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Abstract

In recent decades, climate change has become one of the most crucial challenges for humanity.

Climate change has a direct correlation with global warming, caused mainly by the green house

gas emissions (GHG). The Environmental Protection Agency in the U.S. (EPA) attributes carbon

dioxide to account for approximately 82% of the GHG emissions. Unfortunately, the energy sector

is the main producer of carbon dioxide, with China and the U.S. as the highest emitters. Therefore,

there is a strong (positive) correlation between energy production, global warming, and climate

change. Stringent carbon emissions reduction targets have been established in order to reduce

the impacts of GHG. Achieving these emissions reduction goals will require implementation of

policies like as cap-and-trade and carbon taxes, together with transformation of the electricity grid

into a smarter system with high green energy penetration. However, the consideration of policies

solely in view of carbon emissions reduction may adversely impact other market outcomes such as

electricity prices and consumption.

In this dissertation, a two-layer mathematical-statistical framework is presented, that serves to

develop carbon policies to reduce emissions level while minimizing the negative impacts on other

market outcomes. The bottom layer of the two layer model comprises a bi-level optimization

problem. The top layer comprises a statistical model and a Pareto analysis. Two related but

different problems are studied under this methodology. The first problem looks into the design

of cap-and-trade policies for deregulated electricity markets that satisfy the interest of different

market constituents. Via the second problem, it is demonstrated how the framework can be

used to obtain levels of carbon emissions reduction while minimizing the negative impact on

electricity demand and maximizing green penetration from microgrids. In the aforementioned
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studies, forecasts for electricity prices and production cost are considered. This, this dissertation

also presents anew forecast model that can be easily integrated in the two-layer framework.

It is demonstrated in this dissertation that the proposed framework can be utilized by policy-

makers, power companies, consumers, and market regulators in developing emissions policy deci-

sions, bidding strategies, market regulations, and electricity dispatch strategies.
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Chapter 1: Introduction

Greenhouse gas emissions (GHG) are the major contributor to the current global warming.

There are numerous examples of the negative effects of the increasing worldwide temperature. For

instance, the northern region of Chile, known for being the driest place in the world, suffered heavy

floods during the dry season in 2015, a phenomena extremely rare in the region. Other examples

of global warming include the raising of sea levels, warming of the earth at high northern-southern

latitudes, and the melting of the polar ice caps.

To reduce the negative impacts of global warming, there has been a worldwide commitment to

achieve reduction of GHG emissions. For instance, in 2005 the European Union (EU) launched its

first emission trading mechanism (EU ETS) that attempted to cut GHG emissions by 21% by 2020

from 2005 levels. Also, according to the European Commission [1], the budget for 2014 through

2020 associated to climate-related projects and policies was set at 20% as a minimum. In the U.S.,

also different mechanisms have been implemented. Carbon taxes, renewable portfolio standards,

and cap-and-trade programs (e.g., RGGI) are some examples. Several researchers have studied

the impact of these policies in electricity markets. For instance, the authors in [2] developed a

study to assess the implications that the state of Maryland would have by joining the regional

green house gas initiative (RGGI). The impacts of cap-and-trade and network characteristics in an

oligopoly market were studied in [3]. Allowances distribution mechanisms (e.g., grand-fathering

or auction-based among others) have been shown to have an important role in the success of these

carbon reduction initiatives. Some of these CO2 auction based allowances allocation mechanisms

were studied in [4]. Nevertheless, the current literature does not consider the impact of carbon

1



emissions into the society, or social cost of carbon (SCC), when analyzing environmental policies.

The societal impact of carbon emissions is explained in detail in the Appendix C.

In a recent effort, the Environmental Protection Agency (EPA) in the U.S. has set carbon

emissions reduction targets for each state with an overall goal of achieving 30% reduction below

2005 levels by 2030. Stringent carbon emissions targets will require implementation of the above

mentioned carbon policies together with high green penetration via distributed energy resources

(e.g., microgrids or solar and wind farms). However, consideration of these policies solely in view

of carbon emissions reduction may adversely impact electricity price and consumption. Therefore,

implementation of well-designed policies along with the transformation of the current electricity

grids to a smarter system with improved technology and efficiency, known as smart grids, is likely

to be needed. However, the constant changes in the electricity grid increases the complexity of

maintaining a reliable system.

The optimal control of smartgrid operations in order to ensure an efficient and reliable grid

operation was emphasized in [5]. In the smart grid context, microgrids are expected to have

a predominant role. Microgrid electricity production is associated with high uncertainty since

most of its generation capacity depends on weather characteristics. Also, technical problems

such as power quality, voltage stability, and protection are associated to distributed generation [6].

Hence, a large deployment of microgrids with distributed generation is likely to affect smartgrid

functionalities such as frequency control and allocation of reserves [7]. To address some of the

microgrid issues, the incorporation of efficient, reliable and large scale energy storage facilities

is vital to deployment [8]. Also, the efficiency of microgrid operation strongly depends on the

scheduling process of these energy storage facilities [9]. Different studies have explored the

operation strategies of microgrids via energy management models (EMS). The authors in [10]

presented an economic analysis of EMSs for microgrids. They concluded that an appropriate

battery capacity should be determined on the basis of both battery efficiency and power supply. A

combined environmental and economic dispatch model for smartgrids with energy storage devices
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and high penetration of renewable energy was presented in [8]. The proposed multi-objective

energy management system (EMS) aims at minimizing both the operation cost and environmental

impacts of large scale smartgrids. A similar study on environmental-economic dispatch from

microgrids was presented in [11]. A microgrid-based planning model considering the power

system reliability and economic criteria has recently appeared in [12]. The paper also studies

the investment and operation cost of microgrids and concluded that they are able to reduce load

shedding and improve system economics. The scenario for competition between microgrids and

a large central generation unit is analyzed via a bi-level model in [13]. A linear programming

cost minimization model for the high level system design and corresponding unit commitment of

generators and storage within a microgrid was presented in [14]. The results broadly indicate that

a microgrid can offer an economic proposition, although it is necessarily slightly more expensive

than regular grid-connected decentralized generation. Game theory has been identified in the

study as a suitable tool to analyze aspects of this situation. In this thesis, this aspect is studied

by developing a bi-level optimization model (leader-follower game) for obtaining equilibrium

operational strategies for microgrids and the optimal dispatch of electricity by the smartgrid when

environmental constraints are implemented (see Appendix D).

Literature related to environmental policies for energy generation studies the impact of such

policies considering economic and environmental effects. In this dissertation, the Appendix C

presents a published paper entitled Design of Pareto Optimal CO2 Cap-and-Trade Policies for

Deregulated Electricity Markets. In this manuscript, the analysis of cap-and-trade policies is

extended to policy design. The design considers important policies parameters (e.g., penalty, cap

size, and cap reduction) and includes the societal impact of carbon emissions, known as the social

cost of carbon (SCC). The designs also balance the different interest of market participant. Hence,

these policies are likely to achieve emissions reduction and, for example, minimize the increase of

electricity prices.
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As explained earlier in this section, integration of green energy (via microgrids or DERs) with

carbon policies will be needed to achieve targets for emissions reduction. Most microgrid models

in the open literature consider the main grid (smartgrid) as a buffer for electricity to buy from

and sell to, as necessary. However, with the expected growth of community microgrids and the

resulting increase in the percentage of total electricity demand supplied by the microgrids, the

above buffer assumption will increasingly be inappropriate. Also, none of the papers in the open

literature, to our knowledge, integrate carbon emissions control considerations in the microgrid

models. In this dissertation, the Appendix D presents a second published paper entitled Emissions

Control via Carbon Policies and Microgrid Generation: A Bilevel Model and Pareto Analysis.

This research considers the joint operation of the community microgrids and the parent smartgrid

in the presence of carbon emissions cap and the social cost of carbon. Also, it is shown how the

methodology presented in the Appendix C can be used to obtain levels of emissions reduction

that will sustain market demand and green energy penetration from microgrids. The mathematical

model presented here assumes accurate forecast of electricity prices, but no forecast model is

introduced. Therefore, Chapter 4 of this thesis presents such a LMP forecast model, called K-SVR.

The main advantages of K-SVR are that it provides accurate LMP forecasts (that are comparable

with other studies) and significantly improves the computational efficiency. The K-SVR model

could be easily incorporated in the two-layer framework discussed in the Appendices C and D.

1.1 Research Contributions

The research contributions of the articles presented in Appendices C and D are presented next.

1. Develop an economic model for optimal operation of community microgrids with green gen-

eration and storage capacities in an islanded mode under carbon emissions considerations.

2. Build a comprehensive economic model that integrates operational strategies of microgrids

and the grid under a carbon emissions control regime.
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3. Develop policies for emissions control and green penetration by balancing multiple objec-

tives of emissions reduction, green penetration, and electricity consumption using a Pareto

analysis.

4. Develop a model to analyze the impact of a CO2 cap-and-trade program in a restructured

power market considering stochastic fuel price variations and the social cost of carbon.

5. Obtain Pareto designs for cap-and-trade policies to be used as a decision support framework

for policymakers and market participants.

6. Consider the societal impact of carbon emissions as an emissions control strategy to deter-

mine generators bidding behavior and microgrids operation.

7. Develops and accurate and computational-efficient forecast model for electricity prices in

real time (and day-ahead) markets.

1.2 Methods

In this section, the modeling methods used in this dissertation are summarized. The research

described in Appendices C and D are based on a mathematical-statistical framework. This frame-

work presents two layers. The bottom layer involves the behavior of the market participants under

different market conditions, e.g., different types of cap-and-trade policies, or the inclusion of SCC

or not. The behavior of market participants is modeled using a bi-level optimization model. The

top layer involves an analysis of variance (ANOVA) for different levels of, for example, policy

parameters, SCC, and green energy from microgrids. The ANOVA results are used to formulate

regression equations for the network performance measures. Thereafter, a Pareto analysis is

developed by solving a multi-objective optimization model that consider the regressions equations

derived from the ANOVA analysis. The two-layer model is given as follows.
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Top layer
{

Optimize f (X)

Bottom layer


Maximize gi(αi,ωi), ∀i ∈ I

s.t. Maximize W (Q,Θ)

s.t. Network and policy constraints.

(1.1)

In the top layer, f (X) represents the objective function of the multi-objective optimization

model. The bottom layer is formulated, for each player i∈ I = {1,2, · · · ,n}, as a bi-level optimiza-

tion model, where gi(αi,ωi) denotes the profit of the player i. W (Q,Θ) denotes the social welfare

objective function for the DC optimal power flow (OPF) problem. Further details are presented in

Appendix C. The different methodologies utilized in both the bottom and top layer are summarized

next.

• Bi-level Programming:

Bi-level optimization models have been widely studied in the literature [e.g., 16, 17] , and

used for modeling the electricity markets [e.g., 18–20]. Bi-level models include two math-

ematical programs, where one serves as a constraint for the other. A generic description of

the bi-level model can be presented as follows.

Max fi(x,y)
xi

s.t di(xi,y)≥ 0, gi(xi,y) = 0,

y = Min
y

F(x,y)

s.t D(x,y)≥ 0, G(x,y) = 0.

(1.2)

For the lower level problem, with a convex objective function and non-empty feasible set, the

first order necessary conditions for a solution to be optimal are given (under some regularity

conditions) by the Karush Kuhn Tucker (KKT) conditions as follows.
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∇yF(x,y)−∇yD(x,y)t
δ +∇yG(x,y)t

γ = 0,

G(x,y) = 0,D(x,y)≥ 0,D(x,y)t⊥δ ,δ ≥ 0,
(1.3)

where δ and η are the vector of dual variables for inequality and equality constraints,

respectively. D(x,y)t⊥δ represent the orthogonality conditions, which is often stated as the

complementarity slackness constraint in the primal-dual relationship denoted by D(x,y)tδ =

0. Replacing the lower level problem in (1.2) by the set of conditions in (1.3) yields what is

known as a mathematical program with equilibrium constraints (MPEC), as given below.

Max fi(x,y)
xi

s.t di(xi,y)≥ 0, gi(xi,y) = 0,

∇yF(x,y)−∇yD(x,y)t
δ +∇yG(x,y)t

γ = 0,

G(x,y) = 0, D(x,y)≥ 0, D(x,y)t⊥δ , δ ≥ 0.

(1.4)

Further details on the MPEC models can be found in [21], [22], and [23].

The equilibrium among market participant is found by solving an Equilibrium Program

with Equilibrium Constraint (EPEC). An EPEC is defined as a game, EPEC = (MPEC)n
1,

among competing generators. Typically MPECs have non-convex feasible sets (due to the

complementarity constraints), therefore the resulting games are likely to have non-convex

feasible strategy sets. Since a global equilibrium for this type of games is difficult to identify,

the authors in [24] define a local Nash equilibrium as follows. The vector (x∗,y∗,δ ∗,γ∗)

is called a local Nash Equilibrium for the game EPEC = (MPEC)n
1 if, for each player i,

(x∗i ,y
∗,δ ∗,γ∗) is a local optimal solution for the MPEC (1.4) when (x−i) = (x∗−i). Hence, the

local Nash equilibrium is comprised of stationary points of the MPEC (1.4) for each player

i in the game EPEC = (MPEC)n
1.
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Literature presents different strategies to solve EPECs, of which linear and nonlinear com-

plementarity (CP/NCP) formulation [25] and diagonalization methods [26, 27] are the most

discussed. In this thesis (Appendix C), we consider a diagonalization method as described

in [28].

• Multi-objective Optimization:

Multi-objective optimization (MOO) has tremendous significance in modeling real-world

problems with conflicting objectives. In a complex system with multiple performance mea-

sures and the set of significant design factors that affect them, the conflict appears when

a set of factor values (levels) that are optimal for a particular performance measure may

not be optimal for other measures. In the context of environmental (carbon levels) and

economic activity, C&T and network parameters that minimizes CO2 emissions may not

yield lowest electricity prices, when both reduced emissions and lower prices may be among

the priorities. Therefore, a solution that can consider different priorities simultaneously must

be considered. Multi-objective optimization models, that yield Pareto fronts, are an example

of such approaches.

A Pareto front is a set of points representing factor level combinations where all points

are Pareto efficient. A Pareto efficient point indicates that no measure of performance can

be further improved without worsening one or more of the other performance measures.

Similarly, for any point outside of the Pareto front, by moving the point onto the front, one or

more measures can be improved without worsening the others. In this thesis, the evolutionary

algorithm NSGA-II genetic algorithm [30] is used to solve the MOO models and obtain the

Pareto envelope. NSGA-II algorithm, as many others, uses the concept of domination, e.i.,

two solutions are compared on the basis of whether one dominates the other or not. Hence,

the Pareto front (compound of non-dominated solutions) can be formally defined as follow.
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Definition: A solution x1 is said to dominate another solution x2 (x1� x2) if the solution x1

is no worse than x2 in all objectives, and the solution x1 is strictly better than x2 in at least

one objective.

x1� x2 iff

1) fi(x1)≤ fi(x2) ∀i ∈ 1, ...,M.

2)∃ j ∈ 1, ...,M for which f j(x1)< f j(x2).

• Analysis of Variance (ANOVA):

Analysis of variance (ANOVA) is a widely used statistical approach to determine factors

of a system that significantly impact its output measures [29]. The results of ANOVA

yields a response surface equation for each output (performance) measure, which can then

be optimized to obtain factor levels. Relevant factors that might impact performance of

an electricity network are policy parameters (cap size, cap reduction rate, SCC, taxes, and

penalties) and network parameters (e.g., demand-price sensitivity, line capacities, and social

cost of carbon). A factorial experimental design (e.g., a 3k experiment, with k factors each at

3 levels) with the relevant k factors yields the necessary factor combinations for the ANOVA.

The designed experiment and ANOVA results are used in the top layer of the mathematical-

statistical framework. For each factor combination, the bottom layer of the two-layer model

is solved, which yields the network performance measures (e.g., CO2 emissions, consump-

tion level, and marginal electricity price). Once every factor combination is considered by the

bottom layer, ANOVA is performed for each performance measure, and the corresponding

response surface equation is obtained. A complete explanation of how ANOVA analysis is

utilized in the two-layer model can be found in Appendix C.

9



Chapter 2: Design of Pareto Optimal CO2 Cap and Trade Policies for Deregulated

Electricity Networks

The complete presentation of the article Design of Pareto Optimal CO2 Cap and Trade Policies

for Deregulated Electricity Networks (published in Applied Energy) can be found in the Appendix

C. This paper fully describes a two-layer mathematical-statistical framework (discussed earlier)

that is used to develop Pareto designs of Cap-and-Trade policies for emissions reduction.

2.1 Abstract

Among the CO2 emission reduction programs, cap-and-trade (C&T) is one of the most used

policies. Economic studies have shown that C&T policies for electricity networks, while reducing

emissions, will likely increase price and decrease consumption of electricity. This paper presents

a two layer mathematical−statistical model to develop Pareto optimal designs for CO2 cap-and-

trade policies. The bottom layer finds, for a given C&T policy, equilibrium bidding strategies of

the competing generators while maximizing social welfare via a DC optimal power flow (DC-

OPF) model. We refer to this layer as policy evaluation. The top layer (called policy optimization)

involves design of Pareto optimal C&T policies over a planning horizon. The performance mea-

sures that are considered for the purpose of design are social welfare and the corresponding system

marginal price (MP), CO2 emissions, and electricity consumption level.
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Chapter 3: Emissions Control via Carbon Policies and Microgrid Generation: A Bilevel

Model and Pareto Analysis

The complete presentation of the article Emissions Control via Carbon Policies and Microgrid

Generation: A Bilevel Model and Pareto Analysis (accepted for publication in Energy) can be

found in the Appendix D. This paper presents a bi-level optimization model that finds the optimal

operation strategies of cooperative community microgrids in a smart grid under carbon emissions

control. The potential of microgrid generation in emissions reduction is accounted by applying the

framework described in Appendix C.

3.1 Abstract

Economic models are needed to analyze the impact of policies adopted for controlling carbon

emissions and increasing distributed renewable generation in microgrids (green penetration). The

impacts are manifested in performance measures like emissions, electricity prices, and electricity

consumption. This paper presents an economic model comprising bi-level optimization and Pareto

analysis. In the bi-level framework, the upper level models the operation of the microgrids and the

lower level deals with electricity dispatch in the grid. The economic model is applied on a sample

network in two steps. In step1, the bi-level model yields operational strategies for the microgrids

and the corresponding values of the grid performance measures. In step2, a statistical analysis of

variance combined with Pareto optimization attains guidelines for setting policies for emissions

reduction and green penetration without adversely impacting electricity prices and demand. We
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conclude that renewable generation from microgrids can significantly reduce the negative impacts

of the policies. Our economic model is novel as it 1) integrates operational strategies of microgrids

and the grid under an emissions control regime, 2) explicitly considers social cost of carbon in the

electricity dispatch, and 3) balances multiple objectives of emissions reduction, green penetration,

and electricity consumption using a Pareto analysis.

3.2 Stochastic Microgrid Operational Model

The microgrid operational model (also refer to as an energy management system, EMS) pre-

sented in Appendix D minimizes a community microgrid’s operation cost. The cost includes

production and maintenance cost of green generators (levelized cost), the cost of trading power

with the smartgrid, and the battery storage cost. This model assumes deterministic forecasts for

wind and solar weather data (average values for historical data is considered). Here, a stochastic

version of the operational model is presented. Also, the model considers the option of investment

capacity. To keep notation simple, the model is presented for a single time period.

Uncertainty for wind and solar weather data is modeled via scenarios. Each scenario w ∈

Ω has a probability prob(w). The model is presented in constraints (3.1)-(3.14). The objective

function (3.1) minimizes the expected operational cost and the investment capacity decisions. The

investment decision can be interpreted as the first stage variables. The production level variables

correspond to the second stage, which depend on the scenario realization. Constraint (4.3) shows

how the investment capacity allows higher production for microgrid m and production type (wind

and solar) i. Constraint 3.6 limits the investment cost to a defined investment budget for each

microgrid. Detail explanation of the microgrid operational model is presented in Appendix D.

Finally, a budget constraint is introduced in constraint (3.6).

Note that each scenario corresponds to a possible realization of weather data. Therefore, for

each realization (scenario), the electricity dispatch (DC-OPF) needs to be obtained. Hence, each
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scenario is solved independently in a lower level model. Each lower level model can replaced by

its KKT optimality conditions. The lower level model is presented in Appendix ]D.

Min
P ∑

m∈M
∑

i∈Gm
∑

w∈Ω

prob(w)[OMi(Pw
im)+STCiY w

im+

µ
w
m(P

w
gm− P̂w

mg)+BSCm(Pw
sm)]+ ∑

m∈M
∑

i∈Gm
CimXim

(3.1)

s.t. ∑
i∈Gm

Pw
im +Pw

gm +β
out
m Pw,out

bm =

∑
l∈m

Pw
lm +Pw,in

bm + P̂w
mg ∀m,w,

(3.2)

Pw,out
bm ≤ βmPw,h−1

sm ∀m ∈M,w, (3.3)

Pw
sm = βmPw,h−1

sm −Pw,out
bm +β

in
m Pw,in

bm ∀m ∈M,w, (3.4)

Y w
imPw,min

im ≤ Pw
im ≤ Pw,max

im Y w
im +Xim ∀i ∈ Gm,m ∈M,w, (3.5)

∑
i

CimXim ≤ Bm ∀m ∈M,w, (3.6)

P̂w
mg ≤∑

i
Pw

im +βmPh−1
sm ∀m ∈M,w, (3.7)

Pw
sm ≤ Pmax

sm ∀m ∈M,w, (3.8)

Pw,out
bm ≤ βmPmax

sm Y w
dm ∀m ∈M,w, (3.9)

Pw,in
bm ≤ βmPmax

sm Y w
cm ∀m ∈M,w, (3.10)

Y w
dm +Y w

cm ≤ 1 ∀m ∈M,w, (3.11)

P̂w
mg ≤ (Pmax

sm + ∑
i∈m

Pw,max
im )Y w

mg ∀m ∈M,w, (3.12)

Pw
gm ≤ (Pmax

sm + ∑
l∈m

Pw
lm)Y

w
gm ∀m ∈M,w, (3.13)

Y w
gm +Y w

mg ≤ 1 ∀m ∈M,w. (3.14)
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Chapter 4: Computationally Efficient LMP Forecast Model for Real Time Electricity

Markets

4.1 Introduction

This chapter presents a forecast model for electricity prices. Accurate and fast price forecasting

is needed to take intelligent and correct operational decisions at different levels (production and

distribution), especially in real time markets. Appendix D presents an operational model for

microgrids and the parent smartgrid. The referred operational model assumes forecasted prices

for future hours, which are accurate for microgrid generation. In this chapter, the forecasting

model presented attempts to fill the assumption previously mentioned, as it is shown that result

obtained are precise, stable, and computationally efficient. The data used for modeling and testing

purposes is publicly available and represent the PJM real time market for time periods 2005-2006

and 2011-2012.

4.2 Motivation and Literature Review

Forecast of the electricity prices (LMPs) is of critical significance to all participants in deregu-

lated electric power markets. The task of forecasting is complex as LMPs can vary widely owing to

changes in weather, demand spikes, network outages, changes in generation mix, and competitive

bidding strategies of the generators. Imprecise estimation of LMPs can lead to inappropriate

quantity bidding strategies by the generators, over/under supply of planned generation, rise in
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cost of meeting demand, and increase in real time operational challenges. Hence, it is imperative

to have a methodology to precisely predict real time (and day ahead) LMPs. Real time market

is a spot market in which current locational marginal prices (LMPs) are calculated at five-minute

intervals based on actual grid operating conditions. The independent system operator (ISO) is in

charge of the settlement of the real (and day ahead) markets and obtains the planned electricity

dispatch as well as the corresponding LMPs.

LMPs tend to have a non-stationary mean and variance as well as seasonal and non-seasonal

peaks. These characteristics make the forecasting of LMPs difficult. Literature shows that several

different modeling approaches have been used to forecast electricity prices. Zareipour et al. [31]

used univariate and multivariate ARIMA models for the hourly prices in Ontario energy system.

The model did not predict well the prices that were either very high or low. Several other models

achieving varying degrees of success were developed and presented to the literature. A subset

of these models are cited here. Zhang [32] and Tan [33] used wavelet transform combined with

ARIMA models to predict prices in Australian and Spanish markets, respectively. Artificial neural

networks (ANN) combined with similar days method have also been proposed by Mandal in [34]

and [35]. Vahidinasab [36] combined ANN with fuzzy c-means. Recurrent neural network models

were used by Hong [37] and Mandal [38]. A number of researchers have used support vector

machine (SVM) models. Examples include price forecasting for Australian electricity market, as

presented in [39] and [40], which use a combination of SVM and neural networks models. A two-

stage hybrid network of self-organized map (SOD) and SVM was used by Fan [41] for the New

England electricity market. Swief [42] combined SVM with principal component analysis (PCA)

and k nearest neighbor method (knn) for forecasting in the PJM market. LMP forecasting models

have also used support vector regression methods (e.g., Pai [43]).

Other hybrid methods include Li [44], which combined fuzzy inference systems and least

squares estimation. Amjady [45] in his forecasting model incorporated feature selection technique

and cascaded neuro-evolutionary algorithm. A mixed model for load and price forecasting where
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a load forecast is used to forecast price was presented by Amjady [46]. Arabali [47] considered

Gauss-Markov process to represent the stochastic dynamics of the electricity price.

As stated to earlier, electricity price is highly non-stationary and non-linear, and linear predic-

tion models (e.g., ARIMA and linear regression) are insufficient. Hence, many non-linear models

have been developed using artificial and fuzzy neural networks. But, it has been shown that though

NN learns training data well, it may encounter large prediction errors in the test phase due to the

time dependence of electricity prices [45], [46]. Feature selection algorithms have been proposed

to address this issue. However, the training and testing time associated with these algorithms

using neural networks and feature selection mechanisms may significantly increase as the data size

increases. Also, for feature selection, it has been shown that the combinations of good individual

features do not necessarily lead to a good classification performance [48].

In this paper, we present a simpler alternative hybrid approach for LMP forecasting that would

be useful in real time markets. The approach first uses a clustering model to form clusters of similar

prices. The cluster information is then fitted with a SVM model, which is used to classify the future

electricity prices. Thereafter, for each cluster, we develop a local SVR model that yields the price

forecast. We developed and implemented our hybrid model using publicly available data from the

Pennsylvania-New Jersey-Maryland (PJM) market for the years 2005-2006 and 2011-2012.

The rest of the paper is organized as follows. Section 4.3 presents a description and statistical

analysis of the PJM data. Section 4.4 presents the basics of the support vector machine models,

which is followed by the details of the proposed hybrid model (K-SVR). Section 4.5 describes the

performance measures that are used to evaluate forecasting accuracy. The forecast results and a

comparative analysis with the results from other methods in the literature are presented in Section

4.6. Concluding remarks are placed in Section 4.7.
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4.3 Description of Data Set from PJM

PJM interconnection is a regional transmission organization (RTO), and is one of the largest

competitive wholesale electricity markets in the U.S. We have used LMP data from PJM for the

years 2005-2006 for training and testing purposes as did other previous researchers (e.g., [34] and

[49]). Subsequently, we used the data from 2011 to train our model and test it using 2012 data.

The data for 2005-2006 comprises hourly LMP and hourly demand of electricity. Whereas,

the data set for 2011-2012 contains hourly LMP and its predictors: demand (abbreviated later as

Dem), wind energy, index hour, relative humidity (RH), temperature (Temp), and dew point (DP).

Table 4.1 shows the correlation matrix between the LMP and the predictors for 2011-2012. Clearly

demand has the highest correlation with LMP, whereas dew point has almost none. Wind energy

and relative humidity have negative correlations.

Table 4.1: Correlation matrix.
LMP Hour Dem. Wind Temp. DP RH

LMP 1
Hour 0.267 1
Dem. 0.687 0.457 1
Wind -0.162 -0.011 -0.243 1
Temp 0.156 0.145 0.329 -0.305 1
DP 0.056 0.004 0.203 -0.334 0.887 1
RH -0.212 -0.307 -0.285 -0.056 -0.268 0.195 1

The scatter plot for LMP and demand (for period 2011-2012) is presented in Figure 4.1. The

high positive correlation coefficient (0.687)is evident as higher demand increases the price of

electricity. The relationship appears to be somewhat quadratic. Similar trend was observed in

the data set for 2005-2006 (see Figure 4.2), where the correlation between demand (or load) and

LMP even higher (0.799).

Figure 4.3 shows the autocorrelation function (ACF) for LMP prices during the year 2005.

The ACF for a series gives correlations between the series xt and lagged values of the series
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Figure 4.1: Scatter plot for LMP and electricity demand for period 2011-2012.
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Figure 4.2: Scatter plot for LMP and electricity demand for period 2005-2006.

xt−1,xt−2,xt−3, ....It can be noticed that there appears to be a significant positive correlation up

to the lagged value xt−4, and also a seasonality of 24 periods.

Figure 4.3: Autocorrelation function for LMP.

The seasonality is confirmed by the partial autocorrelation plot (PACF) shown in Figure 4.4.

The PACF is the amount of correlation between a variable and a lag of itself that is not explained

by correlations at all lower lag levels. It can be seen that the lag period t−24 has a high correlation

with the LMP at time t.
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Figure 4.4: Partial autocorrelation function for LMP.

The information obtained from the ACF and PACF should not be surprising due to the natural

seasonality pattern of electricity prices. Table 4.2 shows some descriptive statistics of both data

sets. Clearly, the years 2005-2006 have a higher variability than 2011-2012. Also, the mean LMP

for the 2005-2006 period is considerably higher.

Table 4.2: Variability in the data sets.
LMP2005 LMP2006 LMP2011 LMP2012

Mean 57.89 48.09 42.51 32.79
Standard Deviation 30.04 23.42 20.48 13.29
Variance 902.52 548.55 419.5 176.63

4.4 Forecasting Model

In this section, we first provide a brief description of the SVR model and, thereafter, present a

detailed description of our proposed hybrid forecasting model (K-SVR).

4.4.1 SVR

Support vector machines, the basis for support vector regression (SVR) models, are founded on

the duality theory of optimization. If a data set is not linearly separable, SVR maps the data points

to a higher dimensional space via a kernel function, and builds a regression model in this kernel
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induced space [50]. The epsilon-SVR finds a line (linear function f (x)) connecting all the points

allowing a predefined error tube (+- epsilon). SVR introduces a penalty (C) for being outside of

the error tube. However, once the data points are close enough (in some epsilon-tube) the error is

ignored. Given a set of data points D = {(xi,yi)}n
i=i (where x is the input vector and y the target

value), SVR finds the w and b of linear function y = f (x) = wφ(x)+ b by solving the following

optimization model via duality theory.

Min
1
2
‖w‖2 +C∑

i
(ξi− ξ̂i) (4.1)

s.t. w2
φ(xi)+b− yi ≤ ε + ξ̂i ∀i (4.2)

yi−wT
φ(xi)−b≤ ε +ξi ∀i (4.3)

In the above optimization model, the input data in the induced high dimensional space is given

by φ(xi), w is a vector perpendicular to the plane, b is a variable scanning the space, ξi is a positive

slack variable (point above the hyper-plane), and ξ̂i is a negative slack variable (point below the

hyper-plane).

4.4.2 LMP Forecasting

LMPs can be forecasted using information of LMP time series and other variables such us

electricity demand, temperature, wind energy, and fuel prices, among others. There are many

research papers in the open literature that have focused on developing forecast models for wind

speed, solar irradiance, and LMPs utilizing feature selection and data selection techniques. For

large data sets, feature selection techniques (e.g., backward and forward selection, stepwise se-

lection) may become computationally challenging. In K-SVR, we propose a computationally

simpler feature selection method that uses information derived from the autocorrelation and partial
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autocorrelation functions. That is, if the LMP forecast for time t + 1 is desired, then features

(previous LMPs) for all significant lags in the ACF plot and the features with seasonal information

from the PACF plot are utilized. This approach is similar to that used for ARIMA model. However,

ARIMA models themselves are unsuitable for predicting LMPs as they assume stationary mean

and variance. Hence, we adopt SVR approach that does not require the stationary assumption.

The SVR model can thus be viewed in the form of a regression model as follows. Let l denote

the number of significant lags from the ACF plot, and s denote the lag for seasonal trend observed

from PACF plot. Then we can write that

Ŷt+1 =
l−1

∑
i=0

βiYt−i +βYt−(s−1)+
P

∑
j=1

l−1

∑
i=0

βi jX
j

t−i, (4.4)

where Yt represents the LMP value at time t, Xt represent covariates other than LMP at time t, and

P represent the number of such covariates. Before deriving the SVR models, the LMP training data

is classified into K clusters of different prices. For each price cluster, we develop a separate SVR

model. The forecast for time t + 1 is obtained from one of these K SVR models. If current time

is t, for which actual LMP is known, the forecast for the next t + τ periods is obtained as follows.

The expected LMP for the period t + 1 is assigned to one of the K clusters using a SVM model.

Then the SVR model for the corresponding cluster is used to obtain the LMP forecast for period

t +1. The forecast for period t +1 is considered as the actual LMP for forecasting for period t +2.

This process continues till period t +τ . A depiction of the proposed model is shown in Figure 4.5.

A step by step summary of the training and testing of the model by forecasting price at time

t + τ is given as follows.

1. Perform K-means using the historical data in order to identify the clusters.
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Figure 4.5: Schematic of K-SVR model.

2. Choose the number of clusters beyond which the decrease in the sum of square within the

clusters is below a chosen threshold.

3. For each cluster, train a SVR model for prediction.

4. Train a SVM model for classification using information of all K clusters.

Given the trained SVM and SVR models, consider a forecast period t +h. Set h = 1.

5. Classify the LMP for t +h as belonging to one of the K clusters.

6. Obtain the prediction for period t +h using the SVR model for the cluster found in step 1.

7. Use the forecasted value for t +h to predict LMP for t +h+1.

8. Set h = h+1. Repeat steps 1 through 3 till h = τ .

4.5 Measures of Forecast Performance

The mean percentage error (MAPE) is among the most common measure used to evaluate

forecast performance. MAPE is defined as average of the absolute value of the error forecast (real

minus predicted) over the real value. We refer to this as MAPE1. Some authors have redefined the

concept of MAPE due to the highly volatile nature of electricity prices [34]. We will refer to this

as MAPE2. In the expressions for MAPE1 and MAPE2 ,given bellow, LMPr and LMP f are used

to denote real and forecasted values, respectively.
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MAPE1 =
1
N

N

∑
i=1

∣∣∣LMPr
i −LMP f

i

∣∣∣
LMPr

i
,

MAPE2 =
1
N

N

∑
i=1

∣∣∣LMPr
i −LMP f

i

∣∣∣
LMPa

i
,

where

LMPa
i =

1
N

N

∑
i=1

LMPr
i .

Other performance measures that are also presented in the literature are the forecast mean square

error (FMSE) and the mean absolute error (MAE), which are given as

FMSE =

√
1
N

N

∑
i=1

(LMPr
i −LMP f

i )
2,

MAE =
1
N

N

∑
i=1

∣∣∣LMPr
i −LMP f

i

∣∣∣ .
4.6 Results and Comparison

We first tested our model, developed using PJM data from 2005, on the data for 2006. We then

repeated the process using data from 2011 and 2012. Results from our model were compared with

those obtained using the same data sets by other models in the open literature. While implementing

our model, we chose a relatively small value for the number of clusters K=3, which was based on

a plot of sum of squares within clusters from the 2005 data (see Figure 4.6). The figure shows that

beyond K=3, the reduction of the sum of squares is small. Also, if a higher values of K is chosen,
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fewer price data points will be assigned to each cluster. This is likely to lower the performance

of the prediction models or result in over-fitting. The values chosen for parameters l and s were 4

and 24, based on ACF and PACF plots (see Figures 4.3 and 4.4), respectively. The kernel function

chosen for the SVM/SVR models is the radial basis function.
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Figure 4.6: Sum of square within clusters.

4.6.1 Model Validation Using PJM Market Data-2006

For validation, we tested our model using data from 2006. Several other models in the literature

have used data from 2006 for testing. For the purpose of comparison, we chose data from the same

days of the year 2006, as considered by other models. We obtained all four measures of LMP

forecast performance, which are presented in Table 4.3. The average values over all the days to

which our model was implemented (see the last row), indicate a mean absolute deviation from

real LMPs by $2.47/MWh with standard deviation of $3.17/MWh, which represents an average

forecast error of 5.17-5.18%.

Table 4.4 shows a comparison of the performance of our model (K-SVR) with those obtained

from selected models in the literature. The first model that we had selected for comparison can

be found in [34], which has been used as a benchmark in many previous studies. This model

(henceforth referred to as SD+NN) uses similar days (SD) to perform a forecast, which is then
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Table 4.3: LMP forecast errors for K-SVR model.
Test Days MAE FMSE MAPE1 MAPE2

[$/MWh] [$/MWh] [%] [%]
20-Jan 2.06 2.55 5.17 5.15
10-Feb 2.68 3.31 4.86 4.89
5-March 2.54 3.25 5.55 5.54
7-Apr 2.41 2.98 4.46 4.57
13-May 1.63 1.85 5.26 4.71
February 1-7 2.94 4.49 5.31 5.85
February 22-28 2.98 3.74 5.59 5.59
Average 2.47 3.17 5.17 5.18

improved using neural networks (NN). Note from Table 4.4 that, for each of the test days, K-

SVR outperformed SD+NN, for which only MAPE2 values were made available in [34]. Results

indicate an error reduction of up to 49%.

The second model with which K-SVR was compared was proposed in [49]. This model

comprises a pre-processor coupled with a hybrid neuro-evolutionary system (HNES). The pre-

processor selects the input features of the HNES according to MRMR (maximum relevance min-

imum redundancy) principle. The HNES is composed of three neural networks (NN) and evolu-

tionary Algorithms (EA) arranged in a cascaded structure, supported by auxiliary predictors from

ARIMA and batch NN models. As seen from Table 4.4, the HNES model outperforms K-SVR per

MAPE2 by 15% on average. However, the complex structure of the HNES model demands a much

higher computational time of about 30 minutes [49] compared to K-SVR that takes approximately

1 minute, using a similar computer CPU. Though superior in performance (per MAPE2) to K-

SVR, the high computational effort needed by HNES may make it unattractive for use in real time

electricity markets that are often settled every five minutes (as in PJM).

In addition to the mean forecast error, the variance of the forecast error has also been used as a

measure of performance of the models in the literature. Table 4.5 shows the variance of the forecast

errors (using MAPE2) for the test days considered earlier. K-SVR has lower error variances than

SD+NN for all of the test days and weeks, which indicates a higher stability of prediction. Also, K-
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Table 4.4: MAPE for LMP forecast result for test days.
Test Days SD+NN [34] HNES [49] K-SVR K-SVR

(MAPE2) (MAPE2) (MAPE1) (MAPE2)
20-Jan 6.93 4.98 5.17 5.15
10-Feb 7.96 4.10 4.86 4.89
5-March 7.88 4.45 5.55 5.54
7-Apr 9.02 4.67 4.46 4.57
13-May 6.91 4.05 5.26 4.71
February 1-7 7.66 4.62 5.31 5.85
February 22-28 8.88 4.66 5.59 5.59
Average 7.89 4.50 5.17 5.18

SVR has a lower error variance for most of the test days compared to HNES and CNEA (cascaded

neuro-evolutionary algorithm) [45].

Table 4.5: Forecast error variance comparison.
Test Days K-SVR SD+NN [34] HNES [49] CNEA [45]
20-Jan 0.0014 0.0034 0.0020 0.0031
10-Feb 0.0014 0.0050 0.0012 0.0036
5-March 0.0020 0.0061 0.0015 0.0042
7-Apr 0.0011 0.0038 0.0018 0.0022
13-May 0.0006 0.0049 0.0013 0.0027
February 1-7 0.0045 0.0066 0.0016 0.0035
February 22-28 0.0018 0.0047 0.0017 0.0035
Average 0.0018 0.0049 0.0016 0.0034
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Figure 4.7: Real and forecast LMPs for February 20, 2006.

Table 4.6 presents further comparative performance outcomes for K-SVR with a number of

other models studied in [51].
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Table 4.6: MAPE comparison.
K-SVR Ref. [51] (MAPE1)

Test Weeks MAPE1 MAPE2 ARIMA MLP+LM MLP + BFGS MLP+BR WT+NN+EA
Winter 6.72 6.46 11.21 9.82 12.90 13.22 4.44
Spring 8.26 7.78 15.30 8.87 10.12 12.92 4.31
Summer 5.34 5.08 13.56 10.43 11.46 11.98 4.78
Fall 4.18 4.07 12.93 9.54 9.83 12.24 4.75
Average 6.12 5.84 13.25 9.66 11.07 12.59 4.57

The comparison was performed using data for one week from each of the four different seasons:

winter (February 15-21), spring (May 15-21), summer (August 15-21), and fall (November 15-21).

The models used for comparison are: ARIMA, multi-layer perceptron neural network (MLP) with

Levenberg & Marquardt learning algorithm (LM); MLP with Broyden, Fletcher, Goldfarb, and

Shanno learning algorithm (BFGS); MLP with Bayesian regularization learning algorithm (BR);

and a hybrid model comprising wavelet transform (WT), neural networks (NN), and evolutionary

algorithm (EA). The MAPE1 values for K-SVR are significantly better than all models except for

WT+NN+EA. On average WT+NN+EA errors are 25% lower than K-SVR. However, as reported

in [51], computational time needed by the WT+NN+EA model is between 16 and 35 minutes

compared to up to one minute for K-SVR, when implemented on a comparable CPU.

It may also be noted that a study, presented in [52], implemented a number of models, such

as ARMA, GARCH, FFNN (feed forward neural network), SVM (support vector machine), FIS

(fuzzy inference system), LSE (least square estimation), and a combination of FIS and LSE, on

data from PJM electricity market in 2004. Best MAPE1 value reported was about 9.6% and the

computational time ranged from 80 to more than 10,000 seconds.

4.6.2 Model Validation Using PJM Market Data-2012

For further validation, we refitted our model (4.4) using data from the 2011 PJM market. We

kept the values of the model parameters (K, s, and l) same as those obtained from 2005 data.
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We then tested our model using data from 2012. To the best of our knowledge, no other models

have used data from 2012, which reflects a more up to date condition of the PJM market. We

have chosen six test periods, including a high peak scenario that occurred in June 21st, 2012.

The values of MAPE1, MAE, and FMSE were first obtained using K-SVR considering LMP and

demand as the only predictors. Results are presented in Table 4.7. The overall average values

over all the test periods indicate a mean absolute deviation from observed LMPs of $0.64/MWh

with a standard deviation of $0.836/MWh, representing a forecast error of approximately 1.2%.

Also, note that the forecast error obtained for June 21st (peak day) was around 5.5%, which is

significantly smaller when compared with the peak price predicting performance of other forecast

models. For instance, see [45] where MAPE1 values are 20-25% for days (in 2006) with peak

prices at or above $150/MWh.

Hereafter, LMP predictions using K-SVR were obtained by extending the set of covariates

beyond LMP and demand to include wind energy, temperature, dew point, and humidity. The

results showed a drop in accuracy, where the MAPE1 values were consistently higher for all test

periods, with an overall average of 1.727%. Further analysis of the negative impact of the addi-

tional covariates needs to be performed to better understand their influence on the LMP forecast.

Similar observations were made in a related study [34], where demand and generator outages were

found to be the most significant predictors of LMP. The relatively small forecast errors (MAPE1)

obtained by K-SVR with 2012 data compared to 2006 may be attributed to both the inherent lower

variability in the LMPs in 2012 (see Table 4.2) as well as the method used for selecting the number

of clusters K with low within cluster LMP variations.

4.7 Conclusions

With the proliferation of smart grids and distributed wind and solar energy resources, the

variabilities in generation mix and the corresponding prices are likely to increase. This in turn
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Table 4.7: K-SVR forecast accuracy for LMP in PJM 2012.
Test period MAPE1 MAE FMSE
20-January 0.289 0.109 0.161
5-March 0.141 0.057 0.077
7-April 0.115 0.029 0.035
July 5-7 0.303 0.178 0.230
18-September 0.665 0.234 0.402
21-June 5.522 3.232 4.111
Average 1.172 0.640 0.836
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Figure 4.8: Real and forecast LMPs for June 21th.
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Figure 4.9: Real and forecast LMPs for September 18th.

will make prediction of LMPs in real time markets more challenging requiring faster models to

process up to date data. Increase in the size of the restructured markets will also contribute to the

need for models capable of faster processing of larger volume of data. These motivated our quest

to develop an accurate LMP forecasting model that is fast enough to accommodate most up to date

data on covariates. In order to reduce the impact of variability, we chose to first segregate the data

into clusters with low within cluster variabilities and then apply the SVR on each cluster. Then we

apply a SVM classification model to determine which cluster the future LMP is likely to belong.
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The SVR of that cluster is then used to form the prediction. Our method is recursive, where, if the

current time is t, prediction for hour t+τ uses the past data along with the predicted values for t+1

up to t + τ−1. The choice of the use of SVR models is motivated by the inherent non-linearity of

the relationship between LMP and its predictors, as well as the non-stationary nature of the mean

and variance of LMP.

K-SVR was compared with other existing models including a classical model that most models

in the literature are compared with and other more recent well performing ones. The results show

that K-SVR model provides comparable forecast errors with reduced error variances, in most cases,

while needing a significantly smaller computational time. The reduction in computational time

in K-SVR is achieved primarily through elimination of the use of feature selection for all the

model covariates for each prediction. K-SVR instead uses the information from ACF and PACF

to pick the significant lag values (covariates) to build a prediction model. We have implemented

K-SVR on a new data set (PJM 2012) which will provide a benchmark for future models. Contrary

to our expectation, adding more explanatory covariates (wind energy, temperature, dew point,

and humidity) did not result in an improved forecast performance. With increased green energy

penetration and corresponding data availability, further studies should be designed to examine the

influence of explanatory covariates.
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Chapter 5: Conclusions

Global warming is among the key issues that scientists and policy makers worldwide are

deliberating on. The U.S. Energy Information Administration reports that in 2013 only 11% of

the U.S. energy portfolio corresponded to renewable sources, whereas 32% of the total carbon

emissions were produced in the power energy sector. To overcome global warming, the U.S. and

European Union, among others, are currently increasing the use of renewable energy to reduce the

reliance on fossil fuels energy based, as well as imposing stricter carbon policies. The development

of a smart grid will help the integration of these renewable energy sources. Therefore, models

capable to analyze the impact of carbon policies and the wide range of opportunities of renewable

energy are highly needed. This thesis presents a compilation of two papers (both published in

referred journals) that seek to address the problematic of both renewable energy integration and

carbon emissions policy designs that will sustain adequate market demand for electricity needed

to spur economic growth.

Among the CO2 emission reduction program, cap-and-trade (C&T ) is one of the most popular

policies. Economic studies have shown that C&T policies for electricity networks, while reducing

emissions, will likely increase price and decrease consumption of electricity. Chapter 2 and

Appendix C describe the details of the paper entitled Design of Pareto Optimal CO2 Cap-and-

Trade Policies for Deregulated Electricity Networks. In this paper, it was demonstrated that a

Pareto envelope generated by the proposed model can serve as a useful tool for policy makers

to select alternative C&T policies while satisfying various interests of the electricity network
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constituents. Results presented in the paper also examine the sensitivity of important factors

affecting electricity markets such as social cost of carbon and demand-price sensitivity.

Carbon policies solely designed to reduce energy generation from fossil fuels sources (emis-

sions level) may adversely affect electricity prices and consumption. Hence, new energy sources,

such as DERs and microgrids, will play a predominant role to satisfy the projected increasing

energy demand. Chapter 3 and Appendix D provide the details of the paper entitled Emissions

Control via Carbon Policies and Microgrid Generation: A Bilevel Model and Pareto Analysis.

The proposed model can be used by the microgrids operators to derive economic operational

strategies for any given planning horizon. Operational strategies include decisions for green

electricity production, storage/discharge of batteries, and trading of electricity with the smartgrid.

The results from the model provide critical insights on how combinations of SCC, cap, and size

of the community microgrids impact the electricity prices and the demand in the smartgrid. An

example of such insights is that in the presence of emissions control (SCC and cap), higher green

penetration by the microgrids reduces the average electricity cost and increases the demand in the

smartgrid even in the peak hours. The model also allows the public (policy makers) to set targets

for percent green penetration, emissions reduction, and market demand restoration, among others.

A key limitation of the proposed model is that it does not consider the stochastic hourly variations

of solar irradiance and wind speed, instead takes their average values. Also, the model considers

solar and wind as the only possible sources of generation in the community microgrids. The model

also ignores the ramp up/down constraints for conventional generators.

Finally, chapter 4 of this dissertation presents an accurate and computational efficient forecast

model for electricity prices. Results from this model can be easily used in the microgrid-ISO

bilevel model. Also, the forecast algorithm can be easily integrated into the two-layer mathematical-

statistical framework described in Appendix C. Further testing needs to be done to analyze the

capabilities of the model to forecast energy demand and wind-solar energy.
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� A mathematical–statistical model for designing Pareto optimal CO2 cap-and-trade policies.
� The model fills a gap in the current literature that primarily supports cap-and-trade policy evaluation but not policy design.
� Pareto optimal policies accommodate conflicting goals of the market constituents.
� Electricity demand-price sensitivity and social cost of carbon have significant influence on the cap-and-trade policies.
� Higher demand-price sensitivity increases the influence of penalty and social cost of carbon on reducing carbon emissions.
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a b s t r a c t

Among the CO2 emission reduction programs, cap-and-trade (C&T) is one of the most used policies. Eco-
nomic studies have shown that C&T policies for electricity networks, while reducing emissions, will likely
increase price and decrease consumption of electricity. This paper presents a two layer mathematical–
statistical model to develop Pareto optimal designs for CO2 cap-and-trade policies. The bottom layer
finds, for a given C&T policy, equilibrium bidding strategies of the competing generators while maximiz-
ing social welfare via a DC optimal power flow (DC-OPF) model. We refer to this layer as policy evaluation.
The top layer (called policy optimization) involves design of Pareto optimal C&T policies over a planning
horizon. The performance measures that are considered for the purpose of design are social welfare and
the corresponding system marginal price (MP), CO2 emissions, and electricity consumption level.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A major part of the total CO2 emissions come from the electric-
ity production sector, e.g., 40% in the U.S. ([1]). In 2009, 70% of the
electricity was produced from fossil fuel such as gas, coal, and
petroleum ([2]). In 2005, the European Union Emissions Trading
System (EU ETS) launched a cap-and-trade system that seeks to re-
duce the greenhouse gas (GHG) emissions by 21% by 2020 from the
2005 level. Currently, the EU ETS is the largest emission market in
the world [3], and according to the European Commission [4], at
least 20% of its budget for 2014–2020 will be spent on climate-re-
lated projects and policies. In the United States, as well as in the
EU, different regulations have been discussed to cut CO2 emissions
such as carbon tax, renewable portfolio standards (RPS), and cap-

and-trade programs (C&T). In the northeastern U.S., the Regional
Greenhouse Gas Initiative (RGGI) has already implemented a C&T
program through a nine state collaborative effort, which seeks to
cut the CO2 emissions by 10% by 2018. Recently the California
Air Resources Board adopted a C&T program, held its first auction
on November 2012, and started operation on January 2013. It is a
part of California’s historic climate change law (AB 32) that will re-
duce the carbon pollution to 1990 levels by 2020. Other countries
who have already implemented C&T programs include New Zea-
land, Japan, The Netherlands, and Australia.

C&T policies implemented in the past for greenhouse gases had
resulted in increase in cost for households, since the generators
passed the emissions reduction costs to the consumers [5]. Linn
[6] studied the economic impact of C&T policies for nitrogen oxides
(NOx) on deregulated firms. The study showed that the effect of
reduction of NOx emissions may not increase electricity prices to
a level which could fully compensate firms for their compliance
costs, particularly for coal generators. This lead them to reduce
their expected profit by as much as $25 billions. Chen et al. [7]
developed a mathematical model to examine the ability of larger
producers in an electricity market under NOx C&T policy to manip-
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ulate both the electricity and emission allowances markets. With
regards to CO2 cap-and-trade policies, Ruth et al. [8] examined
the economic and energy impacts that the state of Maryland will
have by joining the RGGI initiative. They identified several issues
that are important to the acceptance and effectiveness of CO2

C&T programs, such as rules for allowances distribution and subsi-
dies for energy efficiency programs. Bird et al. [9] claimed that,
while renewable energy will likely benefit from carbon cap-and-
trade programs, C&T can also impact the ability of renewable en-
ergy generation to affect overall CO2 emissions levels. They sum-
marized the key issues for markets that are emerging under CO2

C&T policies and also the policy design options to allow renewable
energy generation to impact the emissions level. For further read-
ing about economic impacts of CO2 C&T, we refer the readers to
Goettle and Fawcett [10] and Parmesano and Kury [11]. Linares
et al. [12] have studied the impact of CO2 C&T regulation and green
certificates on power generation expansion model. They have
shown that when a C&T policy is considered, locational marginal
prices (LMPs) increase, emissions decrease, and installed green
generation capacity increases. Limpaitoon et al. [2] studied the im-
pact of C&T regulation and the interaction of demand elasticity,
transmission network, market structure, and strategic behavior
for an oligopoly electricity market (in the state of California). They
concluded that GHG regulations will affect the system operations
and market outcomes by increasing electricity prices (for both oli-
gopoly and perfect competition scenarios), and reducing both GHG
emissions and energy consumption. Their results also suggest that
the interaction between CO2 C&T regulations, market structure,
and congestion might lead to potential abuses of market power
and create more congestion, which will limit nuclear access to
the market. This generates higher demand for emissions permit,
which in turn increases permit prices. Fullerton and Metcalf [13]
showed how certain environmental policies reduce profit under
monopoly, raise prices, and reduce welfare profit. Rocha and Das
[14] presented a game-theoretic model for developing joint bid-
ding strategies in C&T allowances and electricity markets for com-
peting generators. Rocha et al. [15] examined the impact of C&T
policies on generation capacity investment.

Some of the current research concerning C&T policies is focused
on the issue of development and analysis of allowance allocation
mechanisms [16–18], and suggestions for policy effectiveness
[8,9,19]. However, the open literature does not offer a methodol-
ogy for design of CO2 C&T policies that takes into account a range
of conflicting measures of performance that appeal to different
market stakeholders. For example, a consumer’s concern is price
increase [6,8,13], a generator’s concern is profit/revenue reduction
[2,13], and a policy maker’s concerns include adequate emissions
reduction and sustaining electricity consumption necessary to sup-
port economic growth [9,12,13]. There does not appear to be a con-
sensus in the literature about economic impact that can be
expected under C&T programs, neither is there an agreement about
the choice of the C&T parameters and their values [20]. This paper
attempts to fill the above gaps by presenting a 2-layer mathemat-
ical–statistical model to design Pareto optimal CO2 C&T policies for
deregulated electricity networks. This paper presents an elaborate
sensitivity analysis of selected policy parameters (initial allowance
cap, cap reduction rate, violation penalty) and network parameters
(congestion, social cost of carbon, and demand-price sensitivity of
the consumers).

In the bottom layer of the 2-layer model, the strategic bidding
behavior of the competing generators is formulated as a bi-level
mathematical model. The upper level model focuses on maximiz-
ing overall generator profit by bidding to the independent system
operator (ISO) in the allowance and electricity markets. The lower
level model focuses on social welfare maximization (or, social cost
minimization) while meeting the network and policy constraints

via a DC-OPF model. Each bi-level optimization problem is refor-
mulated as an mathematical problem with equilibrium constraints
(MPEC). Equilibrium bidding strategies among the competing gen-
erators are obtained by solving the set of MPECs as an equilibrium
problem with equilibrium constraints (EPEC). Thus, the bottom
layer of the 2-layer model essentially evaluates the impact of a gi-
ven C&T policy on a network by obtaining the performance mea-
sures including electricity price, emissions level, and
consumption level. The top layer model, using as input the results
of the bottom layer model, develops regression equations for dif-
ferent network performance measures using the tools of analysis
of variance (ANOVA). The regression equations relate the perfor-
mance measures to the parameters of the C&T policy and the net-
work. These equations are used in forming a multi-objective
optimization model, solution of which yields the Pareto optimal
CO2 C&T policy designs.

The rest of the paper is organized as follow. In Section 2 we
introduce the elements of a C&T policy and discuss social cost of
carbon. Section 3 presents the complete 2-layer model-based
methodology that obtains the Pareto optimal C&T policies. Sec-
tion 4 demonstrates the application of our methodology on a sam-
ple network. Section 5 provides the concluding remarks.

2. Cap-and-trade and the social cost of carbon

Cap-and-trade is a market based mechanism that can be used to
regulate the GHG emissions. The following are some of the primary
features of a cap-and-trade mechanism.

� Point of regulation: Different approaches to regulate emissions
in the electricity markets have been proposed and imple-
mented. They range from regulating far upstream at the point
of sale of fossil fuels to far downstream at the point of purchase
of manufactured products and energy by ultimate consumers
[21]. The upstream approach sets an emissions cap on produc-
ers of raw material that contains GHG (e.g., coal, gas, or petro-
leum), whereas the downstream approach regulates the direct
producers of GHG [22].
� Allowance distribution: In an Emissions Trading System (ETS),

one of the major concerns is how to distribute the allowances,
as both the initial as well as the continuing distribution strate-
gies have a significant influence on the final market equilibrium.
Under a downstream regulation, several allowance allocation/
distribution mechanisms have been studied in recent years.
Most commonly discussed mechanisms in the literature are free
allocation and auction based allocation [18,17]. Free allocation
of allowances is often based either on historical emissions
(known as grandfathering) or on energy input/product output
(known as benchmarking) [23]. An allocation mechanism based
on equal per capita cumulative emissions was presented in [24].
RGGI has implemented an auction based model with a combi-
nation of uniform and discriminatory pricing strategies. In the
EU ETS, during the first and second trading periods, most of
the allowances were given freely according to historical emis-
sions. In the third trading period, free allowances allocation is
scheduled to be progressively replaced by auctioning through
2020 [23].
� Cap stringency: This is a common feature in all C&T policies and

refers to the rate of reduction of allowance cap. The cap reduc-
tion rate varies among markets due to network (market) intrin-
sic characteristics, policy decisions, external economic
variables, and other C&T parameter values [25]. For instance,
EU ETS implemented a 1.74% linear cap reduction for 2012–
2020 and beyond ([26]), while RGGI implemented a fixed cap
for 2009–2014 and a subsequent 2.5% reduction until 2018.
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� Banking: It allows generators to save allowances for future peri-
ods. Some markets also allow secondary trading of excess
allowances at the end of each period. Banking rules could vary
among different markets. EU ETS permitted allowance banking
during phase I of its operation, but did not permit allowances to
be carried over into phase II. From phase II and on, unlimited
banking and borrowing is allowed [25]. The RGGI allows bank-
ing with no restrictions from current compliance periods into
the future.
� Penalty: Fossil fuel generators must procure allowances com-

mensurate with their emissions level or pay a penalty for any
shortfall. EU ETS introduced a monetary penalty (40 euros dur-
ing phase I and 100 euros for phase II), whereas California’s pol-
icy require four additional allowances for each shortfall. IETA
(International Emissions Trading Association) advises against
using a non-compliance penalty by additional withdrawal of
allowances. Instead, IETA recommends adopting a more tradi-
tional fixed monetary fine similar to those entered in the SO2

and NOx emissions markets in the U.S. [27].

Other features of a cap-and-trade mechanism include initial cap
size, safety value, revenue recycling and cost containment mecha-
nisms [28,29].

In this paper, we consider a downstream regulation for C&T. The
electricity generators are assume to acquire allowances by compet-
ing in an allowance market that is settled via discriminatory auc-
tion. The generators submit price-quantity bids that are arranged
in a decreasing price order by the auctioneer. The price paid by
each generator selected to received allowances is its own bid price
[17]. As presented in our model in Section 3.2, the independent
system operator (ISO) obtains the allowance allocation together
with generation dispatch by incorporating the allowances auction
model within the OPF model.

2.1. Social cost of carbon

The fiscal impact of CO2 emissions on the environment and
society is often referred to as the social cost of carbon (SCC). The
most common means that are used to characterize SCC include
marginal social cost of emissions and shadow prices of policies
(e.g., cap-and-trade). Mandell [32] presents various definitions
and estimates of SCC. The most common approach used in the lit-
erature defines the marginal social cost of carbon as ‘‘the cost to
the society for each additional unit of carbon (in the form of CO2)
into the atmosphere.’’ However, as the carbon remains in the atmo-
sphere, it is difficult to estimate the cost of the carbon in the future.
This motivates to redefine the SCC as ‘‘the present value of the
monetized damage caused by each period of emitting one extra
ton of CO2 today as compared to the baseline.’’ Another challenge
for assessing SCC is in estimating the discount rate of the future so-
cial cost of CO2.

The estimation of the SCC will always suffer from uncertainty,
speculation, and lack of information [30]. This can be noticed, for
example, in (1) estimating future emissions of greenhouse gases,
(2) monetizing the effects of past and future emissions on the cli-
mate system, (3) assessing the impact of changes in climate on the
physical and biological environment, and (4) translating environ-
mental impacts into economic damages. Therefore, any effort to
quantify and monetize the harms associated with climate change
is bound to raise serious questions of science, economics, and eth-
ics, and thus should be viewed as provisional [30]. Avato et al. [31]
consider the carbon emissions as one of the main barriers to the
development and deployment of clean energy technologies. They
argue that emissions (a negative externality) is not valued and
therefore not included into investment decisions by energy provid-
ers. Hence, by considering the monetary effects of emissions, i.e.,

the SCC, an increase in development and deployment of green
technologies can be achieved.

Mandell [32] summarized the result of 211 SCC estimates from
47 different studies using an integrated assessment model (IAM).
The SCC was estimated to have a mean value of €19:70=tCO2, a
median of €5:45=tCO2 and an estimated range from €1:24=tCO2

to €451=tCO2. Using the shadow price approach, the estimated va-
lue of SCC has a range of €32=tCO2 to €205=tCO2 among the coun-
tries in the European Union. Hope [33] estimated SCC considering
two scenarios: low emissions case, and a business as usual
(BAU) emissions scenario. This study concluded that the median
SCC for the BAU scenario is $100=tCO2 with a range of
$10=tCO2—$270=tCO2, and a median of $50=tCO2 for the low emis-
sion scenario with a range of $5=tCO2 � $130=tCO2. The U.S. gov-
ernment, through the interagency working group (IWG),
calculated the cost imposed on the global society by each addi-
tional ton of CO2. They included health impact, economic disloca-
tion, agricultural changes and other effects that climate change
can impose on humanity. They estimated the SCC to have a range
from $5=tCO2 to $65=tCO2. The IWG suggests setting the SCC to
$21=tCO2. The IWG also propose to utilize a discount rate of 2.5–
5% to address future SCC [34].

3. A model for developing Pareto optimal C&T policies

In this section, we present the complete methodology for
designing Pareto optimal cap-and-trade policies for a fixed plan-
ning horizon. The methodology comprises a 2-layer model and a
detailed solution approach.

3.1. A 2-layer model

The mathematical–statistical model for obtaining Pareto opti-
mal C&T policy designs has two broad layers, which we call the
top and the bottom layers.

The bottom layer (also referred to in this paper as the policy
evaluation layer) involves obtaining equilibrium bidding strategies
of the competing generators as a function of the C&T and network
parameters, while maximizing social welfare via a DC-OPF. The
network performance measures (emissions, electricity price, and
consumption level) corresponding to the equilibrium bidding
strategy, for a given C&T policy, are fed to the top layer (policy opti-
mization layer) that obtains the Pareto optimal C&T policy designs.
The top layer model first performs an analysis of variance (ANOVA)
using the C&T and network parameters as factors, and the values of
the network performance measures from the bottom layer as the
responses. The ANOVA results are used to formulate regression
equations for the network performance measures as functions of
the C&T and network parameters. The Pareto optimal policy de-
signs are then obtained by optimizing the regression equations
via a multi-objective optimization model. The 2-layer model is gi-
ven as follows.

Top layer Optimize f ðc; r;p; b;p; lÞf

Bottom layer
Maximize giðai;xiÞ; 8i 2 I
s:t: Maximize WðQ ;HÞ
s:t: Network and policy constraints:

8><
>:

ð1Þ

In the top layer, f ðc; r; p; b;p; lÞ represents the objective function
of the multi-objective optimization model, where c is the cap size
representing the maximum tons of CO2 allowed per year (tCO2=yr),
r is the yearly cap reduction rate (% of c) which goes into effect
after a preset number of initial years, p is the penalty for exceeding
the emissions limit per allocated allowances ($=tCO2), b represents
the demand price sensitivity (slope of the demand curve), p is the
social cost of carbon ($=tCO2), and l denotes the vector of line
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capacities (MW h) in the network (a determinant for network con-
gestion). The bottom layer is formulated, for each generator
i 2 I ¼ f1;2; . . . ;ng, as a bi-level optimization model, where
giðai;xiÞ denotes the profit of generator i, and ai (intercept of sup-
ply function) and xi (allowance price) are the generator bids in the
electricity and allowances markets, respectively. WðQ ;HÞ denotes
the social welfare objective function for the DC optimal power flow
problem, where Q ¼ q1; . . . ; qi; . . . ; qnð Þ is the electricity dispatch
and H ¼ h1; . . . ; hi; . . . ; hnð Þ is the allowances allocation. For each
generator i, the bi-level model is solved as a mathematical problem
with equilibrium constraints (MPEC). The equilibrium bidding
strategies for all generators in both electricity and allowances mar-
kets are obtained by solving an equilibrium problem with equilib-
rium constraints (EPEC).

A schematic of the solution methodology for the 2-layer model
is shown in Fig. 1. The methodology begins by designing a factorial
experiment with all C&T and network related parameters as factors
at two or more levels, and enumerating all possible factor level
combinations [box (1)]. Factor level combinations, one at a time,
while yet to be evaluated [box (2)], are forwarded as input to the
bottom layer [box (3)]. In the bottom layer, after the cap is ad-
justed, MPEC/EPEC are solved to obtain equilibrium bidding strat-
egies of the generators for each year of the planning horizon T
[boxes (6) and (7)]. The cap is considered to remain constant for
the first d years [box (4)] and decreasing thereafter [box (5)]. For
a given factor level combination, once the equilibrium strategies
are obtained for each year of the planning horizon T, the perfor-
mance measures are updated [box (8)]. Once all years of the plan-
ning horizon are considered [box (9)], performance measures for
the complete horizon for the current factor level combination are
sent to ANOVA [box (10)] and the next combination is drawn for
evaluation. When all factor combinations are exhausted [box (2)],
ANOVA is performed [box (10)]. Regression equations (one for each
measure of performance) are developed using ANOVA results and
are sent as input for the multi-objective optimization [box (11)],
which yields the Pareto optimal C&T policies. In what follows, we
present the bi-level optimization model and discuss its solution
using the MPEC approach. Thereafter, we explain how EPEC ap-
proach is used in obtaining the equilibrium bidding strategies for
all generators in the electricity and allowance markets.

3.2. A bi-level model for joint allowance and electricity settlement

We adopt the bi-level framework that is commonly used in
modeling generator bidding behavior in deregulated electricity
markets [35–37]. We extend the objective functions of both levels
by incorporating emissions penalty cost in the upper level (see (2))
and both allowances revenue and social cost of carbon in the lower
level (see (6)). We also expand the constraints set in the lower level
(DC-OPF) to accommodate a C&T policy, which are explained later.
The solution of the modified DC-OPF yields both the electricity dis-
patch and the allowances allocation.

We consider that the generators and the consumers bid with
their linear supply and demand functions, respectively. ISO deter-
mines energy dispatch and allowances allocation by maximizing
social welfare while satisfying network and C&T constraints. The
flow in the network is controlled by the Kirchhoff’s law repre-
sented by the power transfer distribution factors (PTDFs). Capacity
limit constraints on the lines are also considered. The supply cost
of the generators, indexed by i, are assumed to be quadratic convex
functions given by CiðqiÞ ¼ aiqi þ biq2

i , where ai and bi represent
the intercept and the slope of the supply function, respectively.
Consumers, indexed by j, are considered to have negative benefit
functions given by �DjðqjÞ ¼ �djqj � bjq2

j ; qj � 0 [38]. Generators

are paid at their marginal cost, dCiðqiÞ
@qi
¼ ai þ 2biqi. Therefore, the

profit of a generator i is given as ðai þ 2biqiÞqi � ðAiqi þ Biq2
i Þ, where

Ai and Bi are the true cost parameters of generator i estimated
through a standard Brownian motion model as follows. For any

year t; At
i is obtained as At

i ¼ sAt�1
i þ rAt�1

i h, where s represent a
trend parameter, r represent the standard deviation of the process,
and h is a standard normal random variable. Our DC-OPF model is
similar to that presented by Hu and Ralph [38], which showed that
the use of the above functions ensure a unique solution. For some
other variants of the OPF model, readers are referred to Berry et al.
[39], Borenstein et al. [40] and Limpaitoon et al. [2].

Without loss of generality, we assume that the generators pass
on the cost of allowance to the consumers by modifying (shifting
up) the intercept (ai) of their supply functions as âi ¼ ai þ cixi,
where ci is the CO2 emissions factor and xi is the allowance bid
(cost) of generator i. Hence, the cost of allowance (xi) does not

Fig. 1. A schematic of the solution methodology for the two-layer model.
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explicitly appear in the generator’s (upper level) objective function.
Note that, shifting of the supply function results in a new equilib-
rium point, where consumption (dispatch) is reduced and electric-
ity price is increased (see Fig. 2). Hence, xi implicitly impacts the
generator’s profit through quantity dispatch qi and excess emis-
sions penalty paid by the generators.

Social welfare is commonly considered in the literature to be to-
tal benefit to the consumers Djð�Þminus total cost to the generators
Cið�Þ. Since allowances cost is passed onto the consumers, we in-
clude the cost of allowance as part of generators cost (i.e., use âi

as the intercept of the supply cost function). We also add the
allowance revenue to social welfare based on the assumption that
it is recycled back as credits to consumers (to mitigate economic
impacts of increased electricity prices) and subsidies to green gen-
erators. Revenue recycling has been widely discussed and recom-
mended by many economists [e.g., 41–43]. We also subtract from
the welfare function the social cost of the emissions, which is ob-
tained by adding for all generators the product of the emissions
quantities and the social cost of carbon.

Let I ¼ 1; . . . ;nf g be the set of generator, and J ¼ 1; . . . ;mf g be
the set of consumers on the network. Let U ¼ ð/1; . . . ;/nÞ be the
vector of generators’ electricity bids, where /i ¼ ðai; biÞ represents
the bid of generator i, and X ¼ ðx1; . . . ;xnÞ be the vector of allow-
ance bids. Let Q ¼ ðq1; . . . ; qNÞ, where N ¼ jðI [ JÞj, be the electricity
dispatch response vector obtained from the DC-OPF. Let
C ¼ ðc1; . . . ; cnÞ be the vector of CO2 emissions factor
ðtCO2=MW hÞ of the generators. Then the yearly emissions of gen-
erator i is given by ci � qi. Let H ¼ ðh1; . . . ; hnÞ be the vector of yearly
allowance allocation to the generators. Therefore, given the supply
function bids and the allowance bids of all other generators, U�i

and X�i, respectively, the bi-level optimization model for generator
i is given as follows.

Max
ai ;xi

ðai þ 2biqiÞqi � ðAiqi þ Biq2
i Þ � pðciqi � hiÞ ð2Þ

s:t: ai 2 ½A;A�; ð3Þ
xi 2 ½W;W�; ð4Þ
ai þ cixi 6 dj; 8j; j ¼ 1; . . . ; J; ð5Þ

Q ;H ¼Max
q;h

X
j

DjðqÞ �
X

i

CiðqÞ þ
X

i

xihi �
X

i

qicip
" #

ð6Þ

s:t � Cl 6
X

k2ði;jÞ
qiukl 6 Cl; l ¼ 1; . . . ; L; ð��l ; �þl Þ ð7Þ

X
i

qi þ
X

j

qj ¼ 0; ðlÞ ð8Þ

c �
X

i

hi P 0; ðkÞ ð9Þ

ciqi � hi P 0; 8i 2 I; ðqiÞ ð10Þ
qi � Rlo P 0; 8i 2 I; ðsiÞ ð11Þ
Rup � qi P 0; 8i 2 I; ðtiÞ ð12Þ
qi P 0; 8i 2 I; ðpiÞ ð13Þ
� qj P 0; 8j 2 J; ðjiÞ ð14Þ
hi P 0; 8i 2 I: ðfiÞ ð15Þ

In the formulation, the elements within parentheses in con-
straints (7)–(15) represent the corresponding dual variables or
shadow prices. Our attention is focused primarily on l, which rep-
resents the system marginal energy price (cost) of the network [2].
Constraints (3) and (4) incorporate the bounds for electricity and
allowance bids, respectively. Constraint (5) ensures that the supply
function intersects with the demand curve. Objective function (6)
represent the social welfare where CiðqÞ is the cost to the genera-
tors obtained using the shifted supply function (âi; bi), DjðqÞ is
the benefit to the consumers, and p denotes to the SCC. Flow con-

straints are given in (7), where Cl is the line capacity and ukl is the
PTDF for node k and line l. Energy balance is maintained by con-
straint (8). Constraint (9) ensures that the allocation of allowances
does not violate the cap. Since we do not consider banking of
allowances, constraint Eq. (10) ensures that a generator is not allo-
cated with more allowances than the emissions emitted. Maxi-
mum and minimum production level for each generator are
controlled by constraints (11) and (12) respectively. Finally, (13)–
(15) are non-negativity constraints for electricity dispatch and
allowance allocation.

3.3. Model solution for equilibrium bidding strategies: A MPEC/EPEC
approach

Bi-level optimization models have been widely studied in the
literature [44,45]. Bi-level models include two mathematical pro-
grams, where one serves as a constraint for the other. For the lower
level problem, with a convex objective function and non-empty
feasible set, the first order necessary conditions for a solution to
be optimal are given (under some regularity conditions) by the
Karush Kuhn Tucker (KKT) equations. Hence, replacing the lower le-
vel problem in Section 3.2 by the set of optimality conditions,
yields what is known as a mathematical program with equilibrium
constraints (MPEC). Further details on the MPEC models can be
found in [46–48].

In the other hand, an equilibrium program with equilibrium
constraint (EPEC) is defined as a game, EPEC ¼ ðMPECÞf gn

1, among
competing generators. Typically, MPECs have non-convex feasible
sets (due to the complementarity constraints), therefore the result-
ing games are likely to have non-convex feasible strategy sets.
Since a global equilibrium for this type of games is difficult to iden-
tify, a local Nash equilibrium concept is presented in [38]. The local
Nash equilibrium is comprised of stationary points of the MPEC
problem for each player i in the game EPEC ¼ ðMPECÞf gn

1. Lack of
knowledge of other players’ exact strategies, which might also be
changing with time, along with other uncertainties may minimize
the value of the effort required to seek global optimal strategies.

Literature presents different strategies to solve EPECs, of which
linear and non-linear complementarity (LCP/NCP) formulation [49]
and diagonalization methods [50,51] are the most discussed. In
this paper we consider a diagonalization method algorithm as pre-
sented in [52]. In the diagonalization method, MPECs for all gener-
ators are solved, for which we use a regularization method in

q

P(q)

+

Original equilibrium

New equilibrium

Original supply function

Shifted supply function

( )

Demand function

( b )

Fig. 2. Electricity market equilibrium with supply function shifted by allowance
cost.
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conjunction with NLP solvers [53,54]. For other techniques to solve
MPECs, readers are refers to [55,47].

3.4. Multi-objective optimization for Pareto optimal designs

In a complex system with multiple performance measures and
the set of significant design factors that affect them, the nature
of the relationship could vary widely among the performance mea-
sures. That is, a set of factor values (levels) that are optimal for a
particular performance measure may not be optimal for other
measures. For example, the C&T and network parameters that min-
imizes CO2 emissions may not yield lowest electricity prices, when
both reduced emissions and lower prices may be among the prior-
ities. Therefore, a design approach that can balances among multi-
ple priorities must be considered. Multi-objective optimization
models, that yield Pareto fronts, provide such an approach.

A Pareto front is a set of points representing factor level combi-
nations where all points are Pareto efficient. A Pareto efficient
point indicates that no measure of performance can be further im-
proved without worsening one or more of the other performance
measures. Similarly, for any point outside of the Pareto front, by
moving the point onto the front, one or more measures can be im-
proved without worsening the others. In order to obtain these
points, we formulate the multi-objective optimization problem
(16). We used the NSGA-II genetic algorithm [57] to solve the mod-
el and obtain the Pareto envelope. Equations CL (consumption le-
vel), TE (total emissions), and AMP (average marginal price) are
explained in detail in Section 4.3.1.

Min TEðc; r;p; b;p; lÞ;
Max CLðc; r;p; b;p; lÞ;
Min AMPðc; r;p; b;p; lÞ;
s:t: bounds on c; r; p; b;p; l:

ð16Þ

4. C&T policy development for a sample network

In this section, we demonstrate, using a sample electricity net-
work, how our model can be used to develop Pareto optimal C&T
policies. We conduct the numerical study in two phases. We first
implement the bottom layer of the model for evaluating a number
of different ad hoc C&T policy scenarios, as shown in Table 1. In the
ad hoc policies, penalty and the cap vary within their correspond-
ing ranges (per RGGI), and SCC varies according to the IWG recom-
mendations (see Section 2). The above variations coupled with
different levels of demand-price sensitivity (slope of the demand
curve) are captured as the three main scenarios SN1, SN2, and
SN3 (see Table 1). Samples of results obtained by evaluating these
scenarios are presented to demonstrate the impact of both C&T
policy and network parameters. In phase 2, we implement the
complete two layer model. We first develop a factorial experiment
and conduct ANOVA. Response surfaces derived from ANOVA are
used to obtain Pareto optimal C&T policies via multi-objective opti-
mization model.

4.1. Sample electricity network

We consider a sample network with 4-nodes and 5-lines (see
Fig. 3). Similar sample networks were considered in numerical
studies in [58–62]. The network operates under a CO2 C&T policy
with three generation nodes and one load node. The network has
two fossil fuel (coal) generators (GENCO1 and GENCO3) and one
green generator (GENCO2). The green generator does not partici-
pate in the allowance auction. Emissions factor for both coal gen-
erators is assume to be one (i.e., 1 ton of CO2 emission per MW h
of electricity production). Allowances are distributed among com-
peting generators using a discriminatory (pay-as-bid) auction pric-
ing strategy. The cap is considered to decrease at a yearly rate of
2.5% starting the sixth year of implementation (this is similar to
the policy implemented by the RGGI). Line capacities for C1 and
C4 are set to 80 MW h, while the rest of the lines have a capacity
of 120 MW h. The model is implemented for a thirty year planning
horizon. Demand is considered to increase at a yearly rate of 1.1%,
which is implemented in our model by raising the intercept of the
demand function.

For supply functions, we consider that the generators bid only
on the intercept parameter a. Intercept parameter Ai of the true
cost function of the generators is estimated using a Brownian mo-
tion model (BMM) as explained in Section 3.2. The trend parameter
(s) of the BMM model is set to 0.0059 for green generator and
0.0662 for coal generators. The standard deviation (r) of the
BMM model is set to 0.081 for green generator and 0.0714 for coal
generators. The above numerical values were obtained from the
Electric Power Annual Data 2009 ([63]). For year t ¼ 1; A1

i is set
to 2011 cost given in the above data. For all generators, we set
the value of Bi to 0.05.

4.2. Analysis of ad hoc C&T policies

We implemented the policy evaluation part of our model in
GAMS using MPEC and CONOPT3 solvers. For each scenario in Ta-
ble 1, we obtained the equilibrium bidding strategies for the com-
plete planning horizon. For each year of the planning horizon, we
recorded performance measures such as production levels of each
generator (sum of which is the consumption level), marginal elec-
tricity price, generator profits, emission levels, and market share of
the green generator. These yearly measures are used in calculating
the network performance measures for the complete horizon.

4.2.1. Impact of C&T and network parameters on performance
measures

In this section we examine the effect (sensitivity) of some of the
policy and network parameters on the performance measures. A
more comprehensive analysis of the impact of the C&T and net-
work parameters on the network performance is conducted in Sec-
tion 4.3.1 using the analysis of variance (ANOVA) technique.

Tables 2–4 summarize the performance measures for various ad
hoc C&T policies belonging to SN1, SN2, and SN3 with a cap of 80
tCO2. It can be observed that a higher sensitivity in the price re-
duces production (or consumption) and emission levels. Social cost
of carbon further contributes to this reduction. Along with the
reduction of emissions, the percentage of market share of green

Table 1
Ad hoc C&T policies.

Scenario designation Demand (b) (slope) Penalty (p) ð$=tCO2Þ SCC (p) ð$=tCO2Þ Cap (c) (tCO2)

SN1 0.025 10–50 0–21 80–120
SN2 0.05 10–50 0–21 80–120
SN3 0.075 10–50 0–21 80–120
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sources is in general higher when consumers are more sensitive,
and their profits are slightly reduced. Electricity prices suffer a sig-
nificant reduction of almost $10=MW h on average.

4.2.1.1. Generators behavior. Fig. 4 shows all three generators’
yearly production levels for the scenario SN1 under two different
penalty levels ð$30=tCO2 and $50=tCO2) and zero SCC. Recall that
we considered the emissions factor c ¼ 1, which means each
MW h of coal based electricity production results in one unit
(ton) of CO2 emission. Hence, sum of the production levels of
GENCO1 and GENCO3 represents the total emission in the network.
GENCO2 is the green generator with zero emissions. The thicker
solid lines in the figures represent the total emissions cap for the
network.

In the low penalty cost scenario (p ¼ $30=tCO2), as the demand
grows over the years and the cap reduces, the coal generators still
find it profitable to increase their share of production (above green
generation) while paying more in penalties. Whereas, in the high
penalty cost scenario (p ¼ $50=tCO2), the coal generators control
their bids to significantly lower their production. In fact, till year
22, the combined emissions from GENCO 1 and 3 remain below
the cap. The green generator maintains a high level of production.

Fig. 3. A 4-node sample network for numerical study.

Table 2
Performance of ad hoc C&T policies belonging to SN1 (demand slope 0.025).

SCC-0 SCC-21

10 30 50 10 30 50

Production (MW h) 8021 8023 7483 8026 7397 5893
Emissions (tCO2) 5633 5641 4038 5636 4018 2057
Market share (%) 32 36 45 38 55 57
AMP ($/MW h) 66.7 67.9 67.4 67.8 68.2 69.8
Profit ($) 129,436 128,290 165,259 128,470 167,445 203,593

Table 3
Performance of ad hoc C&T policies belonging to SN2 (demand slope 0.05).

SCC-0 SCC- 21

10 30 50 10 30 50

Production (MW h) 7742 7617 6155 7738 6305 5942
Emissions (tCO2) 5094 5060 2580 4917 2415 2016
Market share (%) 34 34 58 36 62 66
AMP ($/MW h) 55.6 57.01 60.98 56.39 60.04 62.15
Profit ($) 103,740 97,776 155,773 1,067,733 161,307 176,520

Table 4
Performance of ad hoc C&T policies belonging to SN3 (demand slope 0.075).

SCC-0 SCC- 21

10 30 50 10 30 50

Production (MW h) 7983 6754 5575 6672 5694 5641
Emissions (tCO2) 5772 3472 1905 3362 2052 1982
Market share (%) 28 49 66 50 64 65
AMP ($/MW h) 42.37 48.19 54.47 48.65 53.82 54.12
Profit ($) 64,193 103,425 142,079 107,056 139,902 141,322
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Fig. 4. Production level comparison for SN1 under different penalty levels.
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A higher cost of penalty causes the total electricity consumption
over the horizon to fall from 8256 MW h to 6213 MW h (a 23%
reduction) and the total emissions for the horizon to reduce from
5635 tCO2 to 2795 tCO2 (a 50% reduction). The share of green gen-
eration in the two penalty levels are 32% and 49%, respectively. The
average marginal electricity price rises from $52:7= MW h to
$60:8= MW h (a 15.4% increase).

The penalty level choice varies for different markets. California’s
C&T set a penalty of 4 allowances per ton not covered by allow-
ances, and the reserve allowance price was set to $10.71 in 2013,
which is set to increase to $11.34 for 2014 [64]. In the case of EU
ETS, the penalty was set to 40 euros in the phase I, and increased
to 100 euros during phase II [25]. The effectiveness of penalty is af-
fected by allowance prices and quantity (cap), among others. For
example, if allowance prices drop, as was the case in phase I in
the EU ETS, a low level of penalty will unlikely generate emissions
reduction since generators can either afford to buy allowances,
and/or pay a penalty for non-compliance.

4.2.1.2. Generation and emission levels. Fig. 5 shows the effect of SCC
on total coal-based generation (or, equivalently, total emissions) as
well as total green generation over the horizon for increasing val-
ues of penalty cost and demand-price sensitivity. As expected, at
higher values of penalty and demand-price sensitivity, the coal-
based generation decreases. At higher SCC, the reduction in coal-
based generation is sharper (plot b). Also at higher SCC and penalty

costs, the effect of increased demand-price sensitivity is reduced
(plot b). As far as green generation is concerned, it can be observed
(plot a) that higher demand-price sensitivity compounds the effect
of penalty in increasing generation. This effect is further pro-
nounced when SCC is higher (plot b).

4.2.1.3. Electricity prices. Fig. 6 depicts the average marginal prices
under the same parameter combinations as in Fig. 5. It can be seen
that higher penalty produces higher price, which increases further
with increased SCC, as expected. We also note that, higher de-
mand-price sensitivity significantly lowers the price at all levels
of penalty and SCC.

4.2.1.4. Generators market share. Fig. 7 shows the market share of
green and coal based energy, aggregated over the complete hori-
zon. As expected, an increase in penalty (from $10=CO2 to
$50=tCO2) raises the share of green energy from 32% to 45%. The in-
crease in green energy is further noticeable when the SCC is in-
cluded. By considering SCC (Plot (b)) the share of green based
energy achieves a 57% versus a 43% of coal share for a penalty of
$50=tCO2. Note that adding a SCC produces the share of green
based energy to be higher than coal based energy share (which is
not the case when SCC = 0). As mentioned in Section 2, SCC could
accelerate the transition to green technologies. Results presented
in this section helps to quantify the assertion.
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Fig. 5. Impact of penalty and demand-price sensitivity on CO2 emissions (for different values of SCC).

Fig. 6. Impact of penalty and demand-price sensitivity on average marginal price of electricity (for different values of SCC).
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Fig. 7. Impact of penalty and SCC on market share of green generation.
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4.2.1.5. Generators profit. Fig. 8(a) shows the cumulative generator
profits (coal generators are combined as one) for different penalty
levels and zero SCC. When higher penalty for non-compliance is
considered, coal generators see their profit to be reduced (approx-
imately 43%). Coal based generators reduce their electricity pro-
duction in order to maintain emissions according with the
allowances allocated. It was also observed in Figs. 5 and 7 that
the increase of penalty reduces the emissions (and hence produc-
tion) and coal market share, resulting in lower profits for coal
based generators. Green generators observe an increase in profit
as we consider higher penalties (approximately 21%). It can be ob-
served that including SCC (Plot (b)) further increases the cumula-
tive profit of the green generator. These results show that C&T
policies will likely have conflicting implications. On one hand,
the environment and society may benefit from a reduction in emis-
sions and increase in green power. On the other hand, coal-based
generators do not have incentives to participate in the market be-
cause of profit loses. This is one of the major concerns, for example
in the U.S., where fossil fuel energy sources are still a major portion
of the energy portfolio.

4.3. Development of Pareto optimal C&T policies

In this section, we first develop response surface equations for
each performance measure using a factorial design and ANOVA.
We then demonstrate how those equations can be used to obtain
Pareto optimal C&T designs.

4.3.1. Performance response surface generation
In order to obtain the response surfaces for the network perfor-

mance measures, we adopt a designed factorial experiment com-
prising six factors: penalty, cap size, cap reduction rate, SCC,
demand-price sensitivity, and line capacities (congestion). We con-
sider each factor at three levels resulting in a 36 factorial experi-
ment. The numerical levels of the factors are given in Table 5. All
729 factor combinations were evaluated using the bottom layer
model, and the resulting performance measures were used to con-
duct ANOVA (with type I error a ¼ 0:05) utilizing the R software
(version 2.15.1). Results from ANOVA conducted separately for
each of the three performance measures (total CO2 emissions
(TE), total electricity consumption (CL), and average marginal price

(AMP)) are presented below. For more detailed information about
factorial design of experiments and ANOVA, we refer the readers
to [56].

4.3.1.1. Total CO2 Emissions Level: TE. When TE was used as the re-
sponse variable, all main factors and some two level interactions
were found to be statistically significant. Using the significant fac-
tors and interactions, a second order regression model was devel-
oped. The model has a multiple R-squared value of 0.839 and an
adjusted R-squared value of 0.833.

TE ¼ 3696:63� 1186:03p� 989:66pþ 618:84bþ 683:56c

� 322:92l� 316:37r þ 270:66p2 þ 353:8p2 � 253:34b2

þ 648:22ppþ 340:81cpþ 256:36pc � 219:83bl� 217:25pb

þ 194:49plþ 184:02lp� 142:89rp� 141:85pr � 128:33bc

� 124:11bpþ 259:39p2p� 312:67p2p2 þ 161:21pp2

� 150:1cp2 þ 234:56p2b2 þ 61:19cr:

Factor effect plots for the six significant main factors are pre-
sented in Fig. 9. All the factors exhibit approximately linear behav-
ior over the three levels, indicating that their impact on TE are
either higher the better or lower the better.

4.3.1.2. Total Consumption Level: CL. As in the case for TE, all six
main factors and some two level interactions were found to be sta-
tistically significant. A second order regression model incorporat-
ing the significant factors and interactions was developed. The
model has a multiple R-squared value of 0.842 and an adjusted
R-squared value of 0.835. Plots of the factor effects at various levels
are presented in Fig. 10. Non-linearity in the factor effects can be
observed to be a bit higher than in the case of TE, which can also
be seen in the regression equation that has more non-linear terms.

CL ¼ 7315:88� 1237:44pþ 689:52b� 758:85pþ 425:21c

� 263:04l� 521:34p2 � 344:16b2 � 232:83r þ 86:63l2

þ 84:57c2 þ 67:39p2 þ 304:15pp� 216:74blþ 167:3pl

� 166:88bpþ 157:77pc þ 156:99bpþ 146:67lpþ 128:88cp

þ 128:26cr þ 292:63p2b2 � 91:97pr þ 112:51pp2

� 111:2cp2 � 60:14rpþ 144:98rc2 þ 55:24clþ 95:2bl2

þ 92:89cl2 � 52:3bc þ 90:43pl2 þ 84:05rl2 þ 244:67p2p

� 89:2cp2:

4.3.1.3. Average Marginal System Price: AMP. For AMP as the
response variable, the only main factor that was not statistically
significant was the cap reduction rate. Some of the two level inter-
actions were significant. The regression model has a multiple
R-squared value of 0.637 and an adjusted R-squared value of
0.621. Lower R-squared value is, perhaps, indicative of the fact that

$

Penalty ($/tCO2)

(a) Generators profit (SCC= $0/tCO2)

$

Penalty ($/tCO2)

(b) Green generators profit

Fig. 8. Generator profits for different penalties and SCC.

Table 5
Factor levels for 36 experiment.

Factors Coded values

�1 0 1

Cap reduction (r) (%) 2.5 5 7.5
Initial cap size (c) 80 120 160
Penalty (p) 10 30 50
Demand-price sensitivity (b) 0.075 0.05 0.025
Congestion (l) 120 100 80
SCC ðpÞ 0 21 42
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the factor effects have a higher order (>2) of non-linearity (see
Fig. 11), which could not be captured from a 3-level factorial
experiment.

AMP ¼ 55:1717þ 6:809pþ 2:9673p2 þ 1:6172pþ 0:9829p2

þ 5:2204bþ 3:6239b2 � 1:1398c � 0:3786l� 3:2884l2

� 0:2442r � 0:6737r2 � 0:3548c2 � 0:8224pp� 1:0853bp

þ 0:8359rpþ 0:7443lp� 3:5386p2b2 þ 2:4959p2l2

� 2:0189p2pþ 2:3979p2bþ 1:2676p2r � 0:7284pc

� 0:7782pl� 0:8208br � 1:1743cr � 0:7409lr � 1:3341cr2

� 1:2651rc2 � 1:3376cl:

4.4. Design of Pareto optimal C&T policies

We first demonstrate the need for Pareto optimal designs to
simultaneously accommodate multiple performance measures.

Thereafter, we discuss how to obtain the Pareto optimal C&T policy
designs.

The need for Pareto designs is motivated by the results pre-
sented in Table 6, which shows that a C&T policy optimized for a
particular performance measure tends to produce poor outcomes
for the other measures. Notice from the table that, a design opti-
mized for TE yields a consumption level of 5606 MW h whereas
the design optimized for CL has a consumption level of
8950 MW h. Similarly, a design optimized for CL yields an AMP
of $35.8/MW h, which is much higher than $21.9/MW h which is
attained by a design optimizing AMP.

We formulated a multi-objective optimization model, as pre-
sented earlier in (16), using the equations developed above for
TE, CL, and AMP. Of the six variables in these equations, SCC (p)
and demand-price sensitivity (b) are not controlled by a C&T policy
maker, and hence each of those variables were considered at three
different fixed values, resulting in nine possible combinations. For
each of these nine combinations, the multi-objective model was
solved and the optimal settings for the other four variables (cap
reduction rate, cap size, penalty, and congestion level) were
obtained.

Before presenting the complete Pareto envelopes for all three
measures, parts (a), (b), and (c) of Fig. 12 show the Pareto fronts
for each pair of performance measures. Each front is plotted for
three combinations of coded values of ðp; bÞ (0,�1), (0,0), and
(0,1). It may be noted that, for a fixed SCC value of 21 (coded value
of 0), lower values of demand-price sensitivity result in higher Par-

Fig. 9. Factor effect plots for total emissions.
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Fig. 10. Factor effect plots for consumption level.

Fig. 11. Factor effect plots for average electricity marginal price.

Table 6
Performance measures of C&T policies optimized for individual measures.

Optimized
measure

Consumption
(MW h)

Emissions
ðtCO2Þ

AMP
($/MW h)

CL 8950 7272 35.8
TE 5606 765 54.7
AMP 7747 4274 21.9

380 F. Feijoo, T.K. Das / Applied Energy 119 (2014) 371–383

Appendix C (continued)

53



eto fronts and therefore increases the levels of consumption, emis-
sions, and AMP.

We obtained the Pareto envelopes (considering all three mea-
sures) for all nine combinations of p and b. For each envelope,
we computed the average values of the measures over all the Par-
eto efficient points. In the solution of the multi-objective model,
we chose to obtain 100 Pareto efficient points. The results are pre-
sented in Table 7. As observed earlier in Fig. 12, for fixed value of p,
decrease in demand-price sensitivity (from �1 to 1) results in
increase in CL, TE, and AMP. For a fixed value of b, increase in
SCC results in decreases in CL and TE and an increase in AMP.

To illustrate further, we present in Fig. 13 two complete Pareto
envelopes for two arbitrarily chosen combination of ðp; bÞ of (0,0)
and (0,1). It can be observed that Pareto efficient designs that min-
imize emissions yield lower consumption levels and higher aver-
age marginal prices. Allowing higher emissions results in
increase in consumption and decrease in price. This shows that
stricter emissions policies will increase electricity prices. For sixty
of the one hundred efficient points on the Pareto envelope (0,1),
the corresponding values of the four C&T design parameters are
shown in Table 8. We picked a subset of the designs (instead of
all 100) for reasons of space. In what follows, we describe how
an envelope can be used to select an appropriate design for a
C&T policy.

Consider the scenario with p ¼ 0 and b = 1. Say that it is desired
to have an aggregated consumption level above 9000 MW h and
the total emissions below 6000 tCO2 over the complete planning
horizon. It can be seen from the Table 8 that the Pareto efficient
designs 85, 86, 87, 90, and 91 are those that meet both the con-
sumption and emissions conditions. Since AMP is lower the better,
the Pareto efficient design with the lowest AMP should be chosen.
The design 86 happens to be the one with lowest AMP of $56.17/
MW h, for which the actual consumption level is 9017.7 MW h
and the emissions is 5211.57 tCO2. The values of the C&T
design parameters for the Pareto efficient point 86 are
p ¼ $28:2=tCO2; r ¼ 0:075, c ¼ 159:05 tCO2, and l = 120 MW h.

5. Concluding remarks

In this paper, we have developed a mathematical–statistical
model that allows us to obtain Pareto optimal C&T policies.
The model has two broad layers. The bottom (policy evaluation)
layer evaluates the impact of C&T and network parameters on
the performance measures of an electricity network. The top
(policy optimization) layer obtains the Pareto optimal designs
using the results of the bottom layer. The existing literature,
containing both empirical studies [8] and mathematical models
[2,12], helps to effectively evaluate the impact of given C&T pol-
icies. Our research extends the literature from evaluation of C&T
policies to design of Pareto optimal policies that accommodate
different interests of the network constituents (e.g., higher con-
sumption, lower emissions, lower electricity prices). We have
demonstrated that a Pareto envelope generated by our model
can serve as an useful tool for policy makers to select alternative
C&T policies satisfying various interests of the electricity net-
work constituents. Results presented in the paper also examine
the sensitivity of important factors affecting electricity markets
such as social cost of carbon and demand-price sensitivity. Elec-
tricity generators can benefit from this model by using the bot-
tom layer to assess impact of given C&T policies on their bidding
strategies and capacity expansion planning.
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Table 7
Average values of performance measures from Pareto envelopes.

p b CL TE AMP

�1 �1 7125.03 3921.19 43.79
�1 0 7850.56 4788.07 50.18
�1 1 8505.91 5689.47 57.51

0 �1 6314.70 2907.43 50.17
0 0 7425.11 3760.65 52.41
0 1 7774.23 4007.63 61.64
0 �1 4942.74 2620.05 57.53
0 0 5888.57 2883.47 63.02
0 1 6699.43 3232.42 67.95
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Fig. 13. Pareto envelopes.
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Computational challenges associated with our model are lim-
ited to the bottom layer (in particular, solving the EPEC problem),
especially when a network has a large number of generators [38].
The number of time periods in the planning horizon also adds to
the computational burden as EPEC needs to be solved for each per-
iod. However, the computation time for the top layer model is
independent of the size of the network, number of generators,
and the time periods of the planning horizon.
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Table 8
Pareto C&T designs for p=0 and b = 1.

Design Coded values Real values Performance measures

p r c 1 Penalty Cap red. Cap Lines cap Consumption Emissions AMP

1 l.00 l.00 �l.00 0.71 50.00 0.075 80.00 85.80 6137.88 1780.92 69.25
2 l.00 l.00 �0.91 0.65 50.00 0.075 83.76 87.06 6145.92 1870.79 69.36
3 l.00 l.00 �l.00 0.90 50.00 0.075 80.00 82.04 6148.38 1715.37 68.14
4 l.00 l.00 �l.00 0.99 50.00 0.075 80.00 80.16 6160.64 1682.59 67.51
5 l.00 0.75 �l.00 0.96 50.00 0.069 80.00 80.78 6181.69 1823.88 67.59
6 l.00 l.00 �l.00 0.21 50.00 0.075 80.00 95.84 6201.12 1955.74 71.04
7 0.91 0.96 �l.00 0.90 48.12 0.074 80.00 82.04 6213.98 1779.46 67.14
8 l.00 l.00 �0.51 0.71 50.00 0.075 99.45 85.80 6225.41 2132.34 67.85
9 0.97 l.00 �0.51 0.77 49.37 0.075 99.45 84.55 6254.46 2125.61 67.14

10 l.00 l.00 �l.00 �0.07 50.00 0.075 80.00 101.49 6295.03 2054.07 71.32
11 l.00 0.91 �0.92 �0.07 50.00 0.073 83.14 101.49 6313.72 2159.18 71.11
12 l.00 0.97 �0.72 �0.ll 50.00 0.074 91.29 102.12 6327.84 2284.80 70.88
13 l.00 0.94 �0.31 0.96 50.00 0.073 107.61 80.78 6363.68 2222.25 65.33
14 l.00 0.40 �l.00 �0.07 50.00 0.060 80.00 101.49 6401.94 2363.68 70.67
15 l.00 0.91 �0.25 �0.07 50.00 0.073 110.12 101.49 6438.88 2642.75 69.64
16 l.00 0.00 �0.96 �0.07 50.00 0.050 81.57 101.49 6485.80 2601.45 70.45
17 l.00 l.00 �0.06 �0.ll 50.00 0.075 117.65 102.12 6490.29 2745.16 68.95
18 0.91 0.49 �0.28 0.90 48.12 0.062 108.86 82.04 6528.29 2518.58 65.14
19 l.00 0.91 �0.45 �0.48 50.00 0.073 101.96 109.65 6587.54 2638.59 69.98
20 l.00 0.97 �0.72 �0.61 50.00 0.074 91.29 112.16 6607.42 2459.61 70.16
21 l.00 0.50 �0.03 �0.07 50.00 0.062 118.90 101.49 6654.26 2987.76 69.12
22 0.98 0.91 �0.45 �0.58 49.69 0.073 101.96 111.53 6664.47 2682.77 69.59
23 l.00 0.91 �0.28 �0.58 50.00 0.073 108.86 111.53 6698.67 2795.07 69.40
24 l.00 0.97 0.29 0.99 50.00 0.074 131.45 80.16 6713.10 2625.98 61.75
25 l.00 0.91 �0.01 �0.48 50.00 0.073 119.53 109.65 6735.35 2953.48 68.80
26 l.00 0.91 �0.03 �0.58 50.00 0.073 118.90 111.53 6792.65 2975.0l 68.69
27 l.00 l.00 0.51 0.97 50.00 0.075 140.24 80.63 6862.97 2779.06 60.34
28 l.00 0.78 0.63 �0.10 50.00 0.070 145.25 101.96 6938.0l 3333.37 66.18
29 0.00 0.97 �0.75 0.90 29.92 0.074 90.04 82.04 6974.37 2813.35 61.37
30 l.00 0.50 0.65 �0.07 50.00 0.062 145.88 101.33 7012.55 3451.77 66.88
71 �0.07 l.00 l.00 �0.60 28.67 0.075 160.00 112.00 8476.50 4769.34 57.23
72 �0.79 0.79 �0.64 �0.37 14.24 0.070 94.43 107.45 8521.54 5134.39 64.49
73 �0.25 l.00 0.62 �0.85 24.90 0.075 144.94 117.02 8618.33 4954.14 58.49
74 �0.76 0.95 �l.00 �0.51 14.86 0.074 80.00 110.27 8631.73 5000.01 63.85
75 �0.76 0.93 �0.72 �0.61 14.86 0.073 91.29 112.16 8655.31 5165.07 63.57
76 �0.35 l.00 0.56 �0.85 23.02 0.075 142.43 117.02 8675.17 5064.49 58.84
77 �0.65 0.94 0.49 �0.58 17.06 0.073 139.61 111.53 8699.10 5354.30 61.09
78 �0.79 0.79 0.99 �0.ll 14.24 0.070 159.69 102.12 8755.75 5451.45 60.71
79 �0.76 �0.58 �0.15 �0.51 14.86 0.036 114.20 110.27 8794.46 5618.38 63.46
80 �0.69 0.96 �0.56 �0.92 16.12 0.074 97.57 118.43 8823.88 5281.57 61.67
81 �0.76 0.93 0.75 �0.51 14.86 0.073 149.96 110.27 8882.61 5587.20 60.74
82 �0.79 0.94 0.71 �0.57 14.24 0.073 148.39 111.37 8938.72 5662.54 60.94
83 �0.76 0.43 0.76 �0.60 14.86 0.061 150.27 112.00 8985.68 5730.99 62.43
84 �0.76 0.43 0.76 �0.61 14.86 0.061 150.27 112.16 8992.19 5736.41 62.40
85 �0.24 0.75 0.98 �0.99 25.22 0.069 159.06 119.84 9006.27 5262.84 57.73
86 �0.24 l.00 0.98 �l.00 25.22 0.075 159.06 120.00 9017.70 5211.57 56.17
87 �0.99 0.99 �0.33 �0.75 10.16 0.075 106.98 114.98 9066.58 5915.05 64.11
88 �0.99 0.99 0.27 �0.75 10.16 0.075 130.82 114.98 9142.15 6042.52 63.04
89 �0.99 0.84 0.27 �0.75 10.16 0.071 130.82 114.98 9155.30 6067.47 63.28
90 �0.76 l.00 0.74 �0.85 14.86 0.075 149.65 117.02 9187.42 5805.73 59.44
91 �0.99 0.93 0.88 �0.61 10.16 0.073 155.29 112.16 9254.73 6077.10 61.47
92 �0.96 0.13 0.76 �0.73 10.78 0.053 150.27 114.51 9285.63 6189.26 63.63
93 �0.69 0.96 0.88 �l.00 16.12 0.074 155.29 120.00 9371.63 5859.68 58.04
94 �0.93 0.93 0.77 �0.95 11.41 0.073 150.90 119.06 9478.67 6196.06 60.20
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99 �0.99 �0.01 0.96 �l.00 10.16 0.050 158.43 120.00 9620.80 6492.06 62.63

100 �0.99 0.99 0.99 �l.00 10.16 0.075 159.69 120.00 9716.60 6381.46 59.18
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