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ABSTRACT 

Silicon carbide (SiC) has been used for centuries as an industrial abrasive and has been 

actively researched since the 1960’s as a robust material for power electronic applications. 

Despite being the first semiconductor to emit blue light in 1907, it has only recently been 

discovered that the material has crucial properties ideal for long-term, implantable biomedical 

devices. This is due to the fact that the material offers superior biocompatibility and 

hemocompatibility while providing rigid mechanical and chemical stability. In addition, the material 

is a wide-bandgap semiconductor that can be used for optoelectronics, light delivery, and optical 

sensors, which is the focus of this dissertation research.  

In this work, we build on past accomplishments of the USF-SiC Group to develop active 

SiC-based Brain Machine Interfaces (BMIs) and develop techniques for coating other biomaterials 

with amorphous SiC (a-SiC) to improve device longevity. The work is undertaken to move the 

state of the art in in vivo biomedical devices towards long term functionality. In this document we 

also explore the use of SiC in other bio photonics work, as demonstrated by the creation of the 

first reported photosensitive capacitor in semi-insulating 4H-SiC, thus providing the mechanism 

for a simple, biocompatible, UV sensor that may be used for biomedical applications.  

Amorphous silicon carbide coatings are extremely useful in developing agile biomaterial 

strategies. We show that by improving current a-SiC technology we provide a way that SiC 

biomaterials can coexist with other materials as a biocompatible encapsulation strategy. We 

present the development of a plasma enhanced chemical vapor deposition (PECVD) a-SIC 

process and include material characterization analysis. The process has shown good adhesion 

to a wide variety of substrates and cell viability tests confirm that it is a highly biocompatible 

coating whereby it passed the strict ISO 10993 standard tests for biomaterials and biodevices.  
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In related work, we present a 64-channel microelectrode array (MEA) fabricated on a cubic 

3C-SiC polytype substrate as a preliminary step in making more complex neurological devices. 

The electrode-electrolyte system electrical impedance is studied, and the device is tested against 

the model. The system is wire-bonded and packaged to provide a full neural test bed that will be 

used in future work to compare substrate materials during long-term testing.  

Expanding on this new MEA technology, we then use 3C-SiC to develop an active, 

implantable, BMI interface. New processes were developed for the dry etching of SiC neural 

probes. The developed 7 mm long implantable devices were designed to offer four channels of 

single-unit electrical recording with concurrent optical stimulation, a combination of device 

properties that is indeed at the state-of-the-art in neural probes at this time.   

Finally, work in SiC photocapacitance is presented as it relates to radio-frequency tuning 

circuits as well as bio photonics. A planar geometry UV tunable photocapacitor is fabricated to 

demonstrate the effect of below-bandgap optical tuning. The device can be used in a number of 

applications ranging from fluorescence sensing to the tuning of antennas for low-power 

communications.  

While technology exists for a wide variety of in vivo interfaces and sensors, few active 

devices last in the implantable environment for more than a few months. If these devices are 

going to reach a long-term implant capability, use of better materials and processing strategies 

will need to be developed. Potential devices and strategies for harnessing the SiC materials family 

for this very important application are reviewed and presented in this dissertation to serve as a 

possible roadmap to the development of advanced SiC-based biomedical devices.  
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CHAPTER 1:  INTRODUCTION TO SIC FOR ADVANCED BIOLOGICAL APPLICATIONS 

 

1.1 Brain Machine Interface (BMI) Overview 

The brain-machine-interface, or BMI, acts as a bi-directional manmade bridge from neural 

tissue to the outside world. This technology is based upon a neural interface that allows for a 

direct signal pathway to the neurological system, thus allowing for signals to be routed around 

damaged tissue in addition to intercepting signals for use outside of the body. One of the most 

important applications is in the area of robotic prosthetics, whereby functionality can be restored 

after the loss of a limb such as a hand, arm, foot, leg, etc. The BMI system also includes 

electronics, either on-board or outside of the body, and the associated software and algorithms 

to restore nervous system functionality. BMI devices range from simple skin-electrodes that pick 

up neural signals non-invasively, to those implanted directly into the brain or peripheral nervous 

system. The long term goal of these interfaces is to restore lost senses, motor control, and 

cognitive ability. Impressive BMI systems have been demonstrated for short periods of time, 

typically on the order of months. However, without new biomaterials, these interface systems will 

be frozen at their current state even as advances are made in BMI electronics and algorithms. 

Clearly, a breakthrough is needed if BMI is to become a mainstream clinical therapeutic option 

for patients suffering from neurological impairment/loss of limbs. This is the focus of our work in 

this dissertation. We focus on improvements in biomaterials that can push the technology into the 

next era of long-term implantable interface.  
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Figure 1: BMI overview demonstrating the components of a BMI system. Feedback may be 
required depending on the application thus motivating the need for a bi-directional BMI system.  
 

In order to give a general overview of BMI systems one must first consider the fundamental 

biological basis for the signals that control the central nervous system (CNS) and peripheral 

nervous system (PNS), and how these signals can be analytically measured and modified though 

external stimuli. The brain consists of billions of specialized brain cells, called neurons, that 

contain voltage-gated ion channels within their membranes. These channels have a homeostatic 

state that results from a complex balance of various ions across the cell membrane. This semi-

stable state is called a resting potential and is exhibited as a membrane potential of around -70mV 

in humans. The neuron will maintain this potential until it is perturbed by an adjacent neuron’s 

depolarization or other outside force. Depolarization occurs when the membrane threshold value 

rises to approximately -55 mV in humans [1]. Within milliseconds a chain of events in the ion 

channels cause a sharp rise to a final value of +40 mV and then a slow reset over several 

milliseconds back into an attentive (resting) state. The frequency of the system can operate in a 

range of 1 Hz to over 5 KHz [2].   

The small amplitude rise of a single neuron’s action potential provides challenging 

recording conditions for BMI devices. At these small amplitudes the EM field radiated from the 

neuron is very weak and close to the electrical noise floor which is due to thermal oscillations and 
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external fields. To further complicate the problem the surrounding conductive fluid provides a 

current path further shunting the signal away from the recording electrode.  

The Electroencephalography (EEG) system is the least invasive way of recording these 

signals. This is a transdermal system that takes advantage of the alignment of similar groups of 

spatially aligned neurons providing a collective action potential beat frequency that can be 

detected outside the body. Electrodes are placed on the subjects scalp for a high-impedance 

contact to the head. EEG is the oldest form of neural recording and is currently used clinically as 

a first line of defense for diagnosing stroke, brain tumors, and other serious neurological 

problems. The technique requires extensive processing and only provides very limited spatial 

resolution. Research in the area of digital processing for EEG derived signals has been an 

increasing field of research but ultimately the resolution of the technique is very limited and only 

allows for one-way signaling.  

Taking EEG one step further, Electrocorticography (ECoG) places electrodes directly onto 

the exposed cortex during a surgical procedure (i.e., under the scalp). The technique provides a 

far superior spatial resolution to EEG as the signals are not dissipated across the skull thus 

allowing for a higher signal to noise ratio (SNR). ECoG is most commonly used as a surgical 

procedure for determining the epileptogenic zones that begin a seizure.  

 

Table 1: Comparison of direct connection BMI techniques 
 Pros Cons Reference  

Electroencepha-
lography 
(EEG) 

 No trauma to the subject 

 Electrode systems are easy to fabricate due to large 
size 

 High Signal to noise ratio of collective action potentials  

 High channel counts are easily achievable  
 

 Spatial accuracy is very 
poor 

 One-way communication  

[3] 

Electrocortico-
graphy (ECoG) 

 Good signal to noise ratio of collective action 
potentials  

 Spatial/temporal resolution better than EEG.  

 High channel counts are also easily achievable  

 Implantation requires 
surgery 

 One-way communication  

[3][4] 

Single Unit 
Recording  

 Extremely Spatially Accurate 

 Single neuron or groups of multiple neurons can be 
recorded.  

 Very high SNR 

 Insertion Trauma damages 
neural tissue  

 Short Interface Duration  

 Recordings can’t be used to 
extract any sensory 
information directly.  

[3][4] 
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Recently, new advances in implantable microelectrodes have opened the door for the 

development of implantable interfaces. The interfaces allow the brain to link to an external system 

with high levels of temporal and spatial precision. Some experiments with BMI implants in 

monkeys have recently led to exciting new demonstrations. One experiment in particular by 

Nicolelis et. al demonstrated an implantable electrode system that facilitated a direct link between 

the motor cortex of a primate to a robotic arm [5]. The primate was taught to perform the certain 

task of stacking blocks using the arm and was given a juice reward in return. 

These implantable devices, however, fall short in the area of useful device duration. 

Generally, any implant placed in the brain will fail after only a few short weeks or months due to 

gliosis and other immune system degradation [4]. Once the interface degrades the electrode is 

encapsulated and the electrical impedance of the system rises to a level unusable for recording. 

This would be unacceptable for human implantation due to the high risk of brain surgery 

procedures. Thus, new hardware is needed in this exciting field to bridge the gap to long-term 

solutions as current interface materials fall short of implantation goals.  

1.2 Electrical Neural Interface  

Although providing an exhaustive history of microelectrode arrays may be outside of the 

scope of this document, substantial progress has been made in the field. Many reviews have been 

published on the topic that include study of materials and methods on making microfabricated 

neural probes [6][7][8].  

The first team to do work in the field was at Stanford in the mid-1960s. Kensall D. Wise 

and James B. Angell were some of the first to use microcircuit fabrication techniques to solve 

many of the problems that plagued traditional wire electrodes [9]. Shortly after this, in 1971, Wise 

and Angell reported to have created an onboard integrated circuit for the buffering of signals from 

one of their microelectrodes [10]. In 1984 the University of Japan created the first fully monolithic 

brain probe with amplifiers, multiplexing, and multiple recording sites along the probe’s shank 

[11].  
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Much later, the University of Michigan became a forerunner in the field. It was here that 

the Center for Neural Communications Technology (CNCT) was founded in 1994 [12]. The center 

developed the first implantable boron-doped silicon probes for use in the brain. This was a large 

leap forward from the then currently used microwires and glass pipettes because it offered high 

channel density multichannel recording. By using implanted Boron as an etch stop nearly any 2D 

probe geometry could be made through chemical etching. The drawback was that the Boron-

doped etch and release process developed was expensive and not ideal from a biocompatibility 

point of view [13]. 

Recently, the largest boon for the fabrication of implantable BMI devices has been the use 

of Reactive Ion Etching (RIE) and Dry Reactive Ion Etching (DRIE) techniques. By using various 

chemically reactive ion chemistries, such as Fluorine containing gasses, namely sulfur 

hexafluoride (SF6), Silicon could be selectively etched at high aspect ratios with photopolymer 

masking. This new etching technique also allows our team to process SiC substrates for neural 

probes that cannot be wet chemically etched.  

Today, microfabrication allows for a spatial resolution of 1 um or better and high channel 

densities. These new miniature electrodes make it possible to record the surrounding membrane 

potential and stimulate externally through either a voltage or current stimulus pulse on a neuron 

specific level addressable over large areas. Much of today’s research is accomplished in-vitro 

through the use of planar microelectrode arrays (MEAs) as shown in Figure 2. In many 

applications these MEAs can replace the glass capillary electrodes that were once used in single 

cell recordings and provide the extra benefit of high channel densities. Through microfabrication, 

the 2-dimensional chips can easily have channel counts that allow for over a thousand recording 

sites. Generally, cells are cultured directly onto the devices and are recorded long-term for up to 

several weeks.  
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Figure 2: A photograph of a gold conductor on 3C-SiC MEA. Photo produced by Frewin et. al 
[14], [15]. The device was fabricated on a 2 inch diameter 3C-SiC on Si(100) epitaxial wafer 
grown at USF via hot-wall CVD. 
 

For in vivo, studies electrodes are fabricated down a central mechanical support called a 

shank. The shank is use for targeted insertion of the electrodes into specific brain regions. These 

neural implants operate much like an MEA by sending and receiving signals to the onboard 

microelectrodes.  

The devices are generally less than 1 mm thick and 300 um wide to reduce surgical 

insertion damage and contain several electrodes with metal traces that run down the length of the 

device. The main drawback of these implantable electrodes is that channel count is directly 

proportional to the size of the electrode. Larger, high channel-count devices inherently cause 

more damage during insertion. The devices are size limited and the conductor size can only be 

reduced to a point due to increasing electrical impedance. Some work has been done with 2D 

and 3D electrode arrays but generally at the cost of degraded recordings.  

1.3 Optical Neural Interface 

Before 2005, implantable brain interfaces only consisted of electrical interfaces. While this 

work continues, due to certain system advantages, optical stimulation systems have become 

commonplace with the advent of optogenetics techniques by Karl Deisseroth at Stanford 

University. This recent discovery allows us to change the way we think of BMI devices. With a 

subtle genetic manipulation, certain photo-sensitive ion channels can be added to a neuron’s cell 
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membrane making it generate evoked action potentials (EAPs) or silencing its action based on 

light wavelength. That is to say we can turn the neuron into an optical switch. 

The technology has already revolutionized how we model neurological disorders and will 

soon change how these diseases are treated [14][15][16]. Replacing metal electrodes in 

implantable BMI systems is also paramount to long-duration BMI performance, so the technique 

is a large step towards long-term chronically implanted systems.   

Deisseroth and his team genetically isolated a photosensitive ion channel called 

Channelrhodopsin-2 (ChR2) that responds to blue light (centered at 473 nm in wavelength). Once 

illuminated, the ChR2 channel opens, allowing Na+ cations to flow inward, increasing the 

depolarization of the membrane past threshold level, and instigating an action potential in the 

neuron (see Figure 3). Normally, the ChR2 opsin protein is found in a specific type of green algae; 

Chlamydomonas reinhardtii. Deisseroth’s team gained international notoriety when they were 

able to recreate a ChR2 ion channel within a population of mammalian neurons by using a viral 

delivery vector [17]. ChR2 only requires one gene to be expressed in the host animal, works with 

visible light wavelengths, and provides precise millisecond temporal control of the neuron. In 2009 

the technique gained even more momentum when ChR2 was used on living, non-human, 

primates to allow precise targeting and control of neurons (Xue Han et al 2009). 

Just as blue light can activate ChR2, yellow light (centered at 580 nm in wavelength) can 

be used to activate another light driven Cl- ion pump such as Halorhodopsin (NpHR ). In contrast 

to ChR2, NpHR can effectively assist in repolarizing the neuronal membrane to essentially “turn 

off” the action potential.  Total bipolar state control (i.e. on and off states) through neuronal action 

potentials can be realized using these two ion-channel structures in conjunction with blue and 

yellow light stimulation.  
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Cell-type-specific promoters for genetic modification can add ChR2 or NpHr ion channels 

to specific types of neurons. This differential targeting provides a great advantage over traditional 

electrical stimulation, which has very low levels of neuronal selectivity. Moreover, through this 

high level of selectivity, diseased brain circuitry can be traced allowing the development of new 

models for neuropsychiatric diseases.  Other variants of these two ion pumps have been 

discovered with a wide range of sensitivity and selectivity options. These options can lead to the 

generation of complex techniques, which have been thus far unobtainable by any other 

methodology. Optogenetics may help unlock not only therapeutic relief of diseases like 

Parkinson’s, but can help in the generation of cures for this and many other neurological disorders.  

Optogenetics is now being used in laboratory animals to perform localized brain 

stimulation in mice with induced Parkinsonian tremor [18]. In these systems, glass-based optical 

fibers take the place of implanted electrodes for an entirely different mode of stimulation. Impulses 

of light travel down the optical fibers and then excite genetically modified neurons, which then 

respond to blue and yellow light. This important step has already changed the field of 

neuroscience by providing genetically targeted stimulation and control of neural tissue. If this 

treatment were tailored for Parkinson’s patients, this would mean avoiding many of the common 

 

Figure 3:  Ion channel overview for optogenetics. Blue light (473 nm) opens the ChR2 channel 
to allow membrane depolarization leading to AP stimulation. In contrast, yellow light (589 nm) 
can repolarize the membrane and thus ‘turn off’ the action potential. Thus full bi-state control 
can be realized. This field of research is known as Optogenetics. 
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side effects caused by stimulating the wrong brain region. It is not uncommon for deep brain 

stimulation (DBS) patents to have mood and sensory problems due to imprecise stimulation when 

their DBS pulse generator is active [19].   

The current standard for localized optical stimulation in laboratory animals is a glass fiber 

implanted through the skull and held into place with cranial cement, see (Figure 4). The glass 

fiber protrudes out of the animal and is coupled into a high intensity light source. Light travels 

down the fiber and is delivered to a wide area inside the brain at the tip of the fiber. 

 

Figure 4: Standard glass fiber procedure for optogenetics in animals 
 

This technique leaves much room for improvement. Glass fibers are not chemically bio 

stable and it has been shown that that the presence of glass can evoke an immune response in 

cortical tissue that can impede the light-to-neuron optical interface [20]. This glial scarring of brain 

tissue effectively lowers the spatial resolution and power output of the system. Second, the 

fragility of an implanted glass fiber is a problem that has yet to be fully addressed.  

1.3.1 Clinical Uses for Optogenetics  

The field of optogenetics BMI has some exciting years ahead. Never before have brain 

signals been explored with such granular detail and high temporal resolution. Already, research 

has shown that in animal models some visual sensory input can be restored, interconnections 

between brain regions that were lost due to a stroke can be improved, and motor function can be 

regained through the control of external prosthesis [21],[22],[5]. However, many hurdles still exist 

in long-term implantation of these strategies. Development of biomaterials that can survive the 

rigors of the in-vivo environment still provides one of the largest impediments to the technology. 
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Another short-term goal is the use of optogenetics to provide better deep brain stimulation 

protocols than those that already exist clinically. This has particular bearing on the research 

presented herein as current DBS technology is a rudimentary BMI interface that has vast room 

for improvement.  

Parkinson’s patents that do not respond to standard drug regimens have little choice for 

treatment. Often, these patents turn to direct neurostimulation wherein low-voltage electrical 

pulses are directly delivered to the subthalamic nucleus (STN) through metal electrodes implanted 

deep within the brain. This technique is approved by the FDA, but only as a humanitarian device 

exemption and is not approved for all cases [23]. The reason for this harsh control is the danger 

involved with DBS implantation and the long-term side effects of the prosthetic. Currently, the 

materials used in these implants give rise to the chronic immune system response from the body’s 

own immune system. Eventually, this destructive cascade leads to neural degeneration around 

the implant (Figure 5)[24].  

 

Figure 5: Deep brain stimulation electrodes implanted in the brain of a mouse. Implant shows 
extreme neural degeneration, marked by the presence of astrocytes stained against glial 
fibrillary acidic protein (GFAP) in red. Gliosis is especially noted around the active tips. Image 
from [25]. 
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1.3.2 Optrodes for Optogenetics  

An optrode is simply the combination of an optical fiber or monolithic waveguide combined 

with a conductive trace for closed-loop recording. Initially, optrodes for BMI were simple step index 

fibers implanted in mouse models. These devices worked well in short-term implantation, but were 

lacking multiple channels, spatially resolved emitters, and glass has been shown to be potentially 

toxic in chronic implantation [20]. Just as microfabricated electrodes revolutionized BMI, 

optogenetics technology could clearly benefit from microfabrication methods. Recent work has 

moved toward implantable microfabricated waveguides made from SU-8 and other biocompatible 

photo-patternable materials [26][27]. These are fabricated alongside metal electrodes for 

recording to create a bidirectional interface. Even with these designs, material challenges still 

exist but the great flexibility that microfabrication provides makes this technique superior in most 

respects.  

1.3.3 Photocurrent Considerations 

Whenever a metal electrode is illuminated with a high intensity light source a current is 

created. The so-called Becquerel effect generates a photocurrent that is amplified as if it were an 

evoked action potential (EAP). For devices with combined optical stimulation and electrical 

recording this can lead to recording artifacts [28]. The effect seems to be a larger problem with 

high powered lasers [29]. In the literature it has been found that driving longer 1 s low-power laser 

pulses in the range of 0.1 mW-3 mW minimizes this effect [28]. 

Generally, it is best to try and keep the electrodes out of the beam path of the optrode, 

this is a tradeoff however because the highest spike counts from ChR2 are recorded nearest the 

beam [29]. Another way to minimize the effect is through changing the material of the electrode 

altogether. Certain conductors such as Indium Tin Oxide (ITO) seem to completely eliminate the 

effect, but using ITO has drawbacks of protein absorption and a lack of longevity [30]. 

1.4 SiC for Biophotonics  
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Due to the wide bandgap property and mechanical resilience of SiC it lends itself well to 

biophotonic devices such as Optogenetic light delivery and other implantable in vivo sensors. The 

production of UV photodetectors in single crystal SiC is well documented in the literature [31].  In 

addition, it has been shown that visible high-index optical waveguides can be made from the 

material [32]. This makes the candidate a likely replacement for system components used in 

optogenetics and as a sensing element for in vivo florescence microscopy using system on a chip 

architecture. The literature shows promising data for SiC material as this material (in both 

amorphous and cubic forms) preventing bio-fouling that may obscure an optical sensor providing 

for un-needed insertion loss [33][34].  

1.5 Materials Challenges 

Any foreign object placed into the body will inevitably trigger an immune cascade that 

evokes an attack by the body’s immune system. The brain in particular is a special case of this. 

The brain has specialty cells called astrocytes and glia that activate when an unwanted substance 

is detected.  

Generally, this reaction is warranted when cancerous neurons go awry or toxic substances 

are introduced. These cells trigger a process that ends in macrophages enveloping the problem 

area and sealing it off from the rest of the brain. However, for a cortical implant, this cascade goes 

into overdrive thus damaging interconnects with the electrodes and optical emitters. Controlling 

this cascade is the primary factor when designing devices for the body (see Figure 6).  

 



13 
 

 

Figure 6: Various states of immune response for a cortical implant [35]. Some stages shown are 
the gradual activation of astrocytes, connective tissue, and giant cells formed by interconnected 
macrophages.  
 

Materials for BMI have changed very little since their inception. The way these implants 

are created has rapidly become more complex but little ground has been gained in the area of 

long-term biocompatible materials for all the necessary components to the system. Although 

many of the currently used biomaterials have found some clinical success, these materials still 

fall far short of the requirements of long-term implantation goals. Commonly used insulators, such 

as polyimide, degrade and crack over time and metals leach ions into the body [8], [36].  

In order for the immune response to begin, protein absorption must happen first so 

controlling this parameter is key to long-term performance [37]. Nearly all material surfaces, 

including metals, absorb proteins over time. While little is known about the mechanisms involved 

with protein absorption, a link has been made between the surface roughness, surface wettability, 

and surface charge and cell proliferation [38]. Also, many bio-active surface coatings have been 

developed to enhance a given material’s biocompatibility through limiting surface absorption or 

improving cell attachment but the duration of the effect is limited [36]. A high variability exists in 

the biocompatibility data. This is not surprising considering the variability in biological testing. 

Even when concurrent tests are done with the same material on the same animal the data can 

differ [36]. Despite this, some things are well known about the material performance and we 

summarize herein some of the more important material players for BMI.  
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Generally, we are referring to materials used to manufacture passive implant devices, and 

we further separate the materials into categories as insulators and conductors. Waveguides will 

be discussed briefly as they relate to Optogenetics, but they are generally the same materials 

used for dielectric insulation.  

It is important to note that significant evidence exists to support the belief that the 

fundamental driving factor behind the chronic inflammatory reaction is not simply the insertion 

trauma itself, but instead the chronic implantation and the materials within the implant. For 

example, a recent study performed by Ludwig K. et al. compared the glial response of mouse 

models that had nearly identical surgical procedures where Michigan style probes were inserted 

into the brains of adult male mice (species Fischer 344) [21] [39]. The control group had the 

probes immediately removed while other groups had the implants chronically inserted for 2 or 4 

weeks before the animals were sacrificed for analysis. Using glial fibrillary acidic protein (GFAP) 

stain for astrocyte activity and ED1 analysis for the presence of macrophages, the brains of the 

mice were analyzed. Although both groups showed a response, the response from the control 

group was nearly non-existent indicating that the bulk of the immune response had occurred as 

a result of chronic implantation. This is strong evidence that the primary immune response comes 

from the chronic implantation and new materials must be developed to mitigate the local immune 

response. 

1.5.1 Insulator Materials   

Silica (SiO2) was one of the first electrical insulators used for microfabricated implants and 

has been used even in recent work.   It was a natural development as the first implantable probes 

were being made with pre-existing semiconductor tooling. The material is easily deposited by 

Plasma Enhanced Chemical Vapor Deposition (PECVD), created with thermal oxide growth, or 

even sputtering techniques. The material etches well with common Hydrofluoric Acid (HF) and 

can be patterned using standard lithography. Silicon Nitride (Si3N4), a similar coating, is deposited 

with the same techniques but is somewhat more difficult to pattern. While standardized 
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biocompatibility testing is not yet prevalent in the literature, material dissolution can give a picture 

of how much material is lost into the surrounding environment. Dissolution tests simply benchmark 

the loss of material over time using spectrophotometry, transmission electron microscopy, or 

liquid Fourier transform infrared spectroscopy (FTIR) measurements. A dissolution test performed 

by Maloney et al., in 2005 showed that PECVD Si3N4 implanted in rats had a slightly slower 

dissolution rate of 2 nm/day as compared to that of 2.5 nm/day found in SiO2 under the same 

conditions [40].  

The amorphous form of Silicon Carbide (a-SiC), has recently been gaining notice among 

the electrophysiology community for its durability and chemical resistance. Deposited by PECVD, 

a-SiC has shown no detectable dissolution when held in a bath of phosphate-buffered saline 

(PBS) solution for 42 weeks at 37 °C [7]. The material’s resistivity (9.0E15 Ω•cm) is slightly higher 

than that of SiO2 (1.4E10 Ω•cm), providing better, more chemically resistant insulation when 

tested on SiO2 coated Si wafers [7].   

In addition to deposited rigid materials, polymers are often used for electrically insulating 

passivation layers as well as optical guides. Some common polymers used in cortical implants 

are polyimide, Teflon, or SU-8 photopolymer, with polyethylene and polypropylene used to a 

lesser degree. Most show good overall biocompatibility, but long term they tend to crack and fail 

negating their purpose as a long-term passivation layer.  

1.5.2 Electrode Materials  

A chronically implanted BMI electrode is susceptible to the same chronic inflammatory 

response as the rest of the implant. While stimulation mode systems such as deep brain 

stimulation (DBS) pulse generators overcome this by increasing signal amplitude this is not an 

option for recording. The EAP generated by the neuron will exist at fixed amplitude while the 

electrodes interface to the surrounding tissue continues to degrade. This is why electrode design 

for chronic implantation is so important. In order to improve the situation you must address both 
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the damage to the interface caused by the body’s immune response, and by the faradic 

interactions at the interface.  

To mitigate the immune response, metals with low protein absorption are used. Without 

absorbing the initial immunoglobulin G (igG) proteins the immune response would be greatly 

mitigated. This mitigation would not be complete, however, due to trauma caused to the insertion 

site. Metals such as gold (Au) and platinum (Pt) are particularly good at this and are heavily used 

in implantable devices as a consequence. 

Faradic interactions are a consequence of ionic charge transfer between the metal and 

surrounding electrolyte. These reactions can be avoided altogether through eliminating charge-

based stimulation and using optical techniques but this is a long way off from clinical implantation. 

These effects are reduced through using bi-phasic pulse stimulation waveforms so that no net 

charge remains after the stimulation cycle (one complete charge and discharge) is complete.   

Metal ion dissolution is also of great importance in chronic electrode implantation. Toxic 

metals can leach into the surrounding tissue and cause cell death. Certain metals have less 

dissolution but all available metals dissolve eventually. Therefore new electrode materials are 

necessary.  

1.5.3 SiC for BMI Devices   

SiC can be formed in amorphous, crystalline and polycrystalline forms. The single crystal 

form has over 250 known polymorphs but the most commonly grown varieties are the cubic 3C- 

and hexagonal 4H- and 6H-SiC forms [13]. These forms are used by the semiconductor industry 

as a wide bandgap semiconductor. 6H-SiC is commonly used to make LED emitters and power 

electronic devices such as field-effect transistors [ref].  

The mechanical properties of cubic SiC are particularly useful. For example, the Young’s 

modulus of 3C-SiC is around 450 GPa, and a hardness of 2800 Kg/mm2 give it very little 

deformation under mechanical load and durability in hostile environments [41]. This allows for thin 

devices that lower the risk of micro hemorrhage and damage to surrounding tissue.  
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Optically, SiC varies in bandgap from 2.36 eV (3C-SiC) to 3.05 eV (4H-SiC) and can be 

used as an optical waveguide for most of the visible spectra thus making the material a good 

candidate for optogenetics devices as well as fluorescence sensing [34].  

Work performed by previous members of our group has suggested that cubic SiC shows 

good biocompatibility and hemocompatibility over and above other common substrate materials 

such as silicon [13]. The cubic form of the material possesses many physical properties that make 

it suitable for harsh chemical environments found in the body [34]. Work has been done by our 

group to determine even within these common SiC polymorphs which one provides the best 

biocompatibility or hemocompatibility and it was determined that this was somewhat application 

specific .  

Unfortunately the mechanical resilience and chemical resistance of SiC come at a high 

cost. No effective wet-chemical etching exists for single crystal SiC and dry etching techniques 

are slow and expensive. This has been the primary reason for the biomaterial community not fully 

embracing single crystal SiC systems. As part of our work, we seek ways to make the process 

faster and more affordable thus paving the way for clinical use of this impressive material system.  

1.6 Summary 

The stimulation and recording of brain signals will provide a bright future for BMI in the 

medical field. As a highly robust, wide-bandgap semiconductor, SiC can be used as mechanical 

s, insulation, and active optical devices. The research suggests that SiC provides excellent 

biocompatibility and hemocompatibility and works well as an encapsulation strategy in fabricated 

devices. SiC may be an ideal candidate for many implanted, system-on-a-chip type devices, 

particularly those involving optics. While a steady stream of promising literature exists for the 

biocompatibility of SiC, little work has been done in the way of developing this material for use in 

biomedical devices. The fabrication processes are still extremely difficult and time consuming thus 

keeping the material from reaching commonplace use in the biomedical community. We therefore 

explore using this material for BMI and photocapacitance based sensors for the biomedical device 
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community. In this chapter we provided an overview of current implantable BMI strategies, 

materials, and techniques as well as proposing the use of SiC in biophotonics applications.  

In Chapter 2 we investigate amorphous coatings for whole device encapsulation 

strategies. We develop a new PECVD process for the rapid deposition of a-SiC films over existing 

materials and then characterize the material for both its material properties and biocompatibility 

via in-vitro cell viability testing.   

 In Chapter 3 we lay the groundwork for electrical BMI interfaces through the development 

of a micro electrode array (MEA) device for stimulation and recording using 64 channels. A point-

contact model was developed of the electrode-electrolyte interface and the fabricated device was 

then tested against the model. The lessons learned from this device were then carried through to 

the design of an implantable optogenetic stimulation device presented in Chapter 4.  

In Chapter 4 we focus on implantable optrode development with the utilization of the a-

SiC coatings and SiC substrates developed by our team. Building upon the passive implant work 

and MEA devices created by our team we develop new strategies for fabricating SiC based shank 

probes and ultimately integrate electrodes and waveguides onto one device. The processes 

developed allow for the biomedical device community to rapidly fabricate SiC based designs with 

active electrode arrays.  

 Chapter 5 introduces work done on the use of semi-insulating 4H-SiC for sensing visible 

UV light. In collaboration with The Naval Surface Warfare Center (NSWC), the sensor was 

fabricated at USF and characterized for its response to visible light at 473nm. 
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CHAPTER 2:  AMORPHOUS SIC FOR BIODEVICES 

2.1 Motivation for Amorphous Silicon Carbide (a-SiC) Films  

Amorphous silicon carbide, denoted typically as a-SiC, has been proven to provide inert 

encapsulation for biodevices in-vivo and may prove to be pivotal in increasing the longevity of 

biodevice electronics. The material is inherently insulating, has high-K dielectric properties, high 

wear resistance, and works well as a durable coating. Unlike its single crystal cousin, the highly 

insulating property of a-SiC comes about from the amorphous microstructure and low deposition 

temperatures used. The lower deposition temperature prevents dopants present during the 

deposition from being electrically activated thereby providing an electrical insulator. The material 

can be used as an insulating outer encapsulation layer, thereby replacing or enhancing current 

polymer-based prosthetic coatings. The total encapsulation of electronic circuitry by a-SiC has 

been tested and has led to low water absorption and high wear resistance [7].   

Amorphous SiC is a material that is now being used as an encapsulation strategy for in-

vivo prosthetics. Most notably, the FDA has allowed a-SiC as a coating for commercially available 

cardiac stents. Heart stents, such as the one produced by the German firm Biotronik GmbH under 

the trade name Rithron-XR™, have ushered the coating into commercial clinical use. The material 

has been used as an optical coating in the past but we are reviving this use as a biocompatible 

coating that is easier to work with than single crystal variations of SiC.  

2.2 Process Development  

To develop this capability we began by benchmarking a PECVD a-SiC process that could 

be performed here at USF. The characterization runs were done at the Nanotechnology Research 

and Education Center (NREC) cleanroom on campus using a Plasmatherm 700 PECVD system. 

Two-inch (100) silicon wafer substrates were coated with films at 250 °C using methane (CH4) 
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and silane (SiH4) gas precursors with argon (Ar) as a bulk dilution gas. PECVD a-SiC film 

uniformity is particularly sensitive to the deposition pressure. The literature shows that a uniformity 

maximum exists near 900 mT [42]. Therefore, pressure was held constant at 900 mT for each run 

while the precursor gas ratio (CH4/SiH4) was varied from a ratio of 6.6 to 30. The films were then 

characterized for stress, chemical resistance, and optical index. In addition, transmission electron 

microscopy (TEM) (Figure 26) was performed to ensure the films were amorphous. Over twenty 

runs were performed with the goal of realizing an a-SiC film that would hold up to chemical 

resistance testing. 

Early films exhibited large stress gradients causing telephone cord delamination showing 

the process was significantly detuned. Often, the films would appear sound and delaminate 

several days after the deposition.  Profilometry based stress measurement was implemented as 

a method of benchmarking the stress imparted to the wafer due to the deposition.  

2.2.1 Profilometry Stress Measurement  

Using profilometry for stress measurement is a straightforward process wherein the 

wafer’s curve is measured before and after the film deposition. Any change in the geometry of the 

surface is assumed to come from the film and the inherent stress of the film is then extrapolated 

from the new curvature value. The imposed stress can be calculated with Stony’s formula (2.1) 

[43].  
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where E is the Young’s Modulus of the material, 𝑅𝑝𝑜𝑠𝑡 is the radius of curvature post deposition, 

𝑅𝑝𝑟𝑒 is the radius before the deposition of the film, 𝑡𝑠 is the film thickness of the substrate, and 𝑡𝑓 

is the thickness of the film, and 𝑣 is the Poisson’s ratio of the substrate.  

Using a Dektak 150 optical profilometer we performed curvature based stress optimization 

to the deposition process. The tool calculates stress using equation 2.1, pre scan curvature 

measured before the deposition, and post scan data measured along the same path. Standard 2” 



21 
 

(100) silicon wafers were RCA cleaned and marked with polyimide tape running across the length 

of the substrate. The polyimide tapeline was used for film thickness verification and as a geometric 

reference for the profilometer probe to measure in the same location each time. For the test, the 

silane (SiH4) flow rate was held constant at 15 sccm while the methane concentration was 

increased on each run. The deposition temperature was held constant for all of the tests at 250 

°C and the pressure at 900 mT during the deposition. Argon acted as the dilution gas and had a 

flow of 500 sscm. After each run, the stress was profiled and the results were compiled into Figure 

7.  

 

Figure 7: Average film stress (MPa) vs. CH4/SiH4 gas ratio. A polynomial fit was applied to the 
data as shown in the text box with an R2 value of 0.9 indicating a strong fit. 

 

          The test resulted in very low stress for CH4/SiH4 ~ 30. Again, several PECVD runs were 

performed near this ratio while varying the SiH4 flow to determine the lowest stress value. 

Eventually, we reached the accuracy of the tool for our measurement technique which is ≈10 MPa 

and settled on the process shown in Table 2. This ratio was then set for future films to be deposited 

at this null point used for further testing and characterization. It should be noted that although the 
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gas precursor ratio used varies somewhat from those values in the literature, the systems for 

PECVD vary greatly. Each process is thus unique due to the equipment constraints.  

Table 2: Process conditions for low stress a-SiC films (PECVD). 
 

Parameter Value 

Single RF Supply 13.57 MHz 

Temperature 250 C 

Pressure 900 mT 

Silane (SiH4) flow rate 12 sccm 

Methane (CH4) flow rate 360 sccm 

Argon (Ar) flow rate 500 sccm 

 

2.2.2 Atomic Force Microscopy (AFM)  

Early a-SiC samples from selected for testing and imaged using atomic force microscopy 

(AFM) for surface analysis and pinhole testing. The surface was very smooth and indicative of a-

SiC films found in the literature with a RMS roughness of 551.7 pm. However, pinhole defects 

were found in the initial films thus indicating process improvements were necessary. 

 

 

(A) 
5x5 um 

 

 

(B) 
10x10 um 

Figure 8: AFM image of sample ID PASIC052112 (a) a 5x5 um AFM scan of the surface RMS = 
551.7 pm (b) 1 10x10 um scan of the same sample. Data taken in tapping mode using a Park XE-
100 AFM by M. Nezafati, USF SiC Group.  
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To alleviate this effect it was found that by adding an Ar sputtering step before the PECVD 

deposition clean, pinhole free, thin films could be realized. The thickness of the film was 

maintained for both tests of 230 nm.  

 

(A) 

 

(B) 

Figure 9: AFM image of sample ID PASIC102013 (230 nm thick a-SiC). (A) a 5x5 um AFM scan 
of the surface showing 3D topology. (B) 5x5 um scan of the sample showing reduced roughness 
and a lack of pinhole defects. Sample RMS roughness of 1.2 nm. Data taken in tapping mode 
using a Park XE-100 AFM by M. Nezafati, USF SiC Group.  
 
 
2.2.3 TEM/SAD/EDAX  

Transmission electron microscopy analysis allows for cross sectional views of the sample 

on an atomic level. The measurements were taken on a Technai F20 TEM system. The system 

uses a Schottky Field emitter with an energy spread of 0.7 eV or less.  In our test, the sample was 

thinned and fixed using a focused ion beam (FIB) at the USF NREC facility. 

 The TEM micrograph shows the expected amorphous structure of the PECVD deposited 

a-SiC film on top of the highly ordered Si substrate (Figure 10a). In addition, using selected area 

diffraction (SAD) within the TEM, it was shown that the film has very little short-range order (Figure 

10b). This SAD pattern indicative of an amorphous film. 
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Figure 10: TEM micrograph and SAD data from sample PASIC052112. LEFT: Cross-section TEM 
micrograph of the PECVD deposited sample PASIC052112(A) appears to be a non-crystalline 
solid indicative of an amorphous SiC film. RIGHT: The SAD pattern showing an amorphous 
material.  Data taken by Dr. Y. Emirof, USF NREC. 
 

The Technai F20 is also capable of Energy-dispersive X-Ray Spectroscopy (EDAX) analysis. In 

this technique, the localized atomic composition is given based on the location of the electron 

beam. The atomic species in the localized area give off a characteristic x-ray emission. 

 

Figure 11: EDAX spectra taken of the a-SiC film. (A) Concentration profile of carbon as the 
electron beam is moved from the top of the a-SiC film to the substrate. The boundary between 
the a-SiC film and substrate is clearly visible. (B) Concentration profile of Si as the electron beam 
is moved from the top of the a-SiC film to the substrate. Data taken by Dr. Y. Emirof, USF NREC. 
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Si 
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2.2.4 Optical Measurement  

For device work that combines a-SiC coatings with waveguides and other optogenetics 

devices, the optical index was studied using a Filmetrix F20 optical profilometer. The technique 

measures the spectral reflectance of the light traveling back from the substrate to give both the 

thickness of the film and its optical index. The tool has a wavelength range of 380 nm to 1050 nm 

and the optical index measurements were all taken at 470 nm, a critical wavelength for 

optogenetics stimulation and fluorescence sensing.  

It was shown that the optical index could be controlled slightly through the use of the 

precursor gas ratio during film growth. However, large swings in the index of refraction did not 

result (Table 3, Figure 12). The lack of change is consistent with the literature for precursor ratios 

in this range [42]. Future work may include alternating gas chemistries for successive layers to 

develop different effective optical indexes. Tuning of the optical index may allow for a much more 

versile process when coating waveguides and other optical system components.  

Table 3: Precursor gas ratio vs. optical index 
 

Run ID CH4/SiH4 

Gas Ratio 

Index of Refraction 

PASIC052112(A/B) 10.00 2.01 

PASIC052112(C/D) 6.67 2.60 

PASIC061412 6.67 2.40 

PASIC080112A 12.46 2.30 

PASIC081712A 24.00 2.28 

PASIC081712C 36.00 2.28 

PASIC090612A 22.60 2.28 

PASIC090612B 35.00 2.28 

PASIC092712A 30.00 2.28 
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Figure 12: Influence of precursor gas ratio on index of refraction N. Data taken from PECVD-
deposited a-SiC films in table 3.In the test CH4/SiH4 ratio is varied from 6.67 to 30.  
 
2.2.5 Chemical Resistance  

To perform chemical resistance testing of the a-SiC film, a solution of 40% hydrofluoric 

acid (HF) was used in an acid resistance test. Similar tests are conducted by others in the 

literature for SiC coatings [44].  The samples were submersed in the solution for 2 minutes at 25 

°C to demonstrate acid resistance.  After the test, the samples were imaged for subjective analysis 

and optically profiled to test for film etching. Early films with low CH4/SiH4 gas ratios ≤ 20 showed 

immediate delamination when subjected to the test and were not profiled due to the significant 

damage of the film (Figure 13). Later, the films showed no sign of delamination and also showed 

no appreciable etching after tested before and after for thickness using a Filmetrix F20 optical 

profilometer.  
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(A) 

 

(B) 

Figure 13: Early acid challenge test for sample PASIC061412. Image (a) taken before 2 min 
40% HF solution and (b) the resulting surface from the test. The film has clearly delaminated 
and etched away. 
 

A clear trend between residual stress and chemical resistance was visible in the samples. 

As the stress was reduced the acid resistance increased significantly. When we had reached our 

lowest stress values (+/- 41 MPa), as seen in Figure 7, no appreciable etching was detected after 

the test. It is likely, however, that some chemical etching is still taking place. In the literature, 

standard a-SiC films etch rates for 40% HF are < 1 nm/hr so detection would take a much longer 

test [45].  

 

(A) 

 

(B) 

Figure 14: Final acid chalenge test for sample PASIC061412. Later a-SiC films that showed 
lower residual stress had no appreciable etching or delamination when exposed to the HF acid 
challenge. (a) Image before the acid challenge of PASIC092712A and (b) After the test. The film 
shown here was optically profiled for thickness before and after by using a Filmetrics F20 
profilometer which reported no detectable change in thickness.  
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2.2.6 XPS Data  

XPS, or X-Ray Photoelectron spectroscopy, is a surface analysis technique where 

photoelectrons are ejected from the surface by means of a high energy X-Ray beam. The energies 

of the respective electrons are analyzed for their kinetic energy and plotted as a spectrum from 

high energy to low energy. Each measured binding energy provides a fingerprint that can be used 

to determine the presence and state of a particular atomic element or molecule. The number of 

electrons is counted for each species and this can be directly related to how much of that species 

is in the studied volume. With post processing, data peaks are fit to models which conclude on 

atomic species percentage per volume.   

Film PASIC02212013 was grown using the process conditions shown in Table 2. The XPS 

survey from this film reveals a slightly carbon rich a-SiC material with ≈41.59% Carbon (1s peak), 

≈34.47% Si (2p peak), and ≈23.9% O (O1s peak). It should be noted that these numbers are 

rough estimates given by the XPS software. The presence of oxygen in the data cannot be 

avoided in our current process due to chamber contamination. In the future work, it would be 

useful to work on creating a chamber used only for this purpose with a high vacuum system 

capable of thoroughly purging out oxygen. This may improve film density, and hardness.  

The deconvoluted XPS data Si 2p flash shows characteristic peaks of Si-C bonding 

located at 102.4 eV alongside Si-0 bonding at 103.5 eV. Also, Oxygen is visibly present at 533 

eV indicating oxidation of the sample. Although measures were taken to sputter clean the sample 

in Ar plasma before film deposition, this is to be expected due to the samples contact with 

atmosphere and residual oxygen in the chamber. The results have some ambiguity, as the O 1s 

and C 1s peaks seem to be present at 1 eV higher than those found in the literature [42]. This is 

likely, however, to be accounted for from surface charging due to the insulating nature of the a-

SiC film.  
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Figure 15: XPS survey of sample PASIC02212013. Sample grown with process conditions in 
Table 2. Data provided by Dr. James Lallo from Dr. Batzill’s Interface and Surface Science 
Laboratory (ISSL). 
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Figure 16: High-resolution XPS data from sample PASIC02212013. Sample grown with process 
conditions in Table 2. The Si 2p peak is evidence of Si-C bonding at 102.1eV. Data and analysis 
provided by Dr. James Lallo from Dr. Batzill’s Interface and Surface Science Laboratory (ISSL). 
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2.2.7 Cytotoxicity Test 

In work done by Maysam Nezafati of our group, cytotoxicity testing was performed on a-

SiC samples produced with process conditions found in Table 2. Using immortalized NCTC clone 

929 [L-929,derivative of Strain L] (ATCC® CCL-1™) mouse fibroblast cells, the material was 

studied for cell viability response. The test was performed via direct cell plating according to the 

guidelines generated by the International Organization for Standardization (ISO) in published 

standard ISO-10993-5. The a-SiC was deposited directly into silicon substrates and diced into 8 

mm x 10 mm coupon samples. Calcein dye (1 mg/ml in anhydrous DMSO, life technologies) was 

used to detect live cells and ethidium homodimer-1 dye (EthD-1,2 mM solution in 1:4 DMSO/H2O, 

invitrogen) to detect dead cells. In the test 8 mm x 10 mm coupons of Cu and Polyvinyl chloride 

(PVC) were used as positive controls that show a reaction.  Coupons of Au and polyethylene 

served as negative controls that show no reaction. In addition culture-treated polycarbonate 

coupons (CTPC) were used as a baseline material as per the ISO standard. To perform the 

analysis a Zeiss (Axio Image.M2m) florescence microscope was utilized for qualitative and 

quantitative evaluation of live/dead behavior of the cells. The a-SiC samples performed nearly as 

well as single crystal SiC and on par with Au coupons indicating that the material is biocompatible. 

  

Figure 17: Comparison of viable cells on a-SiC as compared to baseline material. 0.8 cm2 material 
tested in a 6 well plate. Data provided by Dr. C. Frewin, USF SiC Group. 
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2.3 Chapter Conclusion 

The PECVD a-SiC process development was a success. A new low-temperature, low 

inherent stress process was developed for the coating and encapsulation of Biodevices. The 

process can be easily adapted to coat polymer substrates such as SU-8 and Polyimide.   

For all processes, a-SiC was deposited using PECVD with a Plasmatherm 700. The 

system is retrofitted with a 13.56 MHz fixed-frequency source for plasma generation. It was found 

that adding an Argon plasma clean before the process enhanced adhesion to the substrate and 

reduced surface particles. The pre-clean is run at 50 W RF power and 12 sccm of Ar for 5 min. 

Many variations of the precursor gas ratios were attempted at 300 °C and 900 mT but through 

iterative testing, a gas ratio of 30 CH4 to SiH4 was found to reduce stress to a nominal amount 

and thereby increase adhesion and chemical resistance. At this precursor ratio the samples were 

tested for biocompatibility under the ISO-10993-5 standard and found to perform nearly as well 

as negative controls.  

  The final process is as follows: The process begins with initial pump down to 20 mT while 

heating of the sample holder to the nominal deposition temperature of 300 °C. To improve 

adhesion, an initial sputter-clean step is performed with a steady flow of 12 sccm Ar and a 50 W 

RF plasma. Next, the plasma is extinguished while precursor gas flows are established at a fixed 

ratio of 30 CH4 to SiH4 with Ar as the bulk dilution gas. Generally, the flows maintained are 360 

sccm of CH4, and 12 sccm of SiH4, and 500 sccm of Ar. The chamber is maintained at a process 

pressure of 900 mT for the remainder of the deposition while maintaining the precursor ratio. Once 

gasses are stabilized, an RF plasma is struck and maintained with 50 W power for the entire 

duration of the deposition. The process deposits a-SiC at a rate of 4 nm/min. The process has 

been tested successfully down to 150 °C with some loss in adhesion and uniformity 

characteristics.  
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Figure 18: The a-SiC process can be adapted for a variety of substrates. Pictured here are 
several devices and substrates using the developed process. 
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CHAPTER 3:  SIC FOR MICRO ELECTRODE ARRAY (MEA) DEVELOPMENT 

3.1 Introduction  

The neuroscience community benefits greatly by studying in vitro (cells) and ex vivo (brain 

tissue slice) neurodynamics and electrophysiology through long-term laboratory cultures. 

Typically these studies are performed using 2D microelectrode array (MEA) devices fabricated 

on silicon substrates using traditional microfabrication techniques. Silicon has been documented 

to cause glial scarring and has been shown to cause disruptions in neuronal cell cultures that may 

potentially skew the obtained data long-term [13], [46]. In our device, the silicon substrate is 

replaced with cubic silicon carbide (3C-SiC) providing an inert, biocompatible surface to allow for 

long-term neuroscience studies as well as a demonstration platform for long-term neural 

interfaces.   

The presented microfabricated MEA consists of an array of 64 planar Ti/Au electrodes 

patterned directly onto a 3C-SiC substrate and on an oxide insulator for comparison. The small 

size of these electrodes (10 um in width) provides excellent spatial selectivity for neural recording 

and stimulation at the cellular level. The fabricated device was packaged in a 68-pin Pin Grid 

Array (PGA) style package and plugged into a custom interface board for signal processing and 

generation [ref Danilo book chapter]. The device and its associated support equipment are 

designed as a test bed for long-term neural recording and stimulation experiments in vitro and ex 

vivo. The device allows the testing of 3C-SiC substrates in active brain-like neuron environments 

as well as a test bed for brain-machine interface material studies.  

The MEA device was primarily constructed as a proof of concept allowing for more 

sophisticated implants to be created in subsequent work. From the MEA device and its modeling 

we learned about electrode size, insulation materials, conductors, and worked out certain 
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fabrication steps that would have been more costly with implants due to the thicker 3C-SiC films 

required to realize free-standing probes (5-15 um typically). The MEA’s require films of 3-5 um 

which are not only less expensive to manufacture but have less built-in stress and are of higher 

quality [47].  

3.2 Electrode-electrolyte System  

In this section, a simple point contact model of the electrode-neuron interface is developed 

to aid in component selection of the amplifier and design of the electrode system. The point 

contact model does not account for spatial distribution of charge and as such assumes that the 

potential outside the cell and in the solution are equal in all directions which generally holds true 

for simple planar microelectrodes.  

 

Figure 19: Overview of the point-contact model.  Microelectrode impedance equivalent circuit 
where CM and RM are the membrane capacitance and resistance, respectively, CHD is the 
double layer capacitance, and RS1, RS2 and RS3 are to model the spread resistance ZC. 
 

To develop the model specific to our device, we first determine the impedance of the cell’s 

outer membrane and develop a lumped element model. In this model, the cell membrane is 

modeled by a combination RC circuit of Cm and Rm in series with a capacitance for the electrolyte-

cell membrane interface caused by the Hemholtz double-layer at the surface, which we call CHD.  
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We first find Rm, or the purely resistive component of the cell membrane, using (3.1) where 𝑔𝑚𝑒𝑚 

is the local membrane conductivity of 0.3 ms/cm2 [48] and 𝐴𝑐𝑒 is the area of the electrode in cm2:  

𝑅𝑚 =
1

𝑔𝑚𝑒𝑚𝐴𝑐𝑒
 

 (3.1) 

Next, we find the membrane capacitance in (3.2) using a value for capacitance per membrane 

area given in the literature as 𝐶𝑚𝑒𝑚= 1 uF/cm2 [48]. The membrane capacitance per area is then 

given by 

𝐶𝑚 = 𝐶𝑚𝑒𝑚𝐴𝑐𝑒  (3.2) 

We then calculate the capacitance in the region where the cell membrane meets the surrounding 

electrolyte, or 𝐶𝐻𝐷. This term represents the Hemholtz double layer and can be modeled using a 

three stage Gouy-Chapman sub-model [49].  

 

 

Figure 20: Regions of the Helmholtz double layer. Diagram details the three regions of the 
Helmholtz double layer showing the charge distribution for a standard metal electrode. The 
distribution forms a capacitance, CHD, which is the Hemholtz capacitance 
 

This model can be applied to low charge-injection conditions which is valid when the 

device is in recording mode. The sub-model breaks up the interfacial region into three separate 
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zones [50]. Each layer of the model will have its own capacitance and they are summed in 

standard reciprocal fashion to generate the value of 𝐶𝐻𝐷 (3.3). 

1

𝐶𝐻𝐷
=

1

𝐶ℎ1
+

1

𝐶ℎ2
+

1

𝐶𝑑
                                                           (3.3) 

The first layer capacitance, 𝐶ℎ1, is the inner Helmholtz plane and is mostly made up of 

unhydrated ions. The next layer, 𝐶ℎ2, is composed of the interfacial region between the non-

hydrated ions on the outside of the cell and the hydrated ions in the outer Helmholtz plane. While 

𝐶𝑑 is from the diffuse region where the electric potential decreases  exponentially into the solution. 

The equations for each component are variations of a parallel plate capacitor and include terms 

to model the permittivity values in their respective regions [2].  

𝐶ℎ1 =
𝜀0𝜀𝑙ℎ𝑝

𝑑𝑙ℎ𝑝
∗ 𝐴𝑐𝑒                                                          (3.4) 

𝐶ℎ2 =
𝜀0𝜀𝑂𝐻𝑃

𝑑𝑂𝐻𝑃−𝑑𝑙𝐻𝑃
                                                           (3.5) 

𝐶𝑑 =
𝑞√2𝜀0𝜀𝑑𝑘𝑇𝑧2𝑛0𝑁

𝑘𝑇
                                                          (3.6) 

where 𝜀0 is the permittivity of free space, and 𝜀𝑙ℎ𝑝=6 and 𝜀𝑂𝐻𝑃=32 are the permittivity of the inner 

plane and the outer plane, respectively. 𝑑𝑙ℎ𝑝=0.3 nm and 𝑑𝑂𝐻𝑃=0.7 nm are the widths of the 

regions in the Gouy-Chapman model, K is Boltzman’s constant, T is temperature in Kelvin, q is 

the charge on an electron, z is valence of the ionic species in the region, N is Avogadro's number, 

and 𝑛0 is the bulk concentration of ions in the solution. The parameters used herein are material 

specific to a Au electrode but other metals will have a similar result.  

Using equivalent circuit analysis, we combine the components discussed thus far into a 

complex equivalent membrane impedance given by  

                                                (3.7) 

 

Next, we want to establish the impedance for the spreading resistance denoted as Rs1-3 in 

Figure 19. These resistance values arise from the signal propagating outward through the 
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solution. The model in Figure 19 shows three separate resistances for the solution between the 

electrode and the cell’s surface (Rs1) as well as a resistance to the surrounding solution (Rs2, Rs3). 

Our model assumes an equipotential in the solution, therefore Rs1 and Rs3 can be omitted. In the 

literature, it has been shown that if a cell covers the recording electrode Rs2 can be approximated 

by (3.8) [51] as  

𝑅𝑠𝑒𝑎𝑙 =
𝜌𝑠

𝜃𝜋𝑑
                                                               (3.8) 

where 𝜌𝑠 ≈ 1 Ω𝑚 is the typical resistivity of the electrolyte and ϴ = 5.78 is a correction factor 

based on the geometry [2]. This simplified impedance now gives a single phase-independent 

parameter for the spreading resistance of the signal into the solution. In other words, for our model 

Zseal=Rseal.  

Finally, we develop a model of the impedance at the electrode interface with the solution. 

Zcpa in Figure 19 can be found using the same Helmholtz capacitance parameters used in 3.4-

3.6. The function for modeling this constant phase angle capacitance for the electrode is:  

𝑍𝐶𝑃𝐴 =
1

(𝑗𝜔𝐶𝐻𝐷)𝑛                                                           (3.9) 

where n is a parameter between 0-1 and represents surface irregularities. For our simulation we 

chose n = 0.9 based on the literature [2]. Also, an electrochemical resistance 𝑅𝑐𝑡 in the bottom of 

Figure 19 is the charge-transfer resistance to the electrolyte due to faradic interactions and is 

given as  

𝑅𝑐𝑡 =
𝑘𝑇

𝑞

1

𝑧𝐽0𝐴𝑒𝑙
                                                           (3.10) 

where q is the charge of an electron and 𝐽0 is the equilibrium exchange current density for the 

particular metal used. In the case of our model, Pt has a 𝐽0 of 3.1 – log(A/cm2). Ael is the area of 

the electrode and, for our model, we assume a cell completely covering the electrode such that 

Ael=Ace.  
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Using simple circuit analysis the electrode impedance becomes   

𝑍𝑒𝑙 =
𝑅𝑐𝑡

1+𝑅𝑐𝑡(𝑗𝜔𝐶ℎ𝑑)𝑛                                                     (3.11) 

We now have the components required to create a more simplified diagram as shown in Figure 

21 whereby we can replace each impedance component with a single complex impedance which 

is much more useful for modeling purposes and MEA design.  

 

Figure 21: Neuron-electrode impedance model. Simplified Model of Neuron-Electrode 
Impedance where ZM is the resulting membrane impedance, ZS is the spreading resistance due 
to the solution, and ZEL is the electrode impedance (typically on the order of 100 Ω for Au 

electrodes). Amp is the bioimpedance amplifier. 
 

Further simplifying the model, we end up with a function for the complex input impedance 

as seen by the amplifier.  

𝑍𝑖𝑛 = 𝑍𝑒𝑙 + (
1

𝑧𝑠𝑒𝑎𝑙
+

1

𝑍𝑚
)

−1
                                             (3.12) 

This is to say that the impedance seen by the biopotential amplifier will be a parallel combination 

of the membrane resistance and the spreading resistance in series with the electrode’s 

impedance, which is a result that we would have expected at the beginning based on standard 

circuit theory.  

We use a computer math application (Maple 17) to plot the magnitude of Zin over the 

potential range of neuron frequencies resulting in Figure 22. For our test case we assume a 10 
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um wide Au electrode and use the parameters from Appendix B. It is clear that the real impedance 

of the system drops as the frequency of the system is increased. This has been verified in the 

literature and is to be expected as the electrode system generally operates as a high-pass filter 

[52].   

 

 

Figure 22: Impedance simulation based on the electrode-electrolyte model. Electrode 
impedance simulation based on the electrode-electrolyte model presented here. Shown is the 
Magnitude Plot of Re(Zin) vs. Frequency from 1 Hz - 5 KHz. 1 KHz operating frequency gives a 
real load resistance of ~800 KΩ which is the approximate value used for MEA design 
purposes. 
 

Plotting the capacitance using the imaginary part of the input impedance against frequency, you 

arrive at Figure 23. This allows a better understanding of what takes place as the system is driven 

with increasing frequency.  
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Figure 23: Simulated electrode capacitance (F) vs. frequency (Hz). At a 1 KHz design point the 
system has a predicted value of ~250 nF of capacitance. 
 

In order to perform an analysis of the match of an amplifier to the impedance of the system 

we must define the input impedance of the amplifier. A 20 pF input capacitance was chosen and 

modelled as an imaginary reactive impedance 𝑍𝑙𝑜𝑎𝑑 (3.12). This impedance value is commonly 

used in such situations as many bioimpedance amplifiers exist near this range.  

𝑍𝑙𝑜𝑎𝑑 =
1

𝑗𝑤𝐶
=

1

𝑗2𝜋𝑓(20𝐸−12)
                                                (3.13) 

Next, a transfer function of the system was developed and the response of the system 

plotted in dB using (3.12). This helps us to better understand the factors in creating a quality 

interface to the neuron. As a design point we want to minimize the loss between the electrode 

and the amplifier in order to get the signal above the noise. The transfer function is shown in 

(3.14) and plotted in Figure 26 versus frequency: 
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𝐻(𝑠) =
𝑅𝑠𝑒𝑎𝑙𝑍𝑙𝑜𝑎𝑑

𝑅𝑠𝑒𝑎𝑙𝑍𝑙𝑜𝑎𝑑+(𝑍𝑚+𝑅𝑠𝑒𝑎𝑙)(𝑍𝑙𝑜𝑎𝑑+𝑍𝑒𝑙)
=

𝑉𝑠

𝑉𝑚
                                    (3.14) 

 

Figure 24: Transfer function of the electrode-electrolyte system. This simulation is for a 70 
nm cell-electrode spacing and a circular Pt electrode of 10 um in diameter. 
 

It is clear from Figure 24 that the overall system response is that of a high-pass filter. As 

the frequency increases the capacitive reactance lessens and begins to allow more signal 

amplitude. In addition the electrical phase of the system follows similar to what is expected in the 

literature for such a microelectrode system [2], [53].  
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Figure 25: Simulated phase angle of the electrode-electrolyte system. Transfer function of Eq. 
(3.14). This simulation is for a 70 nm cell-electrode spacing and a 5 um wide Au electrode with 
a recording tip of 10 um in diameter. 

 

In exploring the parameter space we would like to determine what the optimal size 

electrode would be using the model. To do this analysis we use (3.1-3.13), fix the cell diameter at 

a nominal value of 10 um, and increase the electrode diameter while plotting the frequency 

response of the system (see Figure 26 below). It is clear from the graph that as the electrode 

diameter increases the signal reaching the amplifier is less attenuated due to the influence of 

electrode area on 𝑅𝑐𝑡. This trend continues until the electrode is roughly the size of the cell at 

which point the attenuation tapers off to an asymptotic value.  

-

Degree
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Figure 26: 3D plot of the diameter of a circular electrode (um) vs. frequency (Hz). Simulation 
of the electrode-electrolyte system showing a 3D plot of the diameter of a circular electrode 
(um) vs. Frequency (Hz) vs. Signal Amplitude reaching the amplifier (dB) for an Au electrode 
test case. Model used as presented here. Note the fairly flat response at 1 kHz for a circular 
electrode from 0.5 - -5 um in radius. 
 

This dataset demonstrates that above a 5 um electrode radius there is no system benefit, 

with the caveat that this assumes a single neuron covering the electrode with the neuron diameter 

assumed to be 10 um. While creating electrode arrays, one must consider this as it seems that 

higher electrode densities and smaller electrode radii are best. However, due to assumptions and 

idealities of the model it may vary from the true system. One of the biggest factors affecting this 

outcome is that neurons are seldom perfectly aligned to the underlying electrodes and are of 

random size, albeit typically around 10 um. Therefore, by increasing the electrode area you 
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increase the probability of receiving the signal from a particular neuron. This probability could, 

however, be increased by reducing spacing and increasing the number of electrodes to get a 

more ideal case so there is clearly a trade-off between the probability of recording neural activity 

from a single electrode and recording the same activity from an ensemble of electrodes. A more 

sophisticated ‘system level model (beyond the scope of this dissertation) is clearly needed to 

address this issue.  

3.3 Micro Electrode Array (MEA) Fabrication 

As a test bed for fabrication strategies of neural recording electrodes, a microelectrode 

array (MEA) system was realized. To accomplish this goal, we used conventional lithography and 

processing to create gold-electrode MEAs on both SiC and SiO2 coated 3C-SiC substrates. The 

two substrates would allow for future testing of neuron cell proliferation on these surfaces. This 

work is a stepping-stone to a fully implantable recording SiC neural probe, but has independent 

merit as mentioned in the introduction to this chapter and so it is discussed here.  

The neuroscience community has a need for studying neurons in vitro in long-term cell 

cultures. Typically, these studies are performed using 2D MEA devices fabricated on silicon or 

glass substrates using traditional microfabrication techniques. Silicon has been documented to 

cause glial scarring and disruptions in neuronal cell cultures that may potentially skew data from 

long-term neuron cultures so it is likely that SiC substrates would help the problem in the exposed 

substrate regions near the electrodes. Glass has similar, albeit reduced, effects and likewise SiC 

MEAs would provide benefits to long-term in-vitro studies. 

The designed MEA consists of 64 planar Au electrodes patterned directly onto the 

substrate. Using the analysis from (2.2.4) a small electrode diameter of 10 um was chosen with 

a spacing of 150 um thus providing excellent spatial selectivity for neural recording of individual 

single units.  
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Figure 27: MEA device layout (64 electrodes). Layout was performed in Tanner Tools L-Edit 
software and exported for mask creation. Pictured here is a single die that was then repeated 
over an entire 4” wafer field. The die dimensions are 1.2 cm x 1.2 cm. 
 

Gold metallization layers were chosen in these initial devices. This was primarily a 

fabrication-driven decision. Other metals, such as Pt, may make better electrode candidates. 

However, they require significantly more processing due to the difficultly in etching and plating 

the materials. Gold shows reasonable biocompatibility, low protein absorption, and high electrical 

conductivity. The metal layer can easily be substituted in future work. The MEAs were designed 

using 2000 Å gold layers. At this thickness, the layer provides a low resistance path through the 

trace. Trace resistance can be found using equation 3.15.  

 
𝑅 = 𝜌 ∗

𝐿

𝑇 ∗ 𝑊
 

(3.15) 

where the resistivity of gold is 2.44E-8 Ωcm, L is length, T is thickness, and W is trace width. In 

the case of the designed device the 2000 Å trace metallization layer at 5 um in width resulting in 
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a resistance per length of 2.4 Ω/cm. This allows us to neglect this resistance as a design constraint 

as the solution resistance alone, Rs, will be in the range of several kΩ.  

The devices were fabricated using standard lithography using the following process: First, 

CVD 3C-SiC substrates were epitaxially grown on (100) Si substrates which were cleaned using 

standard RCA cleaning procedures and then the surface was prepared using an O2 plasma at 50 

W for 5 min to remove any contaminants that may hinder metallization. For the oxide on 3C-SiC 

MEAs the samples were then coated with 3 um of PECVD SiO2 for substrate isolation. For both 

the 3C-SiC and oxide coated 3C-SiC substrates 200 Å of Ti was deposited to serve as an 

adhesion layer followed by 2000 Å of Au for the metal interconnects and electrode conductors. 

Next, the samples were patterned with AZ4620 photoresist applied by spin coating at 2000 RPM 

for 30 seconds and immediately soft-baked at 90 C for 5 min.  

The wafers were then allowed time to rehydrate for a minimum of 2 hours before 

proceeding to the following lithographic steps. A small amount of water is needed in the following 

photoreaction. The humidity in the ambient environment is used to rehydrate the wafer. As a 

general guideline, 10 min of rehydration is used per micrometer of photoresist however in very 

thick films the water diffusion slows and this step can take several hours.  

Next, they were aligned in a Quintel mask aligner and patterned using UV exposure. Once 

the samples were developed in 1:4 AZ400K solution, the gold was etched off in TFA Au etchant. 

This completed the metal trace structure fabrication process.  

To insulate the traces from each other  SU-8 2005 negative resist was spun onto the 

devices at 2000 RPM resulting in 5 um thickness. This layer is also patterned using the Quintel 

mask aligner under UV exposure to form the device insulation. This layer was then hard-baked at 

100 C for 20 min. In a final step, the individual die were cut from the wafer using a wafer dicing 

saw with a high-speed carbide blade. This resulted in loose MEA die ready for packaging.  
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(A) 

 

(B) 

Figure 28: Optical micrograph showing MEA die after processing. (A) Carrier tray used for 
sorting defective die and (B) 10x optical micrograph of the active area on the completed MEA at 
10x magnification. Clearly visible are the 50 um square recording windows and the 10 um 
diameter Au electrodes.  
 

3.4 Device Packaging  

The finished MEA devices were bare die with small 300 um x 300 um bond pads for 

connecting wires to the package. In order to facilitate convenient supporting electronic 

connections, the bare die needed a chip packaging solution. The package chosen was a ceramic 

68-pin Pin Grid Array (PGA) style package. The ceramic material would allow for inexpensive 

heat sterilization techniques to be used on the device and provides a rugged enclosure for 

repeated handling.  Our MEA chip connects to 64 out of the 68 available package connections 

whereby the extra package leads were left floating. We then cleaned the samples again to avoid 

contamination caused by the dicing saw process. The MEA die were then sent off to a Quik Pak, 

Inc. in Saint Albans, VT for epoxy die attach mounting and automated wire bonding. The chip die 

were wire-bonded into ceramic PGA 64 Packages so that they could later be heat-sterilized before 

cell plating.   

 

10X 
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(a) 

 
(b) 

Figure 29: Final packaged MEA devices. (a) MEA chip held in place with epoxy adhesive and 
wire bonded to a PGA 64 package. (b) Optical micrograph of the MEA center region viewed at 
10 x magnification for reference. 
 

Upon receiving the bonded devices, the wire bonds and ceramic package are exposed to 

the environment. If the devices were used in this state the PBS solution used to support the 

neurons would short out adjacent bond wires and the ceramic package may leach cytotoxic 

materials into the culture. To negate this, liquid containment wells were formed using Slyguard 

184 Polydimethylsiloxane (PDMS). The active area of the MEAs were protected with a rubber 

block held in place with adhesive tape (see Figure 30(a)). The encapsulant was also applied to 

isolate and protect the gold wire bonds on the perimeter of the device. The well formed by the 

encapsulant also provided a cell culture area to hold PBS when performing cell experiments.  

While PDMS encapsulate is generally considered biocompatible, In the future, MEA 

devices produced by our team will likely replace this step with a glass cylinder coated in a-SiC 

from the process outlined in Chapter 2. This would better isolate any cytotoxic response caused 

by the MEA well itself. By using the a-SiC coated glass material the data can be less confounded 

as materials are eliminated.  

10X 
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(A) 

 

(B) 

Figure 30: MEA fluid well fabrication using PDMS. (A) a rubber block was used to protect the MEA 
active area during encapsulation and (B) A finished MEA device with the PDMS containment well 
and wire-bond encapsulant shown after curingd. Ruler shown for scale.  
 

In addition, our team developed a PCB board for the MEA to connect to the auxiliary 

electronics using its 64 channel PGA footprint. The PCB board contained several 0.1mm spacing 

pin headers that could be used with standard shielded ribbon cables for signal stimulation and 

recording (Figure 31). The Cadence Eagle 3.6 design tool was used to layout the PCB and 

silkscreen artwork.  

 

Figure 31: MEA carrier and breakout board. Board used for connecting stimulation and 
recording electronics. Board layout was performed by Justin King, USF, and the board produced 
by an off-site vendor.  
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3.5 MEA Validation   

After fabrication, the devices were tested for impedance across a range of frequencies 

that covers the full frequency range of evoked action potentials EAPs. The measured data was 

then compared to the calculated data from the model presented in section 2.2.4. This allows us 

to simulate the 64 channel MEA system without using electrically excitable cells to verify 

functionality. The model is similar to the one presented in section 3.2.  For simplification, the inner 

Helmholtz plane distance is neglected by setting dlp to zero [2]. In addition, the frequency 

dependent Warburg impedance element was included to better model the low frequency response 

of the electrode [54]. 

 

Figure 32: MEA electrode electrochemical equivalent circuit model. 
  

The fabricated MEA devices were measured by introducing standard phosphate buffered 

saline (PBS) solution to the PDMS well above the device. PBS is a water-based salt solution that 

matches the pH and approximates the salt osmolarity seen within the body. The measurement 

was made though the custom PCB board interface using a silver wire counter electrode directly 

in contact with the solution. This allows us to test the response of a single electrode in the PBS 

solution. The wire is assumed to have an area large enough to negate interfacial effects and act 

as a direct connection to the surrounding solution. The device was then connected to a HP 4294A 

Impedance analyzer in two-point configuration for frequency response analysis. The HP 4294A 

is an auto-bridge impedance analyzer capable of measuring systems from 40 Hz up to 110 MHz. 
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For our tests, the analyzer was set for 100 mV stimulation potential and a maximum frequency of 

5 kHz.  

 

Figure 33: Oxide on 3C-SiC MEA under test. Measurement of electrical impedance of single 
electrodes performed using a silver reference electrode in PBS solution (wire visible at end of 
probe tip over MEA above). An HP 4294A impedance analyzer was used, settings of 100 mV 
signal amplitude swept from 40 Hz to 5 kHz. 
 
Three electrodes were randomly selected on the MEA for measurement of |Z| and all three 

showed a good fit with the impedance model through using regression analysis as shown in Figure 

32.  

 

Figure 34: Impedance magnitude data |Z| vs frequency (Hz)  of MEA electrodes. Data taken 
from three randomly chosen single electrodes on the oxide on 3C-SiC MEA and plotted against 
the circuit model shown in Figure 31.  
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The regression values are shown indicating, with the exception of one electrode, excellent 

fit with the model of section 3.2. In the figure, one electrode (electrode 2) seems to deviate causing 

a lower R2 value of 0.69. This outlier may be due to microfabrication or mask alignment errors or 

other yield-limiting issues.  

Data was taken in the same setup for phase information and plotted with respect to 

frequency (Figure 53). Here, again, the data seems to work well with the model with the exception 

of a single electrode.  Overall, the model fit is a success and thus validates the model so that it 

can be used as a basis for future designs. Phase information can be somewhat more difficult to 

accurately measure in the 2 point configuration used for the measurement. Further work will be 

performed with a 3 port electrochemical analyzer to avoid phase error. However, in spite of this, 

the measurement demonstrated R2 coefficients of .95, .91, and ,.05 for electrodes 1, 7, and 10. 

The low coefficient of determination for 10 is likely due to device insulation failure.  

 

Figure 35: Impedance phase angle (degrees) vs frequency (Hz). Data taken of three randomly 
chosen single electrodes. 
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3.6 Conclusion  

MEA devices were microfabricated from SiC substrates with gold electrodes as a platform 

for learning the tools and techniques required for more complex neural implant designs. The 

fabricated oxide on 3C-SiC MEA adequately follows the impedance model given. We therefore 

can draw conclusions from the circuit analysis of the electrode-electrolyte interface given in 

section 3.2. Extending this to the plot of gain of the transfer function in Figure 24 we get some 

basic requirements for the amplifier system as well so that a fully-functional 3C-SiC MEA system 

can be realized based on this work. 

The system amplifier would need to have ≈ 60 dB of gain at 1 KHz to give a 1 V nominal 

signal amplitude to the analog to digital converter used in the system. Most biopotential amplifiers 

designed for microelectrode work provide well over 100 dB [55], thus this is not a difficult design 

specification to meet. The 3C-SiC MEA system and its associated fabricated support equipment 

will be used in future research by the group in advanced biomaterial research. In particular some 

novel materials concepts were developed to allow for an oxide-free 3C-SiC MEA and this will be 

discussed in further detail in Chapter 6 in the future work section.
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CHAPTER 4:  TOWARDS THE DEVELOPMENT OF SIC BASED OPTRODES 

4.1 Introduction 

Silicon carbide is a particularly good candidate biocompatible material for optrode 

development. The single-crystal form hVE been proven to work well in neuronal cell cultures and 

has optically transparent polytypes for the creation of waveguides. In amorphous form, the 

material can be used for highly insulating coatings to isolate conductors from each other and the 

surrounding bio-environment. These advanced devices would likely improve long-term cell 

recordings and lessen chronic implantation damage observed with currently used electrical 

stimulation techniques.  

This chapter outlines our efforts to advance the state of the art of optrode development 

through using SiC-based biomaterials for functional or tissue-contact components. To achieve 

this goal, new processing techniques were developed and the project culminated in an 

implantable integrated device with optical waveguides, metallic electrodes, and a-SiC insulation.  

4.1.1 SiC for Optogenetics 

Data was collected on the optical transmission properties of several SiC polytypes for a 

head-to-head comparison near the critical wavelengths needed for optogenetics. The three 

polytypes tested (6H-SiC, 4H-SiC, 3C-SiC) were chosen because of preexisting biocompatibility 

work done by our team.  Those studies showed the 3C-SiC polytype as the clear winner of the 

biocompatibility race followed by 4H-SiC and 6H-SiC [56].  In addition, 3C-SiC seems to be the 

most economical and readily available polytype since it can be grown epitaxially on Si substrates 

via chemical vapor deposition.  
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Figure 36: Absorption coefficient, α, vs. photon energy, eV. A graph of the measured 
Absorption Coefficient, α, vs. Photon Energy, eV. At T=296 K for various polytypes of SiC. 
Measurement taken with a Filmetrex F20 at NREC, USF. For reference the blue optogenetics 
activation and yellow quenching wavelengths are shown. Unfortunately, and as expected, 3C-
SiC has too narrow of a bandgap to serve as a suitable optical waveguide. 
 

To determine the feasibility of using SiC for light guiding components, the collected 

samples were then tested in a Filmetrix F20 retrofitted with a T-1 stage for measuring 

transmittance between 380 nm - 1050 nm. This allowed sufficient coverage of the visual spectrum 

covering all major optogenetics spectra. The experiments were performed in a lighted cleanroom 

environment with baseline calibration to remove ambient light effects. Absorption data was 

calculated from the raw transmission values. The transmission of the three polytypes is shown in 

Figure 39 as a function of photon energy (eV). 

Optical propagation loss in these semiconducting materials is dominated by absorption of 

the material with a small amount of loss from crystal defect scattering. Generally, light energies 

that exist below the material’s bandgap energy are transmitted while those that exist above are 

heavily absorbed. It was evident in our data that the most neurocompatible polytype, 3C-SiC, fails 

as a suitable waveguide core material for ChR2 due to its heavy absorption near 473 nm (2.62 

eV). However, it is noted that NpHr light centered at 580 nm would pass nearly unhindered. The 

4H-SiC and 6H-SiC have sufficiently high bandgap energies to avoid heavy absorption 
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characteristics. These materials make good waveguide core materials and leave the possibility 

for 3C-SiC overgrowth for enhancing biocompatibility. 

Although our simple study was done with respect to the two most common opsin proteins, 

it should be noted that a wide variety of opsins for neuron activation and inhibition exist. Currently, 

the list of available opsin proteins expands every few months and provides an ever-growing menu 

of wavelengths, chemical kinetics, and temporal precision. For example, VChR1, which is another 

channelrhodopsin variant of ChR2, has a red-shifted activation wavelength. The center frequency 

for VChR1 is 590 nm, which corresponds to a photon energy of 2.1 eV (near yellow). At this 

wavelength, the attenuation of the 3C-SiC polytype is greatly reduced and would work as a 

possible waveguide material. 

4.1.2 Modeling Light Delivery 

In order to explore light delivery a simple model was developed for light propagation 

through brain matter. The model includes optical losses due to scattering, Fresnel loss, and 

geometrical loss. In actuality, some absorption may occur, but it is several orders of magnitude 

below that of scattering loss and is thus neglected.  

Scattering light through brain matter can be modeled using a Kubelka-Munk model for 

diffuse scattering material. The Kubelka-Munk model describes light scattering in a uniform solid 

using monochromatic light with no outer reflection boundary [57]. Generally, at low optical power 

outputs this model will hold true deep within the brain thereby making it a useful approximation 

for optogenetic devices (4.1).  

𝑇 =
1

𝑆𝑧 + 1
 

 (4.1) 

where the parameter T is the transmission fraction of light reaching the region of tissue that is a 

distance z (mm) away from the optical source. The parameter S is a scattering coefficient per unit 

of thickness.  
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Geometric loss from the emitter can be modeled using Snell’s law to calculate the half-angle of 

the divergence for the waveguide (4.2):  

𝜃𝑑𝑖𝑣 = 𝑠𝑖𝑛−1 (
𝑁𝐴𝑤𝑔

𝑁𝑡𝑖𝑠𝑠𝑢𝑒
) 

 (4.2) 

where 𝑁𝑡𝑖𝑠𝑠𝑢𝑒 is the index of refraction of the surrounding grey matter. To compute the numerical 

aperture we derive the following relationship from 4.3:  

𝑁𝐴𝑤𝑔 = √𝑁𝑐𝑜𝑟𝑒
2 − 𝑁𝑐𝑙𝑎𝑑

2  
 (4.3) 

We then calculate the illumination intensity emitted from the end of the waveguide by dividing the 

total optical power by the cross-sectional area of the waveguide emitter: 

 
𝐼(0) =

𝑃𝑠𝑟𝑐

𝑊 ∗ 𝐻
∗ 𝐴𝑓 

(4.4) 

where 𝑃𝑠𝑟𝑐 is the source power of the system, H is the height of the rib waveguide and W is the 

width of the emitter end of the waveguide. 𝐴𝑓 is a term to summarize the losses up into the end 

of the waveguide. This term is developed experimentally and contains both propagation loss and 

Fresnel loss.  

 

Figure 37: Diagram of optical emission from a multimode waveguide. 𝑟𝑙𝑖𝑚 is the radius of the 
emitted light at a distance of z from the end of the device, 𝑧𝑤𝑔 is a distance used for calculating 

beam geometry, ϴ is the half-beam angle, and W is the width of the waveguide. 
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Combining the geometric decrease of light from the tip of the waveguide and adding the 

effects due to scattering, we arrive at a model for light intensity vs. distance. This equation was 

adapted from [58]: 

𝐼(𝑧)

𝐼(𝑧 = 0)
=

𝜌2

(𝑆𝑧 + 1)(𝑧 + 𝜌)2
 

 (4.5) 

𝜌 = 𝑟𝑤𝑔 ∗ √(
𝑛

𝑁𝐴𝑤𝑔
)

2

− 1 

(4.6) 

To calculate the volume of light emitted we use a cone approximation (Figure 37):.  

1

3
𝜋𝑧𝑤𝑔(𝑟𝑖𝑙𝑚

2 + 𝑟𝑖𝑙𝑚𝑟𝑤𝑔 + 𝑟𝑤𝑔
2) 

(4.7) 

Using 4.1-4.7 we perform an analysis of the optical stimulation of tissue. We use a reported 

value of the index of refraction for grey matter, 𝑁𝑡𝑖𝑠𝑠𝑢𝑒, of 1.36 for mouse models [59]. Values for 

the scattering parameter S have been reported in the literature for mice as 11.2 mm-1 for a mouse 

cortical tissue and 10.3 mm-1 for a rat cortical slice at 473 nm [58] [59]. These values for the animal 

models follow closely to scattering values measured in humans [60]. We use a value of 57% that 

was determined experimentally by coupling a small 473 nm laser to a 100 um optical fiber and 

dividing the input power by the output power. This value is supported by similar results in the 

literature [61]. In addition, the test case uses a polymer waveguide made from photo curable SU-

8 epoxy coated in SiO2 for a cladding layer, a typical biocompatible material stack used in neural 

prosthetics. A value of Ncor ≈1.6 is used for SU-8 while the index of PECVD SiO2 is derived from 

the literature [62][63]. To simplify the calculation, a square waveguide cross section is assumed. 

The minimum activation light intensities that have been documented in the literature for 

ChR2 and NpHr opsins are ≈1 mW/mm2  and ≈21.8 mW/mm2, respectively [29][58]. These 

parameters provide a limiting condition for the analysis of activated tissue emitted from the 

waveguide.  
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If the input power level, 𝑃𝑠𝑟𝑐, is held at 20 mW and we plot the light intensity vs. distance 

from the light emitter, we observe ChR2 activation out to ≈ 1 mm within the brain tissue. The 

intensity of that light within the tissue is plotted in Figure 38.  

 

Figure 38: Light intensity vs. distance from the emitter tip in mm. Dataset uses 20 mW input 
source, 0.43 Numerical Aperture (NA), a coupling efficiency, Af, of 57%, and assuming grey 
brain matter with an optical index of 1.36 with a scattering coefficient, S, of 10. 
 

It is clear from the figure that the bulk of the power dissipates in the first 500 um of tissue. 

This result is verified by the literature in transmission experiments performed on mouse brain 

slices by work done by Aravanis et. al in 2007 that show 90% reduction of resulting intensity from 

the first 1 mm of grey matter [58].  

Next, we continue our analysis by comparing how the volume of activated tissue relates 

to both the width of the rib waveguide and the initial input power 𝑃𝑠𝑟𝑐. The same assumptions as 

above apply and the equation set was solved for 1 mW, 10 mW, 15 mW, and 45 mW input power. 
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It is important to note that the coupling efficiency, Af, was held constant for the simulation but due 

to real-world geometric constraints this parameter would likely modify the result somewhat.  

 

Figure 39: Power level vs. activated tissue volume. Calculation of power level impact on resulting 
activated tissue volume for various waveguide dimensions. Dataset uses a 0.43 Numerical 
Aperture (NA) calculated for a SU-8/SiO2 waveguide, and assumes a constant coupling. Power 
levels as indicated. 
 

The result is somewhat surprising, each power level input into the system results in an 

optimal waveguide area to get its respective maximum volume of activation. As the waveguide 

area increases, more light is coupled into the system due to the increasing area of the input end 

of the waveguide. However, as the output area increases so does the volume of the emission 

cone. This increasing volume becomes the dominant factor and the tissue activated begins to 

decrease again due to a lack of intensity on the emission surface. For the microfabricated 

waveguides investigated within this dissertation the waveguide diameters of 1-3 mm may be 

entirely too large for use in an animal research model. To minimize trauma and maximize overall 
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biocompatibility the overall device thickness is minimized, but the simulations act as a guide in 

which to compare optical source coupling techniques and analyze overall system efficiency. The 

numbers are simply given as an exploration of the parameter space and do provide a useful 

framework from which to conduct our optrode design. 

4.2 SiC Fabrication Challenges 

Epitaxial 3C-SiC wafers have very high intrinsic stress (tension) values that make them 

exceedingly difficult to process due to the 22% lattice mismatch between the SiC structure and 

the structure of the film [64]. This high stress makes the use of traditional micro electrical 

mechanical system (MEMS) techniques difficult. The inherent film stress causes wafer bow that 

prevents proper alignment in patterning, hinders wafer bonding by trapping air pockets, and often 

results in wafers fracturing when using vacuum chucks to hold the substrates during processing. 

To address these concerns, several measures were taken. 

First, stress was minimized as much as possible in the initial substrate by using the (100) 

orientation of silicon as it results in slightly less stress than (111) Si substrates.  In addition, the 

3C-SiC growth process using an optimized carbonization step resulting in a very thin, but highly 

defective interface layer that can accommodate much of the strain [64].  

Mechanically, it makes the most sense to use smaller substrates to minimize the effective 

curvature. By dicing the large 4” diameter substrates into 1” squares we reduced the height 

deviation from the horizontal plane as seen by the vacuum chuck surface. The smaller substrates 

allowed for the use of standard 2” vacuum chucks while minimizing the total height deviation over 

the width of the sample. This technique, however, comes at the cost of a more irregular edge 

bead from the spinning of photoresist and SU-8 layers, as well as greater difficulty in aligning 

subsequent layers.  

In the final steps of fabricating SiC optrode devices the Si is removed through inductively 

coupled plasma (ICP) etching. As the substrate thins, the balancing compressive force it provides 

lessens and this causes the 3C-SiC on thin Si film to pull away from the handle wafer.  This effect 
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can often be dramatic leading to delamination of the handle wafer from the substrate and 

subsequent severe buckling and cracking of the film. Proper bonding of the handle wafer to the 

film is necessary to prevent this from occurring during the back-side Si etch. 

To further complicate device fabrication, 3C-SiC has no effective chemical etchants other 

than molten KOH salt. Therefore, inductively coupled plasma (ICP) is used. The use of ICP as a 

primary etch technique requires careful planning of the fabrication process to ensure the delicate 

microfabrication portions of the device are never exposed to the harsh high-energy plasma 

directly. Normal neural probe fabrication generally relies on chemical etching or oxide release 

layers which are not an option for single-crystal 3C-SiC based probes.  

4.3 Waveguide Design  

Ideally, the optical waveguide system of the optrode would be entirely made out of single-

crystal SiC materials due to both its optical properties (section 3.1.2) and biocompatibility results 

seen with the material [56]. The processing requirements of fabricating these structures from this 

bulk material (4H- or 6H-SiC) are known to be extremely difficult and overly expensive for the 

purpose of the dissertation. Therefore, a viable alternative was found, and fabrication of these 

hexagonal-SiC waveguides will be left as future work. Instead, we will proceed with a polymer 

waveguide made from SU-8 with an a-SiC encapsulation layer in the hope to have both ease of 

fabrication and biocompatibly, thus leading us to a more realistic near-term SiC-based optrode.  

SU-8 polymer also has evidence to support its biocompatibility in neural tissue, is optically 

transparent, photopatternable, and can be coated with PECVD a-SiC, through low temperature 

processes, to prevent its dissolution into the surrounding tissue [65]. Therefore, the material was 

chosen as a viable alternative and was used in conjunction with 3C-SiC substrates and a-SiC 

dielectric coatings. Hard-baked SU-8 has an inherently low optical index of 1.67 and, therefore, 

cannot be used directly in contact with a-SiC without significant optical loss. Therefore PECVD 

SiO2 served as both an intermediate adhesion layer and optical cladding for the optical 
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waveguide. Figure 42 shows the realized SiC optrode with the various material layers and their 

corresponding indices of refraction. 

 

Figure 40: Developed biocompatible optical waveguide geometry. An a-SiC over layer was used 
to ensure material robustness and biocompatibility. The oxide layer serves as the required low-
index cladding layer and the waveguide core is made from SU-8 photopatternable polymer. 

 

4.4 Fabrication of Test Waveguide Structures 

Multimode waveguides were fabricated from SU-8 polymer and clad with PECVD SiO2 

and a-SiC biocompatible encapsulation. Standard contact lithography was used to first create 

linear test structures of 50 um in width and 20 um in height.  

The fabrication process begins with the growth of 3 um of PECVD SiO2 at 250 °C on a 

substrate material. Next, the wafer is plasma cleaned in an O2 Plasma for 30 min at 200 W to help 

with the removal of any organic material as well as to terminate the surface for better adhesion of 

subsequent layers. In addition, the surface is cleaned using a mixture of 3:1 concentrated sulfuric 

acid to 30% hydrogen peroxide solution (Piranha Etch). Once clean, the wafer is then dehydrated 

by placing it on a 200 °C hotplate for 30 min to remove any residual water or solvent on the 

surface. It is important to note that without this step adhesion to the underlying glass substrate is 

poor causing the structures to delaminate in subsequent processing.  Next, MicroChem SU-8 

2010 photopolymer is spin coated onto the substrate using 1000 RPM for 30 sec resulting in ≈20 

um of material. The wafer is then soft baked at 90 °C for 5 min to remove solvent and reduce 

stress from the film. Masks were made from laser printed acetate and were acquired through 

Advanced Reproductions, Inc. The wafers were patterned using a Quintel Mask aligner. Exposure 

dose was found to be 201 mJ of broadband UV through experimentation. The resulting structures 
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were then hard-baked at 100 °C for 20 min. The process was repeated to create multiple samples. 

Control samples were kept with no cladding, while another group were deposited with 3 um 

PECVD SiO2 cladding, and others the full material stack shown in (Figure 40).  

 

Figure 41: Optical micrograph of a fabricated SU8 waveguide device. Work based on the design 
of Fig. 40.  
 
4.5 Waveguide Loss Testing 

In order to characterize the fabricated optical waveguides a test setup was needed that 

would allow for launching light into the structure with minimal spill around the outside of the 

structure influencing the measured light output. To achieve this goal, a test-setup was built with 

the help of Dr. Muller and his students in the physics department at USF. Using an air-stabilized 

optics table as a platform a 10 um fiber was positioned directly in front of the 20 um x 50 um 

waveguide structure. The fiber was free-space coupled to a 450 nm laser on one end while the 

other end was affixed to a XYZ position stage for precise control of the into a single mode fiber. 

This allowed the fiber to be positioned directly in front of the waveguide structure to measure the 

output power avoiding light spillage for coupling into the underlying substrate. The setup is also 

capable of imaging the end of the waveguide using a camera for beam size and shape 

measurements, as shown in Figure 42. 

50um 
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Figure 42: Setup for measuring the insertion loss of waveguide devices. The measurements 
were performed in Dr. Muller’s laboratory in the physics department at USF. 
 

The laser beam was generated via a 450 nm 113 mW free-space laser aligned with two 

mirrors and launched into a single-mode fiber via a collimator. After collimation, the output power 

of the fiber was measured to be 3.2 mW. Light emerges from the distal end of the waveguide onto 

a Si photodetector for waveguide output power measurement. The fiber was aligned for maximum 

intensity from the waveguide for each measurement.  

For measuring loss per unit length the microfabricated 50 um x 20 um x 30 mm structures 

were cut into various precision lengths ranging from 1 mm to 15 mm using a diamond blade dicing 

saw.  The waveguides were then mounted onto the stage one at a time with double sided adhesive 

tape. Before each measurement the power output from the optical fiber was measured to ensure 

proper loss calculation. The results of the test show a loss of -1.04 dB/mm for uncladded 

waveguides and -3.3 dB/mm and -3.9 dB/mm for those cladded in SiO2 and SiO2/a-SiC 

respectively. The coupling loss is found from the y intercept and is estimated at ≈-1 dB for 

uncladded (air cladded) waveguides and ≈-3.2 dB to -3.9 dB for the cladded stacks. 
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Figure 43: Optical loss (dB) per mm of waveguide structures. Optical loss was measured in dB 
per mm from the polymer optical waveguides fabricated on 3C-SiC substrates. Also shown are 
the linear fit models for each material stack type which indicate a relatively good linear-fit to the 
data.  
 

The loss per unit length reported here is very similar to those SU-8 waveguides reported 

in the literature for a similar sized structure. For example, Maesoon at al. from the University of 

Michigan reports using 15 um square SU-8 waveguides for optogenetics with a total loss of 22.04 

dB over a path length of approximately 5 mm (approximated from figure) [26].  This gives our 

waveguide similar results and the ability to activate ChR2 through its length.  

4.6 Pulsed Optical Source Creation  

In order to achieve multi-wavelength optogenetics stimulation a general light pulser setup 

was created. The setup needed to be cabible of generating 5 ms pulses of both 473nm and 530 

nm light for ChR2 and NpHr respectively. The sources needed to be coupled to LED for flexable 

device development and testing.  

To achieve this goal, fiber coupled LED diodes were obtained commercially through Thor 

Labs (MF470F1,M530F1) and were driven using 300 mA constant current power supplies and 

controlled using an Atmel ATMega328P  microcontroller system. The diodes were fiber coupled 
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to 200 um core multimode optical fibers and the system was bench marked for both speed and 

light intensity. The software was set to generate 5 ms light pulses and the fiber output was 

detected using a silicon photodiode and displayed on an oscilloscope (Figure 44). The emitted 

optical intensity from the fibers was benchmarked using an optical power meter and silicon 

photodiode. The 470 nm blue channel provided 73.2 mW/mm2 and the 530 nm channel provided 

35 mW/mm2. The system’s output intensity can be adjusted in 255 discrete steps down to zero 

using the microcontroller software. This capability may be useful later when the system is coupled 

to waveguides with high inherent loss characteristics or multiple concurrent stimulation channels. 

Overall, it was determined that this system would provide both the temporal precision and light 

intensity required for optogenetic stimulation. This will provide a controller test bed when exploring 

other optical hardware.  

 

Figure 44: Generated 5 ms optical pulses. Oscilloscope data showing 5 ms optical pulses 
detected from the 473 nm fiber output of the system. An amplified Si photodiode was used in 
conjunction with an oscilloscope to display the pulse timing. Each pulse displayed 73.2 mW of 
average power. 
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4.7 Optrode Design Overview 

The outside device design was modeled after a 5 mm probe geometry similar to that used 

by NeuroNexus (probe model A1x16-5mm-100-177-A16). This outer geometry was chosen so 

that, in future work, the probe could be directly compared to standard Si probes for chronic 

implantation studies. A 60 um waveguide width was chosen to provide sufficient optical coupling 

to the source in coupling and activation while the 20 um height was to provide for ease of 

fabrication on subsequent mask alignment steps.  

 

Figure 45: Overview of the adopted SiC optrode design. 
 

The lithography mask layout was created in Autocad 2012 for later conversion to the GDSII 

filetype used in mask making. The mask was designed as a single 12 mm die with multiple 

interlocked shanks (Figure 46). This was done to allow for an outer framework the process have 

better adhesion to the carrier wafer used in crucial ICP etching steps and the utilization of step-

and-repeat mask making to be used. Later, in packaging, the shanks will be removed by using 

precision vacuum tweezers. Each shank was designed to be broken at the designed snap point 

near its base as per the excellent suggestion of Dr. C. Frewin in our group.   

 

Figure 46:  Mask layout of a single die of the optrode system. 
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4.8 Fabrication Process 

The processing of the SiC-based implant device is heavily dependent on Inductively 

coupled plasma (ICP) etching used in multiple steps each requiring precise timing of etch 

parameters. Four masks are used in the total process, one for each lithographic step. The most 

difficult part of the process is the final release of the probes from the substrate wafer as the probe’s 

substrate thickness is on the order of 10 um. Over etching the wafer’s backside and etching 

through the device can happen in a misjudgment of just a few seconds just to illustrate this point.  

The process is outlined in detail in Figure 47. The devices begin with an epitaxial 3C-SiC 

film grown by chemical vapor deposition (CVD). On top of this SiC film, 3 um of PECVD SiO2 is 

deposited to act as both a lower cladding layer for the waveguide and also electrical insulation 

from the underlying substrate. This is followed by a metallization stack of 200 Å of Ti and 2000 Å 

of Au for the electrical conductors that is patterned using photoresist and etched using Au etchant. 

This completes the  electrodes definition. Next, in another PECVD deposition, .40 nm of SiO2 is 

used as an adhesion layer for a layer of amorphous SiC (a-SiC) which completely covers the 

metal contact layers. This metal layer is then patterned using photoresist-based lithography and 

ICP etching to reveal windows in the insulation for micro-electrodes and pads for wire bonding. 

ICP etching is used because, like single crystal SiC, a-SiC has very slow etch rates so the material 

is removed with high intensity RF bias (>1500W). Next, using lithography, 20 um x 60 um 

multimode optical waveguides are patterned using SU-8 polymer on top and adjacent to any 

electrodes. This completes the functional components of the device. The following steps are used 

to release the fabricated probes from the underlying substrate through wafer bonding and wafer 

thinning using ICP plasma.  
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Figure 47: Process flow for creating SiC based neural probes. Process flow for creating SiC based 
neural probes with active electrodes and waveguide structures. Steps 1. through 8. described in 
detail in the text.  
 
Devices were etched using this process and fabricated to step 7 Figure 47. The resulting device 

is shown in Figure 48 unreleased from the underlying Si substrate. Although nearly finished, the 

last release step(s) 7-8 were not achieved in the time of writing this document and are left as 

future work for the team.  

The technical difficulty with fabricating on highly stressed 3C SiC was evident as several 

wafers were developed to this point and subsequently destroyed by the subsequent flip and bond 

process (step 7). In general, the final device film is 6 um in thickness and requires very precise 

etch timing to avoid etching into the device itself. In addition, any gas bubbles trapped during the 

flip and bond step cause allows the plasma to wrap around the device and etch the backside. 

Once this occurs the device is destroyed. Although precise timing was used in conjunction with a 

precise thickness of photoresist for the probe masking layer etching was a re-occurring problem. 

This is a common problem to the material and will need to be resolved before mass 

commercialization of such a device.  
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Figure 48: Optical micrograph of a SiC neural implant. SiC neural implant composed of 13 
optical microscope images compiled into one photograph. Electrodes on the implant and the 
central SU-8 waveguide are visible in the photo. The rough blackish material is the underlying 
handle wafer which had yet to be removed at the time this photograph was taken. 
 

Under high magnification the electrodes on the tip of the device are visible Figure 49. The 

etched electrode windows appear as white dots overtop the electrode geometry. This was a 

improvement over the MEA devices in chapter 3. The MEA devices exposed the underlying 

substrate due to the fact that the windows were larger than the electrode area. By inverting this 

and creating tightly controlled windows overtop of the metallization we can avoid any unnecessary 

contact with other less biocompatible materials.   

 

Figure 49: High magnification optical micrograph detailing device electrodes. Four electrodes 
are visible and the exposed electrode diameter is 10 um for each location. 
  

5mm 

ICP Etched Electrode Windows 
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4.9 Packaging 

Devices that are this fragile and small require proper packaging for handling, implantation, 

and connection to peripheral bio potential amplifiers. Using Cadsoft Eagle 3.6 a carrier board was 

designed with integrated bond pads, traces, and dual-in line package (DIP) style breakout 

connector. The carrier was designed to be epoxy-bonded to the finished probe and then wire 

bonded to the integrated bond pads on the implant. The carrier board was designed with gold 

plated contacts to facilitate good electrical connection when using a thermosonic ball bonder.  

 

Figure 50: Carrier boards for the SiC based implants 
 

4.10 Conclusion  

In this chapter we presented the design for a SiC based optrode based on work done 

previously from the MEA design and fabrication discussed in chapter 3. We designed and tested 

SU-8 polymer waveguides for use for optogenetic stimulation that utilized a novel material stack 

involving SiO2 and amorphous SiC (a-SiC) to improve biocompatibility of the SU-8 polymer 

material. A microcontroller-driven system for light pulses was built and tested to ensure temporal 

precision capable of ChR2 activation. In addition, a SiC based, metal (Au) electrode, optrode 

implant was designed and fabricated in section 4.7-4.9 using MEMS processing techniques. Work 

and testing on the optrode is still ongoing using improved SiC processing techniques developed 

based on lessons learned from this work.  
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CHAPTER 5:  SIC PHOTOCAPACITANCE FOR BIOSENSORS 

5.1 Overview of the SiC Photocapacitor Device  

Photosensitive capacitors (PSCs) are one means to provide continuously variable reactive 

tuning in RF circuitry. In addition they enable capacitive-optical sensing applications to be 

realized. Unlike varactors, PSCs often do not require a DC bias voltage to operate. This is a major 

system advantage when interfacing directly to RF elements or implementing passively monitored 

optical systems. Instead of using conductive wires or traces as control elements, optical fibers or 

free-space lasers can be used for affecting the desired capacitance change. In the case of a 

tunable antenna, this results in little to no perturbation in the surrounding EM field. Also, by using 

durable, high-, high-temperature, very high breakdown voltage, Vbd, semiconductors such as 4H-

SiC, we can greatly expand present day RF circuit capabilities into high power designs. Possible 

applications of the PSC effect include reactive tuning of antennas, phase delay devices, radiation 

detection, and chemical/biological florescence sensing.  

We present experimental findings regarding the photocapacitance effect of Schottky 

barriers fabricated on bulk 8° off-axis high purity semi-insulating (HPSI) 4H-SiC. We have 

fabricated several 1cm x 1cm square photocapacitor devices from bulk material using metal-

evaporated Ti/Au contacts using a simple planar parallel-gap geometry. IV curves were taken of 

the devices using an HP-4145B semiconductor parameter analyzer to verify Schottky behavior 

as a function of DC bias. The devices were then studied for series capacitance (Cs) and series 

resistance (Rs) characteristics using an HP-4284A LCR meter operating at up to 1 MHz and under 

illumination of below-bandgap 470 nm and 590 nm high intensity LED light sources (Thor Labs 

models M470 and M590).   
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The resulting data demonstrated an increase in Cs and a drop in Rs with increasing optical 

intensity incident on the device. This is very reminiscent of the same effect seen in HPSI Gallium 

Arsenide (GaAs) [66][67]. Series capacitance and resistance data points were taken in a range 

of light intensities from the dark condition to the peak power for each LED in 255 discrete steps. 

The diodes were positioned 3 cm above the sample for equivalent and uniformly distributed optical 

spot sizes. Shifts in both Cs and Rs were repeatable with either wavelength with the largest 

capacitance changes seen at low frequency (33 kHz). At this frequency while using 470 nm light, 

Cs increased from its nominal value of 186.7 pF to 575.6 pF while Rs dropped from 150.0 kΩ to 

22.4 kΩ. This demonstrates the existence of the photocapacitance effect in HPSI 4H-SiC and 

thus warrants further investigation. The underlying phenomenon of the effect is suspected to be 

the light’s interaction with the dominant deep level traps through the Shockley–Read–Hall (SRH) 

recombination mechanism.  

5.2 G-G Model  

In this experiment, we explore the use of HPSI 4H-SIC as a photosensitive capacitor 

exploiting its efficient SRH recombination center for high-sensitivity to below-band tuning using 

illumination at 473 nm. The experiment is based on the work of a similar photocapacitance effect 

measured in SI GaAs [66]. The effect will follow a modified model to that proposed by Goswami 

and Goswami (G-G)[68] and then modified by Sakr and Boulais to accommodate Shottky contacts 

(Figure 51).  

 

 

Figure 51: Photocapacitor model based on the G-G model [68]. Left device sketch showing the 
depletion regions in the semiconductor and right the equivalent circuit schematic. The RC 
lumped circuit elements in the center of the model are for variations of the material due to 
absorption as the light passes through the bulk. The capacitors on either side represent the 
junctions of the device. 
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            The given model has two depletion junction capacitances due to each of the metal 

Schottky contacts in series with several internal RC lumped circuit elements approximating the 

varying light Φ(hv) intensity as light penetrates through the thickness of the semiconductor. 

Qualitatively, the system capacitance follows Eq.4.0 where R is the resistance of the device, ω is 

the frequency in radians, and C∞ is the structures capacitance at high frequency. [68] 

𝐶 = 𝐶∞ +
1

𝜔2𝑅2𝐶∞
                                                          (5.0) 

Therefore, by the G-G model the capacitance of the structure increases with light intensity 

due to the reduction in R and can be described as a byproduct of the photoconductivity caused 

by the optical generation of charge carriers in the semiconductor bulk.  

The total capacitance of the device will heavily depend on the polarizability of the 

dielectric. Sources of polarizability within the crystal depend on ionic αi , electronic αe, dipolar αe, 

space-charge αint and a term for the addition of charge carriers during illumination αph, Using this 

idea we now adapt Sakr’s proof of polarization dependent capacitance for our device. In a dark 

condition the polarization is given as:   

𝛼𝑑 = 𝛼𝑑𝑖𝑝 + 𝛼𝑒 + 𝛼𝑖 + 𝛼𝑖𝑛𝑡                                                     (5.1)  

During illumination the 𝛼𝑝ℎ term is added to accommodate the added charge carriers as follows: 

 𝛼𝑇 = 𝛼𝑑𝑖𝑝 + 𝛼𝑒 + 𝛼𝑖 + 𝛼𝑖𝑛𝑡 + 𝛼𝑝ℎ                                                 (5.2) 

The Clausius–Mosotti relation gives the relationship between the carrier concentration, 

polarizabilty of the molecules, and the relative dielectric constant:  

  
𝜀𝑑−1

𝜀𝑑+2
=

𝑁𝑑𝛼𝑑

3𝜀0
                                                              (5.3) 

where 𝜀𝑑 (the relative permittivity) can be written as:  

𝜀𝑑 =
3𝜀0+2𝑁𝑑𝛼𝑑

3𝜀0−2𝑁𝑑𝛼𝑑
                                                              (5.4) 

 

Under photon flux Φ(hv) the permittivity becomes  
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𝜀𝑝ℎ =
3𝜀0+2𝑁𝛼𝑇

3𝜀0−2𝑁𝛼𝑇
                                                             (5.5) 

 

where 𝑁𝛼𝑇  is: 

𝑁𝛼𝑇 = 𝑁𝑑𝛼𝑑[1 + log(1 + 𝑘𝐿)]                                                      (5.6) 

where k is a photocapacitance factor and L is the light intensity. The relationship between 

dielectric constant change and capacitance is 

Cph

Cd
= (

εph

εd
)

n
                                                                     (5.7) 

where “n” is a term related to dielectric morphology, Cph is the illuminated capacitance and Cd is 

the dark capacitance. Combining the previous information, the ratio of capacitance under 

illumination to the dielectric (i.e., dark state) capacitance becomes:  

Cph

Cd
= ((

3ϵ0+2Ndαd[1+log(1+kL)]

3ε0+2Ndαd
)

n
)                                                 (5.8) 

Essentially, this model states that the change in capacitance that the device exhibits will 

be linearly related to the light intensity for low values of intensity. The model isn’t to be taken as 

a direct numerical simulation, but more as a guideline showing the relationship, as it depends on 

constants that are best experimentally determined. According to Sakr, with increasing intensity 

the influx of minority charge carriers produced will taper off and the capacitance will follow an 

asymptotic relationship leveling off at a specific value. Also, the carriers will have an ultimate 

polarization “velocity” that will limit the frequency that the photocapacitor can operate (i.e., less 

capacitance “shift” at higher frequencies).    

5.3 Theory/Calculations 

Semi-insulating silicon carbide has very low radiative and Auger recombination 

coefficients and is therefore dominated by SRH (Shockley Read Hall) recombination and surface 

effects within the material [69][70]. Deep level transient spectroscopy (DLTS) spectra of HPSI 4H-
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SiC samples reveal two fundamental deep level electron traps with DLTS designations Z1/Z2 (Ec-

0.65 eV) and EH6/EH7 (Ec-1.65eV ) [71], [72] (Figure 52). 

 

Figure 52. Summary of major recombination centers within 4H-SiC. [71,72] 
 

The Z1/Z2 center is still of unknown origin but is known to be an efficient recombination 

center and is often cited as the dominant defect level limiting the carrier lifetime in this material 

[71]. Work in electron paramagnetic resonance (EPR)/DLTS has suggested that the double defect 

arises from a silicon antisite - silicon vacancy complex [73]. As such, the Z1/Z2 trap center is a 

combination defect and has equal cross sections for electrons and holes (10-14cm2) making it an 

efficient recombination center [73].  

In addition to the centers listed Figure 52, 4H-SiC often has several other shallow-level 

defect centers from both Al, B (p-type dopants) and N (n-type) impurities. These shallow traps 

decrease the carrier lifetime for SRH recombination but are not a major factor in the bulk material’s 

resistivity due to equal concentrations near 1015 cm-3. It is also worth noting that these shallow 

traps can be greatly reduced by high-temperature annealing thereby making SRH recombination 

more effective [69]. In our experiment, we focused on using low intensity below-bandgap 

illumination to exploit the SRH recombination effect within the material’s recombination centers 

thereby demonstrating a novel, optically tunable, SiC photocapacitive device. Such a device has 
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wide ranging uses suitable for applications such as high-power or ruggedized RF applications, 

rugged fluorescence sensing, or radiation detection. 

The experiment reported here was based on work on a similar photocapacitance effect 

measured in SI GaAs based on the EL2 defect [74],[66]. The effect is described in detail by Boulais 

who proposed three possible mechanisms: 1) Photon bombardment causing the semi-insulating 

state of the material to gradually become more conductive as the incident power density is 

increased, 2) an increasing depletion capacitance that increases with optical power density and, 

3) the surface Fermi level is modified due to the change in surface states upon photon 

bombardment [66], [67]. In general, these effects should not be exclusive to SI GaAs so that HPSI 

4H-SiC should behave in a similar way based on the same mechanisms, albeit at different optical 

wavelengths to the change in semiconductor bandgap energy. Due to a larger bandgap in 4H-

SiC it may be possible to achieve a greater tuning range over GaAs thus further motivating our 

experiments.  

In GaAs the EL2 defect is located near midgap so that, upon illumination, transition of 

electrons to both bands occurs upon direct light illumination [74]. If the Z1/Z2 defect is indeed the 

main defect driving the capacitance change in 4H-SiC then it is likely that much of the trap kinetics 

happen between the trap and the conduction band due to its position in the band gap (Ec -0.6 eV). 

It is assumed that the deep-level trap’s optical cross section will rise abruptly for any energy equal 

to that of the trap’s depth and then decrease again for energies greater than the depth. The Z1/Z2 

depth corresponds to a long wavelength of 2066 nm and 4H-SiC has a total bandgap of 3.25 eV 

[75]. Therefore, to stay within the SRH tunable spectrum, the wavelength chosen for tuning needs 

to be larger than this to avoid direct recombination. Readily available LED light sources at 473 

nm and 590 nm were used to show SRH based capacitance tuning. It is known that the 

wavelength of these sources chosen is not ideal but with further experimentation we will be able 

to better hone in on the best wavelength(s) for our tuning experiments.  
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5.4  Device Fabrication Details 

The experiment presented was designed to validate the existence of the photocapacitance 

effect in 4H-SiC and show its possible use in a device role. The test was done at low light intensity  

<50 mW/cm2 and signal frequencies ≤ 1 MHz. Low light intensities were a requirement to 

differentiate any heating effects from those related to the photoionization of deep-level traps. A 

simple planar capacitor geometry was chosen to expedite fabrication. The planar photocapacitor 

devices were made from commercially obtained off-axis HPSI 4H-SiC substrates grown 8 of the 

basal (001 plane). Resistivity of the 4H-SiC substrate is given from the manufacturer as ρ ≥ 1E5 

Ω-cm and a thickness of 400 µm (Fig.2). The devices were fabricated with a 1cm2 footprint with a 

central 1 mm gap. This device topology allowed for standard CMOS lithography and metal etching 

to create the Schottky contacts.  

To fabricate the device the following steps were taken: The samples were cleaned using 

a standard RCA cleaning process to remove organic and metal contamination from the surface. 

Next, metal was deposited on the topside of the substrate using electron beam deposition. The 

resulting metallization stack consisted of a 230 Å thick Ti adhesion layer followed by a 2600 Å Au 

topside contact. Then, the metallization layers were patterned using standard UV 

photolithography with AZ4620 photoresist. Finally, the metal contacts were etched using a 

combination of HF and TFA Au etchant to form the capacitor gap shown in Figure 53. 

A custom acetate mask was used for the lithography. The mask was used to expose the 

photoresist during a 13 second exposure in the mask aligner. Once the pattern was developed a 

chemical wet-etch was performed using MicroChem Gold etchant to remove the unwanted gold 

followed by a final 2 minute rinse in 50:1 HF to remove the remaining Ti under layer. The resulting 

contacts consisted of a 230 Å thick titanium adhesion layer followed by a 2600 Å gold contact 

(see Figure 53). 
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Figure 53: Photo of processed PSC devices. Processed 2” wafer after lithography and etching 
and before dicing. Substrate is 600 um HPSI 4H-SiC (0001). 
 
5.5 Device Characterization  

The LED sources for the experiment were excited using constant-current mode pulse-

width modulation (PWM) at 214 Hz which corresponds to a total mark space time of 4.7 mS 

(Figure 54). The LED light source’s pulse width was set by a digital 8-bit word in the current 

source’s microcontroller software. Each discrete step (0-255) corresponds to an increase of 18 

uS in width and increases with time until the pulse fills the entire period at 100% duty cycle (digital 

value 255).  

This allows for discretely variable average optical power to be delivered to the sample. 

The LED sources were affixed over the sample at a distance of 3 cm so that the spot size 

completely covered the device’s central gap.  
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Figure 54: PWM timing diagram. Diagram demonstrates how variable pulse width affects 
average power. 
 

 The corresponding electrical measurements were taken using an HP-4284A LCR meter 

configured in two-terminal mode with the HP and HC terminals tied to one pad of the device and 

the LP and LC terminals tied to the adjacent pad (). Effort was taken to reduce the cable length 

in an attempt to minimize stray capacitance.  

 

Figure 55: Experimental setup showing the HP-4285A LCR meter. LEDs, and photocapacitor in 
the configuration used for the experiment. 
 

5.5.1 Schottky Contact Verification  

The contacts for the devices were not annealed in order to realize Schottky contacts. To 

confirm Schottky behavior IV curves were taken using a HP-4145B semiconductor parameter 
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analyzer thus providing a greater level of confidence in the data and providing a sound starting 

point for developing a model of the photocapacitive effect. 

  

Figure 56: IV curves of 5 fabricated photocapacitor devices. Curves demonstrate Schottky-like 
response. Various gap geometries from the wafer were used in the test all-resulting in similar 
Schottky behavior as expected for SiC. The anomaly (negative resistance) on the 2 mm Gap 
series may be accounted for from surface charging during the test. 
 
5.5.2 Below Bandgap Investigation  

The first measurement was a comparison of 470 nm and 590 nm light taken on the same 

device without DC bias at 1 MHz with a 100 mV signal level. The peak power of the two LEDs 

differ so average power was used for the comparison. The 470 nm source is 10.1 mW and the 

590 nm source has a peak power of 3.2 mW as given by the data sheet and verified using a 

handheld optical power meter.  The Cs and Rs data was plotted against the average power of the 

LED sources obtained by varying the LEDs pulse width from 18 uS to 4.7 ms and the average 

power calculated as follows:  

 𝑃𝑎𝑣𝑔 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑢𝑙𝑠𝑒 𝑤𝑖𝑑𝑡ℎ

𝑡𝑜𝑡𝑎𝑙 𝑚𝑎𝑟𝑘 𝑠𝑝𝑎𝑐𝑒 𝑡𝑖𝑚𝑒
× 𝑃𝑒𝑎𝑘 𝑃𝑜𝑤𝑒𝑟                             (5.9) 

Also, to aid in the interpretation of the data, trend lines were added to infer how the device 

may respond at higher power levels of 590 nm illumination to make up for the difference in peak 
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power of the 590 nm LED. The inflection anomaly visible in the figure at low power levels for Rs 

is due to measuring the real part of the series impedance Rs. This could be resolved through 

determining the complex impedance. 

An identical anomaly to that shown in Figure 60 was seen in parallel work done using 

GaAs for a similar photocapacitor device [66]. Curve fitting for the 590 nm data was done with an 

exponential model for Rs (eq 1.1) and a second order approximation for Cs (eq 1.2). These 

models led to the lowest possible R2 squared value. 

 
Figure 57: Measured values of Cs and Rs vs. average power for each diode. Average power 
calculated using eq. 1.0. Curve trend lines for CS are for a second order polynomial and Rs as 
an exponential with respective R2 values. This may provide some insight into further modeling 
parameters. 
 

𝐶𝑠 = 0.5611𝑥2 + 0.2002𝑥 + 1.2139, 𝑅2 = 0.9995                                           (5.10) 

𝑅𝑠 = 83.21𝑒−0.199𝑥, 𝑅2 = 0.9989                                                          (5.11) 

The photocapacitor device was then tested at three discrete signal frequencies using only 

470 nm illumination to determine the frequency dependence of the effect and its corresponding 

sensitivity. It was evident from the data that the lower frequencies (66 kHz and 33 kHz) provided 

a much greater shift in capacitance. However, it is not clear if this shift scales linearly with 
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frequency. It is also important to note that this capacitance shift occurred at extremely low optical 

power levels (~mW) and, therefore, more power may be required to achieve a resonable ∆C shift 

at high frequencies.  

At a frequency of 33 kHz the photocapacitor device demonstrated a sensitivity of 40.7 pF 

per mW/cm2 of excitation power density of 10.1 mW at 470 nm illumination. For a frequency of 1 

MHz this sensitivity dropped to 8.27 pF per mW/cm2.  

Other work on photocapacitance in semi-insulating semiconductors has led to proposed  

1-D models by several authors [66], [68], [76]. These assume a solid piece of material with 

electrodes on either side of the crystal and no external fringing fields. It is theorized that the effect 

will nearly always follow closely to a model proposed by Goswami and Goswami (G-G) that uses 

series combinations of parallel R and C elements [68]. The same model was later modified by 

Sakr [76] and Boulais [66] to accommodate Schottky contacts and variable capacitances within 

the bulk material. Although these models work for general approximations it may be possible that, 

due to inter-trap dynamics, and the real problem existing in a 3D geometry, an exact solution may 

be difficult to develop. 

More generally, it has been proposed by Boulais et al. that, in the case of SI GaAs, the 

photocapacitance effect is caused by an increase in electrons and holes in the material brought 

about by photodoping. It was shown that in GaAs the net trap ionization decreases with increasing 

light intensity [66]. This, in-turn, affects the electric field within the substrate and gives rise to a 

decrease in depletion width. GaAs has an EL2 state near the Fermi level that is believed to be the 

prime center responsible for the effect. HPSI 4H-SiC has similar deep level traps, mainly the EH6/7 

near midgap and the Z1/2 slightly above midgap Figure 52, causing a similar photocapacitance 

phenomenon.  

A general understanding of the response comes from the changing depletion capacitance. 

Qualitatively, the system capacitance follows Eq. 1.3 from [68] where R is the resistance of the 
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device, ω is the frequency in radians per second, and C∞ is the structure’s capacitance at high 

frequency. 

𝐶 = 𝐶∞ +
1

𝜔2𝑅2𝐶∞
                                                           (5.12) 

Therefore, by the G-G model, the capacitance of the structure increases with light intensity 

due to the reduction in R and can be described as a byproduct of the photoconductivity caused 

by the optical generation of charge carriers in the semiconductor bulk.   

5.5.3 HFSS Antenna Simulation  

To demonstrate the utility of the fabricated PSC device we performed a RF simulation on 

a reactively tunable Frequency Selectable Surface FSS using Ansoft HFSS v.14™. In order to 

best illustrate the powerful effect that a PSC has on a resonant RF structure we decided to perform 

these simulations on an antenna structure. The antenna unit-cell choice for the simulation was a 

slot based resonator with a shunt capacitor. Through modifying the structure’s resonance with the 

shunt capacitor we predicted a measureable degree of tuneability to the system.  

The antenna’s geometry was selected due to its simulation simplicity (less computing time) 

and the fact that the design lends itself well to high power microwave (HPM) applications (Figure 

58). Due to the slot geometry, large broad conductors form the bulk of the structure. This 

dissipates heat more efficiently than small traces. The FSS simulation here reflects a signal near 

the X-Band region of the RF spectrum (8-12 Ghz). For the purpose of simulation the entire surface 

is sitting in free space on top of a 100 um thick SiO2 substrate with a relative permittivity εr of 4. 

In addition, the metal regions were modeled as perfect electrical conductors (PEC). 

Many antenna applications such as FSSs or metamaterials can be simulated as a single 

resonator structure replicated periodically in a two (or three) dimensional plane (box). We exploit 

this to perform a simulation on our infinitely-large FSS situated on the x-y plane. In the simulation 

each cell contains a tunable PSC that is a mirror image of all the others. In this was we achieve 

tuneability of the whole array as we sweep through capacitance values. 
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Figure 58: Single tunable cell for X-band simulation. Left dimensions of a single cell of the 
antenna, Right the cell construction within the HFSS software. 
 

This type of numerical simulation requires two major components 1) periodic boundary 

conditions for each unit cell and 2) Simulated ports for launching and absorbing uniform plane 

waves. If the simulated array is sufficiently large it can be modeled using wrap around (periodic) 

boundary conditions as we have done herein. These boundary conditions come in pairs with one 

“slaved” to the other for simulating a field phase offset. In our simulation, this is done by forcing a 

master/slave relationship variable in HFSS (Figure 59).   

 

Figure 59: Assigning master and slave periodic boundary conditions. The condition allows for an 
infinite array of resonators to be simulated. Simulation grid as setup in HFSS. 
 

The phase variable of the boundary conditions provides an angle for the incoming plane 

wave so that the array can be studied at various angles of illumination. In our preliminary 
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simulation we only provided for a perpendicular plane wave (ϴ = 0 , φ = 0) but in future studies 

this variable can be utilized to demonstrate metamaterial effects of the tunable FSSs (such as 

negative index of refraction).  

Working in conjunction with the boundary conditions periodic waveguide ports (i.e., 

Floquet ports) are used to launch the EM plane wave into the unit cell. Only the lowest Floquet 

modes (m=n=0) were considered for the simulation.  The simulation was run and results were 

tabulated for each mode-dependent S parameter in a matrix.  

The simulation resulted in a small degree of predicted frequency tuning of the structure 

based on the TM mode of the antenna (Figure 61 and Figure 62) The TE mode simulation showed 

no variation in tuning. This result is to be expected, as only one polarization will result in E field 

coupling across the capacitor with the present antenna geometry. 

 

Figure 60: Boundary conditions and ports of the resonator simulation.  Floquet ports assigned to 
the model launch plane waves that propagate perpendicular to the FSS.    
 

 

Figure 61: Simulated transmission of the tunable FSS structure. Figure showing ≈300 Mhz of 
tuneability with a capacitance shift of 50 fF. Each 10 fF of change is plotted as a separate trace 
above from 410 fF to 460 fF. 
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Figure 62: Reflection (S11) of the tunable FSS structure. Also shows 300 Mhz of tuneability 
with a capacitance shift of 50 fF Each 10 fF change is plotted as a separate trace from 410 fF 
to 460 fF. 
 

5.5.4 Tuneability of Low Frequency Resonators  

In order to explore the optical tuning properties in the RF resonance structure using the 

4H-SiC photocapacitance effect two small single-turn magnetic loop (SSTML) antennas were 

constructed with a resonant frequency of 25 MHz and 150 Mhz, respectively (Figure 63). The 

SSTMLs are parallel resonant LC tank circuits with the inductance coming from the loop itself. A 

voltage maximum exists near the top of the loop and a current maximum near the bottom as 

shown in Figure 63. A discrete capacitor near the top of the loop acts to phase-shift the antenna 

across its possible resonance frequency. The main loop will inherently have a naturally low 

radiation resistance of less than 1 Ω so proper matching is required. Near the bottom of the main 

loop a smaller loop is used to inductively couple the antenna to a 50 Ω transmission line. In this 

way, the lower loop acts as a loosely coupled (k ≤ 0.5) air transformer for impedance matching 

purposes.  
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(a) (b) (c)  

Figure 63: Antennas used for the optical tuning experiment. (a) Antenna diagram including 
dimensions (b) photograph of constructed 25 Mhz loop showing the VNA used to measure the 
RF performance of the antenna and (c) a photograph of the constructed 150 MHz Loop.  
 

For the 25 MHz SSTML the main outer loop was constructed from quarter-inch copper 

tubing while the inner loop was made from #12 copper wire. At 25 MHz, a full wavelength would 

result in an 11.99 meter loop circumference. This large dimension of a full wavelength was 

impractical for testing so a quarter wavelength (2.81 m) was used as the outer circumference of 

the main loop. The diameter of the inner loop was determined experientially with a ratio of 1 to 5 

inner to outer loop diameter which provided the best SWR ratio. The antenna was then mounted 

vertically on a non-conductive PVC support so that the base of the antenna was elevated 1 m 

above the ground.  An LED was then placed 1 cm from the photocapacitor near the apex of the 

antenna and was powered by wires connected to a constant-current DC power supply. In addition, 

a 445 nm 2.6 W diode laser was used to demonstrate the tuning range. In this configuration the 

laser was colminated into a 5 mm diameter beam and directed onto the center of the 4H-SiC PSC 

from a distance of 1 m.  
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Figure 64: Diagram of PSC microfabricated gap geometries. (a) Simple planar PSC gap design 
with gap dimensions of 0.25, 1.0 and 3.0 mm and (b) the interdigitated PSC to increase the gap 
area with an conductor spacing of 29 um. 
 

Four (4) gap geometries were used in the test. Three of the gaps were of the basic linear 

gap design with the fourth being a dense interdigitated gap capacitor (IDC) used to achieve a 

greater area (Figure 64). The devices were mounted contact side down and back-illuminated so 

that the light was not blocked by the PSC conductors. 4H-SiC has very low absorption at these 

wavelengths so the light is mostly absorbed in the bulk of the device.  

5.5.5 RF Tuning Results  

In the tests conducted both antennas performed well and showed a resonance shift 

provided enough below-bandgap illumination intensity was delivered. The 150 MHz loop showed 

a higher percentage resonance shift with the largest shift at 4.04 % of the resonant frequency but 

showed an undetectable shift with the lower intensity LEDs Figure 65. The data in Table 4 shows 

a light/dark comparison at the full 0.203 W intensity of the 470 nm LED and full 2.6 W intensity of 

the 445 nm diode laser. The laser’s central wavelength slightly differs from that of the LED but 

this is still useful for demonstrating a wide tuning range. The dark condition was established with 

room light extinguished although it did not make a detectable difference in the observed data as 

the 4H-SiC PSC, as expected.  
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Figure 65: VNA data (S11) showing the resonance point. Antenna in the dark condition (marker 
m2) and illuminated by a 2.6W 445 nm laser source (marker m1). The greatest shift was 6.23 
MHz which was seen in the 250 um IDC gap which is a shift of 4.04% of the resonant 
frequency. 
 

Comparisons were made with illuminated vs. dark conditions of the device for various gaps 

with the general trend moving towards the smaller gaps providing a greater resonance shift. The 

25 MHz SSTML would not provide a match to the smaller-spaced 29 um IDC device. This is likely 

due to the low inherent initial Rs value which shorts out the loop.  

All of the resonance shifts, however, have an associated loss in coupling efficiency (Figure 

65). The largest frequency shift related to the greatest loss in coupling. This is likely due to the 

rapid drop in Rs seen in the aforementioned LCR tests shorting the loop’s Vmax point.  

Table 4: Resonance shift of gap geometries. Each gap geometry and antenna combination for 
both 473 LED and 450 nm Laser stimulation.  

25 MHz Loop Gap Structure 
Percent of Resonance Shift 
(%) under .2W 470 nm LED 

Percent of Resonance Shift (%) 
2.6 W 445nm laser 

 28 um IDC .24 % .86 % 

 250 um Gap 0.22 % 1.81 % 

 1 mm Gap 0.20 % 1.24 % 

 3 mm Gap 0.22 % .08 % 

150 MHz Loop    

 28 um IDC .09 % 4.04% 

 250 um Gap .13 % 1.18 % 

 1 mm Gap .34 % 0.96 % 

 3 mm Gap .04 % 0.21 % 
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5.5.6 Circuit Model Development 

To gain a better understanding of the SSTML resonator system a simple circuit model was 

constructed in the Agilent ADS (Advanced Design System) simulation platform. The model of the 

SSTML was a simple LCR circuit that was loosely coupled to an air-core transformer (Figure 66). 

The differences in sizes of the inner and outer loop were accounted for by varying the number of 

turns in the transformer to account for a difference in magnetic flux intersection from each loop. 

The lumped elements in the model combine several terms into each element. The “R” term in the 

model accounts for both the Radiation Resistance Rr  and the loss resistance from the conductor 

Rl .Inductance of the loop L accounts for both the loop inductance Ll and the wire inductance Lw. 

As a starting point for the simulation, loop inductance, loss resistance, and radiation 

resistance were calculated using approximation equations specifically for magnetic loop antennas 

[77].  

𝑅𝑟 = (3.38𝐸 − 8)(𝑓2 ∗ 𝐴)2                                                (5.13) 

𝑅𝑙 = (9.96𝐸 − 4)(√𝑓) (
𝑆

𝑑
)                                                  (5.14) 

𝐿 = (1.9𝐸 − 8)𝑆(7.353 ∗ log (
96∗𝑆

𝜋∗𝑑
) − 6.386)                                  (5.15) 

where A is the loop’s area, S is the conductor length, d is the conductor diameter and f is the 

central operating frequency. 

The schematic shown in Figure 66 was then optimized against actual S11 data collected 

from a Vector Network Analyzer (VNA) using the ADS gradient solver algorithm. This resulted in 

a model with summation of the residuals sum of squares (RSS) function value of < 0.06 (Figure 

67).  The resulting values for the model in were R2 = 1.45185 Ω, L3= 2.87571 μH C2 = 18.9061 

pF, which all seem reasonable for the model chosen.  
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Figure 66: ADS circuit model of the SSTML resonator. 
 

 

Figure 67: Measured (S11) of the fabricated SSTML. Model (S11)(in red) vs. Measured (S11) in 
Blue performance of the SSTML. Note the excellent fit of the model with the data. R2 value of 
.98 
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5.5.7 Sensing with PSC Devices   

Using 4H-SiC for remote sensing would allow for compact and rugged sensing structures. 

In the proposed design a photocapacitor and inductor are shown microfabricated directly onto the 

HPSI 4H-SiC wafer. This structure, used in conjunction with an inductively coupled LED at another 

frequency, would allow for a totally wireless passive sensing system for bio analyte 

characterization, UV sensing, or other florescence applications that respond to wavelengths in 

the sub-bandgap range of 4H-SiC (i.e., EG < 3.2 eV)(Figure 68). Other work in the literature has 

established single-crystal SiC as a biocompatible and hemocompatible material [78]. Thus, 4H-

SiC would be particularly well suited for use in vivo. Magnetic antenna structures are generally 

preferred as it has been shown that the magnetic field has less loss in the conductive fluid 

environment of the body [79].  

 

Figure 68: PSC as a possible sensing element. Possible monolithic geometry for using the SiC 
PSC as a sensing element. A PSC and inductor would be microfabricated directly on 4H-SiC, as 
shown, and tuned using a laser diode or LED thus allowing for a completely wireless sensor. 
 

5.6 Conclusion  

We have successfully demonstrated a multi-wavelength tunable photocapacitor made of 

HPSI 4H-SiC. We have modeled, measured, and demonstrated an effect that has yet to be 

reported in the literature. The fabricated devices showed changes in both series capacitance and 
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series resistance at 470 nm and 590 nm illumination wavelengths. For 470 nm the sensitivity of 

the device ranged from 40.7 pF per mW/cm2 at 33 kHz to 8.27pF per mW/cm2 at 1 MHz. From 

the data it is apparent that below-bandgap light influences the series capacitance and resistance 

in a predictable manor suitable for many tuning device and sensing applications. More work will 

need to be done to determine the frequency limits, as well as the temperature dependence of the 

technique. In future work the effect will be studied at higher power levels and tunable wavelengths 

used to optimize the effect to the trap(s) and an exact model will be pursued using Comsol™ to 

solve Poisson’s equation in 1-D for the traps thought responsible for the measured effect reported 

here.  

In addition, we have demonstrated ~ 6 MHz (4% of center frequency) shift in a SSTML 

loop antenna using optical tuning via a 4H-SiC photosensitive capacitor (PSC). These PSC 

devices, when optimized and combined with other monolithic circuitry, will be extremely useful for 

lower frequency phase shifters and passive sensing applications particularly when extremely 

rugged or high temperature solutions are required. Even with relatively low illumination intensity 

(< 1 W), RF resonance shifts were detectable from a loop antenna coupled only by mutual 

inductance. In every case, the observed frequency shift was marked by a significant loss in 

coupling efficiency that may hinder high powered RF applications but future work on improving 

the RF circuit should improve this situation. These initial investigations warrant more work to be 

done with the devices to push the boundaries of ruggedized electronics for both RF and UV 

sensing applications. 
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CHAPTER 6:   CONCLUSION AND FUTURE WORK 

6.1 Conclusion  

There are many ways that SiC can be used as a biomaterial for both passive encapsulation 

and sensing applications. We have shown that the material’s mechanical resilience, chemical 

resistance, and semiconductor properties make it suitable for the next generation of active 

implants and biodevices. Although SiC materials are costly and the use of the materials is process 

intensive, we believe the benefit they provide may far outweigh any potential cost. Currently, no 

other biomaterial provides suitable solutions for chronic implantation. 

Processing highly stressed wafers of 3C-SiC on Si was a very challenging part of the work. 

If the stress in the material could be kept to near nominal levels, alignment error due to wafer bow 

and fractured substrates would vastly improve yield and processing speed. Efforts to nominalize 

the resulting stress in the CVD SiC wafers produced by our team are currently ongoing.  

Despite these setbacks the original goal of this research, the demonstration of an advance 

SiC-based Optrode, was achieved, albeit in the absence of biological testing due to final device 

fabrication failure caused by the aforementioned stress issue. Nonetheless, a novel, all-

biocompatible neural interface consisting of 4 electrical recording traces and an integrated optical 

waveguide has been simulated designed and fabricated. This device is capable of delivering both 

blue and yellow light, which is needed in optogenetics research, and has been characterized on 

the laboratory bench and shown optical performance similar to what is reported in the literature. 

What is novel here is the a-SiC coating, which has not been reported, and the integration of this 

waveguide on biocompatible 3C-SiC supports. With lower-stress 3C-SiC films we will be able to 

harvest these novel probes and use them for optogenetics experiments in the near future (see 

the next section, Future Work, for more details). 
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The amorphous SiC (a-SiC) process developed herein is useful for insulators and 

encapsulation of other active components and shows good biocompatabiliy based on ISO10993 

stesting in our group . The process presented has tunable Si/C stoichiometric ratios allowing for 

control of optical index, inherent stress (compressive or tensile), and can be applied across a wide 

temperature range. Due to the temperature agility the process can be used for deposition over 

polymer biomaterials improving encapsulation and thereby acting as a barrier to prevent 

dissolution of the base material [80].  

The photocapacitance work presented for HPSI 4H-SiC is the first documented case of 

the photocapacitance effect in 4H-SiC used in a device role. Although preliminary, the data shows 

promise for UV sensing and RF tuning applications. RF tuning of resonant structures was 

achieved with over a 4% shift in resonance indicative of an observable capacitance change.  In 

the future this would be coupled to monolithic inductors to form wireless sensor elements.  

Overall, we have established SiC as a rugged, implantable, biomaterial that can be used 

for a wide variety of biological applications. We have explored several uses for the material by 

modeling physically relevant effects and collecting relevant data. In addition, by developing new 

processes to deposit and fabricate wSiC biomaterials we have pushed closer towards our goal of 

long-term functional implants. 

6.2 Future Work  

The SiC based optrode device presented in Chapter 4 is the first step in integrating 

onboard power and electronics that will make an implantable BMI interface designed for chronic 

implantation. By adding single crystal SiC based electrodes in 3C-SiC and waveguides to the 

optrode system presented, an entirely ‘all-SiC’ metal-free implant can be realized. This would be 

a large step forward for the technology and would prevent many of the complications caused by 

long-term failure of current biomaterials. Improvements in the heteroepitaxial growth of 3C-SiC 

on Si by are group are the key to this dream, and recent progress indicates that very low wafer 
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bow is possible once the correct growth process is used. The first task to complete, based on this 

work, is the realization of free-standing SiC optrodes based on the work presented in Chapter 4. 

The same holds true for the microelectrode array (MEA) systems presented in Chapter 3. 

These devices would also greatly benefit from the removal of metal in long-term cell culture. 

Again, in conjunction with single-crystal SiC waveguides, these devices would improve current in 

vitro testing. One important materials processing point requires further elaboration at this point to 

show how the ‘all-SiC’ device would be realized. 

Using a highly conductive trace of 3C-SiC, say p++ doped via either ion implantation, laser-

based implantation, or epi growth followed by etch-back, a pn-junction isolated electrode can be 

realized as shown in Figure 72.  

 

 

 

Figure 69: Cross-section schematic of pn junction isolation. Diagram depicts adjacent highly 
conductive traces of 3C-SiC. The process consists starts with lightly doped (either n or p type) 
3C-SiC film epitaxially grown. Next, A highly doped (either p++ or n++) film is then formed to 
realize the conductive trace. Due to the pn junction blocking adjacent traces would be 
electrically isolated to reduce cross-talk. Coating of the entire device with a-SiC would finish the 
‘all-SiC’ device structure thus allowing for in vitro and in vivo use. 
 

Working with Applicote LLC, Orlando, FL, we have been developing a direct-write laser 

doping process that would allow for a much more cost effective means to realize the conductive 

traces of Fig. 72. Figure 73 shows some examples of preliminary data from Applicote on USF 

provided SiC substrates. Both n+ and p+ traces have been realized to date. However process 

optimization is on-going and the most important characterization, the proof that a suitable pn 

junction can be realized, is one of the first orders of business here.  

 

n-type 3C-SiC 

a-SiC 

p++-type 3C-SiC 
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(a) 

 

(b) 

Figure 70: Optical micrographs of laser doped traces in 3C-SiC. (a) n+ doped 3C-SiC on n- 3C-
SiC and (b) p+ doped 3C-SiC on n- 3C-SiC. Data courtesy of Applicote LLC, Orlando, FL. This 
process would allow for the realization of an ‘all-SiC’ device that would be lower cost and 
fabrication time than traditional ion implantation and annealing.  
 

The amorphous SiC (a-SiC) coatings developed in Chapter 2 hold promise for long-term 

use. The process to deposit these coatings can still be optimized through the removal of oxygen 

contamination and better stress measurement techniques. By improving this process it may be 

possible to further reduce the deposition temperature and incorporate low temperature polymer 

substrates such as Polyethylene.  

All of the optical stimulation in the presented work was done using the single photon 

stimulation. By using two-photon stimulation, it has been shown that stimulation events can take 

place deep within the tissue without optically stimulating the tissue up until the focus point. As an 

example, by focusing a 946 nm light source to a point deep within the tissue a two-photon event 

will occur at the focus depth having the energy of two 946 nm photons or the characteristic 473 

nm stimulation required for Chr2 opsins. In this way, more precision could be added to the optrode 

system presented in Chapter 5. Through using two-photon stimulation the stimulation point could 

be located some distance from the implant providing better targeting.  

≈50 um Line ≈100 um Line 
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Appendix A 4H-SiC Simulation Parameter Table for Photocapacitance 

Table A.1: 4H-SiC simulation parameter table for photocapacitance 

Variab

le  

Explanation Reported Value MKS units Reference 

Vntherm

al 

Thermal Velocity of electrons  1.9E7 cm/s 1.9E5m/s  [81] 

Vptherm

al 

Thermal Velocity of Holes  1.2E7 cm/s 1.2E5m/s [81] 

σn Electron Capture Cross Section of 

Z1/Z2 Defect 

(2-4)E-15cm2 (2-4)E-19m2 [82][71] 

σp Hole Capture Cross Section of 

Z1/Z2 Defect 

(1-2)E-14cm2 (1-2E-18m2 [82][71] 

Nt Intrinsic Carrier Concentration  (2-3)E15cm-3 2-3E21m-3 [83] 

σ p0
 Optical Ionization Cross Section 

(holes) 

*This data is still lacking in the 

literature 

* * ** 

σ n0 Optical Ionization Cross Section 

(electrons) 

1.5E-15cm2 1.5E-19m2 [84] 

NZ1/Z2 

trap 

Z1/Z2 Defect Density 

 *varies greatly with sample 

1E13-1E14cm-3 1E19-1E20m-3 [69][85] 

µe Electron Mobility ≤900 cm2 V-1 s-1 .09m2 V-1 s-1 [81] 

µn Hole Mobility ≤120 cm2 V-1 s-1 .012m2 V-1 s-1 [86] 

Egap Bandgap 4H SiC 3.25eV  [75] 

EFermi Fermi Level in HPSI 4H 1.6 below Ec 

*Due to defect 

pinning 

 [87] 

EZ1/Z2 Location of the Z1/Z2 Defect  Ec-.65eV  [4][5] 

NBs Shallow Boron Concentration 

 

=3.6E+14cm-3 

*varies  

3.6E20m-3 [88] 

NNs Shallow Nitrogen Concentration 

 

=1.8E+15cm-3 

*varies 

1.8E21m-3 [88] 

g 

0(Z1/Z2) 

Degeneracy Factor of the Z1/Z2 

Trap Center 

*Data is lacking in the literature 

   

enthermal 

@293K 

Thermionic emission rate of 

electrons in the Z1/Z2 defect 

.2516 cm-3 s-1 2.516E5 m-3 s-1 [89] 

epthermal 

@293K 

Thermionic emission rate of holes 

in the Z1/Z2 defect 

.08 cm-3 s-1 8E4 m-3s-1 [89] 

  



112 
 

Appendix B Parameters Used for Electrode Simulation Data 

Table B.1: Parameters used for electrode simulation data 

Parameters Used for Simulation Data 

Parameter Value Description 

𝜀𝑙𝐻𝑃 6 Permittivity of Inner Layer [2] 

𝜀𝑑 50 Permittivity of Diffuse Layer  [2] 

𝜀𝑂𝐻𝑃 32 Permittivity of Outer Layer  [2] 

𝑑𝑙ℎ𝑝 0.3nm Inner Plane Distance [2] 

𝑑𝑜ℎ𝑝 .7nm Outer Plane Distance [2] 

z 4 Number of Valance Electrons  [2] 

𝑛0 154mM Bulk Concentration of Ions in Solution  [2] 

n 0.9  Factor for surface irregularities. [2] 
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Appendix C Permission for Reproduction of Materials 

 

Figure C.1: Reprint permission from Nature Publishing Group for Figure 5 
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Appendix C  (Continued) 

 

Figure C.2: Reprint permission from Springer Press for Figure 6 
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