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ABSTRACT 

This work is motivated by the need of providing patients with a decision support system 

that facilitates the selection of the most appropriate treatment strategy in cancer treatment. 

Treatment options are currently subject to predetermined clinical pathways and medical 

expertise, but generally, do not consider the individual patient characteristics or preferences. 

Although genomic patient data are available, this information is rarely used in the clinical setting 

for real-life patient care. In the area of personalized medicine, the advancement in the 

fundamental understanding of cancer biology and clinical oncology can promote the prevention, 

detection, and treatment of cancer diseases.  

The objectives of this research are twofold. 1) To develop a patient-centered decision 

support model that can determine the most appropriate cancer treatment strategy based on 

subjective medical decision criteria, and patient’s characteristics concerning the treatment 

options available and desired clinical outcomes; and 2) to develop a methodology to organize 

and analyze gene expression data and validate its accuracy as a predictive model for patient’s 

response to radiation therapy (tumor radiosensitivity).  

The complexity and dimensionality of the data generated from gene expression 

microarrays requires advanced computational approaches. The microarray gene expression data 

processing and prediction model is built in four steps: response variable transformation to 

emphasize the lower and upper extremes (related to Radiosensitive and Radioresistant cell 

lines); dimensionality reduction to select candidate gene expression probesets; model 

development using a Random Forest algorithm; and validation of the model in two clinical 

cohorts for colorectal and esophagus cancer patients. 
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Subjective human decision-making plays a significant role in defining the treatment 

strategy. Thus, the decision model developed in this research uses language and mechanisms 

suitable for human interpretation and understanding through fuzzy sets and degree of 

membership. This treatment selection strategy is modeled using a fuzzy logic framework to 

account for the subjectivity associated to the medical strategy and the patient’s characteristics 

and preferences. The decision model considers criteria associated to survival rate, adverse 

events and efficacy (measured by radiosensitivity) for treatment recommendation. Finally, a 

sensitive analysis evaluates the impact of introducing radiosensitivity in the decision-making 

process. 

The intellectual merit of this research stems from the fact that it advances the science of 

decision-making by integrating concepts from the fields of artificial intelligence, medicine, 

biology and biostatistics to develop a decision aid approach that considers conflictive objectives 

and has a high practical value.  The model focuses on criteria relevant to cancer treatment 

selection but it can be modified and extended to other scenarios beyond the healthcare 

environment. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Rectal cancer is a disease in which malignant cells form in the tissues of the rectum [1]. 

The rectum is part of the colon and is located in the gastrointestinal track; thus, its position in 

the pelvis poses additional challenges in treatment when compared with colon cancer (see 

Figure 1) [2]. 

 

Figure 1 Diagram of colon and rectum. National Cancer Institute ©2013 Terese 
Winslow 

Colorectal cancer is the third most common cancer diagnosed in both men and women 

in the United States. According to the American Cancer Society, 96,830 new cases of colon 

cancer and 40,000 new cases of rectal cancer were reported in 2014 [2]. However, rates have 

been declining by 3% per year in men and by 2.3% per year in women since 1998. This trend 

has been attributed to the detection and removal of precancerous polyps as a result of 
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colorectal cancer screening [3] . Overall, only 39% of colorectal cancer patients diagnosed 

between 1999 and 2006 had localized-stage disease, for which the 5-year relative survival rate 

is 90%; 5-year survival rates for patients diagnosed at the regional and distant stage are 70% 

and 12%, respectively [4]. The 5-year observed survival rate for colon and rectal cancer 

patients between 1998 and 2000 are shown in Table 1 by cancer staged from the 7th edition of 

the AJCC staging system (from National Cancer Institute's SEER database) [5]. The observed 

estimates in Table 1 may be lower than actual survival rates since it includes patients who could 

have died from other causes than cancer during the observed timeframe (e.g. heart disease). 

Table 1 Survival rates for rectal and colon cancer by stage 

5-year Observed Survival Rate  

Stage Colon Cancer (%) Rectal Cancer (%) 

II 74 74 

IIA 67 65 

IIB 59 52 

IIC 37 32 

IIIA 73 74 

IIIB 46 45 

IIIC 28 33 

IV 6 6 

 

The general process for rectal cancer detection and treatment is captured in Figure 2. 

The process consists on first detecting and diagnosing the cancer, determining the stage of the 

cancer, and selecting the treatment (two or more types of treatment may be combined or used 

in sequence) based on the cancer stage prognosis and physician’s expertise. After treatment, 

follow up and monitoring is recommended to assess treatment effectiveness and as a 

preventive measure. In practice, there are algorithms in place that suggests the treatment 

combination based on the cancer stage and cancer type. Patients with rectal cancer stage II 

and III are recommended to have neoadjuvant therapy, as presented by treatment selection 
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algorithm for rectal cancer patients created by the MD Anderson Cancer Center [6]. Each 

process component is described in detail in the next few sections. 

 

 

Figure 2 Rectal cancer detection and staging process 

 

1.1.1 Rectal Cancer Diagnosis 

Most people in early colon or rectal cancer stages do not experience the symptoms of 

the disease. Thus, screening tests are recommended to detect and diagnose the cancer before 

it further progresses.  One or more of tests used to detect and diagnose colon and rectal cancer 

include [7]:  
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· Endoscopic tests are nonsurgical procedures to examine and remove suspicious tissue or 

polyps. Depending on how far up the colon is examined, three tests are performed: 

proctoscopy to view the rectum; sigmoidoscopy to view of the rectum and lower colon; 

and colonoscopy to view the entire colon  

· Endoscopic ultrasound: a picture (sonogram) is obtained by bouncing high-energy sound 

waves (ultrasound) off internal organs  

· Imaging tests infuse energy through a patient and can show abnormal body structures. 

Changes in energy patterns are captured to create an image or picture that is reviewed 

by a physician and include: computed tomography scan (CT), magnetic resonance 

imaging scan (MRI), and positron emission tomography scan (PET)  

· Digital rectal exam 

· Carcinoembryonic antigen (CEA) measures the quantity of this protein in the blood of 

patients who have may have colon or rectal cancer 

1.1.2 Staging 

Staging is the process of determining the spread and extent of the cancer tumor once it 

has been diagnosed. It is based on the results of the physical exam, biopsies, blood and 

imaging tests. The American Joint Committee on Cancer (AJCC) staging system, also known as 

the TNM system, is the tool most commonly staging used for colorectal cancer [2]. The TNM 

consists of three key elements: ‘T’ defines how much the tumor has grown into the wall of the 

intestine; ‘N’ defines the extent of spread to other lymph nodes; and ‘M’ defines whether the 

cancer has metastasized to other organs of the body 

Once the patient’s T, N and M categories have been determined, a stage grouping (from 

stage I to stage IV in Figure 2) is determined from the least advanced to the most advanced 

stage. The TNM combinations for each cancer stage are presented in Appendix A.  
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1.1.3 Treatment Options 

There are different types of treatment for rectal cancer, some are standard practice and 

others are being tested in clinical trials. According to the National Cancer Institute (NCI), four 

types of standard treatment are used: surgery, radiation therapy (RT), chemotherapy, and 

targeted therapy  [8]. There treatments can be performed separately or combined as shown in 

Figure 2.  The oncologist will select the best therapy based on the type of cancer, stage and 

location of the tumor.  

The primary treatment used in rectal cancer is surgical resection [9]. According to the 

NCI, local excision of clinical tumors is commonly used for selected patients in rectal cancer 

stage T1. For higher stages of rectal cancer, a total mesorectal excision (TME) is the treatment 

of choice. Since the introduction of TME for rectal cancer, reduced local recurrence rates and 

improved oncologic outcomes have been observed [10]. Depending on the surgeon’s 

experience, the rate of complications, such as blood loss and anastomotic leaks, are low. 

Furthermore, radiotherapy before surgery appears to benefit patient outcomes even with 

improvements in surgical technique [10]. 

RT is the most commonly prescribed treatment in rectal cancer treatment.  

Approximately 50% of cancer patients will receive RT alone or in combination with other 

treatments [11]. When used before surgery, the goal is to shrink the tumor to make surgery or 

chemotherapy more effective. When used afterward, it is used to destroy any cancer cells that 

might remain after surgery [6]. There are two basic types of RT: 

· External beam radiation is administered by a machine and rotates around the patient’s 

body to deliver a high dose of radiation directly to the tumor (some of the tissue around 

the tumor can also be affected).  
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· Internal radiation, also known as brachytherapy, consists of a radiation source that is 

implanted in the body at the tumor site. Based on the type of the tumor, the appropriate 

equipment is selected for treatment. 

A combination of radiation and chemotherapy before radiation (also known preoperative 

chemo-radiation (CRT) or neoadjuvant therapy) has become the standard of care for patients 

with clinically staged T3–T4 or node-positive disease based on the results of clinical trials [9]. 

CRT may be given before surgery to shrink the tumor, make it easier to remove the cancer, and 

lessen problems with bowel control after surgery.  Even if all the cancer that can be seen at the 

time of the surgery is removed, some patients may be given radiation therapy or chemotherapy 

after surgery to kill any cancer cells that are left. Treatment given after the surgery to lower the 

risk of relapsing is called adjuvant therapy. 

1.1.4 Adverse Effects of Radiation Treatment 

For patients with rectal cancer stage II and III, neoadjuvant treatment with RT and 5-

FU-based chemotherapy is preferred compared to adjuvant therapy in reducing local recurrence 

and minimizing toxicity [12]. However, there are specific challenges and adverse effects 

associated with the RT in rectal cancer patients. These include:   

· Gastrointestinal disorders: diarrhea, bleeding, abdominal pain and obstruction due to 

stenosis or adhesions  

· Genitourinary dysfunction: incontinence, retention, dysuria, frequency and urgency 

· Sexual Dysfunction: in males, a long-term deterioration of ejaculatory and erectile 

function; and in females, RT was associated with vaginal dryness and diminished sexual 

satisfaction  

· Second Cancers: risk of second cancers from organs within or adjacent to the irradiated 

target. The most common second cancers include gynecologic and prostate. 
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RT after or before surgery treatment has negative effects on toxicity and the quality of 

life of the patient; therefore, treatment options should be discussed with the patient. 

1.2 Personalized Medicine 

Personalized medicine refers to the use and implementation of the patient’s unique 

biologic, clinical, genetic and environmental information to make decisions about their 

treatment or course of action [13]. Cancer therapy is implemented on a watch-and-wait basis 

for most patients. Although an individual’s clinical information (cancer stage) is used to decide 

which regimen is likely to work best, only data referring to outcomes of larger groups of 

patients are currently considered. Under the umbrella of personalized medicine is genomic 

medicine.  

Genomic medicine refers to “the use of information from genomes (from humans and 

other organisms) and their derivatives (RNA, proteins, and metabolites) to guide medical 

decision making” [13]. The discovery of patterns in gene expression data and examining a 

person’s genome makes possible to make individualized risk predictions and treatment 

decisions. A patient predisposition to treatment and health states can now be characterized by 

their molecular information, and useful classifiers and prognostic models can be developed to 

more strategically make decisions. 

There has been a significant improvement in sensitivity as DNA microarray technology 

continues to advance. DNA microarray and gene expression profiles data have made possible to 

understand and make new discoveries at the molecular level regarding human conditions and 

diseases, especially cancer [14]. However, a challenge facing this area of study is the 

complexity and amount data across multiple samples.  

This research is motivated by the question of whether it is possible to determine which 

patients will more likely benefit from receiving RT as part of their cancer treatment. Clinical 
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decision-making regarding RT is still based on estimated overall level of tumor aggressiveness, 

but current decision models are not personalized for predicting the benefit from RT for a 

specific patient [15]. Torres-Roca developed and validated a system biology model of cellular 

radiosensitivity which lead to the discovery of novel radiation specific predictive biomarkers 

[16]. The clinical applications of this type of personalized predictive model have the potential to 

identify patients likely to benefit from certain treatment and determine a more effective 

treatment strategy.  

1.3 Patient-Centered Decision Making 

There has been an increasing trend in the way patients are moving from being a passive 

actor of their disease management process to actively making decisions regarding their 

treatment. It could now be expected that patients will at least give true informed consent to 

their treatment, if not actually making such treatment decisions themselves. Depending in the 

stage of the cancer, the decision of receiving a treatment is a matter of several factors and 

implications that influence the patient to accept or reject treatment. Further treatment may 

prolong life or relieve symptoms, but in some cases will not eradicate the disease. A trade off 

must be made between possible benefits and likely side effects [17]. 

It is still unclear to what extent patients are involved in their decision making and how 

they can resolve their personal uncertainty regarding their treatment options [18].  Kiesler, 

2006 [19], reviewed studies regarding the involvement of patients in the decision making 

process, it was found that although a large proportion of patients want to be fully informed and 

actively participate in their treatment decisions with their physicians, a considerable proportion 

of patients prefer to have little to no detailed information about their condition or involvement 

in medical decisions. Moreover, this shared decision process is dynamic in the sense that it will 

vary depending on the patient preferences, time with condition, and stage among others.  
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This work is based on the idea that the decision making process should consider the 

individual patients preferences for which treatment, if any, should be selected.  Different 

significant predictors for overall survival, quality of life, cost-effectiveness, and response to 

treatment include individual patient genomic profile factors, prognostic biomarkers, and socio-

economical patient characteristics. This information can help the patient make informed 

decisions regarding their treatment, based on their individual preferences and personal 

situation.  

1.4 Review of Literature  

This review of the literature concentrates on decision models used to select viable 

treatments for patients with cancer. Databases in the area of engineering and medicine were 

used to search articles with publication date from 01/01/2000 until 05/01/2014: Compendex 

(engineering village), PubMed, Medline CSA, ScienceDirect, and Web of science. Keywords used 

were: (Cancer) AND [(Decision Model) OR (treatment selection)].  

A large of proportion of articles found in cancer decision making focus in determining 

which prognostic factors and biomarkers are the most significant predictors in the assessment 

of different outputs (e.g. Survival, Recurrence rate and chances of metastasis). The 

information, criteria, methods and objectives used in the models to make the treatment 

selection decision are listed in Table 2. 

The objectives and criteria used in cancer treatment selection models involve intrinsic 

trade-offs between survival and quality of life. Summers (2007) assessed trade-offs between 

quantity and quality of life particular to prostate cancer patients as well as among different side 

effects to determine which treatment would be optimal for a specific patient [20]. [21], [22], 

[23], [24], used a utility score and defined it as the relative value patients assign to potential 

health states. Utility values were obtained from interviews or the literature. Some of the 
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treatment complications considered include: sexual dysfunction, urinary symptoms bowel 

dysfunction, and death. Szumacher, 2005 [25], implemented a decision model based on 

patients preferences in regards to convenience of treatment plan, pain relief, overall quality of 

life, individual’s chances of survival and out-of-pocket costs. Survival, chance of metastasis and 

risk of relapse are usually compared to quality of life measures: In [26] and [27] models are 

evaluated based on the probability of the cancer relapsing after an amount of time, and [20], 

[24], [27] assessed the chance of the cancer spreading to other organs as decision criteria. On 

the other hand, Another number of articles concentrated specifically on the cost effectiveness of 

various strategies [28], [29], [27]. Van Gerven, 2007 [30], focused on the maximization of 

patient benefit, while simultaneously minimizing the cost of treatment.  

Among the methods utilized in the literature, different types of Markov decision analysis 

framework were the most used [20], [21], [22], [23], [29] and [30]. A Markov decision process 

extends a Markov chain by allowing actions and rewards to incorporate both choice and 

motivation, also the Markov property ensures that the future state is independent of the past 

state given the current state of a random process. In [28], [29], [27] decision tress and cost-

effectiveness analysis as a strategy to select strategies. Multi-criteria optimization models were 

used in [31], [32] to find the best dose–volume histogram (DVH) values  by varying the dose–

volume constraints on each of the organs at risk (OARs). Other methods used include: neural 

networks and multivariate statistical analysis [25].  In most cases, patient’s preferences are not 

considered in these models to make individual recommendations. Therefore, future analyses 

need to provide outcomes stratified by more specific risks and preferences.  

The data used as inputs in the models include tumor anatomy factors, patients’ 

characteristics, and cost estimates. Tumor anatomy is also considered using the TNM staging 

system in various studies [24], [28], [29], [30]. Gleason score and prostate-specific antigen 
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(PSA) are important input for prostate cancer treatment selection [21], [20], [22], [24]. Age is 

the most commonly patient factor considered in the models [21], [20], [22], [24], [30], [23], 

[28], [26], [25]. Other patient and health factors include: gender, race, treatment history, 

comorbidities and laboratory test results.  

1.5 Problem Statement 

Treatment decision making for cancer is complex. Every patient is unique with their own 

genetic traits, predisposition to side effects and preferences. The patient and clinician’s 

subjective judgment plays a vital role in making sound treatment decisions. Furthermore, 

various patient-specific factors make it difficult to objectively and quantitatively compare various 

treatment decisions. 

Radiation Therapy (RT) is the most commonly prescribed single agent in cancer 

therapeutics. Approximately, half of cancer patients receive RT as part of their treatment. There 

has been great improvement in the quality and effectiveness of RT delivery in the last years. 

Unfortunately, neoadjuvant CRT is not beneficial for all patients. The treatment response ranges 

from a pathologic complete response (pCR) to a resistance. It is reported that only 10 to 20 

percent of patients with advanced rectal cancer show pCR to neoadjuvant CRT. Nowadays, 

patients with no response or minimum tumor response to neoadjuvant CRT before its initiation 

are not being identified [33].  

We are entering in a new era of personalized, patient-specific care, and with the advent 

of low-cost individual genomic and proteomic analysis, we are on the path of employing 

patient’s biologic data to systematically predict the best course of therapy [34]. Identifying 

patients that potentially could benefit from CRT and justifying a given treatment path will 

hopefully minimize side effects caused by the current treatment practices. This is the based 

premise for the work presented in this dissertation. 



12 
 

Table 2 Summary of cancer treatment selection models in the literature 

Data Considered in Decision Models 

Tumor Anatomy Gleason Grade [21], [20], [22], [24],  

 TNM or mass [30], [28], [24], [29] 

 PSA [20], [24] 

Patients characteristics Age [21], [20], [22], [24], [30], [23], [28], 
[26], [25]  

 Gender [30], [26], [25] 

 Race [26], [25] 

 Treatment history [30], [26] 

 Comorbidities [21] 

 Laboratory results [26] 

Costs  [30], [23], [28], [29], [25], [27] 

Decision Criteria 

Quality of life  [20], [22], [30], [23], [24], [25] 

Patient Utility  [21], [22], [30], [23], [32] 

Survival    [20], [28], [24], [29], [25] 

Cost effectiveness  [23], [28], [29], [27] 

Chance of metastasis  [20], [24], [27] 

Risk of relapse  [26], [27] 

Disutility  [20] 

Tumor Response  [30] 

Planning target volume (PTV)  [31], [32] 

Methods 

Markov framework  [21], [20], [22], [30], [23], [29] 

Cost-Effectiveness analysis  [23], [28], [29], [27] 

Decision trees  [28], [29], [27] 

Bayesian Networks  [30], [24] 

Optimization modeling   [31], [32] 

Multivariate analysis   [25] 

Neural Networks   [26] 
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1.6 Global Research Objectives 

The general objectives of this work are two-fold: 

· Objective 1: Build and validate a prediction model based on the gene expression profiles 

of a sample of cell lines for the response of a patient to RT (Radiosensitivity) using their 

genomic information. 

· Objective 2: Integrate measures of the patient’s clinical information: survival, biological 

characteristics and anticipated adverse effects into a patient-centered prescriptive model 

that determines the most appropriate course of action at a given stage (II and III) for 

rectal cancer. 

1.7 Document Organization 

This dissertation is organized in four chapters (See Figure 3). Chapter 1 presents a 

review of the literature, defines the problem, and presents the objectives and hypotheses of 

this research. Chapter 2 presents a prediction model of radiosensitivity of cancer tumor cells in 

response to radiation therapy using gene expression profiles; in Chapter 3, a fuzzy approach for 

treatment selection in cancer treatment is developed considering various criteria; and Chapter 4 

presents the conclusions, limitations and opportunities future research. 

 



14 
 

Feature SelectionFeature Selection

Predictive ModelingPredictive Modeling

Multivariate Linear Regression
Principal Components Analysis
Decision Tree Regression
Random Forest Regression

Multivariate Linear Regression
Principal Components Analysis
Decision Tree Regression
Random Forest Regression

CalibrationCalibration

ValidationValidation

Model SelectionModel Selection

BackgroundBackground

ObjectivesObjectives

HypothesesHypotheses

Problem 
Statement
Problem 

Statement

Chapter 1 Chapter 2

ObjectivesObjectives

Chapter 3

Estimation of InoutsEstimation of Inouts

Fuzzy System 
Approach to Cancer 
Treatment Selection

Fuzzy System 
Approach to Cancer 
Treatment Selection

Theoretical Background
Expertise extraction 
Treatment Objective Classifier
Preference measure

Theoretical Background
Expertise extraction 
Treatment Objective Classifier
Preference measure

Sensitivity AnalysisSensitivity Analysis

ValidationValidation

Conclusions and 
Future Research
Conclusions and 
Future Research

Chapter 4

ObjectivesObjectives

 

Figure 3 Dissertation organization 

  



15 
 

 
 
 
 
 

CHAPTER 2: PREDICTION OF RADIOSENSITIVITY OF CANCER TUMOR 

CELLS IN RESPONSE TO RADIATION THERAPY USING GENE EXPRESSION 

PROFILES 

2.1 Introduction 

Radiation therapy (RT) is the most commonly prescribed cancer treatment and can be 

effective in curing cancer. The success rates for RT are comparable with those achieved with 

surgery in some cancers (prostate , head and neck and cervical cancer) [35]. Over the past 

decades, RT effectiveness has improved by the discovery of physical approaches that optimizes 

the radiation dose to tumors and space normal tissues. With the introduction of microarrays and 

the use of gene expression to identify features in medical outcomes, identification of gene 

signatures and pathways activated in the response of cells to radiation can result in the 

development of treatment options which gene expression is controlled within the irradiated 

tumor (e.g. BUdR and IUdR were among the first classes of biological agents analyzed as 

radiosensitizers to enhance the effects of radiotherapy treatment) [36]. 

Decision making and treatment selection in radiation oncology is subjective and based 

on clinic-pathological features of a large group of patient outcomes [16]. In personalized 

medicine, the objective is to select the most appropriate course of treatment that fits an 

individual patient’s needs and characteristics. Genomic medicine technological advancements 

has now the potential of predicting a patient predisposition to RT. Microarrays technology is one 

of the most widely adopted methods of genomics analyses. Microarrays experiments generate 
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functional data on a genome-wide scale, and can provide important data for biological 

interpretation of genes and their functions [37].  

The complexity and dimensionality of the data generated from gene expression 

microarray technology requires advanced computational approaches. Machine learning and 

supervised learning methods provide tools to develop predictive models from available data, 

and it is effective when dealing with large amounts of biological data. In this dissertation, we 

present a methodology to organize and analyze gene expression data and test whether it 

results in an accurate predictive model of tumor radiosensitivity. 

Machine learning refers to the type of computational techniques that are used to 

develop a “model” from a set of observations of a system. The term “model” assumes that 

there exists an approximate relationships between the parameters considered in the system. 

The goal is to predict a quantitative (regression) or qualitative (classification) outcome using a 

set of attributes or features [38]. Consequently, supervised learning refers to the subset of 

machine learning methods where the input–output relationship is assumed to be known. 

Supervised learning is commonly used in the computational biology area ranging from 

gene expression data to analysis of interactions between biological subjects [38]. Some of the 

most commonly used supervised learning methods used in computational biology include: 

neural networks, support vector machine, logistic regression, multivariate linear regression, 

decision tree-based models and ensembles (random forest). A review of these methods is 

presented in the following section. 

This chapter consists on the development of a personalized diagnostic tool to predict 

radiotherapy (RT) efficacy using the patient genomic information and estimate likelihood of 

response to RT of an individual patient. In the next chapter, the results of this model will be 
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implemented into a decision model with the objective of guiding the patient and physician 

decision on the selection of a cancer treatment strategy.  

2.2 Review of Prediction Models in Computational Biology 

A summary of the methods, relevant literature, strengths, limitations and opportunities 

are presented in Table 3. Methods used in prediction models for various areas of computational 

biology were categorized into: artificial neural networks; support vector machines; decision 

tree-based methods; and logistic regression. 

Artificial neural networks (ANN) and support vector machines are among the most 

commonly used black box machine learning tools in the literature. ANN-based approaches may 

be applied for classification, predictive modelling and biomarker identification within data sets of 

high complexity [39]. More recent studies using ANN approaches in system biology include: a 

validated a reduced (from 70 to 9 genes) gene signature capable of accurately predicting 

distant metastases by Lancashire et al [40]; a model to predict Parkinson’s disease using micro-

array gene expression data by Sateesh Babu et al [41]; and a gene expression-based model to 

select 20 genes that are closely related to breast cancer recurrence by Chou et al [42]. 

The support vector machine (SVM) algorithm consists on a hyperplane or a set of 

hyperplanes in a high-dimensional space, which are then used for classification or regression 

[43]. Support vector machines (SVM) have a number of mathematical features that make them 

attractive for gene expression analysis due to its ability of dealing with large data sets with high 

data dimensionality, ability to identify outliers, flexibility in choosing a similarity function and 

sparseness of the solution [44]. According to Statnikov et al, multi-category SVM are the most 

effective classifiers in performing accurate cancer diagnosis using gene expression data [45]. 

However, most studies find that the main limitations of SVM are the lack of interpretability of 
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the results and estimates for the underlying probability, and the heuristic determination of the 

Kernel parameters. 

Table 3 Summary of prediction models in computational biology 

Method 
Relevant 
Literature 

Advantages 
Limitations (L) 

Opportunities (O) 

Artificial 

neural 
networks 

[40]–[42], 
[46]–[50] 

· Can process data 
containing non-linear 
relationships and 
interactions  

· Can handle noisy or 
incomplete data  

· Capable of feature 
selection in high 
dimensional data 

· Good predictive 
performance 
 

· (L)Hard to interpret  
(O) Sensitivity analysis and rule extraction can be used 
extract knowledge 

· (L) Prone to over-fitting  
(O) re-sampling and cross-validation can be used to 
address this issue 

· (L) Multiple solutions associated with local minima 
 

Support 
vector 
machines 
and kernels  

[44], [45], 
[51]–[54] 

· Can process data 
containing non-linear 
relationships and 
interactions  

· Can provide a good 
out-of-sample 
generalization 

· Optimality problem is 
convex 

 

· (L) Large margin classifiers are known to be sensitive 
to the way features are scaled 
(O) data normalization  

· (L) sensitive to unbalanced data 
(O) assign a different misclassification cost to each 
class 

· (L) Kernel parameters are data-dependent 
(O) Try a linear and a non-linear kernel 

· (L) Prone to over-fitting  

(O) Local alignment kernel 

Decision 
tree-based 
methods 
and 
Random 
forest 

[55]–[64] 

· Readily understandable 
Interpretable 

· Ability to rank the 
attributes according to 
their relevance in 
predicting the output 

 

· (L) Classification performance of a single tree lower 
than other methods 
(O1) Classification performance could be improved by 
combining more than two features at each node 
(O2) Classification performance is  improved by 
aggregation of predictions by ensembles 

· (L) Decision trees are sensitive to the training data set 
used and overfitting 
(O) Random forest use bootstrapping to estimate 
outcomes by aggregation of difference trees 

· (L) Inadequate to perform regression of continuous 
values 
(O) Tree ensembles use a large number of tree to 
obtained aggregated solutions and good performance 

Logistic 
regression 

[65]–[74] 

· Most commonly used 
method in 
classifications problems 

· Often used as 
benchmark to compare 
models 

· Can handle nonlinear 
effect, interaction 
effect and power terms 

· Readily understandable 
Interpretable 

· (L) LR can only be used to predict discrete functions 
· (L) Parameter estimation procedure of LR assumes an 

adequate number of samples for each combination of 
independent variables 
(O) Needs to make sure a large sample size and 
determine adequate number of samples for each 
combination 

· (L) Independent binary variable must be balanced 
(O) Resample the available data to obtain a balanced 
dataset 
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In models using logistic regression for classification, the outcome of interest is assumed 

to be binomially distributed with the logistic function f(y) = 1/(1+exp−y) . The variable y is a 

measure of the contributions of the parameters y = β0+β1x1+...+βnxn, where β0 is a constant 

term and the β1, β2, ..., βn are regression coefficients. Zhu and Hastie [69] present a summary 

of the implementation of a penalized logistic regression (PRL) model and an algorithm using 

univariate ranking (UR) and recursive feature elimination (RFE) to select a fewer genes than 

other methods. Among the extensions of logistic regression models, Shevade et al. [70] 

implements a sparse logistic model to suggest a gene selection method  that is efficient and can 

be applied to identify marker genes. Finally, Chen et al [74] conducts a review on variations of 

logic regression: logic feature selection, Monte-Carlo logic regression, genetic programming for 

association studies, and modified logic regression-gene Expression Programming, and evaluates 

the performance of each method using genotype data. 

The origin of tree-based learning methods is often credited to Hunt [75], but the 

method became recognized in the field of statistics by Breiman et al. [76] with the Classification 

And Regression Trees (CART). Since then, more decision-tree based methods have been 

proposed to improve the prediction accuracy by aggregating the predictions given by several 

decision trees for the same outcome. Although decision tree models were originally designed to 

address classification problems, they have been extended to handle Univariate and multivariate 

regression.  Random forests (RF) models [77] is a randomization method that modifies the 

node splitting of the CART procedure as follows: at each node, K candidate variables are 

selected at random among all input candidate variables, an optimal candidate test is found for 

each of these variables, and the best test among them is eventually selected to split the node 

[78]. 
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This study develops and compares a number of supervised learning methods 

appropriate to the structure and objectives of the models. Based on the performance of the 

models, a prediction model trained in tumor cell gene expression data is validated in two 

independent clinical outcomes datasets for patients that received pre-operative RT.  

2.3 Objectives 

The objective of this research study is to predict radiation sensitivity (Radiosensitivity), 

defined based on cellular clonogenic survival after 2 Gy (SF2) for 48 cell lines (see Table 4), and 

estimates as in equation (1). Since gene expression profiles are available for all cell lines, gene 

expression is used as the basis of the prediction model. 

𝑆𝐹2 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑜𝑛𝑖𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑝𝑙𝑎𝑡𝑒𝑑 × 𝑝𝑙𝑎𝑡𝑡𝑖𝑛𝑔 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦
 (1) 

· Hypothesis 1: A radiosensitivity cell-based prediction model can be validated using 

clinical patient data from rectal and esophagus cancer patients that received RT before 

surgery. 

· Hypothesis 2: A radiosensitivity genomic-based prediction model could identify patients 

with rectal cancer that may benefit from RT treatment by assigning higher values of SF2 

to radio-resistant patients and lower values of SF2 to radio-sensitive patients. 

Radiosensitivity is defined based on cellular clonogenic survival after 2 Gy (SF2) for 48 

cell lines. Since gene expression profiles are available for all cell lines, gene expression is used 

as the basis of the prediction model.  Radiosensitivity prediction has been studied by [16], [79] 

where a clinically validated radiosensitivity index (RSI) has been defined to estimate 

radiosensitivity.  The proposed approach differs from [16], [79] the response SF2 

transformation process and in the gene expression selection process, using a statistically 

procedure versus a biological feature selection approach.  
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2.4 Methods and Materials 

Cell lines are used to construct the prediction model and were obtained from the NCI 

[35]. Cells were cultured as recommended by the NCI in Roswell Park Memorial Institute 

medium (RPMI) 1640 supplemented with glutamine (2 mmol/L), antibiotics (penicillin/ 

streptomycin, 10 units/mL) and heat-inactivated fetal bovine serum (10%) at 37ºC with an 

atmosphere of 5% CO2.  

Analyses using microarrays technology has been widely adopted for generating gene 

expression data on a genomic scale. Gene expression profiles were from obtained from 

Affymetrix U133plus chips [80] from a previously published study by Eschrich, 2009 [81].  

2.4.1 Output 

A transformation function (equation 2) is applied to the SF2. Originally SF ranges 

between 0 and 1; with the transformation functions, SF2 can range between -∞  and ∞. The 

objective of this transformation is to enhance the extremes values of SF2 (radio-sensitive and 

radio-resistant responses). The transformation follows equation 2 and represented in Figure 4:  

𝑇𝑆𝐹2 =
1

1 − 𝑆𝐹2
−

1

𝑆𝐹2
  

(2) 

 

Figure 4 SF2 and transformed SF2 
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The survival fraction at 2 Gy (SF2) of 48 human cancer cell lines used in the regression 

model was obtained from Torres-Roca, 2005 [35] and are presented in Table 4.  

Table 4 SF2 measured values for 48 cell lines in the database 

Cell Line Tissue of Origin 
Measure

d SF2 
Cell Line 

Tissue of 
Origin 

Measured 
SF2 

Breast_bt549 Breast   0.632 Leuk_ccrfcem Leukemia 0.185 

Breast_hs578t Breast   0.79 Leuk_hl60 Leukemia 0.315 

Breast_mcf7 Breast   0.576 Leuk_molt4 Leukemia 0.05 

Breast_mdamb231 Breast   0.82 Melan_loximvi Melanoma 0.68 

Breast_t47d Breast   0.52 Melan_m14 Melanoma 0.42 

Breast_mdamb435 Breast   0.1795 Melan_malme3m Melanoma 0.8 

Cns_sf268 CNS   0.45 Melan_skmel2 Melanoma 0.66 

Cns_sf539 CNS 0.82 Melan_skmel28 Melanoma 0.74 

Cns_snb19 CNS 0.43 Melan_skmel5 Melanoma 0.72 

Cns_snb75 CNS 0.55 Melan_uacc257 Melanoma 0.48 

Cns_u251 CNS 0.57 Melan_uacc62 Melanoma 0.52 

Colon_colo205 Colon  0.69 Ovar_skov3 Ovarian   0.9 

Colon_hcc-2998 Colon  0.44 Ovar_ovcar4 Ovarian   0.29 

Colon_hct116 Colon  0.38 Ovar_ovcar5 Ovarian   0.408 

Colon_hct15 Colon  0.4 Ovar_ovcar8 Ovarian   0.6 

Colon_ht29 Colon  0.79 Ovar_ovcar3 Ovarian   0.55 

Colon_km12 Colon  0.42 Prostate_du145 Prostate  0.52 

Colon_sw620 Colon  0.62 Prostate_pc3 Prostate  0.484 

Nsclc_a549atcc Non-Small Cell Lung  0.61 Renal_7860 Renal  0.66 

Nsclc_ekvx Non-Small Cell Lung  0.7 Renal_a498 Renal  0.61 

Nsclc_hop62 Non-Small Cell Lung  0.164 Renal_achn Renal  0.72 

Nsclc_hop92 Non-Small Cell Lung  0.43 Renal_caki1 Renal  0.37 

Nsclc_ncih23 Non-Small Cell Lung  0.086 Renal_sn12c Renal  0.62 

Nsclc_h460 Non-Small Cell Lung  0.84 Renal_uo31 Renal  0.62 

 



23 
 

2.5 Feature Selection 

Standard prediction models and variable reduction methods face an important challenge 

with the dimensionality of the data. This is the case for the area of genomic applications where 

the number of genes is considerably higher than the samples available to study them. In this 

problem, a total of m = 54,675 potential candidates (gene expression) are considered to be 

part of the prediction models with a total of n = 48 observations tumor cells. The most 

commonly used approaches, such as PCA, require for n > m.  However, this problem shows 

m>>n.  Thus, a methodology to reduce the sample size and to identify features that are 

statistically independent (low correlation values) is recommended. The objectives of the 

dimension reduction procedure presented here are to:  

· Identify independent (not highly correlated) features 

· Improve performance of prediction models by removing irrelevant predictors 

· Improve efficiency of modeling using fewer features 

· Reduce the selection of effects whose influence on dependent variable is mostly random 

Our approach is an Univariate method that selects the most relevant (statistically 

significant) features one by one and excluding the rest, as show in [82]. This technique is 

computationally simple and fast to process high-dimensional datasets, and it is independent of 

the classification/regression models. When using this procedure, feature dependencies are 

ignored. Thus, a step to extract independent features has to be included (step 5 below). The 

procedure to select the candidate predictors include: 

1. Start with 54,675 gene expressions: 

2. Merge repeated gene expression by replacing with average 

3. Normalize labels in datasets to create a single data file (Cell-lines have different labels in 

the various files) 
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4. Conduct response variable transformation 

5. Univariate ranking: perform univariate regression with each gene versus T_SF2:  

6. If (p-value >= 0.0001) then Variable is kept in the model; Otherwise, variable is 

excluded 

7. Identify independent variables: 

7.1 Estimate correlation matrix 

7.2 If (correlation coefficient >= 0.9) then select gene with higher R2  in reg for t_sf2 in 

cluster 

7.3 Otherwise, consider this variable “independent”. 

8. End with the reduced data set containing 169 features (gene expressions) 

The dimension reduction process presented in this study is also compared with two 

other feature selection methods such support vector machines. The subset of selected variables 

from the 54,675 gene expression probeset ID did not match previous subset selected, and 

selected subset was much larger with 12,399 (highly correlated) gene expression probeset IDs. 

Since subset of selected features was different for all methods there is no evidence to support 

one method over the other. The support vector machine  variable selection steps used for this 

approach has been documented by Rakotomamonjy (2003) in the Journal of Machine Learning 

Research [83].  

2.6 Predictive Model Development 

 Predictive models are developed and compared based on their performance. The 

experimental design of the models is presented in Figure 5.  The process to build, test and 

validate the models has been used in the literature of supervised learning methods in 

computational and systems biology [38], and it can be summarized as follows:  
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1. Learning sample (LS) consists of 48 cell lines  

2. Build model on LS using the default parameterization of the method using cross-

validated: 2/3 learning sample (ls.s1), 1/3 testing sample (ls.s2) 

3. Evaluate the accuracy of model on the test sample ls.s2 

4. If the accuracy results are not acceptable, then play with different values of the 

parameter K (for random forest) 

5. Select the value K* that leads to performance on S2. 

6. Build selected model on LS and validate predictions on TS to get an estimate Accfinal of 

its accuracy. There are two TS datasets and will be described in the validation section.  

 

N = 48 cell lines

Learning Set (LS)

Validation Set (VS)
Clinical cohort(s) of 
cancer patients that 
received RT before 

Surgery

Training Set 
(ls.s1)

Accu. test Set 
(ls.s2)

2/3 1/3Data is split 
randomly

Decision Tree 
with recursive 

Partitioning 
(CART)

Random Forest

Test for 
accuracy 

Select most 
accurate 

model and 
train on LS

Validate on VS

Multivariate 
Regression with 

2-way 
interactions

 

Figure 5 Experimental design 
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In the selection of a prediction model, there is tradeoff between simplicity and 

wholeness. Simpler models can be more understandable, computationally tractable. On the 

other hand, more complex models tend to fit the data better and to capture more information 

from available data. Two simple models (a Multivariate regression model and a decision tree 

model) and a more complex model (random forest) are created and compared to select the 

most appropriate model in the prediction of radiation sensitivity. 

2.6.1 Multivariate Regression with 2-way Interactions 

Linear regression is a method used in building models from data for which dependencies 

can be closely approximated [84] and predicting the value of a response (y) from a set of 

predictors (xi). Let x1,x2,…,x169 be a set of 169 predictors believed to be associated with the 

transformed response T_SF2. The linear regression model for the jth has the form given in (3): 

𝑇_𝑆𝐹2𝑗 = 𝛽0 + 𝛽1𝑥𝑗1 + 𝛽2𝑥𝑗2 + ⋯ + 𝛽169𝑥169 + 𝜖𝑗 (3) 

The matrix notation is ŷ = Xβ where 𝜖 is a random error with 𝐸(𝜖𝑗) = 0, 𝑉𝑎𝑟(𝜖𝑗) =  𝜎2,

𝐶𝑜𝑣(𝜖𝑗, 𝜖𝑘) = 0  ∀𝑗 ≠ 𝑘, and 𝛽𝑖 , 𝑖 = 0,1, . . ,169 are the regression coefficients. The approach to 

estimate the vector 𝛽′𝑠 in this study is the least square estimation: The value of 𝛽 that 

minimizes the sum of square residuals (Y − Xβ)′(Y − Zβ) and the decomposition is given by (4): 

∑(𝑦𝑗 − �̅�)2 = ∑(�̂� − �̅�)2 + ∑ 𝜖̂2

𝑗𝑗

𝑛

𝑗=1

 (4) 

The goodness of fit (GOF) of the model is measured by the proportion of the variability 

that the model can explain given by R2. The formulation and motivation of the use of R2 and 

other performance measures of GOR have been extensively addressed in the literature [85].   

The creation of the multivariate regression model allowed for 2-way interactions to be 

considered as predictors in the regression model. The steps to build the models are as follows: 

(1) the model was coded using proc glmselect in SAS 9.3. (2) The selection process consisted 
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on a stepwise forward selection (effects already in the model do not necessarily stay as the fit is 

iteratively tested considering all candidate variables at every step). The decision criteria used 

considers the optimal value of the Akaike information criterion (AIC) and the adjusted R2 to 

access the trade-off between the goodness of fit of the model and the penalization number of 

predictors in the system (overfitting). The AIC value is given by 𝐴𝐼𝐶 = 2𝑘 − 2𝑙𝑛(𝐿), where k is 

the number of parameters and L is the value of the likelihood function. 

The value of the adjusted R2 is also presented in Figure 6. It can be observed that the 

value for the adjusted R2 does not considerably improve after step 7; therefore the total 

number of interaction effects in the model is eight. A summary of the selection process and 

significant predictors’ interactions, parameter estimates and performance measures (AIC and 

adjusted R2) can be found in Table 5.  

Table 5 Multivariate regression model selection 

Step 
Interaction of effects 

(gene expression) 
Parameter 
estimate 

Number of 

effects in 

model 

adjusted 
R2 

AIC 

0 intercept 1 58.207248 1 0 184.8924 

1 222868_s 1554636_a -1.976624 2 0.6657 133.5468 

2 226367_a 244039_x_ -1.916222 3 0.7498 120.9651 

3 208923_a 1557248_a -0.187086 4 0.7967 112.4197 

4 243559_a 1564276_a 1.555853 5 0.8443 101.1404 

5 236687_a 1564128_a -2.664955 6 0.8766 91.5949 

6 215703_a 1557062_a 0.833148 7 0.897 84.6667 

7 202252_a 238735_at -0.132294 8 0.9112 79.3727* 
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Figure 6 Model performance in terms of adjusted R-square 

 

2.6.2 Classification and Regression Trees 

The description of the decision tree methodology is included in this manuscript since it is 

the basis of the random forest methodology (a set of trees). A decision tree induction is a 

method of data analysis that maps the dependency relationships in the data [84], and it is 

sometimes subsumed by the category of cluster analyses. The goal with CART is to build a 

regression tree and predict radiosensitivity (SF2) based on the gene expression profiles 

available using recursive partitioning or rpart in R [86]. The following steps are followed to build 

the tree in rpart: 

The Splitting criteria, as proven by Breiman et al [87], of a node A into two sons AR and 

AL is given by (5): 

𝑃(𝐴𝐿)𝑟(𝐴𝐿) + 𝑃(𝐴𝑅)𝑟(𝐴𝑅) ≤ 𝑃(𝐴)𝑟(𝐴) (5) 

where: P(A) is the probability of A for future observations, and r(A) is the risk of A. However, 

rpart considers measures of impurity or diversity for the note splitting criteria.  
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Let 𝑓 be the impurity function defined by (6): 

𝐼(𝐴) = ∑ 𝑓(𝑝𝑖𝐴)

𝐶

𝑖=1

 (6) 

where 𝑝𝑖𝐴 is the proportion of the elements in A that belong to class i. Therefore, if I(A) = 0 

when A is pure, 𝑓 must be concave with f(0) = f(1) = 0. the split with the maximal impurity 

reduction (the Gini or information index) is used.  

The measure of impurity can be implemented using the generalized Gini index or alert 

priors. This model was implemented in rpart software package in R 2.15.1, and only altered 

priors is available [86] for the analysis. The model building process also estimates a measure of 

importance for the predictors in the decision tress based on the sum of the goodness of split or 

adjustment agreement. This is very useful when two variables are similar and one must be 

selected to enter the models. 

Cross-validation can be performed in decision trees using recurve partitioning. The data 

is divided into n groups. The model is trained in all groups except for one, the predicted class is 

computed, and it summed over all groups for each parameter estimate. The chosen tree will be 

the one with the complexity parameter with the smallest risk, computed in the full dataset. 

Finally, decision trees can be built to address classification or regression problems. For 

regression problems, as is the case for the problem considered in this research, the splitting 

criterion used to decide the best split for the predictor candidates is estimated by SST − (SSL + 

SSR), where SST is the sum of squares for the node, and SSR, SSL are the sums of squares for 

the right and left son. The decision tree model seeks to split the node in order to maximize the 

between groups SS in the ANOVA method. The prediction error for a new observation is 

estimated by (ynew- yavg). 
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Figure 7 Decision tree prediction model 

2.6.3 Random Forest 

Supervised learning provides techniques to learn predictive models only from 

observations of a system and is therefore well suited to deal with the highly experimental 

nature of biological knowledge [78]. 

Breiman’s Random Forests algorithm builds each tree from a bootstrap sample like 

Bagging but modifies the node splitting procedure as follows: at each test node, K attributes are 

|
X_226367_at>=4.119

X_201783_s_at>=7.754

X_202123_s_at< 7.877

X_202531_at< 7.484

0.0778

-5.702 1.065

0.4162

-1.003 0.9485

0.434 2.198

3.739
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selected at random among all input attributes, an optimal candidate test is found for each of 

these attributes, and the best test among them is eventually selected to split the node [88].  

The prediction model for radiosensitivity was built using the randomforest package in R 

[89]. The selected predictors (gene expression profiles), ranked in the order the variable 

reduced prediction error, are presented in Figure 8. The algorithm used to build the prediction 

model is summarized in Figure 9. 

 

 
Figure 8 Variable importance based on entropy reduction 
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Figure 9 Random forest algorithm 

2.7 Validation 

The predictive models were validated in three independent datasets: a dataset of 20 

patients with rectal cancer that received neoadjuvant treatment, and a dataset of 12 

esophageal cancer patients that received neoadjuvant treatment. Clinical Outcomes are 

classified into responder(R) and non-responder (NR). 

 



33 
 

2.7.1 Rectal Cancer Dataset 

The sample size consisted of 20 patients with rectal cancer. The results of the tests are: 

test of ETA1 = ETA2 vs ETA1 not = ETA2 is significant at 0.0185 using the random forest model 

and 0.003144 using regression model (See Figure 10 and Figure 11). 

 

Figure 10 Multivariate regression prediction results on the rectal cancer dataset 

 

Figure 11 Random forest prediction results on the rectal cancer dataset 
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2.7.2 Esophageal Cancer Dataset 

The sample size consisted of 12 patients with esophageal cancer. Test of ETA1 = ETA2 

vs ETA1 not = ETA2 is significant at 0.026 using the random and 0.032 using regression model 

(See Figure 12 and Figure 13). 

 

Figure 12 Multivariate regression prediction results on the esophageal cancer 
dataset 

 

 

Figure 13 Random forest prediction results on the esophageal cancer dataset 
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2.8 Discussion 

In this study, the microarray gene expression data processing and prediction model is 

built following four modeling parameters:  

1. Response variable transformation: SF2 for 48 cancer cell lines was transformed using a 

mathematical function to augment the lower and upper extremes (related to 

Radiosensitive and Radioresistant cell lines) of the radiosensitivity/radioresistance 

spectrum 

2. Dimensionality reduction: candidate gene expression probesets were selected using a 

univariate regression analysis with statistical significance (p <= 0.001) 

3. Model building: Breiman’s Random Forest algorithm [77] which is an ensemble of 

decision trees, was trained using the learning sample of the 48 human cancer cell lines 

to predict the transformed SF2 

4. Model calibration: statistically significant differences (p < 0.05) were found between the 

median of the training set of the cell lines and the validation set of patients. We 

estimated the calibration parameters based on the calculated difference in medians. 

This study provides clinical support for a practical and novel assay to predict tumor 

radiosensitivity. Due to the difference in experimental measurement in DNA microarray gene 

expression values among different cohorts, calibration methods should be created to 

standardize validation across different sites. Further testing of this technology in larger clinical 

populations is supported. 

  



36 
 

 
 
 
 
 

CHAPTER 3: A FUZZY APPROACH FOR TREATMENT SELECTION IN CANCER 

TREATMENT 

The objective of this research is to develop a decision support model that can determine 

the most appropriate treatment strategy by combining clinical expertise and individual patient 

preferences concerning the treatment options available and desired clinical outcomes. The 

model based design and decision-making consists of a multiple-input/multiple-output (MIMO) 

fuzzy logic controller (FLC).  For this work, we extract the knowledge from historical data, 

specific to colorectal cancer patients receiving radiation therapy and/or surgery from 2004 to 

2010.  The fuzzy system presented follows the theoretical structure presented by [90], and gets 

expanded by using data driven expertise acquisition and inclusion of a preference measure. The 

decision model and treatment strategy is evaluated using the following criteria: survival, 

adverse events, and efficacy. Efficacy is measured in terms of patient’s response to radiation 

therapy or radiosensitivity (the prediction model for radiosensitivity was discussed in Chapter 

2). Finally, several patient decision options are presented and compared using sensitivity 

analysis to present scenarios based on their individual characteristics and preferences.  

This chapter is organized as follows. We first introduce basic FLC related concepts to be 

used throughout this dissertation involving the definitions of a fuzzy sets, fuzzy input, fuzzy 

output variables and fuzzy state space. Then, a review of the literature is presented that 

focuses on fuzzy decision support models (FDSM) is presented, followed by the research 

objectives and hypotheses. The FDSM approach and results are also included. Finally, the 

chapter closes with the sensitivity analysis, conclusions and future research.  
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3.1 Concepts in Fuzzy Logic 

Classical sets are referred to as crisp sets in fuzzy set theory to differentiate them from 

fuzzy sets. A crisp set C of the universe of discourse, or domain D, can be represented by using 

its characteristic function 𝜇𝐶: 

The function 𝜇𝐶 : 𝐷 → [0,1] is a characteristic function of the set C if and only if for all d 

in (7): 

𝜇𝐶(𝑑) = {
1 𝑖𝑓 𝑑 ∈ 𝐶

0 𝑖𝑓 𝑑 ∉ 𝐶 
 (7) 

Therefore, for crisp sets every element of d either d ∈ C or d ∉ C. It is not the same for 

fuzzy sets. Given a fuzzy set F, it is not necessary that d ∈ F, or d ∉ F. We can generalize this 

function to a membership function that assigns every d ∈ C a value from the unit interval [0,1] 

instead from the two element set {0,1}.  

The membership function 𝜇𝐹 of a fuzzy set F is a function defined as 𝜇𝐹: 𝐷 → [0,1].  

Every element 𝑑 ∈ 𝐷  has a membership degree 𝜇𝐹(𝑑) ∈ [0,1]. Thus, the fuzzy set F is 

completely determined by (8): 

𝐹 = {(𝑑, 𝜇𝐹(𝑑)) | 𝑑 ∈ 𝐷} (8) 

where D and F are continuous domains, and 𝜇𝐹 is a continuous membership function. Figure 14 

(a) and (b) shows the characteristic function of a crisp set and the membership function of a 

fuzzy set respectively.  Support of F denoted as supp(F) refers to the elements of D that have 

degrees of membership to F.  
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Figure 14 The characteristic function of a crisp set (a) and the membership function 
of a fuzzy set (b) 

Throughout this document, only fuzzy sets with convex membership functions are 

considered. A fuzzy set F is convex if and only if: 

⋁𝑥, 𝑦 ∈ 𝑋⋁𝜆 ∈ [0,1]: 𝜇𝐴(𝜆 ∙ 𝑥 + (1 − 𝜆) ∙ 𝑦) ≥ min (𝜇𝐴(𝑥), 𝜇𝐴(𝑦)) 

3.1.1 Fuzzy Inputs and Outputs   

The FLC described here uses inputs and output variables whose states variables 

are 𝑥1,  𝑥2, ⋯ ,  𝑥𝑛. Let X be a given closed interval of real numbers, a state variable  𝑥𝑖 with 

values in the fuzzy sets are fuzzy state variables, and the set of these fuzzy values are called 

term-set.  The values  𝑥𝑖 are denoted as TXi, and the j − th value of the i − th fuzzy state is 

denoted as LXij. Each LXij is defined by the membership function in (9): 

LXij = ∫ 𝜇𝑋(𝑥)/𝑥
𝑋

 (9) 

where 𝜇𝑋(𝑥)/𝑥 is the degree of membership of the crisp value 𝑥𝑖
∗ of 𝑥𝑖 to the fuzzy value LXij of 

𝑥𝑖 (Figure 15). 
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Figure 15 Degree of membership of the crisp value to the fuzzy value of the fuzzy 
state variable 

We refer to the fuzzy values LXij-1 and LXij+1 as the left and right neighbor of the fuzzy 

value LXij respectively. Also, it is required that each fuzzy value shares a certain degree of 

membership with its left and right neighbors:  

1. supp(LXij−1 ) ∩ supp(LXij ) ≠ ∅ 

2. supp(LXij ) ∩ supp(LXij+1 ) ≠ ∅ 

3. 𝜇LXij−1
(𝑥) + 𝜇LXij

(𝑥) = 1 

4. 𝜇LXij
(𝑥) + 𝜇LXij+1

(𝑥) = 1 

3.1.2 The Fuzzy State Space 

Given a fuzzy state vector 𝑥 = (𝑥1,  𝑥2, ⋯ , 𝑥𝑛)𝑇, each 𝑥𝑖 takes some fuzzy value LXi ∈ TXi. 

Therefore, a random fuzzy state vector can be written as LX = (LX1, LX2, …, LXn)T. Each fuzzy 

state variable takes its fuzzy values amongst the elements of a finite term-set; therefore, there 

is a finite number of different fuzzy state vectors, denoted as LXi (for I = 1,2,…, M). The center 

of a fuzzy region, LXi = (LX1
i, LX2

i, …, LXn
i)T defined by the crisp state vector 𝑥𝑖 =

(𝑥1
𝑖 , 𝑥2

𝑖 , ⋯ , 𝑥𝑛
𝑖 )𝑇 ∈ 𝑋𝑛, where 𝑥𝑘

𝑖  are crisp values such that 𝜇LXij
(𝑥1

𝑖 ) = 1, 𝜇LXij
(𝑥2

𝑖 ) =

1, ⋯ , 𝜇LXij
(𝑥𝑛

𝑖 ) = 1.    
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The general form of a model is given as  �̇� = 𝐟(𝐱, 𝐮), where f is a 𝑛 × 1 state vector and 

u is the 𝑛 × 1 input vector, and let 𝐮 = 𝐠(𝐱) be the control law. Then, we can estimate the 

closed loop system as �̇� = 𝐟(𝐱, 𝐠(𝐱)). 

3.2 Review of Related Literature  

Fuzzy logic has proven to be a reliable method for approximate reasoning [84] since it 

possess an easy user-interface and incorporates linguistic variables. In addition, fuzzy logic-

based models can be used for non-linear, imprecise, complex systems by implementing human 

experience, knowledge, and practice as a set of inference rules. However, fuzzy logic also 

presents some challenges when dealing with decision making within probabilistic uncertainty, 

and the automatic inclusion of fuzzy rules.  

Fuzzy set theory effectively handles the deterministic uncertainty and subjective 

information of clinical decision-making. Other decision-making approaches include neural 

networks, utility theory, statistical pattern matching, decision trees, rule-based systems, and 

model-based schemes.  Fuzzy set theory has been successfully used alone or combined with 

neural networks and expert systems to solve challenging biomedical problems in practice.  

In machine learning, knowledge acquisition from examples (clinical patient data) is the 

most common practical approach [91].  Other hybrid techniques have been used in the 

literature dealing with multiple objectives and/or criteria. Some of these hybrid techniques are 

expanded in the following paragraphs. 

Fuzzy neural networks are popular due to relative ease of application. However, they 

generally lack insight into the decision making process and similar levels of comprehensibility. 

Fuzzy multi-objective decision-making (FMODM) where a fuzzy Pareto optimal solution set is 

provided as a final solution [92], [93], is limited in that only some specific membership 

functions (i.e. triangular distribution form) are used to deal with fuzzy parameters and fuzzy 



41 
 

goals. Also, the values of objective functions are only described by crisp values, which is 

sometimes not appropriate in practice since it would be preferred to deal with a range of values 

for the objective function.  

Fuzzy decision trees  or fuzzy rule-based systems have the objective to induce decision 

procedures with discriminative, descriptive, or taxonomic bias for classification of other samples 

[91]. This follows the comprehensibility principle [94] which recommends that decision 

procedures use language and mechanisms suitable for human interpretation and understanding. 

Lastly, a fuzzy discrete event system approach to determining optimal treatment regimens was 

developed by Ying et al, 2006 [90], in which an optimal treatment is selected after finding the 

maximum possible agreement among a number of experts (physicians). However, this expert 

system requires detailed knowledge from a group of experts and cannot be generalized.  

Although fuzzy inference systems have been applied in many engineering fields, they 

have not been extensively applied for medical decision modeling. Models like Bayesian Decision 

Theory/models are appropriate for groups of patients but are complicated in application to 

individual patient factors.  

The proposed method in this research tackles limitations currently found in the fuzzy-

based models. They include (1) Decision flexibility: compared to current fuzzy rule-based 

models, the decision process can be dynamic, allowing the decision maker to change priorities 

for the rule after learning about the set of options; thus, the patient’s preferences can be 

represented as priorities in the expert system. (2) Uncertainty: referring to the imprecision 

inherent in human judgments, probabilistic characteristics may be incorporated in some 

parameters of the decision model.  
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3.3 Objectives 

· Objective 1: Develop an expert decision knowledge-based system that effectively depicts 

patient preferences and evaluate rectal cancer treatment options 

· Objective 2: Integrate patient-centered measures into a decision model that considers 

multiple criteria 

3.4 Hypotheses 

· Decision procedures implemented in the model can use language and mechanisms 

suitable for human interpretation and understanding 

· The physician and the patient can jointly use these models to compare alternative 

medical interventions and make a decision on choosing the most appropriate 

intervention for the patient. 

· The decision model is capable of incorporating weights to prioritize conflictive objectives 

for the treatment outcomes. The decision framework allows decision makers to modify 

priorities for the various criteria/objectives considered to make the selection of 

treatments. 

3.5 Fuzzy Inference System Approach 

The FDSM developed in this work is applicable for the diagnostic phase in which the 

current or future state of a person’s health status is inexact and treatment options are generally 

subject to predetermined clinical pathways and medical expertise. Subjective human decision 

making (physician’s or patient’s) play a significant role in defining the status of state. The status 

mostly likely is not crisp and neither is the transition from one state to another [90]. An 

appropriate representation of the inherent subjectivity and uncertainty in fields like medicine 

and treatment selection is provided by the fuzzy inference system theory. 
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The decision inputs used for the decision model are acquired using retrospective data 

analysis. The description of the data used and the process of rule mining are presented in 

section 3.5.4. The model results present the treatment of choice for stage II and stage III (no 

metastasis) rectal cancer patients that have not received treatment before. Three treatment 

regimens are considered as alternatives for the patient: 

1. Surgery alone (S) 

2. Radiation and Surgery, either neoadjuvant and adjuvant (RS) 

3. Observation/No treatment (NT) 

Decision making in cancer treatment is generally performed by the physician who will 

recommend a treatment based on his/her expertise.  Considerations include weighting several 

factors to increase patient chances of survival while minimizing potential adverse effects. The 

essential elements of an effective cancer treatment regimen include: 

1. Minimizing treatment toxicity and adverse effects -- this is measured in terms of toxicity 

of the treatment. 

2. Selecting a treatment that can cure or eliminate the cancer tumor -- this is measured in 

terms of the 5 yr. Survival rate of the patient.  

3. Selecting a treatment sufficiently intense increase chances of survival and reduces rate 

of recurrence -- this is measured in terms of radiosensitivity.  

A prediction model for radiation sensitivity has been developed by Torres-Roca [15], 

[35] using a gene expression classifier. Since this gene classifier is not currently being used in 

practice, and no data is available, we will estimate the impact of this factor using a sensitivity 

analysis. The theoretical framework adopted for the fuzzy logic implemented here was 

developed by Dr. Hao Ying at al. [90].  We have expanded this methodology by the inclusion of 

patient preference in the decision making process and a data driven expertise acquisition 
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method using predictive models and clinical trials results. This study does not use the estimated 

clinical features intrinsic to historical treatment regimens; instead, it personalizes theses 

estimates using patient’s characteristics. The overall methodology of this decision framework is 

summarized in Figure 16. 

Estimation of clinical 
parameters

Age
Gender
Cancer Stage
Grade
Gene expression profile
...

Definition of 
membership 

functions

Transition 
matrices and 
state vectors 
estimation

Preference 
function E(h) 

measure
(Dezzifucation)

Survival:
Low – Medium - High
Adverse events:
Minor – Moderate - Major
Efficacy:
Unlikely – Neutral - Likely

Weight vectors for 
survival (WS )
Adverse events (WA)
Efficacy (WE)

Fuzzy Inference System

E(h) for Treatment 1

E(h) for Treatment i

 

Figure 16 Fuzzy inference system approach 

3.5.1 State Transitions Matrices 

The treatment selection as presented in Table 6 is made considering three criteria: 

cause-specific survival rate (survivability), adverse events and efficacy.  

The three clinical parameters have been chosen for treatment selection (other 

parameters can be considered, but are not in the scope of this work), and each parameter has 

three levels. Three fuzzy state vectors, denoted as q1, q2, and q3 represent the state of 

survivability, adverse effects, and efficacy respectively. Survivability state vector q1 has four 

components: initial, low, medium, and high, and it is a 1 × 4 vector with the initial state being 

represented by [1 0 0 0]. Adverse events state vector q2 has four components first, second, and 

third grade, and it is a 1 × 4 vector with the initial state being represented by [1 0 0 0]. Lastly, 

efficacy state vector q3 has four components unlikely, neutral, and likely, and it is 1 × 4 vector 

with the initial state being represented by [1 0 0 0]. Therefore, if q3 = [0 0 0.2 0.8], it means 
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that the treatment is in a state with membership of 0.2 for neutral efficacy and 0.8 for likely 

efficacy. The model has 27 possible combinations (3x3x3=27) and 9 transition matrices for the 

3 regimens. 

Table 6 Decision model elements and membership functions 

Decision Criteria Category Membership Function 

Cause-specific 
Survival rate 
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Figure 17 Membership functions in terms of survival, adverse events and efficacy 

3.5.2 Membership Functions 

Semi-Gaussian functions are used to produce gradual changes of membership (Table 6) 

and have been empirically defined based on the parameters of the data used (SEER databases) 

and clinical trials for survival, adverse effects (toxicity) and efficacy. These constraints are 
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tunable to the discretion of the analyst/decision maker. The memberships functions levels and 

constrains are shown in Figure 17. 

3.5.3 Input Data  

 The Surveillance, Epidemiology, and End Results (SEER) database was used for our 

model survival calculations and analysis. According to the National Cancer Institute: ”The SEER 

Program registries routinely collect data on patient demographics, primary tumor site, tumor 

morphology and stage at diagnosis, first course of treatment, and follow-up for vital status. The 

SEER Program is the only comprehensive source of population-based information in the United 

States that includes stage of cancer at the time of diagnosis and patient survival data.” A signed 

research data agreement was approved to access these data and is included in appendix C. The 

variables available in this database are included in appendix D. 

 The data processing steps to obtain the patient cohort used in the analysis is presented 

in Figure 18. The demographic, tumor/cancer stage statistics and treatment options are 

presented in table 7, 8 and 9 respectively. 

SEER RESEARCH DATA
CASES DIAGNOSED 2000-2010

7,732,511 Cases

Colorectal Cases 238,665 Cases

Cases from 2004 to 2010 
New Staging System

148,948 Cases

Sample by stage of cancer II and 
III

36,088  Cases

 

Figure 18 Pre-modeling and knowledge extraction data processing steps 
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Table 7 Patient cohort descriptive statistics 

Patient characteristics n % 

Gender 
  

Male 18442 51.1 

Female 17646 48.9 

Race 
  

White 30198 83.68 

Black 4173 11.56 

Other (American Indian/AK Native, Asian/Pacific 
Islander) 

1595 4.42 

Unknown 122 0.34 

Marital Status 
  

Married (including common law) 19588 54.28 

Single (never married) 4504 12.48 

Widowed 7110 19.7 

Divorced 3151 8.73 

Unknown 1346 3.73 

Separated 389 1.08 

Age 
  

10-14 1 0 

15-19 17 0.05 

20-24 47 0.13 

25-29 112 0.31 

30-34 262 0.73 

35-39 515 1.43 

40-44 977 2.71 

45-49 1890 5.24 

50-54 2905 8.05 

55-59 3451 9.56 

60-64 3991 11.06 

65-69 4433 12.28 

70-74 4553 12.62 

75-79 4648 12.88 

80-84 4230 11.72 

85+ 4056 11.24 
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Table 8 Cancer and tumor stage statistics 

Cancer State n % 

Derived AJCC Stage Group, 6th ed (2004+) 
  Stage IIA 15346 42.52 

Stage IIB 2588 7.17 

Stage IIIA 2247 6.23 

Stage IIIB 9560 26.49 

Stage IIIC 6284 17.41 

Stage III NOS 63 0.17 

Grade 
   I 2409 6.68 

 II 24603 68.18 

 III 6917 19.17 

 IV 815 2.26 

Cell type not determined 1344 3.72 

 

 

Table 9 Treatment options 

Treatment n % 

Procedure   

No treatment (not recommended or refused) 551 1.53 

Surgery 29872 82.78 

Radiation and Surgery (neoadjuvant or adjuvant) 5220 14.47 

Radiation alone 445 1.23 

Reporting Source   

Hospital inpatient 35432 98.18 

Radiation Treatment Centers or Medical Oncology 
Centers  

120 0.33 

Laboratory Only (hospital-affiliated or independent) 211 0.58 

Physician’s Office/Private Medical Practitioner (LMD) 176 0.49 

Nursing/Convalescent Home/Hospice 1 0 

Other hospital outpatient units/surgery centers  148 0.41 

Insurance type   

Insured 30540 84.63 

Any Medicaid 3434 9.52 

Uninsured 1355 3.75 

Insurance status unknown 759 2.1 

 

 



50 
 

Cause-specific survival (DTH_CLASS variable in SEER database) was used as the 

dependent variable for the development of a logistic regression model. This variable designates 

if the person died of cancer for cause-specific survival. DTH_CLASS = 1 if alive or dead due to 

other causes, and DTH_CLASS = 0 if dead due to colorectal cancer.  The dataset was split into 

an 80% training data and 20% validation data. A stepwise process was performed to select the 

variables in the model (0.05 significant level for entry and exit at each step). All final variables 

are significant in the model as presented in Table 10. Performance was measured in terms of 

the area under the curve (auc) for training and validation data (auc= 0.741 in the training data 

and 0.71 in the validation data). The values for the parameter estimates are included in the 

appendix E. 

Table 10 Logistic regression chi-square values for selected variables 

Type 3 Analysis of Effects 

Effect DF Wald 

Chi-Square 

Pr > ChiSq 

Treatment type 2 199.6288 <.0001 

Marital Status 5 48.2899 <.0001 

Race 3 39.7533 <.0001 

Gender 1 13.3585 0.0003 

Age 15 643.4756 <.0001 

AJCC Stage 5 854.2814 <.0001 

Grade 4 152.7802 <.0001 

Insurance 3 48.8115 <.0001 

 

Results from the logistic regression suggest that higher chances of survival are 

associated with treatments where radiation and surgery are combined (either neoadjuvant or 

adjuvant), compared to surgery alone. However, patients receiving no treatment were 4.76 

times more likely of no surviving than receiving surgery alone. Women were 1.16 more likely to 



51 
 

survive than men. Patients in cancer stages 2B, 3B and 3C has the least chances of survival 

compared to patient in earlier stages. Finally, cancer tumor with grades 3 and 4 were 0.6 times 

more likely to be associated with higher survival rates. Odds ration estimates are presented in 

Table 11. 

Table 11 Odds ratio estimates for logistic regression 

Odds Ratio Estimates 

Effect Point Estimate 

Treatment: Observation vs Surgery 0.211 

Treatment: Radiation/surgery vs 
Surgery 

1.05 

Gender: F vs M 1.16 

Stage: D_AJCC_S 2B vs 2A 0.333 

Stage: D_AJCC_S 3A vs 2A 0.934 

Stage: D_AJCC_S 3B vs 2A 0.425 

Stage: D_AJCC_S 3C vs 2A 0.233 

Stage: D_AJCC_S 3N vs 2A 0.483 

Grade: 2 vs 1 0.997 

Grade: 3 vs 1 0.597 

Grade: 4 vs 1 0.589 

Grade: N vs 1 0.69 

Insurance: Medicaid vs Insured 0.677 

Insurance: Uninsured vs Insured 0.843 

Insurance: Unknown vs Insured 1.301 

 

In this study adverse events are measured by the Toxicity. According to the NCI, 

Toxicity grade ranges from one to five, where 1 = Mild, with no or mild symptoms; no 

interventions required; 2 = Moderate side-effects; 3 = Severe but not life-threatening; 

limitation of patient's ability to care for him/herself; 4 = Life Threatening or Disabling side-
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effects; 5 = Death related to adverse event. For example, the acute morbidity criteria used to 

grade toxicity from radiation therapy in the gastro-intestinal area is included in Table 12. 

Table 12 Criteria used to grade toxicity from radiation therapy. Content from the 
RTOG Acute Radiation Morbidity Scoring Criteria. 

  1 2 3 4 5 

Lower 

gastro-
intestinal. 

No 
change 

· Increased 
frequency or 
change in quality 
of bowel habits 

not requiring 
medication 

· Rectal discomfort 
not requiring 
analgesics 

· Diarrhea requiring 
parasympatholytic 
drugs  

· Mucous discharge 

not necessitating 
sanitary pads 

· Rectal or abdominal 
pain requiring 
analgesics 

· Diarrhea 
requiring 
parenteral 
support 

· Severe mucous or 
blood discharge 
necessitating 
sanitary bags 

· Abdominal 
distention  

· Acute or 
subacute 
obstruction, 
fistula or 
perforation  

· GI bleeding 

requiring 
transfusion 

· Abdominal pain 
or tenesmus 
requiring tube 
decompression 
or bowel 
diversion 

 

Given any given patient, whose clinical characteristics and predicted outcomes per 

treatment have been estimated based on their individual characteristics, the transition matrices 

are calculated using the membership functions defined. For example, consider the case where 

the estimated/predicted clinical outcomes of one patient are given as shown in Table 13. The 

transition matrices are calculated by determining the degree of membership of the clinical 

parameters for survivability, adverse events and efficacy. For the example, the transition 

matrices for survivability and the three treatment options are given in Table 14. 

The probabilities of transferring from the initial state (no previous cancer treatment) to 

the medium and high survivability state are 0.839 and 0.161 respectively (Table 14). This study 

does not consider patients that were previously treated for cancer, otherwise the low, medium 

and high row would contain non-zero probabilities. The other six transition probabilities are 

estimated in the same way and can be found in appendix F.  



53 
 

The state factors are calculated for the initial state after the first round of surgery: 

[max(0,0,0,0) max(0.839,0,0,0) max(0.161,0,0,0)] = [0 0.839 0.161]. Thus, the patient state 

after surgery is in 0.839 in a “medium survivability” state and 0.0161 in a “high survivability” 

state. The state vectors for all treatment options and clinical parameters are given in Table 15. 

Table 13 Example of predicted patient clinical parameters 

  
Survivability Adverse Events Efficacy 

Option 1 Surgery alone 75 30 60 

Option 2 Radiation and Surgery 85 40 70 

Option 3 Observation 50 10 10 

 

Table 14 Survival transition matrices  

 
initial low med high 

 

Surgery alone 

0 0.000 0.839 0.161 initial 

0 0 0 0 low 

0 0 0 0 med 

0 0 0 0 high 

 
initial low med high 

 

Radiation and Surgery 

0 0.000 0.042 0.958 initial 

0 0 0 0 low 

0 0 0 0 med 

0 0 0 0 high 

 
initial low med high 

 

Observation 

0 0.994 0.004 0.000 initial 

0 0 0 0 low 

0 0 0 0 med 

0 0 0 0 high 
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Table 15 State vectors for all treatment options and clinical parameters 

Survivability 

    

 

initial low med high 

Surgery alone 0.0000000 0.0003983 0.8389319 0.1606699 

Radiation and Surgery 0.0000000 0.0000000 0.0420877 0.9579123 

Observation 0.0000000 0.9936665 0.0037032 0.0000000 

Adverse events 
    

 
initial Minor Moderate Major 

Surgery alone 0.0000000 0.1180479 0.8722622 0.0096900 

Radiation and Surgery 0.0000000 0.0003918 0.2912250 0.7083832 

Observation 0.0000000 0.9722278 0.0277722 0.0000000 

Efficacy 
    

 

initial unlikely neutral likely 

Surgery alone 0.0000000 0.0154773 0.9845175 0.0000052 

Radiation and Surgery 0.0000000 0.0000052 0.9845175 0.0154773 

Observation 0.0000000 1.0000000 0.0000000 0.0000000 

 

3.5.4 Measure of Preference 

A measure of preference needs to be created for the patient or the physician to compare 

and select from different regimens. The function, E(h) in equation (10), is defined as the 

weighted average of the new state vectors: 

𝐸(ℎ) = 𝛼 ∙ 𝑊𝑆 + 𝛽 ∙ 𝑊𝐴 + 𝛾 ∙ 𝑊𝐸 (10) 

where 𝑊𝑆, 𝑊𝐴 and 𝑊𝐸 are the weight vectors for survival, adverse effects and treatment 

efficacy. The decision maker will assign a weight factor to each clinical parameter, and based on 

their clinical profile, the treatment with the highest 𝐸(ℎ) will be selected. Consider the 

preference scenarios on Table 16 for the case given in Table 13. For instance, given the state 

vectors from Table 15 and preference weights in Table 16,  𝐸(ℎ) for scenario 4 and surgery as 

treatment option is calculated as follows: 

𝐸(ℎ) = [ 0 0 0.839 0.161][0 0.2 0.6 0.1]𝑇 + [0 0.118 0.872 0.010 ][0 1 0 0 ]𝑇

+ [ 0 0.015 0.985 0][0 0.2 0.6 0.1]𝑇 = 0.279 
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Table 16 Simulation of various preference scenarios 

Scenario 𝑾𝑺 𝑾𝑨 𝑾𝑬 
Decision preference and 

description 

1 [ 0 0 0 1 ] [ 0 1 0 0 ] [ 0 0 0 1 ] 

Ideal scenario: all weight 

assigned to high survival, 
having minor adverse 

effects, and likely treatment 
efficacy. 

2 [ 0 0 0 1 ] [ 0 1 0 0 ] [ 0 0 0.5 0.5 ] 

All weight assigned to high 

survival, having minor 
adverse effects, and equal 

preference on neutral and 
likely treatment efficacy. 

3 [ 0 0 0 1 ] [ 0 0.5 0.5 0 ] [ 0 0 0 1 ] 

All weight assigned to high 

survival, having same 
preference on minor or 

moderate adverse effects, 
but likely treatment efficacy. 

4 [ 0 0.25 0.6 0.15] [ 0 1 0 0 ] [ 0 0.25 0.6 0.15] 

Determining treatment 

decision for a patient 
preferring to have the least 

adverse effects, and medium 
to high survival, and neutral 

to likely treatment efficacy. 

  
 

The preference measure is similarly calculated for all treatment options and results are 

presented in Figure 19.  

The results obtained in Figure 19 are dependent on the clinical parameters of the patient 

used as example (Table 13), given a different patient with the same preferences levels, these 

results will differ depending on the predisposition to treatment success of each patient.  

In scenario 1, the two preferred treatment options are radiation plus surgery or 

observation (no treatment). This is a result of the patient’s 100% preference of choosing a 

treatment with minor adverse effects, therefore a high level of preference to not perform any 

treatment. However, radiation and surgery have a slightly higher preference level since the 

patient also chose to have a treatment with high chances of survival and likely treatment 

efficacy.  
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Figure 19 Results of simulation of various preference profiles 

In scenario 2 and 3, radiation and surgery are selected as the preferred treatment 

options. This is the result of having a high preference of a treatment that has high survival 

chances, minor to moderate adverse effects and neutral to likely efficacy. 

In scenario 4, observation was chosen as the treatment choice for a patient that 

strongly prefers a treatment with minor adverse effects, moderate survival chances and 

treatment efficacy.  

Other scenarios and treatment selections based on minor adverse effects and maximum 

survival are presented in Figure 20 and Figure 21. 

1 2 3 4

Observation 0.972 0.972 0.500 1.373

Radiation and Surgery 0.974 1.458 1.119 0.714

Surgery alone 0.279 0.771 0.656 1.231

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

E(
h

)

Measure of Preference for Four scenarios
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Figure 20 Sensitivity analysis based for survival 

 

Figure 21 Sensitivity analysis based for efficacy 
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3.5.5 Sensitivity Analysis for Radiosensitivity 

One of the main objectives of this work is to assess the inclusion of treatment efficacy in 

terms of radiosensitivity (chapter 2). For this assessment, a sensitivity analysis was conducted 

to evaluate the treatment selection change when this criterion is included in the decision 

making process. As treatment efficacy can have values from 0 to 100. A value of 0 represents a 

patient that is completely radio-resistant (therefore resistant to radiation treatment), and a 

value of 100 a patient is completely radiosensitive (therefore sensitive to radiation treatment). 

For the example in this chapter, the analysis consisted on determining the treatment 

selected when the treatment efficacy (radiosensitivity) increased from 0 to 100. Results are 

presented in Figure 22 (1: surgery; 2: radiation and surgery; and 3: observation). 

 

 

Figure 22 Sensitivity analysis for various treatment efficacy levels 
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3.6 Discussion 

This study contributes to the arena of patient centered decision-making, using 

knowledge extracted from available data to guide patient and physician treatment selection. 

Although the expertise used in this model is acquired from current cancer practices in the 

United States and historical data over 6 years, the decision models need to be updated to 

reflect current values for cause-specific survival rate and toxicity. Knowledge is extracted from 

clinical trials results for toxicity for various treatments, and from the SEER data (2004-2010) 

from the National Cancer Institute to predict the patient cause-specific survival rate. A limitation 

for this study is the inclusion/updating the expertise. The updating of decision rules and other 

parameters can represent a complete redesign of the entire system.  

Decision making is normally physician-dependent, and this study explores the inclusion 

of patient preferences in the decision making process. This can be of value moving forward the 

initiatives to make the patient the center of all process improvement and practices in the 

healthcare environment (PCORI mission).  

At the time when this dissertation was written, radiosensitivity still has not been 

implemented in current medical practices, therefore, the sensitivity analysis performed to 

evaluate the impact of this clinical parameter is innovative and valuable. Current efforts are 

being made to make radiation sensitivity (radiosensitivity) to be part of current oncology 

practices. This would be of great benefit to better guide and customize treatment selection to 

each patient’s individual characteristics. As it was presented in Figure 22, the selection of 

treatment was significantly influenced by this information. Based on the case given, radiation 

combined with surgery was only the preferred treatment choice when the value for radiation 

sensitivity was over 70%. 
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CHAPTER 4: CONCLUSIONS AND FUTURE RESEARCH 

This research is relevant to the continuously evolving area of personalized medicine, 

specifically by: 

· Developing decision models that allow patients to assess alternative options for 

treatment and make informed decisions based on their preferences and characteristics  

· Advancing fundamental understanding of cancer biology and clinical oncology that can 

promote the prevention, detection, and treatment of cancer diseases 

Genomic patient data although existent, it is rarely used in clinical settings for real-life 

patient care [34].  However, given the research interest and on-going research growth 

associated to this area, it is necessary to develop decisions models that consider individual 

genomic information and that are ready for adoption and transition once this information 

becomes readily available. 

Based on the current limitations that found applicable to fuzzy decision frameworks, this 

research can potentially be of transformative nature. Specifically the intellectual merit can be 

summarized as follows:  

1. Interdisciplinary research by integrating concepts from the fields of artificial intelligence, 

medicine, biology, biostatistics, economics, and mathematical programming to develop a 

decision aid approach whose solution are beyond the scope of a single area of research 

practice, and with an expected high practical value 

2. Solution approach that is specific to modeling doctor’s expertise and human preferences 

in the evaluation of alternatives 
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3. The model integrated criteria is relevant to cancer treatment selection, but it can be 

applicable to other scenarios where conflictive objectives are being considered 

4. Comprehensibility principle: the decision model allows the use of language and 

mechanisms suitable for human interpretation and understanding. The fuzzy component 

allows us to capture concepts with graduated characteristics 

4.1 Conclusions 

This study provides clinical support for a practical and novel assay to predict tumor 

radiosensitivity. Due to the difference in experimental measurement in DNA microarray gene 

expression values among different cohorts, calibration methods should be created to 

standardize validation across different sites. Further testing of this technology in larger clinical 

populations is supported. 

The proposed method in this research approaches limitations currently found in the 

fuzzy-based models: (1) Decision flexibility: compared to current fuzzy rule-based models, the 

decision process for this approach can be dynamic, allowing the decision maker to change 

priorities for the rule and be presented with a set of options; thus, the patient’s preferences can 

be represented as priorities in the expert system. (2) Uncertainty: referring to the imprecision 

inherent in human judgments, uncertainty may be incorporated in some parameters of decision 

model.  

4.2 Future Research  

The predictive models developed in this research are predicting radiosensitivity with 

acceptable performance. These models are also capable to discriminating between responders 

and non-responders when the models were validated against clinical data. However, a random 

forests model is considered a black box machine learning algorithm. This work will continue on 

exploring methods that can help us understand the patterns in the algorithm of how genes 
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interact with each other. This can be achieved by the use of sensitivity analysis that will 

“unmask” the functions that associate the input variables with the response variables (which is 

the case for random forest, support vector machines and neural networks). 

The fuzzy decision framework presented in this research only considers patients that 

have not received cancer treatment before, but it can expanded to patients in other treatment 

states (e.g. after radiation therapy or patients with recurring cancers) where decision-making is 

more complex. Also, the decision model would benefit of further research in the clinical 

parameters used as input in the models; especially for adverse effects (as an indicator of quality 

of life). Finally, the decision models should also include confidence intervals for the clinical 

parameters to account for the uncertainty of the clinical estimates used. 
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Appendix A Rectal Cancer Detection and Staging 

Risk Factors
[age] Being aged 40 or older.
[Genetics] 
- Having certain hereditary conditions, such as familial adenomatous polyposis (FAP) and 
hereditary nonpolyposis colon cancer (HNPCC or Lynch syndrome).
- Having a parent, brother, sister, or child with a history of colorectal cancer or polyps.
 - Having a personal history of any of the following: colorectal cancer; Polyps (small pieces of 
bulging tissue) in the colon or rectum; Cancer of the ovary, endometrium, or breast.

detect and 
diagnose rectal 

cancer.

Physical exam and history 
Digital rectal exam (DRE) 
Proctoscopy 
Colonoscopy 
Biopsy 
Reverse-transcription polymerase chain reaction (RT-PCR) test 
Immunohistochemistry study 
Carcinoembryonic antigen (CEA) assay s

prognosis and 
treatment 

options

The stage of the cancer (whether it affects the inner lining of the rectum only, involves the whole rectum, 
or has spread to lymph nodes, nearby organs, or other places in the body).
- Whether the tumor has spread into or through the bowel wall.
- Where the cancer is found in the rectum.
- Whether the bowel is blocked or has a hole in it.
- Whether all of the tumor can be removed by surgery.
- The patient’s general health.
- Whether the cancer has just been diagnosed or has recurred (come back).

Staging

Chest x-ray
CT scan (CAT scan)
MRI (magnetic resonance imaging)
Endoscopic ultrasound (EUS)
Carcinoembryonic antigen (CEA) assay
PET scan (positron emission tomography scan) 

Stage 0

Stage I

Stage II

Stage III

Stage IV

abnormal cells are found in the mucosa (innermost layer) of the rectum wall. These abnormal 
cells may become cancer and spread. Stage 0 is also called carcinoma in situ.

cancer has formed in the mucosa (innermost layer) of the rectum wall and has spread to the submucosa 
(layer of tissue under the mucosa). Cancer may have spread to the muscle layer of the rectum wall.

Stage IIA: Cancer has spread through the muscle layer of the rectum wall to the serosa (outermost layer) of the rectum wall.
Stage IIB: Cancer has spread through the serosa (outermost layer) of the rectum wall but has not spread to nearby organs.
Stage IIC: Cancer has spread through the serosa (outermost layer) of the rectum wall to nearby organs.

In stage IIIA: Cancer may have spread through the mucosa (innermost layer) of the rectum wall to the submucosa (layer of tissue under 
the mucosa) and may have spread to the muscle layer of the rectum wall. Cancer has spread to at least one but not more than 3 nearby 
lymph nodes or cancer cells have formed in tissues near the lymph nodes; or Cancer has spread through the mucosa (innermost layer) of 
the rectum wall to the submucosa (layer of tissue under the mucosa). Cancer has spread to at least 4 but not more than 6 nearby lymph 
nodes.

In stage IIIB: Cancer has spread through the muscle layer of the rectum wall to the serosa (outermost layer) of the rectum wall or has 
spread through the serosa but not to nearby organs. Cancer has spread to at least one but not more than 3 nearby lymph nodes or cancer 
cells have formed in tissues near the lymph nodes; or Cancer has spread to the muscle layer of the rectum wall or to the serosa (outermost 
layer) of the rectum wall. Cancer has spread to at least 4 but not more than 6 nearby lymph nodes; or Cancer has spread through the 
mucosa (innermost layer) of the rectum wall to the submucosa (layer of tissue under the mucosa) and may have spread to the muscle 
layer of the rectum wall. Cancer has spread to 7 or more nearby lymph nodes.

In stage IIIC: Cancer has spread through the serosa (outermost layer) of the rectum wall but has not spread to nearby organs. Cancer has 
spread to at least 4 but not more than 6 nearby lymph nodes; or
Cancer has spread through the muscle layer of the rectum wall to the serosa (outermost layer) of the rectum wall or has spread through 
the serosa but has not spread to nearby organs. Cancer has spread to 7 or more nearby lymph nodes; or
Cancer has spread through the serosa (outermost layer) of the rectum wall and has spread to nearby organs. Cancer has spread to one or 
more nearby lymph nodes or cancer cells have formed in tissues near the lymph nodes.

Rectal Cancer 
Detection and 

Staging

Stage IVA: Cancer may have spread through the rectum wall and may have spread to nearby organs or lymph nodes. Cancer has spread to one 
organ that is not near the rectum, such as the liver, lung, or ovary, or to a distant lymph node.

Stage IVB: Cancer may have spread through the rectum wall and may have spread to nearby organs or lymph nodes. Cancer has spread to 
more than one organ that is not near the rectum or into the lining of the abdominal wall.

 

Figure A.1 Rectal cancer detection and staging 
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Appendix B Figure Permission 

Permission to use figure 1 was provided by Terese Winslow. 

terese.winslow@mindspring.com to use in this dissertation on May 17/2014 

 

I have created all other figures for this manuscript, and no other material is being used 

or published elsewhere. 
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Appendix C SEER Data Use Agreement 

The data use agreement was approved on Feb 5, 2014.  
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Appendix D SEER Database Variables Used 

Table D.1 SEER database variables used 

VARIABLE NAME VARIABLE DESCRIPTION 

CS_SSF25  CS Site-Specific Factor 25  

D_AJCC_T  Derived AJCC T  

D_AJCC_N  Derived AJCC N  

D_AJCC_M  Derived AJCC M  

D_AJCC_S  Derived AJCC Stage Group  

CS0204SCHEMA  CS Schema v0204 

CASENUM  Patient ID number 

REG  Registry ID  

MAR_STAT  Marital Status at DX  

RACE  Race/Ethnicity  

NHIA  NHIA Derived Hispanic Origin  

SEX  Sex  

AGE_DX  Age at diagnosis  

SEQ_NUM  Sequence Number--Central  

DATE_mo  Month of diagnosis  

DATE_yr  Year of diagnosis  

SITEO2V  Primary site  

HISTO2V  Histology (92-00) ICD-O-2  

BEHO2V  Behavior (92-00) ICD-O-2 

HISTO3V  Histologic Type ICD-O-3  

BEHO3V  Behavior Code ICD-O-3  

GRADE  Grade  

REPT_SRC  Type of Reporting Source  

REC_NO  SEER Record number  

AGE_REC  Age Recode <1 Year olds  

HISTREC  Histology Recode--Broad Groupings  

BRAINREC  Histology Recode--Brain Groupings  

NUMPRIMS  Number of primaries  

SRV_TIME_MON  Survival months  

SRV_TIME_MON_FLAG  Survival months flag  

INSREC_PUB  Insurance Recode (2007+)  

RAC_RECA  Race recode (White, Black, Other)  

RAC_RECY  Race recode (W, B, AI, API  

NHIAREC  Origin Recode NHIA(Hispanic,Non-Hisp)  

CS_SIZE  CS Tumor size (from 2004) 

CS_EXT  CS Extension  

CS_NODE  CS Lymph Nodes  

CS_METS  CS Mets at DX  

SURGPRIM  RX Summ--Surg Prim Site  

SURGNODE  RX Summ--Reg LN Examined  

NO_SURG  Reason for no surgery  

RADIATN  RX Summ--Radiation  

RAD_SURG  RX Summ--Surg/Rad Seq  

SCOPE  RX Summ--Scope Reg LN Sur 

SURGOTH  RX Summ--Surg Oth Reg/Dis  
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Appendix E Parameter Estimates for the Logistic Regression 

Table E.1 Parameter estimates for the logistic regression 

Parameter  DF Estimate Standard Error Wald Chi-Square Pr > Ch-sqChiSq 

Intercept  1 2.3291 10.1799 0.0523 0.819 

TREATment No 1 -1.0536 0.0749 197.765 <.0001 

TREATment RS 1 0.551 0.0505 118.921 <.0001 

MAR_STAT D 1 -0.1059 0.0661 2.5677 0.1091 

MAR_STAT E 1 0.2827 0.1703 2.7575 0.0968 

MAR_STAT M 1 0.1253 0.0478 6.8685 0.0088 

MAR_STAT S 1 -0.1908 0.059 10.4572 0.0012 

MAR_STAT W 1 -0.1511 0.0544 7.6988 0.0055 

RAC_RECA B 1 -0.4475 0.1102 16.5006 <.0001 

RAC_RECA O 1 0.0137 0.1226 0.0125 0.9111 

RAC_RECA U 1 0.5526 0.3014 3.3617 0.0667 

SEX F 1 0.0742 0.0203 13.3585 0.0003 

AGE_REC 3 1 6.0071 152.7 0.0015 0.9686 

AGE_REC 4 1 0.5897 10.2268 0.0033 0.954 

AGE_REC 5 1 0.2508 10.1917 0.0006 0.9804 

AGE_REC 6 1 -0.0172 10.1853 0 0.9987 

AGE_REC 7 1 0.0268 10.1821 0 0.9979 

AGE_REC 8 1 -0.2733 10.1804 0.0007 0.9786 

AGE_REC 9 1 0.0385 10.1801 0 0.997 

AGE_REC 10 1 -0.1542 10.1796 0.0002 0.9879 

AGE_REC 11 1 0.0351 10.1795 0 0.9972 

AGE_REC 12 1 -0.3029 10.1794 0.0009 0.9763 

AGE_REC 13 1 -0.5177 10.1794 0.0026 0.9594 

AGE_REC 14 1 -0.5622 10.1794 0.003 0.956 

AGE_REC 15 1 -0.8548 10.1794 0.0071 0.9331 

AGE_REC 16 1 -1.1174 10.1794 0.012 0.9126 

AGE_REC 17 1 -1.3787 10.1794 0.0183 0.8923 

D_AJCC_S 2A 1 0.7012 0.0727 93.1459 <.0001 

D_AJCC_S 2B 1 -0.3976 0.0806 24.34 <.0001 

D_AJCC_S 3A 1 0.6333 0.1062 35.5295 <.0001 

D_AJCC_S 3B 1 -0.1534 0.0714 4.6129 0.0317 

D_AJCC_S 3C 1 -0.7567 0.0725 109.074 <.0001 

GRADE 1 1 0.2838 0.072 15.5262 <.0001 

GRADE 2 1 0.2804 0.0387 52.5588 <.0001 

GRADE 3 1 -0.2316 0.0441 27.6239 <.0001 

GRADE 4 1 -0.2451 0.0889 7.6087 0.0058 

INSREC_PUB I 1 0.0743 0.0503 2.1852 0.1393 

INSREC_PUB M 1 -0.3154 0.0605 27.1385 <.0001 

INSREC_PUB U 1 -0.096 0.0853 1.2668 0.2604 
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Appendix F Transition Probabilities for Adverse Effects and Efficacy 

Table F.1 Transition probabilities for adverse effects and efficacy 

 Adverse Effects 
    Surgery alone 30 
    Radiation and Surgery 40 
    Observation 10 
    

 
initial Minor Moderate Major 

 

Surgery alone 

0 0.118 0.872 0.010 initial 
0 0 0 0 first 
0 0 0 0 second 
0 0 0 0 third 

 
initial Minor Moderate Major 

 

Radiation and Surgery 

0 0.000 0.291 0.708 initial 
0 0 0 0 first 
0 0 0 0 second 
0 0 0 0 third 

 
initial Minor Moderate Major 

 

Observation 

0 0.972 0.028 0.000 initial 
0 0 0 0 first 
0 0 0 0 second 
0 0 0 0 third 

  
Treatment Efficacy 

    Surgery alone 60 
    Radiation and Surgery 70 
    Observation 10 
    

 
initial low med high 

 

Surgery alone 

0 0.015 0.985 0.000 initial 
0 0 0 0 unlikely 
0 0 0 0 neutral 
0 0 0 0 likely 

 
initial unlikely neutral likely 

 

Radiation and Surgery 

0 0.000 0.985 0.015 initial 
0 0 0 0 unlikely 
0 0 0 0 neutral 
0 0 0 0 likely 

 
initial unlikely neutral likely 

 

Observation 

0 1.000 0.000 0.000 initial 
0 0 0 0 unlikely 
0 0 0 0 neutral 
0 0 0 0 likely 

 

 

 


	A Decision Support Model for Personalized Cancer Treatment
	Scholar Commons Citation

	tmp.1442320230.pdf.7hE5S

