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glycine addition inhibited NF-κB activation and the expression of E-selectin, which is expressed 

only on endothelial cells activated by cytokines, suggesting that these amino acids may 

demonstrate anti-inflammatory effects during endothelial inflammation [197]. Histidine also acts  

as an antioxidant and scavenger of singlet oxygen and hydroxyl radicals [198] and 

supplementation was beneficial in treating chronic kidney failure in elderly patients [199].  

Although histidine administration shows promise in many areas of health, its supplementation to 

the diet showed no effect on the mean lifespan of Drosophila [200], nor have studies, except my 

recent study in C. elegans, focused on its ability to affect lifespan in other model organisms. 

1.10.10 Isoleucine 

Isoleucine, another essential amino acid, is part of the branched-chain amino acid 

(BCAA) family and is best known for its ability to repair injured muscle tissue and stimulate 

muscle synthesis [201]. Isoleucine stabilizes energy levels by stimulating glucose uptake into 

skeletal muscle cells, a process mediated by phosphatidylinositol 3-kinase [202]. High blood 

levels of isoleucine have been associated with hypoglycemia in rats [203], but little research 

involving life span or health span exists. 

1.10.11 Leucine 

Like isoleucine, leucine is an essential branch-chained amino acid that works with 

isoleucine and valine to repair muscle tissue. A diet high in the BCAAs leucine, isoleucine, and 

valine is associated with longevity and protection from disease [150]. Leucine, isoleucine, valine, 

and threonine have all been shown to extend chronological longevity in yeast [204]. Leucine is 

an exclusively ketogenic amino acid, so it is broken down into acetyl-CoA and potentially ketone 

bodies if glucose levels are low. It is the major amino acid regulating the rate of protein synthesis 

by the ribosome. The enhancement of mitochondrial biogenesis, cell growth, and differentiation 
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driven by leucine occurs through the protein kinase mTOR (mammalian target of rapamycin) 

[205], which stimulates cell growth and division. mTOR also  increases PGC-1α levels in some 

tissues to stimulate mitochondrial function to match the energy supply with the demand [206].  

Administration of leucine prevents muscle degeneration in vitro [207] and may increase overall 

muscle anabolism in humans [208, 209]. Leucine promotes fatty acid oxidation, stimulates 

mitochondrial biogenesis, increases NAD+ levels, upregulates SIRT1 activity, and promotes 

AMPK signaling in skeletal myotube cells [210]. Although leucine is commonly used by body 

builders for growth, there is little evidence to support the long-term use of leucine 

supplementation for the amelioration of sarcopenia in the elderly [211]. 

1.10.12 Lysine 

Lysine, the other fully ketogenic amino acid, is an essential amino acid with the capacity 

to interrupt replicating viruses and is often used for the treatment of Herpes simplex virus 

infections [212]. Lysine inhibits Herpes viral growth by blocking and preventing arginine 

absorption necessary for replication [213]. Another vital job of lysine is the regulation of neural 

plasticity in the prefrontal cortex and the release of noradrenaline from the hypothalamus [214]. 

Supplementation with lysine not only improves symptoms of schizophrenia, but increases 

problem solving speed and capacity in patients [215]. 

1.10.13 Methionine 

Methionine is an essential amino acid. Reducing its dietary levels in rodents has been 

shown to partially mimic CR and induce lifespan extension. Methionine restriction can also 

occur when people adhere to a strict ketogenic diet due to the low protein intake prescribed to 

this diet, and the addition of methionine to the diet of ketogenic fed mice resulted in reversal of 

weight loss [216]. A diet deficient in methionine is associated with many positive effects such as 
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enhanced fatty acid oxidation, increased energy, decreased ROS production, reduced oxidative 

damage [217]. Most notably, methionine restriction extended lifespan in mice by nearly 7% 

[218], rats by 44% [219], and drosophila by 36% [220]. Similar to CR, methionine restriction 

produced a lifelong reduction in fatty body mass [221]. Unexpectedly, glycine supplementation 

mimics the effects of methionine restriction though the clearance of hepatic methionine [222]. 

Remarkably, when fruit flies were placed on a protein-deficient diet that extended lifespan, the 

addition of methionine could restore fecundity without decreasing lifespan,  suggesting that it 

may be possible to design a modified amino acid diet that offers the positive effects of dietary 

restriction without the negative effects [223]. 

1.10.14 Phenylalanine  

Phenylalanine is an essential amino acid that is converted to tyrosine by phenylalanine 

hydroxylase. Phenylalanine is necessary for proper central nervous system and memory function 

and was protective against acetylcholine reduction generated by hydroxide radicals [224], which 

may be beneficial for treating AD related acetylcholine deficiency. Many foods such as meat and 

most cheese products contain normal and safe amounts of phenylalanine. However, increased 

phenylalanine has not been associated with benefits; on the contrary, elevated serum 

phenylalanine has been linked to inflammatory disease [225] and was recently shown to be 

raised in AD [226]. 

1.10.15 Proline  

Proline is a non-essential amino acid that is broken down into glutamate and, along with 

glycine, is one of the main components of mammalian collagen. Dietary proline supplementation 

stimulates the immune system [227]. The topical application of proline to cutaneous wounds led 

to a rapid acceleration of healing in rats [228]. Further, proline was shown to extend the lifespan 
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of C. elegans by transiently increasing ROS levels, which then stimulated mitohormetic 

pathways to upregulate superoxide dismutase and catalase [229]. 

1.10.16 Serine 

Serine is a non-essential amino acid that is required for sphingolipid synthesis as well as 

neuronal survival [230].L-serine is synthesized from 3-phosphoglycerate dehydrogenase, 

whereas non-proteogenic D-serine is derived from L-serine through serine racemase [231]. 

Unlike L-serine, the D isoform inhibits sphingolipid synthesis [232].Deficient 3-

phosphoglycerate dehydrogenase leads to a decline in L-serine levels in plasma and 

cerebrospinal fluids resulting in serine deficiency syndrome, which is characterized by seizures, 

congenital microcephaly, and retardation [233]. 

1.10.17 Threonine 

Threonine is an essential amino acid necessary for glycine and serine production, 

regulation of the G1/S phase transition, and proliferation of embryonic cells [234, 235]. 

Threonine supplementation in laying chickens led to an increase in egg production and improved 

immune response [236], whereas threonine deficiency was associated with depression and 

neurological dysfunction in kittens [237]. To date, few if any, studies focus on the efficacy of 

threonine for the alleviation of age-related decline. 

1.10.18 Tryptophan 

Tryptophan is an essential amino acid that was long touted as the reason for After Turkey 

Fatigue Syndrome, the exhaustion that many people feel after eating a large Thanksgiving dinner. 

Scientists realize that this fatigue syndrome is due to gluttony and not so much the trivial 

amounts of tryptophan in turkey, which coincidentally is no more than the amounts found in 

most meats. In any case, tryptophan is a vital precursor of many metabolites, including melatonin 
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and serotonin, which regulate immunity, inflammation, and circadian cycles. Increased 

tryptophan boosts neurotransmission and improves memory tests in aged rats [238], while 

tryptophan enriched cereals improved the sleep/wake cycle in elderly humans [239]. Serotonin 

production is dependent upon tryptophan levels [240] and tryptophan depletion results in 

increased aggression in conjunction with a decrease in pain tolerance in humans [241]. As 

expected, increased tryptophan reduced aggression in pigs [242], alleviated depression and 

aggression in people [243, 244], acted as a powerful sleep aid [245], and blocking tryptophan 

catabolism decreased aging and aging-related proteotoxicity in C. elegans [246].  

1.10.19 Tyrosine 

Tyrosine, a non-essential amino acid, is produced from phenylalanine. Tyrosine 

supplementation may ameliorate cognitive decline induced by stress and fatigue through the 

sparing of norepinephrine [247]. Supplementation with tyrosine in both hypertensive rats and 

humans led to a decrease in blood pressure [248], alleviated symptoms of nemaline myopathy 

[249], and enhanced dopaminergic neurotransmission in Parkinson’s disease patients [250]. 

1.10.20 Valine 

Valine is an essential BCAA that together with leucine and isoleucine are broken down to 

provide the body with energy. BCAA supplementation improves the quality of life and prognosis 

in patients suffering from hepatitis [251] and may contribute to lower obesity rates in middle-

aged adults [252]. BCAA supplementation promotes survival and mitochondrial biogenesis in 

mice [253], whereas valine supplementation alone was protective against paraquat-induced 

toxicity in rats [254]. Like isoleucine, little research has been dedicated to this amino acid 

outside of overall BCAA activity.  Elucidating metabolic byproducts and signaling pathways 
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through which amino acids extend healthy lifespan is not only important for delaying aging 

itself, but for improving the quality of life for aged individuals. 

1.11 Beta-hydroxybutyrate 

CR in animals is defined as a daily reduction of food intake. Intermittent fasting (IF) is 

associated with many of the same benefits as CR, yet IF leads to a greater increase in blood 

levels of the ketone body β-hydroxybutyrate  [255], which is produced by the liver when 

the body is in ketosis. Ketone bodies work to provide energy to the body, most importantly, the 

nervous system, during ketosis. Through a complex II-dependent mechanism leading to 

improved mitochondrial respiration and ATP production, mice treated with β-hydroxybutyrate 

showed partial protection from neurodegeneration and motor deficiency induced by MPTP [256].  

Parkinson’s disease patients treated with a ketogenic diet for one month improved their Unified 

Parkinson’s Disease Rating Scale scores by a mean of 43% [257].  β-hydroxybutyrate inhibited 

the growth of malignant cancer [258] and evidence suggests that a low carbohydrate, high ketone 

diet can halt the growth of cancer completely [259]. Oral ingestion of medium chain triglycerides 

MCTs increased HB levels and improved cognitive function in patients with AD [260].  

and acetoacetate have been reported to inhibit mitochondrial production of ROS in mouse 

neocortical neurons following glutamate excitotoxicity, by increasing the NAD+/NADH ratio 

and improving mitochondrial respiration [261]. Butyrate is a short-chain fatty acid that that 

inhibits class I and class II HDACs and increases both C. elegans [98] and Drosophila [99] 

lifespans. HB is structurally similar to butyrate and has been shown to be an endogenous class 

I HDAC inhibitor [100]. In addition, people on a ketogenic diet show increased rates of oxidative 

metabolism and antioxidant defense due to a rise in fatty acid beta-oxidation [262]. A ketogenic 

diet, which stimulates the downstream targets of the PGC-1α pathway, protected mice from 
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neurodegeneration by increasing mitochondrial uncoupling protein levels [263]. The ketogenic 

diet also delayed progression of motor decline and neuron loss in a murine model of ALS [264].  

Although, much more work is needed in the study of the protective effects of ketones and a low 

carbohydrate diet, there is some evidence that a high fat, medium to low protein, and very low 

carbohydrate diet is one possible way to delay aging-related disorders. 

1.12 C. elegans as a model to study nutritional effects on lifespan 

C. elegans nematode worms are a well-studied model organism often used in biomedical 

research as a model for human aging and disease and share almost all central metabolic pathways 

with humans. After reproduction, the worm gradually ages and dies in a similar pattern as 

humans [265]. Mutations in many mitochondrial-localized proteins in C. elegans have been 

shown to alter lifespan, either increasing or decreasing the rate of aging. These mutations directly 

impact overall energy metabolism by affecting the ETC complexes. The metabolic pathways 

studied in these chapters are also present in mammals, so the information gained using C. 

elegans may be applicable to human health and disease. In order to study the effect of 

metabolites on mitochondrial energy metabolism and the reliance on common longevity 

pathways, we selected the well-characterized mutant strains of C. elegans, daf-16(mgDf50), daf-

2(e1370), age-1(hx546), aak-2(ok524), sir-2.1(ok434), eat-2(ad1116), gcn-2, and rsks-1 mutants, 

and skn-1/Nrf and CREB binding protein-1 (cbp-1) RNAi worms. 

Through the use of six different stress response reporter strains of worms, potential stress 

responses to dietary supplementation with metabolites were monitored. These reporter strains use 

GFP driven by stress response promoters. We monitored expression of  hsp-70::GFP (HSF-1 

target), hsp-16.2::GFP (HSF-1 target), hsp-6::GFP (mitochondrial unfolded protein response), 

hsp-4::GFP (ER unfolded protein response), sod-3::GFP (DAF-16/FOXO reporter), and gst-
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4::GFP (SKN-1/Nrf reporter). All C. elegans strains were acquired from The University of 

Minnesota’s Caenorhabditis Genetics Center. 

Amyloid-β (Aβ) toxicity is responsible for neuronal degeneration seen in AD. The 

transgenic CL4176 (smg-1(cc546
ts
) I; dvIs27 [myo-3/ Aβ minigene + rol-6(su1006) marker 

gene] is a commonly used C. elegans model that employs a temperature-sensitive mutation in the 

mRNA system to initiate muscle expression of the Aβ1–42 transgene, resulting in paralysis of the 

body wall muscle upon temperature upshift from 16 to 25 °C. In conjunction with the CL4176 

strain, the CL2006 strain constitutively produces Aβ3–42 in the body-wall muscles, resulting in a 

decreased lifespan and paralysis. The CL2006, CL4176, and CL802 (control) strains all contain 

the dominant mutant roller phenotype [rol-6 (su1066)] as morphological marker.  Parkinson’s 

disease is a neurodegenerative disease associated with the aggregation of alpha-synuclein and 

death of dopaminergic neurons leading to cognitive and motor decline in patients. The use of 

transgenic models of C. elegans expressing human alpha-synuclein is rapid and economical for 

exploring the anti-Parkinson’s disease effects of compounds. The NL5901 (Punc-54::alpha 

synuclein::YFP+unc-119), strain is commonly used for drug screens to visualize alpha-synuclein 

aggregation. Identifying compounds that suppress Aβ-induced paralysis, polyglutamine 

paralysis, and alpha-synuclein aggregation could lead to the identification of compounds for the 

prevention and treatment of AD, Parkinson’s disease, and ALS. 

1.13 Hypothesis and objectives 

C. elegans share almost all metabolic pathways with humans. Therefore, we hypothesize 

that C. elegans, both wild-type models and models displaying age-related decline related to 

humans, are promising candidates for screening dietary metabolites. A wide range of metabolites 

have been found to have altered concentrations in older C. elegans, which may be indicative of 
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an age-related change in metabolic homeostasis. We therefore proposed the following 

hypotheses: First, we hypothesized that alterations in metabolite concentrations may represent 

homeostatic dysregulation.  In accordance with this hypothesis, we expected that systematically 

supplementing the diet of C. elegans with metabolites shown to have lower concentrations in 

older age would compensate for this dysregulation to increase lifespan.  Second, we postulated 

that small changes in many dietary metabolites would result in minor dietary stress, resulting in a 

hormetic effect.  As such, we hypothesized that supplementing the diet of C. elegans with 

metabolites would result in an increase in lifespan and stress resistance, with an accompanying 

increase in stress signaling and resistance to disease. We have determined that the TCA cycle 

metabolites fumarate, malate, and oxaloacetate extended lifespan in C. elegans, while all of the 

amino acids except phenylalanine and aspartate extended lifespan at least to a small extent at one 

or more of the 3 concentrations tested with serine and proline showing the largest effects.  

Although much is known about the effects of βHB on neurodegenerative and other aging-

associated diseases, not much is known about its effects on aging. Moreover, the mechanisms 

through which βHB are protective are not entirely clear. We hypothesized that βHB would 

increase the lifespan of C. elegans and we determined the cytoprotective signaling pathways 

required for this effect. 

The major aim of this study was to understand the mechanisms by which natural 

metabolites influence the lifespan of C. elegans.  

Specific Aim1 (Chapter 3): Determine the signaling pathways through which TCA cycle 

metabolites increase lifespan and stress tolerance in C. elegans. 

Aim 1.1: Determine the metabolic pathways through which addition of TCA cycle metabolites to 

the culture medium extend lifespan.   
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Aim 1.2: Determine the enzymes and signaling pathways through which TCA cycle metabolites 

extend lifespan through RNAi knockdown and mutant strains.   

Aim 1.3: Determine the effects of TCA cycle metabolites on C. elegans models of 

neurodegenerative disease.   

Specific Aim2 (Chapter 4): Determine the metabolic pathways through which the twenty amino 

acids increase lifespan and stress tolerance in C. elegans. 

Aim 2.1: Outline the signaling pathways through which individual addition of each of the twenty 

amino acids to the culture medium at varying concentrations extend lifespan.   

Aim 2.2: Determine the enzymes and signaling pathways through which amino acids extend 

lifespan through RNAi knockdown and mutant strains.   

Aim 2.3: Determine the effects of the top performing amino acids on C. elegans models of 

neurodegenerative and diabetic disease.  

Specific Aim3 (Chapter 5): Determine the signaling pathways through which βHB increases 

lifespan and stress tolerance in C. elegans. 

Aim 3.1: Determine the metabolic pathways through which addition of βHB to the culture 

medium extend lifespan.  

Aim 3.2: Determine the enzymes and signaling pathways through which βHB extends lifespan 

through RNAi knockdown, enzyme activity assays, and mutant strains.   

Aim 3.3: Determine the effects of βHB on C. elegans models of diabetic and neurodegenerative 

disease.   

1.14 Impact and significance  

The overall goal of this study was to obtain a better understanding of the role of 

metabolites in the control of C. elegans aging. Metabolite supplementation may prove to be a 
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valuable inducer of hormesis and partially compensate for age-related metabolic dysfunction.  

The metabolic pathways studied in this proposal are also present in mammals, so the information 

gained using C. elegans is likely applicable to human health and disease. 
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CHAPTER 2 

MATERIALS AND METHODS 

 

2.1 C. elegans strains 

 

All strains used in this study were purchased from the University of Minnesota 

Caenorhabditis Elegans Center unless otherwise noted in Table 1. Strains were cultured at 20°C 

in either liquid S media or NGM agar media [1] as indicated.  

2.2 Chemicals 

 

L-malic acid was purchased from Chem-Impex International. Succinic acid and fumaric 

acid were obtained from Fisher Scientific. L-Amino acids were purchased from Acros Organics 

and Research Products International Corp.  Glycine was obtained from Fischer Chemical 

Company.  D-amino acids were purchased from P212121, LLC.  When no D or L letter is 

present before the name of the amino acid (except for glycine), the L isomer was used.   Sodium 

DL-3-hydroxybutyric acid (βHB), sodium butyrate, valproic (2-propylpentanoic) acid, ethidium 

bromide, and potassium cyanide were purchased from Acros Organics. Sodium D-3-

hydroxybutyric acid and L-3-hydroxybutyric acid were obtained from Sigma. 5-fluoro-2′-

deoxyuridine (FUdR) was purchased from Research Products International Corp. and Biotang, 

Inc. Sodium hydroxide (Fischer Scientific) was added to metabolite stock solutions to obtain a 

pH of 7.0. 
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chronological lifespan by downregulating the general amino acid control (GAAC) pathway [11].  

Others found that glutamate supplementation extended chronological lifespan [12]. Consistent 

with the ability of glutamate to extend lifespan, deletion of genes involved in converting 

glutamate to gamma-aminobutyric acid (GABA) increased replicative lifespan [13] and led to 

increased conversion of glutamate to alpha-ketoglutarate and other TCA cycle intermediates, 

which may be involved in lifespan extension by maintaining mitochondrial respiratory function.  

Others using different conditions found that supplementation with serine, threonine, or valine 

decreased chronological lifespan [14] while limitation of asparagine [15], methionine, aspartate, 

or glutamate [12] extended lifespan. Further research using yeast deletion strains of differing 

lifespans found that intracellular levels of many amino acids positively correlated with lifespan 

[16]. 

In Drosophila, dietary restriction (DR) or protein restriction [17] extends lifespan and 

supplementing methionine in combination with one or more of the essential amino acids  

decreased the lifespan back to the fully fed level [18]. Interestingly, adding methionine by itself 

to DR flies increased protein translation [19] and fecundity [18] without decreasing lifespan, 

uncoupling these events. Increased levels of amino acids, especially leucine [20, 21], activate the 

TOR kinase, which leads to an increased rate of translation. Inhibition of the TOR kinase with 

rapamycin [22] or expressing a dominant negative p70-S6 kinase, a kinase downstream of TOR, 

extended organismal longevity [23]. Metabolism of sulfur containing amino acids was shown to 

be essential for DR-mediated longevity in Drosophila [19], but supplementation of cysteine or 

methionine failed to extend lifespan in fully fed Drosophila [24, 25]. However, supplementing 

casein and methionine together led to lifespan extension [24].  
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Figure 4.1. Individual supplementation of most amino acids extends mean lifespan in C. elegans.  Mean 

lifespan of C. elegans supplemented with a (A) 1 mM, (B) 5 mM, or (C) 10 mM concentration of each of 

the 20 amino acids (* log rank p < 0.05 vs. control). 
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Table 4.1  The effects of D-amino acids and membrane-permeable L-histidine analogs on C. 

elegans N2 lifespan. 

Treatment Concentration % of 

untreated 

mean lifespan 

p-value # of 

worms 

Replicates 

D-alanine 1 mM 
114 <0.001 219 

2 

5 mM 
116 <0.001 273 

2 

10 mM 
116 <0.001 240 

2 

D-aspartate 1 mM 
107 0.024 233 2 

5 mM 
118 <0.001 269 2 

10 mM 
108 <0.001 228 

2 

D-glutamate 1 mM 
114 <0.001 207 

2 

5 mM 
118 <0.001 249 2 

10 mM 
97 0.165 232 2 

D-serine 1 mM 
100 0.600 209 2 

5 mM 
91 <0.001 198 2 

10 mM 
93 <0.001 220 2 

D-proline 5 mM 
101 0.734 113 2 

N-acetyl-L-histidine 0.1 mM 
103 0.383 142 2 

1 mM 
112 0.002 188 2 

10 mM 
110 0.008 196 2 

L-histidine methyl ester 0.1 mM 
108 <0.001 215 2 

1 mM 
109 <0.001 246 2 

10 mM 
104 0.11 193 2 
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Table 4.2. The effects of amino acids on lifespan in daf-16 mutant and skn-1 knockdown C. 

elegans 

 
Strain Treatment % of N2 

mean 

lifespan 

% of 

untreated 

mean 

lifespan 

p-value # of 

worms 

Replicates 

daf-16(mgDf50) control 73 

 

<0.001 608 7 

5 mM histidine  92 <0.001 286 2 

5 mM proline  106 0.0871 133 2 

1 mM alanine  102 0.111 107 2 

1 mM tryptophan  118 0.008 183 2 

10 mM serine  105 0.104 161 2 

10 mM glutamine  95 0.107 125 2 

5 mM cysteine  95 0.107 115 2 

10 mM cysteine  81 <0.001 105 2 

5 mM tyrosine  96 0.578 140 2 

5 mM lysine  99 0.907 130 2 

N2 (skn-1 

RNAi) with live 

bacteria 

control  59 

 

<0.001 156 3 

1 mM tryptophan  107 0.042 125 3 

10 mM serine  107 0.01 175 3 

5 mM histidine  103 0.296 139 3 

5 mM proline  105 0.088 111 2 

N2 with live 

bacteria 

control - 

  

298 5 

1 mM tryptophan  109 <0.001 317 5 

10 mM serine  109 <0.001 375 5 

5 mM histidine  110 <0.001 277 5 

5 mM proline  108 <0.001 268 4 
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Figure 4.2. The effects of amino acid addition on DAF-16, SKN-1, and HIF-1-mediated gene expression. 

(A) The effects of amino acid addition on sod-3p::GFP fluorescence as a measure of DAF-16 

transcriptional activity.  (B) and (C)  The effects of amino acid addition on gst-4p::GFP fluorescence as a 

measure of SKN-1 transcriptional activity.  (D) and (E) The effects of amino acid addition on nhr-

57p::GFP fluorescence as a measure of HIF-1 transcriptional activity. 20 µM potassium cyanide was 

used as a positive control (* p < 0.05). 

 

To further check the ability of amino acids to activate SKN-1, we used a gst-4p::GFP SKN-1 

reporter strain of worms (Figure 4.2B and Figure 4.2C). We found that 8 of the 10 amino acids 

tested that increased lifespan increased GFP expression of the reporter strain. Amino acids that 

activated gst-4p::GFP expression included serine, proline, glutamine, alanine, leucine, lysine, 

and tyrosine, while tryptophan and cysteine did not. We also tested the effects of 2 amino acids, 
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phenylalanine and asparagine, which decreased lifespan on the fluorescence of this reporter 

strain and observed no induction of expression. Overall, there was a small correlation between 

the amount of SKN-1 activity and the extent of lifespan extension as serine and proline extended 

lifespan to the greatest extent and also increased fluorescence of the SKN-1 reporter strain to the 

greatest extent.  It has previously been hypothesized that proline catabolism transiently increases 

ROS production that leads to SKN-1 activation [26]. Our results are consistent with this 

hypothesis. Cysteine is a strong antioxidant and likely quenched ROS required for SKN-1 

activation likely explaining the lack of activation by this amino acid.       

The RNAi feeding experiments require live bacteria, while heat-killed bacteria were used 

in all other lifespan experiments. It is possible that the live bacteria used in the SKN-1 RNAi 

lifespan experiments metabolized the added amino acids dampening the degree of lifespan 

extension. Therefore, we performed control experiments supplementing amino acids to C. 

elegans feeding on live control HT115(DE3) E. coli.  C. elegans fed live control bacteria had a 

mean lifespan of 16.1 +/- 0.2 days, slightly less than worms fed heat-killed bacteria (mean 

lifespan of 17.2 +/- 0.3 days). Histidine extended lifespan to a similar extent in the presence of 

live or heat-killed bacteria as shown (Table 4.2). However, tryptophan-induced lifespan 

extension was slightly blunted by the use of live bacteria, and serine or proline-induced lifespan 

extension was blunted by roughly 50% by the use of live bacteria. A faster rate of E. coli 

catabolism of serine and proline than tryptophan and histidine likely explain these observations. 

4.3.6 Histidine and serine increase HIF-1 target gene expression 

The hypoxia-inducible factor-1 (HIF-1) protein is degraded quickly during standard 

conditions, but is stabilized during hypoxia or by other specific stresses to increase lifespan in C. 

elegans [39]. Therefore, we tested the HIF-1 reporter strain nhr-57p::GFP [39] for amino acid-
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induced changes in GFP fluorescence (Figure 4.2D and Figure 4.2E). Cyanide was used as a 

positive control as it inhibits cytochrome c oxidase, the protein complex which binds molecular 

oxygen, the terminal electron acceptor in the electron transport chain, to mimic the effects of 

hypoxia on mitochondria. We found that histidine or serine increased fluorescence, while 

tryptophan, proline, tyrosine, alanine, cysteine, glutamine, lysine, or leucine did not. These data 

indicate that stabilization of HIF-1 may be one of the mechanisms through which histidine and 

serine extend lifespan, although lifespan experiments with HIF-1 mutant worms are needed to 

confirm this hypothesis. 

4.3.7 Amino acid-mediated lifespan extension is AAK-2 (AMPK) dependent     

Next we individually administered C. elegans our test set of 10 amino acids except 

leucine to aak-2(gt33) worms, which are depleted of one of the two catalytic subunit of AMP-

activated protein kinase (AMPK) and performed lifespan analysis (Table 4.3). AMPK signaling 

inhibits target of rapamycin (TOR) kinase signaling to stimulate autophagy to recycle cellular 

components. AMPK also stimulates the sirtuin deacetylase SIR-2.1, SKN-1/Nrf2, and DAF-

16/FOXO pro-longevity pathways [40]. None of the amino acids extended lifespan in this mutant 

strain.  Tyrosine decreased lifespan while the other 8 amino acids tested had no significant effect.  

Therefore, AAK-2 is required for the longevity benefits provided by the amino acids. 

4.3.8 Many amino acids require SIR-2.1 for lifespan extension 

Next the effects of individual supplementation of these same 9 amino acids as well as 

phenylalanine on lifespan of the sir-2.1(ok434) NAD-dependent sirtuin deacetylase mutant were 

determined (Table 4.3). Small to moderate lifespan increases occurred with cysteine, glutamine, 

lysine, and low dose phenylalanine supplementation, but there were no significant effects of 6 

other amino acids tested on the lifespan of this strain. Therefore SIR-2.1 was required for 
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lifespan extension mediated by slightly more than half of the amino acids tested. Surprisingly, 

high dose (10 mM) phenylalanine supplementation did not lead to a decreased lifespan in this 

strain as it did in the N2 control worms. 

4.3.9 Amino acids do not significantly extend lifespan in long-lived DR worms 

Restricting a specific amino acid such as methionine from the diet can be utilized to 

extend lifespan and gain some of the benefits of dietary restriction (DR) [8], but there is not 

much evidence that specific amino acid supplementation can yield enhanced longevity effects.  

Therefore, we administered individual amino acids to eat-2(ad1116) mutants that are dietarily 

restricted and long-lived because of reduced pharyngeal pumping. The non-treated control eat-2 

mutants had a mean lifespan 44% longer than N2 controls indicating that our control worms 

were not dietarily restricted under our growth conditions. None of the 5 amino acids tested 

yielded statistically significant lifespan extension (Table 4.3). However, 4 of the amino acids 

yielded strong trends toward lifespan extension (p-values between 0.08 and 0.10). Therefore the 

individual amino acids are likely utilizing some portion of the DR signaling pathway for lifespan 

extension. 

4.3.10 Autophagy is required for the lifespan extension induced by serine, proline, or 

histidine supplementation, but not by tryptophan 

Since autophagy has been shown to be required for DR-mediated lifespan extension [41], 

we determined if autophagy was also required for amino acid-mediated longevity. To block 

autophagy we knocked down bec-1, the C. elegans Beclin-1 homolog and monitored lifespan 

following supplementation with serine, proline, histidine, or tryptophan.  

 

 

 



110 
 

Table 4.3. The effects of amino acids on lifespan in aak-2, sir-2.1 and eat-2 mutant and bec-

1 knockdown worms 

       

Strain Treatment 

% of N2 

control 

mean 

lifespan 

% of 

untreated 

mean lifespan 

p-value 

# of 

worms 

Replicates 

aak-

2(gt33) 

control 80  <0.001 786 8 

5 mM histidine  100 0.877 189 2 

5 mM proline  100 0.919 187 2 

1 mM alanine  100 0.943 209 2 

1 mM tryptophan  102 0.060 220 2 

10 mM serine  101 0.137 204 2 

5 mM lysine  87 0.373 180 2 

5 mM cysteine  85 0.952 140 2 

10 mM cysteine  90 0.122 145 2 

5 mM tyrosine  80 <0.001 200 2 

5 mM glutamine  94 0.436 180 2 

10 mM glutamine  103 0.126 200 2 

sir-

2.1(ok434) 

control 86 

 

<0.001 299 4 

5 mM histidine  100 <0.830 154 2 

5 mM proline  104 0.211 114 2 

1 mM alanine  98 0.225 165 2 

1 mM tryptophan  102 0.673 121 2 

10 mM serine  101 0.482 136 2 

10 mM glutamine  110 <0.001 180 2 

5 mM cysteine  105 0.244 192 2 

10 mM cysteine  110 <0.001 190 2 

5 mM tyrosine  93 0.231 131 2 

5 mM lysine  107 0.017 146 2 

1 mM phenylalanine  105 0.049 155 2 
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Strain Treatment 

% of N2 

control 

mean 

lifespan 

% of 

untreated 

mean lifespan 

p-value 

# of 

worms 

Replicates 

10 mM phenylalanine  101 0.402 176 2 

eat-

2(ad1116) 

control 142 

 

<0.001 135 2 

10 mM serine  108 0.078 161 2 

1 mM tryptophan  105 0.099 138 2 

5 mM glutamine  100 0.841 134 2 

5 mM histidine  106 0.091 153 2 

5 mM proline  107 0.076 176 2 

N2 (bec-1 

RNAi) 

with live 

bacteria 

control 123  <0.001 184 2 

1 mM tryptophan  107 <0.001 162 2 

10 mM serine  101 0.316 152 2 

5 mM histidine  99 0.274 117 2 

5 mM proline  98 0.09 102 2 

 

Knockdown of bec-1 by RNAi feeding increased lifespan as has previously been shown 

in [42] and prevented lifespan extension induced by supplementation with serine, proline or 

histidine, but not by tryptophan (Table 4.3).Therefore, the majority of amino acids, but not 

tryptophan, require autophagy for lifespan extension, once again suggesting that tryptophan 

extends lifespan through a mechanism distinct from other amino acids.   

The PHA-4/FOXA transcription factor is required for induction of autophagy and 

lifespan extension in response to DR. In addition, expression of the PHA-4 transcription factor 

has been shown to be upregulated by roughly 50% by DR [43]. Therefore, we determined if 

individual amino acid administration could increase PHA-4 protein levels by using a strain of 

Table 4.3 (Continued) 
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worms engineered to express PHA-4:GFP:3xFLAG using the endogenous pha-4 promoter [44]. 

Surprisingly, we found that serine, histidine, or tryptophan addition did not alter the GFP 

fluorescence of this strain. However, leucine addition resulted in a strong trend toward increased 

fluorescence (p=0.08). On the whole, individual amino acid supplementation did not appear to 

have much of an effect on fluorescence in this strain. However, we cannot yet rule out the 

possibility that changes in PHA-4 localization or post-translational modification play a role in 

individual amino acid-induced longevity.  It is also possible that the added GFP and FLAG tags 

affect the stability of the protein.  Lifespan studies using pha-4 RNAi are needed to determine a 

role, if any, for PHA-4 in amino acid-mediated lifespan extension. 

4.3.11 Inhibition of TOR signaling plays a role in amino acid-mediated lifespan extension 

Specific amino acids, most notably leucine, but also to a lesser extent arginine and glutamine can 

be activators of the TOR signaling pathway that limits lifespan [45]. Administering rapamycin, a TOR 

inhibitor, or feeding TOR RNAi to C. elegans induces autophagy and extends lifespan [46, 47]. More 

recently it was found that alpha-ketoglutarate supplementation can lead to TOR inhibition to extend 

lifespan [48]. Knockout or knockdown of the ribosomal S6 kinase, which is downstream of TOR kinase 

in the signaling pathway, also extends lifespan [49]. Part of this effect may rely on a decreased rate of 

protein translation as inhibitors of protein translation can also extend lifespan [49]. Therefore, we 

determined the effects of specific amino acids on lifespan in long-lived rsks-1(ok1255) ribosomal S6 

kinase mutants, where this arm of the TOR signaling pathway is inhibited (Table 4). Unlike the results 

with N2 control worms, addition of serine or tryptophan did not alter the lifespan of this strain, 

while proline or histidine addition slightly decreased lifespan, and tryptophan addition decreased 

lifespan by 20%. Therefore, these amino acids appear to use inhibition of TOR signaling to 

mediate lifespan extension, as the amino acids did not extend lifespan in long-lived mutant 

worms where TOR signaling was already disrupted. 
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4.3.12 A decreased rate of translation is required for the full lifespan extending effects of 

amino acids 

GCN-2 (general control nonderepressible-2) kinase can slow the rate of translation 

initiation by phosphorylating eukaryotic translation initiation factor-2 alpha (eIF-2α) when 

tRNAs become uncharged due to low amino acid levels [34] or in times of mitochondrial 

metabolic stress [33]. We hypothesized that amino-acid supplementation causing amino acid 

imbalance could result in inefficient tRNA charging or cause metabolic stress signaling through 

GCN-2 to extend lifespan. Therefore, we determined the lifespan of gcn-2(ok871) mutants 

supplemented with individual amino acids (Table 4.4). We found that histidine or tryptophan 

supplementation did not lead to increased longevity when using this strain, while only a 4% or 

7% lifespan extension occurred when serine or proline, respectively, were supplemented. To 

further determine a role for decreased translation in amino acid imbalance-mediated longevity, 

we performed lifespan analysis using the ife-2(ok306) strain [50], which is deficient in an 

isoform of the translation initiation factor eIF4E and shown to be long-lived. Surprisingly, under 

our liquid culture conditions using heat-killed bacteria as food, the lifespan of this strain was not 

significantly different than the control. However, supplementation of serine, proline, histidine, or 

tryptophan to this strain did not lead to extended lifespan, while tryptophan addition even 

slightly decreased lifespan. Therefore signaling to slow the rate of translation is likely a general 

mechanism involved in individual amino acid-mediated increased longevity. 
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4.3.13 The effect of individual amino acids on the lifespan of mitochondrial ETC complex I 

and II mutants 

To test the hypothesis that mitochondrial ETC activity is important for amino-acid 

induced lifespan extension we supplemented serine, histidine, or proline to either short-lived 

mitochondrial ETC complex I defective gas-1(fc21) mutant worms or to short-lived 

mitochondrial ETC complex II defective mev-1(kn1) mutant worms (Table 4.4). We found that 

proline supplementation extended the lifespan of gas-1 mutants, but that serine or histidine were 

unable to extend lifespan, although there was a strong trend with histidine (p=0.09). When we 

supplemented each of these 3 amino acids to mev-1 mutants, we found opposite effects. Proline 

did not extend lifespan, although a strong trend was observed (p=0.10), while serine and 

histidine extended lifespan. Therefore normal complex I (NADH dehydrogenase) activity is 

required for the full serine and histidine-mediated lifespan extension, while normal complex II 

activity is required for proline-mediated lifespan extension. This data may be explained in that 

proline dehydrogenase generates FADH2 which feeds electrons into the ETC at complex II and 

histidine and serine catabolism generates NADH that feeds electrons into the ETC at complex I.  

4.3.14 Most supplemented metabolites extended lifespan at an optimal concentration 

Since supplementation with an optimal concentration of most amino acids extended the 

lifespan of the worms, it is possible that their breakdown to TCA cycle intermediates may play a 

role in lifespan extension. It has previously been shown that supplementation with pyruvate [51], 

acetate (that can be readily metabolized to the TCA cycle substrate acetyl-CoA) [52], or the TCA 

cycle intermediates malate, fumarate [53], oxaloacetate [54], and alpha-ketoglutarate [48] 

extended lifespan in C. elegans. We therefore determined the lifespan of the worms individually 
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supplemented with 1, 5, or 10 mM concentrations of the TCA cycle intermediates citrate, 

isocitrate, alpha-ketoglutarate, or succinate (Table 4.1). 

We previously found that 10 mM succinate did not extend lifespan, but did induce 

translocation of the pro-longevity factor DAF-16 to the nucleus [53]. But here we find that 

lowering the concentration of succinate to 5 mM or 1 mM resulted in lifespan extension (Figure 

4.3A), consistent with a recent report of a longevity benefit [48].  Citrate is present at 10 mM in 

all of our experiments as a standard buffer component of the S-medium.  We found that 

removing it did not affect the lifespan (Figure 4.3B).  Previous findings also failed to find an 

extension of lifespan with citrate supplementation [48, 52]. We found that alpha-ketoglutarate at 

any of the 4 concentrations tested from 0.1 to 10 mM extended lifespan (Figure 3C), as recently 

reported for an 8 mM dose [48].  Adding DL-isocitrate to the medium led to an increase in 

lifespan at the 5 mM concentration, but a decrease in lifespan at the 10 mM concentration 

(Figure 4.3D).  It is unknown if the non-naturally occurring L-isomer contributed to this effect, 

but since we found the non-naturally occurring isomer D-malate to decrease lifespan at all 3 

concentrations tested (Table 4.1), it is a strong possibility. Another group observed no effect of 8 

mM isocitrate on lifespan [48]. Therefore, of the 7 TCA cycle intermediates that we have tested, 

6 were able to extend lifespan at an optimal dose. 

We hypothesized that catabolism of the amino acids for anaplerosis or energy production 

was likely playing a role in the lifespan extension. If this is true supplementing other common 

cellular metabolites should also extend lifespan. Therefore, we performed lifespan analysis of 

worms supplemented with sugars or other metabolites lacking nitrogen atoms.  
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Table 4.4  The effects of amino acids on lifespan of rsks-1, gcn-2, ife-2, gas-1, and mev-1  

strain treatment % of 

N2 

control 

mean 

lifespan 

% of 

untreated 

mean 

lifespan 

p-value # of 

worms 

replicates 

rsks-

1(ok1255) 

control 109 

 

<0.001 362 4 

1 mM tryptophan  71 <0.001 130 2 

5 mM histidine  93 0.031 135 2 

5 mM proline  94 0.042 140 2 

10 mM serine  101 0.236 162 2 

gcn-2(ok871) control 90 

 

<0.001 479 4 

1 mM tryptophan  99 0.489 160 2 

5 mM histidine  100 0.335 163 2 

5 mM proline  107 0.001 205 2 

10 mM serine  104 0.006 183 2 

Ife-2(ok306) control 97  0.245 112 2 

1 mM tryptophan  94 0.029 138 2 

5 mM histidine  98 0.597 110 2 

5 mM proline  102 0.352 117 2 

10 mM serine  99 0.791 96 2 

gas-1(fc21) control 69 

 

<0.001 119 2 

5 mM histidine  104 0.092 110 2 

10 mM serine  98 0.327 106 2 

5 mM proline  109 0.003 115 2 

mev-1(kn1) control

 

69 

 

<0.001 273 2 

5 mM histidine  104 0.021 215 2 

10 mM serine  109 <0.001 258 2 

5 m  102 0.102 256 2 
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Table 4.5 The effects of TCA cycle intermediates on C. elegans lifespan 

 
treatment concentration % of 

untreated 

mean lifespan 

p-value # of 

worms 

replicates 

succinate 1 mM 
111 <0.001 590 4 

5 mM 
110 <0.001 570 4 

10 mM 
104 0.098 607 4 

citrate1 10 mM 
98 0.414 229 2 

α-ketoglutarate 0.1 mM 
110 <0.001 261 3 

1 mM 
115 <0.001 345 3 

5 mM 
111 <0.001 337 3 

10 mM 
107 0.042 333 3 

DL-isocitrate 1 mM 
103 0.202 452 4 

5 mM 
113 <0.001 523 4 

10 mM 
72 <0.001 217 4 

D-malate 1 mM 
85 <0.001 106 1 

5 mM 
76 <0.001 77 1 

10 mM 
79 <0.001 142 1 

1
compared to a medium lacking citrate. All other experiments contain 10 mM citrate as part of the 

standard culture media. 

Glucuronolactone, glyceraldehyde, fructose, propionate, or dihydroxyacetone did not 

extend lifespan and the last 4 of these compounds even decreased lifespan by 13-25% at the 10 

mM dose. Glyceraldehyde, fructose, and dihydroxyacetone are readily converted into glycolytic 

intermediates leading to the formation of toxic methylglyoxyl from glyceraldehyde phosphate or 

dihydroxyacetone phosphate, which could contribute to their toxicity, while propionic acid is 

known to be neurotoxic at high levels [28]. Since many amino acids activated SKN-1, while 

TCA cycle intermediates did not, we hypothesized that nitrogen-containing metabolites might be 

slightly more potent inducers of lifespan extension. The effects of many nitrogen-containing 

metabolites on lifespan are shown in 4.13.  At an optimal dose carnosine, beta-alanine, betaine, 

homocysteine, ornithine, agmatine, putrescine, taurine, and theanine extended lifespan. 
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Figure 4.3. Individual supplementation of many TCA cycle metabolites extends mean lifespan in C. 

elegans.  (A) Succinate extends lifespan, (B) citrate does not extend lifespan, (C) alpha-ketoglutarate 

extends lifespan, and (D) isocitrate extends lifespan at one or more of the concentrations tested. 10 mM 

citrate is a standard component of the S-medium. It was removed to determine the effect of citrate on 

lifespan. 
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For the majority of these compounds, the lowest concentration, such as 1 mM, yielded 

greater lifespan extension than the highest 10 mM concentration suggesting a hormetic dose 

response. Supplementation with creatine, or the histidine catabolites histamine or urocanic acid 

did not extend lifespan at any of the 3 concentrations tested. Although most of the nitrogen-

containing compounds extended lifespan at an optimal dose, the extent of lifespan extension was 

not noticeably different than when supplementing with compounds lacking nitrogen. 

4.3.15 C. elegans lifespan was not limited by nitrogen availability 

We used heat-killed E. coli as a food source to prevent the bacteria from metabolizing the 

added metabolites, but we have found that heat-killing E. coli causes the loss of one or more 

essential growth-limiting nutrients during heating. So lowering the concentration of heat-killed 

bacteria in the growth media by just a factor of 2 did not allow completion of larval growth into 

adulthood, but instead led to dauer formation. The concentration of live bacteria could be 

reduced by 30-40 fold before dauer formation during larval development. To test if the worms 

may have been nitrogen limited under our culture conditions, we supplemented the worms with 

peptone or other nitrogen containing compounds and measured the lifespan. Interestingly, 

peptone at 1.25 g/L, half the concentration present in nematode growth media (NGM) decreased 

lifespan by 22% (Additional file 6: Table S3). This concentration contains roughly 10 mM total 

amino acids. These results support published findings where 5 g/L (2x NGM)  and 10 g/L (4x 

NGM) peptone also decreased C. elegans lifespan in liquid S medium [55]. Lowering the 

peptone concentration to 0.125 g/L (0.1x NGM) yielded a similar lifespan as untreated controls.  

We next added ammonium chloride as a nitrogen source. Concentrations of ammonium 

chloride from 1 to 10 mM did not extend lifespan. So amino acids do not increase lifespan solely 

by providing nitrogen to the worms. 
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4.3.16 Phenylalanine and alpha-ketoglutarate activate a HSF-1 reporter strain 

Since supplementation of many of the amino acids and other metabolites showed less 

lifespan extension at higher concentrations, we hypothesized that C. elegans mounted a stress 

response that resulted in lifespan extension at lower amino acid levels, but at higher levels the 

stress response was overwhelmed leading to decreased lifespan. Therefore, we determined if 

amino acid supplementation activates a Phsp-16.2::GFP heat shock reporter strain of worms.  

HSP-16.2 is a small cytoplasmic heat shock protein and target of the HSF-1 transcription factor 

[56]. We first tested the effects of glutamine, histidine, methionine, serine, tryptophan, or 

tyrosine, amino acids that extended lifespan, or phenylalanine, an amino acid that decreased 

lifespan on GFP fluorescence in the Phsp-16.2::GFP reporter strain using heat shock as a 

positive control (Figure 4.4 A). Of these amino acids, only phenylalanine activated GFP reporter 

gene expression.    

We next tested the effects of TCA cycle intermediate or pyruvate supplementation on the 

Phsp-16.2::GFP reporter strain, as amino acids are broken down into TCA cycle intermediates 

when they are present in excess. When administered to the Phsp-16.2::GFP reporter strain 

alpha-ketoglutarate, but none of the other TCA cycle intermediates supplemented increased GFP 

fluorescence (Figure 4.5A). Many of the amino acids showing the largest stimulatory effects on 

lifespan (proline, arginine, histidine, glutamine, and glutamate) are catabolized through 

glutamate into alpha-ketoglutarate in the TCA cycle. 

4.3.17 Histidine, tryptophan, and citrate induce an ER stress response 

We next determined if amino acids activated the endoplasmic reticulum (ER) stress 

response by using a reporter strain of worms engineered to contain a heat shock protein-4 (hsp-4) 

promoter driving expression of green fluorescent protein (GFP) [57]. We tested the effect of 


