdependent structures is in urgent need. 
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In the literature, variable selection and variable clustering are widely used to address 

these challenges. For example, generalized linear models (GLM) are often integrated with 

shrinkage methods to optimize model sparsity and improve the prediction accuracy. Examples of 

shrinkage and selection methods include best-subset selection [8], ridge regression [9], LASSO 

[10], least angle regression [11] and elastic net [12]. It is worth mentioning that most of existing 

variable selection methods focus on the relevancy between predictors and response variables. 

Interdependent structures among predictors are often overlooked, or not explicitly investigated. 

On the other hand, variable clustering depends on similarity measurements between variables 

such as linear correlation or mutual information [13]. Yet, linear correlation cannot capture 

nonlinear interdependences among variables. Mutual information characterizes linear and 

nonlinear correlation, but requires the stationarity assumption [13]. Latent-variable methods are 

also commonly used for variable clustering, e.g., oblique principal component clustering (OPCC) 

[14]. However, Oblique rotation and principal component analysis are based on linear 

projections of variables. As such, nonlinear interdependences among variables are not fully 

considered. Notably, variable clustering mainly focuses on the redundancy among variables with 

neglecting the relevancy between predictors and the response variables. New methodologies that 

integrate variable clustering with variable selection to improve effectiveness and efficiency of 

predictive analytics are urgently needed. 

In this paper, we developed a new methodology of self-organizing network that leverages 

advantages of variable clustering and variable selection to investigate both redundancy and 

relevancy among variables for improving the performance of predictive modeling. Specifically, 

we developed a new approach, namely nonlinear coupling analysis, to measure nonlinear 

interdependence structures among variables. Further, we embedded these variables are nodes in a 



 

68 

complex network. Nonlinear-coupling forces move these nodes to derive a self-organizing 

topology of network. As such, variables are clustered as sub-network communities in the space. 

Experimental results in both simulation studies and real-world case studies demonstrated that the 

proposed methodology not only outperforms traditional variable clustering algorithms such as 

hierarchal clustering and oblique principal component analysis, but also effectively identify 

interdependent structures among variables and further improves the performance of predictive 

modeling at the same time. 

The reminder of this chapter is organized as follows: Section II reviews the research 

background; Section III presents the methodology; Section IV contains experimental design and 

results of simulation study; Section V shows the results of a real-world case study that extract 

model parameters from vectorcardiogram (VCG) signals for the identification of myocardial 

infarctions; and Section VI includes the conclusions arising out of this investigation. 

4.2 Research Background 

Variable clustering is aimed at detecting subsets of homogeneous variables and then 

clustering them into the same group, in which variables have stronger interrelations to each other 

than to those in other groups. It is worth mentioning that variable clustering is different from data 

clustering. As shown in Fig. 18 (a), data clustering separates samples into clusters, where each 

point represents a data sample, X-axis is the dimension of variable 1 and Y-axis is the dimension 

of variable 2. Here, each data point has two coordinates, e.g., (1.26, -3.36) represents a data 

sample in the 2-dimensional space. Data samples are clustered based on the distance measure, 

e.g., Euclidean distance. Data clustering is an unsupervised method to group data samples into 

homogeneous clusters based on distance measures. However, Fig. 18 (b) illustrates the clustering 

results for 21 variables, each of which has 1000 data samples. For example, the variable X18 
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represents a series of 1000 data samples. Notably, each point in Fig. 18 (b) is a variable instead 

of a data sample. Variable clustering considers the interdependence structure among variables, 

e.g., correlation or mutual information. The Pearson’s correlation between variables between 

variables x1 and x2 is 

𝜌𝒙1,𝒙2
=

cov(𝒙1, 𝒙2)

𝜎𝒙1
𝜎𝒙2

=
𝐸[(𝒙1 − 𝜇𝒙1

)(𝒙2 − 𝜇𝒙2
)]

𝜎𝒙1
𝜎𝒙2

 (1) 

where cov(x1, x2) is the covariance between x1 and x2, σx1
 is the variance of x1, σx2

 is the 

variance of x2, E is the expected value operator, μx1
 and μx2

are means of x1 and x2 . The 

Pearson’s correlation only measure the linear relationship between x1 and x2. Further, mutual 

information [13] is widely used to quantify nonlinear correlation between variables, i.e.,  

𝑀𝐼𝒙1,𝒙2
= ∑∑𝑃𝑟(𝒙1, 𝒙2)log (

𝑃𝑟(𝒙1, 𝒙2)

𝑃𝑟(𝒙1)𝑃𝑟(𝒙2)
)

𝒙1𝒙2

 (2) 

In the literature, both Pearson’s correlation and mutual information were integrated with 

hierarchical clustering (HC) [15] for variable clustering. This clustering procedure is either done 

in the agglomerative way or in the divisive way. For example, each variable is a singleton cluster 

in the first step of agglomerative HC. Then two closest clusters are merged into one cluster. The 

recursive merging continues to move up along the hierarchy until the stopping criteria is satisfied, 

e.g., the maximum number of clusters or the maximum group-average (GA) dissimilarity. The 

criteria of group average measures the intergroup dissimilarity as the average dissimilarity 

between two clusters, i.e., 

           𝐷𝐺𝐴(𝐶𝑖, 𝐶𝑗) =
1

𝑁𝐶𝑖
𝑁𝐶𝑗

∑ ∑ 𝐷𝑥𝑖𝑥𝑗

𝑥𝑗∈ 𝐶𝑗𝑥𝑖∈𝐶𝑖

 (3) 

where NCi
 and NCj

 are the number of variables in the cluster Ci and Cj, variables xi and 𝑥𝑗 

are in the clusters of Ci and Cj, respectively, D𝑥𝑖𝑥𝑗
 is the dissimilarity between variables xi 
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and 𝑥𝑗 , which is usually calculated as 1 − 𝜌𝑥𝑖 ,𝑥𝑗
 or 1 − 𝑀𝐼𝑥𝑖 ,𝑥𝑗

 depending on the 

measurement of dissimilarity. 

However, linear correlation cannot adequately capture nonlinear interdependence among 

variables. Also, both linear correlation and mutual information measure symmetric 

interdependence between variables. In other words, x1 and x2 in equation (1) or equation (2) 

can be placed interchangeably without impacting the correlation measures. In fact, HC is only 

applicable when dissimilarity measures are symmetric. However, it is not uncommon that the 

interdependence structure between two variables are asymmetric, e.g., Pr(x1|x2) ≠ Pr(x2|x1). 

In other words, information transfer between x1 and x2 is not necessarily symmetric. The presence 

of nonlinear and asymmetric interdependence structures poses a significant challenge for 

variable clustering. Further, HC is not a dynamic approach. In other words, we cannot relocate 

the variables once the merge is done for two closest clusters. If two variables are ‘incorrectly’ 

clustered at the early stage, there is no adaptive step in the later stage to make corrections.  

 

Figure 18 (a) Data clustering with each point representing a data sample and (b) variable 

clustering with each point representing a variable. 
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In addition, latent-variable methods such as oblique principal component clustering 

(OPCC) [14] are widely used for variable clustering. Suppose Xn×p = [x1, x2, … xp], xi =

[xi1, xi2, … , xin]
T is the data matrix of n rows representing n observations and p columns 

representing p variables. Without the loss of generality, we standard the variables in data matrix X to 

have zero mean and standard deviation. PCA transforms the data matrix into the orthogonal 

space, where a sparse set of (q ≤ p) principal components (PCs) preserve most of information 

in original data [16]. These PCs are latent variables which are linear projections of original 

variables. The k-th (𝑘 = 1,2,… , 𝑞) PC is calculated as 

𝑿𝒛𝑘 = 𝒛𝑘1𝒙1 + 𝒛𝑘2𝒙2 + ⋯+ 𝒛𝑘𝑝𝒙𝑝 = ∑𝒛𝑘𝑗𝒙𝑗

𝑝

𝑗=1

 (4) 

where zk = [zk1, zk2, … , zkp]
T is the k-th eigenvector with a unity norm. The eigenvector zk is 

derived by maximizing the variance of the k-th PC (i.e., 𝑿𝒛𝑘 ), while meeting with the 

constraints: (1) eigenvectors are orthogonal to each other; (2) PCs are ordered according to the 

magnitude of variances 

argmax
𝒛𝒌

𝒗𝒂𝒓(∑𝒛𝒌𝒋𝒙𝒋

𝒑

𝒋=𝟏

) = argmax
𝒛𝒌

𝒛𝒌
𝑻 𝜮𝒛𝒌 

𝑠. 𝑡.       𝒛𝑘
𝑻𝒛𝑖 = 0  𝒛𝑘

𝑻𝒛𝑘 = 1 (𝑖 = 1,2,… , 𝑘 − 1) 

(5) 

where Σ = XTX is the covariance matrix of X. 

Although PCA orthogonalizes the variables and tackles the multicollinearity issue, it is 

limited in the capability to interpret data matrix in the original input space. Such an interpretation 

is critical to cluster variables in the input space. Therefore, the OPCC method was further 

developed to enhance the interpretability of principal components and identify the cluster 

structure of variables. The OPCC method rotates the eigenvector matrix Z to obtain a new one 
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B = ZΩ that has a simple structure. In other words, oblique rotation is aimed at obtaining a 

sparse matrix B in which most of the elements are close to 0. The Varimax criterion is to find 

the oblique rotation matrix Ω that maximizes the function: 

max
Ω 

∑[∑𝑏𝑖𝑗
4 − (∑𝑏𝑖𝑗

2

𝑞

𝑗=1

)

2𝑞

𝑗=1

]

𝑝

𝑖=1

 (6) 

where bij are the element in the ith row and jth column of new loading matrix B. See details of 

oblique rotation, for example, in [17]. After the oblique rotation, the simple structure of B 

facilitates the identification of cluster structures of variables. The steps for oblique principal 

component clustering (OPCC) are as follows: 

1) Perform principal component analysis of all variables and find the first two PCs. 

2) Oblique rotation of eigenvectors, Z, to obtain the B. 

3) Calculate the correlation between all variables and the rotated component, and then 

assign each variable to one of the two clusters based on the higher squared correlation. 

4) Repeat the binary split for each cluster.  

5) Stop the recursive split when the second eigenvalue is less than 1. 

Many previous studies showed that OPCC achieves better clustering results than HC. 

However, both methods are based on linear transformation and are limited in the capability to 

handle nonlinear interdependences among variables. Here, we show a motivating example to 

evaluate the performance of HC and OPCC for variable clustering. Four clusters of variables are 

generated as follows:  

{𝒙1,  𝒙2 = |𝒙1|,         𝒙3 = 𝒙1
2,           𝒙4 = 𝒙1

3,          𝒙5 = 𝒙1
4};  

{𝒙6,  𝒙7 = |𝒙6|,         𝒙8 = 𝒙6
2,           𝒙9 = 𝒙6

3,          𝒙10 = 𝒙6
4};  

{𝒙11, 𝒙12 = 𝒙11(𝑡 + 3),   𝒙13 = 𝒙11(𝑡 + 5),    𝒙14 = 𝒙11(𝑡 + 7),    𝒙15 = 𝒙11(𝑡 + 9)};  
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{𝒙16, 𝒙17 = 𝒙16(𝑡 + 10),  𝒙18 = 𝒙16(𝑡 + 20),   𝒙19 = 𝒙16(𝑡 + 30),   𝒙20 = 𝒙16(𝑡 + 40)}. 

where x1  and x6  are independent standard normal variables, x11  is a nonlinear variable 

sampled from logistic map  x11(n + 1) = 3.8x11(n)(1 − x11(n)) , x16  is a second-order 

autoregressive variable that is nonlinearly coupled with xLorenz, x16(n) = 1.095x16(n − 1) −

0.4x16(n − 2) + 0.7εn + 0.3xLorenz
2 , where εn is Gaussian noise,  xLorenz is the x-component 

of a Lorenz system: x′ = 10(y − x), y′ = x(28 − z) − y,z′ = xy −
8

3
z with time step 0.01. The 

sample size of each variable is 1000.  

Fig. 19 (a) shows the dendrogram of hierarchical clustering for the motivating example. 

Fig. 19 (b) shows the clustering results of OPCC. It may be noted that both HC and OPCC 

cannot identify the cluster structure of variables. This is mainly due to the fact that nonlinear and 

asymmetric interdependence structures among variables are not considered. Very little work has 

been done to cluster a large number of variables with complex structures of nonlinear and 

asymmetric interdependences. In order to tackle these issues and fill the gap, we propose a new 

strategy that integrates nonlinear coupling analysis with self-organizing networks for variable 

clustering and predictive modeling. 

 
 

Figure 19 Clustering results for motivating example using (a) HC and (b) OPCC. 
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4.3 Research Methodology 

In this section, we will first introduce nonlinear coupling analysis to characterize and 

measure nonlinear interdependence structures among variables. Second, we develop a 

self-organizing network algorithm to cluster variables that involve nonlinear and asymmetric 

interdependences. Finally, we orthogonalize variables in each of the self-organized clusters and 

then integrated them with group elastic-net model to improve the performance of predictive 

modeling. We will illustrate the proposed methodology using the motivating example introduced 

in section II. 

4.3.1 Nonlinear Coupling Analysis 

In this investigation, we propose to characterize and quantify nonlinear interrelationship 

among variables. Traditionally, such interrelationships are estimated with methods such as 

correlation and mutual information. As aforementioned, correlation is a second-order quantity 

evaluating merely linear dependency among data. Mutual information quantifies both linear and 

nonlinear dependency between variables but requires stationarity in the computation. Both of 

them are limited in the ability to handle nonlinear and asymmetric interdependence structures. 

Therefore, we performed nonlinear coupling analysis by exploiting cross recurrences 

between two variables in the feature space [18, 19]. Denote 𝒯(x1(m) ) as the recurrence 

neighborhood of x1(m) containing the k closest neighbors ofx1(m). Let us assume that their 

indices are m ∈ {n1, n2, … , nk}. If there are some relations between two variables x1 and x2, 

then the recurrence of x1 will also imply a recurrence of x2, at least with a greater than zero 

probability. In other words, x2(m) with the same indices m ∈ {n1, n2, … , nk} should also be 

closer to x2(m) than a average randomly chosen vector. Therefore, the quantity of nonlinear 

interdependence is defined as: 
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  𝐼𝒙1𝒙2
= 〈

𝑟𝑚(𝒙2) − 𝑑𝑚(𝒙2|𝒙1)

𝑟𝑚(𝒙2) − 𝑑𝑚(𝒙2)
〉𝑛 (7) 

where 〈∙〉m is the ergodic average over the range of variable 𝒙2, and 𝑑𝑚(𝒙2|𝒙1) is the average 

conditional distance: 

 𝑑𝑚(𝒙2|𝒙1) =
1

𝑘
∑ (𝒙2(𝑚) − 𝒙2(𝑖))

2

𝑖∈{𝑛1,𝑛2,…,𝑛𝑙}

 (8) 

where {𝑛1, 𝑛2, … , 𝑛𝑙} is the indices determined from the variable 𝒙1. In addition, 𝑑𝑚(𝒙2) is 

the average distance of the k closest neighbors of 𝒙2(𝑚): 

 𝑑𝑚(𝒙2) =
1

𝑘
∑ (𝒙2(𝑚) − 𝒙2(𝑖))

2

𝒙2(𝑖)∈𝒱(𝒙2(𝑚))

 (9) 

and 𝒱(𝒙2(𝑚)) is the true neighborhood of 𝒙2(𝑚). The average distance of k randomly chosen 

𝒙2(𝑖) to 𝒙2(𝑚) is 𝑟𝑚(𝒙2) = 〈[𝒙2(𝑚) − 𝒙2(𝑖)]
2〉𝑘. If 𝐼𝒙1𝒙2

 is small (close to zero), then there 

is no evident interdependence between variables 𝒙1 and 𝒙2, because the true neighbors of 

𝒙2(𝑚) are much closer to 𝒙2(𝑚) than those neighbors based on the recurrences in the 𝒙1 

process. When 𝐼𝒙1𝒙2
 is close to unity, there is a strong interdependence between 𝒙1 and 𝒙2. 

Fig. 20 shows the matrices of both linear correlations and nonlinear interdependences among 

variables that are computed from the motivating example. The red color represents a high 

interdependence, while the blue color indicates no interdependence. Note that nonlinear 

interdependence in Fig. 20 (b) is significantly different from linear correlation in Fig. 20 (a). 

Nonlinear coupling analysis provides a better characterization of complex interdependence 

structure (i.e., nonlinear and asymmetric) among variables than linear correlations. It is 

remarkable that the nonlinear interdependence reveals some interdependent structures that are 

not found by correlation. 
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Figure 20 Matrices of (a) linear correlations and (b) nonlinear interdependences. 

4.3.2 Self-organizing Network for Variable Clustering 

Fig. 20 (b) shows that nonlinear interdependence is not symmetric. Traditional 

similarity-based clustering algorithms are not applicable. Latent-variable methods using oblique 

PCA or factor analysis do not fully consider nonlinear interdependences among variables. To 

tackle these challenges, we develop a self-organizing network algorithm to cluster variables that 

involve nonlinear and asymmetric interrelationships. Notably, this present investigation extends 

our previous work from self-organizing topology of recurrence networks [20] to self-organizing 

clustering of highly-redundant variables. 

In the literature, very little work has been done to cluster variables with complex 

nonlinear and asymmetric interdependences. We propose to treat variables as nodes in the 

network and the nonlinear interdependences between variables are treated as the weights of links, 

which is varying from 0 to 1. Let G = {V, E} be the directed and weighted network, where V is 

the set of nodes and E is the set of edges. The spring-electrical model assigns two forces, i.e., 

attractive and repulsive forces between nodes. The repulsive force exists between any pair of 
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nodes while the attractive force exists between the nodes that have a higher relation characterized 

by nonlinear interdependence. 

The repulsive force is defined as 

               𝑓𝑟(𝑖, 𝑗) = −
1

‖𝒔(𝑖) − 𝒔(𝑗)‖2
∗

1

𝑒
𝛼|𝐼𝒙𝑖𝒙𝑗

|
 (10) 

where α is a system parameter, 𝒔(i) and 𝒔(j) are spatial locations of node i and node j. The 

repulsive force is inversely proportional to the nonlinear interdependence between two nodes 

(variables), because a bigger repulsive force is expected to separate two nodes when they have a 

smaller interdependence. The attractive force is defined as 

       𝑓𝑎(𝑖, 𝑗) = ‖𝒔(𝑖) − 𝒔(𝑗)‖2 ∗ 𝑒
𝛾|𝐼𝒙𝑖𝒙𝑗

|
, 𝐼𝒙𝑖𝒙𝑗

≠ 0 (11) 

where γ  is the system parameter. The attractive force is proportional to the nonlinear 

interdependence between two nodes (variables), because a bigger attractive force will pull two 

nodes closer when they have a higher interdependence. The combined force on a node i is the 

summation of all repulsive forces and attractive forces on the node: 

      𝑓(𝑖, 𝒔, 𝛼, 𝛾) = ∑−

1

𝑒
𝛼|𝐼𝒙𝑖𝒙𝑗

|

‖𝒔(𝑖) − 𝒔(𝑗)‖3

𝑖≠𝑗

(𝒔(𝑖) − 𝒔(𝑗)) 

+∑𝑒
𝛾|𝐼𝒙𝑖𝒙𝑗

|
‖𝒔(𝑖) − 𝒔(𝑗)‖

𝑖↔𝑗

(𝒔(𝑖) − 𝒔(𝑗)) 

(12) 

where 𝒔(i) − 𝒔(j) is the force-directional vector, which is separated from fr(i, j) and fa(i, j) to 

define the direction of combined force f(i, 𝒔, α, γ). The attractive and repulsive forces drive the 

network to self-organize and form a topological structure. The objective of self-organizing 

process is to identify spatial locations of nodes by minimizing the energy of the network, i.e., the 

summation of squared combined forces on each node: 
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𝒔 ∗ = argmin
𝒔

{∑𝑓2

𝑖∈𝑵

(𝑖, 𝒔, 𝛼, 𝛾)} (13) 

The self-organizing process derives a topological structure of the network of variables by 

minimizing the total energy, thereby clustering homogeneous variables into sub-network 

communities. It is remarkable that the variations of system parameters α and γ will not change 

the structure of the clustering but yield a similar structure only in different scales. Our previous 

investigation detailed the algorithms to derive the self-organizing network topology by 

minimizing the total energy function [20]. 

 

Figure 21 Self-organizing network for clustering 20 variables: (a) Initial topological 

structure, (b) topological structure after 200 iterations, (c) topological structure after 400 

iterations and (d) final topological structure. 

Fig. 21 shows the self-organizing organizing process for clustering 20 variables in the 

motivating example. At the beginning, 20 variables are randomly distributed in a 3-dimensional 

space (see Fig. 21 (a)). The topological structures after 200 and 400 iterations are shown in Fig. 
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21 (b) and (c). The final structure after 600 iterations is shown in Fig. 21 (d).  After 600 

iterations, the self-organizing process converges and identifies the underlying cluster structures 

of 20 variables, which demonstrates the superior performance of self-organizing networks over 

previous methods.  

Our proposed self-organizing network shares some similarities with minimum energy 

design [21] in the field of design of experiments and self-organizing map [22, 23] in the domain 

of neural network. However, the spatial location of a design point will not change in the 

minimum energy design when the experiment has been conducted at this setting. The algorithm 

will optimize the spatial location of the next design point given that spatial locations of previous 

design points are fixed. In addition, the proposed approach of self-organizing variable clustering 

is vastly different from self-organizing map in neural network, which learns self-organizing 

positions of neurons based on distance measures in the data space. Nonetheless, our proposed 

research seeks to self-organize the data space of variables.  

4.3.3 Predictive Modeling with Highly-redundant Variables 

The self-organizing network drives highly-redundant variables into sub-network clusters. 

The variables in each cluster bring the redundant information. It is necessary to delineate the 

structure of latent variables hidden in each cluster of homogeneous variables. As such, we 

propose to minimize the redundancy within the same cluster before grouped variables are used in 

predictive models. Assume we have M clusters and there are K variables, xm1, xm2, … , xmKm
, 

in the m-th cluster. The Gram-Schmidt orthonormalization (GSO) minimizes the redundant 

information by transforming original variables (xm1, xm2, … , xmKm
) into orthonormal set of new 

variables (wm1, wm2, … ,wmKm
) in each cluster. It begins by normalizing xm1, 
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vm1 = xm1;     wm1 =
vm1

‖vm1‖
 (14) 

where wm1 is the normalized variable of 𝒙m1. The second orthogonal vector vm2 is obtained 

as denoted by, 

𝒗𝑚2 = 𝒙𝑚2 − ⟨𝒙𝑚2, 𝒘𝑚1⟩𝒘𝑚1;  𝒘𝑚2 =
𝒗𝑚2

‖𝒗𝑚2‖
   (15) 

where 𝒘m2 is the second orthonormalized vector. The process is repeated to obtain the k-th 

orthogonal vector 𝒗mk 

𝒗𝑚𝑘 = 𝒙𝑚𝑘 − ∑ ⟨𝒙𝑚𝑘, 𝒘𝒎𝒊⟩𝒘𝒎𝒊
𝑘−1
𝑖=1 ;      𝒘𝑚𝑘 =

𝒗𝑚𝑘

‖𝒗𝑚𝑘‖
          (16) 

where wmk is the k-th orthonormalized vector. Then we leverage orthonormalized variables in 

each cluster to develop a group elastic-net model: 

max
𝛽

∑[𝑦𝑖 log (ℎ𝛽(𝑤, 𝑖)) + (1 − 𝑦𝑖)log (1 − ℎ𝛽(𝑤, 𝑖))]2
𝑛

𝑖=1

 

ℎ𝛽(𝑤, 𝑖) =
1

1 + exp [−(𝛽0 + (∑ ∑ 𝑤𝑘(𝑖)𝛽𝑘
Km
𝑘=1

𝑀
𝑚=1 ))]

 

           𝑠. 𝑡.   ∑ ∑ (𝛼𝜷𝑚𝑘
2 + (1 − 𝛼)|𝜷𝑚𝑘|) ≤ 𝜆

𝐾𝑚
𝑘

𝑀
𝑚=1  

(17) 

where 𝜃 and 𝜆 are penalization parameters. Further, we will evaluate and validate the proposed 

approach using the experimental study, as detailed in the next section. 

4.4 Simulation Study 

In this section, simulation experiments were designed to evaluate the performance of 

self-organizing variable clustering (SOC) algorithms. On the basis of 20 variables in the 

motivating example, we further utilized 3 b-spline basis functions to expand each variable to 3 

derived variables. Therefore, a total of 60 variables are generated in 4 groups to evaluate the 

proposed methodology.  
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4.4.1 Data Generation 

The logistic function ℎ𝛽(𝑥) is computed using a sparse set of variables selected from the 

original 20 variables: 

ℎ𝛽(𝑥) =
1

1+𝑒𝑥𝑝 [−(∑ 𝑥𝑖𝛽𝑖+𝑐𝜀
20×𝑝𝑠
𝑖=1

)]
                       (18) 

where 𝑝𝑠 denotes the sparsity level (i.e., the percentage of variables involved to derive the 

response), c is the amplitude of random noises, and βi is the model parameter that follows the 

distribution of N(μj, 0.1) , μj = 1 + (j − 1) × 0.3 ,  j = 1,2, … ,20 . The decision boundary 

ℎ𝛽(𝑥) = 0.5 is used to generate the binary response variable 𝑦. 

4.4.2 Experimental Design 

As shown in Fig. 22, a 3-way layout experiment was designed to evaluate the 

performance of SOC algorithms with three factor groups, i.e., signal-noise-ratio (SNR), sparsity, 

and sample size. The sample sizes of training set 𝑛1, validation set 𝑛2 and testing set 𝑛3 are 

varied in three levels (i.e., 50/50/100, 100/100/200 and 200/200/400). The sparsity level 𝑝𝑠 is 

changed from 10%, 40% to 70%. The SNR level is varied from no noise, 1, 2, to 3, where SNR 

is the power ratio between the signal and the background noise, i.e., var(∑ 𝒙𝑖𝛽𝑖
20×𝑝𝑠
𝑖=1 )/var(𝑐𝜀). 

As a result, we generated 36 treatment levels of experimental factors and further evaluate and 

validate the performance of clustering algorithms. In this present investigation, we compared the 

performance of self-organizing variable clustering (SOC) with no clustering, hierarchical 

clustering (HC) and Oblique Principal Components Clustering (OPCC). The training dataset is 

used to train the predictive model, and the validation dataset is to optimally select the 

penalization parameters in equation (17). Model performance is only computed from the testing 

dataset. Each treatment level is replicated for 100 times.  
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Figure 22 Cause-and-effect diagram for performance evaluation of the proposed 

self-organized variable clustering algorithm.  

4.4.3 Predictive Modeling with Variable Clustering 

Table III summarizes the averages and standard deviations of prediction errors from 100 

replicates with GSO of variables in each cluster. Note that the numbers in the parenthesis are the 

standard errors over 100 replicates. As shown in Table 1, all variable clustering methods yield 

better performance than no clustering of variables. In particular, self-organizing variable 

clustering outperforms the other two methods and achieves a relatively better performance. No 

clustering yields the highest prediction errors at all the 36 treatment levels. The comparison 

results are not surprising because Fig.2 and Fig.4 show that self-organizing clustering identifies 

cluster structures better than HC and OPCC. The proposed self-organizing algorithm achieves 

better performance in 23 out 36 treatment levels in the experiments. Characterizing nonlinear 

interdependence structures among variables helps improve the performance of predictive 

modeling. In addition, Table 3 shows that the prediction error decreases as more data samples are 

available for variable clustering and predictive modeling. Adding noises to data deteriorates the 
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predictive performance of models. Finally, it is worth mentioning that model performance is 

better when the sparsity level is lower. 

Table 3 Averages and standard deviation of prediction errors for simulation study from 100 

replications with Gram-Schmidt orthonormalization  

SNR Sample Size 
No Clustering GSO-HC GSO -OPCC GSO-SOC 

S=0.1 S=0.4 S=0.7 S=0.1 S=0.4 S=0.7 S=0.1 S=0.4 S=0.7 S=0.1 S=0.4 S=0.7 

1 

n1 = 50, 

n2=50,n3=100 

0.361 0.489 0.508 0.278 0.413 0.406 0.259 0.335 0.381 0.252 0.340 0.381 

(0.06) (0.05) (0.05) (0.05) (0.09) (0.09) (0.05) (0.07) (0.09) (0.03) (0.09) (0.06) 

n1 = 100, 

n2=100,n3=200 

0.351 0.456 0.430 0.276 0.304 0.299 0.251 0.301 0.295 0.278 0.335 0.307 

(0.05) (0.04) (0.06) (0.03) (0.04) (0.04) (0.03) (0.04) (0.03) (0.03) (0.06) (0.03) 

n1 = 200, 

n2=200,n3=400 

0.283 0.328 0.337 0.270 0.298 0.280 0.264 0.294 0.255 0.259 0.266 0.283 

(0.02) (0.02) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) 

2 

n1 = 50, 

n2=50,n3=100 

0.203 0.345 0.438 0.157 0.271 0.263 0.161 0.280 0.255 0.120 0.192 0.230 

(0.05) (0.11) (0.08) (0.03) (0.10) (0.08) (0.03) (0.08) (0.05) (0.02) (0.05) (0.05) 

n1 = 100, 

n2=100,n3=200 

0.214 0.263 0.284 0.147 0.171 0.188 0.154 0.165 0.194 0.136 0.199 0.180 

(0.02) (0.03) (0.05) (0.02) (0.02) (0.03) (0.02) (0.03) (0.03) (0.02) (0.03) (0.02) 

n1 = 200, 

n2=200,n3=400 

0.175 0.236 0.227 0.154 0.171 0.174 0.130 0.172 0.167 0.131 0.170 0.185 

(0.01) (0.02) (0.02) (0.01) (0.02) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.02) 

3 

n1 = 50, 

n2=50,n3=100 

0.197 0.355 0.436 0.116 0.169 0.240 0.098 0.210 0.247 0.097 0.165 0.236 

(0.04) (0.10) (0.08) (0.03) (0.05) (0.07) (0.03) (0.08) (0.05) (0.03) (0.04) (0.06) 

n1 = 100, 

n2=100,n3=200 

0.156 0.262 0.269 0.100 0.154 0.168 0.105 0.137 0.158 0.099 0.135 0.157 

(0.02) (0.03) (0.04) (0.02) (0.04) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) 

n1 = 200, 

n2=200,n3=400 

0.133 0.194 0.187 0.084 0.138 0.136 0.088 0.150 0.114 0.072 0.116 0.133 

(0.01) (0.02) (0.02) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

No 

Noise 

n1 = 50, 

n2=50,n3=100 

0.127 0.304 0.345 0.058 0.166 0.151 0.051 0.135 0.146 0.065 0.109 0.145 

(0.03) (0.10) (0.09) (0.02) (0.08) (0.05) (0.03) (0.08) (0.03) (0.02) (0.04) (0.04) 

n1 = 100, 

n2=100,n3=200 

0.109 0.199 0.206 0.043 0.063 0.101 0.043 0.056 0.095 0.052 0.062 0.099 

(0.02) (0.03) (0.03) (0.02) (0.02) (0.02) (0.01) (0.02) (0.03) (0.02) (0.02) (0.03) 

n1 = 200, 

n2=200,n3=400 

0.072 0.145 0.163 0.026 0.054 0.067 0.030 0.056 0.066 0.023 0.044 0.066 

(0.01) (0.01) (0.02) (0.01) (0.01) (0.02) (0.01) (0.018) (0.02) (0.01) (0.01) (0.02) 

Table 4 shows the averages and standard deviations (i.e., the numbers in the parenthesis) 

of prediction errors from 100 replicates in each treatment level with PCA of variables in each 

cluster. Similar to the results in Table I, the proposed SOC yields better performance than HC 

and OPCC algorithms in 23 out of 36 treatment levels in the experiments. The performances of 

HC and OPCC are close to each other, which is because linear correlation and PCA processing of 

variables are utilized in both cases. In terms of experimental factors (i.e., sample size, noise and 
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sparsity), Table II shows consistent results as in Table I. The prediction error decreases as the 

sample size increases. Adding noise to data deteriorates the predictive performance of models. 

When the sparsity level is lower, the model performance is better. 

Table 4: Averages and standard deviation of prediction errors for simulation study from 

100 replications using the principal components  

SNR Sample Size 
PCA-HC PCA-OPCC PCA-SOC 

S=0.1 S=0.4 S=0.7 S=0.1 S=0.4 S=0.7 S=0.1 S=0.4 S=0.7 

1 

n1 = 50, 
n2=50,n3=100 

0.2228 0.3316 0.3690 0.2442 0.3963 0.4271 0.2530 0.3298 0.3938 

(0.033) (0.072) (0.071) (0.033) (0.080) (0.066) (0.038) (0.078) (0.085) 

n1 = 100, 
n2=100,n3=200 

0.2466 0.2750 0.3359 0.3266 0.3727 0.3070 0.2470 0.3279 0.2888 

(0.027) (0.024) (0.051) (0.045) (0.063) (0.0364) (0.027) (0.049) (0.032) 

n1 = 200, 
n2=200,n3=400 

0.2621 0.2927 0.2844 0.2220 0.2740 0.2733 0.2151 0.2957 0.2809 

(0.018) (0.017) (0.021) (0.016) (0.019) (0.016) (0.015) (0.019) (0.020) 

2 

n1 = 50, 
n2=50,n3=100 

0.1542 0.2362 0.2623 0.1577 0.2364 0.2175 0.1398 0.2269 0.2659 

(0.032) (0.074) (0.065) (0.031) (0.056) (0.047) (0.028) (0.065) (0.062) 

n1 = 100, 
n2=100,n3=200 

0.1518 0.2039 0.2007 0.1500 0.1759 0.1834 0.1433 0.1600 0.2082 

(0.021) (0.026) (0.028) (0.020) (0.025) (0.023) (0.018) (0.025) (0.037) 

n1 = 200, 
n2=200,n3=400 

0.1395 0.1633 0.1698 0.1377 0.1852 0.1671 0.1327 0.1577 0.1593 

(0.014) (0.015) (0.015) (0.014) (0.017) (0.018) (0.012) (0.014) (0.015) 

3 

n1 = 50, 
n2=50,n3=100 

0.1064 0.2010 0.2428 0.1253 0.1518 0.2409 0.0960 0.1653 0.2330 

(0.028) (0.053) (0.054) (0.023) (0.053) (0.052) (0.026) (0.047) (0.057) 

n1 = 100, 
n2=100,n3=200 

0.0966 0.1378 0.1877 0.0956 0.1352 0.1710 0.1097 0.1419 0.1691 

(0.019) (0.023) (0.023) (0.017) (0.020) (0.024) (0.018) (0.021) (0.027) 

n1 = 200, 
n2=200,n3=400 

0.0838 0.1261 0.1338 0.0779 0.1236 0.1397 0.0937 0.1317 0.1255 

(0.011) (0.012) (0.015) (0.011) (0.013) (0.014) (0.012) (0.014) (0.014) 

No 
Noise 

n1 = 50, 
n2=50,n3=100 

0.0576 0.1458 0.1643 0.0605 0.1228 0.1607 0.0547 0.1178 0.1470 

(0.020) (0.034) (0.033) (0.023) (0.060) (0.035) (0.022) (0.061) (0.039) 

n1 = 100, 
n2=100,n3=200 

0.0429 0.0686 0.1125 0.0425 0.0684 0.1052 0.0388 0.0506 0.0982 

(0.013) (0.020) (0.025) (0.015) (0.021) (0.025) (0.013) (0.019) (0.030) 

n1 = 200, 
n2=200,n3=400 

0.0255 0.0515 0.0647 0.0289 0.0468 0.0612 0.0205 0.0461 0.0610 

(0.0085) (0.014) (0.018) (0.010) (0.013) (0.015) (0.008) (0.011) (0.016) 

In addition, if we compare the GSO with PCA-based orthogonalization of variables 

within each cluster, it may be noted that their performance are similar. For 36 treatment levels, 

the GSO-SOC approach yields 18 setting that have lower prediction errors than the PCA-SOC 

approach. The differences between GSO-SOC and PCA-SOC approaches are not statistically 

significant. However, both Table I and Table II show that the self-organizing network algorithm 
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significantly decreases the errors in predictive models. This demonstrated that variable clustering 

is critical to improving the performance of predictive models. Further, experimental results 

showed variable clustering that considers complex interdependence structures (e.g., nonlinear 

and asymmetric) among variables yields better results than only considering linear correlations. 

4.5 Case Study 

Furthermore, we evaluated and validated the proposed methodology using a real-world 

case study that extracts parameters from representation models of vectorcardiogram (VCG) 

signals for the identification of myocardial infarctions. This present paper is an extension of our 

previous work that developed model-based representation of VCG signals using multiscale 

adaptive basis functions [24]. As shown in Fig. 23 (a) cardiac electrical activity is varying across 

space and time. VCG signals monitor cardiac electrical activity along three orthogonal X, Y, Z 

planes of the body, namely, frontal, transverse, and sagittal (see Fig. 23 (b)) [25-27]. Within one 

cycle, the VCG waveform shows nonlinear variations and different segments change 

significantly that correspond to different stages of cardiac operations. Between cycles, the VCG 

waveform is similar to each other but with variations. As shown in Fig. 23 (b), VCG trajectories 

of myocardial infarction (red/dashed) yield a different spatial path from the health controls 

(blue/solid) [28]. In order to reduce large amounts of VCG signals into a sparse set of parameters, 

we developed the basis function representation of VCG signals (see Fig. 23 (c)). This present 

paper leverages parametric features for predicting the incidence of myocardial infarction (see Fig. 

23 (d) and (e)). Because the set of parametric features contains redundant information that 

inflates the variance of predictive models, this motivates our further development of the 

proposed methodology of self-organizing variable clustering. The results demonstrated the 

effectiveness and robustness to improve the prediction performance. 
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Figure 23 Flow chart of a real-world case study that extracts model parameters from VCG 

signals for the identification of myocardial infarctions. 

4.5.1 Multiscale Adaptive Basis Function Modeling of VCG Signals  

Our previous work developed a sparse basis function model to characterize and represent 

3-dimensional VCG signals [24]. Such a sparse representation reduces large amounts of data to a 

limited number of model parameters while preserving the same information. This present paper 

will further develop predictive models of myocardial infarctions using the low-dimensional set of 

model parameters, as opposed to the original data itself. Fig. 6 (c) shows an example of the basis 

function model of 3D trajectories of VCG signals. In order to capture intrinsic characteristic of 

cardiac electrical activity, we modeled VCG signals as the superposition of M basis functions:  

𝑣(𝑡, 𝑤) = 𝑤0 + ∑ 𝑤𝑗𝜓𝑗((𝑡 − 𝜇𝑗) 𝜎𝑗⁄ ) + 𝜀
𝑀

𝑗=1
 (19) 
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where ψ(t) is the basis function, wj is the weight factor, μj is the shifting factor and σj is the 

scaling factor. The objective is to optimize the representation of 3D VCG signals with a sparse 

basis function model: 

argmin [‖𝑣(𝑡) − 𝑤0 − ∑ 𝑤𝑗𝜓𝑗(𝑡)
𝑀

𝑗=1
‖

2

, {𝑤,𝑀,𝜓(𝑡)} ] (20) 

Compact topological representation calls the minimization of the number of basis functions M 

and the optimal placement of basis function ψ(t). Model parameters w, μ, σ are adaptively 

estimated by the "best matching" projections of VCG signals onto a dictionary of nonlinear basis 

functions. Our previous work detailed the modeling algorithms to develop a sparse basis function 

representation of spatiotemporal VCG signals [24]. In addition, our previous experiments show 

that model goodness-of-fit is greater than 99.9% (R
2
) with a parsimonious set of 20 basis 

functions for a variety of cardiac conditions. In this present study, model parameters, i.e., weight, 

shifting, scaling factors and residuals will be further investigated for the identification of 

myocardial infarctions.  

4.5.2 Predictive Modeling of Myocardial Infarction 

This case study focuses on the extraction of parametric features from the sparse basis 

function model, and their further applications for predictive modeling of myocardial infarctions. 

If M basis are used to represent 3-lead VCG signals, then the set of parameters (i.e., weight, 

shifting and scaling factors) is {w3×𝑀, μ3×𝑀, σ3×𝑀}. The total number of parameters will be 

3 × 3 × 𝑀.  Our previous study showed that 20 basis functions yield >99.9% goodness-of-fit in 

the modeling performance for a variety of cardiac conditions. Hence, we have a total of 180 

parameters that are adaptively estimated from the 3D VCG trajectory. In addition, we added the 

absolute values of weights, residual sum of squares (RSS) and the RR interval (i.e., heart rate) in 
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this present investigation. Thus the feature matrix is: 

𝑿 = {𝒘3×20,𝝁3×20,𝝈3×20,|𝒘|3×20,𝑹𝑺𝑺3×1, 𝑅𝑅1×1} 

where the absolute values of weights |w|3×20 describes the amplitudes of each basis function, 

which provide local strengths of a heartbeat. The residual sum of squares 𝑹𝑺𝑺3×1 describes the 

variations that cannot be adequately explained by the model representation. The RR interval 

characterizes temporal beat-to-beat variations of cardiac electrical activity. In total, we have 244 

parameter-based features that provide effective measures of original VCG signals. Notably, 

model representation reduces the high-dimensional set of VCG signals with a big amount of data 

points into a sparse set of feature matrix. 

In this present investigation, we used the 3-lead VCG signals from 388 subjects (79 

controls and 309 faults), available in the PhysioNet Database [29]. VCG signals were digitized at 

1 kHz sampling rate with a 16-bit resolution over a range of 16.384 mv.  

Our previous study showed that most of model-driven parametric features are statistically 

significant between healthy controls and myocardial infarctions [30]. Specifically, our 

experimental results showed that more than 146 features have the Kolmogorov-Smirnov statistic 

greater than the critical value 0.17, indicating significantly differences between control and 

diseased conditions [30].  

It is worth mentioning that weight factors are the most significant group of features 

among all parametric features. However, a large number of predictors tend to bring the “curse of 

dimensionality” problem, as well as the overfitting for the predictive modeling. Therefore, our 

previous study utilized the lasso-penalized logistic regression model to shrink the number of 

predictors and identify the cases of myocardial infarction [30]. Nonetheless, our previous study 

[30] focused on the relevancy between predictor variables and the response variables, but did not 
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specifically consider complex interdependence structures among predictor variables. Prior 

research showed that a higher correlation (>0.90) between variables (collinearity) leads to more 

sensitive estimations of parameters in predictive models (i.e., increased variances of estimation) 

[6]. This present paper further investigates the nonlinear correlations between variables and then 

identifies the cluster structures for improving the performance of predictive modeling. Fig. 24 (a) 

shows the plot of nonlinear and asymmetric interdependence structures among variables. It may 

be noted that there are three groups of variables with stronger interdependences, and also some 

groups of variables with weaker interdependence relationships. However, few, if any previous 

work has explicitly considered such relationships among variables before predictive modeling. 

Fig. 24 (b) shows sub-network communities in the self-organized clustering of model-based 

parametric features. Notably, self-organizing algorithms derive a topological structure of the 

network of variables based on the matrix of nonlinear and asymmetric interdependences in Fig. 

24 (a). As a result, homogeneous variables are clustered into sub-network communities. 

 

Figure 24 (a) Nonlinear interdependence matrix; (b) Self-organized clustering of 

model-based parametric features. 

(a) (b) 
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Furthermore, we minimized the redundancy of variables within each self-organized 

cluster through Gram-Schmidt orthonormalization and then integrated this new set of clustered 

variables with group elastic-net model to improve the performance of predictive modeling. The 

available data is divided into three parts: a training set (25% of samples), a validation set (25% of 

samples) and a test set (50% of samples).  

The training set is to train the predictive model, and the validation set is to cross-validate 

the model and optimally determine the penalization parameters (also see equation 17). Model 

performance is only computed from the test dataset. The experiments were replicated for 100 

times. Fig.8 shows the averages and standard deviation of prediction errors in the real-world case 

study. “Without clustering” represents the results from the lasso-penalized logistic regression 

model in our previous study [30], while “with clustering” denotes the results from the present 

study with self-organizing variable clustering that specifically considers nonlinear and 

asymmetric interdependence structures among predictor variables.  

As shown in Fig. 25, self-organizing variable clustering yields smaller standard 

deviations of performance metrics (i.e., accuracy, sensitivity, and specificity) than “without 

clustering”. In addition, the accuracy of predictive model is improved from 89.50% to 94.04%, 

the sensitivity is increased from 94.33.8% to 97.22% and the specificity is improved from the 

original 84.80% to 90.84%. It is remarkable that experimental results demonstrated that the 

proposed methodology outperforms traditional models that do not explicitly consider complex 

interdependent structures among prediction variables. It strongly suggests that the nonlinear 

interdependence structures among the variables should be considered for better predictive 

performances. The results also imply that the self-organized variable cluster algorithm offers a 

reasonable grouping strategy for group variable selection. 
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Figure 25 Averages and standard deviation of prediction errors in the real-world case study 

that extracts model parameters from VCG signals for identification of myocardial 

infarction patients. 

4.6 Conclusions 

Advanced sensing and real-time data acquisition bring Big Data which provides an 

unprecedented opportunity to move forward the new frontier of innovation. However, it is 

common that big data involves large amounts of variables with complex interdependence 

structures, which pose significant challenges on traditional methodologies in predictive analytics. 

To tackle these challenges, variable selection and variable clustering are widely used in the 

literature. Nonetheless, variable selection focuses primarily on the relevancy between predictors 

and the response variable and does not explicitly consider the redundancy (i.e., interdependence 

structures) among variables. The variable clustering, on the other hand, focuses only on the 

issues of variable redundancy while neglecting the relevancy between variables and the response. 

New methodologies that integrate variable clustering with variable selection to improve 

effectiveness and efficiency of predictive analytics are urgently needed. 
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 This paper presents a new strategy that integrates the advantages of both variable 

clustering and variable selection. Complex interdependence structures among variables are 

characterized and quantified using nonlinear coupling analysis. Then, we developed a 

self-organizing network algorithm to effectively cluster variables that have nonlinear and 

asymmetric interdependences. This new method circumvents the limitations of existing methods 

of variable clustering. For examples, the HC algorithm is not applicable when the 

interdependence structure is asymmetric. The OPCC algorithm cannot adequately handle 

nonlinear interdependences. Further, the redundant information from related variables in 

self-organized clusters is minimized. Finally the self-organized clusters are integrated with group 

elastic net models to improve the performances of predictive models. As such, we handle the 

relevancy and redundancy among variables simultaneously. Experimental results in both 

simulation study and real-world case studies demonstrated that the proposed methodology not 

only outperforms traditional variable clustering algorithms such as HC and OPCC but also 

effectively identify cluster structures among variables, thereby improving the performance of 

predictive modeling. The proposed new idea of self-organizing algorithm is generally applicable 

for variable clustering and predictive modeling in many disciplines that involve a large number 

of highly-redundant variables.  
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CHAPTER 5: SELF-ORGANIZED RECURRENCE NETWORKS 

 

Network theory leads to a new way to investigate the dynamics of complex systems. As a 

result, many methods were proposed to construct a network from nonlinear time series. However, 

most previous works focused on deriving the adjacency matrix to represent the complex network 

and extract network-theoretic measures. Although the adjacency matrix provides connectivity 

information of nodes and edges, the network geometry can take variable forms. The definite 

network topology remains unknown. This paper develops a self-organizing approach to derive 

the steady geometric structure of a network from the adjacency matrix. Consequentially, novel 

network-theoretic measures will be achieved based on actual node-to-node distances in the 

self-organized network topology. 

 5.1 Introduction 

Recurrence is a common behavior of complex systems. The recurrence plot was firstly 

introduced by Eckmann et al. [1] to characterize recurrence behaviors of dynamical systems. It 

provides a convenient means to capture the topological relationships existing in the state space in 

the form of 2D images. As shown in Fig. 26, if two states are located close to each other in the 

m-dimensional state space (e.g., 3D space in Fig. 26a), the color code is black in the recurrence 

plot. It is a graphical illustration of the state space and the recurrence behaviors. The recurrence 

plot characterizes the proximity of state vectors, i.e., whether or not the state-space distance 

between two “state” x⃗ (i)  and x⃗ (j)  is below a certain recurrence threshold r . It is 

mathematically defined as R(i, j) ≔ Θ(r − ‖x⃗ (i) − x⃗ (j)‖), where Θ is the Heaviside function 
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and || · || is a distance measure. If they are located farther apart, the color is white. The 

structures of a recurrence plot have distinct topology and texture patterns. The ridges locate the 

nonstationarity and/or the switching between local behaviors. The parallel diagonal lines indicate 

the near-periodicity of the system behaviors [2]. Recently, recurrence methods have been 

successfully applied in different fields, e.g., cardiovascular system, biology, economy, 

manufacturing system, geophysics, and neuroscience.  

 

Figure 26 Graphical illustration of (a) the state space and (b) its recurrence plot  

Recurrence-based networks were developed to explore the recurrence characteristics of 

dynamical systems from the perspective of network theory. Examples of previous approaches to 

construct a recurrence network include the partitioning of state space [3], cycle segmentation of 

pseudo-periodic time series [4, 5], correlation network of state vectors [6], visibility graph [7], 

and k-nearest neighbor network [8]. Further, it was argued that these existing approaches suffer 

from certain methodological limitations or a lack of general applicability [9]. Note that the 

recurrence plot (Fig. 1b) is a binary matrix with 0 and 1, which is analogous to the adjacency 

matrix of a complex network. A unifying framework to define recurrence network is based on the 

recurrences in the state space [9]. The recurrence matrix is considered as the adjacency matrix, 
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i.e., Ai,j = Ri,j − Ii,j, where Ii,j is the Kronecker delta for avoiding self-loops. As a result, 

network-theoretic measures (e.g., average path length, clustering coefficient, and degree 

centrality) provide new means to characterize the complexity of a dynamical system. It may also 

be noted that network structure can be characterized at different scales or levels. The sub-graphs, 

also called network motifs [8], were shown to have different connectivity-patterns and 

occurring-frequencies for specific types of dynamics.  

Although the recurrence-based adjacency matrix provides connectivity information of 

nodes and edges, the network geometry can take variable forms. In other words, the relevant 

spatial locations among nodes cannot be determined from the adjacency matrix. However, not 

only the connectivity but also spatial locations of nodes are critical in the functionality of a 

complex network. Few studies have been done to reconstruct a complex network with steady 

geometric structures from recurrence matrices. Note that most previous works focus on 

extracting network-theoretic measures from the adjacency matrix in recurrence-based complex 

networks. For example, the length of a shortest path di,j is defined as the minimum number of 

edges that connect the node i  and node j. The shortcoming of this measure is that it ignores the 

geometric distance between two nodes. If a steady geometry can be automatically organized for a 

recurrence network, the actual distances of network edges will be known. Hence, novel 

network-theoretic measures (e.g., average path length, diameter, efficiency and proximity ratio) 

will be achieved based on actual node-to-node distances in the network. 

This paper presents a self-organized approach to derive the steady geometric structure of 

a recurrence-based complex network. The structure of the paper is organized as follows: Section 

II reviews the relevant literature on recurrence-based complex networks. Section III introduces 

the methodology of force-directed recurrence networks. Experimental design is presented in 
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section IV. Section V shows the experimental results and section VI derives the conclusions 

arising out of this present investigation. 

 5.2 Recurrence Networks 

With the rapid technological advancement, network is almost everywhere in our daily life, 

e.g., social network, transportation network, computer network, sensor network. The adjacency 

matrix A is often used to represent the node-to-node connectivity in a network. In an undirected 

adjacency matrix, the element Aij  is 1 if node i is linked to node j and 0 otherwise. Statistical 

measures are widely used to exploit meaningful information in a network, e.g., node degree, link 

density, average path length, network diameter and clustering coefficient. A comprehensive 

review of network measures can be found in [10]. The node degree ki, also named the degree 

centrality, is defined as the number of neighboring nodes of node i, i.e., ki = ∑ Aij
n
j=1 , where n 

is the number of nodes in the network. The link density ρ is the ratio of the number of edges to 

the number of possible edges, i.e., ρ =
1

n(n−1)
∑ Aij

n
i,j=1 . The distance di,j is the minimal number 

of edges to travel from node i to node j. The average path length L is L =
1

n(n−1)
∑ ∑ di,j

n
j=1

n
i=1 . 

The network diameter D is the longest of all shortest paths, i.e.,  D = Max{di,j}. The clustering 

coefficient of a node is the probability that two neighbors of a node i are also neighbors. It may 

be noted that most of the metrics are calculated from the adjacency matrix of a network. The 

success of network theory has fueled increasing interests in analyzing nonlinear time series from 

the perspective of complex network.  

First, pseudoperiodic time series was extracted to construct a complex network for the 

investigation of nonlinear dynamics. Each cycle (i.e., the signal segment between two 

neighboring minima or maxima) is treated as a node in the undirected network. Two nodes are 

connected if their distance is less than a threshold. Further, the lag-reconstructed state space from 
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time series was used to derive the network. Each embedded state represents a node in the 

network. For the time series  X = {x1, x2, … , xN}T , the state space, i.e., 

x(i) = (xi, xi+τ, … , xi+τ(M−1)) , i = 1,… , N − τ(M − 1)  is a delay-embedded M-dimensional 

manifold. The embedding dimension M is determined by the false nearest neighbor algorithm, 

and the time delay parameter τ is estimated with the method of mutual information. Then, the 

Euclidean distance between nodes are calculated as  

𝐷𝑖,𝑗 = ‖𝒙(𝑖) − 𝒙(𝑗)‖ = (∑ (𝑥𝑖+𝑚𝜏 − 𝑥𝑗+𝑚𝜏)
2𝑀−1

𝑚=0 )
1

2                (1) 

A node x(i) is connected to its k nearest neighbors, but excluding the nodes in the same strand of 

the trajectory, i.e., |j − i| > ∆t. Therefore, the adjacency matrix of the k-nearest neighbor (KNN) 

network is defined as: 

𝐴𝑖𝑗 = {
1,    |𝑗 − 𝑖| > ∆𝑡 & 𝑗 ∈ {𝑘 nearest neighbors of 𝑖}  
0,                                  otherwise                                    

             (2) 

Based on the method of k-nearest neighbor network, the superfamily phenomena of the motifs 

have been further investigated to quantify the connectivity patterns of sub-networks [8]. Notably, 

a multiscale approach is developed to quantify the structure features of complex networks across 

different scales, i.e., from the local network to the global network. 

Marwan et al. proposed to use the binary recurrence matrix to construct a complex 

network from the nonlinear time series [11]. Note that the recurrence of states is an important 

characteristic in the dynamical system. The recurrence matrix  R  characterizes the close 

proximity of two nodes, which is defined as Ri,j ≔ Θ(r − ‖x(i) − x(j)‖), where Θ is the 

Heaviside function, r is the recurrence threshold and || · || is a distance measure. Marwan et al. 

constructed the undirected and unweighted network by treating the delay-embedded states as 

nodes and the recurrence as a link. The adjacency matrix A is obtained from the recurrence 
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matrix by removing the diagonal identities:  

𝐴𝑖,𝑗 = 𝑅𝑖,𝑗 − 𝐼𝑖,𝑗                             (3) 

In addition, they proposed to use the network-theoretic measures as new quantifiers of nonlinear 

dynamical systems, e.g., degree centrality, clustering coefficient and average path length. Donner 

et al. [9] reviewed various approaches to transform nonlinear time series into complex networks, 

and showed that the concept of recurrence networks yields a unifying framework. Further, 

Donner et al. [12] investigated the geometrical properties of dynamical systems from the 

perspective of complex networks. Notably, they proposed to define two graph theoretical 

properties, i.e., local clustering coefficient and global (network) transitivity, which can be used to 

effectively define two new local and two new global measures of dimension in phase space.  

It may also be noted that the adjacency matrix of KNN network is similar to the 

recurrence matrix. The KNN network uses the criterion of a fixed number of neighbors, instead 

of a fixed neighborhood size in the recurrence network proposed by Marwan et al. [9, 11]. The 

adjacency matrix of a KNN network is not necessarily symmetric and can be directed, because a 

node i is among the k-nearest neighbors of a node j does not mean that node j is also among the 

k-nearest neighbors of node i. However, the adjacency matrix of a recurrence network is 

symmetric and undirected. In addition, there are other methods to construct a complex network, 

such as transition networks, correlation networks, and visibility graphs. Note that most of 

previous network approaches focus on the adjacency matrix and network measures derived from 

it, as opposed to the self-organizing geometry of network. The network statistics (or graph 

theoretical properties), derived from the adjacency matrix, describe the characteristics of 

complex network, but not the topological geometry. Therefore, it is critical to develop an 

approach to derive the self-organized network topology from an adjacency matrix so that the 
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network-theoretic measures based on real distance can be obtained. The new network-theoretic 

measures will potentially discover nonlinear dynamics of the systems. 

 5.3 Force-directed Recurrence Networks 

In this investigation, the spring-electrical model [13] is adopted for the topological 

self-organization of complex networks. It may be noted that this algorithm was widely used for 

graph representation in computer sciences [14]. However, few previous works explored the 

self-organized geometry of a recurrence network with the use of spring-electrical model. As 

aforementioned, most of previous works focused on extracting network-theoretic measures from 

the adjacency matrix of recurrence network. The adjacency matrix provides information of 

vertices and edges in a recurrence network, but its structure can take variable forms. Therefore, 

we introduce force-directed recurrence networks so as to address the research question, i.e., 

“what is the self-organizing geometry of a recurrence network?” Also, this work will provide a 

new way to reproduce the attractor or time series from the recurrence plot.  

Let G = {V, E} be the undirected and unweighted network, where V is the set of nodes 

and E is the set of edges. As shown in Fig. 27, the adjacency matrix describes the connectivity 

between nodes. If two nodes i and j form an edge, there will be a black dot in the plot. The 

spring-electrical model assigns two forces, i.e., attractive and repulsive forces between nodes. 

The objective of self-organizing process is to optimally identify the spatial locations of network 

nodes that minimize the energy within the network. The repulsive force is defined as fr(i, j) =

−
CK1+p

|x(i)−x(j)|p
, i ≠ j, which exists between any two nodes i and j. It may be noted that fr(i, j) is 

inversely proportional to the distance between nodes. The force-model parameter p in the 

denominator is used to control the long-range repulsive force. The long-range repulsive force 

will be reduced by a bigger p and increased by a smaller one. The attractive force is defined as 
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fa(i, j) =
|x(i)−x(j)|2

K
, i ↔ j, which exists only between two connected nodes and is proportional to 

the square of the distance between them. Hence, the combined force on a node i will be 

𝑓(𝑖, 𝒙, 𝐾, 𝐶) = ∑ −
𝐶𝐾1+𝑝

|𝒙(𝑖)−𝒙(𝑗)|𝑝+1𝑖≠𝑗 (𝒙(𝑖) − 𝒙(𝑗)) + ∑
|𝒙(𝑖)−𝒙(𝑗)|

𝐾𝑖↔𝑗 (𝒙(𝑖) − 𝒙(𝑗))    (4) 

where K  is the natural spring length, C  regulates the relative strength of repulsive and 

attractive forces, and x⃗ (i) − x⃗ (j) is the force-directional vector, which is separated from fr(i, j) 

and fa(i, j) to define the direction of combined force f(i, x⃗ , K, C).  

 

Figure 27 The example of an adjacency matrix in a complex recurrence network. 

The objective of self-organizing process is to optimize the spatial locations of nodes that 

minimize the total energy of the network as: Minx{E(x, K, C)} = Minx{∑ f2
i∈N (i, x, K, C)}. As a 

result, the recurrence network is not only steady with the minimal energy but also yields a unique 

geometry. It may be noted that the variations of parameters K and C will not change the 

network topology but yield a similar topology in different scales. The system energy is 

determined by the spatial locations of the nodes. The force-directed algorithm for the 

self-organizing process is as follows: 
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1)  Network initialization: The nodes are randomly distributed in a multi-dimensional 

space. Then, the node-to-node connectivity is generated based on the adjacency matrix.  

2)  Force computation and position update: For the node  𝑖 , the combined 

force, 𝑓(𝑖, 𝒙, 𝐾, 𝐶), and its direction will be calculated. The position of node 𝑖 will be 

moved along the force’s direction for a magnitude 𝜏, which is updated according to the 

following three scenarios: i) if the network energy keeps decreasing for 5 iterations, the 

magnitude will be increased to  𝜏/0.9. This will accelerate the movement of nodes 

toward the optimal topology; ii) if the network energy increases in one iteration, the 

magnitude will be decreased to 0.9 × 𝜏. This indicates that the layout is close to the 

optimal structure. A smaller magnitude will refine the search and prevent divergence; iii) 

otherwise, the previous magnitude is maintained. 

3)  Update the energy of network: Repeat step 2) for all nodes to update the system 

energy of network.  

4)  Stopping criteria: The self-organizing process will stop when the decrease of energy 

becomes small (i.e., ∆𝐸 < 𝜀). 

In step 1), the nodes are randomly distributed in a high-dimensional space. It is 

remarkable that the self-organizing process will optimally choose the right dimension even if a 

larger dimension is selected. For example, if the network dimension is 2, the self-organizing 

process will organize the nodes on a plane even if they are randomly initialized in the 3 or higher 

dimensional space. For the visualization purpose, the dimension is often chosen to be 2 or 3. In 

step 2), the magnitude τ, for which nodes move along the force’s direction, is the learning rate in 

the self-organization process. The magnitude of τ will drive the learning faster or slower. A 

bigger magnitude τ will accelerate the self-organizing process when the layout is far from the 
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optimal topology. A smaller one will slow down the process to refine the search when the layout 

is approaching the optimal topology.  

Fig. 28 shows an example of the self-organizing process of a network with 292 nodes. 

Their connected edges are represented in the recurrence matrix (see Fig. 27). However, the 

recurrence matrix does not define the topology of networks. In the self-organizing process, first, 

292 nodes are randomly distributed in the space with connected edges (Fig. 28a). The network 

topology keeps self-organizing iteratively, as shown from Fig. 28b to Fig. 28e. Finally, the 

optimal layout of network with a minimal energy is achieved (Fig. 28f). The optimal two-wing 

layout is achieved at 1900 iterations with a minimal energy and a steady topological structure. 

 

Figure 28 Illustrations of the self-organizing process of complex network based on the 

nodes and edges in the recurrence matrix. 

(a) (b) (c) 

(d) (e) (f) 
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The self-organizing process simulates forces between nodes and derives a steady 

geometry for a recurrence-based complex network. However, there are a number of variable 

factors affecting this self-organizing process, e.g., p in the model of repulsive force, various 

dynamical systems, and KNN network vs. recurrence network. The design of experiments to 

investigate these factors is described in the following section IV. 

 5.4 Experimental Design 

A 4-way layout experiment was designed (see Fig. 29) to evaluate the performance 

variations of self-organizing algorithms due to four factor groups, i.e., dynamical systems, 

network construction methods, force-model parameter, and nonhomogeneous distribution.  

  

Figure 29 Cause-and-effect diagram for performance evaluation of self-organizing 

algorithms of recurrence networks. 

1)  Dynamical systems: We used the well-known dynamical systems (i.e., Lorenz and 

Rossler systems), and then derive the self-organizing network geometry from the 

adjacency matrices. Fig.23 (a) shows Lorenz attractor (i.e., unequally spaced) generated 

from the equations:  x′ = 10(y − x) ,  y′ = x(28 − z) − y ,z′ = xy −
8

3
z  with the step 

 ∆t = 0.01 and Fig.23 (b) shows the corresponding equally-spaced Lorenz Attractor. 

Fig.23 (c) shows the original Rossler attractor (i.e., unequally spaced) generated from the 
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equations: x′ = −y − z, y′ = x + 0.2y,z′ = 0.2 + z(x − 5.7) with the step  ∆t = 0.01, 

and (d) equally-spaced Rossler attractor. Note that Lorenz attractor is approximately 

symmetric and balanced, but Rossler attractor is asymmetric and unbalanced. The 

symmetry will influence the clustering of repulsive and attractive forces.  

2)  Network construction methods: The adjacency matrix is constructed from the 

well-known dynamical systems with the use of two different approaches, i.e., k-nearest 

neighbor network and recurrence network. This comparison will show how network 

construction methods will impact the force-driven self-organizing process of network 

geometric structure. 

3)  Force-directed parameter: It may be noted that the force-model parameter 𝑝 is 

involved in the model of repulsive force, 𝑓𝑟(𝑖, 𝑗) = −
𝐶𝐾1+𝑝

|𝒙(𝑖)−𝒙(𝑗)|𝑝
, 𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ 𝑉, 𝑝 > 0. A 

bigger 𝑝 will increase the denominator, and thus reduce the long-range repulsive force. 

We will experimentally vary the parameter 𝑝 from 1 to 3 and investigate how it will 

impact the network energy and the final network geometry. 

4)  Nonhomogeneous distribution: Nonlinear Lorenz and Rossler systems are continuous. 

The states are unequally spaced along the trajectory due to the numerical integration of 

nonlinear differential equations with a time step (see Fig. 30a and Fig. 30c). This 

clustering of states in a local region influences the adjacency matrix, thereby aliasing the 

network geometry in the self-organizing process. To investigate how nonhomogeneous 

distribution affects the self-organizing process, we evenly spaced the states along the 

trajectory of attractors (see Fig. 30b and Fig. 30d) and made comparisons with the 

nonhomogeneous attractors.  
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 Figure 30 (a) Lorenz attractor, (b) equally-spaced Lorenz attractor, (c) Rossler attractor 

and (d) equally-spaced Rossler attractor. 

 5.5 Results 

This present investigation made an attempt to self-organize the geometry of a recurrence 

network from the adjacency matrix. As discussed in the experimental design, we studied how the 

force-directed self-organizing process is impacted by four factor groups, i.e., dynamical systems, 

network construction methods, force-model parameter, and nonhomogeneous distribution. The 

results are as follows. 

5.5.1 Effects of Network Construction Methods 

As shown in Fig. 31, k-nearest neighbor and recurrence methods are used to derive the 

adjacency matrices from the original Lorenz attractor. In the KNN approach, k is set to be 51. 

In the recurrence approach, the recurrence threshold r is 5% of the maximal distance in the 

attractor. It may be noted that the plots of adjacency matrices (see Fig. 31 a and b) are similar for 

both methods, and the densities of black dots are approaximately the same, i.e., around 5 percent. 

(a) (b) 

(c) (d) 
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Figure 31 The adjacency matrices of original Lorenz attractor that are derived with the use 

of (a) recurrence network and (b) k-nearest neighbors network. 

Fig. 32 shows the iterative self-organizing process for the recurrence-based adjacency 

matrix of the Lorenz system. Force-directed algorithms automatically organize the geometric 

structure of network based on the nodes and edges in the adjacency matrix. Starting from a 

random layout of 2000 nodes in 3D space (see Fig. 32a), it takes 7000 iterations to reach the 

stable structure (see Fig. 32e). The topological structures at 1000, 3000, 5000, and 7000 

iterations are shown in Fig. 32 (b-e), respectively. It is remarkable that this self-organizing 

process approximately reconstructed the Lorenz attractor.  

It indicates that system dynamics are hidden in the recurrence-based adjacency matrix. 

Force-directed algorithms are capable of reconstructing the nonlinear system dynamics from the 

adjacency matrix. The edges between nodes are not drawn in the network, because a large 

number of edges will cover the trajectory. At the same time, it is seen that the reconstructed 

trajectory is a little bit different from the original trajectory. It is because the reconstructed 

trajectory is affected by the selection of recurrent rate and force model parameters. 

(a) (b) 



 

109 

 

 Figure 32 The self-organizing process of complex network based on the recurrence 

adjacency matrix of Lorenz system. 

Fig. 33 shows the iterative self-organizing process for the KNN-based adjacency matrix 

of the Lorenz system. First, the 2000 nodes are randomly distributed in the 3D space (see Fig. 

33a). Force-directed algorithms automatically organize the network structure at 1000, 3000, 5000 

and 7000 iterations as shown in Fig. 33 (b-e). A stable network topology is reached after 7000 

iterations (see Fig. 33e). Note that the final topology has relatively large differences from the 

Lorenz attractor. The experimental results show that recurrence networks show better capability 

to reconstruct the system dynamics in a nonlinear attractor. The reasons are as follows: 1) 

Recurrence networks reveal the intrinsic structure of nonlinear systems and don’t connect two 

nodes unless they are really close to each other. However, the KNN network considers a fixed 

number of neighbors that may not be true recurrences. 2) A variable number of edges for each 

node facilitate the construction of real structures because this is true for the underlying patterns 

in the original attractor. The KNN network forces each node to have the same number of edges 

(a) 

(b) 
(c) 

(d) (e) 
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and thus introduce more artificial effects. As a result, the KNN network leads to a self-organized 

network topology that has relatively large differences from the original attractor. 

Similarly, we have also conducted experiments for the Rossler system.  Both the 

experimental results show that recurrence networks are superior to the KNN network, and have 

better capability to reconstruct the system dynamics in a nonlinear attractor. It is because the 

KNN network imposes some artificial links among the nodes even if the distance between two 

nodes is not actually small. The links are added among the nodes just to ensure that the number 

of links for each node is the same. That will lead to artificial forces. The recurrence network 

place the forces just based on the natural distances and the forces are supposed to be existing. 

Therefore, we will adopt the method of recurrence networks in the following experiments of 

force-model parameter and nonhomogeneous distribution.  

 

Figure 33 The self-organizing process of complex network based on the KNN adjacency 

matrix of Lorenz system. 

(a) 

(b) (c) 

(d) (e) 
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5.5.2 Effects of Force-model Parameter 

Besides the network construction methods, the parameter p plays an important role in 

the model of repulsive forces, thereby affecting the final network topology in the self-organizing 

process. In this section, the force-model parameter p will be varied from 1 to 2, and 3 for 

investigating the effects on the self-organized topology of recurrence networks. 

Fig. 34 shows the iterative self-organizing process for the recurrence-based adjacency 

matrix (see Fig. 31a) of the Lorenz system with the force-model parameter p equal to 2. First, 

2000 nodes are randomly distributed in the 3D space (see Fig. 34a). Force-directed algorithms 

automatically organize the network structure at 1000, 3000, 5000 and 7000 iterations as shown in 

Fig. 34 (b-e). A stable network topology is reached after 7000 iterations (see Fig. 34e). The final 

topology is an approximate reconstruction of the Lorenz attractor. It may be noted that the 

peripheral effect is highly reduced when p is set to be 2 in the model of repulsive force. This is 

shown by the fact that the obits are not tightly close to each other in the attractor. However, the 

orbits tend to cluster as a single trajectory when the force-model parameter p is 1 (see Fig. 33e). 

The reasons are as follows: (1) When the parameter p increases, the node-to-node repulsive force 

becomes smaller. (2) The Lorenz attractor has two circular regions with the nodes (or states) 

distributed in the boundary. (3) If the node-to-node repulsive force is smaller, the peripheral 

nodes will receive smaller repulsive forces from all the other nodes in the attractor. (4) If the 

peripheral nodes get bigger repulsive forces from one direction, they tend to cluster tightly. 

Otherwise, they will not be close to each other in the peripheral areas. By this analysis, it is 

suggested that an appropriate model parameter should be selected. To derive such a proper model 

parameter, we compare the reconstruction performance at different settings of force model 

parameter p. 
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 Figure 34 The self-organizing process of recurrence network of Lorenz system with the 

force-model parameter p equal to 2. 

However, when the force-model parameter p is 3, the repulsive force is much smaller. 

As a result, the orbits have a larger distance between each other (see Fig. 35e). Fig. 35 shows the 

self-organizing process of recurrence network of Lorenz system with p equal to 3. Similarly, 

2000 nodes are randomly distributed in 3D space (see Fig. 35a). Fig. 35 (b-e) show the 

self-organized topological structures at 1000, 3000, 5000 and 7000. The stable topology is 

reached at 7000 iterations, which approximately reproduces the Lorenz attractor (see Fig. 35e). It 

may be noted that the distances between obits are larger and larger when the parameter p 

increases. However, there are some defects in local regions because of the unbalance between 

repulsive and attractive forces. Therefore, the force-model parameter p is chosen to be 2 that 

reduces the peripheral effect and achieves a better performance in reconstructing the system 

dynamics and its trajectory. 

(a) 

(b) (c) 

(d) (e) 
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 Figure 35 The self-organizing process of recurrence network of Lorenz system with the 

force-model parameter p equal to 3. 

The same conclusion was drawn from the self-organizing process for the 

recurrence-based adjacency matrix (see Fig. 36a) of the Rossler system. Fig. 36(b-d) show the 

self-organized stable structure of recurrence-based complex network of Rossler system with the 

force-model parameter p equal to 1, 2 and 3 respectively. Note that the self-organized topology 

reconstructs the Rossler attractor when p equal to 2 is better than the case with p equal to 1 and 

3. It may be noticed that the final topology has big differences from the Rossler attractor, 

especially in the Möbius band (i.e., the outer region) for all the three cases. This may be due to 

the asymmetric shape of Rossler attractor and sparse states discretized in the Möbius band, 

which leads to our further investigation of nonhomogeneous distribution in the next section. The 

distribution of the nodes along the trajectory will affect the distribution of assigned forces in the 

network, i.e., symmetric or asymmetric patterns of forces. 

(a) 

(b) (c) 

(d) (e) 
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Figure 36 Recurrence adjacency matrix of Rossler system and its self-organized structures 

with the force-model parameter p equal to 1, 2 and 3. 

5.5.3 Effects of Nonhomogeneous Distribution 

The experimental results show the self-organized topology approximately reconstructs 

the attractors of Lorenz and Rossler systems (see Figs 32-35 and Fig 36(b-d)). However, there 

are aliasing effects in some local regions of the attractors, even if the system energy is getting 

stable. In particular, we found that there are sparse states distributed in these local regions 

because of the nonhomogeneous distribution. This factor of nonhomogeneous distribution poses 

significant difficulties to self-organizing process in the Rossler system. Therefore, we equally 

spaced the states along the trajectory of Lorenz and Rossler attractors. As shown in Fig. 37a and 

37b, the recurrence matrices show different patterns from those in the unequally spaced attractors 

(i.e., Fig. 31a and Fig. 37a). The recurrent plot of the equally spaced attractors shows a larger 

recurrent rate. 

(a) (b) 

(c) (d) 
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Fig. 12c shows the self-organized stable structure for the recurrence-based adjacency 

matrix from the Lorenz attractor with states equally spaced along the trajectory (see Fig. 30b). It 

may be noted that the orbits are not tightly clustered and reassemble the shape of Lorenz attractor. 

The equally-spaced nodes along the trajectory achieve a better balance between repulsive and 

attractive forces in the network. The performance of self-organizing process is significantly 

improved. Therefore, it is expected that the self-organizing process will achieve a better 

performance if the interval between equally-spaced nodes is smaller and smaller (i.e., 

approaching a continuous dynamical system). This is more evident in the case of Rossler system, 

which has sparser states in the local regions. Fig. 37d shows the self-organized stable structure 

for the recurrence-based adjacency matrix from the Rossler attractor with states equally spaced 

along the trajectory (see Fig. 30d). It may be noted that the final topology reconstruct the Rossler 

attractor better than the unequally-spaced cases. Further, the Möbius band (i.e., the outer region), 

which was not well-reconstructed in the aforementioned experiments, clearly shows the 

trajectory of Rossler system. This demonstrates that the recurrence network, i.e., generated from 

the equally-spaced attractors, is capable of reconstructing the system dynamics through the 

self-organizing process.  

 5.6 Conclusions 

In summary, simulating the complex network as a physical system, e.g., through the 

spring-electrical model, yields a self-organized topology. Although many previous methods have 

been proposed to transform nonlinear time series into complex networks, they have focused on 

the network representation using the adjacency matrix and the extraction of new 

network-theoretic measures. It is not clear about “what is the topology of recurrence network?” 

In other words, the connectivity information of nodes and edges in the adjacency matrix does not 
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define the geometry of the complex network. To derive the network-theoretic measurements 

based on the geometric distance, the topological structure of the network is in urgent need. 

 

Figure 37 The recurrence adjacency matrices of and self-organized topological structures 

of equally-spaced (a) Lorenz attractor and (b) Rossler attractor.  

This paper presents a self-organizing approach to derive the steady geometric structure of 

a network from the adjacency matrix. We introduce the spring-electrical model to investigate the 

hidden topological structure of recurrence-based complex networks. By simulating the edges as 

springs and the nodes as electrically charged particles, the network topology is self-organized. 

Interestingly, we found that the self-organizing geometry of a recurrence network recovers the 

attractor of a dynamical system that produced the recurrence adjacency matrix. This finding not 

only discloses the geometry of a recurrence network but also provides a new way to reproduce 

the attractor or time series from the recurrence plot.  

(a) (b) 

(c) (d) 
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Once the self-organized geometry of complex network is available, novel 

network-theoretic measures (e.g., average path length, diameter, and proximity ratio) can be 

achieved based on actual node-to-node distances. The paper lays out the solid foundations of 

most of previous studies on the graph theoretical statistics of recurrence networks. In addition, 

this paper brings the physical models into the recurrence analysis and discloses the spatial 

geometry of recurrence networks. 
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CHAPTER 6: CONCLUSIONS 

 

In order to cope with system complexity and dynamic environments, modern industries 

are investing in a variety of sensor networks and data acquisition systems to increase information 

visibility. Multi-sensor systems bring the proliferation of high-dimensional functional Big Data 

that capture rich information on the evolving dynamics of natural and engineered processes. With 

spatially and temporally dense data readily available, there is an urgent need to develop advanced 

methodologies and associated tools that will enable and assist (i) the handling of the big data 

communicated by the contemporary complex systems, (ii) the extraction and identification of 

pertinent knowledge about the environmental and operational dynamics driving these systems, 

and (iii) the exploitation of the acquired knowledge for more enhanced design, analysis, 

monitoring, diagnostics and control. 

My methodological and theoretical research as well as a considerable portion of my 

applied and collaborative work aims at addressing high-dimensional functional big data 

communicated by the systems. An innovative contribution of my work is the establishment of a 

series of systematic methodologies to investigate the complex system informatics including 

multi-dimensional modeling, feature extraction and selection, model-driven monitoring and root 

cause diagnostics.  

Mathematical modeling of cardiac electrical signals facilitates the simulation of realistic 

cardiac electrical behaviors, the evaluation of algorithms, and the characterization of underlying 

space-time patterns. However, there are practical issues pertinent to model efficacy, robustness, 
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and generality. My first paper presents a multiscale adaptive basis function modeling approach to 

characterize not only temporal but also spatial behaviors of vectorcardiogram (VCG) signals. 

Model parameters are adaptively estimated by the "best matching" projections of VCG 

characteristic waves onto a dictionary of nonlinear basis functions. The comparison of QT 

intervals shows small relative errors (<5%) between model representations and real-world VCG 

signals when the model complexity is greater than 10. The proposed model shows great 

potentials to model space-time cardiac pathological behaviors, and can lead to potential benefits 

in feature extraction, data compression, algorithm evaluation and disease prognostics. 

The mathematical modeling directly extracts the features (e.g. model parameters) from 

high-dimensional nonlinear functional profiles, which leads to my further investigation on 

model-based monitoring. Nowadays, the advanced sensor techniques and data acquisition 

systems provide an unprecedented opportunity for online monitoring of operational quality and 

integrity of complex systems. However, the classical methodology of statistical process control is 

not concerned about high-dimensional sensor signals and is limited in the capability to perform 

multi-sensor fault diagnostics. It is not uncommon that multi-dimensional sensing capabilities are 

not fully utilized for decision making. My second paper presents a new model-driven parametric 

monitoring strategy for the detection of dynamic fault patterns in high-dimensional functional 

profiles that are nonlinear and nonstationary. First, we developed a sparse basis function model 

of high-dimensional functional profiles, thereby reducing the large amount of data to a 

parsimonious set of model parameters while preserving the information. Further, we utilized the 

lasso-penalized logistic regression model to select a low-dimensional set of sensitive predictors 

for fault diagnostics. Experimental results on real-world data from patient monitoring showed 

that the proposed methodology outperforms traditional methods and effectively identify a sparse 
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set of sensitive features from high-dimensional functional data and profiles for process 

monitoring and fault diagnostics. 

The first two projects built the framework for exploring informatics of high-dimensional 

nonlinear systems including modeling, characterization, pertinent knowledge discovery, 

diagnostics/prognostics and monitoring. However, currently the Big Data brings significant 

challenges for data-driven decision making and system optimization. Currently the rapid 

advancement of sensing and information technology brings the Big Data, which presents a gold 

mine of the 21st century.  In particular, it is not uncommon that a large number of variables (or 

features) underlie the big data. Some of these variables are strongly correlated among themselves. 

Complex interdependence structures among variables challenge the traditional framework of 

predictive modeling. Our third investigation presented a new methodology of self-organizing 

network for variable clustering and predictive modeling. Experimental results on simulation 

studies and real-world data demonstrated that the proposed methodology not only outperforms 

traditional variable clustering algorithms such as hierarchal clustering and oblique principal 

component analysis, but also effectively identify interdependent structures among variables and 

further improves the performance of predictive modeling. The proposed new idea of 

self-organizing network is generally applicable for variable grouping and predictive modeling in 

many disciplines that involve a large number of variables (or factors, or features) in the big data. 

Besides the sensor-based modeling and analysis of complex systems, I also expand my 

research interests to nonlinear dynamics and the resulting chaotic, recurrence, self-organizing 

behaviors. The self-organizing algorithm was introduced to learn the spatial topology of the 

recurrence networks. This investigation innovatively brought the physical models into the 

recurrence analysis and made me the winner of the student paper competition at 2014 IIE annual 
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conference. I also have the collaborative research work on the spatiotemporal differentiation of 

myocardial infarctions and sparse particle filtering for modeling space-time dynamics in 

distributed sensor networks with CSMMA lab members in University of South Florida.   

Being involved in these research projects enabled me gain experience and develop my 

expertise in spatiotemporal informatics for complex systems monitoring, fault identification and 

root cause diagnostics especially in a big data environment. Therefore, I plan to continue my 

research in this realm. I will focus on both solutions to challenging questions rising from cutting 

edge problems and fundamental methodology development on the related topics in my further 

career. For example, because simulation has become an integral part of medical education and 

personnel evaluation and organ modeling is an ongoing research area for simulation purposes, 

image processing is of high value. As such, by applying image processing techniques, I will 

conduct research on segmentations and 3D modeling of soft tissues and organs in magnetic 

resonance imaging (MRI) to provide effective medical simulation of human body. In addition, I 

aim to apply such image processing techniques to other problems in manufacturing. For example 

defect on industrial products such as glass, steel welds and metal surfaces can be difficult to 

detect through visual inspection. Therefore I plan to develop automated inspection models for 

defect detection through image processing techniques. For another example, the prediction of 

in-hospital mortality for an intensive care unit (ICU) patient is critical in evaluating the patient’s 

situation and assists the doctors to make the correct decisions. The difficulties lie in the big 

amount of recordings from up to 50 biomarkers, the variety forms of data stored (e.g., continuous, 

binary, interval and missing data) and the veracity of the data. I am developing a Gaussian 

graphical model to learn the root cause of in-hospital death based on the preprocessing of 

medical recordings. This project will potentially disclose the underlying mechanism that 
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influences the in-hospital death rate and suggest the most immediate treatment to the doctors. My 

longer-term aims involve further development of fundamental methodology and computational 

technology and their translational application to improve human.
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Appendix A Copyright Permissions 

Below is permission for the use of material in Chapter 2. 
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Below is permission for the use of material in Chapter 3. 
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