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ABSTRACT

The Spin-Transfer Torque Magnetoresistive Random Access Memory (STT-MRAM)

has opened new doors as an emerging technology with high potential to replace traditional

CMOS-based memory technology. This has come true due to the density, speed and non-

volatility that have been demonstrated. The STT-MRAM uses Magnetic Tunnel Junction

(MTJ) elements as non-volatile memory storage devices because of the recent discovery

of spin-torque phenomenon for switching the magnetization states. The magnetization of

the free layer in STT-MRAM can be switched from logic “1” to logic “0” by the use of a

spin-transfer torque. However, the STT-MRAMs have till now only been used as universal

memory. As a result, STT-MRAMs are not yet commercially used as computing elements,

though they have the potential to be used as Logic-In-Memory computation applications.

In order to advance this STT-MRAM technology for computation, we have used di↵erent

MRAM devices that are available as memory elements with di↵erent geometries, to use it as

computing elements. This dissertation presents design and implementation of such devices

using di↵erent multilayer magnetic material stacks for computation. Currently, the design

of STT-MRAMs is limited to only memory architectures, and there have been no proposals

on the viability of STT-MRAMs as computational devices. In the present work, we have

developed a design, which could be implemented for universal logic computation. We have

utilized the majority gate architecture, which uses the magneto-static interaction between

the freelayers of the multilayer nanomagnets, to perform computation.

Furthermore, the present work demonstrates the study of dipolar interaction between

nanomagnetic disks, where we observed multiple magnetization states for a nanomagnetic

ix



disk with respect to its interaction energy with its neighboring nanomagnets. This was

achieved by implementing a single layer nanomagnetic disk with critical dimension selected

from the phase plot of single domain state (SDS) and vortex state (VS). In addition, we found

that when the interaction energy between the nanomagnetic disks with critical dimension

decreases (increase in center-to-center distance) the magnetization state of the nanomagnetic

disks changes from single domain state to vortex state within the same dimension. We were

able to observe this e↵ect due to interaction between the neighboring nanomagnets.

Finally, we have presented the design and implementation of a Spin-Torque driven Re-

configurable Array of Nanomagnets (STRAN) that could perform Boolean and non-Boolean

computation. The nanomagnets are located at every intersection of a very large crossbar

array structure. We have placed these nanomagnets in such a way that the ferromagnetic

free layers couple with each other. The reconfigurable array design consists of an in-plane

(IP) free layer and a fixed polarizer [magnetized out-of-plane (OP)]. The cells that need to

be deselected from the array are taken to a non-computing oscillating state.

x



CHAPTER 1

INTRODUCTION

1.1 Motivation

There were only three types of Random access memory that prevailed for a long time in

the semiconductor industry, with each device only performing adequately; Static Random

Access Memory, also known as Static RAM or in short SRAM, Dynamic Random Access

Memory or DRAM and Flash Memory. Of these types, SRAM was the most robust with ex-

cellent write speed and read speed, but the problem was with the dimension of the cell. The

SRAM requires at least six or more CMOS transistors per cell. The operational e�ciency

of SRAM was quite impressive and it was ideally suited for cache memory, where the per-

formance of the cell is less critical than the memory density. In addition to the cell size, the

SRAM is volatile, but requires very low power for data retention [5, 6]. The next type, which

is DRAM, was able to provide a better memory density, as it needs only a single transistor

with a storage capacitor [7, 8]. However, the capacitor seems to be so leaky, that to maintain

the charge in the capacitor the cell needs large amount of power with a high refresh cycle of

few milliseconds [9]. This has limited the DRAM application only to the main memory of

a system, where the density along with the performance is more important than the power

consumed [10]. The last type of the memories, which is Flash memory, is very attractive

because of its non-volatility and high density. The Flash memories have a reasonable speed,

but the write speeds are slow and the endurance is very low [11, 12, 13]. Ideally, for the best

performance, all three of these cells have to be mixed into a single device that is low power,

high density, high endurance, high read/write speed and low cost [14]. Spin-Transfer Torque
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Products/
Performance/

SRAM/ DRAM/ Flash/
(NOR)/

Flash/
(NAND)/

FeRAM/ MRAM/ RRAM/ STT=MRAM/

Non=vola?le/ No/ No/ Yes/ Yes/ Yes/ Yes/ Yes/ Yes/

Cell/Size/[F2]/ 50/=/120/ 6/=/10/ 10/ 5/ 15/=/34/ 16/=/40/ 6/=/10/ 6/=/20/

Read/Time/
[ns]/

1/=/100/ 30/ 10/ 50/ 20/=/80/ 3/=/20/ 10/=/50/ 2/=/20/

Write/Time/
[ns]/

1/=/100/ 15/ 1μs///1ms/ 1ms///0.1ms/ 50///50/ 3/=/20/ 10/=/50/ 2=/20/

Endurance/ 1016/ 1016/ 105/ 105/ 1012/ >/1015/ 108/ >/1015/

Write/Power/ Low/ Low/ Very/High/ Very/High/ Low/ High/ Low/ Low/

Power/
Consump?on/

Leakage/ Refresh/ None/ None/ None/ None/ None/ None/

Figure 1.1. Comparison of memory technologies (From: [1])

Magnetoresistive Random Access Memory (STT-MRAM) is an emerging memory technol-

ogy that combines all the advantages of the three basic memory technologies and has the

potential to become as a universal memory [15, 16, 1, 17, 18]. The interest in STT-MRAM

has been tremendous in recent years because it is non-volatile, highly scalable, radiation

hardened and has excellent write selectivity, low power consumption, simple architecture,

easily integrated with other technologies and faster operation. A comparison table of the

currently available memory technologies is shown in Fig. 1.1.

The STT-MRAM is actually a second generation MRAM family [1, 19, 16, 20, 21]. The

MRAM uses the magnetization state of the magnetic layers to encode the binary bits “0” and

“1”. The MRAM technology gained a lot of interest when the room temperature tunneling

magnetoresistive read was discovered [22]. A schematic diagram of the MTJ element is

shown in Fig.1.2. There are two possible magnetization states in an MTJ, based on the

magnetization state of the freelayer and the pinned layer, the parallel magnetization state

and the antiparallel magnetization state. The parallel magnetization state refers to a low

resistance state and is represented as R
P

, while the antiparallel magnetization state refers

2



(a) Parallel (a) Antiparallel 

Figure 1.2. MTJ cell in (a) Parallel and (2) Antiparallel configuration

to a high resistance state and is represented as R
AP

. The STT-MRAM uses spin-polarized

current to write magnetic information in the MTJ cell.

The STT-MRAM requires only two to three additional masks to be integrated with the

current CMOS technology, which accounts to less than 3% of the overall cost [23]. This

technology has been able to replace existing universal memory, as it has several advantages

and similarities over current technology. There have been significant number of papers

published, which have presented 64 Megabyte STT-MRAM with 65 nm CMOS technology.

In [24], authors have demonstrated a second generation MRAM technology, which is low

power. In [15], a 22-nm technology miniaturization was achieved and more interestingly

in [25, 26, 27] authors have easily integrated MRAM with 65 nm CMOS design kit. This

chip was designed by STMicroelectronics [28] with 128K cross-point MTJ arrays. However,

till now STT-MRAMs have been only viewed as a universal memory element. There has

been only little work on TAS-MRAM based FPGA logic circuit [29, 30, 31], domain wall

based logic circuits [32, 33, 34, 35, 36, 37] and no work on using these robust STT-MRAMs

elements for logic computation. By selecting these STT-MRAM cells, we could design high

performance non-volatile logic-in-memory circuits, which could replace the circuits built with

traditional CMOS transistors. As we know, the STT-MRAM’s attractive nature is a result

of easy integration with CMOS technologies. It is possible to open a new field of logic

computation using STT-MRAMs, which is a big challenge.

3



1.2 Dissertation Objectives

In this dissertation, we explore the physics behind the operation of STT-MRAM cells as

computing cells. Till now, they have been only used as memory cells. The contributions of

this dissertation follow:

• Boolean logic implementation using dipolar interaction among multi-layer spintronic

devices: We have explored multi-layer spintronic structures directly for computation

such that the computing and access mechanisms are homogeneous. This would solve

multiple problems of integration, access and power requirements. Based on LLG simu-

lation, we are the first to report successful dipolar interaction between neighboring free

layers of multi-layer spintronic devices and utilized them to realize Boolean logic func-

tions. This interaction between the multi-layer spintronic devices unveils new avenues

of logic implementation for the future that o↵ers possible solutions to the challenges

faced by traditional logic realization.

• Dipolar neighbor interaction on magnetization states of nano-magnetic disks: We have

investigated the e↵ect of magnetic neighbor interaction on the state behavior of nano-

magnetic disks for data storage and computation applications. We have observed and

verified that a nano-magnetic disk with critical geomety can exist in either the single

domain state or the vortex state depending on the edge-to-edge spacing between the

disks. The experiments were conducted by varying the diameter and thickness with

respect to edge-to-edge spacing. The dimensions of the disk were based on the phase

diagram between the single domain state and the vortex state. We have observed,

nano-magnetic disks spaced far apart from its neighbors settled in the vortex state and

disks that were closely spaced settled in the single domain state. Based on our study,

nano-magnetic disks with thickness in the range from 8nm to 20nm and diameter in

4



the range 80nm to 140nm, could exist in either the single domain state or the vortex

state based on the change in edge-to-edge spacing between the nano-magnetic disks.

• Programmable Boolean and non-Boolean computation: We have presented the design

and implementation of a Spin-Torque driven Reconfigurable Array of Nanomagnets

(STRAN) that could perform Boolean and non-Boolean computation. The nanomag-

nets are located at every intersection of a very large crossbar array structure. We

have placed these nanomagnets in such a way that the ferromagnetic free layers couple

with each other. The reconfigurable array design consists of an in-plane (IP) free layer

and a fixed polarizer [magnetized out-of-plane (OP)]. The cells that are to be dese-

lected from the array will be taken to a non-computing oscillating state. In this work,

we have shown: First, a non-Boolean framework e↵ective to solve several instances of

quadratic optimization problems, such as those arising in computer vision applications.

Secondly, a Boolean logic computation framework with dynamically configurable ar-

chitecture, flexible to operate as any logic is presented. The STT strengths, which have

the ability to provide input to the free layer and induce oscillations for deselecting the

cells, have been predicted through LLG simulations.

• We have presented preliminary work on design and implementation of a reconfigurable

Boolean logic computation using Spin-Torque driven Reconfigurable Array of Nano-

magnets (STRAN) and an e�cient way of deselecting a cell from the array using

multiferroic structures is also discussed in this dissertation.

1.3 Dissertation Outline

The organization of this dissertation follow,

• Chapter 2 provides background.

• Chapter 3 describes theoretical background on micromagnetism.

5



• Chapter 4 presents, in detail, Boolean logic implementation using multilayer spintronic

devices.

• Chapter 5 explains, in detail, the e↵ect of dipolar neighbor interaction on magnetization

states of nano-magnetic disks.

• Chapter 6 explains, in detail, the design and implementation of a Spin-Torque driven

Reconfigurable Array of Nanomagnets (STRAN) that could perform Boolean and non-

Boolean computation.

• Chapter 7, concludes the dissertation and provides the future directions for this work.

6



CHAPTER 2

RELATED WORK

Till date, the MOS technology has met the growing needs for electronic circuits [38, 39,

40, 41, 42]. The main motivation that is powering today’s electronics is miniaturization [43,

44, 45]. The metal-oxide-semiconductor field-e↵ect transistor (MOSFET) is a device to

amplify signals or can act as a switch in electronic circuits. The basic principle of operation

was proposed in [46].

Gate Oxide 

Channel Source 
(n-type) 

Drain 
(n-type) 

Substrate 
(p-type) 

Metallurgical 
junctions 

Depletion 
region 

G 

D S 

Figure 2.1. A simple MOSFET device

The MOSFETs are a three terminal device, voltage on the gate terminal creates an

conducting channel between the source and drain as shown in Fig. 2.1. The channel could

be p-type or n-type, accordingly p-MOSFET or n-MOSFET (commonly known as pMOS

and nMOS) which is used in modern digital circuits.
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2.1 Di�culties Arising Due to MOSFET Scaling

By making the transistor and the interconnect smaller and smaller, the number of devices

fabricated on a single wafer has increased, thereby reducing the cost of manufacture and the

power consumption [47, 48]. Each time the minimum width of the source-drain is reduced,

we say the technology has stepped onto the next technology node. It also means that inter-

connects need to be reduced by 70% and thereby the signal delay increases. Additionally due

to the subthreshold current, the transistor which has to be in “OFF” state is not completely

“OFF”.

ScaLing 
LithOGraphy 

channel' e 
a 
k 
a 
g 
e 

xide'

Thickness' reliability'
h'
r'
e'
s'
h'
O'
l'
d'

a'
t'
e'

fiber'op6c'?'
geometry'

N 

Voltage'

Figure 2.2. E↵ects of CMOS scaling

Over the past decade, MOSFETs have been continuously scaled down for the main reason

to pack more and more devices in the same chip area [49, 50, 51]. This resulted in reduction of

the size in all dimensions. By the reduction in channel width between the source and drain,

there were several factors rising namely, reduction in gate voltage to maintain reliability,

thinning the gate-oxide layer, junction leakage, interconnects, heat production. The two

main factors that are caused due to scaling are discussed below,

• Channel length variation: Since the CMOS technology scaling has been the continuous

key for its process, the gate-channel structures requires complex fabrication processes.

8



The channel length variation is caused by the increase in the depletion layer width, as

the drain voltage increases. In extreme cases the channel length reduces to zero.

• Sub-threshold current: It has been assumed that no inversion layer charge exists below

the threshold voltage. This condition leads to a “0” current below the threshold volt-

age. This condition is referred to as parasitic leakage in digital circuits where ideally

there would be no current. Due to scaling, this subthreshold leakage current has been

increasing from all sources and also there has been gate-oxide leakage and junction

leakage. A solution for avoiding this leakage is a tedious task and still it is a critical

step for most of the digital circuit designers.

2.2 Emerging Beyond-CMOS Technologies

There are various emerging beyond-CMOS technologies. These devices are based on

Nano-mechanical devices, 3D vertical devices, Tunneling Field E↵ect Transistors, Spin de-

vices [52, 53]. In nano-mechanical devices, the nanorelay is based on a conducting carbon

nanotube placed on a silicon substrate. The nanorelay is a three terminal device that can

act as a switch, amplifier and as memory element [54, 55]. These Nano-Electro-Mechanical-

Systems (NEMS) are growing rapidly in research fields as a potential substitution for tran-

sistors. The tri-gate transistor has a single gate stacked up on two vertical gates allowing

plenty of surface area for the electrons to travel [56, 57, 58]. These devices rely on electron

travel, they tend to have reduced leakage, less power dissipation and higher speed. Intel

Inc. has been using the tri-gate device in their recent Ivy Bridge processors and Haswell

processors [59, 60]. The tunneling field e↵ect transistors use quantum-mechanical tunneling

to inject charge carriers into the device channel. The TFET’s are built on nanowires with

a huge power reduction and also could be integrated with current CMOS technologies for

low power integrated circuits. Finally, the spin-torque devices use the orientation of the

spin of the electrons to carry the information. These devices o↵er improved area and power

9
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Figure 2.3. Electron spin orientation

consumption over other devices [61, 62]. We will discuss more about this device, which is

the main focus of this dissertation work.

2.3 Spin-Transfer Torque Nanodevices

Spintronic devices emerged from the spin-dependent electron transport in devices [63, 64].

The observation of spin-polarized electron transfer from a ferromagnetic material to another

metal, led to the discovery of Giant-Magnetoresistance (hereafter GMR) by Albert Fert and

Peter Grunberg (1988) [65, 66, 67]. The use of spintronic devices can go beyond several

theoretical proposals from the 1990s.

What constitutes a Spintronic device? The electrons are normally 1/2-spin fermions.

They constitute two states of spin system, spin “UP” and spin “DOWN” as shown in Fig. 2.3.

For a system to be termed as a spintronic device, which is spin electrons, the device should

have the capability to generate spin-polarized electrons. These spin-polarized electrons can

have either the UP spin or the DOWN spin. The spintronic device together has several

layers contributing to a di↵erent purpose. One of its layers can generate the spin-polarized

electrons called the spin-injector; the other layer is the detector, which can detect the spin-

polarized electron. Manipulation of the direction of the spin-polarized electron from the

injector to the detector can be done though external magnetic fields.
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This led to the discovery of the popular device “Spin-valve” by IBM researcher Stuart

Parkin with his colleagues [68, 69, 70, 71]. This device is capable of changing its magnetic

state at atomic level. This discovery has changed the depiction of data storage devices to a

di↵erent level with a dramatic increase in storage capacity. Later, IBM research scientists

following the discovery of GMR, realized that the spintronic device could be a valuable

member for the GMR based hard disk read heads. Later, Parkin found that by applying a

small magnetic field, he could alter the current flowing through the device. The reason of

this significant change is because, when the current flows through the di↵erent layers, the

current gets spin-polarized and all electrons in the device gets spin-polarized in one direction

with “UP” or “DOWN”, depending on the magnetic orientation of these layers. By giving

a small magnetic field, we could reorient these layers, switching “ON” and “OFF” just like

valves. This device also has the capability to detect minute changes in the magnetic field

in a hard drive. This led to the development of the GMR sensor for high performance read

capability. The first commercial use of spin-valve based GMR read head from IBM was

during 1997 when they released Titan [72]. Today, Tunneling Magnetoresistance (TMR) has

replaced GMR. Based on the physics of the device, the device is still spintronic. Since 2007,

the basic spintronic device has been improved with thinner layers with very high tunneling

magnetoresistance.

The GMR is a quantum mechanical magnetoresistance e↵ect, which is observed in thin-

films of a non-magnetic layer (NM) sandwiched between two ferromagnetic layers (FM)

as shown in Fig. 2.4. The 2007 Nobel Prize in Physics was awarded to Albert Fert and

Peter Grunberg for the discovery of GMR efect. It is what is now being used to read

data from the hard disk drives and many other Microelectromechanical systems with GMR

magnetic field sensor [73]. The readout is the significant change in resistance depending

on the adjacent magnetization of the magnetic layers, where the magnetizations can be

parallel or antiparallel. The overall resistance of the device is low when the magnetizations
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Figure 2.4. Spin-valve based on GMR e↵ect. FM: Ferromagnetic layer, NM: Non-magnetic
layer. Arrows indicate the magnetization direction.
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Figure 2.5. Magnetic tunnel junction

of the adjacent layers are parallel. When the magnetizations of the adjacent layers are

antiparallel then the resistance is relatively higher. Applying external magnetic field controls,

the magnetization of the free layer. The GMR e↵ect is based on electron scattering on the

orientation of spin.

2.4 MRAM Basics

The STT-MRAM has the potential to scale below 60nm, with the reduction in the current

by more than a hundred-fold. The STT-MRAM has proved to be an excellent candidate for

a universal memory, because of its non-volatility nature, low power, increased performance

and high memory sensitivity. However, the possibilities of a computation paradigm using

these STT-MRAM have not been opened up.

MRAM has emerged as a non-volatile memory technology that garnered tremendous

interest over the past two decades [19, 1, 19, 16, 20, 21]. The basic MRAM cell is Magnetic

Tunnel Junction (from now referred as MTJ), shown in Fig. 2.5. An MTJ consists of a

oxide-tunneling barrier layer (MgO) sandwiched between two ferromagnetic layers, Pinned

Layer (PL) and Free Layer (FL) [74]. As one can identify from the name, the Pinned

Layer (PL) has its magnetization vector fixed in one direction. Thus, the magnetization
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Figure 2.6. In-Plane MRAM devices

cannot be changed in PL, whereas in FL the magnetization is free to rotate in its easy-

axis directions. In conventional MTJ, the magnetization vector in the FL can take two

directions, corresponding to the PL, parallel or antiparallel. For non-volatile data storage

applications, an MTJ can store 1-bit data with the cell having two states: Parallel (P) state

and Antiparallel state (AP). One of the interesting aspects of this MTJ is the tunneling

magnetoresistance dependence between the P and AP states.

The vectors are represented as R
P

and R
AP

respectively for Parallel and Antiparallel

states. For an MTJ, R
AP

� R
P

. It is very clear that the two states are electrically

distinguishable with their di↵erence in their resistances. A common TMR ratio is given as;

TMR =
R

AP

�R
P

R
P

(2.1)

So a large TMR ratio indicates the di↵erence between the P and AP states is quite

large. The TMR ratio is very important as it determines how easily the two states are

distinguishable.

Numerous types of MRAM structures have been proposed. In various designs, the major

di↵erences are in the magnetization state of the PL. There are four di↵erent MRAM struc-
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Figure 2.7. Out-of-plane MRAM devices

tures that have been proposed till now and can be categorized into In-plane and Out-of-Plane

devices as shown in Fig. 2.6 and Fig. 2.7

• In-Plane devices (IP)

• Synthetic AntiFerro devices (SAF)

• Perpendicular devices (PMA)

• Tilted Devices (TD)

All of the di↵erent types of the MTJs have similar read schemes. As discussed above,

the state of the MTJ can be inferred from their resistance di↵erences. The information

stored in the MTJ can be read by applying a small current through the MTJ and measuring

the resulting voltage or by applying a voltage across the MTJ and measuring the current.

The read current/voltage can be sensed and compared with the reference value determined

from the reference cell. So, what is the main di↵erence in the MRAMs? It is in the write

operation. A brief discussion on the write operation is discussed in the next section.
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Figure 2.8. Field Induced Magnetization Switching (FIMS) MRAM (Obtained from [75])

2.4.1 MRAM Write Operation

Primarily, there are two types of MRAM: Field-induced MRAM (FIMS-MRAM) and

Spin Transfer Torque MRAM (STT-MRAM). The Field-Induced MRAM, is the first type

of MRAM, proposed in [76, 75, 77]. In this type of MRAM, a magnetic field is used to write

information to the cells. Fig. 2.8 depicts the FIMS MRAM cell design. The MRAM cell

design has two lines to generate magnetic fields for write operation (write line 1 and write

line 2). When there is a current flowing through them, the two magnetic fields will be able

to switch the magnetization of the FL [75]. There are several drawbacks of this type of

scheme: The magnetic fields generated by the write lines are di�cult to contain and focus

on single spot. It also creates a disturbance in the magnetization state of neighboring cells

when there is write process being executed with neighbors. Additionally, the FIMS-MRAM

cells have shown poor scalability. These factors have made this type of MRAM technology

too expensive in precise process technologies and has led to the development of a ultra-high

performance STT-MRAM technology.
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2.4.2 Phenomenology of Spin-Transfer Torque

The detailed theoretical description of the derivation of quantum mechanical e↵ects of

spin-transfer torque can be found in [78]. Here, we give the macro spin model of the

spin-transfer torque developed in [78, 79].

In [80, 81, 82], they have studied the spin-transfer mechanism with angular momentum

from the electrons in the ferromagnet. There are di↵erent processes that contribute to the

angular momentum of the spin torque electrons.

• Because of the reflection probabilities of the electron leads to discontinuity of the spin

components, which is later absorbed at the interface of the layers. This will give rise

to a torque in the free layer magnetization and fixed layer magnetization will tend to

align them.

• The scattered spins in the interface leads to another component, which is perpendicular

to the plane formed by the magnetization of the free layer and the fixed layer, which

is called as the perpendicular torque.

This phenomenon happens both in GMR and TMR, but there are very minute di↵erences

between the conduction of the spin electrons, through the spacer in GMR and the barrier in

MTJ.

Consider a trilayer of fixed and free FM layers separated by a NM spacer layer shown in

Fig. 2.5. The magnetization of the pinned layer is assumed to be pinned (in real case, it is

pinned by an AFM layer) and cannot be flipped by any current density [83]. There is an

angle ✓ between the magnetizations of two FM layers for current switching purpose. When

the incoming spin orientation is collinear with the magnetization of the FM layer (✓=0 or

⇡), there will be no torque exerted [84].

Electrons always move in the opposite direction of the current. When current flows from

the free to fixed layer, the s-band electrons will be spin-polarized in the direction of the
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Figure 2.9. Direction of the magnetizations and spins of the electrons

magnetization of the pinned layer [85]. This is the first spin-filtering event: majority-spin

electrons, with pinned layer, are able to pass through the spacer layer. The minority electrons

accumulate in the FM layer. The second spin-filtering event happens in the free layer. When

the electrons reach the free layer, exchange interaction occurs [85]. The electrons will align

themselves along the magnetization of the free layer. Therefore, the spin will start to precise

around the magnetization of the free layer. Since the precession is averaged over all electrons,

transverse components of spin angular momentum becomes zero [86]. Due to conservation of

spin angular momentum, the transverse components of the electron spins will be absorbed

and transferred to magnetization of the free layer. Therefore, the same interaction also

applies a torque on the free layer magnetization, making the magnetization of the free layer

align towards the magnetization of the pinned layer. This torque e↵ect is commonly known

as spin transfer torque (STT). The minority electrons with respect to the free layer will

be reflected back to the fixed layer, the magnetization of the pinned layer will not change

because this torque is not strong enough. If the current density is high enough, that is more

than critical switching current (usually around 107A/cm2), the torque applied by the spin

of electrons can switch the magnetization of the free layer [84]. Similar situation happens
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when the electrons move from the free layer to the fixed layer with one exception. The

torque exerted by the electrons that precise around the magnetization of the pinned layer

is insu�cient to switch the magnetization. The minority electrons are reflected back to the

free layer. These electrons apply torque that is enough to switch the magnetization of the

free layer antiparallel to the fixed layer. The strength of the torque is normally expressed as

the magnitude of current density.

2.4.3 STT-MRAM Device Types

STT-MRAM can be broadly classified into two major categories:

• In-plane

• Out-of-plane

It is essential to know that the source of anisotropy for in-plane devices and out-of-plane

devices is di↵erent. The anisotropy of in-plane device comes from the shape and geometry

of the cell. For out-of-plane devices, the anisotropy source is from the magnetocrystalline

e↵ect. Due to the geometric e↵ects in the in-plane devices, these cells have a large out-of-

plane demagnetization field, while the out-of-plane devices virtually have no out-of-plane

demagnetization field. The critical currents for in-plane and out-of-plane devices are given

below. For in-plane devices,

I
Co

=
2e↵M

S

V (H
K

+ 2⇡M
S

)

~⌘ (2.2)

For out-of-plane devices,

I
Co

=
2e↵M

S

V H
K

~⌘ (2.3)

As one can see, the ratio between the critical currents for in-plane and out-of-plane devices

gives; (H
K

+2⇡M
S

)/H
K

, which is much larger than unity, becauseM
S

� H
K

. The reduction
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Figure 2.10. Reference layer of a tilted device. The magnetization is inclined at certain angle
with Co/Pd material deposited under annealing

in the critical current for out-of-plane devices has made them the best design for STT-MRAM

applications. However, it has been observed that these in-plane devices have very low TMR,

which leads to performance issues, the out-of-plane devices have shown improved TMR as

compared to in-plane devices. The tilted anisotropy can be achieved by, Co/Pd multilayer

material. This material has strong perpendicular anisotropy and by introducing an in-

plane material NiFe, due to the competition of two distinct anisotropies, unique magnetic

configurations can be achieved. It has been observed, that the magnetization in the NiFe

layer is tilted out-of-plane as shown in Fig. 2.10.

2.4.4 Device Applications

2.5 Field-Coupled Computing Paradigm

We have discussed in detail the fundamental limitations of current MOSFET technology

and the scaling limits. Though several modifications have been proposed and implemented

with design and material innovations, to push the scaling limit with vertical 3D transistors,

high-k dielectrics etc., these developments would not help us in sustaining the scaling. Hence,

there is a need for much smarter logic devices that could give us the same performance and

the possibilities of scaling down. This section briefly discusses the new technologies being
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Figure 2.11. STT-MRAM applications

explored as an alternative to MOSFET technology without compromising on performance.

Fig. 2.11 gives us an brief idea of the emerging technologies especially for the computing

paradigm.
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CHAPTER 3

THEORETICAL BACKGROUND

In this chapter we will discuss the magnetic energies, Micromagnetic equation governing

the behavior of physical phenomenon. The magnetic interaction, which is influenced by

di↵erent physical phenomena are mainly discussed in detail in this section.

3.1 Micromagnetics Foundation

The history of micromagnetics evolved during 1935 by Landau and Lifshitz and 1940 by

Brown. The micromagnetic theory was limited to use the standard energy minimization to

determine the domain structures. Around 1980’s with the increased power of computing

hardware availability, there has been a tremendous interest enabling more studies of realistic

problems which are closely proved with experimental data. During this period one of the

important fact that energy minimization approach can be dynamically solved using Landau-

Lifshitz equation of motion was realized and it got a lot of momentum and has been most

commonly used since then. The other area of exploration was happening parallel with the

calculation of di↵erent magnetostatic energies, which contributes most of the calculations

performed in Micromagnetics.

There are three major energy terms that one cannot neglect while performing micromag-

netic calculations, which are exchange energy, anisotropy energy and magnetostatic energy.

The magnetization behavior of a material depends on the balance between these magnetic

energy terms that tries to bring the magnetization to a ground state. In current micromag-

netic simulators, they ignore the atomic nature of the matter to neglect quantum mechanical
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e↵ects and use classical physics as a continuum description of magnetization material cal-

culations. In these calculations, we assume a continuous magnetization vector field M(r),

where r is the position vector and M
s

is the saturation magnetization of the material as

shown in Eq. 3.1.

M(r) = M
s

m(r);m.m = 1 (3.1)

3.2 Energy Terms

The micromagnetics deal with the interactions between magnetic moments governed by

several energy terms. Each of the energy terms is explained in upcoming sections.

3.2.1 Exchange Energy

The exchange energy establishes an important role of covalent bonding in many solids

and is the primary cause of the ferromagnetic coupling. The exchange energy is given by,

E
exch

= �2JS1.Ṡ2 (3.2)

where J is the exchange integral, S1 and S2 are atomic spins. For an ideal ferromagnetic

coupling, J is positive and is dependent on the atomic property of the material. This

interaction is termed as exchange coupling and arises from short-range interactions. Another

model is Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction.

The exchange energy being a short range force, the total exchange energy of the magnetic

layer would be the summation of the entire individual nearest neighbor spins. With this

definition, the exchange energy can be written as,

E
exch

= JS2
X

�2
ij

(3.3)
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Table 3.1. Magnetic moments of transition materials

Material Symbol Configuration Crystal Moment (A.m2) E
exch

(J)
Iron Fe bcc 3d5 2.22 ⇥10�23 -1.21 ⇥10�21

Cobalt Co hcp 3d8 1.72 ⇥10�23 -5.51 ⇥10�21

Nickel Ni fcc 3d7 0.61 ⇥10�23 -4.46 ⇥10�21

The �
ij

represents the angle between the two neighboring spins i and j. So, if the mag-

netic moments align parallel, the material is ferromagnetic. If the moments align antiparallel

to each other, then the material is antiferromagnetic. Table. 3.1 represents the magnetic mo-

ment energy and the exchange energy between two parallel ferromagnetic magnetic moments

of di↵erent transition metals. By reversing the sign of the energy values represent antiparallel

moments.

3.2.2 Anisotropy

The anisotropy energy refers to the properties of the ferromagnetic material, which de-

pends on the direction of measurement. In several experiments, researchers have observed

the energitically-favoured directions that could exist for di↵erent materials. In ferromag-

netic materials, without any external fields, the magnetization tends to rotate along specific

direction, which is referred as easy-axis direction. The anisotropy energy contributes an

important part in the hysteresis curve of a magnetic material. There are several possibilities

of occurrence of anisotropy energy:-

3.2.2.1 Crystal or Magnetocrystalline Anisotropy

This is related to the intrinsic property of the atomic level of a material. In materials

with large anisotropy there exists strong coupling between the internal spins and angular

momentum in atomic level. With the shape anisotropy, the orbits would prefer to lie in

certain crystallographic direction. The spin-orbit coupling makes sure the magnetization
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Figure 3.1. Shape anisotropy

settles in a preferred direction, called the easy-axis direction. So if one would needs to rotate

the magnetization away from its easy-axis direction, energy must be spent - called anisotropy

energy. This anisotropy energy is highly dependent on the atomic lattice structure.

3.2.2.2 Uniaxial Anisotropy

The most common anisotropy e↵ect occuring due to one easy-axis direction is referred

as uniaxial anisotropy. This occurs in in hexagonal crystals as Cobalt.

E = KV sin2✓ + higherterms. (3.4)

where ✓ is the angle between the easy direction and the magnetization, K is the anisotropy

constant, V is the volume of the sample.

3.2.2.3 Cubic Anisotropy

In this case, the anisotropy energy density has cubic density. This anisotropy occurs due

to the spin-lattice coupling in cubic crystals such as Iron.

EV = K
o

+K1 + ↵1
2↵2

2 (3.5)

where ↵ is the direction cosine of the angle between the magnetization.
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3.2.2.4 Shape Anisotropy

This type of anisotropy is due to shape of the material grain. Every magnetic body

produces magnetic charges at the surface when it is isolated and is in itself a magnetic field

source. This is called as demagnetizing field and it acts opposite to the magnetization that

produces it. The demagnetization field is less when the magnetization is along the longest

axis than when it is along the shorter axes.

3.2.2.5 Stress Anisotropy

This arises from the change in lattice structures, as a material is expands or contracts

in one direction. This phenomenon is related to the “magnetostriction” which is also one of

the upcoming field of study for high-density magnetic recording.

3.2.3 Magnetostatic E↵ects

The magnetostatic fields are natural fields arising from magnetization distribution. These

magnetostatic fields are fundamental to a micromagnetic problem. The magnetostatic e↵ects

which gives rise to magnetization structures orders of magnitude greater than the lattice

structure. The magnetostatic energy or the demag energy H
d

is given by,

r⇥H
d

= 0 (3.6)

r(H
d

+ 4⇡M)) = 0 (3.7)

The demagnetization field can be given as,

H
d

= �r� (3.8)

By substituting the value of H
d

we get,
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r2� = �4⇡r.M (3.9)

3.2.4 Zeeman Energy

In 1896, Zeeman discovered the e↵ect using the Bohr design of an atom. In his Zeeman-

Lorentz force explanation an electron moving in a magnetic field, experiences a force that

changes the orbit of the electron. The Zeeman energy e↵ect is the splitting of energy in

atoms, where there is an external energy applied to it. This is caused due to the interaction

of magnetic moments µ in the atom with the magnetic field B which is slightly shifted by,

rE = �µ.B (3.10)

The energy shift is dependent on the amount of the external field applied and also the

direction of the magnetic moment.

3.2.5 Magnetostatic Energy / Dipole-dipole Interaction Energy / Coupling En-

ergy

Consider two magnetic moments µ1 and µ2, parallel to each other. The dipole interaction

between these two magnetic moments can be given as,

E
dipole�dipole

=

Z
µ1µ2

r3
3cos2✓ � 1 (3.11)

From the above equation, we can get some understanding on the nature of the dipole-

dipole interaction. The dipole-dipole interaction strength is dependent on several factors: 1)

the magnitude of coupling energy between the dipoles, 2) the distance between the dipoles,

3) the direction of the dipoles relative to one another. The rate of the dipole-dipole interac-

tion is normally square of the dipole-dipole strength. So, if the rate of fall is 1
r3
, the rate of

27



interaction is 1
r6
. The second term 3cos2✓� 1 plays an important role under di↵erent condi-

tions: 1) when the distance between the dipoles is a constant r, this term with ✓ determines

the e↵ective interaction energy the vector r makes with the z-axis, 2) the term averages to

zero if all the angles are represented over the distance 1
3 .

3.2.5.1 Landau-Lifshitz Equation with Slonczewski Spin Torque

The time evolution of a tangible depends on the Hamiltonian of the system. The Spin

operator in the dynamics of magnetization follows the Heisenberg equation of motion:

i~ d

dt
hŜi = h[Ŝ,H]i (3.12)

where H is the Hamiltonian of the magnetic layer.

The temporary collective spin of the magnetization in the layer, where the magnetization

is free to rotate in its easy axis, can be written as,

dm̂

dt
= �|�|m̂⇥H

eff

(3.13)

In a spin-valve or and magnetic tunnel junction devices, the spins in the free layer will

experience an e↵ective field H
eff

which has, applied field, anisotropy field, and demag field.

As discussed in first section, in the spin-torque e↵ect proposed by Slonczewski and Berger,

the magnetization state can be controlled by electric current [87, 88]. The Hamiltonian,

which includes all the energy terms and the spin-transfer current, is derived in [89, 90, 91].

By including the damping term to the LLG equation, we get,

dŜ

dt
= �gµ

B

~ Ŝ ⇥H
eff

� 2
J
sd

~ Ŝ ⇥ Ŝ
M

+ ↵Ŝ
dŜ

dt
(3.14)

dm̂

dt
= ��m̂⇥H

eff

+ ↵m̂⇥ dm̂

dt
+

�

µ0Ms

⌧ (3.15)
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Figure 3.2. Schematic of Landau-Lifshitz equation. (a) The orange line refers to the magne-
tization precession around the e↵ective field. (b) The magnetization precession with Gilbert
damping term.

where m̂ is the magnetization unit vector and M
s

is the saturation magnetization.

3.2.6 Switching Current Density

The critical current density required to cause magnetization reversal at zero temperature

using macrospin approximation is given as,

dM

dt
= ��M⇥He↵ +

↵

M
s

M⇥ dM

dt
+

�a
j

(✓)

M
s

M⇥ (M⇥ p) (3.16)

J
c0 = (

2e

h
)⇥ (

↵

⌘
)⇥ (M

s

t
F

)⇥ (±H
e

xt+H
k

+ 2⇡M
s

� H
k?

2
) (3.17)

or equivalently in terms of current,

I
c0 = (

2e

h
)⇥ (

↵

⌘
)⇥ (M

s

At
F

)⇥ (±H
e

xt+H
k

+ 2⇡M
s

� H
k?

2
) (3.18)
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3.3 LLG Micromagnetic Simulation

In this section, we review the micromagnetic spin model, that is used in LLG simula-

tor [92], developed by Michael R. Scheinfein, which is widely used to study the magnetization

dynamics of nanomagnetic materials.

The micromagnetic structure present in the surface domains, can be extracted with the

solution to the Landau-Lifshitz-Gilbert equation shown in Equ. 4.1. These methods are

given in [93, 94, 95]. The magnetization equilibrium results from the energy minimization

of the system. We have already seen that a ferromagnetic system is composed of various

energy terms namely, the exchange energy E
ex

denoted by the exchange coupling constant A

(erg/cm), the magnetocrystalline anisotropy energy denoted by K
v

(erg/cm3), the magne-

tostatic self-energy, the external energy and the magnetostrictive energy arising from strain.

The solution for the energy minimization problem is considered as a boundary condition

problem in 2D or 3D space, with the constraint of constant saturation magnetization across

the whole sample. This continuous magnetization across the sample is approximated by dis-

crete magnetization distribution of same volume in cubes for 3D and rods for 2D. The finite

approximation method to solve the LLG equation shown in Equ. 4.1. In this type of approxi-

mation, each individual discrete magnetization cell volume would be treated as 3-dimensional

mesh structure as shown in Fig. 3.3. In this 3D simulator, the cells discretized along x-axis

contains N
x

elements, y-axis contains N
y

elements and z-axis contains N
z

elements. So, the

total simulation volume would be consisting of N
x

x N
y

x N
z

cells. As discussed before,

the bulk saturation magnetization M
s

normally does not fluctuate much across the ferro-

magnetic sample with di↵erent material parameters at room temperature. The value of the

magnetization vector, M(r) within the ferromagnetic sample is the saturation magnetization

multiplied with the direction cosines, which is M(r) = (M
x

(r), M
y

(r), M
z

(r)), which is in turn

with the direction cosines represented as, M
s

↵(r) = M
s

(↵(r), �(r), �(r)). This equation has

the magnetization vector M(r) assumed as ↵(r) = 1. The energy terms are computed over
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Figure 3.3. Discrete magnetization cell volume represented as 3-dimensional mesh structure
in LLG simulation

the appropriate integral over the dimension of the ferromagnetic sample dV. The exchange

interaction between each spin can be approximated as,

E
ex

=

Z
dV [|5 ↵2|+ |5 �2|+ |5 �2|] (3.19)

The exchange coupling constant A (erg/cm), can be obtained from the spinwave [96,

97, 98]. This single spin eases the trace of the magnetization direction. This is more than

su�cient for us to study di↵erent aspects of spin-transfer torque induced magnetization

switching and precession in magnetic nanostructures.

To calculate the magnetic geometry of a ferromagnetic sample, the time evolution of the

magnetization configuration inside a ferromagnetic structure, which is described by the LLG

equation, must be solved. The equation has the following form,

dM̃

dt
= � �

1 + ↵2
M̃⇥ H̃e↵ � �↵

(1 + ↵2)M
s

M̃⇥ (M̃⇥ H̃e↵ ) (3.20)

31



The LLG simulation algorithm is mentioned below,

1. The variables N
x

number along x-direction, N
y

number along y-direction and N
z

num-

ber along z-direction variables are loaded.

2. The fields H
x

field in Oe along x-direction, H
y

field in Oe along y-direction and H
z

field in Oe along z-direction are initialized.

3. The material parameters including exchange constant, saturation magnetization, uni-

axial anisotropy, cubic anisotropy, surface anisotropy, resistivity and anisotropy mag-

netoresistance are obtained from the material database with respect to the material

label.

4. The demagnetization coupling tensor is loaded into the environment along the N
x

, N
y

and N
z

directions.

5. All the output parameter files such as direction cosines file, movie file, magnetization

masking file which carries the magnetic cell dimension parameters are initialized.

3.4 Magnetic Field Coupled Computing Architectures

The magnetic field coupled architecture has a very low power dissipation and high den-

sity. In addition to these advantages they can operate at room temperatures and radiation

resistance devices. A nanomagnetic logic has two di↵erent arrangements of nanomagnetic

architectures embedded into its operation as shown in Fig. 3.4 and Fig. 3.4. In a ferro-

magnetic coupled devices, as shown in Fig. 3.4, when the cells are clocked to its hard axis

and released to settle in its energy minimum, they settle in parallel fashion. Whereas in

antiferromagnetic coupling, when the cells are clocked and released from its clocking state,

they settle in antiparallel fashion ash shown in Fig. 3.4. This wire architecture can be re-

garded as the interconnect between the logic architectures commonly known as fan-out. The
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antiferomagnetic wire architecture can also be used as inverter wire. Where the Binary logic

states can be encoded as two meta-stable magnetization states of the magnets with shape

anisotropy gives two major stable states as shown in Fig. 3.5.

Figure 3.4. Field coupled device architectures. (Top) Ferromagnetic wire architecture. (Bot-
tom) Antiferromagnetic wire architecture.

Figure 3.5. Magnetization states encoded as two Binary logic states “0” and “1”

The basic logic gate architecture of an field coupled devices are majority gate architecture

proposed by Imre et al. shown in Fig.3.6. The majority gate works on finding the majority

of the 3-inputs, Fixed, Input A and Input B as shown in Fig. 3.6. The majority gate is

capable of performing NAND, NOR and NOT logic operation by setting the inputs of the

Fixed magnet to either logic “0” or logic “1” as shown in Fig. 3.7.
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Figure 3.6. Majority gate architecture proposed by Imre et al. in [2]. Figure obtained from
[2]

Figure 3.7. Truth table of majority gate architecture that could be operated as AND or OR
gates

The magnetic field coupled architecture with the ability of fan-out was demonstrated

by Varga et al. in [99]. In his experimental demonstration, a fan-out circuit with respect

to the direction of the data flow was demonstrated. Later, Pulecio et al. demonstrated

coplanar crosswires, where he showed overlapping crosswire system, in which the data can

be propagated without any interaction in the junction forming between the crosswire systems

[100].
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CHAPTER 4

BOOLEAN LOGIC COMPUTATION USING MULTILAYER
NANOMAGNETS

This work is a leap ahead towards logic in magnetic memory implementation. The work

adds the following features in monolayer field coupled magnetic logic: 1) Local spin-torque

driven controlled switching, which has been utilized to perform Boolean logic. More specifi-

cally, by canting the reference polarizer in the tilted devices to 45 � in the X\Z direction. 2)

Reading from and writing to the cells using STT current, which provides more controllability

over individual cell in logic realization. 3) A novel clocking mechanism, using spin-transfer

current instead of conventional field-based clocking mechanism. 4) Low power logical opera-

tion, due to magnetization switching induced by spin-torque current, instant-on and rad-hard

features of MRAM. 5) We have also found that, though the tilted devices works at a wider

range of dimensions and spacing (suitable for flexible CMOS integration), wherein the SyAF

devices have inflexible spacing constraints to integrate with underneath CMOS architecture.

With this observation, we have to make a selective choice of cell structure depending on

the location in the circuits. In addition to these, the structures emulated in this work are

fundamental devices for the development of future spintronic elements. A schematic of log

computation hardware is presented in Fig. 4.1.

4.1 Contributions

Magnetic field coupled computing is a promising paradigm, due to room temperature

operation, low static power, instant-on feature and interconnect-free approach that does not

rely on charge transport. Individual control, clocking and read-out however had to rely
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Figure 4.1. Schematic of multilayer majority gate hardware with underneath CMOS devices.
The Fixed, A and B are inputs, C is output and RO is the read-out cell which has tilted
configuration.
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on multi-layer spin-driven magnetic devices, called spin-valve or magnetic tunnel junction.

Attractive features of these multi-layer Spintronic structures lie in spin-assisted low power

switching, individual control and high signal di↵erentiability’s for read-outs. In this chapter,

we explore these multi-layer spintronic structures directly for computation such that the

computing and access mechanism is homogeneous. This would solve multiple problems of

integration, access and power requirements. Based on LLG simulation, we report successful

dipolar interaction between adjacent freelayers of multi-layer devices and utilized them to

realize Boolean logic functions. This interaction between the multi-layer Spintronic devices

unveils new avenues of logic implementation for the future that o↵ers possible solutions to

the challenges faced by traditional MQCA realization. We investigate and propose three

multi-layer computational elements that can be exploited for logic computation. Spin Valve

with free layer possessing in-plane shape and crystalline anisotropy with (i) in-plane Syn-

thetic Anti-Ferromagnetic reference polarizer (as SyAF devices), (ii) perpendicular-to-plane

polarizer (as PMA devices) and (iii) with tilted (45 �) reference polarizer (as TD devices).

The simulated results indicate that SyAF, PMA and TD devices possesses promise to be an

excellent candidate for nanomagnetic logic computation. However, the PMA devices su↵er

from zero resistance readout, the SyAF devices have stringent spacing constraints due to the

underneath CMOS architecture, while TD devices is best suitable for writing, clocking and

reading the logic state of the cell.

In this work we have

• utilized individual multi-layer spintronic devices, which are robust and are already

fabricated separately as single elements are combined into computing elements.

• achieved logic computation using three di↵erent elemental multi-layer cells.

• utilized spin torque switching currents to provide di↵erent inputs to individual cells.

• utilized spin torque clocking current to clock the output cell for computation.
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• maintained the switching current in µA thus improving the switching speed.

• proposed ultrafast and low power computing.

4.2 Introduction

There has been several designs, where researchers have used the dipolar coupling between

the single domain nanomagnets for computation [101, 2, 102]. These single-domain magnetic

logic devices are controlled by field and require enormous current and also have limited local

cell control. These shortcomings led us to investigate an alternative paradigm of spin-torque

driven reading, writing and clocking of Magnetic Cellular Automata (MCA) logic computa-

tion that o↵ers low power, non-volatile computing. Experimental demonstration with MTJ

for nanomagnetic logic with resistance measurement was performed[103]. However, external

magnetic fields are used for clocking the cells, which su↵er additional power dissipated from

the current carrying conductor. Writing to the input cells have been proposed using external

and on-chip clocking mechanisms [104, 105]. Recently a new form of computing using the

spin injection called “All spin logic device” was proposed[106]. In our multilayer spintronic

device, the Binary logic states representation uses the magnetization direction of the free

layers regardless of the reference polarizer is shown in Fig. 5.4.

4.3 The In-plane Device Logic Computation

The traditional In-plane MRAM devices has a Barrier/Spacer sandwiched between two

ferromagnetic layers PL and FL as shown in Fig. 4.3. We placed two of these devices

close to each other ⇡20 nm, such that their free layers couple with each other as shown in

Fig. 4.4. We initialized one of the free layer’s magnetization to its hard axis in +y-direction

and released to settle in its energy minimum state. On studying our simulation results,

the dipolar interaction between two neighboring In-plane devices indicated the strong anti-

ferromagnetic coupling between the pinned layer and the free layer in a single cell that does
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Figure 4.2. MRAM Binary logic representation. The arrows in the free layers indicate their
respective magnetization directions.

NixFe100(x)5)nm)
Cu))))))))3)nm)

NixFe100(x)3)nm)

Z 

Y 

X 

Figure 4.3. Schematic of an In-Plane cell. As one can see the magnetization of free layer and
the pinned layer are collinear.
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Figure 4.4. Coupling failure in In-plane devices. As one can see the in-plane devices fail to
realize dipolar coupling between freelayers due to strong inter-layer coupling between the PL
and FL layers.

Figure 4.5. Schematic of an SyAF Cell. The magnetization of free layer and the AF pinned
layer are collinear.

not allow neighbor interaction between the neighboring cells to decide the final state of the

clocked cell as shown in Fig. 4.4. We performed the experiments with di↵erent thickness of

the free layer, pinned layer and spacing between the devices, but in any of these instances the

dipolar coupling between the neighboring free layers were not strong enough to overcome the

coupling between the FL and PL. Thereby, In-plane devices failed to realize dipolar coupling

ruling out their possibility of involvement in magnetic field coupled computing realization.
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4.4 The SyAF Device Logic Computation

We then utilized SyAF devices due to their reduced magneto-static coupling between

the free layer and pinned layer and its robustness. From literature we found that, there had

been similar magnetostatic coupling problem with the PL and FL layers that led the MRAM

memory community to introduce the SyAF devices. We have incorporated the magnetic

properties shown in Table. 4.1 for SyAF structures into our model to achieve computation

using the majority gate architecture is shown in Fig. 4.6. The majority gate architecture

is already discussed in Chapter. 3.4. Fig. 4.7 shows the majority gate architecture and the

final magnetization state of the free layer representing majority-OR logic implementation.

As one can see from Fig. 4.8, the normalized magnetization vectors mx, my and mz of the

free layer of output cell “C” settles in +x-direction (C=1) which is the logic output when

the inputs are Fixed=1, A=1 and B=0.

Table 4.1. Input materials (Permalloy and Cobalt) magnetic parameters used for simulations.

Material Parameters NiFe Co

Saturation Magnetization M
s

(emu/cm3) 800 1414
Uniaxial Anisotropy K

u2(erg/cm3) 1E3 4E6

Exchange Coupling A(erg/cm) 1.050 3.050
Exchange Sti↵ness between cells A

IJ

(uerg/cm) 1.050 3.050
Resistivity Rho(u� ohm/cm) 15.000 5.800

Bilinear exchange across Co/Ru/Co in SyAF 0.018

We have implemented Logic-OR, Logic-AND and Logic-NOT using SyAF devices and

one can see from the magnetization graph shown in Fig. 4.8 there is no influence of the

pinned layer with the free layer as the magnetization vectors my and mz goes to zero. The

magnetization state vectors for all the inputs for SyAF devices are verified. These SyAF

devices require very high switching current in the order of 3 mA to overcome the antiferro-

magnetic coupling and for clocking, magnetic-electrical interface design was proposed[107],

which uses an o↵-chip magnetic field to clock the nanomagnets. Moreover, we found that in

order to utilize dipolar coupling, these devices have stringent spacing constraints (15 nm).
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Figure 4.6. Schematic of OR logic implementation using SyAF devices. SyAF device place-
ment and magnetic alignment at t = T

final

So, in order for these devices to be used as coupled computation devices, they have to be

placed much closer to each other. This would lay tremendous dimensional constraints to the

underneath CMOS architecture for clocking and switching these computation elements.

Figure 4.7. LLG simulation of SyAF OR logic implementation. The magnetization and
domains of the free layer of device C settles to logic 0 at t = T

final

respectively when the
inputs are A = 0 and B = 0.

4.5 The Perpendicular Device Logic Computation

The limitations with In-plane and SyAF device computation advanced our design in

using Perpendicular Multilayer Anisotropy (PMA) shown in Fig. 4.9. Where the PL has

its crystalline anisotropy pointing out-of-plane, which does not couple with the free layer

and allows the free layer in turn to couple with its neighboring free layer. We successfully
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Figure 4.8. Magnetization state vector of logic output. The inputs for the logic operation is,
Fixed=1,A=0 and B=1. The output settles to C=1.

implemented AND, OR and NOT gates using PMA devices. The devices have a distinctive

in-plane crystalline anisotropy in their free layers; along with their shape anisotropy gives

the layers a definitive easy axis along the x-direction, which gives us a method to realize

logic functions. The PMA device structure with the choice of materials is shown in Fig. 4.9.

However, for reading the magnetization value through TMR, we would require at least

some component of In-plane magnetization to be incorporated in the device structure. The

current to switch the magnetization was in the order of ⇡5mA. In addition, PMA device

structures su↵er from resistance read-out between its logic states “0” and “1” as there is

no out-of plane magnetization in the free layer and hence the inability to read the state of

the output cells using the readout schemes. Using di↵erent architectures as output cells[108]

would result in inhomogeneous logic computation. Hence, a novel device element that could

prevent these shortcomings would be necessary and is presented in the next section.
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Figure 4.9. Schematic of an PMA cell. The free layer easy axis is along x and reference layer
is along z.

Figure 4.10. Magnetization vectors of AND gate operation. The free layer magnetization
graph of an AND gate with inputs A=1 and B=0, where the output cell C settles to 0(-1)

4.6 The Tilted Device Logic Computation with Clocking and Switching Capa-

bilities

In this section, we present the possibility of logic computation using tilted polarizer

wherein, the bottom polarizer was canted at 45 � in the X\Z axis, as shown in Fig. 4.11.
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Figure 4.11. Schematic of an TD cell. The reference layer is aligned 45 � to x and z axis.

4.6.1 Micromagnetic Model Parameters

The Landau-Lifshitz-Gilbert equation of motion for a free layer that includes the spin

polarized induced torque is given by,

dm̂

dt
= ��m̂⇥H

eff

+ ↵m̂⇥ dm̂

dt
+

�~⌘(')J
2µ

o

M
s

ed
m̂⇥ (m̂⇥ m̂

p

) (4.1)

where m̂ and m̂
p

are unit vector of free layer and pinned layer magnetization, � is gyrometric

ratio, µ
o

magnetic vacuum permeability. The second term on the right hand side is the

Gilbert damping term and ↵ is the damping parameter (↵<<1), the e↵ective field from

bottom layer, H
d

, the demagnetization field, H
dm

. The last term represents the spin torque,

~ is the reduced Planck constant, d is the free layer thickness and e is electron charge.

The input swiching initiates with the magnetizatoin vector starting from +y-direction

with initial spin-torque current through PL. With more spin torque current the input switches

to “0” (-1) from “1”.

A single-domain multilayer model with tilted reference layer was developed in LLG Mi-

cromagnetic simulator[92]. The time evolution of m̂ unit vector along the free layer is found

from Eq.4.1. For the results presented here for an elliptical lateral device 50 x 25 nm2, a
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Figure 4.12. Initial magnetization state of free layer of input cell to be switched from A=1
to A=0 at t=T

Initial

Figure 4.13. Intermediate magnetization state of free layer of input cell to be switched from
A=1 to A=0 at t=T

Intermediate

Figure 4.14. Final magnetization state of free layer of input cell switched to A=0 from A=1
at t=T

Final

Co/Cu/NiFe tilted polarizer system and cell dimension was at 5x5x4.6 nm3. The spac-

ing between TD devices was 20nm. The material parameters used for Co: M
s

= 1414

emu/cm3, A = 3.050 µ-erg/cm, ⇢ = 5.8 µ-ohm-cm, magnetocrystalline uniaxial anisotropy

= 4e6 erg/cm3 in z-axis. The ⇢ for barrier layer Cu is set to 1.68e-8 ohm-m. For Ni
x

Fe100�x

are: M
s

= 800 emu/cm3, A = 1.050 µ-erg/cm, ⇢ = 15 µ-ohm-cm, magnetocrystalline uniax-

ial anisotropy = 1000 erg/cm3 in x-axis. The damping (↵) and gamma(�) was taken as 0.02

46



Figure 4.15. Intermediate switching input state for tilted multilayer cell. Switching inputs
with Spin-Torque induced current in Tilted polarizer. At T

Intermediate

Figure 4.16. Magnetic alignment for tilted polarizer. Switching inputs with Spin-Torque
induced current in Tilted polarizer. TD device placement and magnetic alignment

and 17.6 MHz respectively and P = 0.54. By using suitable pinning fields the reference layers

were tilted to 45 � in X\Z axis. The input logic states A, B and Fixed for computation were

assigned by applying switching spin torque current to the cells as shown in Fig. 4.6.1. The

output device C was initially clocked to +y-direction by passing the spin torque clocking

current of 300µA shown in Fig. 4.17 and released at start of simulation for it to compute

the appropriate logic. We have used average torque as exit criteria and Predictor-Corrector

algorithm with time integral for 3D complex FFT method in our simulation.
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Figure 4.17. Final state of input switching using tilted polarizer. Switching inputs with
Spin-Torque induced current in Tilted polarizer. Switched input cell A to 0 at t=T

final

4.6.2 Impact of Device Parameters on Writing and Clocking Tilted Devices

For a multi-layer structure with tilted-polarizer, the clocking was induced by injecting

spin-polarized current to switch the magnetization of the cell to y-axis. The coupling from

the bottom pinned reference layer was also included in the simulation.

From Eq.4.1 e↵ective field H
d

is added to the H
eff

where H
d

is given by,

H
d

= �H
d

↵
p

ê
x

+H
d

�
p

ê
z

(4.2)

where e
x

and e
z

are the unit vector in the direction of magnetization of the pinned layer and

↵
p

, �
p

are its respective direction cosines. The H
eff

is given as[109],

H
eff

= H +H
A

+H
d

+H
dm

(4.3)

where in our model, H is the external field is zero, H
dm

is the demagnetization field. The

presence of e
x

and e
z

component in the pinned layer leads to a large demagnetization field

which forces the magnetization vector of the free layer to precise about the direction normal

to the plane. The rate of precession is determined by the demagnetization field which reaches

maximum (⇡4⇡M) when the layer magnetization is in precession in +y-direction is given by

H
dm

=-4⇡.M
y

.ê
y

. The in-plane uniaxial anisotropy field H
A

=0 when the layer is clocked in

+y. The magnetization distribution within the layer becomes a vector field, and is given as,
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M(r) = M
s

.|m(r)| (4.4)

due to the magnetization pop-up to out-of-plane from the influence of the bottom pinned

layer, the constraint |m(r)|=1, which leads to,

M(r) = M
s

(4.5)

in clocked state,

M
y

= M
s

, (4.6a)

M
x

= M
z

= 0, (4.6b)

M ⇥ (M ⇥M
p

) ⇡ M
x

e
x

+M
z

e
z

(4.6c)

in a stationary steady state dm/dt = 0, therefore during clocking Eq.4.1 becomes,

�M
s

m̂⇥ h
eff

=
�~⌘(')J
2µ

o

M
s

ed
m̂⇥ (m̂⇥ m̂

p

) (4.7)

where,

H
e

ff = M
s

⇥ h
e

ff, (4.8a)

h
e

ff =
1

M
s

[�H
x

ê
x

+H
z

ê
z

+�4⇡M
s

ê
y

], (4.8b)

m =
M

M
s

= ê
y

(4.8c)

which solves,
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Figure 4.18. Initial state of spin-torque clocking with tilted polarizer at time=T
initial

Figure 4.19. Intermediate magnetization state of clocked cell with tilted polarizer

Figure 4.20. Final magnetization state of clocked cell in +y-axis at time=T
final

H
x

e
z

+ �H
z

e
x

= M
y

a1m̂⇥ (m̂⇥ m̂
p

) (4.9)

Here,

a1 =
�~⌘(')J
2µ

o

M
s

ed
(4.10)

Equating the above equation for direction cosines e
x

and e
z

for tilted polarizer, we could see

↵
p

= �
p

, which substantiates that the bottom polarizer should be canted in 45 � in its X\Z

axis switches the device to a clocked state +y which is shown in simulation Fig. 4.21.
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Figure 4.21. Applying spin torque current to switch the magnetization of the TD devices

Figure 4.22. Spin torque current induced switching for TD devices. Magnetization switching
curve from P (logic “1”) to AP (logic “0”)

The current induced switching magnetization curve is shown in Fig. 4.21. We used 2D

Slonczewski Spin Polarized perpendicular to plane current of 700µA with a time step of 1ps

in 5 intervals; the interval step was 25ps, 1ps, 250ps, 1ps and 123ps.
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Table 4.2. Comparison of SyAF, PMA and TD computing structures.

Structures! SyAF PMA TD
Polarizer InPlane in

x-direction
Out of Plane in
z-direction

45 � in the X\Z
axis

Switching
Time

2.5ns ⇡ 50ps ⇡ 20ps

Switching
Current

⇡3 - 5mA 5mA ⇡200 - 700µA

Clocking Cur-
rent

O↵-chip mag-
netic field

Cannot be
clocked with
PMA

⇡300 - 400µA in
+y

Device Spac-
ing to achieve
coupling

15nm 20nm 20nm

Logic Opera-
tion tested

AND, OR,
NOT

AND, OR,
NOT

AND, OR,
NOT

4.7 Results and Discussion

Boolean AND, OR and Inverter operations were successfully achieved for all inputs

with multi-layer stacks utilizing dipolar interaction among neighboring spintronic devices

for SyAF, PMA and TD devices for which the magnetization graph results for the OR and

AND logic operation for TD devices are presented in Fig. 4.23. Looking at the magnetization

dynamics obtained for all inputs from the continuously varying in-plane x-axis magnetiza-

tion vector, one can see the state of output cell (C) exhibiting a favorable OR logic gate

operation with respect to inputs. We have also verified AND and Inverter operations for

all inputs. Successful implementation of logic using Spintronic devices therefore heralds the

onset of a new era in logic computation.
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Figure 4.23. Magnetization graphs of output cell (C) for AND and OR logic operations for
tilted devices.

B 
C 

A 

Fixed 

Figure 4.24. Normalized magnetization graph of output cell (C) for di↵erent OR gate inputs
Fixed = 0, A =1 and B =0. The output cell C = 1 verifying OR gate operation.
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CHAPTER 5

STUDY OF NEIGHBOR INTERACTION BETWEEN NANOMAGNETIC
DISKS

The study investigates the e↵ect of magnetic neighbor interaction on the state behavior

of nano-magnetic disks for data storage and computation applications. We have observed

and verified that a nano-magnetic disk, with certain dimension, can exist either in the

SDS or VS depending on the edge-to-edge spacing between the nano-magnetic disks. The

experiments were conducted by varying the diameters and thicknesses with respect to edge-

to-edge spacing. The dimensions were based on the phase diagram between the single domain

state and the vortex state. We have observed nano-magnetic disks spaced far apart from

its neighbor, settled in the vortex state and coupled nano-magnetic disks with less spacing

settled in the single domain state. This phenomenon was observed for nano-magnetic disks

with thickness between 8 nm to 20 nm and diameters between 80 nm to 140 nm. Results

from this chapter have been previous published in IEEE Transactions on Magnetics [110]1

5.1 Introduction

For the past few decades single-domain nano-magnetic disks have been actively explored

as computing elements [111, 112, 4, 113, 104, 114] and as data storage devices [115, 116, 117],

as it exhibits several new and interesting characteristics. As a result, there were various

experimental and theoretical studies on coupled and isolated nano-magnetic disks [118, 119,

120]. Here, we report the observations in a coupled nano-magnetic system, where a disk

can exist in the single domain state or the vortex state depending on the strength of its

1
c�2013 IEEE. The permission from IEEE is included in Appendix A.
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neighboring interactions. We have verified this by simulation and directly fabricating pairs

of nano-magnetic disks with di↵erent edge-to-edge spacing’s. Earlier works have reported

the phase diagrams between the single domain state and the vortex state as a function

of diameter and thickness for isolated nano-magnetic disks [101, 121, 122]. For instance

Cowburn et al. have fabricated isolated nano-magnetic disks of diameters ranging from 55

nm to 500 nm and thickness ranging from 6 nm to 15 nm, and experimentally identified a

phase plot between SDS and VS. Also, Jubert et al. and Ho↵mann et al. have reported on

the phase boundaries between the single domain state and the vortex state for isolated nano-

magnetic disks. Bennett et al. [123] have shown magnetostatic interactions in planar arrays

for only the single domain state nano-magnetic disks with 50 nm in diameter and 10 nm in

thickness. Kumari et al. [3] have reported a phase diagram as a function of disk diameter

and thickness for coupled nano-magnetic disks with a constant edge-to-edge spacing of 20

nm. We have selected the dimensions of the nanomagnetic disks in the single domain state

region and regardless of the spacing between the nanomagnetic disks; the final ground state

is always single domain state due to its dimensions. This was verified by simulating a pair

of nanomagnetic disks separated by a distance of � 200 nm. The nanomagnets were clocked

to its hard axis (Z-direction) and released to settle in its energy minimum. The final state

of the nanomagnetic disk settles in single domain state as shown in Fig. 5.2.

We have performed similar simulation for nanomagnetic disks in vortex state region.

The dimension of the disk was chosen with thickness T � 20 nm and diameter D � 200

nm. Regardless of the spacing between the nanomagnetic disks, the magnets settle in vortex

states shown in Fig. 5.3. Our region of interest is in the boundary between SDS and VS in

Fig. 5.1.
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Figure 5.1. Phase diagram of single domain state and vortex state. A circular nano disk with
di↵erent thickness and diameter (Obtained from [3])

Figure 5.2. Single domain state nanomagnetic disks with dimensions in the SDS region
selected from [3]

Figure 5.3. Vortex state nanomagnetic disk with thickness �20 nm with dimensions in the
VS region selected from [3]

5.2 Contribution

We have chosen the dimensions for the nano-magnetic disk near the phase boundary

in the vortex state region and studied the dipolar neighbor interaction between the nano-

magnetic disks. There are two possible stable states for a circular nano-magnetic disk with
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Figure 5.4. Magnetization states representation of a nano-disk. (a) Single domain state
where the domains are aligned in one direction. (b) C-State, where the domains are in
curling fashion (c) Vortex state where the domains are arranged in a curling shape and
the center is at the aperture. (d) Legend explaining the color representation for domains
and their associated magnetic directions when simulated using LLG simulation suite. All
domains are color coded as follows: red if they are aligned in x̂ and blue if they are aligned
in ŷ and green if aligned �x̂ and yellow if aligned �ŷ.

an intermediate transition state known as the C-state. One of its states is the single domain

state, where all the spins align in one direction as shown in Fig. 5.4(a). Second is the vortex

state, where the magnetization curls in the plane of the disk as shown in Fig. 5.4(b). In our

study, we have investigated the magnetization states of coupled nano-magnetic disks with

varying diameters, thicknesses and edge-to-edge spacing’s. Fig. 5.5 shows the interaction

(coupling) energy curve between the nano-magnetic disks with 110 nm in diameter and 10 nm

in thickness under conditions of changing edge-to-edge spacing. As expected (see Fig. 5.5),

when the interaction energy decreases gradually, the nano-magnetic disks with closer edge-

to-edge spacing settle in the single domain state, whereas disks with larger separation settle

in the vortex state. In our study the vortex states are considered to be non-interacting with

respect to the condition, d � 2D [124] where, d is the edge-to-edge spacing between the

disks and D is the diameter of the nano-magnetic disk.

This study examined the unique contribution of the following conclusions to a nano-

magnetic disk:

• A nano-magnetic disk can exist either in the SDS or VS depending on the edge-to-edge

spacing between the neighboring magnets.
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Figure 5.5. Pair interaction energy between disks by varying the edge-to-edge spacing.

• As the diameters of the nano-magnetic disks increases, the probability of the vortex

state increases and thereby the coupling energy is minimum. Due to a very low coupling

energy between the disks the vortex states are preferred even for this smaller edge-to-

edge spacing.

• As the thicknesses of the nano-magnetic disks increases, the vortex state transition is

preferred at large edge-to-edge spacing.

The simulation results were validated by fabricating pairs of nano-magnetic disks with an

average diameter of 110 nm, an average thickness of 10 nm and varying edge-to-edge spacing

from 20 nm to 260 nm. The magnetic force micrograph (MFM) of the nano-magnetic disks
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Figure 5.6. Verification of the single domain state and the vortex state using MFM mi-
crographs. The simulation results with MFM micrographs of Permalloy (Ni80Fe20) nano-
magnetic disk pairs fabricated with diameter D = 110 nm and thickness 10 nm for di↵erent
spacing’s. MFM micrographs are generated by D K Karunaratne, USF

verifies the observations of the simulated experiment results (shown in Fig. 5.6) that the

single domain state or the vortex state could exist for similar nano-magnetic disks.

To our knowledge, this is the first work to report the observation of a nano-magnet, with

appropriate geometry, can exist the single domain state or the vortex state depending on

the neighborhood coupling.

5.3 Micromagnetic Model

The magnetization dynamics of coupled nano-magnetic disks were investigated using

Landau-Lifshitz-Gilbert (LLG) Micromagnetic solver [92]. The solver has been extensively

used for characterizing micromagnetic structure and dynamics [125, 126]. To calculate the

magnetic microstructure in ferromagnets, the time evolution of a magnetization configuration
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Figure 5.7. Schematic of experiment conducted by varying the diameters D, thicknesses T
and edge-to-edge spacing S.

inside a ferromagnet, which is described by the Landau-Lifshitz-Gilbert equation, must be

solved. This equation has the following form.

dM̃

dt
= � �

1 + ↵2
M̃⇥ H̃e↵ � �↵

(1 + ↵2)M
s

M̃⇥ (M̃⇥ H̃e↵ ) (5.1)

where � is the gyromagnetic ratio, ~M is magnetization vector of the disk, ~H
eff

is e↵ective

magnetic field, ↵ is intrinsic damping constant and M
s

is saturation magnetization.

The observation that similar nanodisks can exist either in the single domain state or the

vortex state that is dependent on the change in edge-to-edge spacing can be related to the

continuous change in e↵ective field H
eff

of the system, which is determined by di↵erentiating

the system total energy E
total

with the saturation magnetization.

In micromagnetics, the e↵ect of di↵erent energy terms on the magnetization vector is

represented by the term H
eff

, which is given as,

H
eff

= H
exch

+H
demag

+H
zeeman

(5.2)

H
eff

=
��E

total

�(M
s

↵̂)
(5.3)

At equilibrium, the total energy of a nano-magnetic element is given by,
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H
exch

=
2A

exch

M2
s

�2M (5.4)

E
total

= E
demag

+ E
interaction

(5.5)

E
demag

=
1

2
µ0VMH

demag

(5.6)

E
interaction

=
1

2
µ0VMH

interaction

(5.7)

where A
exch

is the exchange sti↵ness, V is the volume of the nano-magnet, demagnetization

energy E
demag

depends on the shape of the dot and the E
interaction

is the energy term coming

from the interaction with neighboring dots [104] and E
zeeman

is zero.

H
eff

= D
i

M +
X

neighbors

C
i

M (5.8)

where the term D
i

is the demag tensor of the ith nano-magnet dependent on the shape of

the nano-magnet and C
i

is the interaction (coupling) tensor of the ith nano-magnet which is

the sum of all the E
interaction

energy from all its neighbors.

We have used a 3D-compatible correction method for micromagnetics of curved geome-

tries discretization as shown in [127]. Comparison between the 2D and 3D discretization are

identical for all disks. The unit element size is 4.72 nm x 4.72 nm x T/2 nm, where T is the

thickness of the disks. Decreasing the element size did not influence the results. We have

used Time based relaxation method, which is rotating the magnetization with respect to the

e↵ective field vector. The simulations incorporated predictor corrector integrator that yields

most accurate results with damping factor ↵ ⇠ 0.01 and a convergence value of 1x10�4 for

exiting the calculation. We used a free electron gyromagnetic frequency � to be 17.6 Mhz
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Figure 5.8. The vector representation of a single domain state and vortex state. (Top) and
vortex state (Bottom) nano-disk of diameter D = 110 nm and thickness T = 10 nm from
LLG simulation
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(a) Spacing = 50 nm 

(b) Spacing = 150 nm 

(c) Spacing = 200 nm 

(d) Spacing = 250 nm 

(i) Thickness = 10 nm (ii) Thickness = 15 nm 

(e) Spacing = 300 nm 

Spacing Thickness 

Figure 5.9. Magnetization direction of nano-magnetic disks superimposed on underlying do-
mains. For 100 nm diameter and thickness (i) 10 nm, (ii) 15 nm with di↵erent edge-to-edge
spacing marked by open circles, (a) S = 50 nm, (b) S = 150 nm, (c) S = 200 nm, (d) S =
250 nm, (e) S = 300 nm. Each pair of nano-magnetic disks is the snapshots at t

final

ground
states (energy minimum states).

for all our simulations. For exciting the system, we used an initial time dependent field B
z

of 300 Gauss in +x direction.

In order to study the dipolar neighbor interaction on magnetization states of nano-

magnetic disks with similar dimension, we have placed two such disks A and B adjacent

to each other as shown in Fig. 5.7. The disks are composed of Py material, where Py

corresponds to Permalloy Ni80Fe20. The edge-to-edge spacing between the disks is one of

the varying parameters of investigation along with variation in diameter and thickness of

the disks. For each pair of nano-magnetic disks the edge-to-edge spacing between the disks

was varied from 0 nm to 300 nm for fixed diameter and thickness and observations of the

magnetization states. We calculated the interaction energy, which is the neighboring dipolar

coupling energy, by subtracting the magnetic energies of the individual disks from the total

magnetic energy of the system.
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Figure 5.10. Pair interaction energy versus the spacing between nano-magnetic disks with
thickness

5.4 Simulation Results and Discussion

To observe the e↵ect of diameter and thickness on the dipolar coupling between the

neighboring nano-magnetic devices, similar experimental set up and procedure was followed

as mentioned in Sec. 5.3.

5.4.1 E↵ect of Diameter Variation on Interaction

To illustrate the e↵ect of disk diameter on the final magnetization ground state of coupled

nanodisks, we examined two single domain nanodisks with respect to change in edge-to-edge

spacing. In this study, the thickness of the disk was kept constant. As the diameter of

the nano disk was increased, the probability of the vortex state increased and thereby the

magnets prefer to settle in the vortex state much faster for large diameters. The graph in

Fig. 5.10 shows the variation of interaction energy with edge-to-edge spacing for di↵erent

disk diameters. It is evident from the graph the interaction energies are high when the
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t = 2000 ps 

t = 20000 ps 

t = 15000 ps 

t = 10000 ps 

S = 20 nm S = 190 nm S = 210 nm S = 60 nm 

Figure 5.11. The time evolution of magnetization state of a nanomagnetic disk with respect
to di↵erent spacing

nano-magnets were in the single domain state and almost zero when settled in the vortex

state as the interaction energy decreases, when the edge-to-edge spacing is increased.

5.4.2 E↵ect of Thickness Variation on Interaction

To illustrate the e↵ect of disk thickness for a coupled nano-magnetic system the diameter

of the disks were kept constant. Fig. 5.9 shows the variation of the magnetization state,

when the thickness was increased with respect to change in edge-to-edge spacing. As one

can see, when the thickness was increased, the vortex state transition occurs for a larger

edge-to-edge spacing. The graph in Fig. 5.12 shows the variation of interaction energy with

edge-to-edge spacing for di↵erent disk thicknesses. It is evident from the graph that the

interaction energies are high when the nano-magnets were in the single domain state and

almost zero in the vortex state.

Based on the simulated results, nano-magnetic disks with thicknesses of less than 8 nm

had a fixed magnetization of the single domain state and for the nanodisks with thicknesses

more than 20 nm had a fixed magnetization of the vortex state regardless of any variation in

the edge-to-edge spacing. The nano-magnetic disks with thickness between 8 nm to 20 nm
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Figure 5.12. Pair interaction energy versus spacing between the disks with disk diameter D
= 100 nm. The thickness T varying from 10 nm to 18 nm.

and diameters between 80 nm to 140 nm, with the change in edge-to-edge spacing, similar

nano-magnetic disk existed either in the SDS or VS. We also observed that magnetic coupling

energies drops continuously with the factor of 1
s

3 , where s is the edge-to-edge spacing.

5.5 Fabrication

To validate the simulation results, D K Karunaratne, USF helped us in fabricating

pairs of nanomagnets disks that had an average diameter of 110 nm and an average thick-

ness of 10 nm with the edge-to-edge spacing varying from 20 nm to 260 nm. Each pair of

nano-magnetic disks with di↵erent edge-to-edge spacing was placed far apart to minimize

magnetic interaction. The samples were fabricated on a Silicon wafer using e-beam lithog-

raphy, e-beam evaporation, and a lift-o↵ process. As for the magnetic material, Permalloy

(Ni80Fe20) was chosen for its high magnetic permeability and its low coercivity. The sam-

ples were characterized with a scanning electron microscope to identify pairs of defect-free

nano-magnetic disks. Next, an external magnetic field in the form of a pulse was applied to
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the samples along the in-plane direction for stimulus. Finally, the nano-magnetic disks were

allowed to settle to an energy minimum and the defect free magnetic systems were charac-

terized with a magnetic force microscope. Fig. 5.6 is the MFM micrograph images that are

correlated with the numerical simulation results. Table. 5.1 shows the number of SDS and

VS observed in both the disks for di↵erent edge-to-edge spacing for average diameter D =

110 nm and average thickness = 10 nm. When the spacing S � 180 nm, we observed only

vortex sates. For spacing S  60 nm, we observed only single domain states.

5.6 Conclusion

We have observed and verified that a nano-magnetic disk, with certain dimension, can

exist either in the SDS or VS depending on the edge-to-edge spacing between the nano-

magnetic disks. We have also investigated the e↵ect of interaction energy on nano-magnetic

disks for di↵erent diameters and thicknesses by varying the edge-to-edge spacing between

the nano-magnetic disks. Finally, we fabricated pairs of nano-magnetic disks (diameter of

110 nm and thickness of 10 nm) with varying edge-to-edge spacing and observed their final

magnetization state. Repeated experiments of the fabricated results concluded that the

pairs of nano-magnetic disks with an edge-to-edge spacing from 20 nm to 100 nm always

settled to single domain state whereas when the edge-to-edge spacing was from 120 nm to

260 they always settled to vortex state. This work was published in IEEE Transactions

on Magnetics.
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Table 5.1. Number of SDS and VS compared with the fabricated pairs of nano-magnetic
disks. The disks have diameter D = 110 nm and Thickness T = 10 nm with di↵erent
edge-to-edge spacing by D K Karunaratne, USF .

Edge-To-Edge
Spacing

Single Domain States Ob-
served (Disk Pair %)

Vortex States Observed (Disk
Pair %)

20 nm 100 % 0 %
60 nm 100 % 0 %
100 nm 100 % 0 %
120 nm 40 % 60 %
180 nm 0 % 100 %
220 nm 0 % 100 %
260 nm 0 % 100 %
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CHAPTER 6

PROGRAMMABLE NANOMAGNETIC GRIDS FOR NON-BOOLEAN
COMPUTATION

Recently, several design techniques have been proposed for using a collection of nano-

magnets for Boolean and Non-Boolean computation. However, in most of the design, each

nano-magnet is spatially arranged in a location that matches a particular problem. In

this work, we describe a compact design and implementation of reconfigurable array of

nanomagnets using spin-transfer torque based on Magnetic RAM array architecture that

could perform non-Boolean computation. We have placed these nanomagnets in such a way

that the ferromagnetic free layers couple with neighbors. The programming currents are

studied with respect to diameter and damping constant of the Magnetic RAM cells. The cells

that needs to be “deselected” from the array is taken to a non-computing oscillating state.

In this work, we have shown: A non-Boolean framework e↵ective to solve several instances

of quadratic optimization problems, such as those arising in computer vision applications.

The STT strengths, which have the ability to induce oscillations for deselecting the cells,

have been predicted through LLG simulations. The reconfigurable array design consists of

an in-plane (IP) NiFe free layer and a fixed polarizer [magnetized out-of-plane (OP) Co/Pd]

multilayer.

6.1 Contribution

The unique contribution from this work are as follows.
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Figure 6.1. Schematic of the programmable logic computation hardware. A array of spin-
transfer torque based MRAM reconfigurable array (STRAN) with underlying CMOS devices
to read/write the magnetization of each cell. Only the “selected” magnets (magnets in single
domain state) participate in the computation.

• we exploit spin-transfer nano-oscillator (STO) to deselect the nanomagnets from the

array to a non-computing state using the torque generated from the OP polarizer.

• we have used STRAN for non-Boolean framework, where the cells are circular that

exhibits multiple magnetization states.

• we have shown the programming current dependence on the dimensions of the MTJ

cells where the I
P

decreases with the decrease in dimensions of MTJ. This means that

the STRAN is highly scalable.
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6.2 Introduction

Single-domain nanomagnets is well known as computing and as data storage elements[128,

129, 130]. So far, there has been several ideas to implement Boolean computation using

magnetic tunnel junctions MTJs and domain wall magnets [131, 132, 133, 134]. In these

systems, the shape anisotropy provides two stable magnetization directions encoded with

classical binary bits “0” and “1”. With the development of many interesting experiments

on lateral spin valves, domain wall magnets and spin hall e↵ect, have opened new avenues

in non-Boolean computation[135, 136]. Recently, Sarkar et al., DrSouza et al. and Zhang et

al. have proposed various algorithms for computer vision applications using nanomagnets

which performs non-Boolean computation[137, 138, 139, 140].

Figure 6.2. Object recognition using magnetic field-based computing proposed by Sarkar et
al. in [4]

In which, Sarkar et al. have proposed an algorithm that harness energy minimization

aspects of nanomagnets to solve quadratic optimization problems that often arises in com-

puter vision applications as shown in Fig. 6.2. Among those non-Boolean algorithms, the

approach already proposed by Sarkar et al. using circular nanomagnets showed feasible

performance for practical applications[137, 141]. However, fabricating di↵erent magnetic

layouts to solve every instance of a quadratic optimization problem remains an issue and

highly expensive which still restricts current state-of-art application. Spin-Transfer Torque

induced Magnetoresistive random-access memories (STT-MRAM) promise great interest to
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be integrated in reconfigurable logic circuits. However, it has been potentially used only as

memory configuration in FPGA’s to replace the flash and SRAM[142, 143, 144, 145], which

o↵ers non-volatility to FPGA circuits. In this work, we present a simple reconfigurable array

(from now referred as STRAN - Spin-Torque driven Reconfigurable Array of Nanomagnets)

of n⇥n magnetic elements using spin-torque nano-oscillator technique for deselecting any

magnet from computation shown in Fig. 6.1 and can emulate 2n
2
di↵erent magnetic layouts.

Each magnetic cell is a magnetic multilayer of Co/Pd/MgO/NiFe. This type of problem

solving can tremendously benefit from STT-MRAM technology due to its density and com-

patibility with CMOS.

STT 
Current 

50 nm 
Spacing 

110 nm 
Diameter 

50
 n

m
 

Sp
ac

in
g 

NiFe 
MgO 

Co/Pd 

Figure 6.3. Schematic of STRAN cell dimension, material and spacing parameters.

In order to perform non-Boolean computation, we have shown an example of a solution

to quadratic optimization problem that accomplishes identifying salient edge segments from

an image as shown in Fig. 6.4(a-d) using our reconfigurable array. The results were verified

with fabricated layouts of nanomagnetic disks.
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Figure 6.4. Object recognition using magnetic field-based computing. (a) Gray scale image.
(b) Edge image of (a). (c) Distance map of the edge image in (b). (d) Object mapping of
salient features in image (a). (e) 2D layout of nano-disks generated from MDS layout. (f)
Nano-disks mapped to STRAN. “yellow” disks are selected magnets and “blue” disks are
magnets to be deselected. (g) Magnets settle in SDS or VS depending on the coupling energy
and apped to salient edge segments.
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Figure 6.5. Magnetic layout corresponding to the edge segments. (a) Line segments (b)
Corresponding 2D MDS layout

6.3 Nanomagnets for Vision Computation - a Non-Boolean Framework

In vision computing, the object recognition involves three main steps: feature extraction,

perceptual grouping and object matching (see Fig. 6.4(a-d)). The first step involves feature

extraction, which is extraction of local features say edges, points and regions. The second

step is perceptual organization, which is the act of recognizing important features from an

object and not from the background. The final step is object matching, which is used to

match the salient edges from the object database. While there are many hardware solutions

to speed up the process in the first process, the perceptual organization step are still solved

in conventional software computation where the number of iterations increases with the

problem size and is computationally expensive. The grouping of important edge segments

can be accomplished by quadratic optimization process as shown in Fig. 6.4(b) & (c). In

[137, 141], Sarkar et al. have already demonstrated an unconventional way of non-Boolean

computation, to solve several quadratic optimization problems.

In which, each of the line segments shown in Fig. 6.4(b) would be assigned with a “0”

or “1” corresponding to unimportant edge and important edge respectively. So, every pair

of edge segments would carry an important measure called the a�nity value capturing its

saliency (importance). There are numerous ways to measure this saliency. For example in

74



Figure 6.6. Magnetic layouts for multiple images. The MFC needs multiple instances of
magnetic layouts for every image.

Fig. 6.5(a), if there are three straight lines that are parallel 1,2 & 3, their a�nity value

will be very high than other random line segment 4. Also, in Fig. 6.5(b), notice that each

line segments corresponds to a magnet. The purpose of placing those magnets in certain

coordinates represents the features similar to Fig. 6.4(b), such that the distance between

the magnets is directly proportional to the a�nity between the corresponding line segments.

Accordingly, their pairwise interaction will also be proportional to their coupling energies is

given by [137]. By using this design developed, it will be di�cult for us to fabricate specific

individual layouts for each and every instance as shown in Fig. 6.6.

Therefore, we would not be able to completely leverage the advantage of this methodology.

In this work, we present a simple reconfigurable array using the STT-MRAM in Fig. 6.4.

Basically, the way of solving an quadratic optimization problem using nanomagnets proposed

here is almost same as the one presented by Sarkar et al. in [137, 141]. Di↵erent from the

method of [137], which uses magnetic field driven monolayer single domain nanomagnets, our

proposed reconfigurable array are STT-MRAMs, which can be easily programmable using

STT currents. Moreover compared to the number of layouts that it can solve in [137], our

hardware will be able to solve 2n
2
di↵erent arrangements of layouts for any such non-Boolean

quadratic optimization problems.
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6.4 Design of Reconfigurable Array (STRAN) using LLG Simulation

We carried out a micromagnetic simulation based on Landau-Lifshitz-Gilbert (LLG)

equation including STT. The STRAN consists of circular MTJ cells with the diameter of

110 nm, spaced 50 nm with out-of-plane polarizer as its reference layer (pinned layer) and

a free layer (FM1) magnetized in-plane with structure (Co/Pd 40 Å /MgO 35 Å /NiFe

100 Å) as shown in Fig. 6.3. The circular disk shape magnet has two stable magnetization

states (Single domain state- SDS and Vortex state- VS). We have investigated the e↵ect

of magnetic neighbor interaction on the magnetization state behavior for computation. We

have observed that a nano-magnetic disk, with certain dimension selected near the phase

boundary between the SDS and VS region, can have two possible ground states (SDS & VS)

depending on the edge-to-edge spacing between the nano-magnetic disks. We have observed

nano-magnetic disks spaced far apart from its neighbor, settled in the vortex state and cou-

pled nano-magnetic disks with less spacing settled in the single domain state. We have used

an array of such nanomagets to solve optimization problems.

The magnetization dynamics of the FM1 and FM2 layers can be described by Landau-

Lifshitz-Gilbert-Slonczewski (LLGS) equation Eq.6.1 including the spin-torque term. We

have used a 3D-compatible correction method for micromagnetics of curved geometries dis-

cretization as shown in [127]. The unit element size is 4.68 nm x 4.68 nm x 4.68 nm. We have

used time based relaxation method, which is rotating the magnetization with respect to the

e↵ective field vector. The simulations incorporated predictor corrector integrator that yields

most accurate results with damping factor ↵ ⇠ 0.015 and a convergence value of 1x10�4 for

exiting the calculation. We used a free electron gyromagnetic frequency � to be 17.6 Mhz

for all our simulations.
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Figure 6.7. The temporal evolution of the magnetization components under oscillation
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The first term on the right side of Eq. 6.1 is the conventional magnetic torque with the

gyrometric ratio �. This torque is driven by the e↵ective field as shown below,

H
eff

=
1

µ0

�E

�M
(6.2)

where the e↵ective field of the LLGS equation includes the anisotropy, demag, zeeman

and coupling fields, namely, H
eff

= H
exch

+ H
anis

+ H
coupling

. The last two terms in

Eq. 6.1described in the LLGS equation that drags the magnetization away from the ini-

tial in-plane state and drives the magnetization to precession around the e↵ective field. The

scalar function is given by [146]
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Figure 6.8. Programming a pattern to a 3by3 STRAN. The FL2 dimensions are 100 nm
diameter, 8 nm thickness. The final magnetization states of nanomagnets in column(2)
have deselected magnets and the selected magnets settle in their energy minimum states
depending on its neighbor interaction.

g(M,P ) = [�4 +
(1 + ⌘2)(3 +M.P/M2

s

)

4⌘(3/2)
] (6.3)

and the corresponding e↵ective field is given by,

H
eff�STT

=
2µ

B

Jg(M,P )M ⇥ P

(�edM3
s

)
(6.4)

where µ
B

, J , d, e amd M
s

, are the Bhor magnetron, current density, thickness of the free

layer, electron charge and saturation magnetization, respectively.

When the spin-torque current (hereafter referred to as ST current), when passed along

a special direction through a magnet can lead to some interesting magnetization behaviors.

Among the special behavior, the temporal evolution of magnetization components for a con-

tinuous ST current, the magnetization dynamics lies in the multi-domain state. Concerning

the same kind of devices, experimentally published by Bertotti et al., Huang et al. and Klse-

lev et al. thoroughly analyzed each precessional state corresponding to di↵erent ST currents.

They have also predicted similar existence of multidomain state (MS) in some regions of the

state space [147, 148, 149, 150]. The mechanism is similar to precession states, except that
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Figure 6.9. STT current induced deselection of the cell. The cell diameter is 110 nm and
thickness 5 nm with 50 nm spcing between the cells. The current profile is shown for
deselection and clocking of the selected cells.
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Figure 6.10. Programming currents dependence on diameter of MTJ cell. The programming
current reduces as the diameter reduces. This means that the STRAN is highly scalable.

the free layer is not a monodomain and the amplitudes of magnetization oscillation are not

constant as shown in Fig. 6.7. This kind of multidomain could be explained by the large

ST current input energy. The ST current energy per unit time driving into the nanomagnet

is so large that the formation of magnetic excitations is much shorter than the element size

becomes possible, leading to the formation of multidomains. We have implemented these

ideas using the LLG micromagnetic solver [92]. Fig. 6.10 shows the size dependence of the

programming current. The current profile for our STRAN is shown in Fig. 6.9.

Considering a neighboring magnet spaced 50 nm apart, the dipole-dipole coupling inter-

action between the ith and the jth magnet is expressed as

H ij

dipole

=
NX

i

NX

j

1

r3
ij

(m
i

·m
j

)� 3(m
i

· ~e
ij

)(m
j

· ~e
ij

) (6.5)
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Figure 6.11. Coupling energy graph between deselected (oscillating) magnet with its neigh-
bors obtained using LLG simulation from the array. The coupling energy between a delected
magnet (DS) with any of its immediate neighbors is zero, whereas the selected magnets in
single domain state with its neighbors has higher coupling energy.

where m
i

is one magnet and m
j

is other magnet and H ij

dipole

is the dipole coupling energy

between m
i

and m
j

magnets, e
ij

is the unit vector along the direction that connects the two

magnetic moments. r
ij

is the center to center distance between m
i

and m
j

.

By considering the two magnetic moments from the deselected magnet and any neighbor-

ing magnet, each of µ
B

, one can approximate the magnitude of dipole-dipole interaction to

be ⇠ 0.00263, which approaches to zero. Our results shown in Fig. 6.11 suggest the coupling

might be considered as weak and non-interacting with its neighboring magnet precising,

which favors as our method to “deselect” the cell from computing. Once the magnets are

deselected, the array would then be clocked and allow the energy minimization nature of the

“selected” magnets in the grid to perform the computing. The final states would be read o↵

as the solution to the problem mapped to the grid.
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Figure 6.12. Selection of cells using spin-transfer current, simulated using LLGS Micromag-
netic simulator.
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Figure 6.13. Schematic of region 1 in programmed STRAN hardware

A! B! C! D! E! F!
1!

2!

3!
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6!

(a) (b) (c) 

Figure 6.14. STRAN output for region 1 layout

Table 6.1. STRAN cell critical deselection current. The current pulse duration and clocking
current for cell dimensions 110 nm Diameter and 50 nm spacing between cells.

Thickness of free
layer

Critical Deselection
Current in µA

Critical Clocking
Current in µA

5 150 50
8 200 100
11 260 160
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Figure 6.15. Schematic of region 2 in programmed STRAN hardware
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Figure 6.16. STRAN output for region 2 layout
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Figure 6.17. Schematic of region 3 in programmed STRAN hardware
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Figure 6.18. STRAN output for region 3 layout
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6.5 Non-Boolean Computation using STRAN

The spatial arrangement of nano-disks layout from MDS that matches a particular image

was obtained from our previous experiments [137] as shown in Fig. 6.12(a). We have divided

the layout into three di↵erent regions that could be represented in a 6 by 6 grid of nanomag-

nets as shown in Fig. 6.12(a),(b)&(c). We have shown our STRAN output with respect to

all the regions in Fig.6.13 & Fig. 6.14, Fig.6.13 & Fig. 6.16 and Fig.6.13 & Fig. 6.18. The

second column shows STRAN layout mapping with respect to regions. The selected magnets

are represented with “yellow” dots and “blue” dots represents the magnets that needs to be

deselected. The deselected magnets will be driven to a non-computing oscillating state and

the current profile is shown in Fig. 6.9. As one can see from the STRAN output in column 3,

for Region 1 the deselected magnets for example A1 to A3, A5, A6 and so on. The selected

cells will be clocked using ST current and released to setle in its energy minimum state. The

ST clocking current profile is shown in FIg. 6.9. We have already shown that the oscillating

magnet does not interfere in the computation. To verify this with our STRAN output, we

performed LLG simulation of only the selected cells and one can see the magnetization states

matches well with the STRAN output.

As shown in Fig.6.14 for region 1 and column 3, one can see that the isolated magnets

C3, A4, B5, D3 and F4 settle in the vortex state and the remaining selected magnets settle

in the single domain state. These results well matched with the fabricated free layer with

critical dimensions and we used an image processing application MSE [151] to estimate the

final magnetization states of all the selected magnets. From the MSE output, the “yellow”

color represents vortex states and “red” color represents single domain states. As one can

see, the magnetization states well matched with our STRAN outputs. We could use the

TMR based readout scheme to identify the state of the magnet, which a computer vision

application would use as the solution to the problem. We simulated five di↵erent images
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Table 6.2. Comparison of number of SDS magnets and VS magnets from fabricated patterns.
The disk Diameter is 110 nm , 10 nm FM2 thickness [151] with STRAN output

Region Observed SDS magnets
from MFM

Observed VS magnets
from MFM

1 100% 100%
2 100% 100%
3 100% 100%

using 3⇥3, 5⇥5 and 6⇥6 STRANs and captured the salient and non-salient edge segments

which matched with the expected output.

6.6 Conclusion

In this work, we have explored a computing grid using nanomagnets that could be easily

reprogrammable. We have evaluated the design by using circular nanomagnetic grid directly

solving a non-Boolean quadratic optimization problem and Boolean computation by har-

nessing energy minimization aspects of nanomagnets. In the past, Sarkar et al. have already

shown this type of computation using mono-layer pillar nanomagnets using magnetic fields.

Unlike the field based computing, our spin-torque driven programmable grid could operate

for 2n
2
layouts. In this work, we have presented micromagnetic simulations backed up by

relevant experimental verification, to match the results obtained from our programmable

grid. We have also presented our unique way of selecting particular cells from the array

to only participate in the computation, while the deselected cells through ST current will

be in non-computing oscillating states. The key aspect of our programmable grid is that

any quadratic optimization problem, which could be non-Boolean, can be mapped to our

programmable grid, which is easier to fabricate than being individual layouts.
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CHAPTER 7

CONCLUSION

This research work blends two di↵erent research areas of multilayer nanomagnetic sys-

tems and dipolar coupling between nanomagnetic disks, where we have explored novel nano-

magnetic computing paradigm is investigated. The transistor technology in todays digital

electronic devices uses two conductance states “0” and “1”. If more charges are present

in the channel then the transistor is in “ON” state and if less number of charges then the

transistor is in “OFF” state. The problem happens when the transistor is switching from

one to another and vice versa. When the transistor is switching, the charges in the channel

moves out or goes through the channel. This movement of charges creates current flow and

thereby huge power is dissipated from the transistor. This power dissipation poses a huge

threat to the CMOS scaling of the devices. There are several techniques to counter this

threat. One of the approach is the magnetic field based computing proposed by Imre in

2006 [112]. This work is focused such magnetic field based computing based on multilayer

nanomagnetic systems. Our group has been actively working on the logic computation ver-

ifying the non-Boolean computing nature of nanomagnets to solve optimization problems

that arises in computer vision. We have reviewed all the fundamental devices in multilayer

spintronic devices for logic computation.
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Figure 7.1. OR gate operation using a 6 x 6 MRAM reconfigurable array

7.1 Future Work - Extension of Reconfigurable Nanomagnetic Grids for Boolean

Computation

Here we propose our crossbar architecture based STRAN, which has several advantages

that could improve the logic density through easy programmability for constructing Boolean

logic functions. In this system, the shape anisotropy provides two stable magnetization
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directions encoded with classical binary bits “0” and “1” as shown in Fig. 7.1(c). The

cells are deselected by passing a short ST current of 200µA for few nanoseconds to allow

the magnets to settle in non-interacting vortex staes. We have demonstrated a 3-input

OR/NOR gate design mapped to STRAN with fanout as shown in Table. 7.1 & Fig. 7.1(a).

The MTJ elements have the dimension 110 ⇥ 100 ⇥ 10 nm3 with a tilted reference layer for

readout. The inputs for this layout are B3, C2 and C4 and the fan-outs are from D3, E3

to B6 shown in Fig. 7.1(b). The Boolean operation is performed in three steps. The first

step, named “DESELECT”, deselects the non-computing magnets from the grid by forcing

them to non-interacting vortex state, by passing a ST current of 200µA. The ST current

carries the free layer magnetization of these cells to a precessional state and once released

quickly they settle to their energy minimum vortex states with almost zero interaction with

its neighbors. The second step, named “SET”, sets the inputs of the free layer to an initial

logic state. In this step, input cells B3, C2 are set to 1 and C4 is set to 0 respectively.

The third step, which is “CLOCKING and OUTPUT” clocks the output magnets to +y

direction with ST current of 200µA in which the MTJ output is dependent on the inputs.

The initial and final state of magnetization of the output cell C3 is shown in Fig. 7.2. As one

can see the clocked magnetization of the cell C3 in +x direction settles in its ground state

to +y direction depending on the inputs given to the logic circuit. We have extracted the

magnetization state diagram for all input combinations. Using our STRAN many di↵erent

logic designs can be produced in the same integrated circuit, by enabling users to create

their own custom design. Our future work is related on fabricating this patterned STRAN

and observing the programmability for Boolean or Non-Boolean computing.

7.2 Programmable Nanomagnetic Grids using Multiferroic Structures

The multiferroic devices has been of great interest in the past few years as beyond CMOS

devices [152, 153, 154]. The main applications of these devices are sensors, memory and spin-
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Figure 7.2. Magnetization state of cell C3

Table 7.1. Logic-OR and NOR gates programmed in a 6x6 array of nanomagnets

Input A
(Cell B3)

Input B
(Cell C2)

Input C
(Cell C4)

Output
(Cell C3)
OR Gate

Fan-Out
(Cell B6)
NOR Gate

1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

tronic devices. We have explored Boolean logic computation using multiferroic devices as

computational elements. As proposed in this section, we are using the underneath PZT ma-

terial to induce strain in the top free layer. The free layer material can be any multiferroic

material and we have chosen TERFENOL-D as the free layer material, which has excel-

lent multiferroic characteristics. The saturation magnetization, which is the most important

parameter with the crystalline anisotropy parameters were carefully embedded into the sim-

ulator. As the first design exploration, we are planning to set up experiments to validate

the ferromagnetic and antiferromagnetic coupling between the free layers of the multiferroic

structure. We hope that, by applying strain at the bottom layer, we can induce magnetiza-
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tion clocking in one of the multiferroic device and released to settle in its energy minimum

state where it couples with the neighboring free layer. Once we have validated these building

blocks of ferro and antiferro coupling for logic computation, we will incorporate these devices

into the programmable array with both circular and elliptical shaped nanomagnetic pillars

to validate the results from our STRAN hardware. A schematic of this proposed structure

is shown in Fig. 7.3.

TERFENOL(D*
1.  Magnetostric8ve*coefficient(

+90x10(5*
2.  Satura8on*magne8za8on(8x105*
3.  Gilbert*damping(0.1*
4.  Young’s*modulus(8x1010*Pa*

Figure 7.3. Dipolar interaction between multiferroic structures
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