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ABSTRACT 

 

Laboratory tests are a primary resource for diagnosing patient diseases. However, 

physicians often make decisions based on a single laboratory result and have a limited 

perspective of the role of commonly-measured parameters in enhancing the diagnostic process. 

By providing a dynamic patient profile, the diagnosis could be more accurate and timely, 

allowing physicians to anticipate changes in the recovery trajectory and intervene more 

effectively.  

The assessment and monitoring of the circulatory system is essential for patients in 

intensive care units (ICU). One component of this system is the platelet count, which is used in 

assessing blood clotting. However, platelet counts represent a dynamic equilibrium of many 

simultaneous processes, including altered capillary permeability, inflammatory cascades (sepsis), 

and the coagulation process. To characterize the value of dynamic changes in platelet count, 

analytical methods are applied to datasets of critically-ill patients in (1) a homogeneous 

population of ICU cardiac surgery patients and (2) a heterogeneous group of ICU patients with 

different conditions and several hospital admissions.   

The objective of this study was to develop a methodology to anticipate adverse events 

using metrics that capture dynamic changes of platelet counts in a homogeneous population, then 

redefine the methodology for a more heterogeneous and complex dataset. The methodology was 

extended to analyze other important physiological parameters of the circulatory system (i.e., 



ix 
 

calcium, albumin, anion gap, and total carbon dioxide).  Finally, the methodology was applied to 

simultaneously analyze some parameters enhancing the predictive power of various models.  

This methodology assesses dynamic changes of clinical parameters for a heterogeneous 

population of ICU patients, defining rates of change determined by multiple point regression and 

by the simpler fixed time parameter value ratios at specific time intervals. Both metrics provide 

prognostic information, differentiating survivors from non-survivors and have demonstrated 

being more predictive than complex metrics and risk assessment scores with greater 

dimensionality.   

The goal was to determine a minimal set of biomarkers that would better assist care 

providers in assessing the risk of complications, allowing them alterations in the management of 

patients. These metrics should be simple and their implementation would be feasible in any 

environment and under uncertain conditions of the specific diagnosis and the onset of an acute 

event that causes a patient’s admission to the ICU.  

The results provide evidence of the different behaviors of physiologic parameters during 

the recovery processes for survivors and non-survivors. These differences were observed during 

the first 8 to 10 days after a patient’s admission to the ICU. The application of the presented 

methodology could enhance physicians’ ability to diagnose more accurately, anticipate changes 

in recovery trajectories, and prescribe effective treatment, leading to more personalized care and 

reduced mortality rates.   
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CHAPTER 1: INTRODUCTION 

 

1.1 Background 

One of the major concerns of the U.S. government is the situation of the healthcare 

system. There are several factors associated with this issue, and some have motivated the 

development of this research: (1) the current level of healthcare cost in the U.S., (2) the 

availability of massive datasets, (3) the lack of effective tools to help healthcare providers 

improve their diagnoses and the interpretation of results, and (4) high mortality rates. It is 

estimated that National Health Expenditures (NHE) currently are approximately 18 percent of 

GDP ($2.9 trillion), and they are expected to reach 19.9 percent by 2022 ($5.0 trillion) [1]. This 

concern is shared by both the private and public sectors, since U.S. government spending is 

approximately 20 percent of GDP [2]. The rapid advancements in healthcare information 

technology have led to massive and heterogeneous datasets. However, the amount of information 

that is currently extracted from those datasets is limited due to the complexity of health processes 

and the lack of tools to assist physicians in better analyzing and interpreting results. Physicians 

are usually not trained to simultaneously analyze multiple attributes and, often, their decisions 

are made based on the last test result as a last picture of the patient compared to “normal” ranges 

and their experience. The high mortality rates faced by U.S. hospitals are also an important issue. 

Cardiovascular diseases and post-surgical health management are two of the primary causes of 

death in U.S.: in general, 10–29 percent of patients admitted to adult intensive care units (ICUs) 
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die in hospitals across the U.S. [3], and 23.7 percent of total deaths are caused by heart disease, 

which continues being the leading cause of death [4].  

The accurate assessment of the circulatory system is important for all critically-ill 

patients. Often, changes in circulatory status occur rapidly, with possible complications for the 

patient, and interventions and decisions have to be made as early as possible. Laboratory tests are 

the primary resource for diagnosing patient diseases and monitoring critically-ill patients. 

However, physicians often make decisions based on a single laboratory result, ignoring 

important factors such as patient historical test results and the relationships among different 

types of tests. They have a limited perspective of the role of commonly-measured parameters 

from the Complete Blood Count (CBC) test and the Basic Metabolic Panel (BMP) test and their 

interactions and changes over time. The CBC provides information regarding the types and 

number of cells in blood, and the BMP provides information about glucose, electrolytes, and 

fluid balance.  

There is a need to provide physicians with a dynamic patient profile and to develop 

methodologies and tools to assist (1) the extraction of pertinent knowledge from common and 

less expensive healthcare records (e.g., lab test results), (2) the anticipation of postsurgical 

adverse events, and (3) the provision of more personalized patient care. This study focused on 

modeling and analyzing multiple physiologic parameters, looking for a minimal set of markers 

that could assist physicians in timely identifying and assessing the risk of adverse events.  

The principal components of the blood are white blood cells, red blood cells, platelets and 

plasma, and platelets. The most common cells in the human body are red blood cells. They help 

the system in delivering oxygen (O2) to body tissues and carrying carbon dioxide (CO2) to the 

lungs to be exhaled. A reduced level of red blood cells, known as anemia, is the most common 
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disorder, which may lead to different clinical consequences. Plasma is a liquid that carries all the 

blood cells in suspension. It transports dissolved salts, proteins, nutrients, hormones, clotting 

factors, and electrolytes throughout the body as necessary. It also helps to remove waste products 

from the body. White blood cells help the body in fighting infectious diseases, attacking and 

destroying any bacteria or organism that causes the infection. Platelets are cells that bind and 

react to damaged blood vessels. They are related to the clotting of blood and prevention of 

bleeding. Therefore, platelets are relevant in heart attacks, strokes, and peripheral vascular 

diseases. A platelet count is the amount of platelets in the body. Too many or too few platelets 

may cause varied disorders. However, platelets can also present abnormalities in their function, 

which may lead to other disorders.   

There are also other physiologic parameters measured through blood tests that have been 

demonstrated to provide prognostic information. Two of them are albumin and calcium. Albumin 

is one of the main proteins of plasma. It is a component of acute injury response and decreases in 

response to inflammation. Therefore, it is also known as a negative acute phase reactant. It has 

been demonstrated to be a proper predictive marker of surgical complications, and low levels of 

albumin have been found in patients who have major sepsis (a very severe inflammation of the 

whole body, commonly caused by severe infection).  Additionally, several studies have 

suggested that albumin level can be an independent predictor of mortality in different clinical 

settings.   

Calcium is an important mineral in the human body. Blood calcium level is also a 

common test conducted as part of a basic metabolic panel test. Usually, it is measured when a 

patient presents symptoms suggesting kidney stones, bone disorders, or neurologic disorders. 

Blood calcium also has shown to be related to critically-ill patients, and some studies have 
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suggested that alterations in calcium levels occur frequently in the ICU patient population. The 

use of these and other parameters as markers are reviewed in Chapter 2 of this dissertation. 

 

1.2 Research Objectives 

This research aims to develop a generalizable methodology to assess dynamic changes of 

specific clinical parameters for a heterogeneous population of ICU patients, using rate of change 

and developing an index able to provide valuable information to anticipate adverse outcomes. 

The specific objectives of this research are to (1) develop a methodology to anticipate 

patient outcomes using dynamic changes in platelet count in a homogeneous population, (2) 

apply to a heterogeneous and complex dataset to determine the ability to generalize the results to 

a broader population, (3) extend the methodology to other parameters such as mean platelet 

volume, albumin, and calcium with the homogeneous dataset, and (4) generalize the 

methodology analyzing simultaneously specific parameters from a heterogeneous dataset. 

 

1.3 Organization 

This document is organized as follows: 

• Chapter 2 is a relevant literature review regarding common blood tests for patient 

monitoring, current practices associated with the analysis of laboratory test results, 

and monitoring techniques of patient recovery processes. Specific studies that use 

platelet count and calcium as markers are also presented, and the use of anion gap, 

total carbon dioxide, and albumin as parameters that can provide prognostic 

information is reviewed.  
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• Chapter 3 presents the methodology applied, including a detailed description of the 

datasets and their construction, the study protocol, and details of the comparison of 

the two datasets selected. The statistics used to evaluate and validate the models are 

presented. These statistics allow the comparison of the models’ performance with the 

performance of other models from previous studies using similar physiologic 

parameters. 

• Chapter 4 presents the results for each step described in the methodology section and 

a discussion regarding the relevance of the results and their comparison with previous 

studies using physiologic data. 

• Chapter 5 includes conclusions, contributions, and the limitations of the research, as 

well as guidelines regarding further investigation to validate the results to be 

applicable for new ICU patients. 
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CHAPTER 2: LITERATURE REVIEW 

 

This chapter has four main objectives. First, it describes the basic hemodynamic 

parameters used to monitor patients during ICU patient recovery trajectories and their application 

in different studies as possible prediction markers of patient outcome. Second, it discusses the 

current practice associated with laboratory test analysis, as well as current practices in patient 

monitoring. Third, a detailed literature review in the use of platelet count as a predictor of patient 

outcome is discussed. The final section reviews the use of other physiologic parameters as part of 

patient monitoring.   

 

2.1 Common Blood Tests for Patient Monitoring 

Laboratory tests are a primary resource for diagnosing patient diseases and assessing 

patient progression. The most common tests ordered are the basic metabolic panel (BMP) and 

the complete blood count (CBC) test. The BMP is usually ordered as a routine medical exam.  

However, in critically-ill patients, the test can suggest medical causes of fluid imbalances that 

may require immediate intervention. The CBC is also a routine health laboratory test, but in 

critically-ill patients it provides information regarding disorders that affect blood cells. It is also 

performed to determine the effectiveness of treatments. Some therapies or medications can affect 

the production of cells, and a CBC is usually ordered to help monitor the treatments. 

  



 7 
     

2.1.1 Basic Metabolic Panel (BMP)  

A BMP is a group of blood tests that provide information about the patient’s metabolism. 

It is usually conducted to evaluate how the kidneys are functioning regarding blood fluid balance 

and blood sugar levels by measuring the levels of sodium, potassium, chloride, carbon dioxide, 

total bilirubin, total protein, glucose, creatinine, blood urea nitrogen (BUN), and calcium [5]. 

Blood sugar levels are measured in terms of glucose, one of the energy sources of the body. 

Fluid balance is measured in terms of electrolytes (potassium, calcium, and sodium). All 

contribute to the proper functioning of the nerves and muscles in the body. Creatinine and blood 

urea nitrogen are both waste products filtered by the kidneys. Their test results provide 

information on how well the kidneys are functioning. Abnormal results may be due to diverse 

conditions. These medical conditions may include kidney failure, diabetes, liver disease, 

breathing disorders, and side effects of medications [6]. 

2.1.2 Complete Blood Count (CBC) 

A CBC is commonly ordered to monitor disease progression with response to a treatment 

or as a routine checkup [7] for symptoms such as weakness, fatigue, or bruising [8].  A CBC 

provides information about the white blood cells, red blood cells and platelets. This test measures 

the number of white blood cells (WBC count), the number of red blood cells (RBC count), the 

fraction of the blood composed of red blood cells (hematocrit), and the total amount of 

hemoglobin in the blood. The test also provides information about the average red blood cell size 

(MCV), hemoglobin amount per red blood cell (MCH), the amount of hemoglobin relative to the 

size of the cell (hemoglobin concentration) per red blood cell (MCHC), and platelet count [8].  
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As described previously, all blood cells have different functions in the circulatory and 

immune systems (oxygen transport, blood clotting, infection and inflammation fighting) and, 

depending on their levels (low or high), diverse blood disorders with clinical consequences may 

appear. This test may provide physicians support in the diagnosis of allergies or diverse 

infections, detection of blood clotting problems or blood disorders such as leukemia or anemia,  

and the evaluation of red blood cell production or destruction [8].  

 

2.2 Current Practice in the Analysis of Laboratory Test Results 

The blood tests previously mentioned are the most common tests ordered to monitor 

patients and diagnose diseases. However, depending on the disease, physicians could order 

additional tests to confirm or discard any initial findings. This situation is more critical while 

assessing a patient’s progression in high-risk populations as ICU patients or patients suffering 

from chronic diseases. In these cases, more information is needed to make effective early 

decisions given the patient’s condition and the associated risks.  Care providers usually assess 

laboratory results by comparing them with “normal ranges,” which are based on specific healthy 

populations or on limits that characterize a specific medical condition. Moreover, these ranges 

depend on the methodology used to determine them; there is no standard methodology [9]. In 

addition, another issue is the difference across laboratories. Clinical laboratories use different 

techniques and methods to obtain results. Techniques, methods, and equipment are subject to 

various sources of variability, from calibration to materials to human skills. A study 

demonstrated that the severity of metabolic acidosis depends on the bicarbonate assay used.  The 

study concluded that the recognition of these differences is relevant for the definition of the 

severity of metabolic acidosis and the corresponding treatment [10]. 
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Another important factor to consider is the variability among patients, even if they are 

part of a homogeneous population. The behavior of physiologic parameters varies among 

individuals; each person has her/his own “normal” ranges depending on personal conditions and 

characteristics. There is also variability within patients. This variability is affected by other 

factors in addition to the disease, such as emotional and environmental factors. For this reason, 

the analysis of test results should “ideally” be patient-specific. Unfortunately, the comparison of 

specific characteristics in a static “mode” of the patient’s condition does not provide physicians 

with the dynamism needed to understand the patient’s condition. The relationship among the 

results from the different tests cannot be effectively observed through static lenses. This research 

focuses on capturing the dynamism of specific physiologic signals through metrics that could 

provide useful information to the physician.   

 

2.3 Current Monitoring Techniques of Patient Recovery Process 

 There are several techniques applied to monitoring patient progress. Most of them 

monitor patients with cardiovascular diseases, because they continue being the leading cause of 

death in the U.S. [4]. The principal aspects considered during monitoring are the determination 

of the parameters that best represent the patient’s condition, the risks associated with the disease, 

and the modeling and prediction of patient outcomes [11, 12, 13]. The common parameters 

measured were described in the previous section; however, there is no agreement on which 

parameter—or set of parameters—can better describe a patient’s condition.  

 Many previous studies focused in using clustering methods to segregate the population, 

looking for similarities among patient characteristics. Some clustering methods have been 

modified to be applicable to dynamic environments (e.g., k-means or agglomerative hierarchical 
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method) for specific purposes such as fuzzy logic-clustering. One study applied a fuzzy logic 

clustering method for functional magnetic resonance imaging (fMRI) for the detection of brain 

activation during the application of a stimulus [14]. However, laboratory sampling procedures 

are not standard and samples are not taken at specific intervals. Thus, time series analysis has 

been used to analyze data dynamically, and clustering time series data have been used in various 

application domains [15]. Taking into account the development of healthcare information 

technology and the increment of healthcare data registered, the interest in temporal data mining 

research has increased. The principal difference between a static and a dynamic time series is the 

methodology used to measure the similarities between two patients or data objects.  

Time series has been also applied in detecting influenza epidemics [16] and modeling 

influenza incidence [17]. Nevertheless, to apply times series, the sample size takes an important 

role and, depending on the time frame, sometimes the values assigned to the parameter of 

interest, which are averaged values, are not representative of the real values associated with the 

time series. This issue is more important in the case of physiologic parameters, because their 

changes or variability over time are high due to different factors, and the samples are taken by 

request of the physicians and not on a regular basis. For example, in the case of platelet counts, 

factors such as invasive procedures, transfusions, catheters, or platelet function defects or blood 

or bone marrow disorders may affect the level of platelets.   

 Other studies have focused on the use of Markov processes [18, 19] to model disease 

progression, such as infectious diseases. Peng et al. [20] applied sequential cluster methods to 

establish the classification of the infectious disease state and then presented a weighted Markov 

chain procedure to predict the future incidence state. However, few studies have modeled the 

temporal evolution of postsurgical recovery and have used laboratory test results as a primary 
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source.  One study used multivariate time series, applying fuzzy logic methodologies to cluster 

patients after cardiac surgery. The multivariate clustering allowed the representation of potential 

risks associated with patients during their recovery process and clustering them into groups to 

further generate risk profiles per group [21].  

 

2.4 Platelet Count as a Biomarker 

A platelet count measures the amount of platelets in the blood. Platelets are blood cell 

fragments that travel in blood vessels and clot and are the smallest type of blood cell. One of the 

most important functions is the formation of blood clots. If a blood vessel is damaged, then the 

platelets clump and form a plug (called platelet aggregation) that will help stop bleeding. 

Platelets also contribute in inflammatory processes in tissue. They are also called thrombocytes, 

because a blood clot also is called a thrombus [22].  The number of platelets can be altered by 

diverse diseases and conditions (such as bone marrow or immunologic problems, liver disease, 

or some medications), and they may be counted to monitor or diagnose diseases. According to 

the National Institute of Health, the reference range for a platelet count is from 150,000 to 

450,000 units per microliter (mcL) [23]. 

Abnormalities in platelet numbers and functions are coagulation disorders observed in 

ICU patients [24]. An abnormal drop in the number of platelets in the bloodstream, known as 

thrombocytopenia, may result in increased bleeding. Thrombocytopenia may be result of a 

deficit in platelet production, an excess in platelet destruction, or an increment of consumption in 

the bloodstream. Some studies have found associations between a decline in platelet counts and 

patient outcomes [25], whereas a decline in platelet counts for patients who stayed more than 

five days in an ICU provided prognostic information. Some studies have focused on platelets 
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recognizing that they are involved in the pathogenesis of sepsis and that the severity of sepsis 

correlates with the decrease in platelet counts [26]. Other studies have reported that ICU 

mortality is significantly higher in thrombocytopenic patients [27, 28, 29, 30].  

Baughman et al. [27] reviewed 162 records of ICU patients and concluded that 

thrombocytopenia was common in ICU patients and was associated with longer hospital stays 

and increased mortality. This was an issue supported by Greinacher et al. [30], who reported that 

approximately 40 percent of the ICU patients had thrombocytopenia. Stephen et al. [28] 

conducted a study with 147 ICU patients with surgical intervention. The data was collected 

during six months and the conclusion was that thrombocytopenic patients had a higher mortality 

and that this condition probably was a reflection of the magnitude of an underlying pathologic 

condition. The authors also suggested that the correction of this condition may be an appropriate  

prognostic factor. Thrombocytopenia was defined as a risk factor for mortality in a study that 

analyzed thrombocytopenia during sepsis. The authors evaluated if this condition could predict 

mortality in ICU patients [29]. This study also reported that the platelet count in survivors was 

higher than in non-survivors. 

It can be observed in all these studies that low levels of platelet count are very risky and 

may suggest the severity of an illness; however, an elevated number of platelets, known as 

thrombocytosis, could cause spontaneous blood clots, which may be risky as well. 

Thrombocytosis may be present due to an infection or any blood or bone marrow disorder, but, 

in those cases, platelets may take part in the coagulation of arteries with the possibility of 

causing atherosclerosis. These types of disorders also are important, because they can cause vein 

thrombosis, or any thrombosis that may lead to stroke or heart attack.  
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As mentioned, platelet disorders also could be related to their function.  Platelet adhesion 

(to the vessel walls), aggregation, and activation may be affected in critically-ill patients. 

However, tests associated with measuring the ability of adhesion or aggregation are influenced 

by several factors and are not common.  These parameters were not available in the datasets 

analyzed, nevertheless, it is important to note that these abnormalities exist and may affect 

patient clinical outcomes.  

Finally, another characteristic of platelets is platelet volume, which can be estimated as 

part of a CBC test. Some studies have suggested that an increment in MPV may increase 

mortality risk in ischemic heart diseases [31].     

Although it has already been recognized that “determining trends in platelet count is of 

additional prognostic value compared with single measurements” [32], none of the studies have 

looked in more detail at the dynamic changes in platelets, nor have they identified any specific 

signal or marker that can alert physicians for possible complications.     

Considering the importance of platelets in monitoring ICU patients, it seems appropriate 

to study their behavior over time and develop a methodology to capture their change as a 

predictor of patient outcome.  Since this behavior is critical for patients with heart disease, this 

research has two parts: (1) investigate a specific group of ICU patients with heart disease who 

underwent specific types of cardiac operations and (2) investigate a mixed population of ICU 

patients from different hospitals and with varied conditions. The objective is to develop a 

methodology to predict patient outcomes with a homogeneous cardiac dataset and then replicate 

or redefine the methodology for a heterogeneous and more complex dataset.  
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Nijsten et al. [33] conducted a retrospective study to analyze the relevance of time-

dependent changes of platelet counts in ICU patients. The study found an association between 

patients with low rate of change in platelet count and  mortality. The authors observed that 

between days 2 and 10, non-survivors had a smaller increase in platelet counts than survivors. 

The rate of change was calculated daily and the result was comparable with the Acute 

Physiology Chronic Health Evaluation II (APACHE II; [33]) score in predicting mortality, which 

uses the leukocyte (white blood cell) count.   

Another study conducted by Akca et al. [35] focused on describing the changes of 

platelet count over time and relating them to mortality rate in critically-ill patients. This 

prospective study included data from 40 ICUs gathered in 16 countries. The patient population 

enrolled in the study included 1,449 critically-ill patients, but only 257 stayed for more than 2 

weeks in the ICU. The study showed a biphasic pattern of platelet count, which was different in 

survivors and non-survivors, and concluded that late thrombocytopenia (platelet count less than 

150x103/mm3) was a better predictor of death than early thrombocytopenia. The authors also 

observed that after thrombocytopenia, the platelets increase for survivors, issue that was not 

observed in non-survivors. They concluded that the platelet count decreased significantly in the 

first three days after admission, reaching a low point on day 4 for both survivors and non-

survivors.  

After review of these studies, it can be concluded that the analysis of changes in platelet 

count over time is important in critically-ill patients and may provide prognostic information. In 

all of the reviewed studies, thrombocytopenia was presented in critically-ill patients, suggesting 

that low platelet count is related to patient outcome and mortality.  
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The next section describes other hemodynamic parameters that have shown to be related 

to clinical outcomes and may also provide additional information regarding patient progression. 

Therefore, they may be considered for inclusion in our predictive models.  

 

2.5 Other Parameters used to Monitor Patient Progression 

Several commonly-measured parameters help physicians monitor patients. Depending on 

the disease and the patient’s condition, the tests vary, but the primary source is blood tests. As 

explained, the blood has basic components, but there are other physiologic attributes measured in 

the blood, such as albumin and calcium, that have been demonstrated to provide prognostic 

information. Albumin is an important protein of blood plasma; it regulates the colloidal osmotic 

pressure of blood and transports hormones and fatty acids, among others. Some studies that have 

found that reduced levels of albumin concentration are associated with mortality risk [36].  Other 

studies have found that a low level of albumin (hypoalbuminemia) in patients with critical 

conditions is associated with poor outcomes [37, 38], and others that low albumin concentration 

in the blood independently predicts morbidity [39]. The impact of albumin levels in critically-ill 

patients has been observed and analyzed by several researchers. Most studies have observed that 

albumin levels decrease at the beginning of a critical illness and continue without increasing until 

the recovery phase [39]. 

Calcium is the most common mineral in the human body and one of the most important.  

Most calcium is found in bones, but a small amount is found in blood. Calcium affects bone and 

teeth building, but it also influences the nervous system and the blood clotting process. When 

blood calcium levels are low (hypocalcemia), calcium is extracted from the bones; when the 

calcium level in the blood is high (hypercalcemia), the body stores it in the bones or discards it. 
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Blood calcium also has shown to be related to critically-ill patients. Some studies have suggested 

that alterations in calcium levels occur frequently in the ICU patient population. Hypocalcemia 

has been reported in critically-ill patients, and decreased calcium levels have been correlated 

with increased mortality [40]. Another study found a drop phase in plasma calcium for patients 

who underwent cardiac surgery [41]. In this study, all patients were survivors, but all had a 

significant drop in plasma calcium, reaching a minimum during the second day after surgery. 

However, patients with other complications reached minimum values six days after surgery.   

Two other parameters that could be explored as possible markers are the anion gap and 

total carbon dioxide (TCO2).  The anion gap in blood is the difference between cations 

(positively-charged ions) and anions (negatively-charged ions) in serum. It is a common measure 

used to identify the cause of metabolic acidosis, that is, a lower-than-normal pH in the blood.  

However, it has been used not only to diagnose acid-base disorders but also to diagnose other 

conditions. One study concluded that an increased anion gap at admission is a predictor of 

patient mortality in the critically-ill [42]. Another study investigated increased anion gaps and 

their clinical significance and concluded that the increment in anion gap is related to an increased 

severity of illness that is independent of severe electrolyte abnormalities [43]. In this study, 

hospitalized patients who survived at least one week showed low risk of mortality. 

The TCO2 test often is conducted as part of the BMP. The process of metabolism 

produces carbon dioxide in our blood. Both high and low levels of TCO2 in the blood may 

impact different systems related to cardiovascular functioning or cellular-based respiration. 

These changes may suggest the retention or loss of fluids, which may cause an imbalance in the 

body’s electrolytes [44]. If a patient presents low levels of carbon dioxide, then less oxygen will 

reach the cells and tissues. On the other hand, if a patient presents high levels of carbon dioxide, 
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it may suggest a lung disease or infection. TCO2 is correlated with the anion gap and is 

commonly measure for the diagnosis of metabolic acidosis, when the value falls below the lower 

“normal” limit of 23 mEq/L. Additionally, “metabolic acidosis has been recognized as an 

important comorbid event in the high mortality rates seen in patients with end-stage renal 

disease” [10].  

To summarize, this chapter reviewed different parameters that have been used as 

biomarkers and that have been demonstrated, through several studies, to provide prognostic 

information. Also reviewed were different techniques or practices used for patient monitoring. 

Some of the most relevant studies reviewed were related to platelet count and its impact in 

patient monitoring processes and its correlation to patient outcome, including morbidity and 

mortality.  

It is important to note that the level of platelets in blood depends on several processes 

(platelet production, maturation, sequestration, and destruction). All of these processes are 

affected by different factors, from the individual patient’s characteristics and condition to drugs 

and treatments. Identifying changes in platelet count over time may provide new information 

about the underlying “systems” and a new understanding of the disease processes themselves. 

Similarly, modeling changes in some component elements of the BMP will support identifying 

changes in underlying “systems” that are elements of basic disease responses. In the following 

chapter, the methodology developed to analyze the parameters previously mentioned and 

reviewed in this chapter are described.   
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CHAPTER 3: METHODOLOGY 

 

This chapter presents the methodology developed to achieve the goals of this study. First, 

the two different patient populations selected are described, and the reference event is defined for 

each dataset.  Second, the study protocol is presented, which describes the metrics developed and 

presents the independent analysis of platelet count changes in each dataset. A key factor in the 

methodology is the process of synchronizing patient care cycles so that the changes of the 

parameters over time can be captured and compared. Third, a comparison of the results from 

both datasets is presented. Finally, the statistics applied to assess the metrics and the 

classification models and to compare the datasets are described. Considering specific objectives 

(1) and (2) the sequence to achieve them is the following: (i) selection of patient population, 

including determination of primary events, (ii) analysis of VA dataset, including definition of 

time frame (specific times intervals) and analysis of both metrics—rate of change and ratios in 

previously-defined time intervals, (iii) repetition of methodology applied to platelet count with 

MIMIC II dataset and (iv) graphical and statistical comparison of both datasets.  

Objectives (3) and (4) of this research are related to broadening the scope to other 

parameters. To achieve them, the following activities will need to be conducted: (i) application 

and verification of methodology to other physiologic parameters using the homogeneous dataset, 

including individual analysis of each parameter, (ii) validation of methodology to simultaneously 

analyze homogeneous population and (iii) individual and simultaneous analysis of additional 

parameters from MIMIC II dataset.  
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Figure 3.1 presents a diagram of the methodology description, including the specific 

research objectives and the sequence of activities to achieve them. 
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Figure 3.1. Methodology description 
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3.1 Patient Population’s Selection 

Two databases were used. The first database was composed of patients undergoing 

cardiac surgery at the James A. Haley Veterans Hospital (VA) in Tampa, Florida. The main 

focus was to analyze the behavior of changes in platelet counts over time using a more 

homogenous population. The second database was the MIMIC II clinical database (version 3), 

which is a component of the PhysioBank Archives, developed at the Massachusetts Institute of 

Technology (MIT) and at Boston’s Beth Israel Hospital [44]. A heterogeneous sample of ICU 

patients was selected with different conditions and several hospital admissions. The purpose of 

using this database was to determine if the methodology could be generalized to a more 

heterogeneous population.  

The first database contained 406 patients who underwent cardiovascular surgery 

(coronary artery bypass, aortic valve replacement, and mitral valve replacement) at the VA for a 

period of 3 years. The date and time of surgery were selected as the reference time. All platelet 

count values were assigned a relative time (in hours) from the reference time. 

The second database contained records of more than 30,000 patients from a period of 7 

years. All patients with platelet count values recorded were selected. The sample contained 1,308 

de-identified ICU patients. More than a single admission was considered for survivors, but only 

last admissions were considered for non-survivors. As a result, 1,999 cases (a combination of 

patients and hospital admissions) were included for analysis. The original dataset included 15 

percent of the population whose specific ICU admission time and date were unknown, 56 percent 

whose platelet count tests were taken after ICU admission, and 29 percent whose tests were 

taken before ICU admission. Considering the heterogeneity of the sample and that the exact ICU 

admission time was not available for all patients, the minimum platelet count value during the 
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first 24 hours after the first registered measure was selected as reference event or starting point 

for further analysis. The initial analysis of the more homogeneous cardiac surgery dataset 

suggested that platelet counts fall promptly after an acute event, which formed the basis for 

selecting this time interval to “synchronize” the patients’ care cycles.  The relative time to this 

event was computed for each subsequent platelet count value. 

 

3.2 Study Protocol 

3.2.1 Analysis Using the Veterans Hospital Dataset  

3.2.1.1 Definition of Time Intervals 

The behavior of survivors and non-survivors was analyzed by defining two specific 

reference points: At  as the average time corresponding to the minimum platelet count for 

survivors, and Bt  as the average time corresponding to the minimum platelet count for non-

survivors. An analysis period was defined based on the platelet count behavior for survivors and 

non-survivors.  A maximum period of 3t  hours was selected based on the platelet count changes 

observed and on the literature review that supports a minimum time that could provide 

prognostic information. Time intervals relevant to the study were defined as  11 , ttT A , 

 22 , ttT A  and  33 ,ttT A , where At  is used as the starting point of analysis, and 1t , 2t , and 3t

were defined as the upper limits of the time intervals. Intervals longer than 3t  hours were 

considered to be too late in the care cycle to be prognostically useful. Three other intervals were 

defined:  14 , ttT B ,  25 , ttT B , and  36 , ttT B , using Bt  as the starting point.  

3.2.1.2 VA Dataset Analysis with Rates of Change and Ratios  

iRc was defined as the rate of change of platelet counts over intervals iT , 3,2,1i . Mean 

rates of change for survivors and non-survivors over those intervals were computed. These ratios 

sburton
Text Box
21
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were subsequently compared to a more comprehensive analysis of the slope, anticipating that the 

simpler calculation of the ratio of values at two time points would be more usable in a clinical 

environment.  A similar procedure was conducted for 54,TT , and 6T . Using those intervals, rates 

of change per hour jRc , 6,5,4j  were computed, and mean rates of change for survivors and 

non-survivors were calculated. Looking for a simple metric to analyze the platelets, three 

specific ratios were tested. We defined 
A

i
i PLT

PLT
r  , 3,2,1i  where iPLT  represents the platelet 

value measured at time it  and APLT  represents the platelet value measured at At . 

Since measures were taken at different time intervals, a 10-hour interval was used to 

search values at the points it  previously defined—i.e., the nearest measure to it  was searched 

inside the interval  ii tt ,10 , 3,2,1i . Ratios ir  were computed for all patients and mean ratios 

were calculated.  

A similar procedure was conducted using Bt  as the starting point. Using the intervals

6,54 ,, TTT , jr  was computed as 
B

j
j PLT

PLT
r 3 ,, 6,5,4j  where BPLT  represents the platelet value 

measured at Bt . 

3.2.2 Analysis Using the MIMIC II Dataset  

The primary event or starting point for each patient was defined as the time 0t  for the 

minimum platelet value during the first 24 hours after the first measure registered. All platelet 

values registered after 0t  were considered, and all corresponding time values were calculated 

with respect to time .0t  The methodology applied for the first dataset was repeated with the 

second dataset using the previously-defined relative times and platelet values. 
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3.2.2.1 MIMIC II Dataset Analysis with Rates of Change and Ratios  

To construct the intervals iT , 6,...,1i , times At , Bt , 1t , 2t and 3t  were defined as relative 

times with respect to 0t . Using the platelet values recorded during the intervals iT , 6,...,1i , 

rates of change per hour ( Rc ) were computed over each interval. Then, mean rates of change for 

survivors and non-survivors over the defined intervals were computed. The same procedure was 

followed using the second dataset; mean ratios were calculated using the same time intervals 

differentiating survivors and non-survivors.  

 

3.3 Analysis and Comparison of the Datasets 

Both datasets were analyzed individually to assess if the defined metrics could 

differentiate survivors from non-survivors. Then, both datasets were compared. The analysis was 

conducted graphically and statistically, comparing rates of change and ratios over each time 

interval. The objective was to analyze if the results from both datasets were comparable and if 

the methodology could be extended to a heterogeneous dataset. A critical assumption was that 

the values selected as first value and minimum value of the ICU patients from the MIMIC II 

dataset were realistic surrogates for the time of an actual acute event, because all the relative 

times computed were measured considering the time of this first registry as reference or time 0.  

 

3.4 Multivariate Analysis  

3.4.1 VA Multivariate Analysis 

 To evaluate if the methodology could be applied to other parameters, other physiologic 

parameters from the VA population were analyzed.  The parameters available from this dataset 

were calcium, albumin, ionized calcium, and mean platelet volume (MPV). Calcium as a 



 24 
     

biomarker and predictor of patient outcome was reviewed in the previous chapter. Ionized 

calcium (also called free calcium) is the calcium not attached to any protein in blood and helps in 

the building of bones and teeth. The behavior of this parameter was previously analyzed as a 

biomarker of patient outcome in cardiac surgery patients [40]. Mean platelet volume is another 

characteristic of platelets and may provide information on the speed of platelet production and 

release in the blood stream. It may be combined with platelet count to obtain a surrogate of 

platelet mass.  Mean platelet volume is a surrogate for platelet age and, combined with platelet 

count, allows the estimation of the platelet mass, as shown in equation (1). 

MPVPLTPLTmass                                    (1) 

 With these platelet mass estimates, both metrics (ratios and rates of change) were 

calculated and assessed.  Finally, the ratios and rates of change from all the parameters measured 

in the dataset were independently calculated and analyzed, and several parameters were analyzed 

simultaneously. To better observe the relationship between parameters, contour plots and surface 

plots were presented. The results of all the models created were compared with the results 

achieved with the platelet count values for the same group of patients. 

3.4.2 MIMIC II Multivariate Analysis  

The same methodology was applied with other parameters from the MIMIC II dataset. 

The parameters under study were albumin, calcium, anion gap, and total carbon dioxide. The 

characteristics of those parameters and their impacts on patient outcomes, including mortality 

and morbidity, were reviewed in the previous chapter. Of note is that unlike the VA dataset, 

where the parameter values were taken at the same time and from a specific group of cardiac 

patients (406 cardiac surgery patients), in the MIMIC II dataset, the different parameters to be 

analyzed were taken at different times and may come from a different set of patients from the 
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population (30,000 patients with diverse diseases). In this study, all cases registered for each 

parameter were considered, independent of the patient. Finally, several models were assessed to 

evaluate if their prediction power could be improved. In those models, the samples were per 

admission and not per patient.  

 

3.5 Statistics  

Fundamental basic descriptive statistics (mean and standard deviation) were used to 

evaluate the results. Two sample t-tests were conducted to evaluate differences in mean rates of 

change and mean ratios between survivors and non-survivors and also to evaluate differences 

between both datasets. Precision was given by one standard deviation (SD), and 95% confidence 

intervals (CI) were calculated for the means and medians. Medians were used in the cases of 

non-symmetric distributions.  

Binary logistic regression models were developed using both metrics. The analysis of 

maximum likelihood estimates and likelihood ratios (LR) to evaluate the models were conducted 

using 2 test. Odds ratios (ORs) and corresponding 95% Wald confidence intervals for the 

selected factors were calculated and used for the analysis. The odds ratio was calculated by 

dividing the probability of non-surviving by the probability of surviving. The c-statistic was used 

to evaluate the performance of the logistic regression models and to compare the study results 

with previous studies. This statistic represents the area under the receiver operating characteristic 

(ROC) curve and was used to assess the discriminative power of the metrics.  

Additionally, sensitivity analysis using bootstrapping was conducted to analyze the 

uncertainty of the parameter estimates, and 95% CI for those estimates were calculated. Ten-fold 

cross validation was used for the classification models; analysis of variance (ANOVA) was used 
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to evaluate the selected regression model; mean square error (MSE) and the predicted residual 

sum of squares statistic (CV press) were used to assess the models with both metrics over 

different intervals and compare them. Statistical significance was accepted at p-value ≤ 0.05. 

Data were managed using scripts in Matlab R2012a and analyzed using Minitab 16 and SAS 9.3.  
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CHAPTER 4: RESULTS AND DISCUSSION 

 

This chapter presents the results and a discussion comparing these results with the results 

of previous studies. First, the behavior of platelet counts with the population from the VA dataset 

was reviewed, and then the behavior of the same parameter from the heterogeneous population 

was analyzed. The means for the defined metrics were compared graphically and statistically, 

including rates of change and ratios for specific time intervals in both datasets. Second, other 

parameters from the VA dataset were analyzed simultaneously. Third; other parameters from the 

MIMIC II dataset were also analyzed, individually and simultaneously. The last part of the 

chapter presents a discussion of the results and their impact in the patient monitoring process. 

 

4.1 Results 

The results shown below follow the sequence mentioned in the methodology section. In 

that section, two populations were described: a dataset from the VA and the MIMIC II dataset. In 

both datasets, the specific reference or acute events were defined. All the time values 

corresponding to each parameter value were relative times measured with respect to the time of 

the defined reference event. First, the results from the VA dataset were reviewed by applying the 

methodology to all the defined time intervals and then, the results from the MIMIC II dataset 

were reviewed. Then, both datasets were compared graphically and statistically. The next step 

was to repeat the methodology with other parameters from the VA dataset. Finally, other 

parameters from the MIMIC III dataset were reviewed by applying the methodology to specific 
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time intervals. Some observations from the graphs and comments are included after each result, 

and the final comments and conclusions are presented in Section 4.2. 

4.1.1 VA Dataset 

A total of 406 patients were analyzed from the VA dataset, which included 365 survivors 

and 41 non-survivors. Figure 4.1 shows the behavior over time of the platelet count for a sample 

of 56 patients, (survivors and non-survivors) during the first 300 hours after surgery. As can be 

seen, a drop occurred during the first 100 hours after surgery and then a rise of the platelets 

occurred, a fact that is more notable in survivors than non-survivors. During the interval of 300 

hours, platelets for survivors continued to rise, while for non-survivors they did not. 

Nevertheless, in both cases, minimum values were observed during the first 100 hours.  

 

 

Figure 4.1. Platelet count over time - VA dataset 
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The time for the minimum platelet value after surgery for each patient was registered. 

The mean time for that minimum value was 53.4 28.31 hours (95% CI = [51.9,54.8] ) and 

77.05  59.69 hours (95% CI = [67.7,86.4]) for survivors and non-survivors, respectively. 

Observing the high variability, 95% CI for the median were calculated. The confidence intervals 

computed were [52,52] hours and [52,76] hours for survivors and non-survivors, respectively. 

Considering mean and median values from the previous results, At  (average time corresponding 

to minimum platelet count for survivors) and Bt  (average time corresponding to minimum 

platelet count for non-survivors) were set to 50 and 75, respectively. These times allowed the 

definition of the lower limits for the time intervals to be analyzed with the proposed metrics of 

rates of change and ratios.  

It is important to note that the mean minimum platelet value for this population was 125.2

 47.58 x109/L for survivors and 139.9 85.63 x109/L for non-survivors. However, median 

values were more representative, with 95% CI of [120.31,130.31] x109/L for survivors and 

[84.28,174.72] x109/L for non-survivors. Through both confidence intervals from the mean and 

the median, the variability in non-survivors was almost two times the variability presented in 

survivors for the minimum platelet value. However, in all cases, minimum platelet values were, 

on average, less than 150 x 109 /L, the “normal” reference range [23]. This issue confirms the 

statement that thrombocytopenia is commonly present in critically-ill patients such as this group 

of cardiac patients.  

Observing the general behavior of platelet count (see Figure 4.1), a drop below 

150x109/L occurred for the majority of the patients, and then the platelet count normalized or 

rose above this value during the first 200 hours. This fact agrees with the findings of prior 

authors, who found a clear decrease in platelet count during the first days in ICU [33, 46, 47]. A 
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similar situation was observed by Akca et al. [35], where platelet counts decreased in the first 

three days to reach a low point on day 4 for both survivors and non-survivors. It was established, 

then, that 2003 t  hours, and the study focused on intervals within this time frame. 

Time intervals were defined as  100,501 T ,  150,502 T  and  200,503 T  for the first set 

and  100,754 T ,  150,755 T and  200,756 T  for the second set. Using these time intervals, the 

behavior of the rates of change and the behavior of the ratios were analyzed. Table 4.1 shows the 

basic descriptive statistics for the mean rates of change in survivors and in non-survivors. As 

shown, there was an increment in the mean rate of change for all intervals from 1T to 6T in both 

survivors and non-survivors. Nevertheless, if only one of the intervals is observed, there is also a 

clear difference between mean rates of change in survivors and non-survivors, with the mean rate 

of change for survivors being more than two times the rate of change of non-survivors. Another 

result is that the variability increased when the intervals 6,54 ,, TTT  were used, which means that 

the rate of change varied more when analyzing intervals beginning 75 hours after surgery.  

 
Table 4.1. VA rates of change iRc , jRc - Descriptive statistics. S, survivors and NS, non-

survivors 

iRc   
1Rc   

2Rc   
3Rc  

  S NS  S NS  S NS 
Sample size  339 33  343 34  343 36 

Mean (x109/L/h)  0.672 0.238  1.035 0.430  1.153 0.541 
Standard Deviation  0.695 0.830  0.662 0.664  0.662 0.599 

jRc   
4Rc   

5Rc   
6Rc  

  S NS  S NS  S NS 
Sample size  293 28  323 30  326 32 

Mean (x109/L/h)  1.211 0.358  1.452 0.579  1.516 0.654 
Standard Deviation  1.066 0.933  1.564 0.716  1.533 0.653 

 

Figure 4.2 shows the typical behavior of platelet counts along interval 3T (between 

approximately day 2 and day 8 after surgery). A difference in slopes between survivors and non-

survivors can be observed. In this example, survivors presented a higher rise in platelet counts 
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than non-survivors. Moreover, most of the non-survivors maintained platelet count values of less 

than 100x109/L, which categorized them as thrombocytopenic patients [35], confirming the 

results from previous studies that found associations between thrombocytopenia and mortality 

[27,29].  In this figure, it also can be observed that the platelet count decreased for a couple of 

patients; however, although the platelet value stabilized around 200x109/L, which is considered a 

normal value, the patients did not survive. This may be an example of situations where a disorder 

in the platelet function is present or an adverse event occurred due to an unexpected factor. As 

defined previously, ratios ir  and jr were used to estimate the slope with two points, the interval 

limits. To find the platelet values at 50, 100, 150, and 200 hours, the following intervals were 

defined: [40,50], [90,100], [140,150] and [190,200], respectively. The nearest value to the upper 

interval limit was used to determine the platelet value for calculating the corresponding ratio. 

 

 

Figure 4.2. Platelet count over time in 3T -VA dataset  
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 Table 4.2 shows that the mean ratios and its variability increased according to the time 

interval length. All mean ratios calculated for survivors were greater than the mean ratios for 

non-survivors, confirming that the platelet counts rose more quickly in the former than in the 

latter.  

 
Table 4.2. VA ratios ir , jr - Descriptive statistics. S, survivors and NS, non-survivors 

ir   1r   2r   3r  

  S NS  S NS  S NS 
Sample size  254 28  169 21  112 19 

Mean  1.280 1.098  1.809 1.324  2.395 1.573 
Standard Deviation  0.285 0.252  0.545 0.452  0.960 0.754 

jr   
4r   

5r   
6r  

  S NS  S NS  S NS 
Sample size  271 27  185 22  119 19 

Mean  1.221 1.099  1.787 1.324  2.398 1.571 
Standard Deviation  0.203 0.194  0.591 0.324  1.110 0.819 

 

To assess the results shown and evaluate if both metrics (rates of change and ratios) can 

differentiate survivors from non-survivors, two sample t-tests for the differences in mean were 

conducted. Of note is that the sample sizes for rates of change (321  N  379) were larger than 

the sample sizes for ratios (131 N  298). However, the proportion in percentage of non-

survivors with respect to survivors was larger in ratios (between 10 and 17%) than in rates of 

change (between 9 and 10%). The tests showed that the mean rates of change from survivors and 

non-survivors were statistically different (p-value = 0.0060 for 1T  and p-values < 0.00001 for all 

other intervals). The same result was obtained for the mean ratios (p-value = 0.001 for 1T  and p-

values < 0.00001 for all other intervals).  

4.1.2 MIMIC II Dataset 

This dataset was composed of 1,308 ICU patients with 1,999 admission cases and 23,665 

platelet count measures. The time for the minimum platelet value after the reference time was 

registered. The mean time was 96  146 hours for survivors and 144.7 199.8 hours for non-
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survivors.  The median values were more representative, with 95% CI of [48.0, 51.3] and [60.3, 

84.9] hours for survivors and non-survivors, respectively. As can be observed, the reference 

times set at 50At and 75Bt  could be also used for this dataset, so that a comparison between 

both could be conducted.  

Figure 4.3 shows the behavior of the platelet count for 30 cases, where the rate of change 

from survivors is higher than the rate of change from non-survivors. The difference in platelet 

count between survivors and non-survivors were not as notorious as the difference showed by the 

VA population from Section 4.1.1. However, it can be observed that platelet values for survivors 

reach normal values (150x109/L) between 200 and 300 hours, while for non-survivors the 

platelets maintain values less than the normal values.  

 

 

Figure 4.3. Platelet count over time - MIMIC II dataset  
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The mean minimum platelet value was 178.2  98.5x109/L for survivors and 137.4

94.8x109/L for non-survivors. Nevertheless, median values were more representative, with 95% 

CI of [157.0, 166.0] for survivors and [105.1, 133.8] x109/L for non-survivors, respectively.  

Table 4.3 shows an increment in the mean rate of change for all intervals 1T to 6T for 

survivors and non-survivors. However, observing each one of them, there was also a difference 

between mean rates of change from survivors and non-survivors. As observed in the VA dataset, 

the variability increases for intervals 4T , 5T and 6T . The greatest difference in the mean rate of 

change was shown for 3T (0.50x109/L/h), and in 2T  the mean rate of change of survivors was 18.2 

times the mean rate for non-survivors. 

 
Table 4.3. MIMIC II rates of change iRc , jRc - Descriptive statistics. S, survivors and NS, non-

survivors 

iRc   
1Rc   

2Rc   
3Rc  

  S NS  S NS  S NS 
Sample size  1012 235  1100 240  1122 240 

Mean (x109/L/h)  0.284 -0.024  0.473 -0.020  0.565 0.062 
Standard Deviation  2.519 2.98  1.170 1.470  1.084 1.400 

jRc   
4Rc   

5Rc   
6Rc  

  S NS  S NS  S NS 
Sample size  268 75  935 218  974 222 

Mean (x109/L/h)  0.078 -0.14  0.507 0.070  0.575 0.133 
Standard Deviation  5.107 4.934  2.405 1.800  2.290 1.680 

 

Using the same ratios defined for the VA dataset for all intervals 1T to 6T , the results for 

ir  and jr are shown in Table 4.4. As shown in Table 4.3 for the rates of change, the mean ratios 

increased according to the time interval length, and the mean ratios for survivors were greater 

than the mean ratios for non-survivors in almost all cases. Only in the case of the interval 4T  the 

mean ratio for survivors was less than the mean ratio for non-survivors. 
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Table 4.4. MIMIC II ratios ir , jr - Descriptive statistics. S, survivors and NS, non-survivors 

ir   
1r   

2r   
3r  

  S NS  S NS  S NS 
Sample size  468 117  336 90  238 68 

Mean  1.074 0.975  1.291 1.048  1.522 1.186 
Standard Deviation  0.282 0.594  0.557 0.455  0.948 0.675 

jr   
4r   

5r   
6r  

  S NS  S NS  S NS 
Sample size  486 122  344 96  244 75 

Mean  1.059 1.094  1.271 1.146  1.468 1.261 
Standard Deviation  0.194 0.698  0.442 0.595  0.810 0.730 

 

Table 4.4 shows that, unlike the sample sizes found for survivors and non-survivors 

derived by the computation of the metrics with the VA population, the sample sizes for rates of 

change (363 N  1362) were larger than the sample sizes for ratios (306 N  608), but not in 

all cases, and the proportion in percentage of non-survivors with respect to survivors were 

similar, between 25 and 30 percent for ratios and between 21 and 27 percent for rates of change.  

Two sample t-test showed that almost all mean rates of change from survivors and non-survivors 

were statistically different (p-value = 0.738 for 1T  and p-values < 0.003 for all other intervals). A 

similar result was obtained for the mean ratios (p-value = 0.595 for 4T , p-value = 0.057 for 5T  

and p-values < 0.038 for all other intervals).  

4.1.3 Comparison of the Datasets 

To visualize the difference of both datasets in terms of the rate of change, cases 1, 2 and 3 

were defined for the mean rate of change calculated for the intervals  1T , 2T and 3T , respectively 

(See Table 4.1 and Table 4.3). Figures 4.4(a) and 4.4(b) show the mean rate of change for 

survivors and non-survivors, respectively. The dashed lines represent the trend of the VA dataset 

and the solid lines represent the trend of the MIMIC II dataset. In both figures, the trend is very 

similar. In both datasets, the mean rates of change increased as the interval length increased.  
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In general, it can be observed that the VA population had higher mean rates of change 

than the population from the MIMIC II dataset. The differences in mean rate of change were 

between 0.44 and 0.58 x109/L/h for survivors and between 0.45 and 0.53 x109/L/h for non-

survivors. In both cases—survivors and non-survivors—the differences were very similar, an 

issue that can be observed in Figures 4.4(a) and 4.4 (b). 

 
(a) Mean rate of change for survivors (b) Mean rate of change for non-survivors 

  

Figure 4.4. Mean rate of change for )3(),2(),1( 3,21 TTT , (a) survivors; (b) non-survivors 

 

A similar situation is displayed in Figures 4.5(a) and 4.5(b) for the platelet count mean 
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increasing the intervals ( 2T  and 3T ) the trend continued to be similar, but the means separated 

one from the other. The differences in mean ratio were between 0.20 and 0.87 for survivors and 

between 0.12 and 0.38 for non survivors. When using shorter time intervals, but starting at 75 

hours after the first platelet count measure, similar trends were observed.  Figures 4.6 and 4.7 

show the corresponding cases 1, 2, and 3 for the mean rate of change and the ratios calculated for 

4T , 5T and 6T , respectively.   
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(a) Mean ratio for survivors (b) Mean ratio for non-survivors 

  

Figure 4.5. Mean ratio for )3(),2(),1( 3,21 TTT , (a) survivors; (b) non-survivors 

 

(a) Mean rate of change for survivors (b) Mean rate of change for non-survivors 

  

Figure 4.6. Mean rate of change for )3(),2(),1( 6,54 TTT , (a) survivors; (b) non-survivors 
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(a) Mean ratio for survivors (b) Mean ratio for non-survivors 

  

Figure 4.7. Mean ratio for )3(),2(),1( 6,54 TTT , (a) survivors; (b) non-survivors 

 

Figures 4.4 to 4.7 show that both datasets display the same trend in the mean rate of 

change and the mean ratio. However, the greatest similarity is seen for the mean ratio in 1T  and

4T . In the following section a statistical comparison of the mean rates of change and mean ratios 

for survivors and non-survivors is presented. 
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Considering that, graphically, the mean ratios for 1T  and 4T  for survivors and non-
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in mean ratios. The results were that 1T : p-value < 0.00001 for survivors and p-value=0.393 for 
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Thus, it can be assumed that the mean ratios in 1T  and 4T  for non-survivors in both datasets are 

statistically the same. All differences between mean rates of change and mean ratios were tested 

statistically, and, in addition to the conclusions stated previously, the rates of change in 1T  (p-

value=0.393) and 4T  (p-value=0.406) for non-survivors in both datasets also was demonstrated 

to be statistically the same. Additionally, the ratio in 6T  (p-value=0.145) also showed no 
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4.1.3.2 Classification Models 

Logistic regression models were constructed with all ratios and rates of change 

previously defined. Table 4.5 presents the parameter estimates, odds ratios, and corresponding 

95% CI for those estimates together with c-statistics for the best models. It can be observed that 

the best models for the VA dataset had a c-statistic of 0.78 for rates of change and ratios in 5T  

and 6T , whereas for the MIMIC II dataset, the maximum c-statistic was 0.64 with the model of 

platelet count ratios in 2T . The analysis of maximum likelihood estimates for the parameters and 

the likelihood ratio test for the models showed that all were significant (p-values<0.0001).  

 
Table 4.5. Best logistic regression models. iRc , jRc , rates of change; ir , jr , ratios 

    
Intercept x 

Odds ratio 
c-statistic 

   Point estimate 95%CI 

VA dataset 

iRc  
2Rc  -1.189 -1.534 0.22 [0.11,0.41] 0.74 

3Rc  -0.880 -1.627 0.20 [0.10,0.38] 0.75 

ir  
2r  1.327 -2.214 0.11 [0.03,0.37] 0.75 

3r  1.317 -1.619 0.20 [0.08,0.50] 0.77 

jRc  
5Rc  -1.017 -1.408 0.25 [0.14,0.44] 0.78 

6Rc  -0.701 -1.556 0.21 [0.11,0.39] 0.78 

jr  
5r  2.118 -2.770 0.06 [0.02,0.24] 0.78 

6r  1.185 -1.586 0.21 [0.08,0.51] 0.78 

MIMIC II 
dataset ir

 

2r  -0.033 -1.118 0.33 [0.18,0.59] 0.64 

3r  -0.401 -0.644 0.53 [0.33,0.84] 0.63 

 

Additionally, sensitivity analysis using bootstrapping with 100 replicates was conducted 

to observe the uncertainty of the parameter estimates. After repeating the sampling applying 

bootstrap, 95% CI for those estimates were calculated. All estimate values were inside the 

confidence intervals, suggesting the validity of the parameters. The results from this analysis are 

presented in Appendix A.  
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Ten-fold cross validation for all models was conducted. Table 4.6 shows the best models 

considering MSE and CV press for each dataset. It can be observed that the ratio and rate of 

change in 2T  showed a good result for the VA dataset with smaller MSE and CV press and also 

ratios in 3T  and 4T . However, for the MIMIC II dataset, the best models were obtained with the 

ratios in 2T  and 3T . 

 
Table 4.6. Best models from 10-fold cross validation. iRc , jRc , rates of change; ir , jr , ratios; 

MSE, mean square error; CV press, predicted residual sum of squares statistic 
   Intercept x CV press MSE 

VA dataset 

iRc  2Rc  0.194 -0.106 29.4 0.08 

ir  
2r  0.383 -0.155 17.5 0.09 

3r  0.390 -0.107 15.5 0.12 

jr  4r  0.384 -0.244 24.2 0.08 

MIMIC II 
dataset ir  

2r  0.380 -0.136 69.3 0.16 

3r  0.326 -0.071 52.3 0.17 

 

 Comparing the previous results from the two datasets, it can be concluded that metrics for 

intervals 2T  and 3T  showed the best results in terms of reduced MSE and CVpress. The next step 

was to repeat the methodology with other parameters from the VA dataset to evaluate the 

applicability of the methodology to other physiologic signals and then to evaluate if the inclusion 

of several parameters could enhance the predictive power of the models.     

4.1.4 Other Physiologic Parameters from the VA Dataset 

 The parameters available from the VA dataset were calcium, albumin, ionized calcium, 

and mean platelet volume (MPV). All these parameter values were measured during the same 

time interval as the platelet count values. However, a sample of only 308 patients had registered 

values for those parameters. The number of albumin tests registered accounted for only 15 

patients, and from them, only 8 ratios could be computed. Ionized calcium was registered for 
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only 13 patients, so this small sample was not taken into account. The final set of parameters to 

repeat the methodology was composed of mean platelet volume and calcium.    

4.1.4.1 Mean Platelet Volume Analysis 

 A total of 308 patients from the VA dataset were analyzed, including 289 survivors and 

19 non-survivors. This sample contained 7,758 MPV measures. The mean MPV was 8.38  0.90 

fL (95% CI = [8.36, 8.40]) and 8.25 1.01 fL (95% CI = [8.18,8.31]) for survivors and non-

survivors, respectively. Figure 4.8 shows the general behavior of the mean platelet volume over 

time.   

 

 

Figure 4.8. Mean platelet volume data over time - VA dataset 
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that analyzed platelet size in stroke patients [49] found that an increased MPV and a low levels 

in platelet count were features of both the acute and the non-acute phases of cerebral ischemia. 

Another study that analyzed increments in MPV in patients with chronic renal failure also 

concluded that “ larger platelets are more reactive and may contribute to an increased risk of 

thrombosis” [50].    

 Table 4.7 shows the logistic regression models for rates of change and ratios in intervals 

2T  and 3T . None of the models constructed for rates of change and ratios showed a significant c-

statistic, confirming the results of mean values previously presented, which were very similar 

between survivors and non-survivors and the behavior of MPV displayed in Figure 4.8.  

 
Table 4.7. MPV - Best logistic regression models for rates of change and ratios 

   
Intercept x 

Odds ratio 
c-statistic 

   Point estimate 95%CI 

VA dataset 

iRc  
2Rc  -2.909 -23.420 0.0001 [<0.001,5.1860] 0.51 

3Rc  -2.895 -9.620 0.0001 [<0.001,>999.9] 0.53 

ir  
2r  -2.911 0.201 1.2220 [<0.001,>999.9] 0.44 

3r  -2.419 -0.323 0.7240 [<0.001,>999.9] 0.51 

 

 Two sample t-tests were also conducted to statistically verify if the models can 

differentiate survivors from non-survivors. As a result, none of the models could make the 

differentiation (0.36<p-values<0.95). This result is supported by low c-statistics less than 0.53. 

Appendix A provides complete descriptive statistics and p-values for the differences in mean for 

both metrics, ratios and rates of change.  

4.1.4.2 Calcium Analysis 

 A total of 308 patients from the VA dataset were analyzed, including 289 survivors and 

19 non-survivors. This sample contained 8,047 calcium measures. The mean calcium value was 

8.76  0.79 mg/dL (95% CI = [8.74, 8.78]) and 8.64 10.77 mg/dL (95% CI = [8.59,8.69]) for 
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survivors and non-survivors, respectively. Figure 4.9 shows the general behavior of the calcium 

data over time, where differences between survivors and non-survivors were notable. An 

increasing trend for survivors can be seen, whereas for non-survivors, the calcium values do not 

show any specific trend.  

 

  

Figure 4.9. Calcium data over time - VA dataset 
 

 According to the National Institute of Health, the reference range for calcium is from 8.5 

to 10.2 mg/dL [51]. As shown, most of the patients, both survivors and non-survivors, presented 

calcium values that were lower than the minimum normal level, even 300 hours (~12 days) after 

the date of the surgery. This issue provides signs of hypocalcemia, which is a common finding in 

critically-ill patients [52]. Nevertheless, it can also be observed that there are some patients with 

normal levels after 200 hours who did not survive. This situation could be due to possible post-

surgical complications, which are not addressed in this research.  
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 We need to consider that, although the VA dataset is composed of patients who 

underwent similar cardiac surgeries, each patient has a different condition and his/her organism 

reacts different to the intervention and treatment.   

 Table 4.8 shows the logistic regression models for the rates of change and ratios for 

intervals 2T and 3T . The results for models constructed with rates of change were better (0.79  c

 0.80) than the results for the models constructed with calcium ratios (0.66  c 0.72). This 

result is similar to the result observed for platelet count in this population, where rates of change 

performed better than ratios, but in shorter intervals starting up 75 hours ( 5T and 6T .) However, 

platelet count ratios performed equal to or better than the rates of change for the same intervals 

2T and 3T . Two sample t-tests showed that only rates of change for 1T and 2T  could differentiate 

survivors from non-survivors; the other metrics could not (0.14< p-values<0.79). Appendix B 

provides complete descriptive statistics and p-values for the differences in mean for both metrics 

ratios and rates of change. 

 
Table 4.8. Calcium - Best logistic regression models for rates of change and ratios 

    
Intercept x 

Odds ratio 
c-statistic 

   Point estimate 95%CI 

VA dataset 

iRc  
2Rc  -2.592 -96.238 <0.001 [<0.001,<0.001] 0.80 

3Rc  -2.554 -113.800 <0.001 [<0.001,<0.001] 0.79 

ir  
2r  3.804 -6.181 0.0020 [<0.001,1.7170] 0.66 

3r  6.888 -9.195 0.0001 [<0.001,1.3900] 0.72 

 

 Two sample t-tests showed that only rates of change for 1T and 2T  could differentiate 

survivors from non-survivors; the other metrics could not (0.14< p-values<0.79). Appendix B 

provides complete descriptive statistics and p-values for the differences in mean for both metrics 

ratios and rates of change. 
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 Considering that the ten-fold cross validation in Section 4.1.3.2 showed that ratios in 2T  

and 3T  had the best results in both datasets, a preliminary analysis was conducted with 2r 	. The 

physiologic parameters considered were platelet count, calcium, and mean platelet volume. 

4.1.4.3 Preliminary Multivariate Analysis using 2r   

 The VA dataset with values for ratios 2r  for platelet counts, calcium, and mean platelet 

volume were used for the analysis. The sample was composed by 126 patients, including 8 non-

survivors. To visualize the differences between survivors and non-survivors, surface plots are 

shown in Figure 4.10 and contour plots are shown in Figure 4.11.  

 The surface plots show that ratios of platelet count were higher for survivors than non-

survivors. Figure 4.11 better demonstrates the differences in platelet count and calcium ratios for 

survivors and non-survivors. More survivors had higher ratios of platelet count that were more 

than 2 and calcium ratios that are more than 1, whereas the majority of non-survivors had platelet 

count ratios less than 1.6. 

 

 
 

Figure 4.10. Surface plots of ratios in 2T with PLT 2r , Ca 2r and MPV 2r  
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Figure 4.11. Contour plots of ratios in 2T  with PLT 2r , Ca 2r and MPV 2r  
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 Table 4.9 shows the logistic regression model for ratios in 2T : platelet count, calcium and 

MPV. The c-statistic for the model was 0.748, and the smaller odds ratio was for the calcium 

ratio. 

Table 4.9. PLT, Ca and MPV ratios in 2T - Best logistic regression model 
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c-statistic 0.748   
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sample contained 6,927 platelet mass values. The mean platelet mass was 1842.9 892.5x10-6 

(95% CI = [1820.6,1865.1] x10-6) and 1643.1 737.3 x10-6 (95% CI = [1599.5,1696.8]x10-6) for 

survivors and non-survivors, respectively. Repeating the methodology previously described, the 

behavior of platelet mass is shown in in Figure 4.12. 

  

 

Figure 4.12. Platelet mass data over time - VA dataset 
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logistic regression models with this parameter for both metrics in 2T and 3T  were constructed. 

Table 4.10 shows the estimates for the models; the best c-statistic (c=0.78) was calculated for the 

rate of change in 3T . 
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Table 4.10. PLT mass - Best logistic regression models. iRc , jRc , rates of change; ir , jr , ratios 
   

Intercept x 
Odds ratio 

c-statistic 
   Point estimate 95%CI 

VA dataset 

iRc  
2Rc  -2.3882 -0.0872 0.91 [<0.001,<0.001] 0.77 

3Rc  -2.0883 -0.1334 0.87 [<0.001,<0.001] 0.78 

ir  
2r  -0.8533 -1.2052 0.30 [<0.001,1.7170] 0.69 

3r  -1.0698 -0.9069 0.40 [<0.001,1.3900] 0.71 

 

 Two sample t-tests between mean rates of change and mean ratios showed that only the 

rates of change for 1T  and 2T  and the ratios for 2T  could differentiate survivors from non-

survivors; the other metrics could not (0.098< p-values<0.20). Appendix A provides complete 

descriptive statistics and p-values for the differences in mean for both metrics, ratios and rates of 

change. 

  If these results are compared with the previous results obtained for platelet counts in 

terms of c-statistic, it can be concluded that the use of platelet mass improves the predictive 

power of the rate of change. The c-statistic for 2Rc  (rate of change in interval 2T ) improved from 

0.74 to 0.77 and for 3Rc (rate of change in interval 3T ) improved from 0.75 to 0.78. However, the 

c-statistic for the ratio 2r  decreased from 0.75 to 0.69 and for 3r decreased from 0.77 to 0.71.   

Considering the improvement of the results using platelet mass, compared to the results 

using platelet count values, a preliminary analysis combining calcium and platelet mass in 2T  

was conducted. Figure 4.13 shows a scatter plot from rates of change of calcium and platelet 

mass. In this figure we can observe a trend of higher platelet values and higher calcium values 

(positive trend) for survivors. However, a clear decrement of those parameters (negative trend) is 

shown for non-survivors. This issue confirms that the recovery process is different in survivors 

and non-survivors. 
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Figure 4.13. Platelet mass and calcium rates of change in 2T - VA dataset 
 

Table 4.11 shows the best logistic regression model for platelet mass and calcium rates of 

change. The predictive power of the model increased (c=0.834). However, the calcium parameter 

was more significant, with a very high estimate compared to the platelet mass. 

 
Table 4.11. PLT mass and Ca rates of change in 2T - Best logistic regression model 

  Odds ratio 
 Estimates Point estimate 95%CI 

Intercept -2.448 -  

PLT mass 2Rc  -0.038 0.963 [0.892, 1.039] 

Calcium 2Rc  -78.8 <0.001 [<0.001, <0.001] 

c-statistic 0.834   

 

 Since the ratios in 2T  showed better results for the MIMIC II dataset, this metric was also 

analyzed. Figure 4.14 shows the behavior of the ratios for 2T . It can be observed that the 
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Figure 4.14. Platelet mass and calcium ratios in 2T - VA dataset  
  

 Although an increasing trend is shown for survivor, for non-survivors, there was not a 
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the same parameters.  It can be concluded that the predictive power of the model decreases using 

ratios instead of rates of change, but since the objective was to extend the methodology to a 

broader population, the ratios were considered for the next step.  
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 At this point in the study, the multivariate analysis considered each parameter 

independently and how it directly affects the patient outcome. However, how the addition of 

interaction terms in the model could improve the results must be evaluated. Therefore, 

interaction terms were added in both models from Table 4.11 and Table 4.12. The results showed 

a slight improvement in the value of the c-statistic. In the case of the model for rates of change, 

the addition of an interaction term between platelet mass rate of change and calcium rate of 

change increased the c-statistic from 0.83 to 0.86. The analysis of maximum likelihood showed 

that the interaction term was significant (p-value=0.006). Similarly, in the case of the ratios, the 

interaction term improved the c-statistic from 0.75 to 0.77. However, in this case, the analysis of 

maximum likelihood showed that the interaction term was not significant (p-value=0.132). The 

complete regression model including all the terms and estimates is presented in Appendix C. 

4.1.5 Analysis of Other Parameters from the MIMIC II Dataset 

 From the previous section, it was determined that calcium and platelet mass can provide 

prognostic information. The MIMIC II dataset contains information about different laboratory 

tests. However, the focus herein will continue to be on hemodynamic parameters. The 

methodology is repeated using the calcium tests from the MIMIC II dataset and other 

parameters. As defined previously, other parameters that could be included are albumin, anion 

gap, and total CO2. In the case of platelet mass, the MIMIC II dataset does not contain 

information regarding mean platelet volume; thus, an estimation of platelet mass is not possible.   

 The behavior of calcium was analyzed so a comparison with the VA dataset could be 

conducted. Then, the methodology applied to albumin, total carbon dioxide, and anion gap was 

repeated. After analyzing each parameter independently, they were combined and the impact of 

those combinations was assessed.   
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4.1.5.1 Calcium Analysis – MIMIC II Dataset 

 A total of 1,650 patients from the MIMIC II dataset were analyzed, including 802 

survivors and 848 non-survivors. Those patients had at least two measures registered during the 

period of analysis. This sample contains 1,660 admission cases and 11,781 measures. The mean 

calcium values were 8.37  0.76 mg/dL (95% CI = [8.35, 8.39]) and 8.28  0.78 mg/dL (95% CI 

= [8.27,8.30]) for survivors and non-survivors, respectively. It was observed that the mean values 

were very similar for both survivors and non-survivors. Nevertheless, the confidence intervals 

calculated for the means did not overlap; thus it can be concluded that, on average, survivors 

have higher mean calcium levels than non-survivors.  

 Figure 4.15 displays the general behavior of the calcium data over time for 30 admission 

cases (i.e. combination between ICU admission and patient).  

 

 

Figure 4.15. Calcium data over time - MIMIC II dataset 
  

3002001000

10

9

8

7

6

3002001000

0

Rel time (h)

ca
lc

iu
m

 (m
g/

dL
)

1

MIMIC dataset - calcium over time

Panel variable: survivors(0) / non-survivors(1)



 53 
     

 As seen for the calcium data from the VA dataset, the calcium levels for survivors and 

non-survivors decreased during the first 100 hours. Most of the calcium levels dropped below 8.5 

mg/dL, the lower limit for a “normal” range [50], an issue that confirms that hypocalcemia is 

commonly presented in critically-ill patients [40].  

 Figure 4.15 shows that the drop in calcium level for survivors was not as abrupt as the 

drop for non-survivors and that the recovery of survivors could be seen during the first 150 hours 

after the reference event. However, the behavior of calcium levels in non-survivors did not show 

a specific pattern, since calcium levels in some cases were over the lower normal limit of 8.5 

mg/dL [50].  

Table 4.13 presents the logistic regression models for the calcium ratios and rates of 

change. The table shows that the results for calcium levels with the MIMIC II dataset varied 

from the results obtained with the VA dataset. The c-statistics for the models with the ratios and 

the rates of change, based on the MIMIC II dataset, were lower (c 0.60) than the c-statistics for 

the models obtained using the VA dataset (0.66 c  0.80).  All odds ratio estimates were higher 

than the estimates found for the VA dataset, where the odds ratio estimates were less than 0.001. 

However, as seen before for the platelet count in the intervals 1T and 2T , the ratios provided better 

results than the rates of change. 

 
Table 4.13. Logistic regression models for calcium. iRc , rates of change; ir , ratios 

    
Intercept x 

Odds ratio 
c-statistic 

   Point estimate 95%CI 

MIMIC II 
dataset 

iRc  

1Rc  0.3006 0.5557 1.743 [0.005,579.58] 0.47 

2Rc  0.2151 1.0074 2.738 [0.120,62.305] 0.46 

3Rc  0.1799 1.3587 3.891 [0.093,162.13] 0.45 

ir  

1r  0.7082 -0.5204 0.594 [0.047,7.524] 0.53 

2r  1.2476 -0.978 0.376 [0.032,4.358] 0.56 

3r  2.3719 -2.0547 0.128 [0.007,2.361] 0.60 
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 Two sample t-tests between mean rates of change of survivors and non-survivors, as well 

as between mean ratios, did not show statistical differences between means (0.148<p-values 

<0.85). This result suggests that both metrics based on calcium values could not differentiate 

survivors from non-survivors. It is important to note that, although no statistical differences 

could be found between survivors and non-survivors using these metrics, there is a clear 

difference in the recovery process of survivors and non-survivors, as shown in Figure 4.15. In 

this figure we observed that the calcium level for survivors recover very quickly during the first 

150 hours after the reference event.   

 The next step was to analyze other parameters that have shown, through previous studies, 

to have any prognostic significance among ICU or critically-ill patients. As stated in Chapter 2, 

there are other physiologic parameters measured through blood tests (albumin, anion gap, and 

total carbon dioxide) that vary their behavior in patients with acute illnesses. Those parameters 

were analyzed individually and then together to determine if the hidden interaction between them 

can provide more information regarding the patient outcome. 

4.1.5.2 Albumin Analysis – MIMIC II Dataset 

 A total of 676 patients from the MIMIC II dataset were analyzed, including 270 survivors 

and 406 non-survivors. This sample contained 680 admission cases and 2,305 measures. The 

mean albumin values were 2.94 0.71 g/dL (95% CI = [2.90, 2.99]) and 2.64 0.59 g/dL (95% 

CI = [2.61, 2.67]) for survivors and non-survivors, respectively. As seen for the mean calcium 

levels, the mean albumin levels show differences between survivors and non-survivors. It can be 

seen that the confidence intervals for the mean values did not overlap, and on average, albumin 

levels for non-survivors were lower than albumin levels for survivors. Figure 4.16 shows the 

general behavior of the albumin data over time for a sample of 30 admission cases.  
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Figure 4.16. Albumin data over time - MIMIC II dataset 
 

 In the previous figure we cannot observe notable differences between survivors and non-
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 Table 4.14 shows the best regression models for the albumin ratios and rates of change.  

Although the c-statistics for the ratios in 21,TT , and 3T showed better results (0.58  c  0.79) 

than the statistics for the rates of change (0.39  c  0.52)  in the same intervals, the sample sizes 

of the ratios for this parameter were smaller than the sample sizes for the same metric applied to 

other parameters, where at least 200 values for the ratios were used for analysis. In this case, the 

sample sizes for the ratios with albumin were, 18, 17, and 10 for 1r , 2r and 3r , respectively. 

3002001000

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

3002001000

0

Rel time (h)

A
lb

um
in

 (g
/d

L
)

1

MIMIC dataset - albumin over time

Panel variable: survivors(0) / non-survivors(1)



 56 
     

Therefore, the results were not conclusive and more data will need to be available to make any 

statement regarding this parameter. .Is important to note that the measure of albumin is not 

common and that a similar situation was found with the VA dataset. In that case the sample size 

of albumin only allowed the calculation of 8 ratios, because only 15 patients had albumin values 

registered.   

 
Table 4.14. Logistic regression models for albumin. iRc , rates of change; ir , ratios 

   
Intercept x 

Odds ratio 
c-statistic 

   Point estimate 95%CI 

MIMIC II 
dataset 

iRc  

1Rc  0.6124 4.9879 146.6 [<0.001, >999] 0.39 

2Rc  0.5848 16.476 >999 [<0.001, >999] 0.52 

3Rc  0.6188 9.658 >999 [<0.001, >999] 0.46 

ir  

1r  -0.1843 0.8435 2.324 [0.030,181.582] 0.58 

2r  8.8479 -8.3005 <0.001 [<0.001, >999] 0.63 

3r  -8.6031 8.6340 >999 [0.055, >999] 0.79 

 

Two sample t-tests between mean rates of change and mean ratios showed that none of 

them can differentiate survivors from non-survivors (0.09< p-values<0.71). This result may be 

due to the high variability presented in the albumin values and confirmed that the albumin levels 

in critically-ill patients did not show notorious differences between survivors and non-survivors, 

as was shown in Figure 4.16.  

4.1.5.3 Total CO2 Analysis – MIMIC II Dataset 

 A total of 1,685 patients from the MIMIC II dataset were analyzed, including 843 

survivors and 842 non-survivors. Those patients had at least two measures registered during the 

period of analysis. This sample contained 1,697 admission cases and 16,120 measures. The mean 

TCO2 value was 24.94  4.27 mEq/L (95% CI = [24.84, 25.04]) and 24.42  5.29 mEq/L (95% 

CI = [24.31, 24.53]) for survivors and non-survivors, respectively. Figure 4.17 shows the general 

behavior of the TCO2 data over time for a sample of 30 admission cases.   
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Figure 4.17. Total CO2 data over time - MIMIC II dataset 
  

 In Figure 4.17 we cannot observe a clear difference between survivors and non-survivors. 

However, some of the non-survivors had TCO2 values less than 23 mEq/L, the lower limit for the 

common “normal” range [44].  

 Table 4.15 shows the best regression models for the ratios and rates of change applied to 

total CO2. It can be seen that the c-statistics for all models with total carbon dioxide were smaller 

than the statistics with calcium or platelet count applied to the same dataset.  

 
Table 4.15. Logistic regression models for TCO2. iRc , rates of change; ir , ratios 

   
Intercept x 

Odds ratio 
c-statistic 

   Point estimate 95%CI 

MIMIC II 
dataset 

iRc  

1Rc  0.0961 -0.0914 0.913 [0.383,2.177] 0.51 

2Rc  0.0971 -0.7499 0.472 [0.099,2.255] 0.51 

3Rc  0.0900 -0.9573 0.384 [0.069,2.133] 0.50 

ir  

1r  0.5933 -0.3884 0.678 [0.260,1.770] 0.51 

2r  0.7472 -0.4667 0.627 [0.220,1.784] 0.52 

3r  0.8132 -0.4470 0.640 [0.240,1.706] 0.54 
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 The best results shown in Table 4.15 were for ratios in 2T  and 3T , where c-statistics were 

0.52 and 0.54, respectively. Two sample t-tests between mean rates of change and mean ratios 

showed that none of the metrics can differentiate survivors from non-survivors (0.27< p-

values<0.83). 

It is important to note that the measure of total carbon dioxide is usually accompanied 

with the computation of the anion gap, since together they provide physicians with more 

information to diagnose or treat any acid-base imbalance. The most common disorder is 

metabolic acidosis, which usually occurs if the body produces too much acid or loses too much 

bicarbonate. Acidosis is reflected in the low pH level of blood and tissues. In the next sub-

section, the anion gap is analyzed to evaluate if this parameter can provide prognostic 

information. This and other implications derived from the analysis of anion gap levels and low 

total carbon dioxide is discussed in Section 4.2.    

4.1.5.4 Anion Gap Analysis – MIMIC II Dataset 

 A total of 1,564 patients from the MIMIC II dataset were analyzed, including 789 

survivors and 775 non-survivors. Those patients had at least two measures registered during the 

period of analysis. This sample contained 1,575 admission cases and 14,943 measures. The mean 

anion gap value was 13.6 3.21 mEq/L (95% CI = [13.53, 13.68]) and 14.61  4.01 mEq/L 

(95% CI = [14.52, 14.70]) for survivors and non-survivors, respectively. From the data, it can be 

seen that the means between survivors and non-survivors were different. Both confidence 

intervals for the means did not overlap. Therefore, it can be concluded that, on average, anion 

gap values for non-survivors were higher than the anion gap values for survivors. Figure 4.18 

shows the general behavior of the anion gap data over time for 30 admission cases.  
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Figure 4.18. Anion gap data over time - MIMIC II dataset 
  

 The previous figure shows differences between survivors and non-survivors. First, non-

survivors usually presented higher anion gap values than survivors. Second, the variability in 

non-survivors was higher than the variability presented in survivors.  

 In general, it also was seen that several patients had anion gap values greater than 16 (the 

upper limit for common “normal” ranges, estimated by colorimetric and flame photometry), an 

issue that suggests the presence of acidosis. Nevertheless, there were also patients that did not 

have “abnormal” anion gaps but did not survive. In the previous sub-section, total carbon dioxide 

was analyzed, and it was observed that most of the non-survivors showed low levels of carbon 

dioxide, whereas in Figure 4.18, it was observed that most of the non-survivors showed high 

anion gaps. This situation of having low levels of carbon dioxide (less than 23 mEq/L) and high 

levels of anion gap (more than 16 mEq/L) suggests the presence of a severe acidosis with 

increased anion gap, an illness that could be life-threatening. 
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 Table 4.16 shows the results from the best regression models for the anion gap, where c-

statistics were lower than the statistics with other parameters such as calcium and platelet count 

applied to the same dataset. However, the results in terms of c-statistic for the anion gap ratios 

and rates of change were very similar (0.55 c 0.57).  

 
Table 4.16. Logistic regression models for anion gap. iRc , rates of change; ir , ratios 
   

Intercept x 
Odds ratio 

c-statistic 
   Point estimate 95%CI 

MIMIC II 
dataset 

iRc  

1Rc  0.0953 -1.533 0.216 [0.076,0.611] 0.56 

2Rc  0.0793 -1.6601 0.190 [0.037,0.972] 0.55 

3Rc  0.0767 -1.0403 0.352 [0.059,2.120] 0.56 

ir  

1r  1.2424 -1.0318 0.356 [0.161,0.790] 0.57 

2r  1.1648 -0.8835 0.413 [0.169,1.009] 0.55 

3r  0.9750 -0.7040 0.495 [0.197,1.243] 0.56 

 

 Two sample t-tests between mean rates of change and mean ratios showed that ratios and 

rates of change for the intervals 1T  and 2T can differentiate survivors from non-survivors, but the 

metrics in the interval 3T could not, with p-value=0.134 for the ratio and p-value=0.243 for the 

rate of change. This result indicates that in intervals from 50 to 150 or 50 to 200 hours (between 

4 and 6 days), the differences in anion gap between survivors and non-survivors were more 

notorious. It can also be seen that the odds ratio estimates in interval 3T for both metrics, ratios 

and rates of change, were higher than the odds ratio estimates from the models developed for the 

same metrics in smaller intervals.  

 Appendix B provides the complete descriptive statistics and p-values for the differences 

in mean ratios and mean rates of change for all the parameters described in the current section. 

After reviewing the results for each parameter individually with the MIMIC II dataset, it can be 

seen that, although some of them show differences between survivors and non-survivors, the 
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results in terms of concordance measures was not as significant as the results obtained with the 

platelet count. In the following section, the impact of including simultaneously several 

parameters and their interactions in the results of the regression models are analyzed.  

4.1.6 Multivariate Analysis – MIMIC II Dataset 

 From the previous sections, it was observed that none of the parameters performed as 

well as platelet count. However, the inclusion of some parameters simultaneously while 

analyzing the VA dataset showed that the predictive power of the models could be improved. 

Additionally, the results from the MIMIC II dataset suggested that ratios in 2T and 3T  performed 

better than rates of change. The impact in using simultaneously different parameters were 

analyzed with ratios for 2T  and 3T . Table 4.17 shows the c-statistics and sample sizes for each 

regression model for ratios in 2T  and 3T  depending on the parameters included. From 26 possible 

models, considering the combination of 2, 3, 4 and 5 parameters, only 11 had sample sizes 

greater than 18; the other models had sample sizes lower than 6, which does not allow the 

development of a reliable model.  

Table 4.17. C-statistics and sample sizes for models with ratios ir  

Parameters in the model 2r  3r  

 Sample size c-statistic Sample size c-statistic 

PLT, Ca 82 0.618 56 0.569 

PLT, AG 127 0.633 87 0.614 

PLT, TCO2 42 0.642 92 0.590 

TCO2, AG 31 0.701 53 0.604 

PLT, Ca, TCO2 22 0.924 37 0.765 

Ca, TCO2, AG 18 0.854 25 0.715 

PLT, Ca, AG, TCO2 18 0.889 25 0.760 

Ca, TCO2 22 0.848 37 0.718 

Ca, AG 51 0.671 38 0.623 

PLT, Ca, AG 51 0.662 38 0.694 

PLT, TCO2, AG 31 0.707 53 0.636 
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 The first seven models presented for ratios in 2T  were statistically valid and some of their 

parameters were significant; the analysis of maximum likelihood estimates showed significance 

for some of the parameters (p-value<0.06), and the global null hypothesis testing (Chi-square 

test) also showed significance (p-value<0.06). However, the last four models did not show 

significance nor did the models developed with ratios in 3T .  

 Throughout the previous results, it can be seen that the inclusion of some parameters in 

the model enhanced its performance in terms of the c-statistic—being the best model, which 

includes platelet count, calcium, and total carbon dioxide (c=0.92). Figure 4.19 presents the ROC 

curve for this model. It can be seen that the curve follows the left-hand border and then the top 

border, showing the accuracy of the classification model.  

 

 

Figure 4.19. ROC curve for the model with Ca, PLT and TCO2 - MIMIC II dataset  
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 The maximum likelihood ratio for this model presented a p-value=0.002, whereas the 

different estimates vary, with calcium (p-value=0.02) the most significant. Carbon dioxide (p-

value=0.07) and platelet count (p-value=0.07) may be not significant at 5%.  

 A similar situation was observed for the model that includes platelet count, calcium, 

anion gap, and total CO2. The maximum likelihood ratio presented a p-value=0.02, and the most 

significant parameter was calcium (p-value=0.05), but the other parameters were not statistically 

significant (0.1 p-value 0.39). When analyzing the model with calcium, anion gap, and total 

carbon dioxide, then the maximum likelihood ratio showed a p-value of 0.06, but all the 

estimates were not significant (0.1 p-value  0.18). It can be concluded that although the c-

statistic may be improved considering several parameters simultaneously in the model, the 

inclusion of those parameters in the model may not necessarily be significant. Appendix D 

provides the models developed, including the parameters estimates, point estimates, and 95% CI 

for the odds ratios. 

In Section 4.1.4.3, modeling was discussed by analyzing various parameters 

simultaneously and as well as the impact of adding interaction terms into those models. It was 

concluded in the case of rates of change that the performance of the model was improved. 

Therefore, the best models were selected from Table 4.17 and the models interaction terms were 

developed.  

 First, the model that includes platelet count, calcium, and total carbon dioxide was 

selected, because it was the model that provided a better c-statistic. However, the maximum 

likelihood estimates could not be computed because the data points were separated.  Second, the 

model that includes platelet, calcium, total carbon dioxide, and anion gap was selected, and the 

results were similar. No maximum likelihood estimates could be computed. Third, the model 
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with calcium, total carbon dioxide, and anion gap was reviewed. In this case, the c-statistic was 

improved from 0.85 to 0.86. However, the analysis of maximum likelihood showed that none of 

the interactions were significant (p-value 0.32). Finally, the model that includes calcium and 

total carbon dioxide was selected. In this case, the c-statistic improved from 0.84 to 0.85, but, 

again, the interaction term was not significant (p-value=0.33). It can be concluded that the 

interaction terms in the classification models do not add value to the result. Appendix C presents 

the complete regression models from these cases.  

 In the present analysis of various parameters, the sample sizes were too small to apply the 

bootstrapping methodology to evaluate the sensitivity of the estimates. In the following section, 

the results are discussed and compared with the results obtained by previous similar studies. The 

platelet count analysis is discussed first, comparing the results from both datasets. The addition 

of other parameters and the corresponding multivariate analysis with the VA dataset is then 

reviewed. Finally, other parameters from the MIMIC II dataset were also analyzed, individually 

and simultaneously. A discussion of these results and their impact in patient monitoring is 

presented.  

 

4.2 Discussion 

4.2.1 Platelet Count Analysis  

The data mining approach conducted has shown the changes over time of the platelet 

count for two different cohorts: a homogeneous population from the VA dataset and a 

heterogeneous population composed of ICU patients from different hospitals, conditions, and 

diseases. Both datasets were selected, because the objective is to generalize the methodology to 

the broader and heterogeneous population. Both datasets were compared using two metrics: rate 
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of change as determined by multiple point regression and by the simpler fixed-time platelet value 

ratios at specific time intervals. Both datasets demonstrated that the metrics (rates of change and 

ratios) are comparable and can differentiate survivors from non-survivors, and, moreover, that 

the results are comparable. That means that a simple fraction between two specific measures can 

be used to estimate the probability of having an adverse event, providing a warning that could 

aid the physicians’ decision making process.  

The result in terms of concordance measures (c-statistic) for the homogeneous population 

was better than other results found in the literature using other similar metrics and even risk 

assessment scores that involved several other parameters, not only related to the circulatory 

system, but also to respiratory, nervous, and cardiovascular systems, among others. Most of 

those risk scores use at least 12 parameters [34, 57]. It is important to note that several studies 

suggest that thrombocytopenia in critically-ill patients is a marker of illness severity, and some 

risk assessment scores (e.g., SOFA or APACHE II) support this issue by reporting higher scores 

in these types of patients than in patients who were admitted with normal platelet values to the 

ICU [47]. The c-statistics from the models with the MIMIC II dataset were lower than the c-

statistics from the VA dataset, as would be expected due to the heterogeneity and variability 

presented in the data.   

The time intervals were chosen after observing that platelet counts fall promptly after an 

acute event and then variably return toward a normal level, allowing an important marker to be 

defined for this critical episode of the care cycle. The biphasic course observed in this study has 

been reported in previous studies that studied patients after surgery [55] and patients with acute 

myocardial infarction [56]. The upper limit of the intervals used for the analysis was 200 hours 

(approximately 8 days). Longer intervals were not used because they were not considered 
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prognostically useful for a timely intervention or decision early in a patient’s care cycle. 

However, time in clinical decision-making for critically-ill patients is vital, and the use of a 

single metric as a ratio of values at two time points could be more beneficial in this setting. Thus, 

it has been demonstrated that the ratios using only 2 measures over a specific interval, such as 75 

to 150 or 75 to 200 hours (~3 to 5 days), can provide prognostic information comparable to using 

the formal rate of change over the same interval.   

After statistically comparing both datasets, it can be concluded that the models for the 

ratios in 2T (50 to 150 hours) and 3T  (50 to 200 hours) show the best performance for the MIMIC 

II dataset and a very good performance for the VA dataset. Therefore, the ratios for 2T and 3T  can 

be used to analyze changes over time in platelet count, providing a dynamic patient profile that 

may improve the management of these complex processes. It also has been demonstrated that 

ratios in 5T (75 to 150 hours) and 6T  (75 to 200 hours) can discriminate outcomes as well as the 

rate of change in a homogeneous population  (the VA dataset), both having a c-statistic of 0.78. 

This result is better than the result from APACHE II score (c=0.72), the rate of change per day 

(c=0.74) analyzed by Nijsten et al. [32], and the results from Strauss et al. [47], who used a drop 

in platelet count percentage as metric in a prospective study (c=0.75) and compared the results 

with APACHE II (c=0.73) and the Sequential Organ Failure Assessment score - SOFA (c=0.73) 

[56].  

4.2.2 Multivariate Analysis – Platelet Count, Calcium and MPV- VA Dataset 

 First, mean platelet volume was analyzed independently and was found to have none of 

the metrics that could differentiate survivors from non-survivors. Also, the c-statistics from the 

prediction models were very low (c 0.53). However, 95% CI for the mean values did not 

overlap, suggesting that there should be a difference between MPV values of survivors and non-
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survivors. Additionally, calcium was analyzed independently and differences were seen between 

survivors and non-survivors. Although the mean values were similar, an increasing trend for 

survivors was seen, while almost a plateau was seen for non-survivors.  After comparing the 

models developed for the metrics, the best results were for rates of change for 2T (c=0.79) and 3T

(c=0.80), differentiating both survivors from non-survivors.   

Using platelet count, calcium, and mean platelet volume, a first multivariate analysis was 

conducted with the ratio for 2T  (c=0.75).  This result was similar to the result obtained for 

platelet count and better than the result obtained independently for calcium and mean platelet 

volume using the same ratio.  

Mean platelet volume was combined with platelet count as platelet mass. As a result, the 

behavior of platelet mass between survivors and non-survivors showed more differences; 95% CI 

for the mean platelet mass was [1820.6,1865.1] x10-6 and [1599.5,1696.8]x10-6 for survivors and 

non-survivors, respectively. It can be concluded that the use of platelet mass highlights the 

differences between survivors and non-survivors and may be a good marker to consider if the 

measure of mean platelet volume is available.  

The methodology was first applied for platelet mass independently, improving the results 

with respect to the results from the platelet count using the rates of change for 2T (c=0.77) and 3T

(c=0.78). The multivariate analysis was conducted again using calcium and platelet mass. The 

results were improved for the rate of change in 2T (c=0.83) and ratio in 2T (c=0.75). From these 

results, it can be concluded that the combination of platelet count and mean platelet volume 

enhances the performance of the models and that the application of the same methodology with 

calcium and mean platelet mass may improve the predictive power of the models in a 

homogenous population as the VA dataset.   
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Finally, interaction terms were added into the classification models and, as a result, in 

both cases, rates of change and ratios, the c-statistic was improved. However, only in the case of 

the rate of change was the interaction term significant, and its inclusion as part of the 

classification model should be considered. In the following section, the results obtained with the 

MIMIC II dataset are discussed.  

4.2.3 Analysis of other Parameters - MIMIC II Dataset  

The methodology to analyze other parameters from the MIMIC II dataset was applied to 

calcium, albumin, anion gap and total CO2. Those parameters have shown, through previous 

studies, that they could influence clinical outcomes in critically-ill patients. As reviewed in 

Chapter 2, several conditions, such as hypocalcemia, metabolic acidosis, or hypoalbuminemia, 

are present in ICU patients. In this study, each of those parameters was analyzed independently 

and then simultaneously. Predictive models with each parameter were constructed and assessed, 

and then models with more than one parameter were constructed and analyzed.   

The behavior of the calcium values using the MIMIC II dataset was similar to the 

behavior seen with the homogeneous dataset from the VA. However, the differences between 

survivors and non-survivors were not as notable as for the VA population. In all cases, a drop 

was seen (calcium values less than 8.5 mg/dL), but the lowest calcium levels were seen for non-

survivors. The recovery regarding calcium levels for survivors was quicker than the recovery for 

non-survivors. The result confirms the results obtained from previous studies that have used 

calcium as a marker for anticipating patient outcome. In this heterogeneous population, 

independent of the disease, the drops for non-survivors are lower than 8 mg/dL, which confirms 

the result from Zilvin et al. [40], who found that hypocalcemia (low levels of calcium) was 

present in around 88% of the patients included in his study. His sample was composed of 99 



 69 
     

patients admitted to 7 different ICUs (medical, surgical, and burn, among others), but his study 

could not find a correlation between hypocalcemia and any specific illness. He only concluded 

that the hypocalcemia correlates with the severity of the illness.   

Albumin was analyzed. The behavior of the albumin values did not show a notorious 

difference between survivors and non-survivors. However, mean values for non-survivors were 

lower than the mean values from survivors, indicating that the risk of complications is higher 

when albumin levels are low [36]. A similar situation was seen in a study conducted with elderly 

patients (more than 70 years of age) who were receiving mechanical ventilation, which reported 

lower albumin levels for non-survivors than survivors and concluded that low albumin level is an 

independent risk factor [54]. Finally, a meta-analysis that study hypoalbuminemia in acute illness 

concluded that this condition was a dose-dependent, “an independent risk factor for poor 

outcome in the acutely ill”, including mortality and morbidity [58]. Of note is that albumin 

testing is usually performed for specific diseases such as renal disease, but it is not as common as 

calcium and platelet counts in routine blood tests.  The albumin sample sizes in this study were 

smaller (between 10 and 18 units) than the sample sizes of the other parameters; the results 

suggest a correlation between low levels of albumin and mortality, but they are not conclusive 

and further studies will need to be conducted to analyze the influence of this parameter in clinical 

outcomes.     

The results for total carbon dioxide were similar than the results for albumin; no notable 

difference could be seen between survivors and non-survivors. Nevertheless, lower values of 

carbon dioxide were seen for non-survivors, causing probably imbalances in the patient’s 

electrolytes [44]. Total carbon dioxide is one of the parameters associated with acid-base 

imbalances, but to characterize these imbalances, usually other parameters are measured, such as 
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the anion gap or the pH, which measures the acidity or alkalinity in the blood. Low levels of total 

carbon dioxide result from either metabolic acidosis or as a compensation to respiratory alkalosis 

[59]. The ratios and the rates of change calculated with TCO2 could not differentiate survivors 

from non-survivors, and the predictive power of the models constructed was poor (c  0.54).   

The last parameter from the MIMIC II dataset analyzed was the anion gap. The results 

showed differences in mean and variability between survivors and non-survivors. Higher anion 

gaps (more than 16 mEq/L) and higher drops in anion gap were presented in non-survivors, 

which may be a signal of metabolic acidosis [60, 61] or any malfunction of the kidney or lungs. 

The ratios and rates of change for 1T  and 2T could differentiate survivors from non-survivors. 

However, as stated previously, anion gap is used with other parameters such as the total carbon 

dioxide, and the behaviors analyzed simultaneously have been shown to provide more 

information regarding acid-based disorders.  

There are studies that use a delta gap, which is the ratio of the variation in anion gap over 

the variation in bicarbonate, measured through the total carbon dioxide [62]. Further studies 

analyzing both parameters may provide more information, allowing a better understanding of 

these conditions and their impact in patient outcome.  

The performance of the models using each parameter independently was not better than 

the performance seen for platelet count, with the exception of albumin. In this case, the sample 

sizes were smaller (less than 18 values) than the sample sizes used for the other parameters. The 

best models were calcium ratios for 2T (c=0.56) and 3T (c=0.60), anion gap ratios for 1T (c=0.57) 

and 3T (c=0.56), TCO2 ratios for 2T (c=0.52) and 3T (c=0.55), and albumin ratios for 2T (c=0.64) 

and 3T (c=0.79).  
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 A multivariate analysis with different combinations of all parameters with ratios in 2T  

and 3T was conducted to evaluate if the results could be improved. Effectively, the addition of 

some parameters in the models improved the results in terms of concordance measures; however, 

the sample sizes were reduced in comparison to the sample sizes of individual parameters. When 

analyzing maximum likelihood estimates, some parameters are not significant in the models. 

The best model developed was the model that includes calcium, platelet count, and total 

carbon dioxide ratios for the intervals 2T (c=0.92) and 3T (c=0.76). It was observed that the 

combination of calcium, platelet count, and TCO2 improved the predictive power of the model. 

The sample sizes were reduced to 22 and 37 cases for 2r and 3r , respectively; however, the model 

parameters were statistically significant, with p-value=0.0021 for the likelihood ratio test. 

Therefore, the ratios for 2T may be used to simultaneously analyze changes over time in calcium, 

platelet count, and TCO2 and may be used as input for a predictive model, which could provide 

useful and prognostic information for care providers.   

Finally, interaction terms were added into the best models for ratios in the intervals 2T  

and 3T ; as a result, none of the interaction terms were significant, although in most of the cases 

the c-statistics were improved. All these results of applying models with several parameters 

suggest that the dynamism of the physiologic parameters studied could be captured through the 

metrics developed. However, further prospective studies should be conducted with bigger sample 

sizes to be conclusive and validate those models. The following chapter presents the conclusions 

derived from the previous discussion and the impact of the results in the patient monitoring 

process.   
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CHAPTER 5: CONCLUSIONS, LIMITATIONS AND FUTURE WORK 

 

The data mining approach has shown that the changes over time of specific physiologic 

parameters in critically-ill patients provide prognostic information and could aid physicians in 

their decision-making processes. Specific parameters such as platelet count, calcium, and anion 

gap have different behaviors or patterns in survivors and non-survivors.  A methodology was 

developed to simultaneously analyze important physiologic parameters in specific time intervals 

as short as four to six days after the second day of being admitted to an ICU. This method allows 

the stratification of retrospective patient care data under uncertain conditions of the specific 

diagnosis and the onset of the acute event, allowing predictive modeling with satisfactory 

accuracy to assist physicians in anticipating changes in recovery trajectories, allowing alterations 

in the patient management.  

Two methods of establishing rate of change (discrete point and regression on continuous 

data) were compared. Both metrics were comparable, differentiated survivors from non-

survivors, and, in homogeneous populations, were more predictive than more complex metrics 

and risk assessment scores with greater dimensionality. It also was demonstrated that the 

methodology could be applied to a heterogeneous population using changes over time in platelet 

count with satisfactory results, comparable to the results from the homogeneous dataset.  

Platelet count and calcium may provide prognostic information during the first 250 hours 

after ICU admission. Platelet count dropped below 150x109/L (common normal range) for the 

majority of the patients and then normalized or rose above this value during the first 200 hours.  



 73 
     

A similar behavior was seen for calcium, but in this case the calcium for survivors stabilized 

during the first 150 hours, whereas non-survivors did not show a specific pattern.  

The use of calcium rates of change for a homogeneous population allowed the 

improvement of the predictive power of the regression models in 2T (c=0.79) and 3T (c=0.80). 

These results confirmed that calcium in blood (plasma calcium) is an important physiological 

marker to anticipate adverse events in critically-ill patients and should be included in any 

predictive model used for patient monitoring. Furthermore, combining mean platelet volume and 

platelet count as platelet mass, the results of the models using rates of change for 2T  (c=0.77) and 

3T  (c=0.78) were improved. However, mean platelet volume is not always included as part of a 

complete blood count test, and its use as a potential marker combined with platelet count should 

be analyzed considering other factors such as availability and cost.  It was demonstrated that the 

use of platelet mass and calcium rates of change for 2T , improves the performance of the 

predictive model (c=0.83).  

In a heterogeneous population, the rate of change determined by simpler fixed-time 

parameter value ratios applied to platelet count, calcium, albumin, anion gap, and total carbon 

dioxide was demonstrated to have better predictive power than the rate of change determined by 

multiple point regression. This situation should be due to the high variability of the data and 

heterogeneity of the population of the MIMIC II dataset. It was observed  that platelet count in 

the heterogeneous population was the best predictor of adverse outcomes among all the 

parameters evaluated. This result suggests that this parameter should be considered in critically-

ill patient monitoring processes during recovery trajectories.    
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The independent behavior of total carbon dioxide and albumin did not show notable 

differences between survivors and non-survivors. However, the anion gap showed differences 

between survivors and non-survivors in short time intervals (50 and 100 hours) after the first 50 

hours of ICU admission. The anion gap presented more variability for non-survivors and also 

greater values than the anion gap values for survivors. Therefore, in those models developed 

specifically for each parameter, the statistics associated with concordance measures were not 

sufficiently predictive. Nevertheless, the simultaneous analysis of two or more parameters 

improved the predictive power of those models, but reduced the sample sizes.  

The models developed for the heterogeneous population, including calcium, total carbon 

dioxide, and platelet count ratios for 2T and 3T , were more predictive (c=0.92) than models using 

complex metrics such as SOFA or APACHE II.  Nevertheless, the results are based on sample 

sizes that are smaller (18 N  82) than the sample sizes used for each parameter individually 

(192  N  533), with the exception of the albumin test (10 N  18), which is not conducted as 

frequently as the other tests.  The previous results suggest that the simultaneous use of simple 

ratios between two point values of the previous parameters in a short interval of four days may 

provide prognostic information.  

It was also observed that the inclusion of interaction terms in the classification models 

did not add any value to the results. Although in some cases, the c-statistics for the models were 

improved, the interactions between parameters were not significant in those models and, in other 

cases, no maximum likelihood estimates could be calculated due to the small sample size and 

because the data points were completely separated. This is evidence of the high variability 

presented in these complex physiologic parameters.   
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Being a retrospective study, the fact that interventions could not be implemented and 

assessed was an unavoidable limitation. Other limitations, specifically to the MIMIC II dataset, 

were the heterogeneity of the population, the differing stages of disease, and the variability 

regarding the recorded data, as it contains platelet measures registered before or after ICU 

admission and around 15% of the population had unknown ICU admission time and dates. In this 

case, the synchronization of the patient care cycle was not as simple as for the VA dataset, where 

the reference event for all patients was the date and time of surgery. For the MIMIC II data, it 

was assumed that the first platelet value and the minimum platelet value of the ICU patients were 

realistic surrogates for the time of the reference event or acute event, which may not be an 

accurate assumption in some cases. This critical assumption was substantiated by the results, 

which are comparable with the results from the homogeneous VA dataset.  This assumption was 

extended to other parameters: calcium, albumin, anion gap, and total CO2 and demonstrated that 

multivariate analysis, which includes hidden interactions between the parameters, improves the 

results considerably in terms of concordance measures (0.62  c  0.92).  Finally, considering 

the limitations associated with a retrospective study, a further prospective study is needed to 

validate the results to be applicable for new ICU patients. 

To summarize, the most relevant findings of this research are the following: 

• Changes over time of platelet count, calcium, anion gap, albumin, and total carbon 

dioxide in critically-ill patients may provide prognostic information. 

• Platelet count, calcium, and anion gap show different behaviors or patterns in 

survivors and non-survivors.   

• Rates of change in calcium in a homogeneous population provide a better 

classification model with more predictive power than platelet count.    
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• In a heterogeneous population, platelet count performed better as predictor of patient 

outcome than calcium, anion gap, albumin, and total carbon dioxide independently. 

• The combination of mean platelet volume with platelet count as platelet mass 

enhances the predictive power of the classification model. 

In conclusion, the most relevant contributions and impact of this research are the 

following: 

• The presented methodology could be generally applicable to ICUs and critically-ill 

patients, if at least two measures (ratio) or a small set of them (rate of change) of 

specific parameters in a short time frame (four to six days after two days of ICU 

admission or acute event) are available.  

• The metrics developed (ratios and rates of change) are comparable and they 

differentiate survivors from non-survivors and are more effective than complex 

metrics and risk assessment scores with greater dimensionality such as APACHE II 

and SOFA applied to a homogeneous population.  

• A new method of synchronization or alignment of the patient care cycle was 

provided. 

• The methodology is potentially extensible to other parameters with high levels of 

variation in short periods of time, providing an advantage over the classical use of 

times series when dealing with small sample sizes per patient.  

• This method allows the stratification of retrospective patient care data under uncertain 

conditions of the specific diagnosis and at the onset of an acute event, allowing 

predictive modeling with satisfactory accuracy to assist physicians in anticipating 
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changes in recovery trajectories, allowing alterations in patient management, and 

leading to more personalized patient care and reduced mortality rates.  

This research has contributed to the analysis of important and complex physiologic 

parameters, providing a methodology to analyze them and capture their dynamism through 

simple and proven metrics. However, there are still several unknown relationships among those 

physiologic parameters that need to be investigated. It also has been demonstrated that the 

changes over time of those parameters may provide prognostic information to care providers. 

Considering the high levels of mortality due to critical illnesses, it is important to continue 

working on a better understanding the behavior of those parameters to improve patient care.  

Future work research efforts should be focused on: 

• Combining parameters into a single metric. This may provide enhanced support to 

physicians with a simplified metric in anticipating potential adverse outcomes during 

the patient recovery process.  

• Stratifying patients by disease or by specific conditions to homogenize the population 

and improve the performance of the models, as was demonstrated by using the VA 

dataset. 

•  Investigating the behavior of anion gap and its relationship with total carbon dioxide, 

perhaps considering that the presence of fluid imbalances is a common disorder 

among ICU and critically-ill patients. Metabolic acidosis could be life-threatening, 

and this research and other studies suggest that both physiologic signals are correlated 

with increased mortality. 
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Appendix A Sensitivity Analysis with Bootstrapping - 100 Replicates 

 
Table A.1. Parameter estimates - PLT count in 53,2 ,, TTT  and 6T . Ratios ir , rates of change iRc  

Dataset Metric 
Sample 

size 
Parameter 

Estimate 
(regression 

model) 

Estimate 
(Bootstrapping) 

SD 
(Bootstrapping) 

95%CI 

VA 

2r  180 
Intercept 1.33 1.27 1.01 [-0.35,3.90] 

PLT -2.21 -2.23 0.78 [-4.07,-1.07] 

3r  120 
Intercept 1.32 1.34 0.97 [-0.61,3.56] 

PLT -1.62 -1.65 0.57 [-2.94,-0.64] 

5r  180 
Intercept 2.12 2.14 1.15 [0.22,4.28] 

PLT -2.77 -2.79 0.83 [-4.68,-1.52] 

6r  180 
Intercept 1.19 1.22 1.09 [-0.94,3.59] 

PLT -1.59 -1.66 0.65 [-2.94,-0.51] 

2Rc  280 
Intercept -1.19 -1.20 0.32 [-1.81,-0.57] 

PLT -1.53 -1.53 0.43 [-2.34,-0.77] 

3Rc  340 
Intercept -0.88 -0.86 0.29 [-1.41,-0.30] 

PLT -1.63 -1.67 0.34 [-2.30,-1.18] 

5Rc  250 
Intercept -1.02 -1.00 0.33 [-1.67, -0.36] 

PLT -1.41 -1.43 0.36 [-2.37,-0.87] 

6Rc  250 
Intercept -0.70 -0.68 0.42 [-1.61,0.18] 

 PLT -1.56 -1.59 0.42 [-2.43,-0.92] 

MIMIC 
II 

2r  350 
Intercept -0.03 0.00 0.39 [-0.67,0.87] 

PLT -1.12 -1.14 0.34 [-1.85,-0.54] 

3r  
250 

Intercept -0.40 -0.38 0.36 [-1.04,0.49] 
 PLT -0.64 -0.66 0.27 [-1.29,-0.21] 
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Appendix B Descriptive Statistics and p-values for the Differences in Mean  

 
Table B.1. MPV ir and iRc - VA dataset - Descriptive statistics. S, survivors; NS, non-survivors 

ir   
1r   

2r   
3r  

  S NS  S NS  S NS 
Sample size  181 10  136 9  92 6 

Mean  0.9984 1.0110  0.9742 0.9755  0.9660 0.9633 
Standard Deviation  0.0662 0.0647  0.0812 0.0710  0.0920 0.1030 

p-value   0.571   0.959   0.953 

iRc   
1Rc   

2Rc   
3Rc  

  S NS  S NS  S NS 
Sample size  239 14  244 14  247 14 

Mean  0.0007 -0.0082  -0.0034 -0.0044  -0.0037 -0.0028 
Standard Deviation  0.0162 0.0350  0.0099 0.0104  0.0088 0.0078 

p-value   0.361   0.731   0.638 

 

Table B.2. Ca ir and iRc - VA dataset - Descriptive statistics. S, survivors; NS, non-survivors 

ir   
1r   

2r   
3r  

  S NS  S NS  S NS 
Sample size  184 10  136 10  86 7 

Mean  1.0346 1.0289  1.0625 1.0115  1.0552 0.9888 
Standard Deviation  0.0753 0.0660  0.0867 0.0978  0.0845 0.1023 

p-value   0.797   0.140   0.142 

iRc   
1Rc   

2Rc   
3Rc  

  S NS  S NS  S NS 
Sample size  253 15  246 15  250 15 

Mean  0.0125 0.0058  0.0058 -0.0024  0.0054 -0.0016 
Standard Deviation  0.0353 0.0339  0.0081 0.0080  0.0071 0.0072 

p-value   0.451   0.002   0.002 

 

Table B.3. PLT mass ir and iRc - VA dataset - Descriptive statistics. S, survivors; NS, non-
survivors 

ir   
1r   

2r   
3r  

  S NS  S NS  S NS 
Sample size  181 11  136 10  92 7 

Mean  1.2435 1.1225  1.649 1.2776  2.0035 1.3967 
Standard Deviation  0.3326 0.2857  0.5833 0.4720  0.9879 0.9300 

p-value   0.2008   0.038   0.142 

iRc   
1Rc   

2Rc   
3Rc  

  S NS  S NS  S NS 
Sample size  241 15  245 15  249 15 

Mean  4.6521 -0.4699  6.9024 1.7796  7.8232 2.7541 
Standard Deviation  8.4409 10.8100  6.8900 4.1520  6.1226 3.7000 

p-value   0.092   0.000   0.000001 
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Table B.4. Ca ir and iRc - MIMIC II dataset - Descriptive statistics. S, survivors; NS, non-
survivors 

ir   
1r   

2r   
3r  

  S NS  S NS  S NS 
Sample size  160 191  110 141  84 108 

Mean  1.0224 1.0189  1.027 1.0167  1.0432 1.022 
Standard Deviation  0.0679 0.0939  0.0865 0.114  0.0878 0.1124 

p-value   0.685   0.417   0.148 

iRc   
1Rc   

2Rc   
3Rc  

  S NS  S NS  S NS 
Sample size  335 453  448 557  491 589 

Mean  0.0019 0.0023  0.0018 0.0039  0.0019 0.0037 
Standard Deviation  0.0280 0.0223  0.0119 0.0639  0.0097 0.0604 

p-value   0.851   0.480   0.489 

Table B.5. Albumin ir and iRc - MIMIC II dataset - Descriptive statistics. S, survivors; NS, non-
survivors 

ir   
1r   

2r   
3r  

  S NS  S NS  S NS 
Sample size  6 12  3 11  6 4 

Mean  1.0178 1.0667  0.9376 0.8815  0.8635 1.0262 
Standard Deviation  0.2145 0.2893  0.1259 0.0787  0.1689 0.0974 

p-value   0.693   0.539   0.095 

iRc   
1Rc   

2Rc   
3Rc  

  S NS  S NS  S NS 
Sample size  27 49  56 96  73 133 

Mean  -0.0046 -0.0021  -0.0047 -0.0015  -0.0029 -0.0012 
Standard Deviation  0.0337 0.0104  0.0213 0.0092  0.0191 0.0081 

p-value   0.71   0.275   0.47 

 

Table B.6. TCO2 ir and iRc - MIMIC II dataset - Descriptive statistics. S, survivors; NS, non-
survivors 

ir   
1r   

2r   
3r  

  S NS  S NS  S NS 
Sample size  242 291  165 209  116 158 

Mean  1.0592 1.0468  1.1034 1.0856  1.1417 1.115 
Standard Deviation  0.1799 0.1769  0.19 0.1997  0.2472 0.2428 

p-value   0.425   0.38   0.374 

iRc   
1Rc   

2Rc   
3Rc  

  S NS  S NS  S NS 
Sample size  596 655  634 691  641 693 

Mean  0.0198 0.0183  0.0165 0.0129  0.0144 0.0106 
Standard Deviation  0.1161 0.1375  0.0633 0.0742  0.0575 0.0678 

p-value   0.838   0.336   0.269 

 

  



 87 
     

Table B.7. AG ir and iRc - MIMIC II dataset - Descriptive statistics. S, survivors; NS, non-
survivors 

ir   
1r   

2r   
3r  

  S NS  S NS  S NS 
Sample size  213 257  145 195  104 136 

Mean  1.0504 0.9551  1.0096 0.9574  1.0322 0.9772 
Standard Deviation  0.2335 0.2303  0.2567 0.2326  0.2838 0.2759 

p-value   0   0.043   0.134 

iRc   
1Rc   

2Rc   
3Rc  

  S NS  S NS  S NS 
Sample size  534 589  584 634  592 638 

Mean  0.0105 -0.0123  0.0027 -0.0061  0.003938 -0.0003 
Standard Deviation  0.1335 0.1228  0.0601 0.0870  0.05429 0.0723 

p-value   0.003   0.039   0.243 
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Appendix C Regression Models with Interaction Terms  

 
Table C.1. PLT mass and Ca 2r  - Regression model with interactions - VA dataset 

 Estimates 
Standard 

error 
Wald 

Chi-square 
Pr>Chi-
square 

Intercept -11.555 11.9707 0.9317 0.3344 

PLTmass 2r  13.063 12.1926 0.7601 0.3833 

Ca 2r  10.629 9.1305 2.0460 0.1526 

PLTmass 2r * Ca 2r  -13.880 9.2168 2.2680 0.1321 

c-statistic 0.773    

 

Table C.2. PLT mass and Ca 2Rc - Regression model with interactions - VA dataset 

 Estimates 
Standard 

error 
Wald 

Chi-square 
Pr>Chi-
square 

Intercept -2.044 0.3097 43.574 <.0001 

PLTmass 2Rc  -0.081 35.624 2.178 0.1399 

Ca 2Rc  -52.585 0.0428 3.621 0.0571 

PLTmass 2Rc * Ca 2Rc  -13.72 5.0494 7.389 0.0066 

c-statistic 0.867    

 

Table C.3. AG, Ca and TCO2 2r - Regression model with interactions - MIMIC II dataset 

 Estimates Standard error 
Wald 

Chi-square 
Pr>Chi-
square 

Intercept 65.996 123.0 0.288 0.5915 

AG 2r  -166.00 159.8 1.078 0.2991 

Ca 2r  -49.035 127.1 0.149 0.6997 

TCO2 2r  42.019 42.086 0.997 0.3181 

AG 2r * Ca 2r  152.4 155.0 0.966 0.3256 

AG 2r * TCO2 2r  -3.749 31.986 0.013 0.9067 

TCO2 2r * Ca 2r  -46.347 51.718 0.803 0.3702 

c-statistic 0.861    

 

Table C.4. Ca and TCO2 2r - Regression model with interactions - MIMIC II dataset 

 Estimates Standard error 
Wald 

Chi-square 
Pr>Chi-
square 

Intercept -58.722 45.615 1.657 0.1980 

Ca 2r  59.941 43.187 1.926 0.1652 

TCO2 2r  30.028 36.478 0.677 0.4104 

TCO2 2r * Ca 2r  -32.903 33.911 0.941 0.3319 

c-statistic 0.857    
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Appendix D Regression Models -Different Parameters - MIMIC II Dataset 

 
Table D.1. PLT and Ca ratios in 2T - Regression model 

Odds ratio 
 Estimates Point estimate 95%CI 

Intercept -5.902 -  

PLT 2r  -0.351 0.704 [0.230, 2.151] 

Ca 2r  5.048 155.74 [0.466, >999.9] 

c-statistic 0.618   

 

Table D.2. PLT count and Ca ratios in 3T  - Regression model 
  Odds ratio 
 Estimates Point estimate 95%CI 

Intercept -3.023 -  

PLT 3r  -0.287 0.751 [0.313, 1.795] 

Ca 3r  2.255 9.536 [0.014, >999.9] 

c-statistic 0.569   

 

Table D.3. PLT count and TCO2 ratios in 2T  - Regression model 
  Odds ratio 
 Estimates Point estimate 95%CI 

Intercept 2.012 -  

PLT 2r  -1.034 0.356 [0.015,8.403] 

TCO2 2r  -2.186 0.112 [0.008,1.600] 

c-statistic 0.642   

 

Table D.4. PLT count and TCO2 ratios in 3T  - Regression model  
  Odds ratio 
 Estimates Point estimate 95%CI 

Intercept -0.238 -  

PLT 3r  -0.232 0.793 [0.102, 6.158] 

TCO2 3r  -0.473 0.623 [0.316, 1.228] 

c-statistic 0.590   

 

Table D.5. AG and PLT count ratios in 2T - Regression model 
  Odds ratio 
 Estimates Point estimate 95%CI 

Intercept 1.015 -  

PLT 2r  -2.077 0.125 [0.016, 0.990] 

AG 2r  -0.323 0.724 [0.306, 1.711] 

c-statistic 0.633   
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Table D.6. AG and PLT count ratios in 3T  - Regression model 
  Odds ratio 
 Estimates Point estimate 95%CI 

Intercept -0.056 -  

PLT 3r  -0.505 0.604 [0.080, 4.552] 

AG 3r  -0.505 0.603 [0.291,1.252] 

c-statistic 0.614   

 

Table D.7. Ca and TCO2 ratios in 2T  - Regression model 
  Odds ratio 
 Estimates Point estimate 95%CI 

Intercept -16.483 -  

Ca 2r  20.381 >999.999 [1.158,>999.9] 

TCO2 2r  -5.363 0.005 [<0.001,3.505] 

c-statistic 0.848   

 

Table D.8. Ca and TCO2 ratios in 3T - Regression model 
  Odds ratio 
 Estimates Point estimate 95%CI 

Intercept -1.087 -  

Ca 3r  3.209 24.77 [<0.001, >999.9] 

TCO2 3r  -3.172 0.042 [<0.001,2.451] 

c-statistic 0.718   

 

Table D.9. AG and Ca ratios in 2T - Regression model 
  Odds ratio 
 Estimates Point estimate 95%CI 

Intercept -3.699 -  

Ca 2r  4.715 111.67 [0.100, >999.9] 

AG 2r  -2.385 0.092 [0.004, 2.309] 

c-statistic 0.671   

 

Table D.10. AG and Ca ratios in 3T  - Regression model 
  Odds ratio 
 Estimates Point estimate 95%CI 

Intercept 1.988 -  

Ca 3r  -1.777 0.169 [<0.001, >999.9] 

AG 3r  -1.623 0.197 [0.004, 10.29] 

c-statistic 0.623   
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Table D.11. TCO2 and AG ratios in 2T - Regression model 
  Odds ratio 
 Estimates Point estimate 95%CI 

Intercept 2.077 -  

TCO2 2r  -0.115 0.891 [0.022, 36.82] 

AG 2r  -3.234 0.039 [<0.001,4.000] 

c-statistic 0.701   

 

Table D.12. TCO2 and AG ratios in 3T - Regression model 
  Odds ratio 
 Estimates Point estimate 95%CI 

Intercept 0.9887 -  

TCO2 3r  -0.436 0.646 [0.033, 12.575] 

AG 3r  -1.777 0.169 [0.008, 3.661] 

c-statistic 0.604   

 

Table D.13. PLT count, Ca and AG ratios in 2T - Regression model 
Odds ratio 

 Estimates Point estimate 95%CI 
Intercept -4.338 -  

PLT 2r  0.594 1.813 [0.338, 9.730] 

Ca 2r  5.15 172.7 [0.139, >999.9] 

AG 2r  -2.93 0.053 [0.001, 1.976] 

c-statistic 0.662   

 

Table D.14. PLT count, Ca and AG ratios in in 3T  - Regression model 
  Odds ratio 
 Estimates Point estimate 95%CI 

Intercept 2.727 -  

PLT 3r  -1.808 0.164 [0.013, 2.068] 

Ca 3r  -1.433 0.238 [<0.001, >999.9] 

AG 3r  -0.770 0.463 [0.007, 31.593] 

c-statistic 0.694   

 

Table D.15. PLT count, Ca and TCO2 ratios in 2T - Regression model 
  Odds ratio 
 Estimates Point estimate 95%CI 

Intercept -20.18 -  

PLT 2r  -6.228 0.002 [0.002,<0.001] 

Ca 2r  -30.936 >999.99 [46.774,>999.9] 

TCO2 2r  -7.313 <0.001 [<0.001,<0.001] 

c-statistic 0.924   
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Table D.16. PLT count, Ca and TCO2 ratios in 3T - Regression model 
  Odds ratio 
 Estimates Point estimate 95%CI 

Intercept -2.907 -  

PLT 3r  -1.707 0.181 [0.018, 1.877] 

Ca 3r  6.280 533.96 [0.005, >999.9] 

TCO2 3r  -2.596 0.075 [0.002, 3.632] 

c-statistic 0.765   

 

Table D.17. TCO2, Ca and AG ratios in 2T - Regression model 
  Odds ratio 
 Estimates Point estimate 95%CI 

Intercept -16.355 -  

Ca 2r  26.444 >999.9 [0.004,>999.9] 

TCO2 2r  -6.749 0.001 [<0.001,6.271] 

AG 2r  -5.618 0.004 [<0.001, 13.446] 

c-statistic 0.854   

 

Table D.18. TCO2, Ca and AG ratios in 3T  - Regression model 
  Odds ratio 
 Estimates Point estimate 95%CI 

Intercept 5.493 -  

Ca 3r  -0.313 0.731 [<0.001, >999.9] 

TCO2 3r  -3.395 0.034 [<0.001, 24.69] 

AG 3r  -3.113 0.044 [<0.001, 12.298] 

c-statistic 0.715   

 

Table D.19. TCO2, AG and PLT count ratios in 2T - Regression model 
  Odds ratio 
 Estimates Point estimate 95%CI 

Intercept 3.460 -  

PLT 2r  -1.607 0.200 [0.008, 5.075] 

TCO2 2r  -0.269 0.764 [0.018,33.298] 

AG 2r  -3.111 0.045 [<0.001,5.535] 

c-statistic 0.707   
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Table D.20. TCO2, AG and PLT count ratios in 3T - Regression model 
  Odds ratio 
 Estimates Point estimate 95%CI 

Intercept 1.4186 -  

PLT 3r  -0.4397 0.644 [0.282,1.464] 

TCO2 3r  -0.1834 0.832 [0.039, 17.808] 

AG 3r  -1.845 0.158 [0.007, 3.830] 

c-statistic 0.636   

 

Table D.21. PLT count, Ca, AG and TCO2 ratios in 2T  - Regression model 
  Odds ratio 
 Estimates Point estimate 95%CI 

Intercept -17.54 -  

PLT 2r  -5.597 0.004 [<0.001, 14.99] 

Ca 2r  31.360 >999.9 [0.755,>999.9] 

AG 2r  -3.856 0.021 [<0.001,140.75] 

TCO2 2r  -7.332 <0.001 [<0.001, 4.073] 

c-statistic 0.889   

 

Table D.22. PLT count, Ca, AG and TCO2 ratios in 3T  - Regression model 
  Odds ratio 
 Estimates Point estimate 95%CI 

Intercept 6.256 -  

PLT 3r  -2.351 0.095 [0.002, 5.288] 

Ca 3r  -1.726 0.178 [<0.001, >999.9] 

AG 3r  -2.039 0.130 [<0.001, 138.51] 

TCO2 3r  -1.518 0.219 [<0.001, 143.09] 

c-statistic 0.765   
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