
University of South Florida University of South Florida 

Digital Commons @ University of Digital Commons @ University of 

South Florida South Florida 

USF Tampa Graduate Theses and Dissertations USF Graduate Theses and Dissertations 

January 2015 

Robust, Low Power, Discrete Gate Sizing Robust, Low Power, Discrete Gate Sizing 

Anthony Joseph Casagrande 
University of South Florida, acasagra@mail.usf.edu 

Follow this and additional works at: https://digitalcommons.usf.edu/etd 

 Part of the Computer Engineering Commons 

Scholar Commons Citation Scholar Commons Citation 
Casagrande, Anthony Joseph, "Robust, Low Power, Discrete Gate Sizing" (2015). USF Tampa Graduate 
Theses and Dissertations. 
https://digitalcommons.usf.edu/etd/5656 

This Thesis is brought to you for free and open access by the USF Graduate Theses and Dissertations at Digital 
Commons @ University of South Florida. It has been accepted for inclusion in USF Tampa Graduate Theses and 
Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more 
information, please contact digitalcommons@usf.edu. 

https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/etd
https://digitalcommons.usf.edu/grad_etd
https://digitalcommons.usf.edu/etd?utm_source=digitalcommons.usf.edu%2Fetd%2F5656&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.usf.edu%2Fetd%2F5656&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usf.edu


Robust, Low Power, Discrete Gate Sizing

by

Anthony J. Casagrande

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Computer Engineering
Department of Computer Science and Engineering

College of Engineering
University of South Florida

Major Professor: Nagarajan Ranganathan, Ph.D.
Srinivas Katkoori, Ph.D.
Swaroop Ghosh, Ph.D.

Date of Approval:
May 4, 2015

Keywords: VLSI, Design Automation,
Variation-aware, Game Theory, Fuzzy Mathematics

Copyright c© 2015, Anthony J. Casagrande



Dedication

I would like to dedicate this thesis to my beautiful wife, Patricia Casagrande, for her

neverending love and support. I would also like to dedicate this work to my parents Mark

and Melanie, and brother Carlo for all of their love, help and encouragement along the way.

Finally, I dedicate this thesis to my advisor, Dr. Ranganathan - not just because of his

valuable advice and assistance, but because he is a genuinely caring man with exemplary

character. He is not only a mentor and an inspiration, but a true friend.



Acknowledgment

I would like to acknowledge the exceptional faculty in the Computer Science and

Engineering Department at the University of South Florida. Also, I would like to recognize

the outstanding administrative staff in the CSE office and Mrs. Catherine Burton for her

assistance in editing this document.



Table of Contents

List of Tables iii

List of Figures iv

Abstract v

Chapter 1 Introduction 1
1.1 Robust Gate Sizing 1
1.2 Background and Motivation 2

Chapter 2 Fuzzy Basics 7
2.1 What Does Fuzzy Mean? 7
2.2 Fuzzy Triangular Distribution 8

Chapter 3 Game Theory Basics 10
3.1 Introduction 10
3.2 Basic Structure 10
3.3 Nash Equilibria 11
3.4 Prisoner’s Dilemma Example 11

Chapter 4 Theory and Problem Formulation 13
4.1 Why Fuzzy Games? 13
4.2 Gate Delay and Power Model 14
4.3 Fuzzy Game Theory 16
4.4 Spatial Correlation using Alpha-cuts 20

Chapter 5 Proposed Methodology 25
5.1 GTFUZZ Algorithm 25

Chapter 6 Simulation 31
6.1 Experimental Setup 31

Chapter 7 Experimental Results 38

Chapter 8 Conclusion 42

References 44

i



Appendices 48
Appendix A: Copyright Permissions 49
Appendix B: Algorithm Pseudocode 50

About the Author END PAGE

ii



List of Tables

Table 3.1 Payoff matrix for the prisoner’s dilemma example. 11

Table 4.1 Notation in GTFUZZ problem formulation. 24

Table 5.1 ITRS projections. 26

Table 6.1 ITC’99 benchmark descriptions. 34

Table 7.1 Experimental results on synthesized ITC ’99 benchmarks. 39

iii



List of Figures

Figure 1.1 A chronological taxonomy of related works. 5

Figure 4.1 Example of modeling player confidence with an alpha-cut of .25 21

Figure 4.2 General fuzzy game flow. 22

Figure 6.1 GTFUZZ Algorithm: simulation flow. 32

Figure 7.1 The GTFUZZ runtime scales linearly with circuit complexity. 40

Figure B.1 Subroutine to solve the fuzzy games. 50

Figure B.2 Validate the solution of fuzzy games. 50

Figure B.3 Initial preprocessing of circuit. 51

Figure B.4 Setting up and solving the fuzzy games. 52

iv



Abstract

Ultra-deep submicron circuits require accurate modeling of gate delay in order to meet

aggressive timing constraints. With the lack of statistical data, variability due to the mechan-

ical manufacturing process and its chemical properties poses a challenging problem. Discrete

gate sizing requires (i) accurate models that take into account random parametric variation

and (ii) a fair allocation of resources to optimize the solution. The proposed GTFUZZ gate

sizing algorithm handles both tasks. Gate sizing is modeled as a resource allocation prob-

lem using fuzzy game theory. Delay is modeled as a constraint and power is optimized in

this algorithm. In GTFUZZ, delay is modeled as a fuzzy goal with fuzzy parameters to

capture the imprecision of gate delay early in the design phase when extensive empirical

data is absent. Dynamic power is modeled as a fuzzy goal without varying coefficients. The

fuzzy goals provide a flexible platform for multimetric optimization. The robust GTFUZZ

algorithm is compared against fuzzy linear programming (FLP) and deterministic worst-case

FLP (DWCFLP) algorithms. The benchmark circuits are first synthesized, placed, routed,

and optimized for performance using the Synopsys University 32/28nm standard cell library

and technology files. Operating at the optimized clock frequency, results show an average

power reduction of about 20% versus DWCFLP and 9% against variation-aware gate sizing

with FLP. Timing and timing yield are verified by both Synopsys PrimeTime and Monte

Carlo simulations of the critical paths using HSPICE.

v



Chapter 1: Introduction

1.1 Robust Gate Sizing

Ultra-deep submicron circuits are affected by variability due to the mechanical man-

ufacturing process. These effects are random and are not completely understood. There is a

wide variety of work being done on emerging technologies such as spintronics, neuromorphic,

molecular, and quantum computing. However, Sani Nassif at IBM, a pioneer of this problem

since the late 90’s, stated in 2010 that due to the continual scaling of silicon CMOS technol-

ogy, this problem will be of urgent importance to designers for at least the next decade until

emerging technologies become a practical substitution [33]. If we are to adhere to Moore’s

Law, we must address these issues in order to prepare for a world beyond CMOS devices.

The variation effects in mechanical manufacturing process cause many characteristics

of transistors to vary. Spatial variance affects physical characteristics such as effective chan-

nel length and oxide thickness. Temporal variance refers to effects which occur over time. For

example, the effects of electromigration can gradually wear down interconnects, potentially

creating an open circuit. Front-end device variability accounts for 90% of process variation

[32]. Gate sizing is a proven technique to optimize VLSI circuits. Gate sizing involves ad-

justing the size of each individual gate to optimize selected metrics. Robust gate sizing must

Previously published in [10]. Permission included in Appendix A.

1



take into account randomness of the manufacturing process without being overly pessimistic

- the deterministic worst-case assumption of variation is no longer a viable option.

We propose a novel solution to the robust gate sizing problem using fuzzy games.

In these fuzzy games, gate delay is modeled as a fuzzy goal with fuzzy varying coefficients

and dynamic power is modeled as a fuzzy goal without varying coefficients. The solution

to the fuzzy game is a robust setting of gates which are modeled as players in the game.

This captures the random parametric variation while simultaneously addressing the resource

allocation problem of gate sizing, yielding an optimal solution in which each player realizes

maximum gain. The merging of the normalized fuzzy goals naturally creates a platform for

multimetric optimization of other emerging metrics of importance such as security. Defin-

ing multiple fuzzy goals is an efficient way of dealing with many complex decisions that

must be made in the optimization process amongst a group of agents while guaranteeing an

equilibrium ("fairness") of gain among all players in the process.

1.2 Background and Motivation

Design for manufacturability anticipates defects in all phases of the design process,

improving yield, performance, and reliability of the circuit. As illustrated in figure 1, there

have been many efforts to strengthen the robustness of integrated circuits via gate sizing.

Seminal works in gate sizing introduced several vital techniques which have been applied and

reinvented throughout the past 20-30 years such as TILOS optimization [16] and constrained

linear programming [8, 13]. TILOS is an iterative heuristic transistor sizing algorithm which

has been adapted to gate sizing in several works [41, 36, 37, 22].

2



Deterministic worst-case margins have long been used in the design process. Variation

in the manufacturing process may cause many chips in a batch to fail timing constraints.

Rather than binning or discarding these chips, the design is adjusted so that all chips in

a manufacturing run will meet the design’s timing constraint. There are a wide variety of

works in the literature which are not variation-aware [41, 38, 36, 31, 21, 9, 22]. With feature

sizes as low as 22nm, the density of the chip is much greater and smaller devices are placed in

closer proximity. As the ratio of feature size to parametric variation worsens, design changes

which anticipate and prevent chip failure with absolute certainty become more and more

pessimistic. Although the timing yield of a batch is now 100%, most of the chips which

would have met the constraints in the first place have taken a hit in performance and area.

Many variation-aware optimization techniques have been introduced in the late 90’s

and early 2000’s [40, 37, 12, 35, 4, 19, 14, 23, 6, 28, 34, 17, 26, 25, 18]. The advent of

Statistical Static Timing Analysis (SSTA) was one of the first variation-aware paradigm

shifts. Rather than traditional Static Timing Analysis (STA), the minimum and maximum

arrival times of signals at the inputs of a gate are modeled statistically, capturing the effects

of parametric variation. A framework of an optimal SSTA engine and its effectiveness was

presented in [40] and has been implemented as a means to model timing in many gate sizing

works [37, 12, 35, 4, 19, 14].

In [28] and [27] the problem is approached using statistical optimization with timing

constraints (arrival time) derived from traditional STA operations. The propagation delay

of each gate is modeled with stochastic coefficients, taking into account the randomness of

parameters bound by the best and worst case. These bounds are empirically determined by

3



the technology and manufacturing process. The problem is then formulated as a robust linear

program. Compared to the statistical approach, optimization with fuzzy linear programming

has been shown to yield an equal or greater reduction in dynamic power consumption while

ensuring the circuit is robust [26, 25]. The theory of fuzzy sets is useful when modeling

systems which are imprecise [29]. Parametric variations are non-deterministic, and average

behavior is difficult to predict.

As opposed to boolean logic, fuzzy sets introduce a degree of truth. When faced

with uncertainty, this degree of truth provides a more accurate representation of the lack of

information. Using fuzzy sets and membership functions to model uncertain parameters not

only simplifies computation, it also forms a more accurate model of parametric variability.

The existing fuzzy approach optimizes only a few parameters while ignoring the negative

impacts on others. This can be addressed by using game theoretic modeling [21, 31].

Game theory and auction theory have been shown to be effective strategies in resource

allocation problems (gate sizing, wire sizing, buffer insertion) in VLSI Design Automation [21,

31]. The problem can be formulated as a non-cooperative game with each gate representing

a player competing for multiple resources in the circuit. The game forms an accurate model

of the conflicting resource allocation in the system. The Nash Equilibrium algorithm finds

a fair solution for all players - a solution which yields the maximum gain for all players

participating in the game. This approach has been proven to be more effective in power

minimization and runtime as compared to genetic search based algorithms and simulated

annealing [21], but has not yet been compared to fuzzy linear programming.

4



ti
m
e

Gate Sizing

Robust

SSTA Engine STA or
Path-Based

DWC

SSTA Framework [40]

Dual Vth & GS [37]

Lagrangian relaxation [12]

Hybrid heuristic [35]

Sensitivity pruning [4]

Yield constraint [19]

Direct yield objective [14]

Statistical delay model [23]

Penalty function [6]

Robust LP [28]

Geometric program [34]

Expected utility [17]

Fuzzy LP GS[26]

Fuzzy LP GS & BI [25]

Utilitarian approach [18]

GTFUZZ

TILOS [16]

Linear Program [8]

Constrained LP [13]

Vth assignment & GS [41]

Lagrangian relaxation [38]

Dual VDD / Vth & GS [36]

PSP auction theory [31]

Game theory [21]

Security aware LP [9]

Sensitivity metaheuristic [22]Legend
GTFUZZ Fuzzy Games
LP Linear Programming
GS Gate Sizing
BI Buffer Insertion
PSP Progressive Second Price
DWC Deterministic Worst Case

Figure 1.1: A chronological taxonomy of related works.

The existing game theoretic approaches and fuzzy linear programming optimization

lead to inaccurate solutions. Refs. [21, 31] do not take into account parametric variation.

To the authors’ best knowledge, this will be the first robust game theoretic approach to the

gate sizing problem. Ref. [26] captures the imprecision of gate delay using fuzzy sets and

membership functions. However, a continuous solution for the gate sizes introduces rounding

error. In addition, [26] uses the initial size setting of the gates to propagate required arrival

times for the gates, but does not incrementally update gates effected by the sizing.

5



A solution that combines game theoretic modeling of the conflicting resource alloca-

tion in the system and fuzzy modeling of gate delay with incremental static timing anal-

ysis updates to increase accuracy will result in a more robust circuit. Another benefit of

fuzzy games is that they can easily be adapted to implement a framework for simultaneous

multi-metric optimization using multiple fuzzy goals and weighting strategies (for example:

dynamic power, subthreshold leakage, performance, and crosstalk noise).

6



Chapter 2: Fuzzy Basics

2.1 What Does Fuzzy Mean?

Fuzzy mathematics are useful in modeling certain types of uncertainty. A classic

example examines the definition of a hill versus a mountain. When does a hill become a

mountain? If a hill is defined as 500 meters tall, is a mountain only required to be 501 meters

tall? This implies that the change between hill and mountain is drastic and immediate. There

is no graduation between one and the other. This crisp change in definition of membership

is what we are accustomed to in classic mathematics.

If we look at the hill versus mountain example with fuzzy mathematics, we gain a

different perspective. A hill does not immediately become a mountain at a certain point,

it gradually becomes one. This makes it difficult to place a crisp definition on the two.

Likewise we can say that a hill is a mountain to a certain degree or that a mountain is a

hill to a certain degree. This departure from classical crisp mathematics helps us to better

define many types of uncertainty, especially those which include biased information or even

a lack of information.

Crisp sets have characteristic membership functions that are either 0 or 1. An item is

either in a set or it is not. It follows the law of the excluded middle (LEM). The law of the

excluded middle says a statement can either be true, or false - there is no third alternative.

7



In fuzzy mathematics, the law of the excluded middle does not hold. Membership in sets is

graduated.

2.2 Fuzzy Triangular Distribution

A triangular fuzzy number is a triple in the form minimum, mean, maximum. The

mean is also seen as the nominal or most likely value. Membership in a triangular fuzzy set

gradually increases to the mean value from the minimum and gradually decreases from the

mean value to the maximum. Triangular distributions can be symmetric or asymmetric.

A fuzzy set is defined by a set of ordered pairs [42]:

Ã = { (x, µ
Ã

(x) ) | x ∈ X} (2.1)

where Ã is a fuzzy set, µ
Ã

(x) is a fuzzy membership function of x in Ã that maps X

to the membership space. Elements in a fuzzy set have a degree of membership. Fuzzy

sets are a generalization of crisp sets. Likewise, fuzzy membership functions are generalized

characteristic functions. A normalized fuzzy set is on the interval [0,1] and is most convenient

for computation.

The support of a fuzzy set Ã, S(Ã) is defined by all x ∈ X which have a membership

of strictly greater than 0 in the fuzzy set Ã. More generally, the alpha-cut of Ã can be defined

by all x ∈ X with a membership in Ã greater than or equal to α = [0,1]. Fuzzy modeling

is useful when there is an absence of data, information, or understanding. Fuzzy modeling

explicitly captures imprecision. When designers are using standard cell libraries provided

by fabrication facility, they may not have extensive data on varying parameters. There may

8



be a complete absence of data. Rather than assume normal distribution, we can construct

a triangular distribution to represent the variability of the physical process parameter using

limited data and knowledge.

9



Chapter 3: Game Theory Basics

3.1 Introduction

A game theory framework is used to model interactions between conflicted but ra-

tional parties. Classical applications are in economics. However, in recent years many

applications in engineering have arisen. Game theory can be used to model a variety of

engineering problems which involve conflicting resource allocation.

3.2 Basic Structure

First, a game requires the participation of players. These are the involved conflicted

parties. In a pure-strategy game, each player has a set of strategies they may exercise. A

mixed strategy game associates a probability with each strategy (the likelihood a player

will exercise that strategy). An outcome is a realized set of strategies made up of one

exercised strategy per player. Each feasible outcome has a payoff. A payoff is a numerical

quantification of the gain (loss) for a player in that particular outcome. Games can be

cooperative or non-cooperative. In a non-cooperative game, players know all information

about the game. However, players may not negotiate in any way as to what strategy they

will play. Cooperative games allow players to collaborate with one another before their turn

is played. This complicates the strategy sets of each player in the game since all players can

10



Table 3.1: Payoff matrix for the prisoner’s dilemma example.

negotiate with any other player. These negotiations are not guaranteed to be honored. This

work will only deal with non-cooperative games.

3.3 Nash Equilibria

The solution method used in this work is the Nash Equilibria. An outcome is a Nash

Equilibria if players can’t get a better payoff by changing their strategy when other players do

not deviate from their strategy. There can be more than one equilibria in a game. There can

also not exist an equilibria. In the case there is more than one, the most desirable equilibria

can be chosen. It should be noted that nash equilbrium are not necessarily pareto optimal.

They are simply the most stable outcomes (best responses by each individual player). The

Nash Equilibria is the "win-win" outcome for all players in the game.

3.4 Prisoner’s Dilemma Example

We will examine a pure-strategy, normal-form, 2-player, non-cooperative game. This

is a classical example called the prisoner’s dilemmma. Two suspects (partners) are taken

into custody after a robbery. They are suspected of pulling off the job together. They are

11



separately interrogated and have no prior negotiation or about the actions they will take in

the interrogation. Each suspect is given the opportunity to either Confess (C) or Defect (D).

Confessing will generally reduce their sentence depending on the other suspect’s actions. The

payoff matrix in table 3.1 illustrates the payoff of the situation. A higher payoff is considered

to be positive (not a sentencing in years). The rows are player 1, the columns are player 2.

C and D denote each players possible strategy. In each cell the payoffs are denoted in the

form payoff for player 1, payoff for player 2. The table is also color coded for convenience.

In this example, there is only one Nash Equilibria when both player 1 and 2 defect.

This is the most stable outcome. In this outcome, players can’t get a better payoff by

changing their strategy when other players do not deviate from their strategy. Note that

the (0,0) payoff corresponding to the confess/confess outcome is the optimal payoff but it is

not to be confused with the nash equilibria. The defect/defect outcome represents the best

response of each individual.

12



Chapter 4: Theory and Problem Formulation

4.1 Why Fuzzy Games?

The work on fuzzy games presented in [24] is vital to our solution. For a thorough

understanding of the theory behind the application of fuzzy games and a proof for the

existence of an equilibrium, the reader is referred to [24]. GTFUZZ is a hybrid algorithm

that utilizes fuzzy sets and membership functions to formulate a variation-aware game with

fuzzy goals to optimize power constrained by delay without being overly pessimistic. The

fuzzy modeling of variability in gate delay is combined with fuzzy payoff functions for an

n-player, non-cooperative game.

The convenience of the fuzzy game optimization is its flexibility in making decisions

with little information about the distribution of varying parameters. Fuzzy sets provide an

accurate model of imprecision when only the mean and standard deviation are available.

Game theory models the resource allocation problem of gate sizing, and Nash equilibrium is

the vehicle for optimization. For a thorough primer on game theory in the context of gate

sizing, [21] may be referenced. For a general introduction to fuzzy sets and memberships in

the context of gate delay modeling, [26] may be referenced.

Previously published in [10]. Permission included in Appendix A.

13



4.2 Gate Delay and Power Model

Linear delay models with normally distributed random variables have been widely

used because of the presence of many efficient linear optimization techniques. However,

there are strong arguments to adopt a nonlinear delay model with fuzzy coefficients. In

ultra-deep submicron circuits, gate delay is a nonlinear function of gate length and threshold

voltage [11] which are two major sources of intra-chip variation. Although in some cases it

may be appropriate, assuming linearity of delay leads to loss of accuracy. A linear model [8]:

Di = a+ bScell + c
n∑
i=1

SiCin(i), i ∈ Fanoutcell (4.1)

where Di is the delay of gate i, C is the capacitive load of fanouts, S is the drive strength,

and {a, b, c} are the regression coefficients. Fanout loads are included in the summation. We

have attempted to use linear regression to fit the data using the 32nm Synopsys University

libraries. RMSE in this fitting was upwards of 20% with unrestricted gate sizes. To improve

upon this, piecewise linear regression was used as suggested by the original author, improv-

ing the RMSE to less than 10% :

Di(S,C) =



a0 + b0Scell + c0
n∑
i=1

SiCin(i) , S ≤ 1

a1 + b1Scell + c1
n∑
i=1

SiCin(i) , S ≤ 2

a2 + b2Scell + c2
n∑
i=1

SiCin(i) , S ≤ 4

a3 + b3Scell + c3
n∑
i=1

SiCin(i) , S ≤ 8

a4 + b4Scell + c4
n∑
i=1

SiCin(i) , S ≤ 16

a5 + b5Scell + c5
n∑
i=1

SiCin(i) , S > 16

(4.2)

14



However, 10% error in a circuit operating at 2Ghz in 28nm technology can result in

error of 20-30ps (depending on depth of the circuit). The average delay of a 1X sized in-

verter is around 30ps. To further improve the accuracy of the model, second-order piecewise

regression is used. With unrestricted gate sizes from the standard cell library, RMSE was

reduced to 1-2%. As in [26], b and c are treated as fuzzy coefficients using fuzzy membership

functions with triangular distribution min, average, max:

Di = a+ b̃Scell + c̃
n∑
i=1

SiCin(i), i ∈ Fanoutcell (4.3)

These fuzzy coefficients capture the random nature of the variation and may correlate with

varying gate length (Lgate) and gate oxide thickness (Tox) [28]. These coefficients will be

defuzzified using the alpha-cut procedure.

In this work, a fuzzy, second-order piecewise expansion of the linear model presented

in a seminal work on gate sizing [8] is used:

Di =



a0 + b̃0S + c̃0CL + d̃0C
2
L + ẽ0S × CL , S ≤ 1

a1 + b̃1S + c̃1CL + d̃1C
2
L + ẽ1S × CL , S ≤ 2

a2 + b̃2S + c̃2CL + d̃2C
2
L + ẽ2S × CL , S ≤ 4

a3 + b̃3S + c̃3CL + d̃3C
2
L + ẽ3S × CL , S ≤ 8

a4 + b̃4S + c̃4CL + d̃4C
2
L + ẽ4S × CL , S ≤ 16

a5 + b̃5S + c̃5CL + d̃5C
2
L + ẽ5S × CL , S > 16

(4.4)

where Di is the delay of gate i, S is the drive strength, CL is the capacitive load presented by

all fanout cells and interconnect, and {a, b̃, c̃, d̃, ẽ} are the regression coefficients (note that

15



{b̃, c̃, d̃, ẽ} are fuzzy coefficients). The two works compared with in the experimental section

[26, 28] both utilize this linear model. To be fair, it is also used in this work.

As in [26],{b̃, c̃, d̃, ẽ} are modeled as fuzzy coefficients using fuzzy membership func-

tions with triangular distribution {min, average, max}. These fuzzy coefficients capture the

random nature of the variation and may correlate with varying gate length (Lgate) and gate

oxide thickness (Tox) [28]. These coefficients will be defuzzified using the alpha-cut proce-

dure presented in section D. The coefficients are represented with the symmetrical triangular

distribution for simplicity. Any distribution, symmetric or asymmetric, may be used.

Dynamic power is the power spent doing computation:

Pdynamic = Psc + 1
2CLV

2
ddf0→1 (4.5)

4.3 Fuzzy Game Theory

For a fuzzy game, four standard assumptions must be made [24]. (1) Players are ratio-

nal. They want to do what is best for themselves. (2) There are no enforceable agreements

between players. The game is non-cooperative. The game should act as a decentralized

heuristic mechanism to size gates. (3) Each player knows all information of the game. (4)

The game is only played once. Reference table 4.1 for frequently used variables and symbols

in the fuzzy game problem formulation.

A normal form, non-cooperative, n-player Fuzzy game is given by GF . Each gate in a

circuit (including memory elements and buffers) is considered a player who will participate

in a fuzzy game GF . Each player i has a set of strategies Xi which he may choose to exercise

16



in any game. These strategies make up the player’s strategy set. Each player’s strategy

set consists of the possible gate sizes available for that element in the standard cell library.

For example, an inverter can choose to size himself 0.5X, 1X, 2X, 4X, 8X, 16X, or 32X.

The player’s size will affect not only his intrinsic power consumption and delay, but also

the power consumption and delay of interconnected elements in the circuit. The set of all

strategy profiles X for a game of n players consists of all possible combination of strategies

that players in a game may exercise. If a strategy profile in X is not feasible (i.e. does not

meet timing constraint), it will be discarded when computing the Nash equilibrium. The set

of all feasible strategy profiles in a game are referred to as Xfeasible. It should be noted

that the concept of feasibility is dynamic throughout the optimization as gates are resized.

For example, the strategy set {2x, 4x, 8x} signifies that player 1 sized itself 2x, player 2 sized

itself 4x and player 3 sized itself 8x. Each player will have two fuzzy goals (one for delay and

one for power) modeled by two separate fuzzy membership functions. To define the fuzzy

goals, we introduce two terms: the security and satisfaction measures. λ is defined as a

security measure. In game theory, this corresponds to the maximin strategy. The maximin

strategy yields the best outcome from all of the worst outcomes. It is the lowest value of

satisfaction that a player will accept - this is the pessimistic payoff. For the fuzzy delay

goal, this refers to the minimum delay of the maximum delays for each feasible strategy

profile (since delay is minimized, this is the fastest of the slowest delays). For the fuzzy

power goal, this refers to the lowest power consumption of the highest power consumptions

for each feasible strategy profile. β is defined as a satisfaction measure. It is the value that

will satisfy a player completely - this is the optimistic payoff. The security and satisfaction

measures are used to define fuzzy membership functions for power and delay (one pair of

17



membership functions for each gate). These fuzzy membership functions are the fuzzy goals

used in optimization. As noted in [24], the satisfaction measure is typically determined by

using the following common formula:

λi = max
ti∈Xi

min
(x(I−i))∈(X(I−i)×Yα(ỹ))

fi(x//ti, y) (4.6)

where λi is the security measure of player i, Xi is the set of strategies for player i, (I−i) is the

set of all remaining players in the game (besides player i), X(I−i) represents all combinations

of strategies of all other players in the game, fi is the objective function of player i, (x//ti) is

the notation for replacing the currently played strategy xi in Xi with ti for all ti ∈ Xi, Yα(ỹ)

is the alpha cut vector of fuzzy parameters. In other words, the player will maximize their

payoff regardless of the strategy played by any other player in the game. The satisfaction

measure is established with:

βi = max
ti∈Xi

max
(x(I−i))∈(X(I−i)×Yα(ỹ))

fi(x//ti, y) (4.7)

where βi is the security measure of player i, and the remaining notation is the same as in

(4.6). The security and satisfaction measures as computed in (4.6) and (4.7) are used to

define a pair of fuzzy goals with fuzzy membership functions for power and delay of player i.

These goals capture the uncertainty in the decision making process. Fuzzy goals are defined

with the security and satisfaction measures:

µfi(x, y) =



0 , fi(x, y) < λi

fi(x,y)−λi
(βi−λi) , λi ≤ fi(x, y) < βi

1 , fi(x, y) ≥ βi

(4.8)

18



The general flow is illustrated in figure 4.2. Note at this point there exists a crisp (de-

fuzzified) unknown alpha-cut parameters Yα(ỹ) and fuzzy goals represented by membership

functions µdelayi(x, y) and µpoweri(x, y).

In fuzzy decision theory, constraints are considered goals. Therefore, each player

has a fuzzy goal for timing and dynamic power consumption. The timing goal will require

knowledge of (a) the required arrival time of a stable signal at the gate’s inputs and (b) the

gate delay presented by the gate itself.

In order to constrain timing and optimize one or more other metrics, the intersection

of these fuzzy goals will be used. Zadeh [7] states that fuzzy decisions are the confluence

of goals and constraints, that is, since they are both fuzzy sets in the space of alternatives,

they can be treated identically in the formulation of a decision. Therefore, the intersection

(similar to logical “AND” function) of power membership function and delay membership

function is the fuzzy payoff for a player. There are several definitions for the fuzzy intersection

operation.

This work uses the definition provided by Zadeh [7]. Zadeh’s definition of the logical

intersection operator is the minimum of the two membership functions. Therefore, the fuzzy

payoff of each player i will be in the form:

Payoff = µdelayi(x, y) ∩ µpoweri(x, y)

= min(µdelayi(x, y), µpoweri(x, y))
(4.9)

where µ is the fuzzy membership function of a particular chosen strategy x and unknown

parameter vector y for either power or delay of gate i. The fuzzy timing goal has randomly

19



varying parameters which are modeled as fuzzy coefficients. These coefficients have been

suspected to correlate to varying gate length (Lgate) and gate oxide thickness (Tox) [28] using

manufactured chip data. Each player chooses a confidence level α in the varying parameters

of their fuzzy delay equation (see section 4.4). This confidence level expresses how sure

the players are about the real value of the varying parameter. In other words, the player’s

confidence determines the magnitude of the variation. The magnitude is based on the spatial

correlation of intra-device variation modeled in this work. The higher correlation between a

gate and its fanouts, the higher confidence a player has in the value of varying parameters.

This process is referred to as defuzzifying the unknown parameter with an α-cut. After

defuzzification of y, there exists a crisp vector of unknown parameters of each player in a

game which could take any value on an interval [a,b].

4.4 Spatial Correlation using Alpha-cuts

Intra-die variation causes identical devices on the same die to have varying character-

istics. Variability in the manufacturing process can be classified into two sets of procedures:

front-end and back-end [32]. Front-end procedures are related to device creation such as

implantation and oxidation. Back-end procedures are related to interconnecting the devices

such as etching or polishing. As previously mentioned, front-end variability has been shown

to account for 90% of timing yield and path delay variability in realistic designs [32]. Since

this work focuses on anticipating path delay variability, its focus is on modeling the vari-

ability of parameters affected by the front-end. These parameters such as gate length, gate

20



Figure 4.1: Example of modeling player confidence with an alpha-cut of .25

width, and threshold voltage, affect the performance of individual devices and present even

greater complications for the design as a whole.

There are two components to variation: systematic (deterministic) and random (non-

deterministic). Systematic variation can be described using mathematical models, and

presents less of a burden in terms of design cost. Random variations are not fully understood

enough to be treated in the same fashion [32]. In the past, worst-case (deterministic) mar-

gins were used to protect against these variations. This means that the design is adjusted

so that all chips will meet a particular metric in the worst-case. This is overly pessimistic,

and forces many chips in the lot to pay the price in performance. To improve upon this,

statistical modeling of stochastic parameters has been used for more conservative margining

while maintaining near-optimal performance.

21



Figure 4.2: General fuzzy game flow.

In this work, the multi-level grid model [5] is used to consider spatial correlation. The

die is separated into regions and levels using the recursive quadtree algorithm. The lower

levels of the grid model correspond to intra-die variation. The top level models systematic

variation which affects the entire die similarly. Devices which are closer in proximity are

modeled with lower magnitude in variation. This magnitude of variation is modeled in each

fuzzy game. Each player in the game has an alpha-cut on the randomly varying parameter

vector y. This alpha-cut represents the player’s (gate’s) confidence level in the value of the

varying parameter. Greater confidence in the value of the parameter y results in a lower

22



magnitude of variation and vice-versa. Each player in the game may have a different confi-

dence (alpha value). The overall confidence level for each unknown parameter in a game is

the value of alpha which respects the individual choice of each player:

α = max
i∈I

αi (4.10)

where i is a player in the set of players I in GF and αi is the confidence level of player

i. Typically, alpha values are computed with the help of experts. In GTFUZZ, a player’s

confidence level is determined by the grid model of spatial correlation. Gates which are

highly correlated with their fanouts are modeled with a reduced magnitude of variation.

For example, figure 4.1 illustrates an alpha-cut of 25%. This figure shows a triangular

membership function of a fuzzy number on the interval [0,1]. The peak in the middle of

the triangle represents the nominal value of the number. Any number which is equal to the

nominal value will have a membership of 1 in the fuzzy set. As the number gets larger or

smaller, its membership in the fuzzy set decreases. The minimum and maximum points in to

the left and right represent the worst-case values a fuzzy number may realize. Applying an

alpha-cut of 25% this fuzzy set indicates that the player is confident that the actual value of

the fuzzy number will have a membership in the fuzzy set greater than 0.25 on the interval

[0,1]. In our case, the randomly varying parameters are the regression coefficients from the

delay model.

23



Table 4.1: Notation in GTFUZZ problem formulation.

GF =< I,X,Xfeasible, ω, Yα(ỹ), f(x, y) >

I set of all players in GF

i a player in GF

X set of all strategy profiles for a game of n players
Xfeasible set of all feasible strategy profiles for a game of n players
Xi set of all feasible strategies for player i
ω universe of discourse
fi objective function for player i
xi strategy exercised by player i
y unknown parameter vector in ω
ỹ unknown fuzzy parameter in ω
α confidence level on [0,1]
Yα(ỹ) α-cut defuzzified parameter
µfi fuzzy membership function for player i
λi security measure for player i
βi satisfaction measure for player i

24



Chapter 5: Proposed Methodology

5.1 GTFUZZ Algorithm

First, the design is preprocessed. The circuit is modeled as a directed acyclic graph

(DAG) to assemble the games and implement static timing analysis (STA). Next, the spatial

correlation grid modeling algorithm is applied. The physical die area is recursively divided

into four equal parts (squares) until the total area of each square is less than 10% of the

total die area.

The maximum gate delay variation is dependent on empirical data from vendor pro-

cess. In the absence of data from a real manufacturing runs, the worst-case magnitude of gate

delay variation must be estimated. The International Technology Roadmap for Semiconduc-

tors (ITRS) 2012 report [2] for Logical / Circuit / Physical Design Technology Requirements

projected that in 2014, variation from all parameters on signoff delay will be approximately

15%. This is illustrated in table 5.1. This percentage of sign-off delay variation is used as a

worst-case reference point when injecting variation into the coefficients of the delay model.

The magnitude of variation depends on the cells spatial correlation to its fanout gates.

If the cells fanout gates are in the same quadrant, they will be highly correlated. This means

that the devices will generally vary similarly and they will have less of an effect on gate

delay. The correlation of the gates is modeled as player confidence using the alpha-cut. The

Previously published in [10]. Permission included in Appendix A.

25



Table 5.1: ITRS projections.

closer the gate’s fanouts are located, the more confident the gate is in the actual value of

the varying parameters. After each player’s confidence is computed, the varying coefficients

in the delay model can be defuzzified.

After the circuit is modeled as a DAG it is topologically sorted to construct a timing

graph for STA operations such as propagating arrival times (AT) and required arrival times

(RAT). All valid timing arcs must be extracted from the synthesis tool to build the timing

graph. Node-based optimization will be used as to constrain timing rather than path-based.

The number of paths is exponential. Pruning algorithms are required to enumerate the

paths and may still fail to capture all critical paths. STA is widely used in industry for

timing verification. This work uses STA because of its simplicity, efficiency, and dependable

accuracy.

26



The next step is to decide the semantics of the game. The biggest challenge in gate

sizing with game-theory is the computational complexity. For an explanation of the compu-

tational complexity of populating the payoff matrices and computing the Nash equilibrium,

the reader is referred to [21] . First, the number of players in the game must be limited to no

more than 5. The strategy sets for each player must be finite. In this case, the standard cell

library provides anywhere from 2-10 possible sizes for varying cells which is computationally

feasible. The limitation of the size of games is a well-known problem in game theory. If

player’s with similar attributes and goals can be grouped together as a single player, an

optimal solution can be found more efficiently. For example, [15] presents a method for

learning in many-player games where players share a similar strategic view. In the GTFUZZ

algorithm, games with 3 player’s are formed.

The next decision to make is which three players will compete for resources. There

are many options. It should also be noted that once a gate has been sized, it will not be

touched again. In a path-based approach, players can be sorted by timing criticality of the

path. The critical path list can be iterated one path at a time. The problem is that many

circuits can be 10-20 levels deep, much greater than the feasible size of a game if all possible

strategies (gate sizes) are to be considered. In this case, there will be several games played

for each path. Players can be chosen sequentially in order from upstream to downstream

or vice-versa. Another problem with this approach is that after a critical path is sized, it

is not to be resized. The gates which were sized on this path may also be in another less

critical path. The sorted critical paths must be further pruned to find three relevant gates

for a game. Relevant in this sense means that changing the gate size of any gate in the

27



game should affect the other player’s delay and power consumption directly. If the gates are

not competing for resources, then the model is essentially useless. This procedure of player

selection further complicates the path-based approach and was a motivating factor to use a

node-based approach.

Since power is the metric being optimized, the gates are first sorted based on power

consumption. The most power-hungry player is selected as the first in the game. The gates

which are most relevant (meaning they affect the player’s delay and power consumption most

directly) to a player are their fanins and fanouts. The most power-hungry fan-in and fanout

of the player are selected to compete for sizing in a one-shot fuzzy game. This method of

selection is quick and efficient and aims at attacking the most power-hungry portions of the

circuit while using STA operations to ensure timing constraints are met.

Algorithm 2 and 3 summarize the procedure to iteratively setup and solve fuzzy

games1. After the 3 players are selected for the game, three payoff matrices are built.

One matrix contains the player’s power consumption for each strategy profile. One matrix

contains the player’s propagation delay for each strategy profile delay. Using these two

matrices, the security measure (eqno. 4.6) and satisfaction measure (eqno. 4.7) are computed

for power and delay.

Finally, an overall payoff matrix is created to store the confluence of the fuzzy power

and delay goals (the result of eqno. 4.9). Every strategy profile X must be explored in order

to find the most optimal outcome in a game. Any strategy profile in which any player has

an infeasible strategy is not a valid profile. For example, in chain of three inverters, sizing

1. See appendix B for pseudocode.

28



the inverters 1x, 1x, and 32x respectively is in practice typically not a feasible strategy. The

1x inverters will not be able to drive the 32x inverter under a reasonable timing constraint.

This means that the strategy profile {1x, 1x, 32x} is invalid and will not be considered when

calculating the Nash equilibrium solution of the game. Note this does not imply that player

3 is restricted from exercising the 32x strategy in other profiles, only that it is infeasible in

the current profile.

When considering a strategy profile, the timing graph must be updated. Sizing a

gate affects the input capacitance it presents to other gates. Therefore, all input capacitance

values in the graph must be updated. Since the delay model is a function of size and

capacitance, timing is also affected and must be updated. Arrival times and required arrival

times are propagated through the cells affected by the strategy profile, otherwise known as

incremental STA update. If the new arrival time of a signal at an input of a gate does not

arrive within the required arrival time window [min RAT, max RAT], that strategy profile is

considered infeasible and will be discarded. If all of the strategies in the profile are feasible,

the gate delay and power consumption presented by the player are fuzzified with (4.8) and

stored in their respected payoff matrices. Finally, the overall fuzzy payoff can be determined

using (4.9).

After the payoff matrices are populated for all feasible strategy profiles, a Nash equi-

librium can be computed. All payoffs are floating point numbers and normalized on an

interval from [0,1]. A game-theory solver, Gambit [30], is used to compute the Nash equilib-

rium of the 3-player game. In many cases, there may be more than one equilibrium. In this

case, all of the solutions are sorted and the strategy profile with the lowest power consump-

29



tion is chosen. The solution to the fuzzy game is a robust setting of the player’s sizes who

are participating in the game. The gate sizes are permanently set according to this solution

and marked as sized. The remaining gates sorted by power consumption will be iterated in

the same fashion until all gates are marked as sized. Refer to the appendix for algorithm

pseudocode2 .

2. See appendix B for pseudocode.

30



Chapter 6: Simulation

6.1 Experimental Setup

The GTFUZZ algorithm is implemented using the Synopsys University 32/28nm [1]

standard cell libraries and technology files. Although this library is not suitable for manu-

facturing, its attributes are taken from scalable MOSIS design rules, actual data from silicon

chips, the open-source Predictive Technology Model (PTM) from Arizona State Univer-

sity (ASU), and models of parasitics from the Nanoscale Integration and Modeling Group

(NIMO) group at ASU. The 1.05V low-power library is used. The algorithm was tested using

ITC’99 benchmark circuits [3] . The benchmarks are illustrated in table 6.1. A standard

Synopsys tool flow is adopted as shown in figure 6.1.

First, all of the gates in the standard cell library are characterized for power and

timing. Of the more than 200 cells in the library, the basic gates necessary in logic design

are characterized (simulations for characterization are time consuming). The selected cells

are NAND, NOR, XNOR, XOR, 2:1 MUX, 4:1 MUX, inverters, buffers (non-inverting and

inverting), and D flip-flops with various types of set and reset attributes. Although the gates

are restricted, all available sizes are used in the optimization process and therefore all sizes of

each selected gate are characterized. HSPICE is used to characterize each gate, sweeping a

wide range of realistic capacitive loads. The results are written in CSV format and exported

Previously published in [10]. Permission included in Appendix A.

31



Figure 6.1: GTFUZZ Algorithm: simulation flow.

to Matlab. The curve fitting tool (cftool) is used for the piecewise second-order regression.

All of the coefficients are found and written to a file in CSV format to be utilized by the

GTFUZZ script. The RMSE of the fits for the delay model ranges from 1-2%. The accuracy

of the power and delay models are extensively verified against power and delay analysis

figures in Synopsys Primetime.

ITC ’99 benchmarks in VHDL format are synthesized in Synopsys Design Compiler.

The clock cycle of each benchmark must be determined. The benchmarks are initially opti-

mized for high performance. After finding the frequency of the benchmark, it is synthesized

32



with its constrained clock rate from an external clock source, cells from the library driving

all primary inputs, and realistic capacitive loads and fanouts on all primary outputs.

The synthesis is linked with the Synopsys University standard cell library in .db

format. The library contains information about timing and power for all gates in the standard

cell library using compact Composite Current Source (CCS) models. These models are very

accurate and provide analysis within a few percent of HSPICE simulation. The reset and

clock networks are set as "don’t touch" as it is better to optimize these after clock tree

synthesis and signal buffering in the place and route stage. The design is ungrouped from any

hierarchies, completely flattened, and compiled. There are two outputs from the compilation:

a structural Verilog netlist which maps the non-technology based synthesis output standard

cell library and an .sdc file which contains the constraints used during compilation.

Next, the design is placed, routed, and optimized using Synopsys IC Compiler (ICC).

This phase is linked with the library’s technology file (.tf) which contains physical design

rules and information about metal layers and the TLU+ (Table Look Up) max/min/map files

which contain capacitance and resistance data used for parasitic extraction. The structural

Verilog netlist and .sdc constraint file from Design Compiler are imported and read into ICC.

A floorplan is initialized and rectangular VDD and GND rings are synthesized. The standard

cells are then placed and prerouted before clock tree synthesis. The design is optimized and

rerouted iteratively until all design rules and constraints are satisfied. There are several

outputs from this stage. The placed and routed netlist is written in Verilog format. The

parasitics are extracted in Standard Parasitic Exchange Format (SPEF) for timing and power

analysis in the next stage of the flow. Finally, the Design Exchange Format (DEF) file is

33



Table 6.1: ITC’99 benchmark descriptions.

written. This file contains all of the physical information of the chip including die size,

placement, and orientation of cells. Now, the chip is fully placed and routed and ready for

initial power and timing analysis.

The placed and routed Verilog netlist, .sdc constraint file, and SPEF (min and max)

files are loaded into Synopsys Primetime for initial timing and power analysis. An SAIF

(Switching Activity Interchange Format) file must be loaded into Primetime in order to

enable power analysis. In order to have a more realistic estimate of power without having any

34



knowledge of the internals of the benchmarks, Synopsys Verilog Compiler Simulator (VCS)

is used to simulate 100,000 random vectors. The switching activity of each cell is monitored

during simulation and dumped into a SAIF file. From Primetime, many attributes of the

design such as net names, capacitances, toggle rates (toggle count / duration of sampling),

and library cell pin capacitances are written to file for use in the GTFUZZ script.

At this point, the GTFUZZ sizing script has all of the data necessary to execute.

A GTFUZZ bash script glues together all of the TCL scripts used for the Synopsys tool

flow, the GTFUZZ sizing script, the HSPICE Monte Carlo script, and other auxiliary scripts

used for file I/O. The GTFUZZ sizing script is written in Python. Although Python is

significantly slower as compared to lower-level languages such as C or C++, there are a

couple major advantages. Rapid prototyping and availability of simple and powerful libraries

greatly increased the pace of this work and allowed the authors to focus on implementing

the algorithm.

The NetworkX [20] network algorithm library was used to model the circuit as a graph,

to topologically sort it, complete operations necessary for STA, and store all attributes of

the benchmark circuit. Gambit Software Tools [30] offers an open-source Python API to the

Gambit library to setup and solve games. Using Python certainly increased the execution

time of the algorithm in the experiments, but greatly decreased the development time. The

authors believe that this is a worthy trade off and that the purpose of this work, to show

the promise in the application of fuzzy games in gate sizing, has still been achieved.

35



After initial synthesis, placement and routing, the GTFUZZ sizing script models the

circuit with a DAG. For very large circuits, loading the circuit attributes and executing the

recursive quadtree algorithm can be time consuming. For this reason, the timing graph and

spatial correlation grid model are serialized and cached in binary files (pickled) for rapid

loading during development and re-running of the GTFUZZ sizing script. The output of

the GTFUZZ sizing script is a TCL script which issues size_cell commands to Primetime,

setting each gate in the circuit to its optimal size. Through Primetime, an ECO (Engineering

Change Order) TCL script is generated with the sizes of gates which must be changed. This

ECO script is then sourced in IC Compiler. In most cases, the gates are exchanged in place

and do not require a fresh place and route. The final placed and routed Verilog netlist is

then generated, and the design is extensively tested for robustness.

Algorithm 4 summarizes the validation procedure. There are two stages of validation

of the results. First, timing and design rules must be verified in Primetime. The magni-

tude of gate delay variation computed in the GTFUZZ sizing script must be imported into

Primetime. This is achieved by individually derating each gate according to its previously

calculated correlation. After timing is verified in Primetime, one more step is taken to verify

timing yield. Using the write_spice_deck [39] command in Primetime, the most critical

paths are extracted in a netlist with detailed parasitics. The most critical paths are simu-

lated in HSPICE to verify the timing analysis in Primetime. Monte Carlo simulation of a lot

of 10,000 chips was completed with normally distributed parameters. The parameters (Lgate,

Vt, and Tox) are varied corresponding to the projected 2014 ITRS report total effect on gate

36



delay due to variation of 15%. Measure statements are used to check for slew violations and

propagation delay of the most critical paths in the design.

In the case where timing is not met after executing the GTFUZZ sizing algorithm,

there are a couple knobs in the script that may be tuned (see algorithm 2). The security and

satisfaction measures for power and delay used to define a player’s fuzzy goals can be tuned

for more aggressive or relaxed optimization. If a design does not meet timing constraints,

the satisfaction measure of the power fuzzy goal are relaxed and/or the security measure

of the delay fuzzy goal is increased. A player will be more satisfied with less of a power

reduction (and vice-versa) and demand a higher minimum level of satisfaction of delay.

When the security measure increases, a player demands that his gate delay must decrease

in order to be minimally satisfied. After observing the timing violation in the validation

phase, optimization parameters may be relaxed. The measures are increased or decreased

proportionally to the timing violation (w.r.t. clock rate) as a starting point. Alternatively,

after observing excessive slack in the validation phase, these measures may be tweaked for

more aggressive optimization.

37



Chapter 7: Experimental Results

The simulation results are compared to two alternative methods: FLP (Fuzzy Linear

Programming) [26] and DWCFLP (Deterministic Worst-Case Fuzzy Linear Programming).

To the authors’ best knowledge, there are no robust game-theoretic gate sizing works which

consider the effects of parameter variation on gate delay. Therefore, the authors believe

the best comparison is against the fuzzy linear programming algorithm.The FLP gate sizing

algorithm [26] has been compared against stochastic linear programming and shown an

average of about 10% improvement in power savings.

A fuzzy linear program is setup with linear constraints and objective function. The

constraints have varying fuzzy coefficients with triangular distributions. The fuzzy linear

program must be defuzzified into a crisp, nonlinear program. The fuzzy objective function

is defuzzified into two objective functions: one realizing the worst-case values of the fuzzy

coefficients and one realizing the nominal case value of the coefficients. A crisp, nonlinear

program is formed using the symmetric relaxation method [7]. Symmetric relaxation finds a

balance between the worst-case and nominal case sizing, resulting in a robust design. All of

the information required to solve and constrain the FLP is extracted from the circuit model

and the programs are solved.

Previously published in [10]. Permission included in Appendix A.

38



Table 7.1: Experimental results on synthesized ITC ’99 benchmarks.

In the DWCFLP algorithm, FLP is used where the coefficients in the delay model

are set to worst-case values. This pessimistic design anticipates worst-case variation and

ensures that all chips in a lot will satisfy timing specification resulting in 100% yield. In this

approach, correlation is neglected and a global derate (early and late) of 15% is distributed

across all cells in Primetime for timing verification.

The simulation results show a clear improvement in power reduction as compared to

DWC fuzzy games and fuzzy linear programming with fuzzy coefficients. The power reduc-

tion is computed using the standard formula:

Poweralgorithm_2 − PowerGTFUZZ
Poweralgorithm_2

∗ 100 (7.1)

The GTFUZZ algorithm saved 20% of power compared to DWCFLP. This result is expected

as the DWC approach is not robust. The GTFUZZ algorithm saved approximately 9% of

power compared to the FLP approach. The weakness of the FLP algorithm is that the pro-

39



Figure 7.1: The GTFUZZ runtime scales linearly with circuit complexity.

gram is solved with the initial required arrival times from STA. These required arrival times

are not updated throughout the optimization as in the GTFUZZ algorithm. Therefore, pre-

cision during optimization is lost. The solutions to the fuzzy linear program are continuous

gate sizes for each cell in the design. This introduces rounding error when the solutions must

be mapped to discrete gate sizes from the standard cell library.

The runtime of the GTFUZZ algorithm is not impressive. There are two main rea-

sons for this. The GTFUZZ script is written in Python, an interpreted language. Libraries

included in the script, such as NetworkX, add convenience at the cost of unnecessary over-

head. Profiling with the cProfile Python module showed that calling nash equilibrium pure

strategy game solver executable (enumpure) in the Gambit Python API can peak upwards

of 180ms to solve the most complex 3-player games.

To improve the runtime, GTFUZZ could be implemented in a language with less

overhead and more low-level memory control such as C/C++. Also, a lightweight, special

purpose solver for these games could easily be implemented to replace the Gambit extension.

In any case, the authors believe that the trade off for rapid prototyping and development is

40



well worth the hit in execution time, as the algorithm has shown promise in precise modeling

and powerful optimization. Despite this weakness, the runtime has been shown to be linear

in figure 7.1.

It should also be noted that a path-based approach was attempted first. The process

of extracting the n-worst 2 million true (false paths are pruned) paths from Primetime can

take upwards of 10 minutes. After valid path extraction, searching paths sorted by criticality

looking for gates to size is very time consuming. It was observed that as the algorithm

searches deeper into less critical paths after many gates have already been marked as sized,

execution time greatly increases. Hundreds or thousands of paths are iterated before finding

a suitable combination of players for a game. The authors have deemed this trade off for

execution time vs. precision unacceptable. This led to the node-based optimization using

STA.

41



Chapter 8: Conclusion

A novel, robust algorithm for discrete gate sizing (GTFUZZ) has been presented in

this work. Power savings from 10-20% have been shown as compared to two competing algo-

rithms. Simulations were done on circuits ranging from 25-75k gates on ITC ’99 benchmarks

with no compromise in delay of the circuit. The smallest possible open source technology

library was used.

There are several interesting directions in which this work can proceed. The algorithm

can be applied to different objectives such as buffer insertion and wire-sizing. The algorithm

can also be applied at a lower level of abstraction such as multi Vth or VDD assignment.

The symmetric definition of fuzzy goals and constraints as provided by Zadeh provides a

framework for multimetric optimization. Using a fuzzy definition of logical intersection,

many fuzzy goals can easily be merged.

The fuzzy games also present a novel method to model spatial correlation using the

concept of the the alpha-cut and player confidence. One of the weaknesses of the game

theoretic approach is the complexity of many-player games. The simulations hit a brick-wall

in execution time as the number of players was increased to 5. This can be improved upon

by using a clustering algorithm to group players together which have a similar outlook in

Previously published in [10]. Permission included in Appendix A.

42



the game. In doing so, the quality of the solution will improve because each individual game

can model a greater portion of the circuit.

The scripts were all written in Python. This hurts the runtime of the algorithm.

Typically, these types of algorithms which are to be scaled into the millions are written in

C/C++. This work favored Python for the advantages in rapid prototyping. This includes

the convenience of using the Gambit Game Theory Solver Python API. The cost to pay

for the convenience of using a game solver was high. Larger games, the games with more

strategies such as inverters or buffers (they can be sized 0.5x, 1x, 2x, 4x, 8x, 16x, 32x), can

take up to 200 milliseconds just to compute the nash equilibria. In the future, it is advised

that a custom solver should be written.

One of the most crippling disadvantages of game theoretic modeling is scalability.

Unbounded games of n-players are not feasible. Limiting players to single digits with rea-

sonably sized discrete strategy sets allows a linear runtime to be realized. A future improve-

ment would be to cluster the gates. Gates with similar goals or perspectives in the game can

be grouped together. By grouping the players, we can scale the size of the games without

sacrificing execution time. However, this will affect the quality (accuracy) of the solution.

The framework for fuzzy games presented in this work is intended to illustrate the potential

of fuzzy and game theoretic modeling in VLSI design automation.

43



References

[1] 32/28nm synopsys university generic library. Date Accessed: April 12, 2015.
<https://www.synopsys.com/COMMUNITY/UNIVERSITYPROGRAM/Pages/32-
28nm-generic-library.aspx>.

[2] ITRS Roadmap - Table DESN4. Technical report, ITRS.

[3] ITC’99 Benchmarks (2nd release). CAD Group at Politecnico di Torino, 2004.
http://www.cad.polito.it/downloads/tools/itc99.html.

[4] A. Agarwal, K. Chopra, and D. Blaauw. Statistical timing based optimization using gate
sizing. In Design, Automation and Test in Europe, 2005. Proceedings, pages 400–405
Vol. 1, March 2005.

[5] A. Agarwal et al. Statistical delay computation considering spatial correlations. In
Design Automation Conference, 2003. Proceedings of the ASP-DAC 2003. Asia and
South Pacific, pages 271–276, Jan 2003.

[6] Xiaoliang Bai, C. Visweswariah, P.N. Strenski, and D.J. Hathaway. Uncertainty-aware
circuit optimization. In Design Automation Conference, 2002. Proceedings. 39th, pages
58–63, 2002.

[7] R.E. Bellman and L.A. Zadeh. Decision Making in a Fuzzy Environment. Management
Science, 17:141–164, 1970.

[8] M. R C M Berkelaar and J. A G Jess. Gate sizing in mos digital circuits with linear
programming. In Design Automation Conference, 1990., EDAC. Proceedings of the
European, pages 217–221, Mar 1990.

[9] Koustav Bhattacharya and Nagarajan Ranganathan. A linear programming formulation
for security-aware gate sizing. In Proceedings of the 18th ACM Great Lakes symposium
on VLSI, pages 273–278. ACM, 2008.

[10] T. Casagrande and N. Ranganathan. Gtfuzz: A novel algorithm for robust dynamic
power optimization via gate sizing with fuzzy games. In Design, Automation Test in
Europe Conference Exhibition (DATE), 2015, pages 677–682, March 2015.

[11] Lerong Cheng, Jinjun Xiong, and Lei He. Non-linear statistical static timing analysis
for non-gaussian variation sources. In Design Automation Conference, 2007. DAC ’07.
44th ACM/IEEE, pages 250–255, June 2007.

44



[12] Seung Hoon Choi, Bipul C Paul, and Kaushik Roy. Novel sizing algorithm for yield
improvement under process variation in nanometer technology. In Proceedings of the
41st annual Design Automation Conference, pages 454–459. ACM, 2004.

[13] O. Coudert. Gate sizing for constrained delay/power/area optimization. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, 5(4):465–472, December 1997.

[14] Azadeh Davoodi and Ankur Srivastava. Variability driven gate sizing for binning yield
optimization. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
16(6):683–692, 2008.

[15] S. G. Ficici, D. C. Parkes, and A. Pfeffer. Learning and solving many-player games
through a cluster-based representation. In Twenty-Fourth Conference on Uncertainty
in Artificial Intelligence, pages 187–195, 2008.

[16] John P Fishburn and Alfred E Dunlop. Tilos: A posynomial programming approach to
transistor sizing. In The Best of ICCAD, pages 295–302. Springer, 2003.

[17] U. Gupta and N. Ranganathan. An expected-utility based approach to variation
aware VLSI optimization under scarce information. Low Power Electronics and De-
sign (ISLPED), 2008 ACM/IEEE International Symposium on, pages 81–86, 2008.

[18] U. Gupta and N. Ranganathan. A utilitarian approach to variation aware delay, power,
and crosstalk noise optimization. Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, 19(9):1723–1726, Sept 2011.

[19] Matthew R Guthaus, N Venkateswarant, C Visweswariaht, and Vladimir Zolotov. Gate
sizing using incremental parameterized statistical timing analysis. In Proceedings of the
2005 IEEE/ACM International conference on Computer-aided design, pages 1029–1036.
IEEE Computer Society, 2005.

[20] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure,
dynamics, and function using NetworkX. In Proceedings of the 7th Python in Science
Conference (SciPy2008), pages 11–15, Pasadena, CA USA, August 2008.

[21] Narender Hanchate and Nagarajan Ranganathan. Post-layout gate sizing for intercon-
nect delay and crosstalk noise optimization. In Proceedings of the 7th International
Symposium on Quality Electronic Design, pages 92–97. IEEE Computer Society, 2006.

[22] Jin Hu, A.B. Kahng, SeokHyeong Kang, Myung-Chul Kim, and I.L. Markov. Sensitivity-
guided metaheuristics for accurate discrete gate sizing. In Computer-Aided Design (IC-
CAD), 2012 IEEE/ACM International Conference on, pages 233–239, Nov 2012.

[23] E. T a F Jacobs and M. R C M Berkelaar. Gate sizing using a statistical delay model.
Proceedings -Design, Automation and Test in Europe, DATE, pages 283–290, 2000.

[24] F. Kacher and M. Larbani. Existence of equilibrium solution for a non-cooperative game
with fuzzy goals and parameters. Fuzzy sets and systems, 159:165–176, 2008.

45



[25] V. Mahalingam and N. Ranganathan. A fuzzy approach for variation aware buffer
insertion and driver sizing. In Symposium on VLSI, 2008. ISVLSI ’08. IEEE Computer
Society Annual, pages 329–334, April 2008.

[26] V. Mahalingam, N. Ranganathan, and J.E. Harlow. A Fuzzy Optimization Approach
for Variation Aware Power Minimization. Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, 2008.

[27] M. Mani, A. Devgan, and M. Orshansky. An Efficient Algorithm for Statistical Mini-
mization of Total Power under Timing Yield Constraints. In Design Automation Con-
ference, 2003. Proceedings, pages 309–314, June 2005.

[28] M. Mani and M. Orshansky. A new statistical optimization algorithm for gate sizing. In
Computer Design: VLSI in Computers and Processors, 2004. ICCD 2004. Proceedings.
IEEE International Conference on, pages 272–277, Oct 2004.

[29] G. Mauris, V. Lasserre, and L. Foulloy. Fuzzy modeling of measurement data acquired
from physical sensors. IEEE Trans. on Instr. and Meas, 49:1201–1205, 2000.

[30] Richard McKelvey, Andrew McLennan, and Theodore Turocy. Gambit: Software Tools
for Game Theory, 2014. Version 13.1.2.

[31] A. Murugavel and N. Ranganathan. Gate sizing and buffer insertion using economic
models for power optimization. In 17th International Conference on VLSI Design.,
pages 195–200, 2004.

[32] S. Nassif, M. Orshansky, and D. Boning. Design for Manufacturability. Springer, 2008.

[33] S.R. Nassif. The light at the end of the cmos tunnel. In Application-specific Systems
Architectures and Processors (ASAP), 2010 21st IEEE International Conference on,
pages 4–9, July 2010.

[34] J. Singh, V. Nookala, Zhi-Quan Luo, and S. Sapatnekar. Robust gate sizing by geometric
programming. In Design Automation Conference, 2005. Proceedings. 42nd, pages 315–
320, June 2005.

[35] Debjit Sinha, Narendra V Shenoy, and Hai Zhou. Statistical gate sizing for timing
yield optimization. In Computer-Aided Design, 2005. ICCAD-2005. IEEE/ACM Inter-
national Conference on, pages 1037–1041. IEEE, 2005.

[36] A. Srivastava, D Sylvester, and D. Blaauw. Power minimization using simultaneous gate
sizing, dual-vdd and dual-vth assignment. In Design Automation Conference, 2004.
Proceedings. 41st, pages 783–787, July 2004.

[37] A. Srivastava, D. Sylvester, and D. Blauuw. Statistical optimization of leakage power
considering process variations using dual-vth and sizing. In Proceedings of the 41st
annual Design Automation Conference, pages 773–778. ACM, 2004.

46



[38] Hiran Tennakoon and Carl Sechen. Gate sizing using lagrangian relaxation combined
with a fast gradient-based pre-processing step. In Proceedings of the 2002 IEEE/ACM
international conference on Computer-aided design, pages 395–402. ACM, 2002.

[39] T. Thiel. Have i really met timing? - validating primetime timing reports with spice. In
Design, Automation and Test in Europe Conference and Exhibition, 2004. Proceedings,
volume 3, pages 114–119 Vol.3, Feb 2004.

[40] C. Visweswariah. Death, taxes and failing chips. In Design Automation Conference,
2003. Proceedings, pages 343–347, June 2003.

[41] Liqiong Wei, Kaushik Roy, and Cheng-Kok Koh. Power minimization by simultaneous
dual-v th assignment and gate-sizing. In Custom Integrated Circuits Conference, 2000.
CICC. Proceedings of the IEEE 2000, pages 413–416. IEEE, 2000.

[42] H.J. Zimmerman. Fuzzy Set Theory and Its Applications. Kluwer Academic Publishing,
1992.

47



Appendices

48



Appendix A: Copyright Permissions

The permission below is from a publication in the Proceedings of Design, Automation,

and Test in Europe (DATE) conference in 2015, by Anthony J. Casagrande and N. Ran-

ganathan, pages 677 - 682. It is to appear in IEEE Xplore Digital Library as doi: 10.7873.

The majority of the content in chapters 1 and 4-8, figures 8.1 - 8.4, tables 4.1 and 7.1, and

the abstract have been used in this document.

49



Appendix B: Algorithm Pseudocode

1: procedure fg_solve . solve 3-player game GF

2: {solutions} ← compute nash equilibrium
3: . the solution is a set of profiles
4: minimum power ←∞
5: for each nash equilibrium profile s in solutions do
6: if power(s) ≤ min then
7: minimum power ← power(s)
8: best solution← s
9: return bestsolution

Figure B.1: Subroutine to solve the fuzzy games.

1: procedure validate . analyze power and timing
2: generate new netlist . Primetime
3: place and route with new sizes . IC Compiler
4: verify design constraints and timing . Primetime
5: write spice deck . propagation delay and slew
6: Monte-carlo simulation with 10k chips . HSPICE
7: if constraints met then
8: return . Success!
9: else

10: Adjust λ and β . See eqnos. 4.6, 4.7
11: fg_setup . run GTFUZZ sizing script again

Figure B.2: Validate the solution of fuzzy games.

50



1: procedure preprocessing
2: . input: (1) Behavioral VHDL benchmark circuit C from ITC ’99 suite, (2) Synopsys

University 32/38nm standard cell library and technology files T28nm and (3) characterized
delay regression coefficients for all gates in T28nm

3: . output: (1) parasitics and physical information for each gate i in C, (2) com-
piled, placed, and routed structural netlist CPAR, and (3) Node-based (timing graph)
representation TG of CPAR

4:
5: Cstructural ←compile(C, T28nm)
6: CPAR ←place and route(Cstructural, T28nm)
7: TG←model as graph(CPAR, T28nm)
8: for each gate i in TG do
9: i←load delay model(CPAR)

10: i←read DEF(CPAR) . get physical info
11: i←model spatial correlation(CPAR) . grid
12: i←compute player confidence . alpha-cut
13: mark i as unsized
14: if TG not cached then . for performance
15: cache(TG)
16: player list←sort(TG) . by power consumption
17: fg_setup(TG, player list) . See algorithm 2

Figure B.3: Initial preprocessing of circuit.

51



1: procedure fg_setup . setup 3-player game GF

2: . input: (1) player list P sorted by descending power consumption and (2) timing
graph of circuit TG

3: . output: (1) populated payoff matrix with membership values on interval [0,1]
4:
5: while all gates in TG not sized do
6: GF ←most power-hungry !sized player from P
7: GF ←most power-hungry !sized sink node
8: GF ←most power-hungry !sized source node
9: get strategies of each player in GF

10: for each strategy profile X in GF do
11: for each player i in GF do
12: compute propagation delay of i
13: . fuzzy coefficients and α-cut
14: compute power of i
15: propagate AT and RAT in TG
16: . incremental STA updates
17: if X is feasible then
18: Xfeasible ← X
19: else discard X and break
20: λ←calculate security measure . See eqno. 4.6
21: β ←calculate satisfaction measure . See eqno. 4.7
22: populate fuzzy payoff matrix
23: . Merge fuzzy power/delay goals: see eqno. 4.9
24: solution← fg_solve . See algorithm 3
25: mark gates in GF as sized
26: Cgtfuzzed ←finalized gate sizes
27: validate (solution) . See algorithm 4
28: return CGTFUZZED

Figure B.4: Setting up and solving the fuzzy games.

52



About the Author

Tony Casagrande received the BS in Computer Science from the University of South

Florida (USF), Tampa, in December, 2013. He loves music, food, computers, and most

importantly, his wife. His research interests include robust design automation algorithms,

architecture, and hardware security. Mr. Casagrande is a student member of the IEEE and

IEEE Computer Society at USF.


	Robust, Low Power, Discrete Gate Sizing
	Scholar Commons Citation

	tmp.1442348284.pdf.cRUf6

