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Abstract 

Pelvic organ prolapse (POP) is a major health problem that affects women. POP is a 

herniation of the female pelvic floor organs (bladder, uterus, small bowel, and rectum) into the 

vagina. This condition can cause significant problems such as urinary and fecal incontinence, 

bothersome vaginal bulge, incomplete bowel and bladder emptying, and pain/discomfort. POP is 

normally diagnosed through clinical examination since there are few associated symptoms. 

However, clinical examination has been found to be inadequate and in disagreement with 

surgical findings. This makes POP a common but poorly understood condition. Dynamic 

magnetic resonance imaging (MRI) of the pelvic floor has become an increasingly popular tool 

to assess POP cases that may not be evident on clinical examination. Anatomical landmarks are 

manually identified on MRI along the midsagittal plane to determine reference lines and 

measurements for grading POP. However, the manual identification of these points, lines and 

measurements on MRI is a time-consuming and subjective procedure. This has restricted the 

correlation analysis of MRI measurements with clinical outcomes to improve the diagnosis of 

POP and predict the risk of development of this disorder. 

The main goal of this research is to improve the diagnosis of pelvic organ prolapse 

through a model that automatically extracts image-based features from patient specific MRI and 

fuses them with clinical outcomes. To extract image-based features, anatomical landmarks need 

to be identified on MRI through the localization and segmentation of pelvic bone structures. This 

is the main challenge of current algorithms, which tend to fail during bone localization and 

segmentation on MRI. The proposed research consists of three major objectives: (1) to 
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automatically identify pelvic floor structures on MRI using a multivariate linear regression 

model with global information, (2) to identify image-based features using a hybrid technique 

based on texture-based block classification and K-means clustering analysis to improve the 

segmentation of bone structures on images with low contrast and image in homogeneity, (3) to 

design, test and validate a prediction model using support vector machines with correlation 

analysis based feature selection to improve disease diagnosis.  

The proposed model will enable faster and more consistent automated extraction of 

features from images with low contrast and high inhomogeneity. This is expected to allow 

studies on large databases to improve the correlation analysis between MRI features and clinical 

outcomes. The proposed research focuses on the pelvic region but the techniques are applicable 

to other anatomical regions that require automated localization and segmentation of multiple 

structures from images with high inhomogeneity, low contrast, and noise. This research can also 

be applicable to the automated extraction and analysis of image-based features for the diagnosis 

of other diseases where clinical examination is not adequate. The proposed model will set the 

foundation towards a computer-aided decision support system that will enable the fusion of 

image, clinical, and patient data to improve the diagnosis of POP through personalized 

assessment. Automating the process of pelvic floor measurements on radiologic studies will 

allow the use of imaging to predict the development of POP in predisposed patients, and possibly 

lead to preventive strategies. 
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Chapter 1 

Introduction 

The scope of this chapter is to introduce the research motivation and background. The 

research objectives and contributions are also presented followed by the dissertation outline. 

 

1.1. Motivation 

Pelvic Organ Prolapse (POP) is a major health problem affecting up to 30-50% of women  

and resulting in direct costs of about $1 billion per year [1, 2]. POP is a herniation of the female 

pelvic floor organs (bladder, uterus, small bowel and rectum) into the vagina. This condition can 

cause significant problems including a bothersome vaginal bulge, incontinence, and incomplete 

bowel and bladder emptying. Almost 75% of women report a profound effect on their quality of 

life due to POP [3]. It is estimated that by the year 2030, the population of women over the age 

of 65 years in the U.S. will double to approximately 40 million [4]. Subsequently, the demand 

for women seeking care for POP will continue to increase significantly. POP is normally 

diagnosed through clinical examination since there are few associated symptoms. The 

International Continence Society (ICS) recommends the use of the Pelvic Organ Prolapse 

Quantification (POP-Q) system, which is a clinical examination that is currently considered the 

gold standard for assessing POP [5]. However, clinical examination has been found to be 

inadequate and in disagreement with surgical findings [6, 7]. Studies indicate that the clinical 

examination for POP concurred with surgical findings in only 59% of patients [8, 9]. Moreover, 

POP repair procedures are associated with high failure rates, with approximately 30% of women 
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who undergo surgical repair requiring another surgery for recurrence of symptoms within four 

years [10]. This makes POP a common but poorly understood condition.  

 

(a)                            (b)     (c)  

Figure 1.1: MRI midsagittal view with currently used reference lines, MPL and PCL, for grading 

POP. (a) Rest position, (b-c) Strain position 

 

 Dynamic magnetic resonance imaging (MRI) of the pelvic floor has become increasingly 

popular in assessing POP cases that may not be evident on clinical examination. It offers the 

advantages of providing a global assessment of the pelvic floor with associated interactions of 

pelvic organs, superior soft tissue contrast, and absence of ionizing radiation. Dynamic MRI is 

especially important in the diagnosis of patients with multi-compartment prolapse or who have 

failed previous prolapse surgeries. During the analysis of dynamic MRI, anatomical landmarks 

are identified manually on the midsagittal plane to determine lines and measurements for grading 

POP as shown in Figure 1.1. Although there are commonly used reference lines, there is no 

standardized system for evaluating MRI measurements for POP [11, 12]. Various reference lines 

have been proposed to improve diagnosis [13, 14]. Unfortunately, the manual identification of 

these MRI pelvic floor measurements is a time-consuming and subjective procedure. Current 

studies only analyzed small sample sizes resulting in limited and non-comparable data [15]. This 

has restricted the correlation analysis of MRI measurements with clinical information as well as 
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the validation of newly proposed reference lines. Therefore, there is an urgent need to improve 

and automate the diagnosis of POP to create prevention strategies. However, there is currently 

very few data to predict the risk of development of this disorder and the variables associated with 

its development remain poorly understood [16]. 

 

1.2. Dissertation Objectives and Contributions 

 The main goal of this research is to improve the diagnosis of pelvic organ prolapse 

through a model that automatically extracts image-based features from patient specific MRI and 

fuses them with clinical information. A model that automatically extracts image-based predictors 

from patient specific MRI and fuses them with wide range clinical information can lead to 

personalized and evidence-based diagnosis to prevent incorrect surgeries and minimize 

healthcare costs. To extract image-based features, anatomical landmarks need to be identified on 

MRI through the localization and segmentation of pelvic bone structures. Although dynamic 

MRI provides better information about soft tissues and their movement, bones are not easily 

differentiable from the soft tissue as their pixel intensities tend to be very similar and affected by 

disturbances like noise. This is the main challenge of current algorithms that tend to fail during 

bone localization and segmentation on MRI due to the large search space, numerous local 

minima, image inhomogeneity, and/or high computational cost. At the same time, image-based 

predictors are currently extracted manually resulting in a time-consuming and subjective 

procedure. This has led to current studies that can only analyze small sample sizes leading to 

limited and non-comparable data. Consequently, the correlation analysis of MRI-based 

predictors with clinical information has been limited restricting the development of healthcare 

systems that offer relevant decision support to clinicians at the point of care.   



4 

Our approach aims to overcome these limitations by proposing the basis of a system that 

automatically locates pelvic floor bone structures on MRI to extract image-based predictors; and 

then analyzes the correlation between the image-based features and clinical information to help 

predict POP cases.   

The proposed research consists of three main research objectives as shown in Figure 1.2:  

 

(a)            (b)     (c)  

Figure 1.2: Dissertation objectives. (a) Automated multi-organ localization, (b) Identification of 

image based features and reference lines, (c) Prediction model for POP diagnosis 

 

(1) To automatically identify pelvic floor structures on MRI using a non-linear regression 

model with global information. A model using non-linear regression is proposed for localizing 

multiple pelvic bone structures on patient specific MRI and extracting image features associated 

with POP. This will be achieved by integrating global information based on the relative location 

between objects’ classes. This aims to improve the localization of pelvic organ structures without 

any user interaction.  

(2) To identify image-based features through the segmentation of bone structures using a 

hybrid technique based on texture-based block classification and K-means clustering analysis.  

Prior shape information of the pelvic bone is generated and incorporated into the segmentation 
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process. Morphological skeleton operation is integrated to find the reference points located on 

the pubic bone while a corner detection algorithm is used to find reference points located on the 

vertebra. The proposed technique aims to improve the segmentation of bone structures from 

images with low contrast and non-homogeneous. 

(3) To design, test and validate a prediction model using support vector machines with 

correlation analysis based feature selection to improve disease diagnosis. A dataset of 207 MRI 

from patients with and without POP is used in this study. Metrics were designed to assess the 

accuracy and reproducibility of the automated feature extraction method compared to manual 

feature extraction. The prediction model was built using the extracted MRI features from 

Objectives 1 and 2 to test with the clinical information using a proposed Support Vector 

Machines approach with correlation analysis based feature selection. The model was tested for 

accuracy, sensitivity and specificity. 

 

1.3. Intellectual Merit 

The proposed research aims to address the aforementioned medical and engineering 

challenges through the design of a framework that (1) automatically identifies pelvic floor 

structures on MRI, (2) extracts image-based features through bone segmentation from images 

with low contrast and high inhomogeneity, and (3) analyzes the extracted image-based features 

with clinical information to build a prediction model to assist in the diagnosis of POP. To 

address the engineering challenges, pelvic floor structures are automatically identified using a 

non-linear regression model that captures global and local information. Then, the corresponding 

landmarks are identified using a hybrid supervised and unsupervised image segmentation 

technique that integrates texture-based block classification and k-means clustering. These 
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techniques enable the localization of multiple bone structures and their landmarks on MRI by 

using both local and global information to overcome the problems of image inhomogeneity and 

numerous local minima. Medically, a prediction model using the extracted MRI features to test 

with the clinical information was designed using a support vector machines approach with 

correlation analysis based feature selection. The proposed feature selection consists of 

independent significance feature selection followed by sequential forward selection. This will 

allow the selection of an appropriate set of features that have high separability power to improve 

the accuracy of the classification process and consequently, improve POP diagnosis.  

The proposed model will allow high-throughput analysis of images with high 

inhomogeneity, low contrast, and noise. It will also enable the design of a quantitative prediction 

model for improving the accuracy of diagnosis of POP while increasing our understanding of the 

relationships between image-based features and clinical information. The proposed research will 

set the foundation towards a computer-aided decision support system that will enable the fusion 

of image, clinical, and patient data to improve the diagnosis of POP through personalized and 

evidence based assessment.  

 

1.4. Broader Impact 

The outcome of the proposed research is a quantitative prediction model that 

automatically extracts and analyzes image and textual data to improve the accuracy of diagnosis 

of pelvic organ prolapse (POP). There are a number of broader impacts that are expected as a 

result of this research. First of all, the ability to automate the process of image based feature 

extraction for the pelvic floor on radiologic studies will allow the use of imaging technology to 

predict the development of POP in predisposed patients, and possibly lead to the development of 
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preventive strategies. Compared to current clinical examination, the use of imaging technology is 

less invasive and can provide a global view of the pelvic floor. Additionally, it is expected that 

this quantitative prediction model will enable more accurate diagnosis of POP and consequently 

help reduce health care costs by decreasing the number of unnecessary surgeries. Moreover, after 

this model begins to be widely used, it is anticipated that it will also serve as a medical training 

tool to educate local and nationwide healthcare professionals in order to have a better knowledge 

of pelvic organ prolapse disorder and its causes.  

Although this research focuses on the pelvic region, the proposed object localization, 

segmentation, and prediction model is applicable to other anatomical regions where images have 

low contrast, high inhomogeneity, and noise. This research can also be applicable to the 

automated extraction and analysis of image-based features for the diagnosis of other diseases 

where clinical examination is not adequate. Furthermore, it can be applied to other areas such as 

image-based automated inspection on industrial products such as wood and steel welds, and for 

computer vision for the navigation of robots to enable the identification of objects of interest on 

images with noise. 

 

1.5. Dissertation Outline 

The remaining chapters of the dissertation are organized as follows: Chapter 2 introduces 

pelvic organ prolapse and current diagnosis techniques. Chapter 3 discusses the state-of-the-art 

on the diagnosis of POP using MRI, automated object localization, medical image segmentation, 

and classification systems. Chapter 4 provides details about the proposed automated multi-bone 

localization technique on MRI. Chapter 5 presents the structure of the bone segmentation 

method. Chapter 6 presents the prediction model for the diagnosis of POP while Chapter 7 
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provides the summary and future work, summarizing the major findings and contribution of this 

dissertation.   
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Chapter 2 

Pelvic Organ Prolapse and its Diagnosis 

This chapter introduces the anatomy of the female pelvic floor, types of pelvic organ 

prolapse, and current diagnosis techniques.  

 

2.1. Anatomy of the Female Pelvic Floor 

Pelvic organ prolapse (POP) is a serious health problem affecting many women. POP 

occurs when the pelvic floor organs such as bladder, rectum, small bowel and uterus drops from 

the normal position towards the vaginal wall. There are different types of prolapse cases based 

on the affected organs such as cystocele (bladder), rectocele (rectum), and enterocele (small 

bowel). Pelvic Organ Prolapse-Quantification (POP-Q) system is a quantitative measurement of 

site specific points that is normally used for the clinical evaluation of POP. Medical imaging 

techniques are also used for diagnosis of POP when there is no clear evidence during the clinical 

examination using POP-Q.  

The main components of the female pelvic floor are the pelvic bone, rectum, bladder, 

uterus, vagina, levator ani muscle and small/large bowel as shown in Figure 2.1. Details of each 

component are presented in the following sections. 

The rectum is about 6 to 8 inches long and is the final portion of the large intestine 

leading into the anal canal. The main function of the rectum is to act as a temporary storage site 

for fecal matter before it is eliminated from the body through the anal canal. 
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Figure 2.1: Female pelvic floor structure, sagittal view. ©2014 Free-Ed.Net 

 

The pelvis is a bone structure that connects the base of the spine to the upper end of the 

rear legs, and it consists of several bones such as ilium, ischium, pubic bone, coccyx, and 

sacrum.  The main functions of the pelvis are to carry the weight of the upper body when sitting 

and standing, and to carry over that weight from the axial skeleton to the lower appendicular 

skeleton when standing and walking. 

The bladder is an organ that collects urine evacuated by the kidney. When the bladder is 

empty, it is about the size and shape of a pear.  

The uterus is a hollow muscular organ located in the female pelvis between the bladder 

and rectum. The main function of the uterus is to maintain the developing fetus prior to birth. 

The vagina is an elastic, muscular canal with a soft, flexible lining that is located in front 

of the rectum and behind the bladder. It has two main functions: childbirth and sexual 

intercourse. 
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The levator ani muscle is the main muscle in the pelvic floor and has a complex shape. It 

is composed of different muscles such as pubovaginalis, coccygeus and pubococcygeus. The 

maintenance of continence is one of the levator ani muscle’s role and damage or weakening of 

levator ani muscle is considered one of the main causes of POP [17]. 

Intestine is a long and continues muscular tube which extends from the stomach to the 

anus. Food and the products of digestion pass through the intestine, which is divided into two 

sections called the small intestine and the large intestine. Small intestine absorbs the most of the 

nutrients from food and drink. The large bowel absorbs water from wastes, creating stool. As 

stool enters the rectum, nerves there create the urge to defecate. 

 

2.2. Types of POP 

 

Figure 2.2: Types of pelvic organ prolapse. ©2014 Scott Leighton, CMI, medicusmedia.com 

 

There are different types of POP depending on the organ affected as seen in Figure 2.2. 

Cystocele is the most common prolapse case and it occurs when the bladder drops from its 
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original position into the front wall of the vagina. A rectocele is defined as an outpouching of the 

rectum into the vagina caused by a weakening of the rectovaginal septum. An enterocele is 

defined as a peritoneum-lined sac with abdominal contents (usually small bowel and/or 

omentum) that herniates down between the vagina and rectum. This occurs when there is a 

separation of the rectovaginal septum fascia from the vaginal cuff. Enterocele often occurs with 

vaginal vault prolapse where the top of the vagina (vaginal vault) drops. Vaginal vault prolapse 

occurs most often in women who have had a hysterectomy (uterus removal operation). Uterine 

prolapse is defined as a hernia of the uterus into the vagina. 

 

2.3. Clinical Diagnosis of POP 

POP diagnosis begins with a physical examination of the pelvic floor organs. The 

physicians also ask several questions about medical and family history of the patient and the 

symptoms. Tests used during physical examination of POP includes: Cotton swab test, bladder 

function test, and pelvic floor strength test. In the cotton swab test, a small cotton-tipped 

applicator lubricated with anesthetic gel is inserted into the urine tube and the patient is asked to 

strain. The applicator indicates loss of support to the urethra. The bladder function test measures 

the bladder's ability to store and empty urine. It helps the physicians to determine the most 

appropriate type of surgery for bladder or urethral prolapse. In the pelvic floor strength tests, the 

physicians test the strength of the pelvic floor muscles and ligaments that support the vaginal 

walls, uterus, rectum, urethra and bladder. 

POP is also diagnosed through clinical examination using the Pelvic Organ Prolapse 

Quantification (POP-Q) system as seen in Figure 2.3, which is recommended by the International 

Continence Society (ICS) and is considered the gold standard for assessing POP [5]. POP-Q is a 
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site-specific system describing, quantifying and staging of pelvic organ descent during 

evaluation of POP. It provides a standard tool for gynecologists to document, compare and 

communicate the clinical finding of POP. The hymen acts as the fixed point of reference 

throughout the POP-Q system. There are 6 points measured at the vagina with respect to the 

hymen to create a topographic map of the vagina- Aa, Ap, Ba, Bp, C, D and three distances- gh, 

pb, and tvl as seen in Figure 2.3 [18]. Each point is measured in centimeters above the hymen 

and below the hymen with the plane of the hymen being defined as zero. Persu et al. stated that: 

“There are three reference points anteriorly (Aa, Ba, and C) and three posteriorly 

(Ap, Bp, and D). Points Aa and Ap are 3 cm proximal to or above the hymenal 

ring anteriorly and posteriorly, respectively. Points Ba and Bp are defined as the 

lowest points of the prolapse between Aa anteriorly or Ap posteriorly and the 

vaginal apex. Anteriorly, the apex is point C (cervix), and posteriorly is point D. 

In women after hysterectomy, point C is the vaginal cuff and point D is omitted. 

Three other measurements are taken: the total vaginal length at rest (tvl), the 

genital hiatus (gh) from the middle of the urethral meatus to the posterior 

hymenal ring, and the perineal body (pb) from the posterior aspect of the genital 

hiatus to the mid-anal opening” [19]. 

Points above the hymen are negative numbers, points below the hymen are positive 

numbers, and all measurements except total vaginal length (tvl) are measured at maximum 

valsalva (straining maneuver) to observe the movement of the pelvic organs from rest to 

maximum strain. These anatomic points can then be used to determine the stage of the prolapse 

based on Table 2.1 and Table 2.2.  

For example, the leading point of prolapse is upper posterior vaginal wall, point Bp (+5). 

Point Ap is 2 cm distal to hymen (+2) and vaginal cuff scar is 6 cm above hymen (-6). Cuff has 

undergone 2 cm of descent because it would be at -8 (total vaginal length) if it were properly 

supported. This represents stage III Bp prolapse (rectocele) as seen in Figure 2.4. 
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Figure 2.3: Points and landmarks for POP-Q system examination 

 

Table 2.1: Pelvic organ prolapse quantification (POP-Q) system 
Point Description Range of values 

Aa Anterior vaginal wall 3 cm proximal to the hymen -3 cm to +3 cm 

Ba Most distal position of the remaining upper anterior vaginal wall -3 cm to +tvl 

C Most distal edge of cervix or vaginal cuff scar  

D Posterior fornix (N/A if post-hysterectomy)  

Ap Posterior vaginal wall 3 cm proximal to the hymen -3 cm to +3 cm 

Bp Most distal position of the remaining upper posterior vaginal wall -3 cm to + tvl 

 

Table 2.2: Pelvic organ prolapse stages 
Stage 0  No prolapse is demonstrated  

Stage 1  The most distal portion of the prolapse is more than 1 cm above the level of the hymen  

Stage 2  The most distal portion of the prolapse is 1 cm or less proximal or distal to the hymenal 

plane  

Stage 3  The most distal portion of the prolapse protrudes more than 1 cm below the hymen but no 

farther than 2 cm less than the total vaginal length 

Stage 4  Vaginal eversion is essentially complete.  
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Figure 2.4: Stage 3 leading edge: posterior wall prolapse. Illustrations ©2014 Tim Peters and 

Company, Inc. All Rights Reserved. Developed  in consultation with Patrick Culligan, MD. 

Morristown, NJ 

 

2.4. Medical Imaging Techniques for Diagnosis of POP 

Medical imaging modality is a system that uses an imaging technique to detect different 

physical signals arising from a human body to produce images. Some of these modalities use 

ionizing radiation with sufficient energy to ionize atoms and molecules within the body, and 

others use non-ionizing radiation. Ionizing radiation in medical imaging comprises x-rays and γ-

rays, both of which need to be used prudently to avoid causing serious damage to the body and to 

its genetic material. Non-ionizing radiation, on the other hand, does not have the potential to 

damage the body directly and the risks associated with its use are considered to be very low. 

Examples of such radiation are ultrasound, high-frequency sound, and radio frequency waves.  
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The most popular imaging techniques that are used for diagnosis of POP are computed 

tomography (CT), X-Ray (ionizing radiation), ultrasound and magnetic resonance imaging 

(MRI) (non-ionizing radiation) as seen in Figure 2.5. 

 

(a)                                      (b)                                     (c) 

Figure 2.5: The most popular imaging techniques. (a) Ultrasound, (b) X-Ray, (c) MRI 

 

Computerized Tomography (CT) is one of the noninvasive medical imaging techniques 

used for diagnosis and treatment of medical conditions.  CT scan is frequently used for internal 

organs, soft tissue, bones, and blood vessels since it provides clearer details than regular x-ray 

exams to diagnose medical conditions such as cancers, cardiovascular disease, and 

musculoskeletal disorders. The main concern with CT imaging is to use minimal radiation 

without affecting the image quality. High dose radiation creates higher contrast resulting in 

higher quality image but it is also associated with increased risk of cancer. On the contrast, low 

dose of radiation results in noisy images with low contrast.  

X-ray is another medical imaging technique that provides imaging of body structures, 

particularly of bones. X-ray beams pass through the body and are absorbed by each part of the 

body differently depending on the density of the body structure.  

Ultrasound, also called sonography, is a non-invasive real-time imaging technique that 

involves using a transducer and gel to expose the body to high frequency sound waves that are 
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more than 20,000 cycles per second. Ultrasound imaging is a safe and painless procedure that 

does not use ionizing radiation. There are no known harmful effects on human body. It is easy to 

use and less expensive than the other imaging techniques. Since it is a real-time procedure, they 

are used to show the structure of the body and internal organs as well as blood flowing through 

blood vessels. Ultrasound diagnosis helps physicians to monitor the changes in kidneys, bladder 

and the muscles around the anus that do not show up in X-ray images. 

Magnetic resonance imaging (MRI) is another non-invasive medical imaging technique 

that is widely used in medicine to visualize the internal structure of the body to create a detailed, 

3D image of the pelvis. Unlike x-ray imaging and computed tomography (CT) scans, MRI does 

not depend on ionizing radiation. Magnetic resonance imaging (MRI) uses radio frequency 

pulses to create detailed pictures of soft tissue and organs, bone structures and any other body 

structures. MRI is used to monitor and evaluate pelvic floor organs including bladder, small 

bowel, and rectum as well as the reproductive organs such as the uterus. MR images of the soft-

tissue structures and organs are better in identifying and characterizing diseases than other 

imaging methods. This detail makes MRI an invaluable tool in early diagnosis and evaluation of 

pelvic floor organs movements. The MRI examination poses almost no risk to the average 

patient when appropriate safety guidelines are followed.  

Dynamic MRI is an important medical imaging modality to monitor changes in soft 

tissue and organs of pelvic floor structure over time. It comprises a series of data acquisitions in 

the spatial frequency domain from which a time series of images is formed. Dynamic MRI 

imaging of the pelvic floor offers several advantages over conventional imaging techniques by 

providing a global, dynamic assessment of the pelvic floor with associated interactions of pelvic 

organs (evaluation of all three compartments simultaneously), superior intrinsic soft-tissue 
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contrast with multiplanar imaging capability, and the absence of ionizing radiation. This is 

especially important given the inaccuracies of the clinical examination. In addition, Dynamic 

MRI can also help monitor the muscular and ligamentous pelvic floor support structures and 

detecting incidental findings.  

During the analysis of dynamic MR images, anatomical landmarks are identified 

manually in the midsagittal plane to create the reference lines that are used to measure POP in 

each compartment. Although several reference systems exist, two of the more commonly used 

reference lines for measuring POP are shown in Figure 2.6: pubococcygeal line (PCL), and mid-

pubic line (MPL). Distances are measured from PCL and MPL to the bladder neck, cervix, and 

anorectal junction on the images to determine the severity of prolapse as shown in Figure 2.6. As 

shown in the figure, the grading of rectocele is based on the measured length of the M-Line, 

which is defined as the perpendicular line with respect to the PCL until the inferior margin of the 

organ of interest. The rectocele grading based on the M-Line’s length is as follows: negative, < 1 

cm; mild, 1-2cm; moderate, 2-4cm; or severe, >4cm [20]. 

 

Figure 2.6: Commonly used reference lines for grading pelvic organ prolapse 
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2.5. Summary 

 In this chapter, the anatomy of the female pelvic floor, types of pelvic organ prolapse, 

and current diagnosis techniques of POP were introduced. POP is normally diagnosed through 

clinical examination but its accuracy is limited and has been found to be in disagreement with 

surgical findings in many cases. Dynamic MR imaging of the pelvic floor has become an 

increasingly useful tool in the assessment of POP and functional disorders of the pelvic floor 

since it enables evaluation of all compartments simultaneously. However, the MRI pelvic floor 

measurement process is time-consuming and subjective. Therefore, there is a need for 

automating the pelvic floor measurement process by locating anatomical structures and 

identifying their corresponding landmarks. The following chapter presents the state-of-the-art on 

clinical diagnosis of POP, medical image localization and segmentation, and classification 

systems for medical diagnosis.   
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Chapter 3 

Literature Review 

This chapter provides an overview of previous work in the areas of POP diagnosis 

techniques, automated organ localization, bone segmentation, classification systems for disease 

diagnosis, and feature selection techniques.   

 

3.1. Pelvic Organ Prolapse Diagnosis using MRI 

Currently, dynamic MR images are analyzed based on reference lines to determine the 

stages of POP. The most commonly used reference lines for measuring POP are pubococcygeal 

line (PCL), and mid-pubic line (MPL). The PCL is determined by the inferior border of the pubic 

bone and the last visible coccygeal joint while the MPL is a midsagittal long axis of the 

symphysis pubis and extends through the level of the vaginal hymen [21, 22] . Distances are then 

measured from PCL and MPL to the bladder neck, cervix, and anorectal junction on the images 

when the patient is at rest and under maximum pelvic strain. Based on these distances, the 

severity of prolapse can be graded as mild, moderate, or severe [13].  

Previous studies have shown that the use of the PCL as a reference line on MR imaging 

can help in assessing the clinical stages of POP for the anterior and the apical compartment [23, 

24]. For the posterior compartment, the diagnosis of rectocele has been diverse. It has been 

reported that only 51% of rectocele were correctly identified with physical examination [25]. 

Fauconnier et al. compared the clinical measurement points with MRI anatomical landmarks, and 

found a good correlation in the anterior and apical compartment [26]. On the other hand, no 



21 

correlation was found for the posterior compartment. Broekhuis et al. shows the high agreement 

in the anterior and apical compartment that clinical assessment and dynamic MR imaging are 

interchangeable. However, the agreement between these two methods in the posterior 

compartment is lower. Therefore, posterior prolapse remains the most difficult type of prolapse 

to diagnose [11].  Pannu et al. [27] found a relationship between MRI and clinical measurements 

in identifying POP using both the pubococcygeal line (PCL) and the midpubic line (MPL) in the 

anterior compartment. However, there was no significant difference in agreement using the MPL 

or PCL, therefore either line can be used on MRI. Cortes et al. [28] performed a correlation 

analysis between the clinical examination and the MRI data for vaginal apex prolapse using MPL 

and they found poor correlation between clinical examination and MRI.  They suggested a 

complementary diagnostic tool to identify complex vaginal apex prolapse. Lienemann et al. [24] 

investigated which reference lines on functional cine-magnetic resonance imaging correlated best 

with the clinical diagnosis, which led to the conclusion that POP descent cannot be described 

using only one reference line and agreement has not been presented. Robinson et al. [29] 

demonstrated a prediction model for POP by using artificial neural network (ANN) and clinical 

data only. It was found that 20 variables made the largest contributions to the model such as age, 

gravidity, parity, and the number of vaginal deliveries.  In the study, only clinical data was used 

and no image data was used. 

The main disadvantage of these studies is that they have not been completely tested and 

proven on large image samples given that the MRI pelvic floor measuring process remains a 

time-consuming and subjective procedure. Moreover, because there is no standardized system 

for MRI measurements, these studies have led to incomplete and non-comparable data.  
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3.2. Medical Image Object Localization  

The main goal of object localization algorithms is to estimate an object’s approximate 

location on images to identify the object’s center point, contour, or bounding box. Various 

approaches have been proposed for the automated localization of multiple organs such as heart, 

liver, spleen, lungs, kidneys and bladder on medical images using geometric methods, statistical 

atlas-based techniques, and supervised methods [3-10].   

 

3.2.1. Geometric Methods 

Geometric methods include template matching, and convolution techniques. The 

information about the objects is represented explicitly. The recognition can then be interpreted as 

deciding whether a given image can be a projection of the known model of an object. 

Geometrically meaningful features were used in [30, 31] for the segmentation of the aorta and 

the airway tree, respectively. Such geometric approaches often have problems capturing 

invariance with respect to deformations (e.g. due to pathologies), changes in viewing geometry 

(e.g. cropping) and changes in intensity. Techniques built upon “softer" geometric models with 

learned spatial correlations have been demonstrated to work well both for rigid and deformable 

objects. 

 

3.2.2. Statistical Atlas-based Methods 

Statistical atlas-based techniques enable the inclusion of high level information to the 

detection process in the form of shape priors. These techniques are normally performed on three 

steps: a registration step where the target image is aligned to the single or multiple atlases, a label 

propagation step where the labels are transferred from the atlases to the target, and a final 
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segmentation step in which transferred labels are used to segment the target image. The 

registration process consists of two separate steps: a global registration followed by a local non-

rigid registration. Since it involves a complex discrete optimization problem, this process is often 

computationally expensive, and sensitive to initialization. Multi-class atlas provides better results 

since it enhances the variation of the atlas, but it still has the same drawback as single atlas. 

Atlas-based techniques have been applied to the brain [32], multi-organ [33, 34], head and neck 

[35] and heart [36]. 

 

3.2.3. Supervised Methods 

For supervised methods, discriminative classification algorithms such as AdaBoost [37], 

Probabilistic Boosting Trees and random decision forest have been applied to the automatic 

detection of tumors [38, 39], pulmonary emphysema [40], organs in whole-body scans [41] and 

brain [42, 43]. In these classification-based algorithms, local and global image features are used 

to discriminate the desired objects from an image. Local edge orientation and local velocity in an 

image sequence can be used as local image features while contour representation, shape 

descriptors and texture features are used as global image features.  

Among supervised methods, there has been an increasing interest in regression-based 

approaches for anatomical structure localization, since organs and tissues in the human body 

have known relative arrangement. Zheng et al. [44] proposed an approach called marginal space 

learning (MSL) that uses a set of classifiers based on probabilistic boosting tree (PBT) to predict 

the position, position-orientation and full 3D pose. In [45], the authors further expanded this idea 

to non-rigid marginal space learning using statistical shape models. Zhou et al. [46] introduced 

an approach based on boosting ridge regression to detect and localize the left ventricle (LV) in 
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cardiac ultrasound 2D images. Criminisi et al. [47] proposed regression forests to predict the 

location of multiple anatomical structures in CT scans. Cuingnet et al. [48] presented an 

improved regression forest by adding a refinement step to the detection process to find kidneys 

in CT scans. These methods use the difference in mean intensities to locate the bounding boxes 

of the anatomical structures on the images. However, considering only intensity levels is not 

sufficient for the localization of anatomical structures such as bones on MRI. 

 

3.3. Segmentation of Bone Structures on MRI 

Medical images differ from normal digital images since they have poor contrast and 

natural noise. This limits the use of current segmentation approaches for normal digital images as 

they cause weak segmentation results. Medical image segmentation has become increasingly 

important in automating the identification of structures of interest for diagnosis, localization of 

pathology, treatment and surgical planning. It has been successfully applied to identify a tumor, 

cell, bone and diagnosis of heart and lung diseases. Medical image segmentation techniques are 

influenced by objects’ boundaries, homogeneities and shapes. The object’s boundaries and 

homogeneities are image based and affected by some specific disturbances like noise. They are 

also highly dependent on the image modality techniques. For instance, bones have more visible 

boundaries in computed tomography (CT) but poor boundaries in magnetic resonance images 

(MRI). On the other hand, soft tissues such as organs are better observed on MRI than CT. 

Medical image segmentation algorithms are divided into two main methods: model-free based 

algorithms and model-based algorithms. 
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3.3.1. Model-Free Based Algorithms 

Model-free based segmentation methods, also called unsupervised segmentation methods, 

are based on local image properties such as intensity value, gradient magnitude, and textures. 

Image statistics tools such as histogram, mean, variance, and entropy can be used in this kind of 

segmentation. The following methods are the most frequently used model-free techniques: 

thresholding, image feature-space clustering, region based and boundary based. The simplest 

image segmentation method is the thresholding method, which is used very commonly for 

segmenting gray scale images [49, 50]. The image feature-space clustering method is a multi-

dimensional extension of the thresholding segmentation, and it segments an image by grouping 

similar pixels into one group [51]. Although thresholding and image clustering techniques are 

effective when the intensity levels of the objects fall outside the levels in the background, their 

disadvantage is that they do not incorporate the spatial characteristics of the image data. The 

region based image segmentation approaches such as region growing, region splitting, region 

merging, or hybrid model group spatially connected pixels into homogeneous groups [52]. 

Region based segmentations [53] are based on the principle of homogeneity. Pixels that have the 

similar properties are grouped together as a homogenous region. An advantage of the region 

based segmentation is that segmented groups are guaranteed to be homogeneous spatially. It is 

also possible to separate groups at multi-scales using region-based approaches and spatial 

information. Image segmentation can also be obtained by boundary based techniques. One of the 

most common boundary based approach is edge detection which is an important task in image 

processing and many different approaches have been proposed [54-56]. Edge detection 

techniques are very effective and easy to apply to any image. However, these techniques usually 

fail with very noisy images such as MRI, CT, or X-Ray. In recent years, wavelet transformation 
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based edge detection techniques have been proposed medical image processing [57]. Zhang and 

Bao [58] showed that the scale multiplication provides better results than either of the two scales, 

especially on the localization performance. Bao and Zhang [54] applied the scale multiplication 

technique to enhance the canny edge detection algorithm. Chao et al. [59] performed the wavelet 

analysis with Markov Random Field for segmentation of regions of interest on the MRI based on 

Maximum Entropy Theory. Flores-Tapia et al. [60] performed MRI prostate segmentation based 

on wavelet multi-scale products flow tracking.  

 

3.3.2. Model Based Algorithms 

Model based segmentation approaches build a model representing an object using a 

training set and later match the model to unknown image data. During the matching process, the 

model’s shape and additional properties are varied to improve the match iteratively. Some typical 

model based segmentations with locally modeled shape prior technique is active contour or 

snake [61].   

An active contour detects specified properties of an image and can dynamically fit to the 

edges of a structure by minimizing an energy function. There are two types of energy that control 

the segmentation: the internal energy and the external energy. The internal energy provides the 

rigidity and the tension of the contour and defines how smooth and flexible the snake is. The 

internal energy therefore is a local shape prior, which determines how the object to be segmented 

should locally look like. The image driven part of the segmentation method is given by the 

external energy. It determines what kinds of image features attract the contour. Successful 

applications have been reported on segmentation of the anatomical structure such as brain [62], 

and lung [63]. However, active contour has several disadvantages. First, the method depends on 
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the initial positions of the contour or surface, which needs to be carefully placed by the user to 

avoid getting trapped in local minima. Secondly, the method depends on the quality of the 

images having drawbacks when applied to low contrast images. Another drawback is that the 

snake is not able to fully adapt to the structure in some parts while in other parts it may be 

already too flexible and leak into neighboring structures. Lastly, the method is complicated and 

requires a lot of computation during iterations. 

Globally modeled shape prior techniques use the global shape knowledge for 

segmentation. Geometric model based segmentation is the most widely and successfully used 

segmentation technique in this category. The shape is represented by geometric objects like point 

clouds, polygonal surfaces, simplex meshes and B-spline representations. Based on the chosen 

shape representation, an initial shape is created to be used for segmentation. For example, the 

initial shape, also called template, can be the mean shape of some representative shapes of the 

anatomical structures to be segmented. The model is then placed in the image directly on the 

structure to be segmented. Then, similar to local prior shape methods, image features like edges 

are searched in the image by external energy and integrated into an image term. Usually, image 

features are used to describe the boundary of the structure to segment.  

There are many ways to model a group of template shapes. The simplest way is to define 

a single object to be the template if the shape variance of the structure to segment is not high. 

However, for anatomical structures that strongly vary between individuals, a single template 

shape is not sufficient. For such structures, a representative set of template shapes is necessary. 

However, using many templates also increases the complexity of the decision process of whether 

the current model is similar to the template shape set. Statistical shape modeling has been first 

proposed by Cootes et al [64] and  has been applied to segment the liver in CT [65, 66], the heart 
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and heart chambers in CT [67, 68], and the prostate in MRI [69]. Because geometric model 

based segmentation depends on knowing the expected shape of the structure to segment a-priori, 

it is less suited for segmenting objects that can have arbitrary shapes like soft tissues, organs and 

tumors. 

Traditionally, MRI has been used to study soft tissues, whereas computed tomography 

(CT) scanning has been associated with imaging of hard tissues such as bones. However, the use 

of MRI for imaging bone has become more commonplace due to the lack of ionizing radiation. 

Many methods have been proposed for the segmentation of bones on MRI such as region 

growing approaches, medial models, active shape models, general deformable models (live-wire, 

active contour or active surface models), clustering methods, and graph-based approaches. 

Lorigo et al [70] used texture-based geodesic active contours to perform segmentation of knee 

bone. Fripp et al [71] used three-dimensional active shape models initialized by affine 

registration to an atlas and achieved good segmentation results of knee bone. Bourgeat et al [72] 

used features extracted from the phase of MR signal to improve texture discrimination in the 

bone segmentation. Graph-based approaches (graph-cuts) have been highly successful in 

obtaining globally optimal solutions for a class of discrete optimization problems.  

Schmid et al. [73]  presented an approach based on physically-based deformable models 

and prior shape knowledge for the segmentation of femur and hip bones on MRI. Yin et al. [74] 

used graph cuts for knee-joint bone and cartilage segmentation starting from initial 

segmentations that are formed by adapting single-object statistical shape models of the knee 

bones.  

Recently, segmentation techniques based on statistical classification have been used for 

bone segmentation on MRI [72, 75]. These techniques group pixels or voxels based on 
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distinguished features such as intensities, gradients and texture. Simple intensity-based features 

do not provide successful segmentation results because different tissues have overlapping image 

intensity values. Bourgeat et al [72] used Gabor filter features extracted from the phase of MR 

signal to improve texture discrimination in bone segmentation. Van Ginneken et al [75] 

combined texture based classification with the anatomically valid shape information of the chest 

structure to constrain the segmentation. Although these methods present promising results, the 

main drawbacks are high computation time, initialization sensitivity, definition of many 

parameters, and lack of leak detection processes. 

 

3.4. Classification Systems and Feature Selection for Medical Diagnosis 

3.4.1. Classification Systems 

Data mining techniques have become very popular in enhancing medical diagnosis by 

exploring the hidden patterns in the medical data sets. They have been widely used for diagnosis 

of illnesses such as diabetes [76], stroke [77], cancer diagnosis [78], and heart disease [79]. Data 

mining techniques can be classified into two categories unsupervised (description) and 

supervised (prediction). The description techniques aim to find a pattern and association on the 

whole data set while prediction techniques seek to foretell some response of interest.  

 Supervised classifications are one of the most useful data mining techniques in health 

care. Such techniques include decision tree [80], artificial neural networks [79, 81], support 

vector machine [82], and the naïve Bayesian classifier [83]. A number of classification methods 

have been applied using anatomical MRI data to diagnose subjects as having psychiatric illnesses 

and tumor [84-88]. Hinrichs et al. [89] and Zhang et al. [90] used data from both anatomical MRI 

and positron emission tomography (PET) to classify subjects with Alzheimer’s disease. A 
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support vector machine (SVM) was used to learn the decision boundary in a feature space, and 

the performances of the classifier were validated using a leave-one-out approach. Twellmann et 

al. [91] applied a classification method to detect suspicious cancer lesions in dynamic MRI data. 

In the study, cancer cells were selected in a supervised fashion and fed to a SVM, which was 

trained to perform a binary classification between benign and malicious cells. Pena-Reyes and 

Sipper [92] used fuzzy modeling and cooperative coevolution to classify the entire Wisconsin 

breast cancer database. Setiono [93] used a Feed forward Neural Network Rule Extraction 

Algorithm for breast cancer diagnosis.  

The SVM algorithm works very well with high dimensional data and avoids the curse of 

dimensionality problem. SVM has shown to be very successful in the diagnosis of various 

diseases due to its strong theoretical foundation and accuracy results. In [94], four different 

methods: combined neural network, probabilistic neural network, recurrent neural network and 

SVM were applied to breast cancer diagnosis where SVM achieved the highest classification 

accuracy of 97.36%. In [82], a least square SVM was used for the diagnosis of cancer resulting 

in a 98.53% accuracy. Akay [95] achieved a 99.51% classification accuracy for the diagnosis of 

cancer using a SVM-based method combined with F-score technique. 

The classification framework involves two step processes: the first step is to construct a 

classification model based on the data, and the second step is to apply the model to test 

examples. Classification techniques can be also divided into two main categories regarding their 

training processes: eagle learners and lazy learners. The eagle learners are designed to learn a 

model that maps input variables to the class as soon as the training data becomes available. On 

the other hand, lazy learner techniques memorize the entire training data and perform 

classification only if the variables of a test set exactly match one of the training set. The only 
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drawback of the lazy learners is that some test records may not be classified because they do not 

match any training example. 

 

3.4.2. Feature Selection for Medical Diagnosis 

In classification problems, the feature selection process is very important and has a 

considerable impact on the classification results. Given that available raw medical data is widely 

distributed and heterogeneous, this data needs to be collected in an organized form to identify the 

significant features, eliminate the irrelevant features and build a good learning model for the 

classification. Feature selection approaches can be divided into two main categories: filter based 

and wrapped based. In the filter based approaches, all features are scored and ranked based on 

statistical criteria and then features with higher ranking are selected. These methods include t-test 

[96], chi-square [97], mutual information [98], Pearson correlation coefficient [99] and principal 

component analysis [100]. On the other hand, in the wrapped methods, the feature selection is 

wrapped in a learning algorithm and it is applied to subsets of features and tested based on 

prediction accuracy to determine the feature set quality. The most common wrapped algorithms 

are sequential forward selection (SFS) and sequential backward selection (SBS) [101, 102]. 

Stochastic algorithms have been also proposed to select subset features by solving large scale 

problems such as genetic algorithm [103], practical swarm optimization [104] and simulated 

annealing [105].  Recently, several authors proposed hybrid approaches taking advantages of 

both filter and wrapper methods. Examples of hybrid algorithms include t-statistics and a GA 

[106], a correlation-based feature selection algorithm and a genetic algorithm [107], and  mutual 

information and a GA [108]. 
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3.5. Current Challenges to be Addressed in the Proposed Research 

The current research challenges for the diagnosis of POP in MRI can be divided into two 

main groups: medical and engineering based. In terms of medical challenges, the currently used 

features have shown to be insufficient to identify the presence and stages of POP. This has led to 

results from clinical studies that disagree with surgical outcomes. Moreover, the extraction of 

these features is a time-consuming and subjective procedure. This has restricted the correlation 

analysis of MRI measurements with clinical information and surgical outcomes as well as the 

validation of newly proposed reference lines.  

In terms of engineering based challenges, many of the features currently used for 

evaluation of POP are based on the identification of pelvic bone structures and their 

corresponding landmarks on dynamic MRI. However, bones are not easily identifiable from the 

soft tissue on MRI since fat tissues tend to have intensity characteristics that are very similar to 

the intensity of the bone structures. This constitutes a major challenge for current algorithms that 

tend to fail during bone localization and segmentation by erroneously classifying soft tissue as 

bone. Moreover, most of the algorithms for structure localization on MRI are semi-automated 

requiring user input. Automated segmentation algorithms have been presented mainly for 

applications where boundaries are well defined [70, 71, 109, 110]. Therefore, the main 

challenges that remain for automated medical object identification are the large search space, 

numerous local minima, image inhomogeneity, and/or high computational cost.   



33 

 

 

 

 

 

Chapter 4 

Multiple Bone Localization on MRI 

This chapter introduces a model to automatically find the location of multiple bone 

structures on dynamic MRI. For the pubic bone, the model consists of the identification of 

keypoints and extraction of candidate regions using Harris corner detector and texture based 

classification. For the localization of coccyx and sacral promontory, a non-linear regression 

approach is presented using previously identified bladder, rectum, and pubic bone locations.  

 

4.1.  Overview of Multiple Bone Localization Model 

In this study, the bone localization problem consists of finding the bounding boxes of the 

structures of interest as seen in Figure 4.1. A model is proposed that locates the bounding boxes 

of multiple bone structures on MRI using support vector machines (SVM) based classification 

and non-linear regression model with global and local information. The proposed scheme first 

identifies pelvic organs using k-means clustering and morphological opening operations. Then, it 

uses the spatial relationship between the organs and bone structures to estimate the locations of 

the structures. The pubic bone is located using the relative location between bones and organs, 

and texture information. Then, a non-linear regression model is used to predict the location of 

other bone structures whose local information is insufficient, such as sacral promontory and 

coccyx. The main contribution of this scheme is a new parameterization through non-linear 

regression approach for the multiple bone localization problems on MRI. 
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Figure 4.1: Regions of interest with their corresponding reference points 

 

As shown in Figure 4.1, three regions of interest (ROIs) need to be located automatically 

that correspond to the pubic bone, sacral promontory, and coccyx, respectively. However, bones 

are not easily differentiable from soft tissues on MRI as their pixel intensities tend to be very 

similar. This is particularly true for bones located on the vertebra such as sacral promontory and 

coccyx. On the other hand, both the bladder and the rectum are visible as retrograde 

bladder/ureteral dye is injected during image capturing to enhance visualization. Therefore, the 

regions for both the bladder and the rectum have high intensity values on the MR images and can 

be used as contextual information to automatically locate the pelvic floor structures of interest. 

Based on these observations, our scheme is designed to localize the pubic bone first using both 

global and local information, and then use global information to localize the sacral promontory 

and coccyx. 
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Figure 4.2: Overview of the proposed multiple bone localization method 

 

Each bone region has specific characteristics so different approaches are needed to find 

these regions. For instance, the pubic bone region is located between the bladder and abdomen, 

which are high contrast regions while the coccyx and sacral are low contrast regions resulting 

limited visibility in midsagittal view of dynamic MRI. The location of the pubic bone can be 

found using both contextual and texture information based on the location of the bladder and 

rectum. On the other hand, the location of the sacral promontory and coccyx can be found using 

only contextual information based on the location of the bladder, rectum, and pubic bone.  
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The proposed method consists of three main steps: identification of bladder and rectum, 

identification of pubic bone region, and identification of coccyx and sacral promontory regions 

(see Figure 4.2). The first step starts with noise reduction and contrast adjustment of the images 

followed by clustering of the anatomical structures through bisecting K-means clustering using 

pixel intensities. K-means is convenient for medical images as the number of clusters (K) is 

usually known for particular regions of the human anatomy [111]. The anatomical structure can 

be divided into four sub-regions representing the organ and soft tissue, bone, cartilage, and 

background. The brightest regions represent the bladder and rectum since dye is injected before 

imaging to make these organs more visible for radiological examination. The regions (clusters) 

corresponding to the bladder and rectum are separated from the other clusters using 

morphological opening operation. In the second phase, the pubic bone region is localized based 

on “keypoints”, which are corner points on the input image that satisfy certain intensity and 

location constraints. Based on the identified keypoints, candidate bounding boxes of the pubic 

bone can be determined. The best bounding box that describes the pubic area is selected using 

support vector machines (SVM) with 2D box features. In the third phase, the coccyx and sacral 

promontory regions are localized using the location of the bladder, rectum and pubic bone via a 

non-linear regression model. The detailed description of the proposed scheme is as follows. 

 

4.2.  Dataset Description 

MR images were obtained from a 3-Tesla GE system (General Electric Company, GE 

Healthcare, Buckinghamshire, UK) using an 8-channel torso phased-array coil with the patient in 

a modified dorsal lithotomy position (patient laying in the supine position with their knees 

slightly elevated and abducted under a support). Dynamic MRI of the pelvis was performed 
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using a T2-weighted single-shot turbo spin-echo (SSH-TSE) sequence in the midsagittal plane 

for 23-27 seconds with a temporal resolution of 2s (FOV 300×300 mm2, slice thickness 3 mm, 

TR/TE 2,000/75 ms, 20 image sequences, in-plane resolution of 1.6×1.6 mm2). Subjects were 

coached, prior to imaging, on performance of an adequate valsalva maneuver (straining 

maneuver) to observe the movement of the pelvic organs from rest to maximum strain. The 

image data has been preprocessed to de-identify the images before applying the method. 

 

4.3.  Identification of Bladder and Rectum 

The model uses the location of pelvic organs to predict the location of the pelvic bone 

structures. The first phase of the proposed scheme is to perform noise reduction by applying a 3 

by 3 Gaussian kernel due to its computational efficiency. After noise reduction, contrast 

adjustment is performed to improve the contrast in the images by stretching the range of intensity 

values. Minimum and maximum values used for normalization are 0 and 255 respectively.  

Given the clear visibility of the bladder and the rectum on dynamic MRI due to ureteral 

dye use, these two organs can be automatically identified to be used as contextual information 

for the localization of the bone structures. The ureteral dye helps to improve visualization of 

these two organs by increasing the contrast. A “bisecting K-means” algorithm is used to identify 

regions on the image and to overcome the initialization susceptibility of the basic K-means 

clustering algorithm. The idea is to obtain    clusters by first splitting the set of all points into 

two clusters. Then one of these clusters is selected for splitting and the process continues until   

clusters are generated. In the study, the value of   is 4 because the region of the pelvic floor is 

divided into four sub-regions representing the bone, cartilage, soft tissue and organ, and 

background. 
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 After identifying the four types of regions, the regions with the highest intensity are 

selected to locate the bladder and rectum regions. However, many regions with similar intensities 

to the bladder and rectum may be identified as shown in Figure 4.3 (b). To separate the bladder 

and rectum, size, homogeneity, and location constraints were incorporated. For size constraint, 

connected regions that have less than a specified number of pixels were removed using 

morphological opening operations. For homogeneity, it was observed that the bladder and rectum 

regions on MRI are homogeneous regions without internal holes. Therefore, the Euler number, 

which is a topological descriptor, was used to determine the number of holes inside the regions 

and to eliminate those regions with internal holes. Finally, as location constraint, the location of 

the bladder and rectum normally appear close to the center of the image so the search of these 

two organs was limited to the center of the image. The results of this process are shown in Figure 

4.3 (c). 

The mathematical description of this filtering operation to find the desired regions    

(bladder and rectum) is shown below.    corresponds to the set of regions obtained after 

clustering. 

            
       ,    

      
                                    (4.1) 

where    
  denotes the size of the     region in set  , which was obtained through bisecting K-

means clustering,      and      are the minimum and maximum region sizes, respectively.    
 

is the specified Euler number which is 1.    
 denotes the distance between the centroid of the     

region and the midpoint of the image, and   is the specified distance. 
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(a)         (b)         

 

(c)             

Figure 4.3: Illustration of bladder and rectum localization. (a) Input image, (b) Clustering with 

k=4, (c) Identified regions for bladder and rectum using shape and location constraints 

 

4.4. Identification of Pubic Bone Region 

4.4.1. Keypoints Extraction  

After the locations for the bladder and rectum have been identified, the next phase is to 

identify the location of the pubic bone. This is achieved through the identification of keypoints 
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on the image that satisfy specific location and intensity constraints. The use of corner points was 

selected instead of pixels because corner points can be extracted without any user input and it is 

computational efficient.   

Corner points are identified using the Harris corner detector. It is based on the local auto-

correlation function of a signal that measures the local changes of the signal with patches shifted 

by a small amount in different directions. 

If   denotes a 2-D grayscale image, then, taking an image patch over the area       and 

shifting it by     ). The weighted sum of squared differences between these two patches is given 

by: 

 

        ∑ ∑                                    (4.2) 

             can be approximated by a Taylor expansion and     and    are the partial 

derivatives of  , such that 

                                             (4.3) 

This produces the approximation 

        ∑ ∑                                    (4.4) 

which can be written: 

               ( 
 
)      (4.5) 

where A is the structure tensor, 

   ∑ ∑          [
  
     

      
 ]  [

〈  
 〉 〈    〉

〈    〉 〈  
 〉

]    (4.6) 

The matrix indicates the Harris matrix, and angle brackets denote averaging (i.e., 

summation over      ). A corner is characterized by a large variation of   in all directions of the 

http://en.wikipedia.org/wiki/Taylor_series
http://en.wikipedia.org/wiki/Partial_derivatives
http://en.wikipedia.org/wiki/Partial_derivatives
http://en.wikipedia.org/wiki/Structure_tensor
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vector      . By analyzing the eigenvalues, denoted λ, when both eigenvalues are small there is 

little change for any      . Once one of the eigenvalues is large and the other is small it indicates 

there is an edge, since one direction has high change, while the orthogonal direction has small 

change. A corner is indicated when both eigenvalues are large. The result of the corner point 

detection process is shown in Figure 4.4. 

 

Figure 4.4: Corner points extraction over an image with the Harris corner algorithm 

 

Corner point extraction is followed by spatial filtering to eliminate the number of corner 

points that are outside of the vicinity of the bladder. The following equations provide the 

mathematical framework of the spatial filtering operation. Set   corresponds to the set of 

locations obtained after an initial selection of corner points. 

                           ,                  ,   (4.7) 

                        }      

where        denotes the interest point location,    is the set of points obtained by the Harris 

corner detector,        denotes the intensity level at       ,    is the threshold for minimum 
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pixel intensity,    is the threshold for maximum pixel intensity, and           denote the 

minimum and maximum distances between the key points and the centroid of the bladder on the 

  direction, respectively.    is the maximum distance between the key points and the centroid of 

the bladder on the   direction, where     and     denote the centroids of the regions on the   

and   direction, respectively. These distances are determined based on the relative positions 

between anatomical structures on the body from the training image dataset. The constraints 

ensure that corner points that are below and to the left of the bladder and within a specific 

distance and intensity range are retained.  For instance, the mean intensity value of pixels located 

on the pubic bone has been defined as 33±10.4 using histogram analysis over the training image 

dataset. Hence, corner points with intensity levels between 10 and 60 can be considered as 

potential keypoints corresponding to the pubic bone as seen Figure 4.5.      

 

Figure 4.5: Keypoints within the local vicinity of the bladder 

 

4.4.2. Generation of Candidate Bounding Boxes  

After spatial filtering, potential pubic bone regions are generated as seen in Figure 4.6 

and Figure 4.7. These bounding boxes are centered at the keypoints and the size is set to a value 
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defined by analyzing the training image dataset. Principal component analysis (PCA) is applied 

to the manually segmented pubic bone regions in the training image dataset to find the mean 

shape and the shape variation models of the pubic bone. This is used to determine the size of the 

bounding boxes to enclose the pubic bone. Each of these bounding boxes represents a potential 

bounding box for the pubic bone. However, some of these bounding boxes do not completely 

enclose the pubic bone as the keypoints may fall near the boundaries of the bone. For this reason, 

the bounding boxes that completely enclose the pubic bone need to be identified. To do this, each 

region based on 2D box and texture features is analyzed as described in the following sections. 

 

(a)                                                              (b) 

Figure 4.6: Candidate region generation. (a) Keypoints used as centroids of candidate regions, 

(b) Candidate regions of pubic bone 

 

 

Figure 4.7: Generated candidate regions 
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4.4.3. Feature Extraction of Candidate Regions 

The selected features need to be robust to represent changes and imaging conditions on 

each candidate region. The candidate regions are evaluated based on 2D box features and texture 

features. Texture features have shown to enable more reliable results on MRI by providing 

relative position information of any two pixels with respect to each other. Medical images 

possess different textures depending upon the area of the body considered for imaging. The 

texture features are (i) average gray level, (ii) average contrast, (iii) smoothness, (iv) skewness, 

(v) uniformity, and (vi) entropy.  

 

Figure 4.8: 2D box features. (a) Horizontal box features, (b) Vertical box features, (c) Centered 

box features 

 

The other set of features used on evaluation of candidate regions are 2D box features. 

These features provide the average intensity difference between two displaced boxes as shown in 

Figure 4.8. For instance, the horizontal 2D box shown in Figure 4.8 (a) can be generated as 

follows: 
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                                                        (        )   (4.8) 

                                                        (        )   (4.9) 

                                                                    (4.10) 

Since the centered pubic bone is desirable for bounding boxes bone location process, 2D 

box features provide information on whether the pubic bone is in the center of the bounding box 

or not. Similarly, texture features calculate six measures of texture from each generated region. 

 

4.4.4. Classification of Bounding Boxes 

For the candidate regions defined in Section 4.2.2., the feature set representing the 

candidate regions are evaluated using support vector machines.  As described in Section 3.3, 

SVM has shown to achieve the highest classification accuracy for medical diagnosis compared to 

other classification techniques. This is a two-class problem where candidate bounding boxes are 

classified into bounding boxes of pubic bone or not. The classification of the candidate regions 

involves two steps: construction of the classifier and prediction. In the first step, a classifier 

structure is constructed based on the training data set using support vector machines (SVMs). 

The implementation of SVMs is designed to increase the speed of the classification process by 

classifying blocks of pixels instead of classifying each pixel. SVMs is trained using the “kernel 

trick” which allows the algorithm to fit the maximum-margin hyper plane in a transformed 

feature space to provide for non-linear decision surface as discussed in Section 4.3.2. After the 

regions are trained according to the features, the second step of the segmentation process is to 

apply the model to test example images using the built SVM classifier. The anticipated outcome 

at the end of this process is a set of two groups of regions that are automatically classified as 

enclosed pubic bone regions and partially enclosed pubic bone regions. 
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4.5. Identification of Coccyx and Sacral Promontory Regions 

At this point of the process, the locations of the bladder, rectum, and pubic bone have 

been identified.  Since the estimated position of the bladder, rectum, and pubic bone are strongly 

correlated with the coccyx and sacral promontory, the non-linear model is built to predict the 

location of the coccyx and sacral promontory regions. To do that, the location of the pelvic floor 

structures is parameterized using the bladder, rectum and pubic bone location information as 

seen in Figure 4.9. Therefore, the proposed model is first trained by non-linear regression model.  

The locations of the bladder, rectum, and pubic bone are strongly correlated with the 

locations of the sacral promontory and coccyx. However, the relationship between these organs 

is complex given the different sizes and locations of the organs. Thus, non-linear regression 

model is built to predict the location of the coccyx and sacral promontory regions. 

The proposed non-linear model has been trained through parameterizing the location of 

the pelvic floor structures with respect to the bladder, rectum and pubic bone locations. For 

training, the input is        , where    is the input matrix and    is the predicted 

matrix.     consists of     
                  and         , where     

       is the location of the 

centroid of structure   for the     subject,   corresponds to the regions (bladder, rectum, pubic 

bone, coccyx and sacral promontory),           and          are the relative distances between 

the centroids of the bladder and rectum to the centroid of the pubic bone, respectively.    

consists of           and          , where          and           are the distances between the 

centroids of sacral promontory and coccyx to the centroid of the pubic bone, respectively.    

helps in predicting the sacral promontory and coccyx regions for the testing image dataset. 
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Figure 4.9: Parameterization of location of pelvic floor structure 

 

 After parameterization, the next step was to choose the model function to fit the model to 

the dataset. The selection of the model is a critical step as the accuracy of the model depends on 

this function. The data set has been trained using different non-linear models and the exponential 

polynomial model has been selected since it provides the minimum distance between the model 

curve and data points. Another reason for the selection of this model is that the residuals appear 

randomly distributed across the zero line indicating that the model is a good fit. The goodness of 

fit has also been measured using quantitative measures such as R square. The selected model 

provided the highest R square among the other models. The selected non-linear model can be 

expressed as follows: 

                     
      

      (4.11) 

Unlike in linear regression, most non-linear regression models require initialization of the 

parameters (                .  In order to find the initial values, the data set has been 

transformed and analyzed using linear regression. After selecting the initial values, the 
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parameters are estimated from the dataset by minimizing the distance between the model curve 

(      ) and the data points (    using the equation below. 

∑     
 

   
               (4.12) 

Once the centroids of the sacral promontory and coccyx are determined, the bounding 

boxes that enclose these regions are determined based on PCA by generating the mean boxes and 

box variations of the coccyx and sacral promontory regions. PCA provides fixed size bounding 

boxes for each region. For instance, the maximum size for the bounding box of the sacral 

promontory has been defined as [60px 6 px] based on the training dataset and PCA. For the 

coccyx, the maximum size for the bounding box was determined to be [30px 30px]. These 

bounding boxes are centered at the centroids of the sacral promontory and coccyx. 

 

4.6. Results  

The proposed automated bone localization model was evaluated on a wide range of MR 

images along the midsagittal view and at different stages of POP.  The validation of the proposed 

model was performed on a representative clinical data set of 204 selected dynamic MRI. The 

database is divided into a training set and a testing set. The training set contains 114 images and 

the testing set is composed of the remaining 90 images for evaluating the model’s performance. 

The proposed scheme was implemented using Matlab 2012b on a workstation with 3.00GHz 

dual processors and 2 GB RAM. 

The regions identified through the proposed localization method were compared to the 

regions identified manually by experts. The Euclidean distance between the centers of the 

predicted and ground truth bounding boxes was used to assess the accuracy of the bone 
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localization approach. In addition, the region overlap between the predicted and ground truth 

regions is quantified using the Dice Similarity Index (DSI), where  

       
|      |

|    | | |
       (4.13) 

where            indicate the manual and automatic segmented regions, respectively.  

Table 4.1 provides the average center error in mm for the 90 testing images. The average 

center error for the pubic bone is 3.2 mm with 1.2 mm standard deviation. For the coccyx, the 

average center error is 14.5 mm with 4.6 mm standard deviation while the error and standard 

deviation for the sacral promontory are 8.1 mm and 3.8 mm, respectively.  It can be observed 

that the center error for the pubic bone is the lowest compared to the coccyx and sacral 

promontory while average center error is the highest for the coccyx. 

 

Table 4.1: Average center error (mean ± standard deviation) for pelvic bone detection over 90 

testing images 

 Center error (mm) 

Pubic bone Coccyx Sacral Promontory 

3.2±1.2 14.5±4.6 8.1±3.8 

 

Figure 4.10 provides the percentage of correctly detected cases at different thresholds for 

DSI. It can be observed that even at very high thresholds for DSI, the proposed method can 

correctly detect the pubic bone (DSI > 0.90) in 90% of the testing images by the proposed 

scheme. Similarly, the proposed scheme correctly detected the sacral promontory in 86% of the 

unknown images and the coccyx in 81% of the images. Once the overlapping percentage 

between two regions is decreased to 0.75, the proposed scheme correctly detected the pubic bone 

(DSI > 0.75) in 92% of the testing images. At the same time, the sacral promontory and coccyx 

were correctly detected in 90% and 88% of the testing images, respectively.  
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(a) 

 

(b) 

Figure 4.10: Percentage of correctly detected cases by the proposed bone localization model for 

different thresholds of DSI. (a) 0.65, (b) 0.75, (c) 0.90 
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(c) 

Figure 4.10 (Continued) 

 

Figure 4.11 shows some sample localization results of the proposed scheme compared to 

the ground truth regions of the pubic bone, sacral promontory, and coccyx. The regions shown 

with solid lines correspond to the regions found by the proposed scheme while regions with 

dashed lines indicate the ground truth regions. 

 

Figure 4.11: Results of bone localization. (Solid line: predicted model, dashed line: ground truth) 
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Figure 4.11 (Continued) 
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4.7. Conclusion 

A model using SVM based classification and non-linear regression model with global and 

local information is presented to automatically localize multiple pelvic bone structures on MRI. 

The main contribution of this approach is a new parameterization through non-linear regression 

approach for the multiple bone localization problem. The model uses the location of pelvic 

organs to approximate the relative location of the pelvic bones. The best pubic bone region is 

selected using a SVM classifier based on texture and 2D box features. Then, a non-linear 

regression model was built to establish the association between the locations of the bladder, 

rectum, and pubic bone with respect to the location of the sacral promontory and coccyx. Results 

demonstrate that the proposed scheme can accurately find the location of the bone structures on 

each image consistently. The proposed automated bone localization scheme will be used to 

automatically identify regions of interest to extract image based predictors for pelvic floor 

measurements as described in the following chapter.  
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Chapter 5 
1
 
2
 

Image-based Pelvic Floor Measurements Model 

In this chapter, a new image based pelvic floor measurement model is presented. The 

model consists of two stages: bone segmentation and reference point identification. Experimental 

results show that the presented model can extract image based features faster, more accurately 

and consistently compared to the manual extraction process.   

 

5.1. Overview of Proposed Segmentation Method  

Pelvic floor measurements on MRI begin with the identification of reference points. As 

shown in Figure 5.1 (a), these reference points are located on three areas: pubic bone, sacral 

promontory, and coccyx. Each area has specific characteristics so different approaches are 

needed to find these points. Points located on the pubic bone (points 1, 2, and 3) can be found 

through segmentation of the pubic bone and its cartilage. On the other hand, points located on the 

sacral promontory and coccyx (points 4 and 5) can be defined as intersecting points, and can be 

                                                        
1 The work presented in this chapter has been previously published (Onal S, Lai-Yuen, S., Bao, P., 

Weitzenfeld, A., Hart, S. MRI based Segmentation of Pubic Bone for Evaluation of Pelvic Organ 

Prolapse. IEEE Journal of Biomedical and Health Informatics. 2013;PP(99), p.2168-77). See Appendix C 

for copyright information. 
 
2 Some figures and tables of the work presented in this chapter have also been previously used in the 

following two articles. (1) Onal S, Lai-Yuen, S., Bao, P., Weitzenfeld, A., Greene, K., Kedar, R., Stuart, 

H. Assessment of a Semi-Automated Pelvic Floor Measurement Model for the Evaluation of Pelvic 

Organ Prolapse on MRI. International Urogynecology Journal 2014. doi: 10.1007/s00192-013-2287-4. (2) 

Onal S, Lai-Yuen, S., Bao, P.,   Weitzenfeld, A., Hart, S. Image based measurements for evaluation of 

pelvic organ prolapse. Journal of Biomedical Science and Engineering. 2013;6(1):45-55. See Appendix C 

for copyright information. 
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found using a corner detection algorithm. After all the reference points are determined, the points 

are connected through lines for pelvic floor measurements. 

The proposed method consists of three main stages: pre-segmentation, segmentation, and 

point identification (see Figure 5.2). The first stage starts with noise reduction, contrast 

adjustment and normalization of the images followed by manual segmentation of the anatomical 

structures of interest for data training, and statistical mean shape generation. In the approach, 

each ROI is sub-divided into small blocks of 3 3 pixels to classify them as bone or background 

blocks and to reduce computational cost. In the second step, feature extraction of the blocks 

based on intensity and texture features is performed using independent significance feature 

selection method. Then, blocks are classified as bone and background blocks using support 

vector machines (SVM) followed K-means clustering to generate the initial segmentation. First 

phase morphological operation is used to eliminate small regions that do not belong to the bone 

regions. The final segmentation is obtained by incorporating prior shape information into the 

initial segmentation. Then, the reference points are identified for pelvic floor measurements. 

Following is the detailed description of the proposed method. 

 
(a)                                             (b) 

Figure 5.1: Point of interests and proposed MRI-based features. (a) Point of interest, (b) Current 

and proposed MRI-based features 
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5.2. Pre-segmentation Stage 

The first step of the proposed method is to perform noise reduction by applying the 

convolution operation onto the raw image with the smoothing kernel. In this study, Gaussian 

kernel is used due to its computational efficiency and ability to control the degree of smoothing. 

The Gaussian kernel is expressed in the discrete form with a size of 3 3 pixels. After noise 

reduction, contrast adjustment is performed to improve the contrast in the images by stretching 

the range of intensity values. 

 

Figure 5.2: Overview of the proposed multi-stage method 
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Prior shape information is obtained by generating the mean shape of the pubic bone 

(bone, cartilage) from a set of training images. To achieve this, the pubic bone was segmented 

manually on all the images by a radiologist and the results were stored as a binary mask. The 

region of interest (ROI) for the pubic bone is cropped through a       size window using the 

automated bone localization algorithm mentioned in the previous chapter (Chapter 4) to build the 

statistical mean shape from the training set. The extracted structures are aligned with respect to a 

set of reference axes to filter out the differences in shapes due to translation, scaling, and 

rotation. An image is selected arbitrarily as the reference shape, and all the other shapes are 

aligned with respect to this reference shape. A mean shape is generated as a binary image as 

described in [112, 113]. 

 

Figure 5.3: K L size cropped image (window) and m n size blocks. (Blocks are shown larger 

than 3 3 pixels for demonstration purposes) 

 

Finally, the region of interest for the pubic bone is sub-divided into small blocks of 

      size as shown in Figure 5.3.  These small blocks of pixels will be used for the 

classification process instead of using individual pixels to increase computational efficiency and 

to enable the use of texture features for classification. 
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5.3. Segmentation Stage 

5.3.1. Feature Extraction 

For classification, the main issue in the feature extraction task is to identify suitable 

features that characterize different patterns accurately. Since MRI has low-level contrast 

intensity, gray level based features are not sufficient to provide enough information for the 

classification. Texture features have shown to enable more reliable results on MRI by providing 

relative position information of any two pixels with respect to each other [114]. Medical images 

possess different textures depending upon the area of the body considered for imaging.  

Gray level features are extracted from each block. Moreover, gray level co-occurrence 

matrix (GLCM) is used to extract the texture features suggested in Haralick [114]. GLCM 

provides information regarding the relative position of two pixels with respect to each other. 

GLCM are obtained using horizontal left to right direction. Table 5.1 shows the intensity and 

GLCM features used in this study. 

Table 5.1: Intensity and GLCM features 

Intensity Features GLCM Features 

Average gray level Autocorrelation Sum of squares 

Average contrast Contrast Sum average 

Smoothness Correlation Sum variance 

Skewness Cluster prominence Sum entropy 

Uniformity Cluster shade Difference variance 

Entropy Dissimilarity energy Difference entropy 
 Entropy Info. measure of correlation 
 Homogeneity Inverse difference normalized 
 Maximum probability  

 

After feature extraction, a two-step feature subset selection is performed. In the first step, 

irrelevant or redundant features are removed using the independent significance feature selection 

method as described by Weiss and Indurkhya [115]. This method is used to eliminate features 

with a significance level lower than 2 as calculated from the following equation:  
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|                             |

√   (     )                 

     

                (5.1) 

where       represents the i
th

 feature being measured from bone blocks,             

indicates the i
th

 feature being measured from background blocks, n1 and n2 are the 

corresponding number of blocks for bone and background, respectively. Based on the 

significance level, 12 independent significant features were identified in this study. 

In the second step of the feature subset selection process, the final set of significant 

features for training the classifier is selected using the sequential forward selection method 

measured by 10-fold cross validation. In 10-fold cross-validation, the feature set was first 

divided into k subsets of equal size. Each subset is tested on the remaining k − 1 subsets using 

mean squared error that minimizes the mean criterion value. This process continues until the 

addition of more features does not decrease the criterion any further. 

Proposed Two-Step Feature Subset Selection Algorithm: 

                                       

                                          

                                                              
                                                 
                           
                            

                                    

                        (      )         

                                          (     )   

                     

       
                                                     

 

5.3.2. Block Classification 

The classification of the image blocks involves two steps: construction of the classifier 

and prediction. In the first step, a classifier structure is constructed based on the training data set 

using support vector machines (SVMs). The implementation of SVMs is designed to increase the 



60 

speed of the classification process by classifying blocks of pixels instead of classifying each 

pixel. The SVMs was trained using the “kernel trick” which allows the algorithm to fit the 

maximum-margin hyper plane in a transformed feature space to provide for non-linear decision 

surface. The training vectors                   are nonlinearly mapped onto a high-dimensional 

feature space by         and then a linear separation is attempted in  . If   is a Hilbert 

space,   is a kernel function in the original space     that describes the inner product in  .   

                               (5.2) 

where        should satisfy Mercer’s condition that ensures that the kernel function can always 

be expressed as the dot product between two input vectors in high dimensional space. This 

transformed space of the SVM kernels is called a reproducing kernel Hilbert space. The Radial 

Basis Function kernel (RBF) was employed in the training process to construct nonlinear SVMs 

and is described as follows:   

                ||   ||       (5.3) 

There are two parameters for an RBF kernel that need to be determined:   representing 

the penalty parameter and γ representing the RBF sigma parameter. Cross validation is used to 

identify the best (    , 10-fold cross validation in this study, so that the classifier can accurately 

predict unknown data. After the blocks are trained according to the selected features, the second 

step of the segmentation process is to apply the model to test example images using the built 

SVM classifier. The anticipated outcome,        , at the end of this process is a set of two groups 

of blocks that are automatically classified as bone (white) and background (black) as shown in 

Figure 5.4 (b).  

The classification method evaluates each block independently based on the selected 

features. Since the classifier may produce errors, a relaxation stage is needed to smooth the 
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classifier’s output. Therefore, first phase morphological operations are applied to the classifier’s 

output to remove the misclassified background blocks. The filling operation is used to fill the 

small holes and gaps on the contours first and then small regions that are fewer than 100 pixels 

are removed by using the area opening operation. Image opening is done by using ‘‘disk’’ 

structuring elements of size 4 followed by “thinning”. The result,              , is shown in 

Figure 5.4 (c). 

The bone segmentation may occasionally include regions with similar intensity 

characteristics such as soft tissue. These segmentation problems are called as “leaks”. Such 

occasional leak problems can take place when pubic bone and background regions (soft tissue, 

cartilage and fat regions) become joined together due to the lack of strong edges between them. 

This situation requires operations to separate the two regions as described in the following 

sections.  

 

5.3.3. Block Clustering  

A leak detection approach based on integrating SVM classification and K-means 

clustering is proposed. K-means clustering is used since it is convenient for medical images as 

the number of clusters (K) is usually known for particular regions of human anatomy [111]. The 

region of the pubic bone can be divided into four sub-regions representing the bone, cartilage, 

fat, and background. Therefore, K is selected to be 4 in this study. Since the basic K-means 

clustering is susceptible to initialization, a “bisecting K-means” algorithm presented in [116] was 

used. The idea in the bisecting K-means is to obtain K clusters by first splitting the set of all 

points into two clusters. Then, one of these clusters is selected for splitting and the process 

continues until K clusters are generated. The bisecting K-means algorithm is less dependent on 
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initialization because it performs several trial bisections and takes the one with the lowest sum of 

the squared error (SSE).  Outcome of this process is the region called         . 

 

5.3.4. Leak Detection and Registration  

After clustering the blocks, the cluster that represents the cartilage is selected to identify 

the leak as shown in Figure 5.4 (d). The clustered cartilage region           is subtracted from the 

classified region after first morphological operation               to find the leakage area 

         as seen in Figure 5.4 (e) (black region). Their complement             is shown in 

Figure 5.4 (f) (white region), which is calculated as follows:  

             (                     )          (5.4) 

where, 

             (                     )            (5.5) 

As shown in Figure 5.4 (f), the region             provides separated regions that 

include the desired bone region (largest region in the figure), and the soft tissue and fat regions. 

            is improved by incorporating prior shape information,           , as shown in 

Figure 5.4 (g).            is registered with the             by using registration with the 

similarity type transformation that contains rotation, translation and scaling as shown in Figure 

5.4 (h). The initialization problem was eliminated by using the largest component in             

that corresponds to the bone structure. Any small regions surrounding the bone structure were 

removed by morphological opening operations in the previous steps. The mean square error 

metric was used as a similarity metric and step gradient descent approach was used for 

minimization. This results in the initial segmentation region         .  



63 

              (           
         
⇔                  )           (5.6) 

Then, as shown in Figure 5.4 (i), the correction step involves adding the cartilage region 

         to          to obtain the preliminary region of the pubic bone                 . The current 

procedure for identifying the pelvic floor reference points on MRI is based on the pubic bone and 

its cartilage (bone+cartilage). For this reason, the goal is to identify both the pubic bone and its 

cartilage to determine the corresponding reference points automatically. In the work, k-mean 

clustering is employed to find the cartilage region and the texture-based classification provides 

the bone structure region. Therefore, the two regions are combined to obtain the full 

bone+cartilage region to find the reference points for assessing POP. Finally, a second 

registration is performed between the corrected image,                  and the mean shape, 

          , with the same similarity type transformation. At the end of this process, the final 

segmentation of the pubic bone is obtained,       , as shown in Figure 5.4 (j). Then, the 

boundary of the pubic bone is extracted as shown Figure 5.4 (k). This will be used to identify the 

reference points using the morphological skeleton operation as indicated in Figure 5.4 (l). 

            (           
         
⇔                       )              (5.7) 

 

5.4. Point Identification Stage 

Once segmentation is performed, the reference points located in the pubic bone can be 

found using the morphological skeleton operation. This operation removes pixels on the 

boundaries of the pubic bone and provides at least three branches of the skeleton but does not 

allow the object to break apart. The remaining pixels constitute the image skeleton, whose 

extreme points indicate the reference points 1, 2 and 3.  
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On the other hand, points in the region of sacral promontory and coccyx are defined as 

corner points for which there are two dominant and different edge directions on the local 

neighborhood of the point. For this reason, these points are detected using corner detection 

algorithms. In the previous work [113], the Harris corner detection algorithm was adapted to 

detect the bony joints as shown in Figure 5.5. The Harris corner detector [117] is based on the 

local auto-correlation function of a signal that measures the local changes of the signal with 

patches shifted by a small amount in different directions. 

 

Figure 5.4: Proposed segmentation process. (a) Ground truth image, (b) Block classification 

(      )    with bone (white) and background (black), (c) First phase classified image with 

morphological operations (            ), (d) Clustering            with cartilage (white) and 

background (black), (e) Leakage region detected (black area), (f)            ,  (g) Mean shape 

(          ), (h) First registration between f and g (        ), (i) Union of d and h 

(                ), (j) Final registration between g and i (       ), (k) Final segmentation of pubic 

bone, (l) Morphological skeleton of final segmentation 



65 

 

Figure 5.5: Reference bony joints for sacral promontory and coccyx 

 

Figure 5.6: Pelvic floor reference points and lines generated by the proposed method 

 

Once the reference points are identified, they are moved onto the original MR image as 

seen in Figure 5.6. These points are then connected using lines that represent the reference lines 

normally used to characterize the presence and severity of pelvic organ prolapse: PCL and MPL. 

The identified points are also used to determine other reference lines such as Diagonal, Obstetric 

and True Conjugate lines, which could possibly be used for the diagnosis of different types of 

POP.  
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5.5. Results 

The validation of the proposed method was performed on a representative clinical data 

set of 25 selected dynamic MRI for this study. The database was divided into a training set of 10 

randomly selected images and a testing set composed of the remaining 15 images. The dynamic 

MRI of each patient consists of 20 image sequences. The presented method was implemented 

using Matlab 2012b on a workstation with 3.00GHz dual processors and 2 GB RAM. 

 

5.5.1. Segmentation Accuracy 

The performance of the proposed segmentation method was measured by quantifying the 

region overlap between the manual and automated segmentations using the Dice Similarity Index 

(DSI), where 

       
|      |

|    | | |
          (5.8) 

          indicate the manual and automatic segmented region, respectively.  

In addition to the dice similarity index, two additional measures were used: correct rate 

and area error measure (AEM).  Correct rate is measured by quantifying correctly assigned 

pixels as bone over assigned pixels. Area error measure is defined as the percentage of area error 

for the evaluated segmentation area: 

                         
|      |

|    |
               (5.9) 

The Hausdorff distance [118] is calculated between the contours of the manually 

segmented pubic bone and the segmentation from the proposed algorithm. The mean absolute 

distance (MAD) is also determined based on the average distance between the automatic 

segmentation and the ground truth.  
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5.5.2. Bone Segmentation  

First, the segmentation results from the proposed method vs. results from the texture-

based classification method were compared only as shown in Figure 5.7. Each method is tested 

against the manually segmented region identified by experts. The texture-based classification 

method is approximately 6 seconds faster than the proposed method. However, the segmentation 

accuracy of the texture-based classification is very low with a DSI and correct rate of 52% and 

79%, respectively. It was also observed that the segmented regions obtained with the 

classification method only resulted in over-segmentation in most of the cases. The area error 

measure should be 0 for a perfect segmentation. The classification method resulted in more 

negative values indicating that the segmented regions are larger than the manually segmented 

regions. On the other hand, the proposed method with the leak detection algorithm provides 

higher accuracy for all cases with a dice similarity metric above 92% for thirteen cases and a 

correct rate metric above 95% for all cases.  

 
(a)  

 
Figure 5.7:  Performance comparison of the proposed method and texture-based block 

classification only for the average over the 20 image sequences per patient. (a) Dice similarity 

index, (b) Correct rate, (c) Area error measure, (d) Computation time 
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(b)  

 
(c) 

Figure 5.7 (Continued) 
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(d) 

Figure 5.7 (Continued) 

 

 

Table 5.2: Significance of each variable in the performance of the segmentation processes 

Region growing Absolute threshold level to be included: 10 and maximum distance 

to the initial position: 20 

Region based active contour Alpha: 0.2 

Maximum iteration: 250 

Graph-cut: 10 seed for background and 10 seeds for foreground 
Large constant, K=10 

Similarity variance, sigma=1 

Terminal Constant, lambda=10^12 

Similarity Constant, c=10^8 

Distance regularized level set Time step=1 

Coefficient of the distance regularization, mu=0.2/time 

step   

Inner iteration =10 

Outer iteration =30 

Coefficient of the weighted length, lambda=5 

Coefficient of the weighted area, alpha=-3 

Parameter that specifies the width epsilon=1.5 

 

In order to verify the quality of the proposed segmentation technique, the method was 

compared with four commonly used segmentation methods in medical image segmentation: 
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region growing [119], region based active contour [120], graph-cut [121], and distance 

regularized level set [122].  In this study, the Taguchi method [123]  is used to analyze the 

significance of each variable in the performance of the segmentation processes.  The parameters 

used are given in Table 5.2. 

As shown in Figure 5.8 (d), the region growing method is the fastest segmentation 

method; however, its segmentation accuracy is the lowest among the methods, with 

approximately 30% in DSI and 80% in correct rate. It can also be observed that the segmented 

regions from the region growing method are smaller than the manually segmented regions for all 

cases. The graph-cut and distance regularized level set methods provide better results than the 

region growing and region based active contour for all cases in terms of DSI and correct rate. 

However, both methods have drawbacks such as longer computational time, initialization 

sensitivity, and the need to select the best parameters. The area error measure rates for these 

methods are also very low compared to the region growing and active contour methods.  

The proposed method provides the highest accuracy with above 92% in DSI for thirteen 

cases and above 95% in correct rate metric for all cases. In terms of computational time, the 

method is the second fastest method. Results also show that the proposed method only has one 

case with over-segmentation but with very low error rate. Only two cases provided a smaller 

region when compared with the manually segmented region. These results demonstrate that the 

proposed segmentation technique achieves higher segmentation accuracy and performance 

compared to other segmentation methods. 
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(a) 

 

 
(b) 

 

Figure 5.8: Performance comparison of the proposed method with other commonly used 

segmentation methods. (a) Dice similarity index, (b) Correct rate, (c) Area error measure, (d) 
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(c)  

 

(d) 

Figure 5.8 (Continued) 
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5.5.3. Reference Points Accuracy 

The proposed segmentation mechanism was applied to identify the reference points on 

the pelvic bone and vertebra on the testing images. The accuracy of the point identification is 

measured by comparing them with the average location of the manually identified points. Then, 

the point accuracy is measured by                 
  

 ⁄  where    is the number of cases where 

the points are within the distance range  , and T is the total number of cases in the testing set. 

The Hausdorff distance was also calculated between the reference points identified by the 

proposed method and the reference points identified manually by experts. 

 

5.5.4. Identification of the Reference Points 

The proposed method was used to identify the pelvic bone and its reference points (p1, 

p2, and p3) and the reference points on the vertebra (p4 and p5) on the testing images. The point 

locations identified by the proposed method was compared with the points identified manually 

by three experts over three iterations. The average of the three iterations is calculated to find the 

experts’ average point location. Table 5.3 shows the standard deviation of each point identified 

by the experts. The computation time of the manual point identification process for each patient 

that has 20 image sequences was about 10 minutes. As shown in the table, each point has a 

standard deviation range for all the fifteen images. Inter-observer reliability was also assessed by 

calculating the intra-class correlation coefficient (ICC) for all five reference points. An ICC >0.9 

indicates excellent agreement, between 0.9 and 0.6 good agreement, between 0.6 and 0.4 

moderate agreement, and <0.4 poor agreement. The computation time of the proposed point 

identification method was about 4.5 minutes 
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Table 5.3: Min and max standard deviation of reference points identified over all trials on 15 

patients performed by 3 experts 

Point Standard deviation (in mm) 

by manual identification 

ICC                 CI 95% 

 x y   

p1 [0.31 – 4.52] [0.22 – 4.37] 0.95 (0.94-0.96) 

p2 [0.13 – 3.08] [0.37 – 3.64] 0.98 (0.97-0.99) 

p3 [0.63 – 6.47] [0.83 – 4.12] 0.98 (0.96-0.98) 

p4 [2.01 – 21.04] [4.37 – 26.87] 0.81 (0.79-0.94) 

p5 [0.38 – 27.19] [1.01 – 20.12] 0.97 (0.94-0.98) 

 

Table 5.4: Hausdorff distance and mean distance between point location identified by the 

proposed method and manual ground truth point location 

Point Hausdorff distance Mean distance 

p1 4.12 1.10 

p2 10.19 2.13 

p3 6.08 1.93 

p4 14.42 4.00 

p5 8.54 2.40 

 

Table 5.5: Euclidian distance between points identified manually and using proposed model for 

15 patients 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 

p1 1.5 1.3 3.3 3.2 3.9 6.9 6.8 2.1 5.4 3.7 0.9 6.9 3.5 5.2 0.9 

p2 7.0 16.3 3.8 3.0 1.9 3.2 3.4 5.6 4.7 14.9 8.2 4.1 1.4 1.2 0.9 

p3 5.6 3.9 3.0 2.3 11.2 9.6 5.3 9.9 7.5 3.0 2.4 3.0 3.9 2.6 2.7 

p4 14.8 24.3 7.6 5.3 5.3 9.8 12.3 2.9 5.7 6.4 9.4 17.4 8.8 1.1 3.8 

p5 8.7 10.7 9.6 6.5 4.1 7.3 1.1 3.3 3.6 5.8 2.8 4.2 5.7 1.8 7.0 

 

Table 5.4 provides the Hausdorff distance and the mean distance between the point 

locations identified by the proposed method and experts. This can be confirmed from Table 5.2 

where points 4 and 5 have the highest standard deviation indicating that these two points are 

located with the highest variability among experts.  Although the manual point identification 

procedure has high standard deviation indicating that each expert identified points in different 

locations, the accuracy of the automatically identified points by the proposed method was 

compared to the average location of the manually identified points. To do that, the Euclidian 



75 

distance is calculated between the manually and automatically identified points as shown in 

Table 5.5. 

Then, the accuracy of the automated points is established based on the distance range as 

shown in Table 5.6. For instance, in the table, the accuracy of point 1 is shown as 67% for [0-5] 

mm distance range. This means that in ten cases from a total of fifteen cases, the distance 

between the automatically identified point and the manually identified point is between 0 and 5 

mm. The table shows that the cumulative accuracy increases as the distance range increases. As 

seen in the table, the lowest accuracy obtained is related to points 4 and 5. Based on the results 

shown in Table 5.4, the proposed method is able to accurately identify all the reference points 

within the [0-20] mm distance range. This range is considered by experts as a practically 

acceptable accuracy level. 

 

Table 5.6: Reference point accuracy based on different distance ranges 

 Distance range in mm 

Point [0-5] [0-10] [0-15] [0-20] 

p1 67% 100% 100% 100% 

p2 67% 87% 94% 100% 

p3 60% 94% 100% 100% 

p4 20% 74% 87% 94% 

p5 47% 94% 100% 100% 

 

5.6. Conclusion 

In this chapter, a scheme to automatically identify the reference points for evaluation of 

pelvic organ prolapse (POP) using MRI has been presented. The points located on the pubic bone 

were identified by segmenting the pubic bone and then identifying its reference points. The 

segmentation of bones on MRI is a challenging task due to weak boundaries and inhomogeneity. 

To overcome this problem, a multi-stage segmentation mechanism using texture-based 
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classification, leak detection, and prior shape information is presented.  The reference points of 

the pubic bone were identified using morphological skeleton operation whereas the points 

located on the vertebra were identified by intersecting point detection methods. Experiments 

demonstrate that the presented method provides more accurate and faster segmented regions 

compared to other commonly used segmentation methods. The point identification process is 

also accurate, faster and consistent compared with the process of manual point identification by 

experts. The presented method aims to overcome the current limitations of manually identifying 

points and measurements on MRI and to enable high throughput image analysis.   
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Chapter 6 

Prediction Model for the Diagnosis of POP 

This chapter presents a prediction model using support vector machines with correlation 

analysis based feature selection to improve pelvic organ prolapse classification. The image based 

features extracted through the techniques presented in Chapters 4 and 5 will be tested with 

clinical information to build a prediction model for pelvic organ prolapse diagnosis. 

 

6.1. Overview of the Prediction Model 

Previous studies that analyze the correlation between clinical and MRI measurements for 

POP diagnosis have been limited. Moreover, these studies used few features (variables) based on 

commonly used MRI reference lines such as PCL and MPL. Although previous studies have 

found a good correlation between clinical and MRI measurements for anterior and apical 

prolapse, no correlation has been found for posterior prolapse. Therefore, there is a major need to 

investigate the correlation between clinical and MRI-based features as well as to test new MRI-

based features that can potentially improve the prediction of prolapse, particularly for posterior 

prolapse.  

The main objective of this research is to build a prediction model using Support Vector 

Machines (SVM) that analyzes clinical and new MRI-based features to improve the diagnosis of 

POP. The proposed MRI-based features were extracted using previously developed automated 

pelvic floor measurement model [113, 124]. The significant features, both clinical and MRI 

based are selected using correlation analysis with 95% significance level. The proposed 
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prediction model will allow the use of imaging technology to predict the development of POP in 

predisposed patients, and possibly lead to the development of preventive strategies. Additionally, 

it is expected that this quantitative prediction model will enable more accurate diagnosis of POP.  

 

6.2. Material and Methods 

6.2.1. Data Acquisition   

This retrospective study used the data of 207 women with different types and stages of 

pelvic organ prolapse from the database of the University of South Florida Division of Female 

Pelvic Medicine and Reconstructive Surgery within the Department of Obstetrics and 

Gynecology. The study was approved by the Institutional Review Board at the University of 

South Florida. The data collected from the database for each patient consists of demographic 

information, clinical history, POP-Q outcomes, and dynamic MRI-based features (see 

APPENDIX). Each patient had been assigned to particular types of prolapse (anterior, apical, and 

posterior), and their corresponding stage of prolapse (stage 0 through stage 4) using the POP-Q 

system. It was ensured that only patients with complete data were selected for this study. 

The characteristics of the studied group are shown in Table 6.1. Variables include age, 

body mass index, parity, gravidity, number of vaginal deliveries, and number of caesarean 

deliveries. As shown in the table, 28% of the patients were between 56-65 years old, 25% of 

them were between 66-75 years old, and 23% of patients were between 46-55 years old. Only 

2% of the patients were younger than 35 years old. Table 6.2 shows the distribution of prolapse 

cases with their corresponding stages for the studied group. For anterior and posterior prolapse, 

the majority of the patients are in the stages 2 and 3. On the other hand, the majority of the 
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patients with apical prolapse are in the stages 0 and 1. In this study, prolapse cases were defined 

as those with stage 2, 3, or 4 whereas controls were defined as those with stage 0 or 1. 

  

Table 6.1: Patient characteristics 
  Control 

(Stages 0-1) 

Prolapse 

(Stages 2-3-4) 

Variables Anterior 

(n=57) 

Apical 

(n=151) 

Posterior 

(n=58) 

Anterior 

(n=150) 

Apical 

(n=56) 

Posterior 

(n=149) 

Age 57.5±11.3 57.1±12.2 58.9±12.0 58.2±11.9 60.6±10.0 57.7±11.7 

Body mass index 

(kg/m2) 

27.5±6.1 27.8±5.7 26.0±6.2 27.4±5.6 26.6±5.8 28.0±5.5 

Parity 2.5±1.3 2.6±1.3 2.5±1.2 2.6±1.3 2.6±1.4 2.7±1.4 

Gravidity 3.3±1.8 3.2±1.7 3.1±1.8 3.2±1.7 3.3±1.8 3.3±1.7 

Number of vaginal 

deliveries 

2.4±1.4 2.5±1.3 2.3±1.2 2.5±1.3 2.6±1.4 2.6±1.4 

Number of caesarean 

deliveries 

0.2±0.5 0.1±0.5 0.2±0.5 0.1±0.4 0.0±0.2 0.1±0.4 

 

Table 6.2: Distribution of prolapse cases with their corresponding stages for the studied group 
Stage Anterior Prolapse Apical Prolapse Posterior Prolapse 

0 2% (4) 10% (20) 2% (4) 

1 26% (53) 63% (131) 26% (53) 

2 24% (48) 6% (11) 38% (80) 

3 39% (83) 12% (22) 27% (56) 

4 9% (19) 9% (19) 7% (14) 

TOTAL 100% (207) 100% (207) 100% (207) 

 

The dynamic MRI data was de-identified and stored on a secure research computer for 

analysis. MR imaging was performed on a 3-Tesla GE system (General Electric Company, GE 

Healthcare, Buckinghamshire, UK) using an 8-channel torso phased-array coil with the patient in 

a modified dorsal lithotomy position. Prior to imaging, 60ml of ultrasound gel was placed in the 

rectum for improved visualization. Dynamic imaging was performed in a multiphase, single-slice 

sequence. The images were acquired in the midsagittal plane for 23-27 seconds, using a T2-

weighted single-shot fast-spin echo sequence. Patients were coached, prior to imaging, on 
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performance of an adequate valsalva maneuver. The image data has been preprocessed and de-

identified. 

After acquiring the images, new and commonly used MRI-based image features were 

extracted from the images using previously developed automated pelvic floor measurement 

model (15-17). Previous MRI studies have mostly used PCL and MPL lines for the radiological 

assessment of POP. In this study, additional reference lines and angles are introduced and 

analyzed: true conjugate line (TCL), obstetric conjugate line (OCL), and diagonal conjugate line 

(DCL), angle between diagonal conjugate line and PCL, and angle between obstetric conjugate 

line and MPL as shown in Figure 6.1(b). These reference lines may provide additional insight on 

the correlation between MRI-based measurements and clinical information due to differences in 

pelvic configuration.  

The following sections provide the description for extracting the MRI-based features 

using the proposed model, and for building the prediction model with clinical and MRI-based 

features for POP diagnosis. 

 

6.2.2. Methods 

6.2.2.1. Automatic Extraction of MRI-based Features 

Prior to MRI-based feature extraction, MR images were pre-processed to reduce image 

noise, and to improve image contrast. Image noise reduction was performed by applying a 

convolution operation with a Gaussian smoothing kernel. Then, contrast stretching (image 

normalization) was performed to provide better intensity spread of pixels and to adjust de-noised 

images to gain better contrast. Finally, the images were calibrated to enable the gathering of real 

measurement values.  
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The proposed reference lines and angles were automatically extracted from MRI using 

previously developed pelvic floor measurement model. The model automatically identifies 

multiple bone structures on MRI and then extracts MRI-based features (lines, measurements, and 

angles) [113, 124].  

 

(a)                                              (b) 

Figure 6.1:  Region of interests and proposed MRI-based features. (a) Regions of interest, (b) 

Current and proposed MRI-based features 

 

6.2.2.2. Prediction Model 

A prediction model was built to analyze clinical and MRI-based features to differentiate 

patients with and without prolapse (anterior, apical, or posterior). The model is a two-class 

prediction model trained using SVM with significant feature subset selection process. SVM was 

selected as it has shown to achieve the highest classification accuracy for medical diagnosis 

compared to other classification techniques [113, 124]. 

The significant features, both clinical and MRI based were selected using correlation 

analysis. Pearson’s correlation coefficient is used to measure the linear association between 

variables and is defined as follows:  

          
                

                                             
  

   

     
   (6.1) 
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After selecting the best descriptive set of features, a classifier for each type of prolapse 

using SVM is built. The classification involves two steps: construction of the classifier and 

prediction. The dataset was divided into a training dataset and testing dataset for the prediction 

model. In the first step, a classifier structure is constructed based on the training data set using 

SVMs. SVMs is trained using the “kernel trick”, which allows the algorithm to fit the maximum 

margin hyperplane in a transformed feature space to provide for non-linear decision surface. The 

training vectors                  are nonlinearly mapped onto a high-dimensional feature space 

by          and then a linear separation is attempted in   . If   is a Hilbert space,   is a 

kernel function in the original space     that describes the inner product in  .   

                               (6.2) 

where        should satisfy Mercer’s condition that ensures that the kernel function can always 

be expressed as the dot product between two input vectors in high dimensional space. This 

transformed space of the SVM kernels is called a reproducing kernel Hilbert space. The Radial 

Basis Function kernel (RBF) was employed in the training process to construct nonlinear SVMs 

and is described as follows:   

                ||   ||       (6.3) 

There are two parameters for an RBF kernel that need to be determined: C representing 

the penalty parameter and γ representing the RBF sigma parameter. 10-fold cross validation is 

used in this study to identify the best (C,γ) so that the classifier can accurately predict unknown 

data. After the cases are trained according to the selected features, the second step of the 

prediction model is to apply the model to test cases in the testing dataset using the built SVM 

classifier. The anticipated outcome at the end of this process is a set of two groups of cases that 

are automatically classified as prolapse group and control group. 
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6.3.  Results 

A total of sixty-one (61) clinical and MRI-based features were collected and analyzed in 

this study. For each type of POP, the significant features were identified using correlation 

coefficient (r) at 95% significant level. As shown in Tables 6.3-6.5, the set of significant features 

vary based on the type of POP. For instance, body mass index< 20 (r =-0.1879; p =0.0067) was 

found to be significant for posterior prolapse but not for anterior or apical prolapse. Ethnicity 

(Caucasian)    (r =-0.2002; p =0.0038) was found to have an impact on apical prolapse but not on 

anterior or posterior prolapse. As shown in the tables, the proposed MRI-based features were 

also found to be significant in the prediction of the different types of prolapse. H-Line anterior (r 

=0.4339;      p =0.0003), H-Line apical (r =0.3489; p=0.0021), and the angle between TCL and 

MPL (r =0.1337; p =0.0154) have an impact in the assessment of anterior prolapse whereas H-

Line posterior (r =0.2355; p =0.006) and the angle between DCL and PCL (r =0.1239; p =0.014) 

were found to impact the prediction of posterior prolapse. Only H-Line anterior (r =0.2654;                 

p =0.0011) and H-Line apical (r =0.3775; p =0.0002) were found to be significant MRI-based 

features in the assessment of apical prolapse. 

 

Table 6.3: Significant features for anterior prolapse 
Clinical features: correlation coefficient (r) p value 

# of Vaginal delivery= 2 0.1606 0.0208 

# of Cesarean delivery= 2 -0.1492 0.0320 

Hysterectomy-Abdominal incision  -0.1995 0.0040 

Hysterectomy-Laparoscopic   -0.1432 0.0395 

Hysterectomy-Vaginal  -0.1730 0.0127 

Sacrocolpopexy -0.2692 0.0087 

MRI-based features:   

H-Line Anterior 0.4339 0.0003 

H-Line Apical 0.3489 0.0021 

Angle between TCL and MPL 0.1337 0.0154 
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Table 6.4: Significant features for apical prolapse 
Clinical features: correlation coefficient (r) p value 

Ethnicity-Caucasian -0.2002 0.0038 

Hysterectomy-Abdominal incision -0.2155 0.0018 

Rectocele (posterior) repair-Graft augmentation 0.1515 0.0293 

MRI-based features:   

H-Line Anterior 0.2654 0.0011 

H-Line Apical 0.3775 0.0002 

 

Table 6.5: Significant features for posterior prolapse 
Clinical features: correlation coefficient (r) p value 

35<=Age<45 0.1715 0.0135 

BMI<20 -0.1879 0.0067 

 Sacrocolpopexy -0.1539 0.0268 

Rectocele (posterior) repair_Traditional -0.1510 0.0298 

MRI-based features:   

H-Line Posterior 0.2355 0.006 

Angle between DCL and PCL 0.1239 0.014 

 

Table 6.6 shows the distribution of cases for the training and testing datasets for each 

type of prolapse. Then, Table 6.7 shows the distribution of prolapse stages within the testing and 

training datasets per type of prolapse. The prediction model was trained using SVM. For anterior 

prolapse, the model was trained using the data from 138 cases (100 prolapse cases, 38 controls). 

After training the classifier based on the selected clinical and MRI-based features, the testing 

process was performed on 69 cases (50 prolapse cases, 19 controls).  Similarly, the prediction 

model was trained for apical prolapse with 138 cases (37 prolapse cases, 101 controls) and the 

testing process was performed with 69 cases (19 prolapse cases, 50 controls). Finally, for 

posterior prolapse, the model was trained with 136 cases (98 prolapse cases, 38 controls) and 

tested on 71 cases (51 prolapse cases, 20 controls). 

 

Table 6.6: The distribution of cases for the training and testing datasets for each type of prolapse 
Groups Training Dataset Testing Dataset TOTAL 

Prolapse    

Anterior 100 50 150 

Apical 37 19 56 

Posterior 98 51 149 
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Table 6.6 (Continued) 
Control    

Anterior 38 19 57 

Apical 101 50 151 

Posterior 38 20 58 

 

Table 6.7: The distribution of prolapse stages within the testing and training datasets 

 

The prediction model is validated using correct rate, which is the percentage of cases 

correctly classified. Table 6.8 provides the accuracy comparison between the prediction model 

that uses only clinical features, prediction model that uses only MRI-based features, and the 

prediction model that uses both clinical and new MRI-based features. As can be seen in the table, 

incorporating the newly proposed MRI-based features increases the prediction accuracy of all 

types of prolapse. This improvement is especially noticeable on posterior prolapse where the 

incorporation of the new MRI-based features increased the correct rate from 47% to 80%. The 

significant clinical features for posterior prolapse were found to be: age (35<=Age<45) (r 

=0.1715; p =0.0135), body mass index <20 kg/m2 (r =-0.1879; p =0.0067), rectocele (posterior) 

repair with traditional method (r =-0.1510; p =0.0298), and sacrocolpopexy (r =-0.1539; p 

=0.0268). The significant MRI-based features for posterior prolapse are H-Line (r =0.2654; p 

=0.00114) and the angle between DCL and PCL (r =0.1239; p =0.014).  

For anterior prolapse, the model correctly predicted 91% of the cases using clinical and 

MRI-based features. Clinical features found to be significant include:  # of Vaginal delivery= 

2(r=0.1606; p=0.0208), # of Cesarean delivery=2 (r=-0.1492; p=0.0320), Hysterectomy-

Abdominal incision (r=-0.1995; p=0.0040), Hysterectomy-Laparoscopic (r=-0.1432; p=0.0395), 

 Training Dataset Testing Dataset  

 CONTROL PROLAPSE CONTROL PROLAPSE 

Type of 

prolapse 

Stage 

0 

Stage 

1 

Stage 

2 

Stage 

3 

Stage 

4 

Stage 

0 

Stage 

1 

Stage 

2 

Stage 

3 

Stage 

4 

 

Anterior 2 36 32 56 12 2 17 16 28 6 207 

Apical 13 88 9 16 12 7 43 4 9 6 207 

Posterior 2 36 52 36 10 2 18 28 18 5 207 
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Hysterectomy-Vaginal (r=-0.1730; p=0.0127), Sacrocolpopexy (r=-0.2692; p=0.0087) whereas 

MRI-based features include H-Line anterior (r =0.4339; p =0.0003), H-Line apical (r =0.3489; 

p=0.0021), and the angle between TCL and MPL (r =0.1337; p =0.0154).  Finally, for apical 

prolapse, 89% of the cases were correctly predicted using both clinical and MRI-based features. 

Significant clinical features for apical prolapse were found to be Ethnicity-Caucasian (r=-0.2002; 

p=0.0038), Hysterectomy-Abdominal incision (r=-0.2155; p=0.0018), and Rectocele (posterior) 

repair-Graft augmentation (r=0.1515; p=0.0293). H-Line anterior (r =0.2654; p =0.0011) and H-

Line apical (r =0.3775; p =0.0002) were found to be significant MRI-based features for apical 

prolapse. Results show that the proposed prediction model can predict cases with anterior 

prolapse with very high accuracy (> 0.90), and apical and posterior prolapse with good accuracy 

(0.80 - 0.90). 

 

Table 6.8: Accuracy of the proposed prediction model for different types of prolapse and 

different types of features 
Type of 

prolapse 

Correct rate 

(ONLY clinical 

features) 

Correct rate 

(ONLY MRI based 

features) 

Correct rate 

(BOTH clinical and MRI 

based features) 

Anterior 82 56 91 

Apical 83 53 89 

Posterior 47 52 80 

 

6.4. Conclusion 

In this study, we presented a prediction model that fuses clinical and new MRI-based 

features to improve the diagnosis of POP. The prediction model uses Support Vector Machines 

and selects significant features using correlation analysis at 95% significant level. Results 

demonstrate that our prediction model using both clinical and new MRI-based features achieves 

higher classification accuracy compared to using only clinical features. Our analysis showed that 

two newly proposed MRI-based features: the angle between TCL and MPL, and the angle 
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between DCL and PCL have a significant impact in the prediction of anterior and posterior 

prolapse, respectively. For posterior prolapse, the consideration of the new MRI-based features 

significantly increased the prediction accuracy from 47% to 80%.   
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Chapter 7 

Discussion and Future Work 

In this chapter, the techniques developed in this research and the findings are 

summarized. Future research directions are proposed. 

 

7.1. Discussion 

In this dissertation, a fully automated bone localization and segmentation algorithm to 

predict pelvic organ prolapse is presented. This model can be applied to pelvic floor structures on 

MRI in the presence of image inhomogeneity and noise. In general, the presented methods offer 

the following: 

An automated bone localization model that integrates local and global information to 

locate the bounding boxes of bone structures on MRI using support vector machines and non-

linear regression is presented in Chapter 4. The main contribution of this scheme is a new 

parameterization paradigm through a non-linear regression approach for the multiple-bone 

localization problem on MRI. The location of the pubic bone is determined based on the relative 

location with respect to the pelvic organs and using a support vector machine based classification 

with texture features. The coccyx and sacral promontory are located using a non-linear 

regression model. Results demonstrate that the proposed scheme can accurately and consistently 

find the locations of the pubic bone, coccyx, and sacral promontory on MRI. Center error 

between automatically and manually identified pubic bone regions has been found to be lower 

than those for coccyx and sacral promontory. The reason is that local information of the pubic 



89 

bone is incorporated into the localization process along with the global information. The 

advantages of the proposed method are that is robust and fully automated. It uses human 

anatomic information, such as relative positions of the anatomical structures to find the bone 

structures. Images of subjects with unusual health conditions may affect the effectiveness of the 

proposed method in finding the bone structures. 

A new segmentation approach that provides leak detection for automating pelvic bone 

point identification on MRI is also presented in Chapter 5. The points located on the pubic bone 

are identified by segmenting the pubic bone and then identifying its reference points. The 

segmentation of bones on MRI is a challenging task due to weak boundaries and inhomogeneity. 

To overcome this problem, a multi-stage segmentation mechanism using texture-based 

classification, leak detection, and prior shape information is presented.  The reference points of 

the pubic bone were identified using morphological skeleton operation whereas the points 

located on the vertebra are identified by intersecting point detection methods. Experiments 

demonstrate that the presented method provides more accurate and faster segmented regions 

compared to other commonly used segmentation methods. The point identification process is 

also accurate, faster and consistent compared with the process of manual point identification by 

experts. The presented method aims to overcome the current limitations of manually identifying 

points and measurements on MRI and to enable high throughput image analysis.  

In Chapter 6, a model is designed to improve the diagnosis of POP by building a 

prediction model using SVM and incorporating new MRI-based features with clinical features. 

Results show that the proposed prediction model is able to accurately classify the testing cases 

into prolapse or control group. Prediction accuracies for anterior and apical prolapse are higher 

than posterior prolapse since the correlation between features and POP-Q information is lower 
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for posterior prolapse. The analysis showed that the newly proposed MRI-based features have a 

significant impact in the prediction of prolapse cases, particularly for posterior prolapse. These 

features are the angle between TCL and MPL for predicting anterior prolapse while the angle 

between DCL and PCL for predicting posterior prolapse. One of the strengths of this study is the 

large number of cases in the studied group. A total of 207 women with different types and stages 

of pelvic organ prolapse were analyzed in this study. Using a large number of cases for training 

the model provides a more powerful prediction model. Other strength of the study is that these 

cases are selected by a third party so there was no bias on the selection of the studied group. 

Finally, the proposed prediction model proposes and uses new MRI-based features. Previous 

studies have investigated the correlation between clinical features with PCL and MPL. However, 

correlation of these features with the clinical features was limited on posterior prolapse. 

Incorporating the new MRI-based features increases the prediction accuracy of posterior 

prolapse to 80% compared with using clinical features only (47%). 

 

7.2. Future Work 

Even though the proposed methods achieve good results for bone localization and 

segmentation on MRI, pelvic floor measurement identification, and prediction of pelvic organ 

prolapse, there is still room to improve the performance of these models.  

For the automated bone localization model, the results demonstrate that the proposed 

scheme can accurately find the location of the pubic bone. However, the accuracy for both sacral 

promontory and coccyx are lower than for the pubic bone. The reason is that both local and 

global information is used to find the pubic bone region, while only global information was used 

for sacral promontory and coccyx. There is a need for investigating the use of local information 
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to improve the localization of the sacral promontory and coccyx regions. This is expected to 

improve and facilitate the accuracy of the detected regions. 

Finally, although the proposed prediction model significantly increases the prediction 

accuracy of posterior prolapse to 80% compared with using clinical features only (47%), the 

incorporation of additional MRI-based features may increase the prediction accuracy. In the 

future, these MRI-based features will be investigated. Another item that will be considered is a 

prediction model for multiple POP stages. The current SVM based prediction model was 

designed for two-class prediction (prolapse or no prolapse). Future work will address the 

classification of cases into different stages of prolapse (stage 0 to stage 4) to provide more 

detailed diagnosis of POP. The study can also be further extended by investigating how findings 

of the proposed prediction model are correlated with post-operative information.  
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Appendix A Data Acquisition Form 

 

Table A.1: Data acquisition form 

Clinical features: Clinical sub-features Feature # 

Age   

 Age<35 1 

 35≤Age<45 2 

 45≤Age<55 3 

 55≤Age<65 4 

 65≤Age<75 5 

 75≤Age 6 

BMI(kg/m2)   

 BMI<20 7 

 20≤BMI<25 8 

 25≤BMI<30 9 

 30≤BMI<35 10 

 35≤BMI<40 11 

 40≤BMI 12 

Parity   

 0 13 

 1 14 

 2 15 

 3 16 

 4 17 

 5 18 

 5≤ 19 

Gravida   

 0 20 

 1 21 

 2 22 

 3 23 

 4 24 

 5≤ 25 

   

Vaginal delivery   

 0 26 

 1 27 

 2 28 

 3 29 

 4 30 

 5 31 

 6≤ 32 

Caesarean Delivery   

 0 33 

 1 34 
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Table A.1 (Continued) 

 2 35 

 3≤ 36 

Ethnicity   

 Caucasian 37 

 African American 38 

 Hispanic 39 

Hysterectomy   

 Abdominal Incision 40 

 Laparoscopic 41 

 Vaginal 42 

Uterosacral colpexy   

 Abdominal 43 

 Laparoscopic 44 

 Vaginal 45 

Sacrospinous ligament fixation  46 

   

Sacrocolpopexy  47 

   

Cystocele (anterior) repair   

 Traditional 48 

 Graft augmentation  49 

Rectocele (posterior) repair   

 Traditional 50 

 Graft augmentation  51 

Incontinence Surgery   

 Burch/MMK 52 

   

MRI-based features:   

H-Line  Anterior 53 

 Apical 54 

 Posterior 55 

Distance Ratio   

 PCL/MPL 56 

 TCL/MPL 57 

 OCL/MPL 58 

 DCL/MPL 59 

Angle between TCL and MPL 60 

   

 between DCL and PCL 61 
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