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ABSTRACT 

 

Knowledge of species distribution and habitat associations are essential for conservation measures.  

Such information is lacking for many marine species due to their occupancy of broad and ephemeral 

habitats that are difficult to access for study.  Sea turtles, specifically the surface-pelagic juvenile stage 

of some species, are a group for which significant knowledge gaps remain surrounding their distribution 

and habitat use.  Recent research has confirmed the long-standing hypothesis that the surface-pelagic 

juvenile stage occurs within surface-pelagic drift communities (SPDC).  Within the North Atlantic and 

surrounding basins, the holopelagic macroalgae Sargassum spp. dominates SPDC and serves as a 

remotely-detectable indicator of SPDC.  The present study focuses on surface-pelagic habitats of four 

sea turtle species and addresses knowledge gaps using two approaches: habitat mapping and behavioral 

examination.  Remote sensing techniques were used to identify SPDC, and satellite telemetry to 

examine behavior.  This work was conducted in three parts and is presented in three chapters. 

Imagery collected from the Landsat satellites (5 and 7) was used to quantify the area of SPDC (km2).  

Approximately 1,800 Landsat images collected from 2003–2011 were examined for SPDC.  The first 

chapter discusses the abundance, seasonality, and distribution of SPDC within the eastern Gulf of 

Mexico waters where surface-pelagic green, hawksbill, Kemp’s ridley, and loggerhead turtles are known 

to occur.  SPDC was found year-round within the eastern Gulf of Mexico, and the amount of habitat 

peaked during summer months.  The amount of SPDC within the eastern Gulf of Mexico varied annually 

with peaks in 2005, 2009, and 2011.  High concentrations of SPDC were discovered within offshore 

waters of the northeastern Gulf of Mexico and southern West Florida Shelf.  
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Within the second chapter, the behavior of 10 surface-pelagic juvenile Kemp’s ridleys was examined 

using satellite telemetry.  Using remotely-sensed imagery, the sea surface habitats used by tracked 

turtles were examined.  Surface-pelagic juveniles are hypothesized to be principally passive drifters.  The 

behavior of tracked turtles was examined to determine if they exhibited periods of active and passive 

behavior, which may indicate periods of swim and drift.  The proximity of tracked turtles to remotely-

detected SPDC was examined when coincident Landsat imagery was available (within one day of the 

turtle’s position).  Turtles were tracked for 36.5 days (mean) and exhibited primarily passive behavior 

during the tracking period.  The satellite transmitters messaged frequently and reported temperatures 

significantly higher than sea surface temperatures.  Landsat imagery was available coincident to the 

tracks of nine individuals.  SPDC was present within 74% of images, and the mean distance between 

tracked turtles and SPDC was 54 km.  Close associations between tracked turtles and SPDC were 

documented for four individuals.  Results suggest that the tracked turtles spent a majority of the time 

drifting within SPDC. 

The final chapter discusses the density of SPDC within northern and western Gulf of Mexico waters 

from 2009–2011.  Seasonal abundance peaks occurred throughout the study area, but the timing varied.  

SPDC peaked earlier (late spring) within the northwestern Gulf of Mexico.  Moving eastward, the timing 

of seasonal peaks shifted progressively later during the year.  Within the western portions of the study 

area, SPDC was found to be significantly higher than in the eastern Gulf of Mexico. 

The eastern Gulf of Mexico may provide critical developmental habitats for several North Atlantic 

sea turtle species.  Additional study is necessary to determine if portions of the western Gulf of Mexico 

could serve in a similar capacity.  SPDC is extremely vulnerable to anthropogenic impacts, specifically oil 

spills and the occurrence of persistent marine debris.  Conservation of SPDC may be challenged by its 

ephemeral nature; however, the results presented herein could advise conservation efforts (e.g., 

delineation of critical habitat).  The present study described spatial patterns of SPDC occurrence, regions 
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of high abundance, and seasonality.  The description of the behavior surface-pelagic sea turtles offers 

refinements to the spatial distribution of this life stage.  These results, coupled with information on 

circulation patterns and the distribution of sea turtle nesting beaches, can be used to better predict 

when and where sea turtles and SPDC may be found.  For example, the year-round persistence of SPDC 

within the eastern Gulf of Mexico and the location of major nesting beaches located upstream support 

the area’s designation as critical habitat for surface-pelagic green, hawksbill, Kemp’s ridley, and 

loggerhead turtles.   
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CHAPTER ONE: 

CHARACTERIZING A SEA TURTLE DEVELOPMENTAL HABITAT USING LANDSAT OBSERVATIONS OF  

SURFACE-PELAGIC DRIFT COMMUNITIES WITHIN THE EASTERN GULF OF MEXICO 

 

1. Abstract   

Knowledge of the surface-pelagic (oceanic) juvenile life stages remains limited compared to our 

understanding of most other aspects of sea turtle biology.  Recent discoveries have found that North 

Atlantic cheloniids (the “hard-shelled” sea turtles) appear to closely associate with surface-pelagic drift 

communities (SPDC), which tend to be dominated by the Sargassum spp. macroalgae.  The present 

study sought to quantify SPDC within the eastern Gulf of Mexico — a region that has hosts four species 

of cheloniids during their surface-pelagic juvenile life stages.  Landsat satellite imagery was used to 

identify SPDC within the eastern Gulf during 2003–2011.  The mean area of SPDC observed per each 

Landsat image was 2.78 km2 (Landsat scene size: 180x185 km).  SPDC was present year-round and varied 

annually, seasonally, and spatially.  SPDC was most abundant during 2005, 2009, and 2011.  Abundance 

was lowest during 2004 and 2010.  The 2010 analysis, however, was affected by the Deepwater Horizon 

Oil spill, which occurred within the study region.  Within the eastern Gulf, SPDC abundance peaked 

during June–August of each year.  SPDC was most abundant in the western portion of the study area 

and within nearshore waters along western Florida.  Although SPDC appears less abundant within the 

eastern Gulf compared to other regions of the Gulf of Mexico and North Atlantic, recent in-water 

research found surface-pelagic juvenile green, hawksbill, Kemp’s ridley, and loggerhead turtles within 
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the region.  Eastern Gulf of Mexico SPDC may provide important developmental habitats to four sea 

turtle species.   

 

2. Introduction 

Marine ecosystem conservation efforts must often consider dynamic habitats and varying patterns 

of occurrence of the associated organisms. Many marine species are wide-ranging and exhibit complex 

life-history strategies. As a result, uncertainty regarding their distribution and abundance further 

challenges conservation efforts (Botsford and Parma 2005; Pearce and Boyce 2006).  Life histories with 

juvenile dispersal stages or lengthy migrations are common in marine fauna.  Although wide ranging, 

many highly migratory species may spend a majority of the time associated with discrete habitats where 

conservation efforts could focus (Ban et al. 2014).  Sea turtles are no exception; they transition among a 

variety of marine habitats during different life-history stages (Carr et al. 1978). 

 

2.1 Sea Turtle Life History and the “Lost Year” 

 Sea turtles are long lived and wide-ranging marine vertebrates.  Most sea turtles exhibit an early 

developmental phase that takes place within ocean surface waters and is a period when early juveniles 

may be carried far from their nesting beaches of origin by surface currents (Musick and Limpus 1997).  

One exception is the flatback (Natator depressus), which appears to remain within neritic (< 200 m) 

waters during the early developmental phase (Bolten 2003).  Another exception is the leatherback 

(Dermochelys coriacea), which principally exists within pelagic waters worldwide.  The habitats occupied 

by juvenile leatherbacks (< 100 cm in length) have not yet been described (Saba 2013).  Five species of 

cheloniids (the “hard-shelled” sea turtles) occur within the North Atlantic, loggerhead (Caretta caretta), 

green (Chelonia mydas), hawksbill (Eretmochelys imbricata), Kemp’s ridley (Lepidochelys kempii), and 

olive ridley (Lepidochelys olivacea).  For all five species, the following developmental strategy generally 
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applies (after Bolten 2003).  Hatchlings depart nesting beaches, begin a brief period of active swimming 

away from shore, and move to an initial developmental habitat within ocean surface waters (Musick and 

Limpus 1997).  The time spent within this initial habitat varies across species. All eventually transition to 

a neritic phase for the final phases of development.  The transition from primarily oceanic to primarily 

neritic environments represents both a shift in habitat and in diet.  Additionally, ontogenetic shifts 

between developmental habitats may represent the longest migrations made by individuals of many 

species (Meylan et al. 2011).  This early, oceanic developmental stage has proven difficult to access for 

study and, as a result, remains one of the lesser understood aspects of sea turtle biology. 

Carr (1967) hypothesized that post-hatchling sea turtles (those having completed the initial active 

departure from the nesting beach) may associate with drifting Sargassum.  During 1978, Carr and 

Meylan observed three post-hatchling green turtles within Sargassum off the Caribbean coast of 

Panama and offered a hypothesis on the oceanic habitats of early juvenile green turtles (Carr and 

Meylan 1980).  Carr (1982) continued to compile support for this hypothesis by initiating directed 

surveys of Sargassum and by accumulating anecdotal reports of juvenile sea turtles associated with 

Sargassum.  Carr’s evidence included reports of beach-cast post-hatchlings associated with Sargassum, 

observations made by fishers, and notes contributed by oceanographic researchers (Carr 1987a). 

Direct research on this early stage of sea turtle development has proven challenging.  After Carr 

(1982), organized research efforts did not occur until Witherington (2002) conducted transect surveys of 

the oceanic habitats of post-hatchling loggerheads offshore of the major loggerhead rookeries along 

Florida’s east coast.  Witherington et al. (2012) expanded survey efforts to include eastern Gulf of 

Mexico waters off of Florida.  Within the Gulf of Mexico, Witherington et al. (2012) found that juvenile 

green, hawksbill and Kemp’s ridley turtles of sizes larger than post-hatchlings were closely associated 

with Sargassum habitats. Carr’s hypothesis that the early developmental phase primarily occurs within 

Sargassum-dominated drift habitats is now well supported.  
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Carr et al. (1978) developed a life-history model for green turtles that identified the early stage of 

development as the “lost year.”  This term highlighted the uncertainty surrounding this early 

developmental stage as well as the importance of filling this gap in biological knowledge. The life history 

model of Carr et al. (1978) has been refined by various authors, and similar models have been prepared 

for additional species (Bolten 2003; Meylan et al. 2011).  Life-history models for all cheloniids feature a 

discrete early life stage described as “oceanic” (Bolten 2003), “epipelagic” (Meylan et al. 2011), or 

“surface-pelagic” (Witherington et al. 2012). The evolution of the terminology surrounding a period that 

was recently described as “lost” has practical conservation implications beyond what may appear to be 

academic discussions among biologists (Carr 1987a).  Each refinement to the life history model and 

terminology represents an important advancement in knowledge of sea turtle developmental biology.  

Research on sea turtle developmental biology defines many life-history stages in terms of level of 

maturation and position in the water column or habitat.  Thus, these stages provide a mechanism by 

which cohorts can be placed at discrete points in space and time.  This is particularly true for early-

juveniles that are now known to have a close association with Sargassum (Witherington et al. 2012).  

Following Witherington et al. (2012), the term surface-pelagic will be used hereafter to describe the 

focal habitat of the present study (surface-pelagic drift communities, SPDC) and the early developmental 

life-history stages of sea turtles present (surface-pelagic post-hatchlings and juveniles).   

 

2.2 Sargassum-Dominated Surface-Pelagic Drift Communities 

Sargassum adrift within ocean surface waters forms distinct habitats that define it as a unique 

ecological community (Fine 1970).  Within SPDC, Sargassum is considered a keystone taxon (Lapointe et 

al. 2014).  Two holopelagic species of Sargassum dominate SPDC within the North Atlantic Ocean, S. 

natans and S. fluitans with the former being most abundant (Parr 1939; Thiel and Gutow 2005).  Both 

species reproduce vegetatively and are well-adapted for the surface-pelagic environment, having 
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pneumatocysts for buoyancy and dense, rugose foliage (Coston-Clements et al. 1991).  Sargassum 

appears to be capable of sustained growth even in oligotrophic environments such as the Sargasso Sea, 

a gyre within the North Atlantic Ocean (Lapointe 1986).  Growth and abundance vary seasonally, 

annually, and spatially (Lapointe 1995; Gower et al. 2006; Gower et al. 2013).  Lapointe (1995) 

demonstrated the nutrient-limited growth of Sargassum, which has implications for its spatial patterns 

of occurrence.  Sargassum growth is greatest within regions of high nutrient availability, and production 

may also be influenced by nutrient contributions from associated biota (Lapointe 1995; Lapointe et al. 

2014). 

A diverse assemblage of epiphytic and motile fauna is found associated with SPDC (Weis 1968).  

Butler et al. (1983) described the food web of the SPDC as unique, ranging from filter feeders and 

omnivores to carnivores and grazers.  In addition to Weis (1968), several other authors have presented 

detailed descriptions of the biota found within North Atlantic Sargassum (e.g., Dooley 1972, Butler et al. 

1983, Coston-Clements et al. 1991).  Several taxon-specific studies have demonstrated the association 

between Sargassum and a focal species.  Haney (1986) identified several seabird species associated with 

Sargassum and found that larger seabird species (e.g., Cory’s shearwater) appeared to associate with 

larger habitat patches while smaller seabirds (e.g., Phalaropus spp.) appeared to associate with smaller 

patches.  Moser and Lee (2012) used gut contents and observational data to classify seabird species 

based on their associations with SPDC, with “Sargassum specialists” (4 species) being the most 

dependent on the habitat.  Dooley (1972) described fish species found within SPDC off of southeast 

Florida and reviewed the role of SPDC in the life cycles of several species.  SPDC appears to provide both 

foraging opportunities and shelter for many marine vertebrates.  

Although the faunal associates of SPDC have been well documented, the influence of SPDC 

abundance on the populations of associated species is not yet known for many key inhabitants (e.g., 

commercially important fishes and sea turtles).  Butler et al. (1983) found that associated macrofaunal 
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abundance increased with increasing SPDC patch size, though no change in species diversity occurred.  

Haney (1986) demonstrated that habitat patch size influenced seabird aggregations.  Rooker et al. 

(2012) noted that larval sailfish abundance increased with Sargassum biomass; however, blue marlin, 

white marlin, and swordfish larval abundances decreased as Sargassum biomass increased.  Given the 

complex spatial and temporal dynamics of SPDC, understanding the influences of habitat abundance on 

the associated species is critical to understanding the effects of habitat loss on population dynamics.   

In addition to nutrient availability, physical forces are also responsible for the spatial and temporal 

distribution and abundance of SPDC.  Major circulation features transport SPDC throughout the ocean 

basins (Thiel and Gutow 2005).  On a more localized scale, accumulations of SPDC occur at the 

boundaries of water masses, fronts, and within Langmuir circulation cells (Ryther 1956).  Marmorino et 

al. (2011) found that winds in excess of 5 m s-1 (10 knots) resulted in the degeneration of SPDC habitats.  

Within the North Atlantic, the distribution of SPDC is influenced by the North Equatorial Drift, Caribbean 

Current, Gulf Stream System, and Canaries Current, which surround the Sargasso Sea (Ryther 1956).  

 

2.3 Attempts to Quantify Pelagic Sargassum 

Reports on the occurrence of Sargassum within the Sargasso Sea exist in ships’ logs dating back to 

Columbus (reviewed by Butler et al. 1983).  By the late 1800s and early 1900s, several attempts were 

made to quantify Sargassum and identify the boundaries of the Sargasso Sea within the North Atlantic. 

Parr (1939) provided the first quantitative estimates of Sargassum based on net tows conducted within 

the Caribbean Sea, Gulf of Mexico, and northwestern Atlantic Ocean.  He estimated that approximately 

7 million tons of Sargassum existed within the North Atlantic; peaks in abundance occurred within the 

Sargasso Sea and, secondarily, within the Gulf of Mexico.  Stoner (1983) revisited areas surveyed by Parr 

(1939) and found much less Sargassum.  Aside from ship-based tows, beach-cast Sargassum has been 

assessed in an attempt to quantify the amount of Sargassum present within the Sargasso Sea (Butler et 
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al. 1983; Johnson et al. 2013).  Obtaining synoptic assessments of Sargassum has proven difficult using 

such spatially and temporally discrete techniques.  Spatial and seasonal variations in assessments have 

led to conflicting conclusions regarding Sargassum abundance (Butler et al. 1983; Butler and Stoner 

1984). 

Recent advancements in satellite remote sensing have provided opportunities to conduct broad 

assessments of Sargassum.  Gower et al. (2006) developed the Maximum Chlorophyll Index (MCI) to 

identify Sargassum using data collected by the Medium Resolution Imaging Spectroradiometer (MERIS) 

and the Moderate Resolution Imaging Spectroradiometer (MODIS). Gower and King (2011) and Gower 

et al. (2013) used the MCI to demonstrate that Sargassum was abundant during 2011 in the 

northwestern Gulf of Mexico and in the eastern Caribbean.  Discovery of sizable aggregations of 

Sargassum in the northwestern Gulf agrees with Parr’s (1939) hypothesis that Sargassum adrift in the 

Yucatan Channel may drift north and westward with prevailing winds, accumulating within the 

northwestern Gulf of Mexico.   

Gower and King (2011) observed seasonal shifts in Sargassum abundance and developed a seasonal 

distribution map based on those patterns of occurrence.  They proposed that Sargassum from the 

northwestern Gulf becomes abundant during March and drifts eastward during late spring and early 

summer.  Sargassum is then transported by the Loop Current and Gulf Stream into the northwestern 

Atlantic, arriving in the Sargasso Sea during fall or winter.  Gower and King (2011) also discussed recent 

fluctuations in inter-annual Sargassum abundance; though, they reported very little Sargassum within 

the eastern Gulf of Mexico, an area where surface-pelagic sea turtles and habitat have been observed 

during May–October of an overlapping time period (Witherington et. al 2012).  It is possible that 

Sargassum within the eastern Gulf did not aggregate into lines large enough to be visible within MERIS 

or MODIS imagery (approximately 300 m resolution). 
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 Hu (2009) developed the Floating Algae Index (FAI) to map various species of marine algae found 

within ocean surface waters. The FAI captures the spike in reflectance exhibited by all plants at 

approximately 700 nm, by comparing the reflectance in the near-infrared (NIR) to a linear baseline 

interpolated between adjacent red and shortwave-infrared (SWIR) wavelengths.  Reflectance values 

within these three regions of the electromagnetic spectrum should appear flat as water strongly absorbs 

light in all three wavelengths.  Thus, spikes in the NIR relative to the baseline can be used to describe the 

presence of floating vegetation. The FAI can be applied to MODIS and Landsat Thematic Mapper (TM). 

The higher resolution Landsat TM data (30 m resolution) may be more appropriate for detecting 

relatively small SPDC features within the eastern Gulf of Mexico. 

 

2.4 Objectives of the Present Study 

In the present study, I used Landsat TM data to characterize the SPDC within the eastern Gulf of 

Mexico.  Because Sargassum can be used as a remotely-identifiable tracer for SPDC and young sea 

turtles closely associate with SPDC, this study can be considered a habitat mapping effort (Witherington 

et al. 2012).  The connections among Sargassum, SPDC, and sea turtles are based on the following 

findings: 

 Sargassum is a dominant feature of surface-pelagic drift habitats within the Gulf of Mexico (Parr 

1939; Thiel and Gutow 2005; Witherington et al. 2012). 

 The spectral signature of Sargassum renders it readily identifiable within remotely-sensed 

imagery (Hu 2009).  I used optical methods to directly observe Sargassum in lieu of frontal detection 

techniques applied to sea surface temperature or ocean color imagery.  Indeed, Sargassum is found at 

fronts, convergence zones, and water mass boundaries that would be highlighted by frontal detection 

methods.  Sargassum is also found in the absence of major frontal boundaries; thus, frontal detection 

methods alone may not adequately describe the target habitat (Witherington et al. 2012). 
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 Surface-pelagic life stages of four species of sea turtles are closely associated with SPDC within 

the Gulf of Mexico (Witherington et al. 2012). 

Building on these points, the principal objective of this study was to characterize the spatial and 

temporal distributions of SPDC within the eastern Gulf of Mexico at a spatial scale that is 

complementary to ongoing research focused on surface-pelagic juvenile sea turtles.   

 

3. Methods 

 

3.1 Study Area 

 I identified a study area within the eastern Gulf of Mexico based on the availability of Landsat 

satellite imagery and overlap with areas where surface-pelagic juvenile sea turtles have been observed 

by Witherington et al. (2012; Fig. 1.1).  Witherington et al. (2012) conducted transects from five ports on 

Florida’s Gulf coast, listed from north to south: Pensacola, Apalachicola, Sarasota, Marco Island, and Key 

West.  Their study region south of Pensacola ranged from 40–130 km offshore and encompassed waters 

from 30–1000 m depth. Transects conducted south of Apalachicola ranged from 20–180 km offshore 

and encompassed depths ranging from 20–500 m.  Transects conducted west of Sarasota extended from 

35–120 km offshore and encompassed depths from 20–60 m.  Transects conducted west of Marco 

Island included waters from 40–160 km offshore and encompassed depths ranging from 20–160 m.  

Vessel transects originating from Key West were focused on Gulf of Mexico waters or the Straits of 

Florida.  Key West transects ranged from 60–100 km northwest of Key West within depths of 25–35 m.  

Transects within the Straits of Florida were 10–40 km south of Key West and at depths of 10–500 m. 
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3.2 Surface-Pelagic Sea Turtles 

Witherington et al. (2012) provided estimates of density (turtles per km2 of habitat) for two size 

classes of turtles that they found within the eastern Gulf: surface-pelagic post-hatchling and surface-

pelagic juvenile.  Transect studies for surface-pelagic turtles were primarily conducted during May–

October.  Surface-pelagic post-hatchlings were principally found within eastern Gulf waters during July–

October.  Thus, the surface-pelagic turtle density estimates are scaled to habitat estimates for those two 

life stages and their respective time periods.  Witherington et al. (2012) revised these density estimates 

based on additional field work that they conducted after the 2012 publication.  Those revised values are 

used herein.   

 

3.3 Remote Sensing 

I identified SPDC using two Landsat sensors, the TM and the Enhanced Thematic Mapper Plus 

(ETM+) onboard Landsat 5 and Landsat 7, respectively.  Both TM and ETM+ sensors collect reflectance 

data at 660, 825, and 1650 nm (bands 3, 4, and 5; respectively). The spatial resolution of Landsat 

imagery is 30 m.  Landsat images were collected within scenes of fixed dimensions: 180 km (length) by 

185 km (width).  Landsat scenes are arranged into paths (vertical) and rows (horizontal).  Individual 

scenes are presented based on their unique path and row position, abbreviated as p##r##.  For example, 

p17r41 refers to the scene collected along path 17 at row 41, which includes Tampa Bay in west-central 

Florida (Fig. 1.1). The temporal resolution of each Landsat satellite is 16 days; combined, Landsat 5 and 7 

provide 8-day temporal resolution.   

Using the US Geological Survey’s Global Visualization Viewer (Glovis; http://glovis.usgs.gov/), I 

browsed all Landsat scenes collected from 2003–2011.  A minimum of 1–2 images for each month, year, 

and scene were selected for analysis.  A specific cloud cover threshold was not used to exclude cloudy 

images.  Images were visually inspected and those within which a majority of sea surface waters were 
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obstructed by thick cloud cover were not used in this study.  From Glovis, I downloaded and processed 

raw, level 1, reflectance data from selected images.   

Image processing involved several steps.  First, atmospheric correction was applied to the raw 

reflectance data using a customized set of IDL routines (Hu et al. 2004; Exelis Visual Information 

Solutions, Boulder, CO).  Next, I calculated the FAI using the corrected reflectance data from bands 3, 4, 

and 5 (Hu 2009; Fig. 1.2).  I searched output FAI images, along with co-registered RGB images, for SPDC 

within ENVI (Exelis Visual Information Solutions, Boulder, CO).  Simultaneous FAI and RGB image 

examination reduced the likelihood of false detection of spectrally similar features (e.g., clouds, Fig. 1.3 

and 1.4).  Using ENVI, I digitized SPDC and recorded the results in a Microsoft Access database.  I 

converted the SPDC pixels to vectors (shapefiles) and recorded those as feature classes within an ArcGIS 

geodatabase (Esri, Redlands CA).  Using ArcGIS, I calculated the density of SPDC at a spatial scale suitable 

for regional visualization; I calculated density within a 1 km search radius of 500 m cells.  

I identified SPDC within FAI images based on physical characteristics.  SPDC tends to be present in 

the open ocean as discrete lines, patches, or linear arrangements of patches.  In some cases, SPDC could 

be distinguished from spectrally similar and co-occurring species (e.g., Trichodesmium spp.) by 

examining the spectral shape of the feature of interest using corresponding MODIS reflectance data.  A 

technique to distinguish among Sargassum and Trichodesmium reflectance data was developed 

concurrent to the present study and was reported by Hu et al. (2010).  

Most of the scenes analyzed in this study contained some land area.  I standardized estimates of 

SPDC across scenes by calculating the extent of “searchable waters” for each Landsat image using 

custom Python and R routines (R Core Team 2013).  The area of searchable waters was defined as the 

extent of the image with a clear view of surface ocean waters; i.e., land masses, vessels, thick clouds, 

and scan line corrector failures (present only in Landsat 7 ETM+ imagery) were excluded (Fig. 1.3).  The 
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FAI technique was capable of detecting SPDC through thin cloud layers (Fig. 1.4). For each image, I 

calculated a scaled density of SPDC as follows:  

SPDC coverage ‰ = (SPDC pixels / searchable water pixels) * 1000. 

I extracted wind velocity values for the dates and locations corresponding to each image using the 

RNCEP R (Kemp et al. 2012); written for the program R, which provided wind velocity values from the 

global NCEP/NCAR Reanalysis 2 dataset (Kanamitsu et al. 2002).  I estimated a single, geographically 

central location for each Landsat scene and associated zonal and meridional wind velocity values to 

those positions.  Using ArcGIS, I excluded land from the scene footprint polygons prior to calculating the 

central location.  Within R, I converted zonal and meridional velocity values to wind speed and direction.  

I examined the correlation between wind velocity and the amount of observed SPDC using Pearson’s 

product-moment correlation test.  I also compared mean wind velocities for scenes when SPDC was and 

was not observed using a two sample t-test.  

 

4. Results 

 

4.1 Summary of SPDC within the Eastern Gulf of Mexico 

I examined 1,323 Landsat images collected from 2003–2011 within the eastern Gulf of Mexico study 

area (paths 16–20 and rows 39–42, Fig. 1.5).  I found SPDC within 824 (62%) of the eastern Gulf images 

that I examined.  I observed an average of 2.78 km2 of SPDC per Landsat image (range: 0.0–90.84, SD: 

7.77 km2). The highest amounts of SPDC (average per scene) occurred within p20r40 (6.65 km2) and 

p18r39 (5.92 km2).  The extent of SPDC was relatively low during 2004 and 2010 (0.45 and 0.92 km2, 

respectively; Fig. 1.6).  The average area of SPDC was highest during 2005 (4.27 km2) and 2011 (4.20 

km2). SPDC abundance increased during May, peaked during June–August, and declined during 

September and October (Fig. 1.7).   
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I examined the monthly abundance of SPDC within each Landsat path and observed an eastward 

shift in the monthly peaks of SPDC abundance.  SPDC abundance increased in May and peaked in June 

within the westernmost region of the study area (path 20, Fig. 1.8, A).  SPDC abundance peaked in July 

within the two central regions (paths 18 and 19, Fig. 1.8, B and C).  SPDC abundance peaked in August 

within paths 16 and 17, the easternmost portions of the Gulf of Mexico (Fig. 1.8, D).   

I evaluated SPDC density across all Landsat scenes (Table 1.1) and within scenes that intersected 

with specific regions where vessel transects had been conducted (Fig. 1.9–1.12).  The density of SPDC 

was lowest within rows 41 and 42 of paths 19 and 20 (Table 1.1).  SPDC was distributed throughout the 

waters near the two northern Gulf vessel transect areas (paths 19 and 20, Fig. 1.9 and 1.10).  The 

Landsat scenes intersecting with the northern Gulf study areas (paths 18–20, rows 39 and 40) contained 

high densities of SPDC, particularly within offshore waters (Table 1.1).  Within the three east-central Gulf 

vessel transect study areas, high densities of SPDC occurred closer to shore, inshore of the 10 m 

bathymetric contour and along the western coastline of Florida (Fig. 1.11, 1.12 and 1.13).  The density of 

SPDC within offshore waters of the central West Florida Shelf (WFS) was low relative to nearshore 

waters (Fig. 1.11).  The density of SPDC increased on the southern portion of the WFS, north of Key West 

(Fig. 1.13).  High concentrations of SPDC were found south of Key West, along the edge of the 

continental shelf and the Florida Current (Fig. 1.13).  High densities of SPDC also occurred near the 

Florida coast and inshore of 10 m depth, within portions of Landsat scenes p17r40 and p18r39 that were 

outside of the areas where vessel transects were conducted (Fig. 1.14). 

 

4.2 Density of Surface-Pelagic Sea Turtles within the Eastern Gulf of Mexico 

I summarized SPDC density within the two time periods corresponding to those within which 

surface-pelagic juveniles and post-hatchlings were estimated by Witherington et al. (2012, including 

updates based on continued during summer and fall of 2012).  I scaled estimates of turtle density based 
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on habitat density (Table 1.2).  From May – October, the average amount of SPDC observed per scene 

ranged from 0.03–9.67 km2.  Witherington et al. (2012) estimated that the density of surface-pelagic 

juveniles during this time period was 9.73 turtles km-2.  Thus, the density of surface-pelagic turtles 

within detectable SPDC across the northern Gulf of Mexico is estimated as 0.29–94.09 turtles km-2.  I 

also calculated the area of SPDC within the time window restricted to the hatching season — July–

October. The density of SPDC across the study area during the hatching season ranged from 0.05–10.94 

km2.  Witherington et al. (2012) estimated that surface-pelagic post-hatchling turtle density within this 

period was 1.98 turtles km-2.  Thus, the average density of surface-pelagic post-hatchling turtles within 

detectable SPDC across the eastern Gulf is estimated as 0.10–21.66 turtles km-2.   

 

4.3 Wind Velocity and SPDC Abundance 

Wind speeds corresponding to images when no SPDC was detected exceeded those of scenes where 

SPDC was detected (t = 7.6, p < 0.01, Fig. 1.15).  Wind speeds corresponding to scenes within which no 

SPDC was found were 4.9 m s-1 (mean, ±2.5 SD, n = 502 images).  Wind speeds corresponding to scenes 

within which I observed SPDC were 3.5 m s-1 (mean, ±2.3 SD, n = 819 images).  The highest wind speed 

observed within an image where SPDC was detected was 11.2 m s-1.  Wind speeds ranged from < 1–13.7 

m s-1 for scenes where SPDC was not detected.  For all images, the area of SPDC was inversely related to 

wind speed (r=-0.25, p < 0.001).  

 

5. Discussion 

 

5.1 SPDC within the Eastern Gulf of Mexico 

I found SPDC to be present within the eastern Gulf of Mexico year-round with seasonal and annual 

variation in abundance.  Both the eastward shift in abundance peaks and the late summer peaks that 
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were observed across all years generally agreed with the findings of another remote sensing 

examination of Sargassum within the Gulf of Mexico (Gower and King 2011).  I detected SPDC 

throughout eastern Gulf continental shelf waters and well away from major Gulf circulation features 

(the Loop Current or associated eddies). The broad continental shelf within the eastern Gulf lacks such 

circulation features yet SPDC and surface-pelagic juvenile sea turtles have been regularly encountered 

within this region (Witherington et al. 2012).  The work of Yang et al. (1999) suggests that the Loop 

Current is not a major influence on surface drift within portions the WFS.  This suggests that SPDC, and 

associated juvenile sea turtles, could be relatively persistent on the WFS. 

Spatial resolution of the observation platform was critical in detecting SPDC within the eastern Gulf.  

Gower et al. (2006) found no Sargassum in the eastern Gulf of Mexico from September 2004–November 

2005, except for the months of July–September 2005.  However, the present study found that these 

months were periods of relatively high SPDC abundance within similar portions of the eastern Gulf. The 

disparity between the findings reported here and those of Gower et al. (2006) is most likely due to 

differing spatial resolutions of the imagery.  Gower et al. (2006) used MODIS imagery summarized at 1 

km resolution, while the present study used Landsat with a spatial resolution of 30 m.  This illustrates an 

important consideration surrounding spatial resolution, research objectives and interpretation of 

results.  Using MERIS imagery, 330 m resolution, Gower and King (2008 and 2011) were able to 

reconstruct broad-scale patterns of SPDC drift within the Gulf of Mexico and North Atlantic.  Performing 

such a basin-wide analysis across multiple years would not be feasible using the higher resolution 

Landsat imagery and the methods outlined herein.  Landsat was the appropriate platform to meet the 

principal objective of the present study, which was to estimate SPDC within the eastern Gulf at a scale 

corresponding to field observations.  

Wind speed may be an important variable to consider when attempting to forecast the occurrence 

or predict the persistence of SPDC.  Wind speeds for images when SPDC was not detected were 
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significantly higher than wind speeds when SPDC was detected.  When wind speeds were below 5 m s-1, 

SPDC was detected within Landsat scenes more frequently than it was not detected (Fig. 1.15).  This 

value is consistent with the findings of Marmorino et al. (2011), which indicated that lines of SPDC may 

disintegrate into smaller patches when wind speeds exceed 5 m s-1.  This dispersal effect of wind may 

reduce the likelihood of SPDC detection if patches become too small to be observed within satellite 

imagery. 

 

5.2 Low Abundance of SPDC During 2010 

The abundance of SPDC was relatively low during 2010 and this was likely a result of multiple 

factors. The DWH oil spill during 2010 affected my ability to characterize SPDC within portions of our 

study area.  Specifically, portions of path 20 (an area of high SPDC abundance) contained large amounts 

of surface oil during a time when Sargassum abundance would have peaked within the region, May–

July.  Oil reflects light across a broad portion of the visible range of the electromagnetic spectrum (Hu et 

al. 2003).  Non-oiled Sargassum cannot be distinguished from oil or oiled Sargassum using the methods 

of the present study; therefore, I excluded oiled areas from this analysis.  I used the daily MODIS oiling 

footprint provided by Hu et al. (2011) to identify oiled areas within Landsat scenes. This prevented some 

2010 images from being fully examined and may have biased the estimate abundance of SPDC during 

2010.  It is also possible that large amounts of eastward drifting SPDC became entrained within the oiled 

area and were not available to be observed within portions of the study area that were east of the 

event.  Results of the present study support previous findings that SPDC drifts eastward across the 

northern Gulf.  Thus, an examination of scenes prior to and eastward of the DWH event (i.e., paths 21–

25 during March–May 2010) would assist in interpreting the SPDC abundance patterns for the eastern 

Gulf that are presented herein (Fig. 1.14).  
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5.3 The Eastern Gulf of Mexico — A Critical Developmental Habitat for Sea Turtles in the 

Northwestern Atlantic.   

The Caribbean Current, Loop Current, and Gulf Stream system influence the distribution of SPDC and 

surface-pelagic sea turtles within the eastern Gulf of Mexico.  To date, two potential source regions for 

SPDC within the Gulf and Caribbean have been identified.  Large blooms of Sargassum have recently 

been observed within the northwestern Gulf and the eastern Caribbean (Gower and King 2011; Gower 

et al. 2013; Johnson et al. 2012).  Admittedly, the ability to detect such events at the scale of ocean 

basins is recent, due to technological advancements in satellite oceanography.  It appears that surface-

pelagic sea turtles in this area have evolved depending on SPDC for early developmental habitats.  Thus, 

it is reasonable to assume that SPDC must need to form upstream of major sea turtle nesting rookeries 

within the region.   

Witherington et al. (2012) observed four species of surface-pelagic juvenile sea turtles within SPDC 

in the eastern Gulf (green, hawksbill, Kemp’s ridley, and loggerhead turtles).  The major green turtle 

rookeries within the Caribbean upstream from the eastern Gulf are (listed in order of the relative 

magnitude of nesting activity): Tortuguero, Costa Rica; Yucatan Peninsula, Mexico; Aves Island, 

Venezuela (NMFS and USFWS 2007).  Hawksbill turtles nest throughout the Caribbean and many 

rookeries may contribute surface-pelagic juvenile turtles to the Gulf of Mexico (Blumenthal et al. 2009).  

The loggerhead nesting beaches that could contribute surface-pelagic juveniles to the Gulf of Mexico are 

found in parts of the Caribbean, western Cuba, Yucatan Peninsula, and the Gulf of Mexico (Ehrhart et al. 

2003; NMFS and USFWS 2008).  Within the Gulf, the major loggerhead nesting beaches occur along 

southwestern Florida, the Dry Tortugas, and along the eastern shorelines of the Florida Panhandle 

(Witherington et al. 2006; FWC Statewide Nesting Beach Survey Program).  On those Florida Gulf 

beaches, a mean of 7,772 loggerhead nests year-1 were documented during the 5-year period from 

2009–2013 (FWC Statewide Nesting Beach Survey Program).  Brost et al. (in press) estimated the mean 
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loggerhead clutch size to be 114 eggs and the mean emergence success to be 51.6%.  Based on these 

values, 457,180 loggerhead hatchlings may enter eastern Gulf waters each year.  

With few exceptions, Kemp’s ridley turtles nest entirely along the central-western Gulf of Mexico 

shorelines of Mexico and Texas (NMFS, USFWS and SEMARNAT 2011).  Animals emerging from those 

nesting beaches likely drift eastward across the northern Gulf of Mexico or encounter westward drifting 

eddies and remain within the western Gulf (Collard and Ogren 1990).  The majority of Kemp’s ridley 

nesting occurs at the beaches near Rancho Nuevo, Mexico.  More than 20,000 Kemp’s ridley nests were 

recorded on Rancho Nuevo and adjacent beaches during 2009, a recent high year.  NMFS, USFWS and 

SEMARNAT (2011) presented the following Kemp’s ridley reproductive parameters based on corral 

(hatchery): mean clutch size = 97 eggs nest-1, hatching success = 67.8%, emergence success = 100%.  

Based on these values, during this recent high nesting year approximately 1,315,320 may have entered 

western Gulf of Mexico waters (nests * (clutch size * hatching success)).   

Sea turtles originating from Gulf and Caribbean rookeries may be spending all or portions of their 

surface-pelagic phase within SPDC habitats of the eastern Gulf of Mexico.  Research into the genetics of 

animals captured within the eastern Gulf, coupled with refined animal movement models, would help 

identify the source rookeries for Gulf sea turtles.  Such knowledge is essential to understanding the role 

of Gulf SPDC for north Atlantic sea turtles and how impacts to this habitat will affect their populations. 

 

5.4 Threats to SPDC and Conservation Efforts 

The greatest threat to SPDC appears to be pollution, both from the constant influx of persistent 

marine debris and major releases of pollution, e.g., the DWH oil spill (Carr 1987b; Witherington 2002; 

Schuyler et al. 2014).  Butler et al. (1983) noted petroleum hydrocarbons were present within 

Sargassum samples and had apparently been ingested by associated invertebrates.  Witherington (2002) 

identified plastic pollution and tar within the mouths or gut contents of post-hatchling loggerheads 
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collected within the Gulf Stream, off the east coast of Florida.  Other factors that could affect SPDC 

include direct harvest of Sargassum for biomedical products, although no harvesting operation appears 

to exist at present (SAFMC 2002).   

During 2009, the government of Bermuda formed the Sargasso Sea Alliance in an effort to improve 

conservation and management efforts within the high seas surrounding the Bermuda Platform (Laffoley 

et al. 2011).  In support of this effort, Laffoley et al. (2011) outlined the economic and environmental 

significance of the region and its namesake — Sargassum.  As of 2014, four nations (Azores, Monaco, 

the United Kingdom and the United States) have joined Bermuda in recognizing the ecological value of 

the Sargassum and the Sargasso Sea (The Hamilton Declaration, March 2014).  The Hamilton Declaration 

established a Sargasso Sea Commission that will be charged with managing the Sargasso Sea.  Although 

the declaration is not legally binding, it represents an important acknowledgement of this marine 

ecosystem and an opportunity for collaborative conservation and management.  

The U.S. National Marine Fisheries Service has recently identified five types of marine habitats 

critical to the survival of loggerheads within the Northwestern Atlantic Ocean (NMFS 2014).  The 

Sargassum habitat occupied by early juveniles was one of the critical habitats identified within this 

ruling.  The critical habitat was defined by the following physical and biological elements: (i) 

convergence zones, areas of downwelling, margins of major currents, and other locations where 

concentrated components of the Sargassum community exist (including suitable water temperatures); 

(ii) Sargassum in concentrations that support prey and provide cover for loggerheads; (iii) the presence 

of Sargassum-associated biota; and (iv) sufficient depth (10 m) and proximity to currents to ensure that 

loggerheads are transported out of the surf zone.  The Sargassum critical habitat was defined (spatially) 

as a static region within the U.S. Exclusive Economic Zone including western Gulf of Mexico waters to 

the Mississippi River delta, extending southward to the Straits of Florida and north-northwest following 

the Gulf Stream Current.  This designation effectively captures the western Gulf waters where 
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Sargassum appears most abundant (Gower and King 2011).  However, most of the eastern Gulf of 

Mexico is excluded from this boundary, including the areas surveyed by Witherington et al. (2012) and 

those examined as part of the present study (Fig. 1.14).  The text associated with this rule acknowledged 

the difficulty in identifying areas where Sargassum was likely to consistently accumulate, particularly 

within areas that are isolated from major circulation features (e.g., the Loop Current) like the eastern 

Gulf (NMFS 2014).  Indeed, SPDC within offshore waters (> 10 m) of the eastern Gulf appeared more 

dispersed and less abundant than that reported from western Gulf surveys.  However, SPDC did persist 

year-round within the eastern Gulf of Mexico waters examined herein.  In addition to abundance, the 

availability of habitat should be considered by conservation actions.  Habitat availability may be defined 

as proximity to sea turtle nesting rookeries in this context.  Considering the findings of Witherington et 

al. (2012) and that eastern Gulf loggerhead rookeries are genetically distinct (Shamblin et al. 2011), the 

proximity to the eastern Gulf loggerhead rookeries appears relevant to the delineation of critical habitat 

for the species. 

Regulatory actions focused on dynamic marine habitats require an understanding of habitat 

distribution and the spatial ecology of target species.  Similar to the loggerhead critical habitat, the 

designation of sea ice as critical habitat for polar bears (Ursus maritimus) established fixed boundaries 

within which sea ice was known to occur (USFWS 2010).  The USFWS was later ordered to vacate this 

rule, dissolving the established critical habitats, on the grounds that the designation was “too extensive” 

(Alaska Oil and Gas Association, et al. v. Salazar, et al. 2013).  Considering this recent case, it was 

reasonable for NMFS to restrict the loggerhead-Sargassum critical habitat designation to waters with 

high concentrations of Sargassum.  However, refinements to this ruling or establishment of surface-

pelagic critical habitat for other cheloniids should consider both the presence of habitat and the 

availability of habitat to the surface-pelagic stage of the species of interest.  Areas found downstream of 

Sargassum source regions and major sea turtle rookeries may be the best candidates for protection. 
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Satellite remote sensing has provided opportunities to conduct synoptic assessments of SPDC.  Such 

research has demonstrated that SPDC exhibits high spatial, seasonal, and annual variability (Gower and 

King 2011; present study).  The abundance of surface-pelagic juvenile sea turtles may also vary within 

the same dimensions.  Conservation actions may benefit from focusing on the proximity of SPDC to 

major sea turtle rookeries.  Within U.S. Gulf waters, major loggerhead nesting beaches are situated 

along the northwestern and west-central Florida shorelines (Florida Fish and Wildlife Conservation 

Commission, Statewide Sea Turtle Nesting Beach Survey Program; Fig. 1.14).  Witherington et al. (2012) 

documented post-hatchling loggerheads within eastern Gulf waters near to these nesting beaches. The 

present study identified SPDC within the eastern Gulf year-round.  Although SPDC may be more 

abundant within the western Gulf, the eastern Gulf may serve as critical developmental habitat for 

loggerheads within the region.  Gulf SPDC habitats also support early juvenile green, hawksbill, and 

Kemp’s ridley turtles.  If critical habitats are designated for surface-pelagic life stages of these species, 

the following parameters should be evaluated: (i) the spatial distribution of nesting beaches, including 

density and nest productivity; (ii) in-water aggregations identified by direct research and/or anecdotal 

accounts; (iii) duration of the surface-pelagic stages and survivorship; (iv) the spatial distribution and 

seasonality of remotely-detected SPDC; and (v) the physical oceanographic parameters responsible for 

the distribution of SPDC and surface-pelagic juvenile turtles.   

Reviewing this multidisciplinary approach highlights some information deficiencies.  The spatial 

distribution of sea turtle nesting beaches is well-described for most regions and species; however, nest 

productivity (a measure of the number of turtles emerging from eggs and nests) is not well described for 

all rookeries.  In-water research on the surface-pelagic turtles is limited based on the cost and logistical 

difficulties of accessing SPDC for direct sampling.  Direct sampling is the only mechanism to describe the 

density and species occurrence of surface-pelagic juveniles within SPDC.  Directed capture studies are 

also essential to documenting behavior, habitat associations, and genetic compositions of turtles 
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inhabiting SPDC.  Knowledge of the duration of the surface-pelagic juvenile life stage and estimates of 

survivorship for each species would prove useful in evaluating the impacts of threats on populations.  

Remote-sensing efforts to assess the distribution and abundance of SPDC should be expanded to new 

regions where surface-pelagic turtles may aggregate (e.g., the southwestern Gulf of Mexico and the 

Sargasso Sea).  Although Landsat imagery is collected at a higher resolution than MODIS or MERIS 

imagery previously used to map SPDC, it is possible that Landsat-derived estimates of SPDC are still 

underestimates.  In situ validation of remotely-sensed SPDC is necessary to address the potential for 

over- or under-estimation of SPDC.  For example, estimates from the present study could be refined 

with a validation study that couples Landsat with higher resolution imagery and field observations.  Such 

efforts are underway for the northern Gulf of Mexico and should be integrated into any remote sensing 

assessment of SPDC.  Finally, the distribution of surface-pelagic juvenile sea turtles and their habitats 

cannot be understood without considering the physical oceanographic parameters that influence their 

distribution.  Such research, coupled with remote sensing observations, could be used to develop and 

test predictive models for the occurrence of SPDC. These methods could be applied to conduct near-real 

time assessments of SPDC to assist marine conservation management decisions.   

 

5.5 Conclusions 

The satellite remote sensing methods used in the present study were an effective mechanism for 

conducting an assessment SPDC within the eastern Gulf.  The higher resolution imagery utilized was 

appropriate for making comparisons to results from vessel transect surveys of SPDC.  These results 

demonstrate that SPDC is present within the eastern Gulf of Mexico year-round.  The region is 

downstream of nesting beaches for green, hawksbill, Kemp’s ridley, and loggerhead turtles.  

Witherington et al. (2012) confirmed the presence of surface-pelagic juvenile green, hawksbill, Kemp’s 

ridley and loggerhead turtles within eastern Gulf of Mexico waters.  The year-round persistence of SPDC 
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and the presence of surface-pelagic juvenile sea turtles indicate that the eastern Gulf of Mexico may 

serve as critical developmental habitat for surface-pelagic green, hawksbill, Kemp’s ridley, and 

loggerhead turtles.  
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Tables: 
 
Table 1.1. Summary of eastern Gulf of Mexico Landsat scenes examined for the presence of surface-
pelagic drift communities (SPDC).  The scene index is provided as a combination of path and row 
numbers. The number of images within which SPDC was detected is noted. The average extent of 
searchable waters is also provided (km2). The proportion of each image covered by SPDC is provided 
(values scaled to ‰, mean ±SD). 

Landsat scene 
index 

SPDC 
observed 

Total images 
Mean searched 

area km2 
SPDC coverage 
‰ (mean ±SD) 

p16r42 76 154 20082 0.086 ±0.338 

p16r43 105 136 27258 0.137 ±0.277 

p17r40 68 97 15319 0.422 ±0.826 

p17r41 85 143 23179 0.082 ±0.191 

p17r42 58 62 33630 0.056 ±0.108 

p17r43 60 69 31622 0.163 ±0.311 

p18r39 79 96 8354 0.812 ±1.430 

p18r40 85 159 27551 0.086 ±0.272 

p18r41 4 10 26884 0.012 ±0.005 

p18r42 1 9 31666 0.002 ±0.004 

p19r39 49 77 11558 0.059 ±0.141 

p19r40 25 45 33101 0.085 ±0.161 

p19r41 5 9 30488 0.004 ±0.005 

p19r42 5 7 32368 0.005 ±0.005 

p20r39 48 152 15320 0.090 ±0.268 

p20r40 59 79 32624 0.161 ±0.377 

p20r41 6 9 30127 0.022 ±0.022 

p20r42 3 10 28718 0.006 ±0.012 

Total (all images) 821 1323 22631 0.171 ±0.553 
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Table 1.2. Area of surface-pelagic drift communities (SPDC) observed within Landsat images from the eastern Gulf of Mexico.  Landsat scenes 
used in this analysis are noted in the far left column.  The mean, standard deviation and maximum area of SPDC (km2) are provided for two time 
periods: May–October and July–October.  These time periods correspond to the months when the density of surface-pelagic juveniles and post-
hatchlings were estimated per area of SPDC (9.73 and 1.98 turtles km-2, respectively). Those values are multiplied by mean SPDC area within the 
table below. 

 
Area of SPDC during  
May–October (km2) Surface-pelagic turtles 

(mean SPDC area x  
9.73 turtles km-2 SPDC) 

Area of SPDC during  
July–October (km2) Post-hatchling turtles (mean 

SPDC area x  
1.98 turtles km-2 SPDC) Landsat 

scene 
Mean SD Maximum Mean SD Maximum 

p16r42 1.82 5.04 38.22 17.71 1.73 5.62 38.22 3.43 

p16r43 5.40 10.82 62.40 52.54 5.15 11.47 62.40 10.20 

p17r40 7.91 15.41 90.84 76.96 10.75 18.24 90.84 21.29 

p17r41 2.01 4.16 26.12 19.56 2.47 4.70 26.12 4.89 

p17r42 2.14 4.47 24.09 20.82 3.02 5.53 24.09 5.98 

p17r43 6.54 13.31 72.29 63.63 9.14 15.83 72.29 18.10 

p18r39 9.52 12.01 48.53 92.63 10.94 12.49 48.53 21.66 

p18r40 3.20 7.90 54.59 31.14 3.91 9.25 54.59 7.74 

p18r41 0.19 0.27 0.74 1.85 0.19 0.19 0.44 0.38 

p18r42 0.03 0.08 0.22 0.27 0.05 0.11 0.22 0.10 

p19r39 0.77 2.14 12.94 7.49 0.81 2.55 12.94 1.60 

p19r40 3.82 6.11 22.30 37.17 4.42 7.02 22.30 8.75 

p19r41 0.12 0.16 0.44 1.17 0.16 0.18 0.44 0.32 

p19r42 0.16 0.16 0.40 1.56 0.11 0.19 0.40 0.22 

p20r39 1.72 4.19 25.43 16.74 1.36 4.00 25.43 2.69 

p20r40 9.67 16.79 82.65 94.06 8.28 15.20 75.99 16.39 

p20r41 0.63 0.78 2.07 6.13 0.45 0.64 1.56 0.89 

p20r42 0.08 0.22 0.61 0.78 0.15 0.31 0.61 0.30 
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Figures: 
 

 
Figure 1.1. The extents of Landsat 5 and 7 scenes within the eastern Gulf of Mexico, paths 16–20 and 
rows 39–42.  Paths are labeled at the top of each path and rows are labeled along the left side of each 
row. The extents of on-water transect surveys conducted by Witherington et al. (2012) are represented 
by the polygons (outlined in black).   
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Figure 1.2. Landsat 5 image of path 19 row 40 collected on 1 August 2005 over waters southwest of Apalachicola, Florida.  The Floating Algae 
Index (FAI, A) and true-color (B) images are shown at identical scales and extents. The images highlight a patch of Sargassum that was 
approximately 180 m wide (maximum) and 1,400 m long.  The inset plot (C) shows the Rayleigh-corrected remote sensing reflectance values 
from bands 1–5 for pixels over the Sargassum patch (n=50, red lines) and nearby surface water pixels (n= 50, blue lines). The red ellipses within 
frames A and B identify the regions from which sample pixels representing Sargassum and surface water were extracted.  
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Figure 1.3. Landsat 7 image of path 17 row 41 collected on 15 September 2006, showing waters within 
the Tampa Bay region of west-central Florida. The Floating Algae Index (FAI, A) and true-color (B) images 
are shown at identical scales and extents. The images highlight Sargassum features (1) and some 
common anomalies present within Landsat imagery.  The horizontal striping was present in Landsat 7 
imagery, from 2003–present, as a result of the failed scan line corrector. The enlarged regions (frames C 
and D) show an underway vessel (2) that exhibited a high FAI response (C) and a V-shaped wake that is 
only apparent in the true color image (D). Clouds (3 and 4) may exhibit a relatively high (A, 3) FAI 
response or appear as saturated pixels within the FAI image (A, 4).  These features can easily be 
identified as clouds using the coregistered true color image.  Land areas appear as no data within the FAI 
image (5, Egmont Key at the mouth of Tampa Bay, FL).  

B A 

D

 
 B 

C

 
 B 
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Figure 1.4. Landsat 5 image of path 19 row 40 collected on 1 August 2005 over waters southwest of Apalachicola, Florida.  The Floating Algae 
Index (FAI, A) and true-color (B) images are shown at identical scales and extents.  A line of Sargassum was clearly detected by the FAI and is 
shown within the center of the FAI image.  Thin clouds obscured this feature within the accompanying true-color image.

B A 
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Figure 1.5. The extents of Landsat 5 and 7 scenes within the eastern Gulf of Mexico area of interest of 
the present study, paths 16–20 and rows 39–42.  Paths are labeled at the top of each path and rows are 
labeled along the left side of each row. Colors represent the percent of images containing SPDC.  The 
values within the center of each scene represent the total number of images examined for that scene.  
The extents of on-water transect surveys conducted by Witherington et al. (2012) are represented by 
the polygons (outlined in black).   
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Figure 1.6. Annual mean area (km2) of surface-pelagic drift communities (SPDC) observed within the 
eastern Gulf of Mexico. Error bars represent 95% confidence intervals surrounding the mean values.   
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Figure 1.7. Monthly mean area (km2) of surface-pelagic drift communities (SPDC) observed within the 
eastern Gulf of Mexico. Error bars represent 95% confidence intervals surrounding the mean values.   
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Figure 1.8. Monthly mean area (km2) of surface-pelagic drift communities (SPDC) observed per Landsat 
path within the eastern Gulf of Mexico.  Error bars represent 95% confidence intervals surrounding the 
mean values.  Each plot represents the mean area of SPDC observed within selected Landsat paths. 
Figures are arranged with paths in decreasing order, from 20–16, which corresponds to their geographic 
order (west–east). Data from paths 16 and 17 were combined (D). 
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Figure 1.9. Density of surface-pelagic drift communities (SPDC) observed within Landsat path 20, rows 
39 and 40 from 2003–2011. These Landsat scenes intersect with the on-water transect study area south 
of Pensacola, Florida (black polygon). 
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Figure 1.10. Density of surface-pelagic drift communities (SPDC) observed within Landsat paths 18 and 
19, rows 39 and 40 from 2003–2011. These Landsat scenes intersect with the on-water transect study 
area south of Apalachicola, Florida (black polygon). 
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Figure 1.11. Density of surface-pelagic drift communities (SPDC) observed within Landsat path 17, row 
41 from 2003–2011. This Landsat scene intersects with the on-water transect study area west of 
Sarasota, Florida (black polygon). 
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Figure 1.12. Density of surface-pelagic drift communities (SPDC) observed within Landsat path 16, row 
42 from 2003–2011. This Landsat scene intersects with the on-water transect study area west of Marco 
Island, Florida (black polygon). 
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Figure 1.13. Density of surface-pelagic drift communities (SPDC) observed within Landsat path 16, row 
43 from 2005–2011. This Landsat scene intersects with the on-water transect study area west of Key 
West, Florida (black polygon). 
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Figure 1.14. Density of surface-pelagic drift communities (SPDC) observed within the eastern Gulf of 
Mexico from 2003–2011. The hatched polygon shows the extent of the recently designated Sargassum 
critical habitat for loggerheads (NMFS 2014).  The density of loggerhead nesting on Florida beaches from 
2009–2013 is shown (Florida Fish and Wildlife Conservation Commission, Statewide Sea Turtle Nesting 
Beach Survey Program 2014).  The black lines represent the extent of the eastern Gulf of Mexico study 
area.  Within the study area, the red line represents the northern extent of the region where the 
availability of Landsat data was limited.  
 



45 
 

 
Figure 1.15. Wind velocity and the frequency of occurrence of surface-pelagic drift communities (SPDC) 
within eastern Gulf of Mexico Landsat images.  Bars represent the percentage of images within which 
SPDC was (Yes) or was not (No) detected.



46 
 

 

 

 

CHAPTER TWO: 

MOVEMENTS AND HABITAT ASSOCIATIONS OF SURFACE-PELAGIC JUVENILE KEMP’S RIDLEYS 

(LEPIDOCHELYS KEMPII) WITHIN THE NORTHERN GULF OF MEXICO 

 

1. Abstract 

Information on the behavior and habitat associations of protected marine species is essential to 

their conservation.  Within the North Atlantic and surrounding oceanic regions, early (surface-pelagic) 

juveniles of several sea turtle species are presumed to be principally passive drifters associated with 

surface-pelagic drift communities (SPDC).  This information is supported by anecdotal observations, 

directed research, and oceanographic-based species distributional modeling.  The present study used 

satellite telemetry to examine the movement characteristics and habitat associations of surface-pelagic 

juvenile Kemp’s ridleys (Lepidochelys kempii) captured at sea within the northern Gulf of Mexico.  Ocean 

surface habitats were described in terms of currents, winds, and temperature.  Remotely-sensed 

observations of Sargassum-dominated SPDC were also used to characterize habitats. Tracked turtles 

exhibited mostly passive behavior, particularly when associated with SPDC or conditions favorable for its 

formation.  Tracked turtles moved with, against, and across relatively weak surface currents (inferred 

from altimetry).  Shallow waters (< 20 m) and the presence of SPDC were the only features that 

appeared to constrain the movements of tracked turtles.  One individual appeared to transition from 

surface-pelagic habitats into nearshore neritic habitats.  Results suggest that SPDC within the northern 

and eastern Gulf of Mexico serves as critical developmental habitat for surface-pelagic juvenile Kemp’s 

ridleys.  This information on the sea surface habitats used by this species and life-stage broadens 
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knowledge of their distribution and habitat requirements. Additionally, the long-term association 

observed between tracked turtles and SPDC illustrates the vulnerability of this life stage to 

anthropogenic threats, such as marine debris and oil spills. 

 

2. Introduction 

Many large marine vertebrates (e.g., mammals, seabirds, sea turtles, and sharks) share traits that 

challenge conservation efforts.  These species are often long-lived and wide ranging; they also tend to 

have complex life-histories and diverse habitat associations (Hyrenbach et al. 2000).  Conservation 

efforts for these species often depend on information regarding habitat selection, migratory patterns, 

and threats (Block et al. 2003; Wallace et al. 2010).  Within the pelagic environment, information on the 

spatial or temporal distributions of a specific species or life-history stage may be particularly limited 

(Hyrenbach et al. 2000).  Addressing these knowledge deficiencies through direct observation of marine 

vertebrates and their habitats may not always be feasible.  The use of indirect observational methods 

(e.g., remote monitoring and tracking techniques) is now regularly used in marine conservation research 

and has helped fill critical data gaps (Hart and Hyrenbach 2009).   

Sea turtles have a global distribution, and many species exhibit lengthy developmental and 

reproductive migrations.  Their reproductive and foraging habitats may be on opposite sides of major 

ocean basins (Witt et al. 2011).  Developmental migrations made by sea turtles may also span oceans 

and intersect with waters of several nations (Meylan et al. 2011).  Satellite telemetry provides a method 

to understand the characteristics of lengthy sea turtle migrations and to identify potential areas of long-

term residence at nodes within these movements (Godley et al. 2008).  Satellite tracking is now 

increasingly used in conjunction with remotely-sensed oceanographic data to explain patterns of 

occurrence and habitat associations for some species, e.g., leatherback turtles (Bailey et al. 2012).  
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Satellite tracking and remotely-sensed oceanographic data have also been combined to identify discrete 

habitats used by juvenile loggerheads in the North Pacific (Polovina et al. 2004).   

Once clear habitat associations have been established, those results can be used to predict species 

occurrence that can guide conservation management efforts.  Leatherback turtles within the Atlantic 

and Pacific oceans have also been shown to associate with remotely-identifiable fronts or temperature 

gradients and within regions that may place them at increased risk for fisheries bycatch (Eckert et al. 

2006; Bailey et al. 2012).  Howell et al. (2008) combined loggerhead habitat preferences, remote sensing 

data, longline fishery characteristics, and bycatch patterns in order to develop “TurtleWatch”, a tool 

designed to reduce interactions between loggerheads and pelagic longline fishing activities within the 

North Pacific.  These examples demonstrate that linking marine animal movement patterns with 

remotely-sensed oceanographic features can lead to powerful marine conservation management tools. 

It may also be possible to link the early juvenile life stages of some sea turtle species to discrete, 

remotely-identifiable habitat features.  Witherington et al. (2012) found that young (surface-pelagic) 

juveniles of four North Atlantic sea turtle species closely associate with aggregations of the floating 

macroalgae Sargassum spp.  The species found within Sargassum were green (Chelonia mydas), 

hawksbill (Eretmochelys imbricata), Kemp’s ridley (Lepidochelys kempii), and loggerhead (Caretta 

caretta) turtles.  Sargassum-dominated surface-pelagic drift communities (SPDC) are unique marine 

ecosystems within which a variety of organisms forage and find cover (Fine 1970).  Under favorable 

conditions, SPDC tends to aggregate within lines that are of sufficient size to be detected within satellite 

images (Gower et al. 2006; Hu 2009).  The ability to conduct remote habitat detection studies, coupled 

with recent advancements in satellite telemetry, provide an opportunity to examine questions of habitat 

association, behavior, and movements of surface-pelagic juvenile sea turtles. 

After emerging from nests, sea turtle hatchlings enter the water and may spend the initial 24 hours 

in a period of continuous and rapid swimming, the “swim-frenzy” stage (Dalton 1979; Wyneken and 
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Salmon 1992).  The swim-frenzy period may end when post-hatchlings seek shelter within SPDC or other 

flotsam (Carr 1986; Witherington 2002).  By associating with SPDC, turtles likely decrease their risk of 

predation and increase their foraging opportunities (Musick and Limpus 1997; Witherington et al. 2012).  

Because of the availability of food and cover, sea turtles associated with SPDC are thought to spend a 

majority of the time drifting passively with the habitat; therefore, it is presumed that their distribution 

must be driven by ocean surface currents and winds that are responsible for distributing SPDC (Carr 

1986; Collard and Ogren 1990; Bolten 2003b).   

The Kemp’s ridley has the smallest range of all North Atlantic sea turtles, and the oceanographic 

factors responsible for its distribution have been examined in detail (Collard and Ogren 1990; Putman et 

al. 2010).  The principal Kemp’s ridley nesting beaches are found in Tamaulipas, Mexico, along the 

western shoreline of the Gulf of Mexico (Marquez 1994).  Based on Gulf circulation patterns, Collard and 

Ogren (1990) developed several scenarios to explain the distribution of surface-pelagic juvenile Kemp’s 

ridleys.  Kemp’s ridleys may remain within the southwestern Gulf or be transported eastward.  Turtles 

that are transported eastward may become entrained in westward drifting anticyclonic eddies or the 

southward-flowing Loop Current, which would transport them out of the Gulf.  Recently, Putman et al. 

(2013) used particle drift simulations to predict the distributions of surface-pelagic juvenile Kemp’s 

ridleys and found similar distributional patterns.  Putman et al. (2013) also found support for the 

occurrence of surface-pelagic Kemp’s ridleys within the eastern Gulf, an area where surface-pelagic 

juvenile Kemp’s ridleys have been directly observed (Witherington et al. 2012).  Increased accuracy of 

these distributional models awaits refinements on the behavior of surface-pelagic Kemp’s ridleys and 

the distribution of their habitats (Putman et al. 2013).   

The present study coupled telemetry and remotely-sensed habitat features to characterize the 

movements made by surface-pelagic juvenile Kemp’s ridleys and to describe their habitat associations.  

Remotely-sensed data for winds, surface currents, surface temperature and SPDC were used to 
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characterize the habitats used by tracked turtles.  The association of tracked turtles with SPDC was 

examined over multi-day time scales using remote sensing techniques. Within the North Atlantic, SPDC 

is known to vary spatially and temporally (Gower and King 2011).  Additionally, large areas of SPDC may 

be dispersed into smaller patches or clumps at high wind speeds (Marmorino et al. 2011).  The marine 

species closely associated with SPDC must have evolved an ability to locate habitat.  For surface-pelagic 

juvenile sea turtles, this may result in a dichotomous behavioral strategy including an active, habitat 

searching phase and a relatively passive drift phase that occurs when habitat is located (Witherington 

2002).  A mixed strategy of active and passive movements has been proposed for juvenile loggerheads 

(Witherington 2002; Bolten 2003a) and leatherbacks (Gaspar et al. 2012).  In addition to habitat 

characterization, this study sought to determine whether surface-pelagic juveniles exhibit both active 

and passive behavior and whether this behavioral response is predicted by availability of SPDC.   

 

3. Methods 

 

3.1 Satellite Transmitter Deployments 

Satellite transmitter deployments were made by B. Witherington and S. Hirama (NMFS Permit 

14726-01) from June–September 2011 as part of a long-term study of sea turtles within SPDC 

(Witherington et al. 2012).  They deployed transmitters on a sample of 10 surface-pelagic juvenile 

Kemp’s ridleys captured at three locations within the northeastern and eastern Gulf (Fig. 2.1).  All turtles 

were captured within SPDC and returned to this habitat upon release (capture–release time was 

approximately 2 hours).  Three transmitters were deployed on turtles captured within each of two 

northern Gulf study sites, south of Pensacola and Apalachicola, Florida.  The remaining four transmitters 

were deployed at an eastern Gulf study site, within West Florida Shelf (WFS) waters near Sarasota, 

Florida. The transmitters were 9.5 g, solar-powered tags (Microwave Telemetry PTT-100) and were 
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attached using silicone adhesive following the methods of Mansfield et al. (2012) (Fig. 2.2).  The activity 

of these units was controlled by duty cycles, not water conductivity as is common in other marine 

animal telemetry equipment.  The duty cycle for five units was 10 hours on/48 hours off, and the other 

five had a duty cycle set to 10 hours on/24 hours off.  Turtles were randomly assigned transmitters 

programmed with one of the two duty cycles.  The transmitter manufacturer recommended relatively 

brief active periods followed by longer inactive times in order to allow time for the batteries to 

recharge.  

 

3.2 Transmitter Temperature and Battery Voltage 

Transmitters reported temperature and battery voltage data within Argos messages.  Temperature 

and voltage data were decoded from two 8-bit message fields following the manufacturer’s 

recommendations (MTI 2011).  Spurious records from the temperature and voltage data were removed 

using the Hampel Filter implemented with the pracma package written by Borchers (2014) for the 

program R (R Core Team 2013).  The Hampel Filter performs a median absolute deviation computation 

on an ordered subset of temperature records using a moving window technique.  I used a window size 

of 6 records and 3 sigma threshold recommended by Pearson (1999).  Outlying values were replaced 

with the median value of the subset.   

 

3.3 Argos Positional Data Treatment 

Raw Argos location estimates were subjected to plausibility filtering using the Douglas Argos Filter 

Algorithm (DAF; Douglas 2012), implemented using SAS Enterprise Guide 5.1 (SAS Institute, Inc. Cary, NC 

USA).  The DAF evaluated positions based on rate, distance, angle, and quality.  Similar to Eckert (2006), I 

set the travel rate parameter for the DAF by estimating the rate of travel between mean daily positions 

calculated from all Argos positions for each transmitter.  I selected the value of 3 km hr-1, which was 
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conservatively above 90% of the travel rate values for each turtle (Fig. 2.3).  The DAF implemented a 

minimum-redundant distance test, which allows positions collected near in time and within a user-

specified distance threshold to validate one another (Douglas et al. 2012).  I set the distance threshold 

to 5 km, a value consistent with other local-scale analyses of sea turtle tracking data (Foley et al. 2014).  

Within Argos data, acute turn angles are often indicative of spurious positions (Douglas et al. 2012).  The 

DAF established the minimum allowable turn angle at each position using the ‘ratecoef’ value (-

25+ratecoef*ln(min(distA-B, distB-C; where dist = distance between pairs of positions, A and B, B and C).  

I set the ratecoef value to 25, a value that was consistent with other sea turtle studies involving 

examinations of movements (Eckert et al. 2006; Foley et al. 2013).  Collecte Localisation Satellites (CLS, 

the company which operates the Argos system) provided accuracy estimates to accompany locations in 

the form of Location Class (LC) rankings.  CLS is able to estimate positional error for locations solved 

from four or more messages.  Class A and B locations are solved using one to three messages and error 

estimates cannot be estimated (CLS 2014).  I considered LCs 2 and 3 to be of sufficient accuracy for the 

present study, and these locations were automatically retained by the DAF plausibility filtering step.  CLS 

(2014) estimated the error radii for LCs 2 and 3 to be 250 and 500 m, respectively.  Tracks began at the 

release position, which was recorded by the research vessel’s GPS.  The final positions collected from 

each tracked turtle were also retained.  Travel rates (km hr-1, mean ±SD) for each turtle were obtained 

from a selection of the highest quality Argos position collected for each day.  I calculated the directness 

of turtles’ path by dividing the distance between the deployment and final locations by the overall path 

distance (Batschelet 1981). 

 

3.4 Positional Interpolation and State-Space Modeling 

Travel paths were reconstructed by fitting a two-state-switching, correlated, random-walk model to 

Argos positions deemed plausible by the DAF routine.  I interpolated positions at 12-hr intervals.  This 



53 
 

model was implemented using WinBugs 1.4.3 (Lunn et al. 2000) and R following methods developed by 

Jonsen et al. (2005) with modifications by Breed et al. (2009).  The model categorized positions as being 

in one of two behavioral states based on travel rate and turn angle.  Breed et al. (2009) employed this 

method to distinguish between foraging and travel states within data collected from satellite-tracked 

adult gray seals.  Recently, Hart et al. (2012) used similar methods to distinguish between migration and 

resident foraging behaviors using Argos data collected from post-nesting loggerhead turtles.  For the 

present study, I applied this method to explore the possibility that surface-pelagic juveniles exhibited 

two behavioral states: passive (drift) and active (transit). 

 

3.5 Remotely-Sensed Habitat Information 

I overlaid positions with several remotely-sensed environmental datasets.  Sea surface circulation 

velocity and direction data were obtained from Ssalto/Duacs sea surface height (SSH) data distributed 

by Aviso, with support from Cnes (http://www.aviso.altimetry.fr/duacs/).  I obtained daily, 4 km spatial 

resolution sea surface temperature (SST) data from thermal infrared sensors onboard MODIS Aqua and 

Terra satellites.  MODIS data were obtained from the Physical Oceanography Distributed Active Archive 

Center at the NASA Jet Propulsion Laboratory, Pasadena, CA (http://podaac.jpl.nasa.gov). I extracted 

spatially and temporally corresponding SSH and SST data at interpolated positions using the Marine 

Geospatial Ecology Tools for ArcGIS (Esri, Redlands, CA; Roberts et al. 2010).  I obtained wind velocity 

values corresponding to each interpolated position from the global NCEP/NCAR Reanalysis 2 dataset 

using the RNCEP package written for the program R (Kanamitsu et al. 2002; Kemp et al. 2012). I 

attributed bathymetry values to interpolated positions using ArcGIS and the US Coastal Relief Model 

dataset (NOAA NGDC 2009). 

I identified SPDC within Landsat 5 Thematic Mapper and Landsat 7 Enhanced Thematic Mapper Plus 

images using the Floating Algae Index (Hu 2009).  Landsat imagery has a spatial resolution of 30 m.  Each 
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satellite revisits scenes on 16-day intervals; together, Landsat 5 and 7 provided 8-day temporal 

resolution.  Landsat primarily provided data for nearshore waters during the study period (Fig. 2.1).  

Using ArcGIS, I intersected satellite track positions with Landsat scene footprints to identify the dates 

that each tracked turtle intersected with specific Landsat scenes.  I browsed the images and searched for 

dates of interest using the US Geological Survey’s Global Visualization Viewer (Glovis; 

http://glovis.usgs.gov/).  Using Glovis, I selected images collected on or within 1 day of a tracked turtle 

being observed within that scene.  I downloaded and applied atmospheric correction to the level-1 

reflectance data using a customized set of IDL routines (Hu et al. 2004; Exelis Visual Information 

Solutions, Boulder, CO).  Next, I calculated the FAI using the corrected reflectance data from bands 3, 4, 

and 5 (Hu 2009).  I examined FAI images, along with co-registered RGB images, within ENVI (Exelis Visual 

Information Solutions, Boulder, CO).  I digitized SPDC features within ENVI, converted the SPDC features 

to vectors, and recorded those as feature classes within an ArcGIS geodatabase.  Within ArcGIS, I 

estimated the distances from the nearest interpolated turtle position to the nearest SPDC feature.   

 

3.6 Statistical Methods 

In order to evaluate the effects of longer duty cycles on transmitter performance, I compared the 

duration of deployment and the number of days during which positions were collected (data days) for 

the two duty cycles using two sample t-tests.  Using Watson’s two sample test of homogeneity, I 

evaluated the similarity between turtle travel direction and surface circulation direction.  I compared 

SST values provided by the transmitters to those obtained from MODIS using a two sample t-test.  The 

aforementioned statistical tests were performed using R with alpha = 0.05.  I compared wind velocity, 

surface current velocity and SST, values between behavioral states using a liner mixed-effects model 

implemented with the lme4 R package (Bates et al. 2014).  Within the models, behavioral state was used 
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as a fixed effect, and turtle was incorporated as a random effect.  Likelihood ratio tests were used to 

compare the model with behavioral state included to a null model, within which behavior was omitted.  

 

4. Results 

Turtles were tracked for an average of 36.5 days (±14.8 SD, range = 20–71) during June–October, 

2011.  During the tracking periods, transmitters provided locations for an average of 28 days (±10.5 SD, 

range 13–44).  I received an average of 166.6 locations from each transmitter (±67 SD, range = 85–312).  

Argos positional data generated by these transmitters were dominated by the lower quality class 0–Z 

locations (91.9% of all positions received; Fig. 2.4).  Most of these locations were classified as 0 or B 

(45% and 33%, respectively).  Transmitters maintained consistent battery charges throughout the 

duration of deployments, the average voltage was 4.0 (±0.21 SD, range = 3.2–4.3).  Battery voltages of 

four transmitters generally increased during the deployment while the remaining six units showed 

slightly declining charges (Fig. 2.5).  The five transmitters with the shorter (24 hour) period of inactivity 

provided an average of 207 Argos locations while the units with the longer (48 hour) duty cycle provided 

an average of 126 locations, per deployment.  The two duty cycles did not differ significantly in the 

quality of Argos locations (p = 0.97), number of data-days (p = 0.09), or length of deployments (p = 0.65; 

Table 2.1). 

 

4.1 Movement Characteristics and Behavior 

Of the six turtles released from the two northern Gulf study sites, five had eastward or 

southeastward travel paths (Fig. 2.6). The northern Gulf individuals also moved farther from their 

release position (mean displacement = 217.7 km) than turtles released on the WFS (mean displacement 

= 118.2 km; Table 2.2).  Northern Gulf turtles had shorter overall travel path lengths and, as a result, 
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more direct paths (Table 2.2).  The average travel rate was 0.91 km hr-1 (±1.68 SD).  Northern Gulf turtles 

traveled an average of 0.3 km hr-1 faster than those released on the WFS (Table 2.2).  

Turtles spent an average of 75% of the tracking period within the behavioral state characterized by 

slower travel rates and larger turn angles — the relatively passive behavioral state presumed to 

represent drift (Table 2.2).  This behavioral state dominated the tracking period for all but two 

individuals, 105467 and 105471, both of which exhibited above average travel rates (Table 2.2).  Turtle 

105472 also exhibited high travel rates but had a sinuous travel path (Table 2.2).  Two individuals 

(105468 and 105473) never entered behavioral state 2, the state marked by relatively fast and direct 

travel.  Both individuals had low path straightness indices and low overall displacement, indicative of 

localized movements (Table 2.2). 

Satellite-tracked turtles were released within or near to continental shelf waters (Fig. 2.1). The 

average depth of release positions was 120 m (±65 SD, range = 45–206).  The average depths used by 

turtles was 318 m (±720 SD, range = <1–3241).  Half of the turtles remained within continental shelf 

waters throughout the tracking period (Table 2.4).  The 30 m contour constrained a majority of the 

movements made by tracked turtles (Fig. 2.6).  All but one of the individuals remained in waters deeper 

than 19.8 m throughout their tracking period (Table 2.4).  One individual, 105466, moved into shallow 

waters during the final month of tracking (minimum depth < 1 m).   

 

4.2 Apparent Departure from the Surface-Pelagic Environment 

Turtle 105466 was captured and tracked from SPDC found offshore of Sarasota, Florida on 13 August 

2011 (Fig. 2.7). The animal remained offshore of the 30 m bathymetric contour during the initial month 

of the tracking period.  On 10 September, this individual began a fairly direct movement toward the 

coastline of western peninsular Florida.  This movement ended on 13 September, near the mouth of the 

Suwannee River, in approximately 4 m depth.  From 14 September–14 October, this individual moved 
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northward, toward the Pepperfish Keys, then southward, past the Cedar Keys and into Waccasassa Bay, 

while remaining within an average depth of 6.1 m (±1.9 SD, range = 1.6–9.8).  Prior to 14 September, the 

number of messages received during each Argos overpass was 4.2 (±3.5 SD, range = 1–13; Fig. 2.8).  

From 14 September – 14 October, the mean number of messages per overpass fell to 1.3 (±0.7 SD, range 

= 1–4; Fig. 2.8).  On 15 October, turtle 105466 traveled shoreward, toward the mouth of the 

Withlacoochee River (Fig. 2.7).  The final two locations from this unit were transmitted on 18 and 23 

October from two nearshore (depth < 1 m) locations, the Withlacoochee Reefs and Crystal Bay, 

respectively. 

   

4.3 Sea Surface Habitat 

The average temperature reported by the transmitters’ internal sensors was 33.6° C (±1.2 SD, range 

= 24.3 – 38.5).  The average of remotely-sensed SST values corresponding to turtle positions was 29.7° C 

(±1.1 SD, range = 25.4 – 32.2).  Transmitter-reported SST values were significantly higher than those 

obtained from MODIS satellites (t-test, p < 0.01).  The temperature values reported by the transmitters 

and those derived from MODIS imagery are reported by transmitter in Fig. 2.9.  The average surface 

current velocity encountered by tracked turtles was 0.37 km hr-1 (±0.20, range 0.08–1.18; Table 2.3).  

When averaged across the entire track, turtle travel direction and surface circulation direction differed 

significantly for each animal (Watson’s two sample test for homogeneity, alpha = 0.05).  A close 

inspection of the travel paths and direction of surface circulation corresponding to each position 

revealed that each individual exhibited periods of movement with, against or across the flow of 

prevailing surface currents (Fig. 2.10). Surface circulation velocity and SST values did not differ between 

behavioral states for these eight individuals.  The average wind speeds experienced by tracked turtles 

was 3.4 m s-1 (±2.1 SD, range = 0.01–11.7).  For the eight individuals observed in both behavioral states, 
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wind velocity values were significantly higher (1.1 m s-1 ±0.2 SE, χ2 = 23.5, p = 0.001) when turtles were in 

the behavioral mode characterized by faster and more direct travel.   

I examined 30 Landsat 5 and 7 images collected during June–October 2011.  Landsat imagery was 

available corresponding to the paths of all but one tracked turtle (Table 2.5).  This turtle received 

transmitter number 105465 south of Apalachicola, Florida during July 2011.  This capture and 

transmitter deployment occurred within a within a region where Landsat data were not available 

(Landsat path 19, row 40; Fig. 2.11).  The turtle moved south-southeast through waters not imaged by 

Landsat, then traveled northeastward and into a Landsat scene that was imaged during the summer of 

2011 (path 18, row 40).  Turtle 105465 remained within this area from 27 July until the tag ceased 

transmissions on 7 August 2011.  Landsat images were collected within this scene on 26 July and 11 

August.  Landsat 7 was scheduled to image the area on 3 August, but the image was not acquired (USGS 

EROS pers. comm. September 2014).  As part of a complementary study, I examined the two Landsat 5 

images nearest to this time period and found SPDC within both images (Fig. 2.11).  Turtle 105465 

switched relatively passive movements on 29 July.  This behavioral change occurred when the turtle was 

within 10 km of the location where SPDC was observed three days prior, on 26 July (Fig. 2.11).  From 29 

July–7 August, this individual also did not experience winds in excess of 5 m s-1, the point above which 

larger areas of SPDC may disintegrate (Marmorino et al. 2011).   

Four turtles were observed in close association with remotely-detected SPDC.  Turtle number 

105464 was released within SPDC southeast of Pensacola, Florida on 3 June 2011.  SPDC was found 

within Landsat images collected on three days corresponding to this turtle’s track (Fig. 2.12).  On 6 June, 

SPDC was apparent approximately 15 km south of the location of turtle 105464.  The turtle travelled 

southwestward between 6 and 14 June, into an area where lines of SPDC were observed on 6 June.  

Upon arrival in this area, the turtle’s travel rate slowed, and its behavioral state switched to the passive 

state.  A second Landsat image was collected on 14 June, and no SPDC was observed near to 105464.  
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Small patches of SPDC were observed approximately 40 km east of the turtle’s position on that day.  At 

this time the turtle had begun directed, eastward travel.  A third Landsat image was collected on 23 

June, and SPDC was observed approximately 30 km west of 105464. 

Turtle 105468 was tracked from SPDC found south of Apalachicola, Florida on 7 July 2011.  This 

individual was tracked for 20 days, during which time three Landsat images were collected and SPDC 

was observed in all images (Fig. 2.13).  On 10 July, this individual was within 10 km of SPDC.  On the 

following day, the turtle moved southward and through the area where SPDC was observed in the 10 

July image.  Turtle 105468 moved southward until 18 July, then turned and traveled northward, along a 

similar path.  The area was imaged by Landsat 7 on 18 July and a small area of SPDC was observed 

approximately 40 km east of the turtle’s positions.  SPDC was again observed within the Landsat 5 image 

collected on 26 July.  Patches of SPDC were found approximately 15 km northeast and southwest of the 

corresponding turtle positions.   

Turtle 105469 was captured within and tracked from SPDC found west of Sarasota, Florida on 13 

August 2011.  This individual remained within the extent of Landsat path 17, row 41 throughout the 

tracking period.  This Landsat scene was imaged seven times during the tracking period; SPDC was 

observed within 4 images (Table 2.5).  On 13 September, a line of SPDC was observed slightly east of the 

path traveled by turtle 105469 (Fig. 2.14).  Within the other three images, SPDC was present but distant 

(approx. 50–150 km) from the path of turtle 105469. 

 Turtle 105470 was tracked from SPDC found within waters south of Pensacola, Florida on 5 July 

2011.  The region was imaged by Landsat 5 the following day, 6 June, and 6.2 km2 SPDC was observed 

within the image and overlapping with the location of turtle 105470 (Fig. 2.13).  This individual remained 

within the area until 13 June, when it began directed eastward movements.  This Landsat scene (path 

20, row 39) was imaged again on 14 June and 0.2 km2 of SPDC was observed within the image.  Wind 

speeds corresponding to the locations of turtle 105470 increased to approximately 4.6 and 5.9 m s-1 by 



60 
 

13 and 14 June, respectively.  From 15–19 June, turtle 105470 traveled eastward and south the extent of 

the nearby Landsat scene (path 19, row 39; Fig. 2.14).  This scene was imaged on 15 June, and SPDC was 

present within this image, approximately 70 km from the corresponding position of the turtle.  The 

average wind speed during the 15–19 June transit was 4.3 m s-1.  On 21 June, this individual’s travel rate 

and direction changed; corresponding wind speeds fell to 2.4 m s-1.  The turtle spent the remainder of 

the tracking period in an area where SPDC was observed within Landsat images collected 24 June, 2 July, 

and 10 July (Fig. 2.14).  The average wind speed corresponding to this time period (21 June–14 July) was 

2.2 m s-1. 

The remaining five turtles were observed on or within one day of SPDC being present within the 

same Landsat scene for 74% of images examined (Table 2.5).  Overall, the mean distance between 

tracked turtles and SPDC was 54 km.  These records indicate that conditions were favorable for the 

presence of SPDC on those days.  On 78% of these occasions, turtles were observed within the passive 

behavioral state.   

 

5. Discussion 

The surface-pelagic life stage, first classified by Carr et al. (1978) as the “lost year”, remains one of 

the most poorly understood aspects of sea turtle biology.  Research efforts focused on surface-pelagic 

juveniles have provided essential information on the species, size distribution, threats, behavior, and 

habitat associations (Witherington 2002; Witherington et al. 2012).  For example, within the North 

Atlantic, we now know that four species of sea turtles spend their surface-pelagic juvenile phases within 

the region’s Sargassum-dominated drift communities (Witherington et al. 2012). Knowledge of a strong 

association with a discrete habitat, and technological advancements within the field of oceanographic 

remote-sensing (Hu 2009) will help revise distributional patterns for these species and life stages.  
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Advancements in satellite tracking technology allowed us to build on this knowledge by evaluating 

habitat associations across longer periods of time.   

The average transmitter deployment duration of 36.5 days was low relative to most sea turtle 

tracking studies.  However, sea turtle tracking studies tend to involve larger, slower growing animals; 

larger transmitters; and longer-lasting attachment techniques (Balazs et al. 1996; Godley et al. 2008; 

Jones et al. 2013).  The ability for smaller sized turtles to be tracked under the present study was made 

possible by the use of small transmitters initially developed for avian applications and flexible 

attachment techniques that would not prevent normal growth (developed by Mansfield et al. 2012).  To 

date, one study has used similar methodology to satellite-track captive-reared loggerhead turtles 

(Mansfield et al. 2014).  The present study represents the first application of this technique involving 

wild-captured surface-pelagic juvenile turtles.  The differing tracking durations between the present 

study and Mansfield et al. (2014) could be a result deploying transmitters on a different species under 

field conditions. 

Mansfield et al. (2014) experienced longer deployment durations (86.6 days) and received higher 

quality locations.  The majority of Argos locations collected during the present study fell within classes 

0–Z (91.9%).  The quality of locations is a measure of the position’s accuracy and largely depends on the 

number of messages received by satellites. CLS does not assign accuracy estimates to Argos locations 

derived from fewer than four messages (CLS 2014).  Mansfield et al. (2014) received higher quality, 

mostly class 1, locations from lab-reared surface-pelagic juvenile loggerheads that were released within 

Gulf Stream waters off southeast Florida.  The high percentage of class 0 locations in the present study 

was unexpected.  Class 0 locations are those for which four or more messages were received but the 

upper limit of the error radius could not be determined (CLS 2014).  This suggests that the transmitters 

were sending a sufficient number of messages, but failed plausibility checks resulted in the poor data 

quality observed by the present study. Similar to Mansfield et al. (2014), transmitters in the present 
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study exhibited stable battery voltage throughout the deployments.  This suggests that sufficient solar 

radiation reached the transmitters’ solar cells.  An examination of the overall location quality for the 

present study may lead to the conclusion that the turtles were behaving differently than expected, i.e., 

spending less time at the surface.  However, the frequency of Argos messages, consistent battery 

voltage, and transmitter temperatures consistently higher than SST suggested that the turtles were 

spending much of their time at the surface during daylight hours.  

 

5.1 Behavior 

The present study explored the use of state-space modeling techniques as a tool to determine 

whether the movements of surface-pelagic juveniles could be classified into periods of passive and 

active behavior.  Overall, turtles were in the relatively passive behavioral state 75% of the time.  Two 

individuals spent a majority of the time in a more active behavioral state, and their path characteristics 

(rate, path straightness, and displacement) supported this classification. Two other turtles were never 

identified by the model as being in the active behavioral state.  Path characteristics also supported this 

passive-state classification because both individuals had indirect paths with small displacements.  It is 

possible the tracking duration was not sufficient to capture a behavioral change; both were relatively 

brief deployments (20 and 24 days).  One of these individuals (turtle 105473) had the second highest 

overall travel rate despite never having entered the relatively active behavioral state.  Travel rates can 

be extremely high and not useful for plausibility tests when calculated among Argos positions collected 

near in time and space (< 5 km in the present study).  Turtle 105473 moved the shortest overall distance 

during the deployment, and most locations were retained by plausibility filtering due to their close 

proximity, rather than based on travel rate. This case illustrates the utility of plausibility filtering and 

behavioral classification techniques that consider multiple travel-path metrics.  Behavioral models may 

be further refined by the incorporation of sea surface habitat variables. 
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The exploratory application of behavioral classification techniques was supported by travel path 

characteristics and by habitat associations, i.e., proximity to SPDC.  Support principally came from direct 

observations of SPDC or the occurrence of low wind velocity, presumably favorable for SPDC formation.  

The FAI applied to Landsat imagery has proven to be a suitable method for detecting SPDC within the 

eastern Gulf of Mexico (Hu 2009; Ch. 1, present volume).  Landsat imagery was available on multiple 

occasions for 9 of 10 tracked turtles, and SPDC was present within most of the images (Table 2.5).  Four 

turtles were observed closely associated with SPDC, and their behavior suggested passive drift during 

those instances (Fig. 2.12–2.15).  This behavior may be similar to the state in which these animals have 

been discovered during field captures (Witherington et al. 2012).  The remaining five turtles were 

observed within a Landsat scene that also contained SPDC on several occasions (scene size = 183 x 170 

km).  This suggests that conditions were favorable for SPDC formation on those days, within the areas 

occupied by tracked turtles.  On these occasions, it is possible that the habitat-detection method missed 

small features with which the turtles were associated or that the turtles were not associated with SPDC 

during those days.  Low wind speeds appear conducive to the formation of SPDC (Marmorino et al. 

2011; Ch. 1, present volume).  In the absence of direct habitat observations, wind velocity may be a 

suitable indicator of conditions favoring the aggregation of SPDC.  Across all individuals, wind velocity 

values were lower when turtles were in the passive behavioral state.  More research is needed to 

determine whether wind velocity can be used to predict the occurrence of aggregated SPDC.  The 

coupled examination of behavioral state and habitat associations suggests that these turtles exhibited 

mixed, but principally passive, behavior.  Additionally, passive behavior appears to be in response to the 

presence of SPDC.  

The prevalence of relatively passive behavior was expected.  By associating with SPDC, young turtles 

reduce their risk of predation and increase foraging opportunities (Musick and Limpus 1997; 

Witherington et al. 2012).  Once a suitable habitat is located, it is advantageous for turtles to remain 
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associated with it.  Therefore, the distribution and availability of SPDC must constrain the distribution of 

associated surface-pelagic juvenile turtles.  However, SPDC may be found in areas not occupied by 

surface-pelagic turtles.  A complementary study (Ch. 1, present volume) identified dense aggregations of 

SPDC along the northeastern Gulf shoreline of Florida and within shallower waters than were inhabited 

by turtles in the present study.  With one exception, turtles in the present study used a range of 

continental shelf and slope water depths and did not venture into waters shallower than 19.8 m.  This 

behavior may indicate that shallow waters are somehow unsuitable for surface-pelagic juvenile turtles 

even though habitat is present.  Rooker et al. (2012) found that blue marlin, white marlin and swordfish 

larval density increased with depth.  Larvae of those species are also Sargassum associates. They 

speculated that the physical properties (salinity or temperature) of nearshore waters may be unsuitable 

for larval development.  Rooker et al. (2012) also noted that predation of larval fish may be higher in 

nearshore areas as a result of higher predator concentrations due to increased production.  Being 

reptiles, sea turtles exhibit a response to temperature in many aspects of their biology including 

distribution (Mrosovsky 1980).  Perhaps, nearshore water temperatures are similarly less favorable for 

development of surface-pelagic juveniles.  Avoidance of nearshore waters requires a behavioral strategy 

that is capable of detecting shallow waters and adjusting travel accordingly.  Although principally 

surface-dwelling, Kemp’s ridleys of this life stage are capable of diving to 20 m depth and make regular 

dives to the scattering layer (Witherington et al. 2012).  This diving behavior may provide a mechanism 

by which individuals are able to detect and avoid shallow waters.  Further satellite tracking and in-situ 

observations would help determine the extent to which water depth constrains movements of surface-

pelagic juvenile turtles.  This information is critical to generating distributional estimates for surface-

pelagic juvenile Kemp’s ridleys and is worthy of further study.   
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5.2 Evidence for Recruitment 

One individual crossed the 20 m bathymetric contour and moved into nearshore waters of the 

northeastern Gulf (Fig. 2.7).  Musick and Limpus (1997) speculated that as new recruits into neritic 

environments, Kemp’s ridleys may first settle in shallow waters as a strategy to avoid large predators.  

Turtle 105466 moved into a shallow region where neritic juvenile-through-subadult Kemp’s ridleys are 

known to occur.  Thus, support for the observed event being a transition into neritic habitats, rather 

than a nearshore movement made by a surface-pelagic juvenile, can be found within previous research.  

Carr and Caldwell (1956) examined the commercial sea turtle fishery that operated near the Cedar Keys 

and within Waccasassa Bay.  They found that neritic-stage Kemp’s ridleys were commonly captured 

within the fishery.  Schmid (1998) conducted net-capture studies focused on the Waccasassa Bay reefs 

and identified the area as an important developmental habitat for neritic-stage Kemp’s ridleys.  

Additional research has identified Kemp’s ridleys within other areas along the western peninsular 

Florida coastline (see review by Schmid and Barichivich 2006).  Neritic-stage Kemp’s ridleys (23.2–60.0 

cm, straight carapace length, SCL) have been recorded within the intake canal of the nearby nuclear 

power plant (data reported to FWC by Progress Energy Florida, reviewed by Eaton et al. 2008).  This 

canal is approximately 10 km from the final location recorded for turtle 105466 (Fig. 2.7).  This individual 

was relatively large (26.2 cm SCL), compared to the mean size of surface-pelagic Kemp’s ridleys found 

within the eastern Gulf of Mexico (23.3 cm, Witherington et al. 2012).  

Further evidence in support of this being a recruitment event comes from the behavioral shift that 

was detected by the behavioral model and by examining transmitter messaging rates.  This individual 

made directed movements northward from the vicinity of its capture location to a nearshore location 

where it exhibited a change in movement behavior.  After 13 September, the path characteristics 

switched from directed movements to wandering movements in a northward and southward direction 

along the shoreline (Fig. 2.7).  The daily Argos messaging rates also fell on 13 September (Fig. 2.8).  
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Abrupt changes in messaging rates from Argos transmitters attached to sea turtles have been used to 

indicate extreme events, such as mortality.  For example, Nero et al. (2013) examined the satellite track 

of a neritic juvenile Kemp’s ridley that died under unusual circumstances.  They used the change in 

Argos messaging rates and location quality to identify the likely place and time of mortality for the 

animal in question.  The case presented by Nero et al. (2013) involved a neritic juvenile for which 

tracking data prior to mortality were characterized by poor quality positions derived from infrequent 

messaging.  Such a pattern is characteristic of satellite-tracking animals that spend a majority of the time 

underwater (Vincent et al. 2002).  Nero et al. (2013) noted that after a brief period of no data, message 

counts and location quality increased, and the subsequent track was explained by surface drift.  The 

current case used the marked shift in Argos messaging to support somewhat of an inverse scenario—

tracking a known surface-dwelling individual through its transition to a principally subsurface lifestyle.  

As hypothesized by Witherington et al. (2012), these results suggest that surface-pelagic juvenile Kemp’s 

ridleys within the northeastern and eastern Gulf could remain within SPDC for prolonged periods, 

ultimately recruiting to nearshore habitats along the western Florida coastline. 

 

5.3 Distribution and Habitat Association 

The present study identified several points that can be used to refine knowledge of the distribution 

of Kemp’s ridleys within the Gulf of Mexico.  Turtles appeared principally constrained by the availability 

of SPDC and by shallow waters (< 20 m).  Within the northwestern Atlantic, the Gulf Stream Current or 

its meanders likely constrain the distribution of surface-pelagic juvenile turtles (Mansfield et al. 2014).  

The Gulf Stream has been shown to deflect the migrations of adult loggerheads departing eastern 

Florida nesting beaches and encounter northward-flowing surface current velocities in excess of 1 m s-1 

(Foley et al. 2013). Surface-pelagic juveniles may not be capable of traveling in a direction counter to 

such fast-moving currents.  Within the northern Gulf, turtles in the present study appeared capable of 
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moving freely with, across, or against the low velocity currents they encountered.  Most of the directed 

movements appeared to involve traveling perpendicular to the movement of surface waters (Fig. 2.11).  

Perhaps, this strategy increases the animals’ likelihood of encountering SPDC.  

The regions encountered by turtles tracked in the present study are areas where SPDC is found year-

round (Ch. 1, present volume).  An examination of available Landsat FAI imagery indicated that SPDC 

was frequently present near to or within the general area occupied by tracked turtles.  Additionally, 

wind data indicated that when turtles were in the passive behavioral state, conditions were favorable 

for SPDC accumulation.  Similar to Mansfield et al. (2014), turtles in the present study may have 

achieved body temperatures that exceeded SST by an average of 3.9°C (Fig. 2.9).  Marmarino et al. 

(2011) demonstrated that the temperature of Sargassum may differ from surrounding waters by as 

much as 0.5°C but is typically 0.1°C higher than SST.  Basking behavior has been demonstrated to elevate 

sea turtle body temperatures 3.75°C above that of surrounding sea water (Sapsford and van der Riet 

1979).  Assuming transmitter temperatures are suitable proxies for the body temperature of the turtles 

to which they are affixed, the temperature difference between the transmitters and SST might be largely 

due to solar radiation with Sargassum heat transduction and storage being secondary.  As suggested by 

Mansfield et al. (2014), the principal role of SPDC in the thermal environment may be to offer a location 

for young sea turtles to bask with reduced risk of predation.  

The findings of this and previous studies can be combined to estimate the threat of marine pollution 

to surface-pelagic juvenile sea turtles: 1) Surface-pelagic juveniles of four sea turtle species are closely 

associated with SPDC (Witherington et al. 2012).  2) These habitats are often impacted by pollution in 

the form of persistent marine debris or spilled petroleum products (Carr 1987; Witherington 2002; 

Schuyler et al. 2014).  3) Post-hatchling and juvenile sea turtles found within SPDC are known to ingest 

various types of anthropogenic debris and pollutants (Witherington 2002; Witherington et al. 2012).  
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Collectively, these findings suggest that anthropogenic debris may be having severe impacts on surface-

pelagic juvenile sea turtles throughout their range.  

 

5.4 Conclusions 

Based on direct observations, Witherington et al. (2012) demonstrated that surface-pelagic juveniles 

green, hawksbill, Kemp’s ridley, and loggerhead turtles are closely associated with SPDC.  The present 

study followed surface-pelagic stage Kemp’s ridleys for periods up to 71 days and found a linkage 

between tracked turtles and SPDC.  Tracked turtles showed evidence of both active and, mostly, passive 

behavior.  When in a passive behavioral state, turtles were likely drifting in association with SPDC. In the 

absence of habitat, tracked turtles underwent directed movements that terminated near locations of 

SPDC.  The behavioral information presented herein supports the hypothesis that surface-pelagic 

juvenile Kemp’s ridleys are principally passive associates of SPDC for long periods of time until the 

completion of the initial surface-pelagic developmental phase (Musick and Limpus 1997; Witherington 

et al. 2012).  They also appear capable of directed travel, presumably to relocate the ephemeral habitats 

on which they depend.  The abundance of Gulf of Mexico SPDC varies spatially and seasonally, but the 

habitat appears to be present year-round throughout much of the region (Gower and King 2011; Ch. 1, 

current volume).  Surface-pelagic drift habitats within continental shelf waters of the eastern Gulf may 

provide critical habitats for juvenile Kemp’s that are on the cusp of transitioning to neritic habitats.  

Future work addressing the movements of Kemp’s ridleys from other parts of the Gulf of Mexico will 

help determine if other regions of the Gulf also serve such a role in the life history of Kemp’s ridleys. 
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Tables: 
 
Table 2.1.  Satellite transmitter deployment characteristics for 10 surface-pelagic juvenile Kemp’s ridleys 
tracked from capture locations in the northern and eastern Gulf of Mexico.  The table provides the 
transmitter’s duty cycle (off hours), date of deployment, and date of the final Argos location.  Also 
included are the length of time that turtles were remotely-tracked (duration) and the number of days 
during which Argos locations were received (data days). 

Turtle 
Off 

hours 
Deployment 

Final 
location 

Argos 
locations 

Duration 
Data 
days 

105464 48 6/3/2011 7/10/2011 131 37 22 

105465 48 7/6/2011 8/7/2011 129 32 20 

105466 48 8/13/2011 10/23/2011 141 71 37 

105467 48 7/6/2011 8/9/2011 146 34 20 

105468 48 7/7/2011 7/27/2011 85 20 13 

105469 24 8/13/2011 9/27/2011 312 45 44 

105470 24 6/6/2011 7/14/2011 247 39 37 

105471 24 6/5/2011 6/26/2011 97 22 22 

105472 24 9/16/2011 10/29/2011 208 43 39 

105473 24 7/12/2011 8/5/2011 170 24 24 

Transmitters with 48 h off time 126.4 38.8 22.4 

Transmitters with 24 h off time 206.8 34.6 33.2 

All transmitters 166.6 36.7 27.8 
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Table 2.2. Summary of duration, behavior, and movements observed from satellite transmitter deployments on 10 surface-pelagic Kemp’s 
ridleys.  The percentage of days spent in each behavioral state (passive and active) is presented as a percentage of the total days.  Distance 
traveled is expressed as the cumulative (path) distance and the distance between the deployment and final position (displacement).  Subscripts 
identify the turtles’ release location as one of two northern Gulf study sites (n) or the West Florida Shelf study site (w). 

Turtle 
Days at 

large 

Days in 
passive 

state (%) 

Days in 
active 

state (%) 

Cumulative 
distance 

travelled (KM) 

Distance from 
deployment to 

final position (KM) 

Path 
straightness 

index 

Travel rate 
(km hr-1, mean ±SD) 

105464n 37 75.7 27.0 642.69 77.83 0.12 0.64 ±0.44 

105465n 32 87.5 18.8 534.19 179.78 0.34 2.03 ±5.12 

105466w 71 85.9 16.9 839.92 204.96 0.24 0.66 ±0.88 

105467n 34 2.9 97.1 843.36 237.26 0.28 1.55 ±3.00 

105468n 20 100.0 0.0 361.33 88.93 0.25 0.95 ±0.65 

105469w 45 86.7 13.3 913.91 67.63 0.07 0.64 ±0.64 

105470n 39 89.7 10.3 593.27 281.28 0.47 0.66 ±0.62 

105471n 22 27.3 77.3 632.51 440.88 0.70 1.12 ±0.73 

105472w 43 97.7 4.7 1016.71 170.37 0.17 1.03 ±1.27 

105473w 24 100.0 0.0 406.57 29.72 0.07 0.76 ±0.77 

NGOM 30.7 63.9 38.4 601.23 217.66 0.36 1.16 

WFS 45.8 92.6 8.7 794.28 118.17 0.14 0.77 

Note:  Percent of days within behavioral states sum to > 100% for individuals observed in both behavioral states on the same day. 
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Table 2.3. Summary of travel path direction, surface circulation direction and, surface circulation 
velocity for 10 satellite-tracked surface-pelagic Kemp’s ridleys.  Surface circulation direction and velocity 
were estimated at interpolated satellite track positions. 

Turtle 
Travel direction 

(degrees, mean ±sd) 
Surface circulation direction 

(degrees, mean ±sd) 
Surface circulation velocity 

(km hr-1) 

105464 204.8 ±1.9 197.8 ±1.0 0.20 ±0.10 

105465 150.2 ±1.4 186.2±1.1 0.30 ±0.14 

105466 63.6 ±2.3 211.0 ±1.0 0.41 ±0.24 

105467 238.5 ±1.4 220.2 ±1.0 0.52 ±0.28 

105468 112.5 ±2.1 186.6 ±1.0 0.36 ±0.10 

105469 49.4 ±2.6 219.2 ±1.9 0.35 ±0.08 

105470 91.0 ±1.3 247.2 ±0.7 0.22 ±0.05 

105471 137 ±0.8 196.2 ±1.0 0.33 ±0.10 

105472 214.7 ±2.2 277.3 ±1.2 0.48 ±0.14 

105473 350.4 ±2.2 87.3 ±1.1 0.56 ±0.08 

 
 
Table 2.4.  Summary of depths (m) occupied by satellite-tracked surface-pelagic Kemp’s ridleys. Depth 
values at interpolated satellite track positions were obtained from the US Coastal Relief Model (NOAA 
NGDC 2009). 

Turtle Mean SD Minimum Maximum 

105464 162.7 135.0 40.4 420.6 

105465 308.0 265.2 42.6 874.4 

105466 35.7 42.1 0.6 141.6 

105467 1887.1 1152.0 193.2 3241.0 

105468 92.1 19.0 52.4 135.0 

105469 38.8 6.0 31.0 55.3 

105470 81.6 75.2 19.8 247.3 

105471 1066.7 1124.9 77.1 3234.6 

105472 59.9 18.7 39.4 130.0 

105473 43.7 3.0 38.4 51.2 

 
 
  



77 
 

Table 2.5.  The occurrence of surface-pelagic drift communities (SPDC) within eastern Gulf of Mexico 
Landsat scenes corresponding to satellite tracks from 10 surface-pelagic juvenile Kemp’s ridleys.  The 
number of images examined and the number of images within which SPDC was observed are noted.  
Asterisks indicate instances of close associations between tracked turtles and SPDC. 

Turtle Days tracked Landsat overpasses SPDC observations 

105464 37 3 3* 
105465 32 0 0 
105466 71 7 5 
105467 34 2 1 
105468 20 3 3* 
105469 45 7 4* 
105470 39 4 4* 
105471 22 2 2 
105472 43 4 3 
105473 24 4 3 
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Figures: 
 
 

 
Figure 2.1. The locations where satellite-tracked surface-pelagic juvenile Kemp’s ridley turtles were 
released within the northern and eastern Gulf of Mexico during 2011.  Black polygons represent the 
transect survey study areas of Witherington et al. (2012) within which turtles were captured and 
released. Grey polygons represent the extents of Landsat 5 and 7 scenes that were available 
corresponding to the dates and locations of tracked turtles.  Landsat paths are labeled at the top of each 
path and rows are labeled along the left side of each row. 
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Figure 2.2.  A surface-pelagic juvenile Kemp’s ridley bearing a 9.5 g solar-powered satellite transmitter 
attached with silicone adhesive. Photograph provided by Blair E. Witherington (NMFS Permit 14726-01). 
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Figure 2.3.  Estimated travel rates (km hr-1) among mean daily Argos positions collected for each 
satellite-tracked Kemp’s ridley.  The horizontal solid line represents the value of 3 km hr-1 that was used 
within the plausibility filtering step applied by the Douglas Argos Filter (Douglas et al. 2012). 
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Figure 2.4.  The quality of Argos locations received from satellite transmitters deployed on 10 surface-
pelagic juvenile Kemp’s ridleys.  Location quality is expressed as the percent occurrence of each Argos 
location class within data received from tracked turtles. Turtles were tracked during summer and fall 
2011 from locations within the northern and eastern Gulf of Mexico.  
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Figure 2.5.  Transmitter battery voltage reported by satellite transmitters attached to 10 surface-pelagic 
juvenile Kemp’s ridleys.  Lines (1 per turtle) represent the trend battery voltage across the entire 
deployment.  The minimum operational charge is 3.0 (manufacturer (MTI), pers. comm.).   
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Figure 2.6.  Interpolated travel paths of 10 surface-pelagic juvenile Kemp’s ridley turtles that were 
satellite-tracked during 2011.  The 30 m bathymetric contour (red line) constrained a majority of the 
movements made by tracked turtles.  
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Figure 2.7. Interpolated positions and travel path for the surface-pelagic juvenile Kemp’s ridley, turtle 
105466.  This individual was tracked from surface-pelagic drift habitats found during August 2011 west 
of Sarasota, Florida.  This individual’s tracking period ended within Waccasassa Bay (Levy County, 
Florida; inset).  The location of the Crystal River Energy Complex (CREC) is shown within the inset map.   
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Figure 2.8.  Daily mean number of Argos messages received from the transmitter affixed to turtle 
105466.  Bars represent the standard errors for the mean daily message counts. On 14 September 2011, 
32 days post deployment, a marked decline was observed in the mean daily number of Argos messages 
received from this transmitter. 
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Figure 2.9.  Sea surface temperature (SST) values corresponding to satellite-tracked surface-pelagic 
juvenile Kemp’s ridleys.  For each platform terminal transmitter (PTT), remotely-sensed SST (red) and 
the temperature reported by the transmitter’s internal sensor (blue) temperature data are shown. 
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Figure 2.10. Interpolated travel paths for 10 surface-pelagic juvenile Kemp’s ridleys.  Vectors originating 
from positions along tracks represent the direction and velocity of surface currents.  The ports of 
departure for the three study areas are labeled by points or arrows (indicating direction to the port). 
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Figure 2.11. Interpolated positions and travel path for the surface-pelagic juvenile Kemp’s ridley, turtle 
105465.  This individual was tracked from surface-pelagic drift habitats found during July 2011 within 
waters southwest of Apalachicola, Florida.  During late July, this individual moved within Landsat path 
18, row 40 within which surface-pelagic drift communities were observed during July and August 2011. 
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Figure 2.12. Interpolated positions and travel path for the surface-pelagic juvenile Kemp’s ridley, turtle 
105464.  This individual was tracked from surface-pelagic drift habitats found during June 2011 within 
waters southeast of Pensacola, Florida.  Landsat images were collected on three dates corresponding to 
the turtle’s locations.  Surface-pelagic drift communities were observed within the region on 6, 14 and 
23 June 2011.  
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Figure 2.13.  Interpolated positions and travel path for the surface-pelagic juvenile Kemp’s ridley, turtle 
105468.  This individual was tracked from surface-pelagic drift habitats found on 7 July 2011 within 
waters south of Apalachicola, Florida.  Landsat images were collected on three dates corresponding to 
the turtle’s locations.  Surface-pelagic drift communities (SPDC) were observed within the region on 10, 
18 and 26 July 2011.  
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Figure 2.14.  Interpolated positions and travel path for the surface-pelagic juvenile Kemp’s ridley, turtle 
105469.  This individual was tracked from surface-pelagic drift habitats found on 13 August 2011 within 
waters west of Sarasota, Florida.  Landsat images were collected on four dates corresponding to the 
turtle’s locations.  Surface-pelagic drift communities (SPDC) were close to the path of turtle 105469 on 
13 September 2011.  
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Figure 2.15. Interpolated positions and travel path for the surface-pelagic juvenile Kemp’s ridley, turtle 105470.  This individual was tracked from 
a surface-pelagic drift community (SPDC) found during June 2011 within waters southeast of Pensacola, Florida.  Landsat images were collected 
on five dates corresponding to the turtle’s locations and SPDC was found within all images.  The extents of Landsat scenes are represented by 
the boxes.  This individual was within Landsat path 20, row 39 from 5–14 June.  After 14 June, the turtle traveled eastward through an area not 
imaged by Landsat satellites during June 2011.  The turtle spent final portion of the tracking period within path 18, row 40, which was imaged on 
three days corresponding to the turtle’s path. 
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CHAPTER THREE: 

ASSESSMENT OF SURFACE-PELAGIC DRIFT COMMUNITIES WITHIN THE NORTHERN GULF OF MEXICO  

USING LANDSAT OBSERVATIONS COLLECTED FROM 2009–2011 

 

1. Abstract 

Surface-pelagic drift communities (SPDC) are an important habitat for many marine organisms; 

for example, SPDC has been identified as critical to the survival of loggerhead turtles.  The surface-

pelagic juvenile life stages of three other sea turtles have been found within Gulf of Mexico SPDC, 

including the critically endangered Kemp’s ridley.  Thus, understanding the regional patterns of SPDC is 

crucial to conservation management efforts for these species.  SPDC is highly dynamic, both spatially 

and temporally, making it difficult to assess its abundance using traditional ship surveys. Remote sensing 

techniques have been shown effective in such assessments.  The present study examined 30 m 

resolution Landsat imagery collected from 2009–2011 (1,202 images), representing approximately 

750,000 km2 of northern and eastern Gulf of Mexico waters.  The abundance of SPDC peaked during late 

spring and early summer across the region.  Seasonal SPDC peaks occurred earlier in the year within the 

western Gulf of Mexico, typically during May and June.  The abundance of SPDC peaked during July and 

August within the eastern Gulf of Mexico.  Western Gulf of Mexico waters had significantly higher 

amounts of SPDC than waters east of the Mississippi River Delta.  The regional differences in abundance 

and seasonality support the hypothesis that the western Gulf of Mexico is a source region for SPDC.  

Assessments of SDPC using Landsat imagery after 2011 may be useful in evaluating the impacts of major 

anthropogenic disturbances, such as the Deepwater Horizon oil spill.   
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2. Introduction 

The distribution and origins of drifting Sargassum macroalgae within the North Atlantic Ocean 

have been of interest to sailors since Columbus’ transit to the Americas (Butler et al. 1983).  Early 

research focused on identifying the boundaries of the region within which accumulations of drifting 

Sargassum were most frequently encountered.  Butler et al. (1983) provided a review of the mapping 

efforts that led to the delineation of the Sargasso Sea within the North Atlantic Gyre.  Bounded by major 

surface currents, rather than shorelines, the extent of the Sargasso Sea is dynamic.  Efforts to refine the 

Sargasso Sea’s boundaries have continued, buoyed by findings of ecological and marine pollution 

research (Fine 1970; Butler et al. 1983).  The distribution of Sargassum now has geopolitical relevance 

with the formation of the multinational Sargasso Sea Alliance and the United States’ declaration of 

Sargassum as critical developmental habitat for the threatened loggerhead turtle (Caretta caretta; 

Laffoley et al. 2011; NMFS 2014).   

Accumulations of Sargassum within the open ocean, surface-pelagic drift communities (SPDC; 

Witherington et al. 2012) are now known to be indicators of a distinct marine ecosystem (Fine 1970).  

Associates of SPDC range from invertebrates to top predators, including fish and seabirds (Coston-

Clements et al. 1991; Haney 1986).  Other vertebrates may only use SPDC during specific developmental 

phases.  SPDC provides developmental habitat for the larval forms of several fishes and sea turtles 

(Dooley 1972; Witherington et al. 2012). Given the ecological significance of SPDC, knowledge of the 

distribution, abundance, and seasonality of SPDC is crucial to understanding the biogeography of many 

marine species.   

Parr (1939) provided the first quantitative assessments of the relative abundance and 

distribution of Sargassum within the North Atlantic, Caribbean, and Gulf of Mexico.  Parr’s estimates 

were based on neuston net tows conducted along transects throughout the region.  Following Parr’s 

estimates (1939), ship-based Sargassum surveys continued and were reviewed by Butler et al. (1983). 
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Quantitative shore-based surveys of Sargassum have also been conducted in an attempt to describe 

seasonal and interannual variability in abundance (Butler et al. 1983).   

Recent advances in optical remote sensing have provided the tools necessary to conduct 

synoptic assessments of Sargassum.  Gower et al. (2006) demonstrated that moderate-resolution 

satellite imagery could be used to detect and quantify Sargassum at the ocean basin scale.  This work led 

to the identification of Sargassum bloom events and potential source regions within the North Atlantic 

(Gower and King 2011; Gower et al. 2013).  Hu (2009) developed an optical method for detecting 

Sargassum using higher resolution Landsat satellite imagery.  Using this method, detailed assessments 

of Sargassum are now possible and can be directly related to in situ observations of SPDC (Witherington 

et al. 2012; Ch. 1, present volume).  The detailed mapping approach has proven essential when mapping 

Sargassum as habitat (i.e., SPDC) within regions where its abundance is low but its ecological value is 

high (Ch. 1, present volume).   

Within the eastern Gulf of Mexico, SPDC is present year-round and serves as critical 

developmental habitat for four sea turtle species (Witherington et al. 2012; Ch. 1, present volume).  

Despite its year-round presence, SPDC within the eastern Gulf of Mexico is rarely perceptible within 

moderate resolution (e.g., 250 m–1 km) remotely-sensed imagery (Gower and King 2011).  Broad scale 

mapping of SPDC has provided an unprecedented review of the distribution and potential source regions 

of SPDC within the North Atlantic (Gower et al. 2013); though, two recent conservation issues within the 

Gulf of Mexico have highlighted the need for multi-scale assessments of SPDC:  (1) The Deepwater 

Horizon oil spill during 2010 and (2) the designation of Sargassum as critical developmental habitat for 

loggerhead turtles (NMFS 2014).  The impacts of oil spills cannot be adequately assessed without 

knowledge of the dynamics of the ecosystems, species, and life-stages that would be affected 

(Lubchenco et al. 2012).  Similarly, delineations of habitats critical to the survival of a species must also 

integrate detailed species occurrence and habitat information.  Considering that protected species 
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conservation regulations are based on the occurrence of SPDC, it is imperative that mapping approaches 

are conducted at multiple spatial scales.   

The present study examined the distribution and abundance of SPDC within the northern and 

eastern Gulf of Mexico using 30 m resolution Landsat satellite imagery.  The objective was to describe 

the distribution and seasonality of SPDC within the region during 2009–2011.  The time period and study 

area overlap with the Deepwater Horizon oil spill, which occurred in April 2010.  Results are placed in 

the context of a previous assessment of SPDC and surface-pelagic juvenile turtles within the eastern Gulf 

of Mexico (Ch. 1, present volume).  

 

3. Methods 

The northern Gulf of Mexico study area was determined based on the availability of Landsat 

imagery collected from 2009–2011 (Fig. 3.1).  Imagery from Landsat 5 Thematic Mapper (TM) and 

Landsat 7 Enhanced Thematic Mapper Plus (ETM+) were used in the present study.  Both TM and ETM+ 

sensors collect reflectance data at 660, 825, and 1650 nm (bands 3, 4 and 5; respectively).  The spatial 

resolution of Landsat imagery is 30 m. Each Landsat scene is approximately 180 km (length) by 185 km 

(width).  Landsat scenes are arranged into paths (vertical) and rows (horizontal).  Landsat scenes are 

referred to based on their unique path and row position and are abbreviated as p##r## (scenes are 

labeled in Fig. 3.1).  The temporal resolution of each Landsat satellite is 16 days; combined, Landsat 5 

and 7 provide 8-day temporal resolution.  I obtained Landsat 5 and 7 from the US Geological Survey’s 

Global Visualization Viewer (Glovis; http://glovis.usgs.gov/). I selected a minimum of one image per 

month for analysis.  Using Glovis, I selected relatively cloud-free imagery for analysis (i.e., images within 

which a majority of sea surface waters appeared visible).   

Image processing involved several steps.  Atmospheric correction was applied to the raw reflectance 

data using a customized set of IDL routines (Hu et al. 2004; Exelis Visual Information Solutions, Boulder, 
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CO).  Next, I calculated the FAI using the corrected reflectance data from bands 3, 4, and 5 (Hu 2009).  I 

searched output FAI images and co-registered RGB images for SPDC within ENVI (Exelis Visual 

Information Solutions, Boulder, CO).  Using ENVI, I digitized SPDC and recorded the pixel counts in a 

Microsoft Access database.  I converted the SPDC pixels to vectors (shapefiles) and recorded those as 

feature classes within an ArcGIS geodatabase (Esri, Redlands, CA).  Using ArcGIS, I calculated the density 

of SPDC at a spatial scale suitable for regional visualization (within a 1.5 km search radius of 500 m cells).  

I standardized estimates of SPDC across scenes by calculating the extent of “searchable waters” for each 

Landsat scene using a customized set of Python and R routines (R Core Team 2013).  I defined 

searchable waters as the extent of the image with a clear view of surface ocean waters; i.e., land 

masses, vessels, thick clouds and scan line corrector failures (present only in Landsat 7 ETM+ imagery) 

were excluded (Ch. 1, Fig. 1.3, present volume).  For each image, I calculated a scaled density of SPDC as 

follows: SPDC coverage ‰ = (SPDC pixels / searchable water pixels) * 1000. 

I extracted wind velocity values for the dates and locations corresponding to each image using the 

RNCEP package written for the program R (Kemp et al. 2012).  The RNCEP package provided wind 

velocity values from the global NCEP/NCAR Reanalysis 2 dataset (Kanamitsu et al. 2002).  Using ArcGIS, I 

excluded land from the scene footprint polygons prior to estimating a geographically central location for 

each Landsat scene.  Zonal and meridional wind velocity values were extracted at the scene’s center 

location for days corresponding to image collections.  Within R, I converted zonal and meridional 

velocity values to wind speed and direction.  I examined the correlation between wind velocity and the 

amount of observed SPDC using Pearson’s product-moment correlation test.  I also compared mean 

wind velocities for scenes when SPDC was and was not observed using a two sample t-test. 
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4. Results 

Across the northern Gulf of Mexico, 1,202 Landsat images, collected from 29 scenes were examined 

for the presence of SPDC.  During the three-year period, a mean of 41 images were available for each 

scene — approximately 1 per month.  SPDC was found in approximately 74% of images (Table 3.1).  The 

mean coverage of SPDC was highest within the following scenes: p25r41, p25r40, and p18r39 (Table 

3.1).  The highest amounts of SPDC were found within the western Gulf of Mexico paths (p22–p26; Table 

3.2).  The mean area of SPDC across all Landsat images was 5.64 km2 (±22.78 SD; range = 0–390.10; 

Table 3.2).  The mean area of SPDC was highest within p25r41 (38.45 km2) and p25r40 (25.51 km2). 

The amounts of SPDC fluctuated annually and monthly.  SPDC was most abundant within the 

northern Gulf of Mexico during 2011 (9.20 km2 per image) followed by 2009 (4.59 km2).  During 2010, 

the overall area of SPDC within the northern Gulf of Mexico was 3.65 km2 per image, the lowest of the 

three-year period.  The area of SPDC peaked during June and a second peak occurred during November 

(Fig. 3.2).  

The monthly peaks in abundance of SPDC varied spatially.  Within the southeastern most portion of 

the study area, paths 16 and 17, the abundance of SPDC peaked during August (Fig. 3.3 E, F).  SPDC 

peaked during July or August within the central portions of the West Florida Shelf (Fig. 3.3 C, D, E).  SPDC 

peaked during June and July within the northeastern Gulf, offshore of the Florida Panhandle (Fig. 3.3 B).  

SPDC peaked during June within most of the northern Gulf waters offshore of Louisiana (Fig. 3.3 A; Fig. 

3.4 C, D).  The area of SPDC typically peaked during May and June within waters offshore of eastern 

Texas.  SPDC also peaked outside of the spring and summer time periods.  A peak occurred during 

November 2009 within paths 21 and 22, near the Mississippi River Delta (Fig. 3.3 A; Fig. 3.4 E) and within 

path 25 offshore of Galveston Bay (Fig. 3.4 B).  In the eastern Gulf of Mexico, an SPDC peak occurred 

during February 2011, primarily within paths 17 and 16 (Fig. 3.3 D, E). This spatial pattern in monthly 
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peaks is interpreted across the study area within Fig. 3.5.  SPDC peaked during January 2011 along the 

Texas coastline, within path 26 (Fig. 3.4 A). 

The density of SPDC increased west of 89° W longitude, near the Mississippi River Delta (Fig. 3.6).  

The boundary at 89° W longitude roughly coincides with the division between Landsat p21r40 and 

p22r40 (Fig. 3.1).  The mean area of SPDC per image was significantly higher west of this location, when 

all scenes west and east of this location were grouped and compared (t = 4.55, p < 0.01).  The mean area 

of SPDC detected within scenes from paths 22–26 was 19.52 km2.  The mean area of SPDC detected 

within eastern Gulf of Mexico scenes (paths 16–21) was 2.91 km2.  The continental shelf waters off of 

Louisiana and eastern Texas had higher concentrations of SPDC.  Within this region, SPDC was least 

abundant within the shallowest continental shelf waters (< 10 m).  This differs from much of the 

northeastern Gulf of Mexico where SPDC appeared most abundant inshore of the 10 m bathymetric 

contour (Fig. 3.6).  In addition to a change in density, the waters near the Mississippi River Delta 

appeared to be an area where the timing of monthly SPDC abundance peaks shift.  This division is used 

hereafter to separate the western and eastern portions of the Gulf of Mexico study area. SPDC peaks 

occurred within the western Gulf of Mexico during April–June each year (Fig. 3.7 A).  Within the eastern 

Gulf of Mexico, SPDC abundance peaks occurred during July–August of 2009 and 2011, but not during 

2010 (Fig. 3.7 B).   

Wind speeds were significantly lower when SPDC was detected than when SPDC was not detected (t 

= 4.04, p < 0.01, Fig. 3.8).  The mean wind speed was 5.42 m s-1 (±2.82 SD, n = 318 images) when no 

SPDC was detected.  The mean wind speed was 4.68 m s-1 (±2.75 SD, n = 884 images) corresponding to 

images in which SPDC was detected.  The maximum wind speed recorded for an image when SPDC was 

present was 13.3 m s-1 (1 m s-1 = 1.9 knots).  Within images where SPDC was not found, wind speeds 

ranged from < 1–14.2 m s-1.  Within most Landsat scenes, the area of SPDC detected decreased as wind 

speeds increased (Fig. 3.10).  High amounts of SPDC were found within some western Gulf of Mexico 
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scenes at wind speeds > 8 m s-1.  Across all images, the relationship between the area (km2) of SPDC 

observed and wind speed was not significant (r = -0.05, p = 0.08).  

 

5. Discussion 

This study provides the first detailed assessment of SPDC that focused on the northern and eastern 

Gulf of Mexico.  SPDC was most abundant and widespread within northern Gulf waters west of the 

Mississippi River Delta.  High amounts of SPDC were distributed throughout the western portion of the 

study area except for the shallow waters offshore of Louisiana.  Conversely, within the eastern Gulf of 

Mexico, high concentrations of SPDC were found within nearshore waters off of the northern Florida 

peninsula.  Nearshore circulation may explain these SPDC density patterns.  Countercurrents flow 

northward along the Florida peninsula and westward along the Louisiana coastline.  Throughout the 

northern Gulf of Mexico, the amount of SPDC was greatest during late spring and summer.  The SPDC 

distributional patterns and seasonality generally agreed with the findings of another assessment of SPDC 

that included the northern Gulf of Mexico, conducted by Gower and King (2011).  

During 2009 and 2011, the SPDC abundance peaks within the western Gulf appeared to precede or 

coincide with abundance peaks within the eastern Gulf (Fig. 3.7).  This suggests that a general eastward 

drift of SPDC may occur within the northern Gulf of Mexico.  This finding is consistent with those of 

Gower and King (2011) who proposed that SPDC forming within the northwestern Gulf may drift 

eastward during summer months.  A similar eastward drift pattern has been proposed for surface-

pelagic juvenile Kemp’s ridley turtles (Collard and Ogren 1990).  An eastern Gulf SPDC abundance peak 

was not detected during 2010 despite the apparent abundance of SPDC within the western Gulf during 

June–August 2010.  The Deepwater Horizon oil spill impacted northern Gulf of Mexico surface waters 

from April–August 2010 (Fig. 3.9).  Based on the location and timing of the event, it is possible that 

eastward drifting SPDC became entrained within the spill area and did not arrive within eastern Gulf 
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waters (Powers et al. 2013).  It should be noted that the presence of oil within surface waters of some 

Landsat images prevented those images from being fully examined for the presence of SPDC.  The 

methods of the present study did not allow for effective discrimination between oil and SPDC.  The spill 

principally affected analyses of imagery collected within paths 20 and 21 during May–July 2010.  If SPDC 

peaks occurred during July and August 2010 within the eastern Gulf, as they have during other years 

(Fig. 3.3; Ch. 1, this volume), they should have been detected.   

The abundance of SPDC was lowest in most areas during winter and early spring, particularly 

December and January (Fig. 3.2).  The timing of peaks in SPDC abundance varied across years within 

some regions.  For example, SPDC abundance peaked during November 2009 in three Landsat paths: 

paths 21 and 22, near the Mississippi River Delta; and within path 25, off of Galveston Bay, Texas.  These 

peaks followed a period during which record rainfall was recorded for portions of eastern Texas, 

Louisiana and Mississippi that lie upstream of these northern Gulf waters (NOAA NCDC 2011).  Perhaps 

this unusual rainfall event led to an influx of nutrients into these regions that fueled the growth of 

Sargassum.  This observation is consistent with the findings of Lapointe et al. (2014) who suggested that 

new production of Sargassum may occur within nutrient-rich waters of northern Gulf of Mexico.  

Similarly, Gower et al. (2013) noted that 2011 was a period when SPDC was abundant throughout the 

North Atlantic, particularly within the Caribbean and equatorial regions.  They suggested that the La 

Niña-associated rainfall anomaly may have contributed to nutrient runoff and subsequent Sargassum 

blooms.  The late spring and early summer of 2011 was also a period when SPDC was highest within the 

northern Gulf of Mexico regions examined by the present study (Fig. 3.7).   

The present study identified late spring and summer periods of peak SPDC abundance and an 

eastward shift in the timing of peak SPDC abundance.  These findings are consistent with those of the 

broader assessment conducted by Gower and King (2011).  It should be noted that considerable 

variability existed in the timing of peak SPDC abundance for some regions.  For example, SPDC peaked 
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during June within paths 20, 21, 23 and 24, while SPDC peaked during August within path 22 (Fig. 3.3 A, 

B; Fig. 3.4 C–E).  A selection of only 1–2 images per month was necessary to complete the present 

assessment due to the intense processing time associated with this effort.  Considering the observed 

dissipative effects of winds, the infrequent sampling strategy likely contributed to the observed 

variation in seasonality.   

The SPDC distribution and abundance estimates presented herein could be refined by addressing 

the potential for over- and under-estimates of SPDC that are inherent within the methods. Landsat 

imagery was collected as the satellites descended along paths.  Image data were divided into scenes of 

equal length.  A portion of the northern and southern extents of the scenes overlap (approximately 

20%).  Thus, opportunity for double-counting SPDC existed if it was detected within adjacent scenes on 

the same day and within the region of overlap. However, imagery used in the present study was typically 

limited to one or two nearshore scenes and most overlapped with no or one additional scene (Fig. 3.1). 

An exception occurred during the summer of 2010 when more imagery was made available for offshore 

scenes.  Increased coverage of marine regions is provided by the new Landsat 8 satellite, launched 

during February 2013.  The increased availability of overlapping scenes will means similar mapping 

efforts will need to account for image overlap.  A method to account for this overlap was developed and 

evaluated as part of the present study.  Similarly, the eastern and western edges of Landsat paths 

overlap.  When using all data from Landsat 5 and 7, or Landsat 7 and 8, it is possible to obtain partially 

overlapping imagery collected 24 hours later.  This was minimal in the present study, which used 1–2 

images per month.  Underestimation of SPDC is also possible.  The present study detected SPDC within 

the eastern Gulf of Mexico where moderate resolution remote sensing methods have not proven 

reliable for SPDC detection.  This difference was most likely due to the spatial resolution of the methods 

and suggests that the present methods may have missed SPDC that was not detectable within 900 m2 

Landsat pixels.  Validation using in situ surveys and high-resolution imagery (e.g., 1 m) are needed to 
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identify minimum mapping units for SPDC and to provide correction factors for existing data.  Field 

studies are also needed to determine the extent to which western Gulf of Mexico SPDC serves as habitat 

for surface-pelagic juvenile sea turtles.  Such efforts are underway, expanding the work of Witherington 

et al. (2012) to regions considered by the present study.   

The moderate resolution methods employed by Gower and King (2011) are ideal for conducting a 

broad-scale assessment of SPDC.  The higher resolution approach of the present study is most 

appropriate for describing localized patterns of abundance.  Both methods have a role in identifying 

SPDC, and both should be considered when developing conservation strategies or assessing 

anthropogenic impacts to this marine ecosystem. 

Mapping efforts alone cannot serve as the sole source of information for conservation management 

actions focused on SPDC.  The ecological role of SPDC should be addressed within distinct regions.  For 

example, eastern Gulf of Mexico SPDC is established as developmental habitat for early juvenile sea 

turtles (Witherington et al. 2012).  The western and eastern Gulf of Mexico appeared to differ in the 

abundance and distributional patterns of SPDC.  Given the marked change in SPDC density, the density 

of surface-pelagic juveniles in waters within Gulf waters west of the Mississippi River Delta should also 

be examined.  Conducting in-situ surveys would also provide an opportunity to validate remotely-sensed 

estimates of SPDC.  Ship-based observations, potentially coupled with higher resolution imagery (from 

satellite or aerial platforms), would serve to correct SPDC estimates made by Landsat or other remote 

sensing methods. 

 

5.1 Conclusions 

SPDC was present year-round throughout the northern Gulf of Mexico.  The abundance and 

distribution of SPDC differed significantly between the eastern and western portions of the northern 

Gulf of Mexico.  SPDC abundance peaked during late spring and summer.  In addition to high 
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concentrations of SPDC in the western Gulf of Mexico, seasonal peaks in SPDC abundance occurred later 

in the year within the eastern Gulf of Mexico.  Eastern Gulf of Mexico SPDC appears to provide critical 

habitat for surface-pelagic juvenile sea turtles (Witherington et al. 2012; Ch. 1, present volume).  

Additional study is necessary to determine if the western Gulf of Mexico, where SPDC is more abundant, 

also serves as habitat for surface-pelagic juvenile sea turtles.  The patterns of SPDC distribution 

presented herein could advise the locations of focused, in-situ efforts where surface-pelagic habitat and 

juvenile sea turtles could be monitored. 
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Tables: 
 
Table 3.1. The occurrence and coverage of surface-pelagic drift communities (SPDC) within the northern 
Gulf of Mexico from 2009–2011. For each Landsat scene, the number of images containing SPDC and the 
number of images examined are provided.  The mean search area for each scene was used to estimate 
the fractional coverage of SPDC. 

Landsat scene 
index 

SPDC 
observed 

Total 
images 

Mean searched area 
(km2) 

SPDC coverage ‰ (mean 
±SD) 

p16r42 47 69 21913 0.062 ±0.148 

p16r43 56 67 30263 0.216 ±0.355 

p17r40 68 72 15362 0.429 ±0.831 

p17r41 41 62 24207 0.098 ±0.227 

p17r42 58 62 33630 0.056 ±0.108 

p17r43 60 69 31622 0.163 ±0.311 

p18r39 79 96 8354 0.812 ±1.429 

p18r40 51 70 31014 0.070 ±0.108 

p18r41 4 10 26884 0.012 ±0.006 

p18r42 1 9 31666 0.002 ±0.004 

p19r39 47 72 11620 0.060 ±0.143 

p19r40 5 9 30774 0.039 ±0.052 

p19r41 5 9 30488 0.004 ±0.005 

p19r42 5 7 32368 0.005 ±0.005 

p20r39 18 69 17440 0.015 ±0.054 

p20r40 21 34 29588 0.051 ±0.063 

p20r41 6 9 30127 0.022 ±0.021 

p20r42 3 10 28718 0.006 ±0.012 

p21r39 42 83 16866 0.041 ±0.098 

p21r40 40 57 30059 0.098 ±0.235 

p21r41 10 11 30947 0.047 ±0.069 

p21r42 7 10 29379 0.032 ±0.059 

p22r40 34 39 25368 0.316 ±0.654 

p23r40 33 45 27152 0.336 ±0.841 

p24r40 35 39 28281 0.527 ±1.336 

p24r41 3 4 24526 0.045 ±0.054 

p25r40 32 36 21430 1.169 ±2.728 

p25r41 37 37 28985 1.320 ±2.927 

p26r41 36 36 21924 0.578 ±1.163 

Total (all images) 884 1202 23435 0.300 ±1.032 
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Table 3.2. Area of surface-pelagic drift communities (SPDC) detected within northern Gulf of Mexico 
Landsat images collected from 2009–2011.  The mean, standard deviation (SD) and maximum area (km2) 
of SPDC are provided for each Landsat scene.   

Landsat scene index Mean SD Maximum 

p16r42 1.18 2.98 19.28 

p16r43 5.59 11.11 62.40 

p17r40 6.34 13.18 90.84 

p17r41 2.08 5.06 32.70 

p17r42 1.75 3.65 24.09 

p17r43 4.65 10.06 72.29 

p18r39 5.92 10.1 48.53 

p18r40 2.01 3.34 18.50 

p18r41 0.15 0.25 0.74 

p18r42 0.02 0.07 0.22 

p19r39 0.58 1.64 12.94 

p19r40 0.93 1.62 4.90 

p19r41 0.11 0.15 0.44 

p19r42 0.16 0.16 0.40 

p20r39 0.29 1.04 6.22 

p20r40 2.09 3.62 14.11 

p20r41 0.61 0.73 2.07 

p20r42 0.18 0.39 1.15 

p21r39 0.60 1.48 9.65 

p21r40 3.19 8.00 44.52 

p21r41 1.33 1.84 5.60 

p21r42 0.85 1.57 4.54 

p22r40 8.76 19.24 80.53 

p23r40 9.90 26.58 168.17 

p24r40 15.34 40.43 195.92 

p24r41 1.17 1.47 3.32 

p25r40 25.51 59.83 263.60 

p25r41 38.45 82.91 390.10 

p26r41 12.72 26.23 100.99 

Total (all images) 5.63 22.78 390.10 
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Figures: 
 

 
Figure 3.1. The northern Gulf of Mexico study area as defined by the extents of Landsat scenes that 
were available during 2009–2011.  Paths are labeled at the top of each path, and rows are labeled along 
the right side of each row.  
 



110 
 

 
Figure 3.2. The mean area (km2) of surface-pelagic drift communities (SPDC) observed (by month) within 
the northern Gulf of Mexico, 2009–2011.  Error bars represent 95% confidence intervals surrounding the 
mean values. 
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Figure 3.3. The mean area (km2) of surface-pelagic drift communities (SPDC) per month observed within the eastern Gulf of Mexico, 2009–2011.  
Each plot represents the monthly mean area of SPDC found within images collected along Landsat paths 16–21.  Plots are arranged in their 
geographic order, from west (path 21; A) to east (path 16; F).  
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Figure 3.4. The mean area (km2) of surface-pelagic drift communities (SPDC) per month observed within the western Gulf of Mexico, 2009–2011.  
Each plot represents the monthly mean area of SPDC found within images collected along Landsat paths 21–26.  Plots are arranged in their 
geographic order, from west (path 26; A) to east (path 22; E).  
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Figure 3.5.  Generalized patterns of spring and summer peaks in abundance of surface-pelagic drift 
communities (SPDC) across the northern and eastern Gulf of Mexico.  Localized SPDC abundance peaks 
occurred outside of these time periods during some years.   
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Figure 3.6.  The density of surface-pelagic drift communities (SPDC) within the northern and eastern Gulf of Mexico, 2009–2011.  The density of 
SPDC is expressed as the number of SPDC pixels per km2. The black lines represent the southern extent of the study area. The red lines represent 
the offshore regions within which the availability of Landsat imagery was limited during the 2009–2011 study period.  
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Figure 3.7.  The mean monthly area (km2) of surface-pelagic drift communities (SPDC) within the western (A) and eastern (B) Gulf of Mexico, 
2009–2011.  The Mississippi River Delta (approximately 90° W) was used to divide the western and eastern regions of the study area.  Landsat 
scenes 22–26 were used to characterize SPDC western Gulf of Mexico.  Landsat paths 16–21 were used to characterize SPDC within the eastern 
Gulf of Mexico.  
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Figure 3.8.  Wind velocity and the frequency of occurrence of surface-pelagic drift communities (SPDC) 
within northern Gulf of Mexico Landsat images.  Bars represent the percentage of images within which 
SPDC was (Yes) or was not (No) detected.  
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Figure 3.9.  The extent of the surface oil from the Deepwater Horizon oil spill (April–August 2010) and the density of surface-pelagic drift 
communities (SPDC) within the northern and eastern Gulf of Mexico (2009–2011).  The black polygon within the north-central Gulf of Mexico 
represents the cumulative extent of surface oiling based on an analysis of Synthetic Aperture Radar data (Environmental Response Management 
Application; http://gomex.erma.noaa.gov).  The black lines represent the southern extent of the study area. 
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Figure 3.10.  Scatterplot of wind velocity (1 m s-1) and the area (km2) of surface-pelagic drift 
communities (SPDC) observed within northern Gulf of Mexico Landsat images. 


	Assessments of surface-pelagic drift communities and behavior of early juvenile sea turtles in the northern Gulf of Mexico
	Scholar Commons Citation

	tmp.1435330820.pdf.V9hAY

