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ABSTRACT 
 

Objective: The purpose of this study was to assess the influence of three single 

nucleotide polymorphisms (SNP) previously associated with Alzheimer’s disease on 

specific domains of cognition, when controlling for Apolipoprotein E gene (APOE), in a 

sample of individuals with Alzheimer’s disease. Methods: The data were drawn from 

the Alzheimer’s Disease Neuroimaging Initiative database, a comprehensive, 

longitudinal database of controls, persons with mild cognitive impairment, and persons 

with mild Alzheimer’s disease. Each subject has a full neuropsychological assessment, 

neuroimaging, genetic sequencing, and physical evaluation. For the purposes of this 

study, individuals were selected based on the presence of the three SNPs of interest: 

CR1 (rs3818361_T), CLU (rs11136000_T), and PICALM (rs3851179_A). Each SNP 

was then measured against the available tests of the ADNI neuropsychological battery 

that measured immediate and long delay memory, semantic fluency, and confrontation 

naming. Results: Only the CR1 SNP (rs3818361_T) had significant findings. The 

presence of the CR1 SNP associated with lower performance on logical memory recall 

total score, AVLT immediate recall trials 2 and 4, AVLT delayed recall, and 

confrontation naming in the 12-month control group. Logical memory and AVLT delayed 

recall were also negatively associated with CR1 in the 12-month AD case group. 

Discussion: These results support previous findings that the CR1 SNP rs3818361_T is 

a risk factor for cognitive impairment in individuals with and without AD. Such findings 
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can aid in the earlier detection of Alzheimer’s disease, risk for domain specific cognitive 

impairment, and novel targets for personalized pharmacotherapy. 
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CHAPTER ONE: 

INTRODUCTION 

Genetic markers are increasingly becoming an area of interest in the translational 

science community. This interest stems from the potential that genetic markers have for 

the early detection of a multitude of diseases and disorders; the use of that information 

in determining the pathophysiological etiologies; and the potential therapeutic 

intervention targets of serious, high impact diseases such as Alzheimer’s disease (AD) 

and other forms of dementia (Ramanan & Saykin, 2013). Currently, the greatest known 

genetic risk factor for sporadic late-onset (after age 65) AD is the APOE gene. APOE 

has three allelic variations, ε2, ε3, and ε4, with the ε4 variant conferring the greatest risk 

for development of AD. However, this polymorphism does not independently predict 

disease onset in all cases, and can be present in non-demented individuals 

(Bagyinszky, Youn, An, & Kim, 2014).  

Genome Wide Associations Studies (GWAS) have become an effective method 

of surveying entire genomes for common genetic variants within disease populations. 

From these studies, various single nucleotide polymorphisms (SNPs) have been 

identified as having significant association with disease onset and risk. However, these 

SNPs alone only contribute a small fraction of the overall risk for onset and must be 

assessed in concert with other variables, such as combined effects of other genetic 

variants and the influence of environmental factors (Ertekin-Taner, 2011).  Because the 

association of these SNPs with disease is garnered from massive, non-hypothesis 
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driven association studies, it is important to measure and assess phenotypes that may 

be affected by these polymorphisms and identify clinical risks that stem from these 

mutations (Ertekin-Taner, 2011). 

Support for Genes of Interest 

The European Alzheimer’s Disease Initiative (EADI) conducted a GWAS of 

537,029 SNPs in a sample of 2032 AD subjects, and 5328 controls and found 

significant negative association with the complement receptor type 1 (CR1) gene and a 

protective association for the clusterin (also referred to as apolipoprotein J; CLU) gene 

(Lambert et al., 2009). The Genetic and Environmental Risk in Alzheimer’s Disease 

(GERAD) consortium cross validated the findings of the EADI in a sample of 3941 

cases, 7848 controls, and analyzed 529,218 SNPs where they found significance for 

CLU as well as the phosphatidylinositol binding clathrin assembly protein (PICALM) 

gene (Harold et al., 2009). In a meta-analysis of EADI, GERAD, and the Cohort for 

Heart and Aging Research in Genomic Epidemiology (CHARGE; combined case 

sample of 8371 and control sample of 28,174) the attributable risk for Caucasians in 

CR1, CLU, and PICALM were approximated as 4%, 9%, and 9%, respectively (Seshadri 

et al., 2010). The data on associations of CR1, CLU, and PICALM with AD is variable in 

different ethnicities. In Chinese samples CR1 (Zhang et al., 2010) and CLU (Yu et al., 

2010) have been associated with AD. No association has been found in African 

Americans, Hispanics, or Arabs, but studies assessing these populations have been 

regarded as underpowered (Lambert & Amouyel, 2011). 

Through databases such as the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI), SNPs that have shown association with AD in other GWAS samples are now 
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being assessed in well controlled, longitudinal cohorts. Of relevance to this study are 

three SNPs in three genes shown to be present in AD cohorts: CR1, CLU, and PICALM 

(Harold, et al., 2009; Lambert, et al., 2009). These genes are of particular relevance, as 

they are known to associate with risk, or protection from, cognitive decline in carriers of 

APOE ε4, and are implicated in the clearance of Aβ deposits in the central nervous 

system. Each of these genes and their actions are reviewed below. 

CR1 

The gene CR1 is located on chromosome 1 and codes for the complement 

component (3b/4b) receptor 1, a transmembrane glycoprotein that is implicated in 

immune and glial-meditated inflammatory response and phagocytosis.  The protein CR1 

is a cell-surface receptor that has been found to potentially be involved in the clearance 

of amyloid and apoptotic cells (Wyss-Coray et al., 2002). CR1 expression in neuronal 

cells are low, and found most in the choroid plexus, while outside of the central nervous 

system CR1 is expressed most frequently in erythrocytes. Erythrocytes, via the CR1 

receptor, have been found to effectively sequester peripheral Aβ42 particles and assist 

in its clearance, a function that is found to be impaired in individuals with AD (Rogers et 

al., 2006). CR1 is also expressed in the Kolmer cells of the choroid plexus, linking it to 

CSF exchange with brain cells, and the introduction of leucocytes and CSF antigens, 

factors that can link AD with immune response to Aβ (Lambert & Amouyel, 2011).  

CR1 has been linked to AD through several GWAS studies where the presence 

of CR1 risk SNPs in APOE ε4 carriers resulted in a greater rate of decline in cognitive 

function in previously non-demented subjects secondary to increase amyloid deposition 

in brain cells (Hazrati et al., 2012). However, the influence of various CR1 alleles 
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confers different effects on amyloid load. Thambisetty and colleagues (Madhav 

Thambisetty et al., 2013) found carriers of CR1 SNP rs3818361_A, considered higher 

for disease risk, have lower measures of brain amyloid compared to non-carriers. This 

would seem to be in contradiction to the understood pathophysiology of AD, however as 

Thambisetty and colleagues note, modest amyloid deposition may be evidence of an 

adaptive immune response to the onset of disease. In a meta-analysis of current CR1 

risk allele association studies, Luo, et al (2014) tested known studies of CR1 predictive 

risk for AD onset. SNPs rs6656401 and rs3818361 were found to be highly significant 

predictors of AD susceptibility in Caucasians and Asian populations. Specifically of 

interest to this study, the T allele of rs3818361 conferred a greater risk for AD onset 

then the C allele (Luo et al., 2014).  

CLU 

The gene CLU is located on chromosome 8, codes for clusterin, and has been 

associated with the clearance of Aβ (particularly the highly toxic Aβ42), reduction of 

excessive inflammation and apoptosis, and clearance of neuronal debris (Pedraza et 

al., 2013). The CLU protein is expressed in great abundance in the central nervous 

system, and like APOE is an apolipoprotein (DeMattos et al., 2004). Expression levels 

of CLU in mRNA are greater in AD subjects compared to controls (M. Thambisetty et 

al., 2010). Associations have been assessed between concentrations of clusterin in 

blood plasma and CSF, and rates of cognitive decline in AD. Thambistetty and 

colleagues found that higher CSF clusterin concentrations correlated with greater 

endorhinal cortex and medial temporal lobe atrophy in AD, and to lesser extent, in 

patients with MCI. Higher blood plasma clusterin levels were also linked to lower Mini 
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Mental State Exam (MMSE) scores. Patients that had rapidly advancing cognitive 

impairment also exhibited higher clusterin concentration levels compared to slower 

advancing patients. There were no differences found between APOE ε4 carriers and 

non-carriers (Thambisetty, 2010). 

Allelic variations of rs11136000 confer differing levels of risk and functional 

consequences. The T allele has had split risk presentations. (Mengel-From et al., 2013) 

reported a greater rate of cognitive decline for a longitudinal Danish cohort T allele 

carriers, but subsequently found better cognitive composite score performance for T 

carriers then non-carriers in a separate Danish cohort, which they attributed to 

regression to the mean with increased age.  

PICALM 

The gene PICALM encodes for phosphatidylinositol binding clathrin assembly 

protein. It is primarily expressed in the endothelium of blood vessel walls, and like CR1 

is not found in high concentration in neurons. Thus PICALM has been hypothesized to 

participate in the transport Aβ across the blood brain barrier and into the peripheral 

blood stream (Lambert & Amouyel, 2011). PICALM expression association with AD is 

only found to be significant in white APOE ε4 carriers (Jun et al., 2010), and these 

results confirmed in another cohort by Hazrati and colleagues in (2012). The data on 

PICALM risk have been mixed, showing both protective and risky effects for the onset of 

AD. Meta-analysis of rs3851179 has shown risk for onset of AD in Caucasian 

populations, but not for African-American, Arab, or Hispanic groups (Jun, et al., 2010), 

however the association was reported to be moderated by a dose effect presence of 

APOE ε4 alleles. Of interest to this study, there are data to support the rs3851179 A 
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allele as a protective factor for the onset of AD. The rs3851179A isoform has been 

shown to exclude a critical exon necessary for coding of the PICALM protein, and 

comprises much of the association for reducing AD risk compared to other PICALM 

polymorphisms (Parikh, Fardo, & Estus, 2014). The conclusion of Parikh and colleagues 

for this protective influence is the expression of the rs3851179 A allele modestly 

increases the efficiency of brain microvasculature through more robust expression of 

the PICALM gene. Parikh, et al went further to say that previous mixed results of 

PICALM association with AD could be attributed to the differential expression of 

PICALM isoforms that were not measured in previous studies. It is also noted that the 

rs3851179 polymorphism is likely not directly responsible for this effect as it is upstream 

from the PICALM gene, but is rather in LD with a functional SNP not yet identified.  

Of interest to this study is the influence of these AD-associated SNPs on the cognitive 

profile of individuals with AD.  Specifically, are these polymorphisms associated with 

cognitive performance among individuals with AD? Perhaps these changes can be 

predictive and aid in early diagnosis and targeted treatment planning. 

 A better understanding of the influence that these genetic polymorphisms have 

on neuropsychological function may provide insight to more efficient detection methods 

for serious disorders of cognitive function and the course of progressive diseases such 

as AD. In this study, three AD-associated SNPs will be assessed for association with 

standardized measures of memory and language in a cohort of controls and individuals 

with AD. Results of the study will provide further information for the impact subtle 

genetic variations may have on the cognitive profile and course of AD.  
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CHAPTER TWO: 

METHODS

Data used in the preparation of this article were obtained from the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The National 

Institute on Aging (NIA), the National Institute of Biomedical Imaging and 

Bioengineering (NIBIB), the Food and Drug Administration (FDA), private 

pharmaceutical companies and non-profit organizations launched the ADNI in 2003, as 

a $60 million, 5- year public-private partnership. The primary goal of ADNI has been to 

test whether serial magnetic resonance imaging (MRI), positron emission tomography 

(PET), other biological markers, and clinical and neuropsychological assessment can be 

combined to measure the progression of mild cognitive impairment (MCI) and early 

Alzheimer’s disease (AD). Determination of sensitive and specific markers of very early 

AD progression is intended to aid researchers and clinicians to develop new treatments 

and monitor their effectiveness, as well as lessen the time and cost of clinical trials. 

Subject demographics 

The average age of all subjects was 81, with exception of the CR1 match 

baseline group, which was an average of 84. Average education ranged from 14.7 to 

15.7 years. Between 52% and 62% of subjects were male sex (summarized in Table 1). 

Three SNPs were chosen based on previous publications supporting their 

association with AD: CR1 (rs3818361_T), CLU (rs11136000_T), and PICALM 
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(rs3851179_A). Subjects were genotyped using the Human610-Quad BeadChip by 

Illumina to generate outputs of over 600,000 SNPs (Saykin et al., 2010).  

Case subjects were selected based on the presence of the SNPs of interest and 

a diagnosis of AD. The control group was ADNI subjects without AD with the SNPs of 

interest. Further, subjects were filtered based on the availability of neuropsychological 

tests that are clinically relevant to the AD cognitive profile. Subject scores were 

analyzed at baseline and at the 12-month visit.  

After filtering for the desired variables, there were 66, 106, and 95 control 

subjects at baseline for CR1, CLU, and PICALM, respectively. There were 77, 124, and 

110 subjects at 12-month testing. In the case group there were 274, 480, and 432 

subjects at baseline, and 249, 434, 390 at 12-month testing.  

Psychometrics 

Each SNP was measured against the available tests of the ADNI 

neuropsychological battery that measured immediate and long delay memory, semantic 

fluency, and confrontation naming; all domains relevant to diagnosis and measure of AD 

(Karantzoulis & Galvin, 2011). Measures used include Wechsler Memory Scales IV - 

Logical Memory subtest (Wechsler, 2009), the Auditory-Verbal Learning Test (AVLT; 

(Rey, 1941), Semantic Fluency tests (animals and vegetable categories), and the 

Boston Naming Test (Kaplan, Goodglass, & Weintraub, 2001).  

Wechsler Memory Scales – 4th Edition – Logical Memory  

 The WMS-IV LM subtests are a measure of immediate and long-delay memory 

for two stories of different content. The participant is read a story and asked to recall as 



	
  

9 
	
  

many details of the story as they can immediately after the story is read. This procedure 

is then repeated for a second trial. The participant is then read a different story following 

the same procedure. These trials function as an assessment of immediate memory 

recall. A delay of 15-20 minutes is then applied, during which the individual is 

administered other unrelated tasks. After the delay, the participant is then asked to 

recall as much of each story as they can without any cues. This is a measure of long-

term logical memory retrieval. The delay trial is then followed with a “True or False” 

forced choice recognition task for details of each story to assess awareness of the 

content of the original stories with cues (Wechsler, 2009). 

Auditory-Verbal Learning Test 

The AVLT is a measure of learning, and immediate and long-delay verbal 

memory, similar in structure to the WMS-IV LM subtests. Participants are read a list of 

15 phonemically and semantically dissimilar words and asked to recall as many of 

words as possible immediately after the list has been read to them. This procedure is 

repeated over the course five learning trials (Trials 1-5), over which the participant is 

anticipated to recall more words each subsequent trial. Upon completion of the five 

learning trials, the participant is then read a new list of 15 words (Trial B) that are 

semantically similar to the first list. Trial B is intended to serve as a distractor from the 

content of Trials 1-5. Upon completion of Trial B, the participant is then asked to recall 

as many words as possible from the first list (Trials 1-5) without the list being read to 

them again. This serves as a measure of working memory and short-term memory 

recall. The participant is then administered other tasks during a delay period of 30 
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minutes. After the delay, the participant is then asked to recall as many words as they 

can from the first list again (Trial 6). This is a measure of free recall long-term memory. 

A recognition trial is then administered, with forced choice “Yes or No” responses to 

assess the participant’s awareness of the lists previously read to them (Recognition). 

This measures long term storage of verbal information and specifically assesses the 

function of the hippocampus, a structure impaired by AD (Estévez-González, 

Kulisevsky, Boltes, Otermín, & García-Sánchez, 2003). 

Semantic Fluency Test 

 The semantic fluency test assesses a participant’s ability to verbally generate as 

many words as they can in 60 seconds that fit into a specific semantic category. This 

study used the standardized categories of Animals and Vegetables. Semantic fluency is 

a frequently used measure in the assessment of AD severity (Weakley & Schmitter-

Edgecombe, 2014); (Bertola et al., 2014).  

Boston Naming Test – 2nd Edition.  

 The BNT assesses confrontational naming, language-based memory retrieval, 

and knowledge for images of common items that are presented as individual line 

drawings. The BNT is an effective measure for the differential assessment of aphasia 

(Williams, Mack, & Henderson, 1989).  

Statistical Analysis 

Each SNP was tested for association with the chosen cognitive endophenotypes at 

baseline and 12-month visit. Multivariate linear regression was employed while 

controlling for sex, age, education, and APOE ε4 status
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CHAPTER THREE: 

RESULTS 

CR1 (rs3818361_T)  

Results for association of SNP rs3818361_T are summarized in Table 2. No 

significant findings were observed for the baseline measures for either the match or 

case groups. For the match group at 12-month testing, rs3818361_T associated with 

lower logical memory immediate recall total score (β = -1.2, p = 0.0023,), AVLT 

immediate recall Trial 2 (β = -0.5, p = 0.0305,) and Trial 4 (β = -0.6, p = 0.037), AVLT 

delayed recall total (β = -1.2, p= 0.023,), and confrontation naming spontaneous 

response total score (β = -1.7, p = 0.047).  

Other values that approached significance in the match group include lower 

scores on the AVLT immediate recall Trial 1 (β = -0.4, p = 0.066) and Trial 5 (β = -0.5, p 

= 0.0749).   

SNP rs3818361_T associated with lower logical memory immediate recall score 

(β = -0.6, p = 0.027) and AVLT delayed recall total score (β =  -0.8, p = 0.0016) in those 

with AD. 

CLU (rs11136000_T) 

Results for association of SNP rs11136000_T are summarized in Table 3. No 

significant associations were observed for rs11136000_T. Values that approached 

significance were observed in the 12-month case group: Trial 3 (β = 0.21, p = 0.101), 
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Trial 5 (β = 0.25, p = 0.08), and Trial 6 (β = 0.29, p = 0.08) of the AVLT, where better 

performance was associated with the presence of rs11136000_T in those with AD.   

PICALM (rs3851179_A) 

Results for association of SNP rs3851179_A are summarized in Table 4. No significant 

associations were measured for rs3851179_A. Measures that approached significance 

include higher Logical Memory immediate recall total score at baseline for the match 

group (β = 0.56, p = 0.09). Marginal significance was also observed for better 

performance on Trial B (β = 0.26, p = 0.08) of the AVLT for the match group at 12-

months.
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CHAPTER FOUR: 

DISCUSSION 

This study approached the hypothesis that genetic polymorphisms associated 

with risk for AD will associate with cognitive performance consistent with the cognitive 

profile of the disease. Logical memory, list-learning memory, and confrontation naming 

were all assessed in non-AD and AD subjects within the ADNI dataset.  

Based on these data, the presence of the CR1 SNP (rs3818361_T) resulted in 

lower measures of immediate recall memory for list learning and logical memory as well 

as lower confrontation naming scores in the match group at 12-month testing. The same 

reduced scores were found in the case group at one year follow up for immediate logical 

memory, and delayed list recall. This pattern indicates that the presence of 

rs3818361_T is a risk factor cognitive impairment in non-AD subjects, and to a lesser 

extent for subjects with AD.  

This study provides support for previous findings of Pedraza, et al (2013) for the 

influence of the rs3818361_T polymorphism of CR1 on cognitive function, in both 

cognitively normal older adults and those with AD, when controlling for the influence of 

APOE (Pedraza, et al., 2013). These findings, while supportive, may be underpowered 

based on a low sample size and influence from other known and unknown 

polymorphisms in linkage disequilibrium with CR1. Replication of this study would 
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benefit from a greater sample size and further investigation into differential influence of 

race as a variable.  

While the near significant findings for the CLU and PICALM SNPs are supported 

by literature indicating the protective effect of these polymorphisms, these values are 

underpowered and require further analysis in a larger sample to be validated. This is an 

often-cited concern in genetic association studies insufficient sample size (Naj et al., 

2011). However, as noted, CLU minor allele rs11136000_T is a known protective factor 

for AD risk, as it has been associated with increased CLU protein levels in the brain, 

and more efficient sequestration of Aβ (Ling, Bhongsatiern, Simpson, Fardo, & Estus, 

2012). But attempts to find cognitive endophenotypes for this marker have been mixed, 

often citing concerns for sample size and heterogeneity (Pedraza, et al., 2013).  

At the drafting of this manuscript, the CLU, CR1, and PICALM polymorphisms 

assessed were ranked in the top ten of the AlzGene database for most associated 

polymorphisms with AD (ranked 3rd, 5th, and 6th, respectively; Bertram, et al., 2007). 

These SNPs have had mixed results in GWAS-level studies for association with disease 

presence and phenotype, often modulated by noted factors such as sample size 

effecting power and ability to detect rare polymorphisms in the general population. As 

such, the so called “winner’s curse” may be at play with further replication warranted 

(Xiao & Boehnke, 2009). 

 Outside of the limitations set by sample size, replication of this study will benefit 

from more detailed neuropsychological assessment data, specifically assessment of 

cued recognition for the WMS-IV logical memory subtest and AVLT, as these sub 

scores aid in determining severity of hippocampus mediated cognitive abilities.  
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Another consideration for future analysis in larger samples would be grouped analysis 

of AD and non-AD individuals to increase variance across a continuum of cognitive 

scores, instead of parsing by diagnostic category. Previous groups (Chibnik et al., 2011; 

Bennett, De Jager, Leurgans, & Schneider, 2009) that have employed this method have 

showed greater association with cognitive endophenotypes then in diagnostically 

separate groups. This method can however cloud the true nature of an association and 

if the findings are tied to an independent cognitive process or AD mediated pathology.  
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Table	
  1	
  -­‐	
  Subject	
  Demographics	
  

	
  	
  
	
  

n	
   Average	
  Age	
   Average	
  Edu	
   %	
  Male	
  
	
  	
   CR1	
  rs3818361	
   	
  	
   	
  	
   	
  	
  

Match	
   Baseline	
   66	
   84	
   14.7	
   62%	
  
12-­‐month	
   77	
   81	
   14.7	
   59%	
  

Case	
  
Baseline	
   274	
   81	
   15.5	
   58%	
  
12-­‐month	
   249	
   81	
   15.6	
   57%	
  

	
  	
  
	
  

	
  	
   	
  	
   	
  	
   	
  	
  
	
  	
   CLU	
  rs11136000	
   	
  	
   	
  	
   	
  	
  

Match	
  
Baseline	
   106	
   81	
   15	
   52%	
  
12-­‐month	
   124	
   81	
   15	
   56%	
  

Case	
  
Baseline	
   480	
   81	
   15.7	
   58%	
  
12-­‐month	
   434	
   81	
   15.7	
   59%	
  

	
  	
  
	
  

	
  	
   	
  	
   	
  	
   	
  	
  

	
  	
  
PICALM	
  
rs3851179	
   	
  	
   	
  	
   	
  	
  

Match	
  
Baseline	
   95	
   81	
   15	
   59%	
  
12-­‐month	
   110	
   81	
   15	
   60%	
  

Case	
  
Baseline	
   432	
   81	
   15.6	
   60%	
  
12-­‐month	
   390	
   81	
   15.7	
   61%	
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