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Abstract 

 

 Recently, biogenic carbonates have received much attention as potential proxies 

of environmental change; however, a major pathway of elemental incorporation is often 

overlooked when making interpretations or designing experiments. This research 

experimentally examines the influence of diet on elemental composition in juvenile 

shells of the bay scallop, Argopecten irradians concentricus, and the northern quahog, 

Mercenaria mercenaria. 

 Exploratory trials were conducted using Argopecten irradians concentricus 

juveniles fed different algal diets: Isochrysis, Chaetoceros, Pavlova, Tetraselmis, or a 

mix of all four in a 2:1:2:2 ratio. No differences between the left and right valves were 

revealed, thus, subsequent analysis of the dietary influence on shell chemistry utilized 

both valves.  Only Mg/Ca and K/Ca were significantly different between the diet groups, 

though different influences were determined. 

 Experiments with juvenile Mercenaria mercenaria compared shell chemistries 

among clams fed unicellular diets of Isochrysis sp. (CCMP1324), Pavlova pinguis 

(CCMP609), Chaetoceros mulleri (CCMP1316), Isochrysis sp. (CCMP1611) culture, 

Pavlova sp. (CCMP1209), or Chaetoceros galvestonensis (CCMP186), a mixed diet of 

all species in equal ratios (Mixed), or no food (starvation control). The results indicate 
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that diet can influence shell chemistry either directly or indirectly, with degree of 

influence varying by diet and mollusc species.    

 Additional information concerning the use of alternative element ratios and 

changes in the shell chemistry due to starvation-induced stress are also presented.  

Altogether, the present research provides valuable information concerning shell 

dynamics and potential diet-associated fluxes, thus demonstrating the need to consider 

the composition of dietary inputs when assessing environmental associations with 

elemental shell chemistries. 
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1. Introduction 

 

 The chemistry of biogenic carbonate shells is complex and influenced by a wide 

variety of processes. Consequently, many scientific applications are utilizing shell 

chemistries to interpret evolutionary, paleoenvironmental, environmental and chemical 

processes. To interpret trends in shell chemistries in response to environmental change, 

it is essential to understand how basic biological processes and environmental changes 

influence the elemental composition of a shell (Strasser et al., 2008).  

 Physical processes, especially the influence of temperature, are among the 

parameters most commonly considered as influencing shell chemistries, in part because 

rates of ion substitution can be strongly temperature dependent (Kennedy, 1969; Klein 

et al., 1996; Weiner and Dove, 2003; Schone, 2008; Strasser et al., 2008).  Likewise, 

the chemistry of the water in which an organism was living and growing has been 

shown to influence shell chemistry (e.g., Panella and McClintock, 1968; Bryan, 1973; 

Carriker et al., 1980; Lorens and Bender, 1980; Rhoads and Lutz, 1980; Rainbow, 

1993; Puten et al., 1996; Stecher et al., 1996; Leng and Pierce, 1999; Surge et al., 

2003; Gilliken et al., 2006). Post-mortem processes (taphonomy) are also essential to 

consider, as are a variety of other processes, depending upon the organism considered, 

the environment in which it lives, and how it feeds. 
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 Yet dietary contribution to elemental shell composition and variation of elemental 

constituents related to dietary algal composition are rarely if ever considered in studies 

and interpretations of shell chemistries. Thus, one of the primary mechanisms 

influencing the ratios of ions in the fluids from which a shell is precipitated is almost 

unknown. 

 This dissertation presents an examination of dietary influence on elemental 

concentrations in the shells of two commercially important species of bivalve. In Chapter 

2, I examine the effects of the diet of young bay scallops, Argopecten irradians 

concentricus, on their shell chemistries. In Chapters 3-5, I report more extensive 

experiments that examined dietary and other associated influences on shell dynamics of 

Mercenaria mercenaria.  To provide the background to understand how diet might 

influence shell chemistries, the basics of bivalve molluscan shell morphologies and shell 

deposition are reviewed in this introductory chapter. 

 

The Bivalve Mollusc Shell 

 The outward and distinguishing feature of the bivalve mollusk is a shell made up 

of a pair of valves that provide protection and support for internal organs and processes 

(Carefoot and Donovan, 1995).  Figure 1.1 depicts the general features of a marine 

bivalve molluscan shell.  

 The shell itself is an accretionary exoskeleton composed primarily of organics 

and calcium carbonate that are organized into layers.  The outer-most layer is the 

organic periostracum, under which lies the mineralized portion of the shell, which 

usually is composed of aragonite, calcite or a combination of these minerals.  The 
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extrapallial space separates the shell from the epithelial cells of the mantle. Figure 1.2 

illustrates a partial section through a bivalve shell, showing its structure and relationship 

to the mantle epithelium. 

 The following sections provide information on the internal tissues associated with 

shell formation, the proposed mechanisms of shell formation, an overview of bivalve 

molluscan shell mineralogy, control of element incorporation, and a summary of 

previous findings related to elemental composition with regard to environmental and 

biologic influences. 

 

Bivalve shell deposition 

 The process of shell deposition is often discussed at two different levels: 1) the 

major players and process associated with the transfer of necessary materials into the 

staging area for shell deposition, and 2) the formation of the shell and nucleation of the 

composite crystals. Each level will be discussed separately. 

 

Tissues involved 

 Most sources refer to the tissues and spaces that are involved in shell deposition 

as “compartments”, with the mantle (outer mantle epithelium), extrapallial space, and 

the inner shell surface identified as the primary compartments (Crenshaw, 1980; 

Wheeler, 1992).  The secondary compartment most often identified is the blood sinus of 

the mantle tissue; this is the major vessel for either food-derived or medium- (seawater) 

- derived materials to be transported to the mantle epithelium (Crenshaw, 1980). 
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 The outer mantle epithelium is associated with the transfer and deposition of 

materials due to its position adjacent to both the extrapallial fluid and the blood sinus, 

which is positioned between the two epithelial layers.  The role of the mantle epithelium 

in shell deposition is believed to be limited mostly to the marginal edge, based on the  

 

A.                         

                         

B.          

Figure 1.1: General molluscan bivalve shell features.  A. External shell features (Florida International 
University), B. Valve interior (Amqueddfa Cymru – National Museum Wales). 
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Figure 1.2:  General molluscan bivalve shell structure relative to the extrapallial space and mantle 
epithelium (Jacob et al., 2008). 
 

rate of shell deposition at the shell margin (Zischke et al., 1970; Wheeler and Wilbur, 

1977) and upon high metabolic activity/respiratory rates described by studies such as 

Jodrey and Wilbur (1955).  As such, the functional role of the outer mantle epithelium is 

further divided into two regions referred to as the central/proximal zone and the 

marginal zone; these zones are commonly illustrated in the histological classification of 

cell types and ultrastructure inherent to these cells (Crenshaw, 1980).  The marginal 

zone, which is primarily associated with shell lengthening and thickening (Wheeler and 

Wilbur, 1977), is characterized by tall columnar cells with numerous mitochondria, well 

developed endoplasmic reticula and Golgi apparatus (Crenshaw, 1980).  The central 

zone, which is more associated with acid-base metabolism and shell dissolution, is 

characterized by cuboidal epithelium with fewer mitochondria, less developed 

endoplasmic reticula, and minimal Golgi apparatus (Tsujii, 1968; Neff, 1972; Crenshaw, 

1980). Transformation to columnar secretory cells can take place in the central zone to 

allow for shell repair (Tsujii, 1968). 

5 
 



   The fluid-filled extrapallial space is the environment in which shell deposition 

takes place (Wilbur and Simkiss, 1972).  The composition of the fluid is directly related 

to the metabolic activity of the outer mantle cavity, as hydrophobic barriers prevent 

direct association with the seawater (Crenshaw, 1980). As with the mantle, the pallial 

fluid can be categorized by the portion of the outer mantle with which it is associated.  

Though this is species specific, the outer mantle epithelium can attach at the pallial line 

to partition the pallial fluid into two unique components associated with the marginal and 

central zones (Crenshaw, 1980).  

 

Shell formation 

 Shell formation is a complex process comprised of multiple stages and 

necessitating many biological products.  Though the process has been studied for many 

years, there are still components that have not been accounted for and thus the exact 

mechanism is not fully understood.   

 The main components of the shell, and those consistently thought to be involved 

in the formation of the shell, are simply the organic matrix and calcium carbonate.  

Wilbur (1964) and Wilbur and Simkiss (1968) hypothesized that the organic matrix plays 

a significant role in shell formation as a depositional net that aids nucleation or that 

controls growth of the mineral.  This idea led to different hypotheses related to shell 

formation. Bevelander and Nakahara (1969), for example, suggested that 

heterogeneous nucleation and growth occurs within established organic compartments 

(Figure 1.3).  Studies such as Falini et al. (1996), however, suggest epitaxial growth of 

the mineral at active sites on the organic-matrix surface.  Commonalities between the 
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hypotheses are specific to the molecules suggested to be actively involved in 

biomineralization and include chitin, acidic glycoproteins and silk-like proteins 

(Bevelander and Nakahara, 1980; Levi-Kalisman et al., 2001), with chitin determining 

crystal orientation of aragonite (Blank et al., 2003) and the acidic proteins controlling 

nucleation, polymorph, texture and morphology of the crystals (Mann et al., 1989; 

Weiner and Addadi, 1997; Levi-Kalisman, 2001). Figure 1.4 depicts the model of shell 

calcification from Levi-Kalisman et al. (2001). These descriptions, however, are based 

on development of primarily nacreous layers, as this has been the focus of shell 

mineralization studies.  The following discussion will provide a general description of 

shell formation based on recent studies and accounting for differences between shell 

layers and in mineralogy. 

 

 

Figure 1.3:  Nacre formation as described by Bevelander and Nakahara (1969), as interpreted in Jacob et 
al. (2008). 
  

   

Organic interlamellar sheets 

 

Crystalline 

CaCO3 

Organic compartement 
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Figure 1.4:  Model of shell calcification from Levi-Kalisman et al. (2001). 
 

 The depositional environment for mineral precipitation is isolated from the 

exterior environment (seawater) by the periostracum, which is the outermost layer of the 

bivalve shell comprised of highly cross-linked proteins, and the mantle epithelium 

(Addadi et al., 2006).  This isolation allows for biological control of mineral formation 

(Simkiss and Wilbur, 1989; Weiner and Dove, 2003). This represents the first stage in 

shell formation.  

 The second stage is the secretion of necessary components into the extrapallial 

space and the construction of the organic matrix.  The main components in the shell 

matrix are β-chitin, a hydrophobic silk protein, and other hydrophobic proteins, many of 

which are rich in aspartic acid (Addadi et al., 2006; Furuhashi et al., 2009).  Cells of the 

outer mantle epithelium secrete a mixture of carbohydrates, proteins and lipids into the 

pallial space, all of which participate in the formation of the organic matrix (Lowenstam 

and Weiner, 1989; Gotliv et al., 2005).  Addadi et al. (2006) suggest that the epithelial 

Asp-rich 
glycoproteins 

β-Chitin 

Occluded  
Asp-rich 
glycoproteins 

Silk fibroin gel 
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cells secrete chitin first, which forms the general mold for the mineral, then assorted 

proteins, followed by silk protein in the form of a gel, which fills the chitin form and helps 

maintain spatial separation of lamellar sheets.   In addition to the identified components, 

Meyer et al. (2007) identified specific phosphoproteins associated with secretory cells at 

the mantle edge, which they proposed to be significant in mineralization as 

phosphoprotein extracts have been shown to bind calcium-carbonate crystals while 

fixed in a hydrogel (Mount, 1999).  The phosphoproteins, however, can also hinder 

crystal growth when in a solution (Wheeler et al., 1987). 

 Once the matrix (the form and foundation for mineralization) has been 

established, the mineral components are introduced.  Vesicles containing amorphous 

calcium carbonate secreted from the mantle epithelial cells (Addadi et al., 2008), and/or 

hemocytes containing calcium carbonate crystals, deliver materials to the mineralization 

front (Mount et al., 2004).  The presumed nacre-nucleation sites contain carboxylates 

and sulfates (Crenshaw and Ristedt, 1976; Nudelman et al., 2006), as seen in Nautilus 

shells. Similar sites have been seen in the shells of Atrina rigida, though less constricted 

to specific zones of the matrix (Nudelman et al., 2006).    The acidic matrix components 

likely direct crystal formation through anionic domains (Sudo et al., 1997; Gotliv et al., 

2005; Myers et al., 2007).  Occluded material (acidic proteins) during mineralization is 

presumed to be responsible for different morphologies, as well as for alteration of 

solubility and mechanical characteristics (Addadi et al., 2006; Nudelman et al., 2007). 

 Prismatic layer formation is similar to that of nacre formation in origin and 

structure (Nakahara and Bevelander, 1970).  The first stage is again the formation of an 

organic matrix juxtaposed to the periostracum and serving as a boundary for crystal 
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formation (Bevelander and Nakahara, 1969).  These lamellae are then said to fragment 

and form envelopes within the compartments being formed.  These envelopes contain 

dense extrapallial fluid (ground substance) enclosed during their formation.  Crystal 

formation initiates within the envelopes at the inner margin with interprismatic material 

derived from the inner lamellae or ground substance (Nakahara and Bevelander, 1970).  

Nudelman et al. (2007) further describes the formation of prismatic layers atop an 

already formed mineral layer.  In this process the first stage is suggested to be the 

deposition of a meshwork of chitin fibers. The next stage is the deposition of amorphous 

calcium carbonate onto the chitin fibers. The final stage is the crystallization of the 

calcium carbonate by epitaxial nucleation such that crystal orientation in each layer is 

maintained.  Nudelman et al. (2007) further states that chitin fibers are occluded during 

mineralization.  Figure 1.5 provides a schematic of the suggested mineralization 

mechanism for both prismatic layers and nacreous layers as described in Nudelman et 

al. (2007). 

 Biomineralization mechanisms remain speculative (Furuhashi et al., 2009).  Lack 

of comparative research has prohibited a comprehensive view of molluscan shell 

formation (Furuhashi et al., 2009). While the structure of the bivalve shell has been 

generalized by many researchers, no attempt has been made to determine differences 

between even similarly constructed shells (Addadi et al., 2006).  As illustrated in 

Kobayashi and Samata (2006), the components and molecular weight of the organic 

matrix are dependent upon the crystal structure and taxon of mollusc.  Because the 

organic matrix has been shown to control mineralization, biological controls (genetic 

10 
 



controls) governing the organic matrix and thus crystal structure are an extremely 

important factor.  It follows that not every molluscan shell would be the same. 

 Weiner and Traub (1980) suggested that chitin was not present in all molluscan 

shells, though since then, there has been a lack of research aimed at examining 

different taxa for chitin (Furuhashi et al., 2009).  The presence of silk fibroin has not 

been verified in all molluscan shells (Ghiselin et al., 1967) and the protein structure 

lacks the helical and b-spirals characteristic of silk fibroin (Weiner and Traub, 1980).  

Absence of silk fibroin in prismatic layers was also suggested by Furuhashi et al. 

(2009). 

 The mechanisms for shell formation most likely differ in taxa adapted to different 

natural stresses (Crenshaw, 1980).  Comprehensive research comparing a wide range 

of species and techniques will be necessary to determine all biological products 

associated with shell formation and the potentially numerous mechanisms of shell-layer 

mineralization based on evolution of the molluscan species (Crenshaw, 1980). 

 

Bivalve shell mineralogy 

 The larval shell of a bivalve mollusc is constructed initially of amorphous calcium 

carbonate (Weiss et al., 2002), which is then transformed to aragonite.  The larval shell 

of all bivalves is composed of aragonite with similar ultrastructure (Carriker and Palmer, 

1979), implying that the larval shell is conserved through evolution (Taylor, 1973).   
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Figure 1.5: Model of shell calcification in both prismatic and nacreous layers (Nudelman et al., 2007). 
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 The shells at later life stages are also under the influence of evolutionary 

adaptations, and as such, the mechanisms for deposition are genetically and biological 

controlled.  For example, taxonomic differences can be found in the calcium carbonate 

mineral precipitated, the direction of allometric growth, shape of the skeleton, thickness, 

hardness, coloration, and other shell factors (Rhoades and Lutz, 1980).  All bivalve 

shells, however, are composites of calcium carbonate polymorphs (calcite, aragonite, or 

possibly vaterite), and an organic matrix as previously identified, but the mineral 

structure of the calcium carbonate and combinations thereof are species specific 

(Kobayashi and Samata, 2006). 

 Carter (1980) identifies seven microstructure groups and five microstructure 

categories in the Bivalvia (Table 1.1).  The primitive molluscan shell is assumed to have 

been composed of simple aragonitic prisms and nacre, as found in the presumed 

ancestral Monoplacophora (Taylor, 1973); variations have occurred through time to 

produce the listed groups and categories.  Possible advantages to evolutionary changes 

in mineralogy, architecture and microstructure include breakage resistance, abrasion 

resistance, resistance to shell dissolution, fracture localization and deflection, flexibility, 

lower density, economy of secretion, and variable rates of vertical shell growth (Carter, 

1980).   

 

Minor and trace elements in bivalve shells 

 Many minor and trace elements can be incorporated into the calcium carbonate 

shell of bivalve mollusks (Brookes and Rumsby, 1965; Kobayashi, 1975).  These 

elements can be associated with pigments (Foxx, 1966), part of the structural 
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components (Dodd, 1967), substituted for calcium or carbon, adsorbed, or associated 

with physiological and environmental factors (Rosenburg, 1980). 

 

Table 1.1: Microstructure groups and categories with associated varieties and constituent microstructures 
(after Carter, 1980). 
Microstructure Groups and 
principal varieties 

Microstructure categories and 
constituent microstructures 

Prismatic 
  Simple prismatic 
  Fibrous prismatic 
  Spherulitic prismatic 
  Composite prismatic 

Aragonitic Prismatic 

Spherulitic Calcitic prismatic 
Laminar 
  Nacreous 
  Regularly foliated 

Nacreous (aragonitic) 

Crossed 
  Crossed lamellar 
  Crossed acicular 
  Complex crossed lamellar 
  Crossed-matted/lineated 

Porcelaneous (aragonitic) 
  Aragonitic crossed lamellar 
  Aragonitic crossed acicular 
  Aragonitic complex crossed lamellar 
  Aragonitic crossed-matted/lineated 
  Aragonitic homogenous  
 

Microstructure Groups and 
principal varieties 

Microstructure categories and 
constituent microstructures 

Homogenous 
  Homogenous s.s. 
  Granular 

Foliated (calcitic) 
  Regularly foliated 
  Calcitic crossed lamellar 
    = crossed foliated 
  Calcitic complex crossed lamellar 
    = complex crossed foliated  
 

Isolated Spicules or spikes  
Isolated crystal morphotypes  
  

 Incorporation of the elements that make up the shell can be achieved in two 

ways. The inner mantle tissue can uptake the elements from the surrounding 

environment or the elements can be derived from the ingestion of particles (feeding) 
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(Elinger, 1972).  Both meet the same end; all elements are transferred to the blood 

sinus, are transported to the outer mantle epithelium and eventually into the pallial fluid 

for incorporation in the shell.   

 One major control of element incorporation is the chemical restriction associated 

with physical limitations of size for incorporation into the crystal lattice of the polymorphs 

of calcium carbonate.  Aside from chemical restrictions, factors that determine the 

inclusion, distribution, or concentration of minor and trace elements range from 

ontogenetic regulation, physiological regulation, association with environmental 

dynamics, or can be seemingly random in nature (Rosenburg, 1980).   

 Magnesium can readily substitute for calcium in the crystal structure of calcite 

because of its relatively similar atomic radius, and has potential for environmental, 

ontogenetic, evolutionary and stoichiometric associations (Rosenberg, 1980).  

Strontium, in contrast, most readily substitutes for calcium in aragonite; Sr incorporation 

is widely studied as an indicator of temperature (Rosenburg 1980). The incorporation of 

both Mg and Sr can be influenced by many environmental factors. References to 

incorporation of other elements including manganese, boron, barium, lead, cadmium, 

iron, nickel, copper, zinc, as well as oxygen and carbon isotopes, are common in the 

scientific literature, with postulated influences including algal blooms altering media 

concentrations, temperature, salinity, ontogenetic variation, growth rate, tidal 

fluctuations, seasonal patterns, pollution, and sediment loading  (e.g., Rucker and 

Valentine, 1961; Rosenburg, 1980; Carriker et al., 1996; Leng and Pearce, 1999; Putten 

et al., 2000; Lazareth et al., 2003).  The studies, however, as noted by Rosenburg 

(1980), often assume cause and effect relationships without investigating all possible 
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factors in the elemental concentration and thus inconsistent results are common 

(Strasser et al., 2008). 

 

Bivalve shells as environmental proxies 

 Ecological stresses can be recorded as changes in the chemistry of the 

molluscan bivalve shell. Their accretionary skeleton, sedentary nature, species-specific 

longevity, general hardiness, and preservation potential, make bivalves ideal candidates 

for studies of environmental influences on shell chemistry (Dodd, 1965; Phillips, 1977; 

Rhoads and Lutz, 1980).  Presented here are some examples of experimental 

interpretations based on studies of shell-associated elements. 

 As noted earlier, Mg readily substitutes for Ca, especially in calcite, though 

studies have reported mixed results. Early researchers, including Chave (1954) and 

Wolfe et al. (1967), recognized the need for experiments to determine cause and effect 

relationships. Rosenburg (1980) demonstrated that Mg concentrations varied more in 

bivalves than other groups examined. Loren and Bender (1980) found possible 

confounding factors based on experimental conditions.  Recent studies by Kleine et al. 

(1996) and Putten et al. (2000) have demonstrated that Mg concentrations covary with 

temperature, but Putten et al. (2000) also noted a sudden deviation indicating that the 

relationship was not constant.  Other studies have correlated Mg with salinity (e.g., 

Milliman, 1974). Though observations relating Mg incorporation with environmental 

factors are inconclusive, evolutionary trends suggest biologically associated factors. 

 Strontium incorporation has been reported to be associated with multiple 

environmental factors though controversy surrounds these observations.  Dodd (1965) 
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found that Sr increased with increasing temperature in the calcite layers in Mytilus 

edulis, and decreased with increasing temperature in the aragonitic shell layers.  

Thompson and Chow (1955), however, found no correlation with temperature in the 

multiple species they inspected.  Hallam and Price (1968) surmised no correlation 

between growth rates and Sr, while Gilken et al. (2005) concluded that Sr was positively 

correlated with growth rate.  Meanwhile, Hamer and Jenkins (2007) concluded that Sr 

was negatively correlated with growth rate.  Stanton and Dodd (1970) concluded that Sr 

incorporation decreases with age, while Crisp (1975) found the opposite, and Strasser 

et al. (2008) reported mixed results.  

   Results with trace elements such as manganese have been equally 

problematic. Blanchard and Chasteen (1976) surmised the amount of substitution of 

Ca2+ by Mn2+ was correlated with tidal level, though the authors did not consider the 

oxygenation of the environment (Rosenburg, 1980).  Crisp (1975) attempted to correlate 

the Mn concentration to salinity, while Strasser et al. (2008) correlated Mn/Ca levels 

with that of seawater concentration, potentially confounded by biological activity. Carre 

et al. (2006) suggested positive Mn/Ca association with growth rates while Strasser et 

al. (2006) showed negative correlation. 

 Multiple associations have been suggested for barium concentrations in shell, 

which is one of a very few elements potentially linked to algae dynamics thus far. Dorval 

(2007) suggested that Ba/Ca can be associated with salinity though more commonly, as 

in Stecher et al. (1996), Putten et al. (2000), Lazareth et al. (2007), and Thebault et al. 

(2009), is correlated with phytoplankton blooms (diatoms mostly). In the latter study, 

fresh water influences related to both phytoplankton blooms and increased Ba are 
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discussed as potential cofactors. Alternative environmental correlations were interpreted 

by Risk et al. (2010), who surmised a direct correlation of Ba in the shells of Chilean 

bivalves with local soil erosion. Coffey et al. (1997) also found possible correlation with 

fluvial inputs. Gillikin et al. (2006) linked dissolved concentrations of Ba with shell 

concentrations in Mytilus edulis. 

 Lead concentrations in shells are often correlated with the concentration in the 

natural environment, despite the complication of incorporation versus adsorption.  

Studies by both Ferrel et al. (1973) and Clarke et al. (1976) found a direct correlation 

between the lead concentration in the shell samples with that of the environment, 

though Clarke et al. examined the dead shells of Corbicula manillensis, while Ferrel et 

al. (1973) focused on the live shells of Crassostrea virginica.  This presented the 

question of whether the measured lead was actually a component of the shell or simply 

adsorbed to the shell surface (Lutz and Rhoades, 1980). Other studies have 

discriminated between the dissolved and particulate phases of lead, including Pitts and 

Wallace (1994) who correlated lead in Mya arenaria shells with dissolved lead 

concentrations, while Borgoin (1990) associated the lead in Mytilus edulis shells with 

environmental concentrations of particulate Pb.  More recently, Putten et al. (2000) 

found that their results were inconclusive and the lead concentrations in the shells of 

Mytilus edulis were not necessarily representative of the seasonal variability of 

environmental concentrations. 
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Objectives 

 The chemistry of the biogenic carbonate shell is clearly very complex (Wilbur, 

1972). Carefully designed experimental studies are essential to understand the effects 

that environmental parameters and basic biological processes have on elemental 

components of the shell (Strasser et al., 2008). Moreover, all factors - such as diet – 

need to be included in the analyses to avoid misinterpretation and exclusion of primary 

contributors to shell chemistry.   

 This dissertation presents a first examination of the influence of algal diet on 

elemental concentrations in the shell of young bay scallops, Argopecten irradians 

concentricus.  However, the major focus of my research is the detailed examination of 

dietary and other associated influences on shell chemistries of Mercenaria mercenaria.  

Similarly, few studies have determined if differences can occur between the two valves 

of a bivalve shell. 

 The elements analyzed in the shells of experimental Argopecten and Mercenaria 

include silver (Ag), aluminum (Al), arsenic (As), boron (B), beryllium (Be),   calcium 

(Ca), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), potassium (K), 

lithium (Li), magnesium (Mg), manganese (Mn), molybdenum (Mo), sodium (Na), nickel 

(Ni), phosphorous (P), lead (Pb), scandium (Sc), selenium (Se), silica (Si), tin (Sn), 

strontium (Sr), titanium (Ti), thallium (Tl), vanadium (V) and zinc (Z).  This suite of 

elements represents those available using the Perkin-Elmer 4300 DV ICP-OES in the 

USF Paleoclimatology, Paleoceanography Biogeochemistry Laboratory, but also 

includes the majority of elements frequently examined in calcium carbonate shells. 
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The following questions are addressed: 

• Question 1. Do different algal diets contribute to unique elemental patterns in the 

bivalve shell? 

• Question 2. Do diets based on different species of the same algal genus result in 

different elemental shell chemistries in bivalve molluscs? Furthermore, does 

origin of the algae affect associated elemental signatures? 

• Question 3. Are elemental signatures distinct enough to differentiate the species 

of algae ingested? Is there a method which might increase the resolution 

between algal species ingested? 

• Question 4. Do elemental signatures differ significantly between valves of a 

bivalve mollusc? If so, do differences suggest a genetic/evolutionary mechanism 

or possibly correlate with functionality? 

• Question 5. Do elemental patterns contributed by diet to the bivalve molluscan 

shell depend on the mineralogy of the shell and species of bivalve? 

• Question 6. Do the valves collected from dead bivalve molluscs (empty shell with 

no tissue) retain the elemental characteristics of the living population? 
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2.  Elemental composition differences in the shell of juvenile Argopecten 

irradians concentricus fed different diets: a first look 

 

Introduction 

 In general, the two pathways used for the incorporation of material into the pallial 

space [region of shell deposition (Wilbur and Simkiss, 1972)] are 1) direct internalization 

from the surrounding sea water or 2) feeding (Crenshaw, 1980).  Though many studies 

concentrate on associations between the concentration of elements in seawater and the 

concentrations of those elements in the calcium carbonate shells of marine bivalves, 

little is known about the contribution of diet to elemental shell chemistry.   

 Ho et al. (2003) presented analysis of the cellular content of 15 phytoplankton 

species with regard to C, N, P, S, K, Mg, Ca, Sr, Fe, Mn, Zn, Cu, Co, Cd and Mo. In 

general, their study found that K concentrations are higher than seawater and Mg lower, 

except in the case of diatoms, where Mg and K are both relatively high. Ho et al. (2003) 

also repeated that the major nutrients C, N, P, S are variable with the average quotas of 

the organic biomass being similar to that of Redfield et al. (1963); and that the trace 

metals following the general pattern of Fe>Mn>Zn>Cu>Co=Cd>Mo. The 

coccolithophores examined by Ho et al. (2003) had higher Mn, Co, and Cd quotas 

compared to the diatoms; this was explained by the possible difference between metal 

requirements of oceanic (the coccolithophores) and neritic species (the diatoms).  The 
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oceanic diatom examined, however, had low Fe, Mn, and Cu quotas and higher Co and 

Cd quotas compared to the coastal diatoms analyzed, thus lending support to the 

researcher’s interpretation.   

 Besides the elemental content differences among algal taxonomic classes, 

researchers (e.g., Brown et al., 1997) have demonstrated varied nutritional value and 

biochemical composition of specific algae with regard to vitamin, amino acid, sugar, 

protein, and carbohydrate content, which may have implications for selective feeding 

upon certain algal classes.  Bivalves such as the eastern oyster, Crassostrea virginica, 

select food particles based upon size, shape, concentration (Ward and Shumway, 2004) 

and biochemical composition, as demonstrated in the black lipped oyster (Brown et al., 

1996).   

 Assimilation of material from ingested food particles is directly related to the food 

itself, i.e., size, biochemical composition, quantity and cell wall (Reinfelder and Fisher, 

1991; Bayne, 1993). Furthermore, the partitioning of an element within an algal cell has 

been directly related to assimilation efficiencies of specific elements studied in Mytilus 

edulis shells and soft tissues (Wang and Fisher, 1996).  Because some elements are 

more readily available for assimilation from certain algal cells than from others, selective 

feeding could potentially limit the elements internalized, providing for a mechanism of 

diet-associated elemental shell signatures related to the ecology of the organism and 

the specific cells being ingested. 

 The present research is a first look at the potential for variable elemental 

concentrations in the shell of Argopecten irradians concentricus due to differential diets 

provided in an aquacultural setting. The bay scallop, Argopecten irradians concentricus, 
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is a relatively fast growing hermaphroditic, filter-feeding bivalve with an average life 

span of 18 months. The shell consists of three layers: an inner and outer calcitic foliated 

layer, and a middle aragonitic crossed lamellar layer (Kennedy et al., 1969). Due to the 

short life span, the bay scallop is not considered an ideal experimental animal for long-

term environmental association; however, the rapid growth rate and shell composed of 

both aragonite and calcite make the bay scallop a good specimen for exploratory 

research related to feeding dynamics. 

 

Materials and Methods 

Algal cultures 

 Six months prior to the start of the feeding trials, selected phytoplankton cultures 

were procured from Provasalli - Guillard Culture Center for Marine Phytoplankton 

[Pavlova lutheri (CCMP 1325)(Pl) and Tetraselmis sp. (CCMP 963)(Ttm)] or from Bay 

Shellfish Aquaculture [Chaetoceros mulleri (Cm) and Isochrysis galbana (TI)]. All 

cultures were acclimated to laboratory conditions for 48 hours prior to transfer to 150 ml 

sterile sea water for use as experimental stock cultures.  

 Stock and feeder cultures were maintained in a separate enclosure within the 

hatchery. Temperature was maintained at 220 C. Both standard and full spectrum 

fluorescent lights were used for illumination. 

 

Specimen rearing and maintenance 

 Six adult bay scallops, Argopecten irradians concentricus, were spawned using 

thermal induction. Three million fertilized eggs were collected and placed in a 500L tank 
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with a heat source and filtered air supply. The resultant larvae were held in the same 

tank for 48 hours before the first water change occurred. 

 Water was obtained from two 800 L settling tanks filled with water pumped from 

Tampa Bay and filtered using a sand filter, a diatomaceous earth filter, and two charcoal 

filters. The water pumped to the laboratory was further treated with an ultraviolet 

sterilizing unit and filtered a final time through a 1 µm sock filter.  The day prior to a 

water change, an alternate 500L tank was filled and fitted with a heat source and filtered 

air supply.  The larval tanks were maintained at 26OC and salinity of 30±2. 

 The water was changed every other day. The larvae were retained on a 35 µm 

sieve for the first two water changes and a 75 µm sieve for the remainder of the larval 

stage. The larvae were transferred to the alternate rearing tank immediately at which 

time they received the first of four daily feedings (a mixture of algal species composed 

of Isochrysis galbana, Pavlova lutheri, and Chaetoceros mulleri in a 2:2:1 ratio).  After 

the animals were transferred, the drained tanks were cleaned using a dilute glacial 

acetic acid solution, rinsed with tap water, cleaned again with a mild Alconox solution, 

and rinsed with Reverse Osmosis water. The tank was allowed to dry for 24 hours 

before being filled with bay water. 

 Once 1% of the larvae were at pediveliger stage, five clumps of faux grass made 

by bundling strips of black plastic were added for settling substrate. The water change 

methodology altered such that only 50% of the water was replaced every other day.  

This procedure was followed until the post-set scallops were 450 µm in size (Lu and 

Blake, 1999). 
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Feeding experiment 

 Scallops attaining 450 µm (shell height) were randomly collected, divided into five 

groups of 150, then further divided into groups of fifty to provide three replicate 

experimental groups for each of the five treatments. Each group was placed into a 22L 

tank with a heat source and filtered air supply. The same temperature and salinity 

parameters used during the rearing process were used during the experiment. 

 Each experimental group of scallops was treated identically except for diet 

received. Each of four groups received only one of the following algal species for 

nutritional supplement: Isochrysis galbana, Pavlova lutheri, Chaetoceros mulleri, or 

Tetraselmis sp. The fifth group was fed the same mixed diet received during the larval 

phase (Isochrysis galbana, Pavlova lutheri, and Chaetoceros mulleri in a 2:2:1 ratio).   

 All algal cultures used for feeding experiments were allowed to grow until a 

concentration of 4x106 cells ml-1 was attained. Each treatment received a feeding of 

1x105 cells ml-1 per day for the first two days. Subsequently, the daily ration was 

increased by 10,000 cells per milliliter per day every two days.  Using these guidelines, 

a volumetric measure of algae to be fed daily was determined and divided into three or 

four doses spread equally throughout the day. 

 The feeding experiment was terminated after thirty days.  All living animals were 

collected, the valves separated and the tissue excised by use of a stainless steel 

scalpel.  Each shell was then rinsed in RO water and lightly brushed to remove foreign 

organic matter. Up to thirty left valves per feeding group were then placed in sealed 

glass vials for elemental analysis by Inductively Coupled Plasma Optical Emission 
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Spectroscopy (ICP-OES) and for inspection by Energy Dispersive X-ray Spectroscopy 

(EDS x-ray analysis). 

 

SEM microanalysis 

 A Hitachi 2000® scanning electron microscope with a Sun System electron 

dispersion system attachment was utilized for the x-ray analysis. Five valves from each 

of the five feeding groups were used for the EDS portion of the research. The clean and 

dried valves were adhered to carbon stubs such that the umbo of each valve faced in 

the same direction and the inner shell surface came into contact with the carbon tape.  

This orientation helped to minimize shadowing affects as well as time needed for the 

analysis. 

 The SEM was set for variable pressure imaging and the vacuum set for 25 Pa.  A 

magnification of 60X was used with a 12.3 mm working distance. No aperture was 

utilized and both 5 KV and 15 KV beams were used on each valve with an initial x-ray 

time of 200 seconds. 

 Each valve was inspected point by point in five different regions along the leading 

marginal edge and at a sixth point at the umbo. All x-ray times were adjusted depending 

upon count rate acquired to make sure all data collected were comparable. The results 

of this procedure were utilized to calibrate the ICP unit based on the general detection 

limits of the EDS system and peaks present in the analysis. 
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ICP-OES 

 Centrifuge tubes, 15 ml, were cleaned by soaking in hot 2% trace pure nitric acid.  

After approximately 15 minutes, the tubes were removed from the cleaning solution and 

dried. Caps were placed on the tubes and the outside of the tube rinsed with MilliQ 

water to remove any acid residue from the handling surface. 

 The remaining valves from each feeding group were pooled into one sample per 

treatment per replicate. Each grouping was rinsed one more time in MilliQ water and 

then ground before being placed in the clean 15 ml centrifuge tubes and digested in 4 

mls of 4% trace pure nitric acid after the methodology of He and Mai (2001). The 

inductively coupled plasma optical emission spectroscopy unit was calibrated for the 

inspection of a full sweep of trace elements, set for a linear fit, and run with a blank of 

4% trace-pure nitric acid between every sample. Table 2.1 provides the detection and 

quantitation limits of the ICP-OES equipment used. 

 The resulting concentration measures from the inductively couple plasma optical 

emission spectroscope analyses were corrected using the determined dilution factors 

(mass of solute/ {mass of solute + mass of solvent}). The data were further transformed 

into element: calcium ratios.    

 

Results 

Survivorship 

 The highest survivorship was found in juvenile scallops fed the mixed diet and 

the Pavlova pinguis diet (96% and 98% respectively), as compared to the Pavlova 

lutheri and Isochrysis galbana with 84% and 88% respectively (Figure 2.1). The lowest 
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survivorships observed were the Chaetoceros mulleri (52%) and the Tetraselmis sp. 

(10%) feeding groups. 

 

Table 2.1:  Available Lines, Limits of Quantitation (LOQ), and Minimum Detection Limits (MDL) for the 
USF Paleoclimatology, Paleoceanography Biogeochemistry Laboratory - Perkin-Elmer 4300 DV ICP-OES 
element   λ(nm) LOQ* (ppb)  MDL** (ppb) element   λ(nm) LOQ* (ppb)  MDL** (ppb) 

    06/25/04 06/25/04     06/25/04 06/25/04 

    Axial View  Axial View     Axial View  Axial View 

Ag  328.068 1.57 0.47 Mg  280.271 0.68 0.2 

Al  396.153 5.35 1.6 Mg  285.213 1.21 0.36 

As  188.979 95.76 28.73 Mn  257.61 0.16 0.05 

B  249.677 16.6 4.98 Mo  202.031 8.81 2.64 

Ba  233.527 0.63 0.19 Na  589.592 3.53 1.06 

Be  313.107 0.25 0.08 Ni  231.604 2.79 0.84 

Ca  315.887 19.56 5.87 P  213.617 56.21 16.86 

Ca  317.933 4.44 1.33 Pb  220.353 13.08 3.92 

Ca  422.673 2.21 0.66 Sb 206.836 46.45 13.93 

Cd  228.802 1.94 0.58 Sc  361.383 0.16 0.05 

Co  228.616 1.57 0.47 Se 196.026 150.12 45.04 

Cr  267.716 0.54 0.16 Si  251.611 8.51 2.55 

Cu  327.393 1.75 0.52 Sn  189.927 - - 

Fe  238.204 1.17 0.35 Sr  407.771 0.03 0.01 

Hg  253.652 31.98 9.59 Sr  421.552 0.04 0.01 

K  766.49 1.29 0.39 Ti  334.94 0.26 0.08 

Li  670.784 0.07 0.02 Tl  190.801 54.62 16.39 

Mg  279.077 4.2 1.26 V  290.88 0.81 0.24 

Mg  279.553 0.38 0.11 Zn  206.2 6.59 1.98 
* - Limit of Quantitation, 10s of reagent blank, n=20 
** - Minimum Detection Limit, 3s of reagent blank, n=20 
 

Growth 

The highest growth rates were observed in scallops fed the mixed diet (control) and the 

Pavlova pinguis diet (Figure 2.2).  On average, the specimens fed the mixed algal diet 

grew 110 µm per day while the scallops fed Pavlova pinguis grew on average 103 µm 

per day.  The slowest growth rate observed was for scallops fed the Tetraselmis sp. at 
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52 µm per day. The growth rates on remaining diets were intermediate with the 

Chaetoceros-fed group growing on average 86 µm per day, Pavlova lutheri-fed scallops 

at 79 µm per day, and the Isochrysis-fed scallops 82 µm per day. 

 

  

Figure 2.1: Percent survival of Argopecten irradians concentricus by diet received. 
   

  
Figure 2.2: Growth rate (micrometers per day) of Argopecten irradians concentricus by diet received. 
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Elemental analysis (ICP-OES) 

 Complications during the analysis of the shell samples by Inductively Coupled 

Plasma Optical Emission Spectroscopy, greater than expected mortality in some of the 

feeding groups and variable valve mass restricted the available sample size to just two 

replicates.  Figures 2.3 – 2.10 provide the element/calcium ratios for the scallop shell 

pools analyzed for the left and right valves, respectively, from feeding trials 1 and 3.  

Those elements originally included in the analysis but not reported were below the 

detection limits of the ICP-OES for all diets in both trials as were the values missing in 

the presented figures. The variability between the trials and valves is large for the 

majority of the element ratios examined.  Differences in Fe/Ca (Figure 2.4), K/Ca 

(Figure 2.5), and Mg/Ca (Figure 2.6) are apparently influenced by diet.  Due, impart, to 

the high variability, no trends are evident in the other elemental ratios amongst the 

diets. 

 

Left versus right valve 

The different valves were compared regardless of diet to provide a generalized 

comparison of the composition of the left and right valves of the bay scallop. All valve 

groups were analyzed by element/Ca ratio and the results are provided in Tables 2.2 

and 2.3.  The test used was based on the properties of the individual data sets.  None of 

the elemental ratios were significantly different between the two valves. 
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Figure 2.3: Si/Ca in pooled scallop shells by diet received. 1) Mixed algal diet, 2) Chaetoceros mulleri diet 
(Cm), 3) Isochrysis galbana diet (Ti), 4) Pavlova pinguis (Pp), 5) Pavlova lutheri diet (Pl), 6) Tetraselmis 
diet (Ttm).   
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Figure 2.4: Fe/Ca in pooled scallop shells by diet received.  1) Mixed algal diet, 2) Chaetoceros mulleri 
diet (Cm), 3) Isochrysis galbana diet (Ti), 4) Pavlova pinguis (Pp), 5) Pavlova lutheri diet (Pl), 6) 
Tetraselmis diet (Ttm).   
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Figure 2.5: K/Ca in pooled scallop shells by diet received.  1) Mixed algal diet, 2) Chaetoceros mulleri diet 
(Cm), 3) Isochrysis galbana diet (Ti), 4) Pavlova pinguis (Pp), 5) Pavlova lutheri diet (Pl), 6) Tetraselmis 
diet (Ttm).   
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Figure 2.6: Mg/Ca in pooled scallop shells by diet received.  1) Mixed algal diet, 2) Chaetoceros mulleri 
diet (Cm), 3) Isochrysis galbana diet (Ti), 4) Pavlova pinguis (Pp), 5) Pavlova lutheri diet (Pl), 6) 
Tetraselmis diet (Ttm).   
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Figure 2.7: Cu/Ca in pooled scallop shells by diet received.  1) Mixed algal diet, 2) Chaetoceros mulleri 
diet (Cm), 3) Isochrysis galbana diet (Ti), 4) Pavlova pinguis (Pp), 5) Pavlova lutheri diet (Pl), 6) 
Tetraselmis diet (Ttm).   
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Figure 2.8: Mn/Ca in pooled scallop shells by diet received.  1) Mixed algal diet, 2) Chaetoceros mulleri 
diet (Cm), 3) Isochrysis galbana diet (Ti), 4) Pavlova pinguis (Pp), 5) Pavlova lutheri diet (Pl), 6) 
Tetraselmis diet (Ttm).   
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Figure 2.9: P/Ca in pooled scallop shells by diet received.  1) Mixed algal diet, 2) Chaetoceros mulleri diet 
(Cm), 3) Isochrysis galbana diet (Ti), 4) Pavlova pinguis (Pp), 5) Pavlova lutheri diet (Pl), 6) Tetraselmis 
diet (Ttm).   
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Figure 2.10: Cd/Ca in pooled scallop shells by diet received.  1) Mixed algal diet, 2) Chaetoceros mulleri 
diet (Cm), 3) Isochrysis galbana diet (Ti), 4) Pavlova pinguis (Pp), 5) Pavlova lutheri diet (Pl), 6) 
Tetraselmis diet (Ttm). 
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Differences in elemental composition by diet received 

 Because the left and right valves were determined not to be significantly 

different in regard to elemental composition, both valve pools per trial were analyzed 

together to increase the overall sample size sufficiently for statistical comparison.  Two 

elemental ratios proved to be significantly different between various experimental diets, 

K/Ca and Mg/Ca.  The results of the ANOVAs and post hoc pairwise analyses are 

provided in Tables 2.4 – 2.7, and shown in Figures 2.11 and 2.12. 

 

 

Table 2.2: Mann-Whitney Rank Sum Test– scallop left versus right valve pools by element 
Group N Missing Median 25% 75% 

Si/Ca-L 12 3 1.40E-05 9.92E-06 3.08E-05 

Si/Ca-R 12 3 1.34E-05 1.03E-05 2.65E-05 

Mann-Whitney U Statistic= 42.000 

T = 84.000  n(small)= 9  n(big)= 9  (P = 0.930) 

Fe/Ca-L 12 3 6.01E-05 4.72E-05 1.40E-04 

Fe/Ca-R 12 3 5.82E-05 5.03E-05 1.13E-04 

Mann-Whitney U Statistic= 39.000 

T = 87.000  n(small)= 9  n(big)= 9  (P = 0.930) 

Mg/Ca-L 12 3 8.61E-03 8.09E-03 8.99E-03 

Mg/Ca-R 12 3 8.81E-03 8.18E-03 9.27E-03 

Mann-Whitney U Statistic= 46.000 

T = 80.000  n(small)= 9  n(big)= 9  (P = 0.659) 

Cu/Ca-L 6 2 1.08E-03 7.14E-04 1.28E-03 

Cu/Ca-R 6 2 8.87E-04 7.01E-04 1.00E-01 

Mann-Whitney U Statistic= 7.000 

T = 19.000  n(small)= 4  n(big)= 4  P(est.)= 0.885  P(exact)= 0.886 

Mn/Ca-L 6 2 1.08E-03 8.04E-04 1.25E-03 

Mn/Ca-R 6 2 9.21E-04 7.98E-04 9.04E-02 

Mann-Whitney U Statistic= 7.000 

T = 19.000  n(small)= 4  n(big)= 4  P(est.)= 0.885  P(exact)= 0.886 

Cd/Ca-L 6 2 9.56E-04 6.35E-04 1.14E-03 

Cd/Ca-R 6 2 7.82E-04 6.21E-04 8.84E-02 

Mann-Whitney U Statistic= 7.000 

T = 19.000  n(small)= 4  n(big)= 4  P(est.)= 0.885  P(exact)= 0.886 
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Table 2.3: t-test – scallop left versus right valve pools by element 
Group Name N Missing Mean Std Dev SEM 

K/Ca-R 12 3 8.08E-04 2.93E-04 9.77E-05 

K/Ca-L 12 3 6.88E-04 2.33E-04 7.75E-05 

Difference 0.00012 
t = 0.962 with 16 degrees of freedom. (P = 0.350) 

95 percent confidence interval for difference of means: -0.000144 to 0.000384 

Group Name N Missing Mean Std Dev SEM 

P/Ca-L 12 3 1.80E-03 3.04E-04 1.01E-04 

P/Ca-R 12 3 1.83E-03 2.28E-04 7.59E-05 

Difference -0.0000226 

t = -0.178 with 16 degrees of freedom. (P = 0.861) 

95 percent confidence interval for difference of means: -0.000291 to 0.000246 

  

The potassium ratio differed significantly between the Pavlova pinguis and Mixed 

diets, the Pavlova pinguis and Pavlova lutheri diets and the Isochrysis galbana and 

Mixed diets, establishing Pp > Mixed, Pp > Pl, and Ti > Mixed (Table 2.5).  The 

magnesium ratio differed significantly between the Mixed diet and all the analyzed 

single algal species diets establishing Mixed > Cm, Ti, Pp, and Pl (Table 2.7). 

 

Discussion 

The Mixed algal diet produced the fastest growth rates and the second highest 

survivorship of juvenile bay scallops.  The animals receiving the Pavlova lutheri and 

Isochrysis galbana both had similar survival rates as well as similar growth rates.  The 

Pavlova pinguis and Chaetoceros mulleri diets did, however, deviate from the effect of 

the other single algal diets.  Pavlova pinguis was associated with the highest 

survivorship and the second highest growth rate, thus was more similar to the mixed 
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diet.  The Chaetoceros mulleri fed group had similar growth rates to Pavlova lutheri and 

Isochrysis galbana, but a low survivorship. 

In general, diets composed of multiple algal species are superior to those 

composed of single algal species (Romberger and Epifanio, 1981; Albentosa et al., 

1993; Brown et al., 1997) and the present study supports that trend.  Diatoms, however, 

have been shown to be rich in fatty acids and support healthy growth rates and survival 

of cultured Argopecten irradians (Milke et al., 2006). In the present study, the initial size 

of the scallops used may have affected ingestion of the C. mulleri and thus their growth 

rate and survival. 

 

  

Figure 2.11:    K/Ca versus diet received.  The mean values for each of the diets are provided with the 
standard deviations. 
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Table 2.4: Results for analysis of variance of scallop valve pool K/Ca by diet. 
Group Name N Missing Mean Std Dev SEM 

Mixed 5 1 4.73E-04 1.13E-04 5.67E-05 

Cm 5 2 7.25E-04 1.62E-04 9.38E-05 

Ti 5 2 8.75E-04 1.16E-04 6.71E-05 

Pp 5 1 1.07E-03 2.59E-04 1.30E-04 

Pl 5 1 6.18E-04 8.37E-05 4.19E-05 

Source of Variation DF SS MS F P 

Between Groups 4 8.45E-07 0.000000211 8.059 0.002 

Residual 13 3.41E-07 2.62E-08 
  

Total 17 1.19E-06 
    

Table 2.5: Results of pairwise comparison (Holm-Sidak method) of scallop valve pool K/Ca by diet. 
Overall significance level = 0.05 

Comparison Diff of Means t Unadjusted P Critical Level Significant? 

Pp vs. Mixed 0.000601 5.248 0.000157 0.005 Yes 

Pp vs. Pl 0.000456 3.985 0.00155 0.006 Yes 

Ti vs. Mixed 0.000402 3.249 0.00634 0.006 Yes 

Pp vs. Cm 0.000349 2.82 0.0145 0.007 No 

Ti vs. Pl 0.000257 2.079 0.0579 0.009 No 

Cm vs. Mixed 0.000252 2.039 0.0623 0.01 No 

Pp vs. Ti 0.000199 1.61 0.131 0.013 No 

Pl vs. Mixed 0.000145 1.263 0.229 0.017 No 

Ti vs. Cm 0.00015 1.132 0.278 0.025 No 

Cm vs. Pl 0.000108 0.87 0.4 0.05 No 

 

The results of elemental analysis of the scallop valves were highly variable.  

Each trial and valve pool produced inconsistent trends for most all of the elements 

examined. Though the random design of the experiment potentially increased the 

differences reported between the left and right valves, the observed variability within 

each treatment was larger than anticipated.  This, however, was similar to previous 

results with cultured bivalves (Carriker, 1996; Strasser et al., 2008).  This consistent 

problem with cultured specimens complicates analysis and evaluation of elemental 
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trends in the shell, especially when attempting calibration-type experiments in the 

laboratory. 

 

  

Figure 2.12:  Mg/Ca versus diet received.  The mean values for each of the diets are provided with the 
standard deviations. 

 

Table 2.6: Results for analysis of variance of scallop valve pool Mg/Ca by diet. 
Group Name N Missing Mean Std Dev SEM 

Mix 5 1 1.03E-02 3.37E-04 1.69E-04 

Cm 5 2 8.65E-03 1.79E-04 1.03E-04 

Ti 5 2 8.47E-03 5.95E-04 3.44E-04 

Pp 5 1 8.02E-03 2.52E-04 1.26E-04 

Pl 5 1 8.50E-03 4.59E-04 2.30E-04 

Source of Variation DF SS MS F P 

Between Groups 4 0.0000119 0.00000297 19.892 <0.001 

Residual 13 1.94E-06 0.000000149 
  

Total 17 0.0000138 
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Table 2.7: Results of pairwise comparison (Holm-Sidak method) of scallop valve pool Mg/Ca by diet 
Overall significance level = 0.05 

Comparison Diff of Means t Unadjusted P Critical Level Significant? 

Mix vs. Pp 0.00225 8.244 0.00000161 0.005 Yes 

Mix vs. Pl 0.00177 6.493 0.0000203 0.006 Yes 

Mix vs. Ti 0.00181 6.128 0.0000361 0.006 Yes 

Mix vs. Cm 0.00163 5.511 0.0001 0.007 Yes 

Cm vs. Pp 0.000626 2.122 0.0536 0.009 No 

Pl vs. Pp 0.000478 1.751 0.103 0.01 No 

Ti vs. Pp 0.000444 1.505 0.156 0.013 No 

Cm vs. Ti 0.000182 0.577 0.574 0.017 No 

Cm vs. Pl 0.000148 0.5 0.625 0.025 No 

Pl vs. Ti 0.0000344 0.117 0.909 0.05 No 
 

  The initial hypothesis was that elemental incorporation should be significantly 

different based on diet, following the findings of Ho et al. (2003).  The Mn/Ca, Cd/Ca, 

and Co/Ca ratios were expectd to differ between valves of scallops fed the the 

Coscinodiscophyceae (diatom) diet and the Prymnesiophycea (Ti, Pp, and Pl) diets, 

while Fe/Ca, Zn/Ca, and Cu/Ca were hypothesized to be most influenced by the 

Tetraselmis diet.  The lack of data related to the Tetraselmis diet (high mortality 

restricting sample size and elemental concentrations below detection limits) prevented 

any examination of the elemental contribution to the shell.  Evidence for influence of 

Mn/Ca, Cd/Ca/ and Co/Ca on the shells of the scallops fed Chaetocerous, Pavlova or 

Isochrysis was also inhibited by the inconsistency in the reults across trials and diets.  

The data sets related to the other elements were restricted in size by the lack of 

analytical results for trial 2. 

 To examine the overall differences in the elemental ratios between the left and 

right valves, the element/Ca ratio was examined regardless the diet received.  Either a 

Mann-Whitney test or a standard T-Test was used to determine any difference between 
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the right and left valve relevant to the elemental ratios.   All analyses indicated no 

significant differences in any of the elemental ratios compared to valve orientation.  

After probe analysis of the valves of the eastern oyster, Carriker et al. (1996) noted an 

increased concentration of most elements in the right valves examined and surmised 

the differences to be the result of structural differences,  pigmentation, or mode of 

elemental incorporation (incorporation from bathing solution or transport to extrapallial 

fluid through tissues).  The present research used element/Ca normalization, thus 

results are not fully comparable with the mentioned oyster study.  Also, the left and right 

valves were selected randomly in the present study, meaning the left and right valves 

analyzed were not necessarily from the same scallops.  Due to the combination of the 

different diet groups, the random selection of the valves, and pooled analysis groups; 

the examination of left and right valve differences is more a determinant of average 

experimental population dynamics related to elemental composition versus a direct 

comparison of left and right valves.  As such, further experimentation is needed to 

formulate conclusive statements as to 1) right and left valve similarity, 2) whether 

differences noted in previous research compared to the present research are due to the 

comparison of an inequivalved bivalve and a more equivalved bivalve, or differences in 

analytical procedure, and 3) increased dissimilarity as a result of specific diets and 

metabolic effects.  

Because the analyses of the left and right valves did not reveal any significant 

differences in the present study, both left and right valve pools were used in the 

analyses to determine differences among diets with respect to elemental shell 

composition.  The increased sample size allowed for statistical analysis using a One 
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Way ANOVA and post hoc Holmes-Sidak method.  Two elemental ratios were found to 

differ significantly between specific treatments: Mg/Ca and K/Ca. 

 Magnesium has been proposed to fluctuate with temperature in certain species 

of bivalve (Rucker and Valentine, 1961; Dodd, 1965; Rosenburg, 1980); though, more 

recent research suggests temperature and salinity have minor to no influence on Mg/Ca 

in other bivalve species (Carre et al., 2006; Strasser et al., 2008). In Crassostrea 

virginica (Carriker, 1996) and certain gastropods (Foster and Cravo, 2003), Mg has 

been shown to increase with size and through ontogeny.  To eliminate two previously 

suggested influences on Mg/Ca, salinity and temperature were held constant during my 

experiments.  The analyses revealed Mg/Ca for the Mixed diet was higher than all other 

diets tested.  Ho et al. (2003) suggests that of the five taxonomic classes of algae 

examined in their study, diatoms had the largest Mg/P quota while the others were 

mostly similar. This trend was not evident in my study.  The fact that the Mixed algal diet 

was the only diet to differ significantly from the other treatments further confounds the 

possibility that diet was directly responsible for the difference. As previously mentioned, 

Carriker (1996) suggested a relationship between size and Mg in the shell of 

Crassostrea virginica.  Another study, Carre et al. (2006), has suggested a correlation 

between calcification rate and Mg/Ca. The present study does more closely support a 

correlation between Mg/Ca and growth rate or size. The Mg/Ca value for the Pp diet, 

however, is not consistent with this conclusion. 

Carriker et al. (1996) concluded that differences in the potassium concentrations 

observed were possibly from ingestion of sedimentary particles containing potassium, 

though specific examination of the algal cells being ingested was not included. In the 
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present study, no sediments were added to any of the tanks as was done in Carriker et 

al. (1996) and water was treated in the same manner.  The sole difference between 

experimental groups was the diet received, thus indicating an indirect biologic effect or a 

direct relationship with the algae ingested. Visually, it would appear that the Pp diet was 

correlated with the highest K/Ca; however, the only statistical differences were between 

the Pp and Mixed diets, the Pp and Pl diets, and the Ti and Mixed diets.  The findings of 

Ho et al. (2003) suggested K is in higher concentration in algal cells than in seawater 

and that diatoms have a much higher K quota than the other algal classes examined.  

These finding are not fully translated to the shells of the bay scallops in the present 

study.  There is no significant difference between any of the single algal taxonomic diets 

as related to K/Ca other than Pp vs. Pl. The finding that the mixed diet shells contain 

less K as compared to Ca than Pp or Ti diets cannot be explained by growth rates, but 

the lower K/Ca as compared to the other diets might be due to the decreased influence 

of any single algal species.  The most notable difference in K/Ca between diets was the 

comparison of the Pp and Pl diets, as this suggests a difference between algal species 

and not just algal classes though growth conditions and where the culture isolate was 

derived could play a role in these differences as identified in Ho et al. (2003).    

 

Conclusion 

 Much research has been aimed at elucidating trends that apply to 

paleothermometry, environmental conditions, or ecological conditions. Most 

methodologies that have compared a laboratory setting with natural conditions, 

however, have failed to directly address diet as a factor in elemental enrichment. The 
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results of the present research support the possibility that diet can contribute to the 

elemental composition of the shell of Argopecten irradians concentricus.  Furthermore, 

algal species may contribute differently to shell composition. The actual mechanism, 

however, is uncertain and seemingly element specific.  Clearly research is needed to 

distinguish biologic influences, including diet, to determine the dominant influences of 

elemental composition of shells and relationship with bivalve ecology and culture. 
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3.  Elemental composition differences in the valves of juvenile Mercenaria 

mercenaria fed unique algal diets: implications for ecological patterns as well as 

for rearing bivalves for laboratory experiments and aquaculture 

 

Introduction 

 The incorporation of elements into biominerals, including the shells of bivalves, is 

influenced by both geochemical and biological factors (Schone, 2008), but which 

elements and in what concentration are most often attributed to the physiochemistry of 

the surrounding water (Gillikin et al., 2006). Temperature or salinity are commonly 

assumed to influence shell chemistry, especially with respect to magnesium (Milliman, 

1974; Putten et al., 2000), strontium (Dodd, 1965), manganese (Crisp, 1975), and 

barium (Dorval, 2007).  Recently, however, researchers have begun to focus their 

attention towards mechanisms and pathways of incorporation of these elements. New 

research and experimental designs continue to elucidate those elements that are more 

likely influenced by environmental dynamics and those more biologically controlled, and 

thus, not dependable as environmental proxies (Stecher et al., 1996; Freitas et al., 

2006). 

 In an assessment of element ratios between the digestive gland and gill tissues 

of Laternula elliptica, Poigner et al. (2012) suggested that assimilation of Al, Ca, Fe, K, 

Mn, and Mg is predominantly from the dissolved phase while elements such as Cd, Cu, 
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and Sr are assimilated through digestion of particulates.  In another study, incorporation 

of Ba and Mo into the shells of Pecten maximus were examined with the conclusion that 

Ba enrichment was due to direct incorporation of dissolved Ba in proportion to the levels 

present in seawater while Mo enrichment was most likely associated with trophic uptake 

(Tabouret et al., 2012).  Interestingly, the enrichment of Ba in scallop shells was 

delayed compared to maximum concentrations of the element in surrounding sea water 

which agreed with observations made by Stecher and Kogut (1999) and Ganeshram et 

al. (2003) that suggested dissolved Ba increased following specific algal blooms.  

Tabouret et al. (2012) postulated the increased concentration of dissolved Ba 

subsequent to algal blooms increased bioavailability which ultimately influenced 

incorporation into bivalve shells. 

 Based on the results of the previous chapter and conclusions of Carre et al. 

(2006), Strasser et al. (2006), Jenkins (2007), Strasser et al. (2008) and others, I 

postulated that the factors contributing to differences in elemental shell chemistry of 

Argopecten irradians fed unique diets was most likely associated with differences in 

growth rates caused by nutritional variation, time/ontogenetic factors, health/metabolic 

changes, or direct incorporation of elements associated with the diet received. I 

concluded that the difference in Mg/Ca was most evidently associated with growth rate, 

though confounded by other biological factors, while K/Ca was more directly influenced 

by the algal diet. The actual mechanisms, however, were uncertain and seemingly 

element specific.   

  The research presented in this chapter was designed to examine the influence of 

diet on the elemental shell chemistry of the hard shell clam, Mercenaria mercenaria.  
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This clam is a dioecious, filter-feeding, slower growing bivalve with an average life span 

of four to eight years (when considering fishing pressure/harvest),  an estimated natural 

life span around 46 years (Peterson and Fegely, 1986), and suggested to have a 

potential maximum life span of at least 106 years (Ridgway et al., 2011).  The shell of 

M. mercenaria is also composed of three distinct layers: an outer prismatic layer and a 

middle and inner homogenous layer (Panella and Mac Clintock, 1968). All three shell 

layers of the hard shell clam are aragonitic.   

 The results will be used to analyze differences in the elemental shell chemistry of 

clams fed diets of specific single algal species as well as clams fed a mixture of single 

algal species and starved individuals.  The overall findings will be used to further 

determine the role diet plays in elemental shell chemistry of this marine bivalve. This 

work will aid in determining direct dietary influence on shell chemistry, species-specific 

effects and differences due to shell mineralogy, elemental composition change due to 

metabolic/health changes, growth-rate influence on shell chemistry, and the difference 

between left and right valves related to effects on the animal due to diet and associated 

biological factors. 

 

Materials and Methods 

Algae cultures 

 All species isolates were purchased from Provasalli - Guillard Culture Center for 

Marine Phytoplankton.  Isochrysis sp. (CCMP1324), Pavlova pinguis (CCMP609), and 

Chaetoceros mulleri (CCMP1316), Isochrysis sp. (CCMP1611), Pavlova sp. 

(CCMP1209), and Chaetoceros galvestonensis (CCMP186) cultures were received 
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several months prior to the initiation of the feeding trials to allow for proper acclimation 

periods, ensure that adequate starter and stock cultures were available, as well as to 

allow sufficient time to determine the health of all cultures.  

 All cultures were maintained within enclosures in the laboratory under the same 

conditions. Temperature was maintained at approximately 220 C and both standard and 

full spectrum fluorescent lights were used for illumination. The stock cultures were 

maintained in three volumes including test tubes, 200 ml flasks (150 ml cultures), and 2 

liter flasks (1500 ml culture) while feeding cultures were cultured in both 22 l K-Wall 

tubes and Carboys, with great care taken to ensure all feeding cultures were true 

monocultures.   

 

Spawning and rearing  
 
 Thirty adult Mercenaria mercenaria were spawned using a flow through water 

table and thermal induction at the Bay Shellfish Aquaculture facilities in Palmetto, FL.  

The resultant fertilized eggs were transferred to a heated, aerated 800 l tank and left for 

48 hours before the first water change and first feeding occurred. Similar to the scallop 

trials described in Chapter 2, an adjacent tank was prepared the day prior to ensure the 

temperature of the water and salinities were constant (280C and a salinity of 30+/- 2).  

After sieving the larvae, they were immediately placed into the other tank and received 

their first dose of food, which was a mix of Chaetoceros sp., Isochrysis sp., and Pavlova 

sp. The emptied tank was then cleaned using muriatic acid and Alconox, thoroughly 

rinsed, and filled with filtered, UV treated bay water. These changes occurred daily until 

metamorphosis of the clam larvae. 
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   After metamorphosis, the settled clams were moved to a partial recirculating 

system (new water was always filtered and UV treated), divided equally between 12 

downweller trays, and fed through continuous line systems with the same algal mixture 

received as larvae until they reached approximately 1-2 mm shell length.  At that time, 

the clams were moved to a brown-water system supplied by natural water pulled from 

Tampa Bay until they reached an average of 4 mm shell length. 

 

Feeding experiment 

 A subsample of the reared clams was sieved on a 4mm screen and all 

individuals retained were kept for the feeding trials and transferred to the Aquarium 

Laboratory at USF College of Marine Science.  The clams were volumetrically counted 

and divided among 8 separate 500 L tanks and acclimated to laboratory conditions for 

36 hrs. with no supplemental algae added. 

 Each of the tanks was fitted with a titanium heat source, two air lines, and a 

polyethylene mesh to suspend the clams from the bottom of the tank. Approximately 

500 M. mercenaria were placed in each tank. 

 An approximate 25-50% water change occurred every other day and feedings 

(approximately 100,000-317,000 cells/ml per feeding) occurred three - four times daily 

with the overall volume fed dependent upon cell concentration of the individual cultures. 

If algae cultures were volume restricted for feeding on a specific day, the feeding 

volume was adjusted for all feeding groups such that equivalent cell concentrations 

were received.  The feeding regimens were one of six single algal species diets - 

Isochrysis sp. (CCMP1324, TI), Pavlova pinguis (CCMP609, Pav609), Chaetoceros 
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mulleri (CCMP1316, Cm), Isochrysis sp. (CCMP1611, ISO) culture, Pavlova sp. 

(CCMP1209, Pav1209), or Chaetoceros galvestonensis (CCMP186, Cg) , as well as a 

mixed diet of all species in equal ratios (Mixed), or no food (starvation control, CTRL). 

 The water used for exchanges was pulled from Bayboro Harbor and filtered 

through a sand filter, two charcoal filters 10 micron sock filter and a five micron sock 

filter into two holding tanks fitted with a heat source and air supply (the DE filter used 

during the scallop experiments was eliminated to limit Si sources).  On a maintenance 

day, the water in the two tanks was cycled through a UV sterilization unit and a one 

micron sock filter prior to use in the laboratory. 

 Salinity and temperature measurements were taken from both the holding tanks 

and the experimental tanks so that adjustments in the volume of water exchanged could 

be made to maintain temperature and salinity in the experimental units (280C+/- 1 and a 

salinity of 30+/-2).  Each tank was siphoned to remove waste and the desired level of 

water. The tanks were then filled with the water passing again through the UV unit and 

another 1 micron sock filter.  On non-water change days, small siphon tubes were used 

to eliminate as much accumulated waste as possible without significantly affecting water 

volume and introducing inter-tank differences beyond experimental variables.  The first 

feeding occurred immediately following the water exchange or cleaning, with the 

remaining feedings spread as equally as possible through the day. 

 Once every two to three months, 25 individuals were randomly selected and 

removed from each of the tanks (January baseline collection, March, May, July, and 

October).  All valves were immediately separated and the tissue excised.  The valves 
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were then lightly brushed to remove debris, rinsed in distilled water, and dried before 

placing them individually in acid washed vials for storage until processed. 

 

ICP analysis 

 The left and right valves were isolated from each of the individuals collected for 

processing during the first two collections.  Each valve was individually measured and 

weighed on a micro scale, then quickly rinsed in a series of dishes – distilled water - 

0.01% nitric acid – distilled water – milliQ water.  After the shell was rinsed and dried, it 

was placed in an acid-cleaned vial and digested in approximately 4 ml of heated 5-6% 

trace-pure nitric acid.  This procedure was repeated for all valves collected during the 

first two collections.  The valves were then analyzed for silver (Ag), aluminum (Al), 

arsenic(As), barium (Ba), boron (B), beryllium (Be),   calcium (Ca), cadmium (Cd), 

cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), potassium (K), lithium (Li), 

magnesium (Mg), manganese (Mn), molybdenum (Mo), sodium (Na), nickel (Ni), 

phosphorous (P), lead (Pb), scandium (Sc), selenium (Se), silica (Si), tin (Sn), strontium 

(Sr), titanium (Ti), thallium (Tl), vanadium (V) and zinc (Z) using the ICP-OES with 

blanks of 5% trace-pure nitric acid inserted between the valve samples. The detection 

limits of the ICP unit used are provided in Table 2.1. 

 The preparation procedure was slightly modified for the third and final collections.  

Rates of dissolution of the shells was noticeably influenced by size, as larger shells 

caused clogging of the ICP tubes, therefore, the left valves were placed in a muffle 

furnace at 400 degrees over night after they had been cleaned.  The resultant ash was 

then reweighed and combined with the nitric acid in the vials for analysis.  The right 
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valves were immediately placed in air-tight containers following cleaning and drying for 

later experimental use.  

 

Statistical analysis 

 The results from the ICP-OES analysis were corrected using the established 

dilution factor per sample.  The resultant concentrations were then sorted and evaluated 

based on the Relative Standard Deviation values (RSD), detection limitations of the ICP 

equipment, and returns from the associated blanks.  All concentrations associated with 

RSD values greater than 10 were removed from the final data set.  A statistical analysis 

was performed to compare the final data set with the data set containing the removed 

values to evaluate bias.  The two data sets were not significantly different (P = 0.87) as 

a whole; as well, the concentrations per element were evaluated individually and found 

not to be significantly different except for zinc (P > 0.05).   

 The concentrations remaining in the final data set were transformed to 

element/calcium ratios for comparison. The element: calcium ratios were initially 

analyzed using one-way analysis of variance (ANOVA). However, due to the limitations 

of the data (normalization and variance); a Kruskal Wallis one-way ANOVA on ranks 

was employed. Dependent on the outcome of the ANOVA, further testing was 

performed using a post hoc multiple comparison procedure to assess the significant 

differences in shell chemistry between feeding groups.  This procedure was also 

followed to examine the differences between left and right valve chemistry followed by a 

T-test for each diet group. Further analysis was then employed using a Pearson 

Correlation and Regression Analysis to determine the association of the elemental 
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differences observed with diet as compared to valve length, valve mass, time, and 

elemental interactions.  

 

Results 

Growth 

 To minimize alterations in growth patterns due to handling and associated stress, 

shell-length measurement were only taken during the random sampling of the 

individuals for shell chemistry analysis.  As such, the length and mass measurements 

portray the size distribution of the clams examined subsequent to each collection and 

not the absolute growth rate of the different feeding groups.  All figures and tables 

subsequent to this description use median values to illustrate the trends discussed to 

remain consistent with statistical analyses performed and presented throughout. 

 The number of samples (n) does not represent all individuals originally collected; 

instead, the sample number is based on all individuals that were successfully analyzed 

during elemental analysis (ICP-OES) and used in subsequent statistical analyses 

reported herein.  For example, the minimum shell length observed in the baseline 

collection is 6 mm though individuals of 4-5mm were initially collected and assessed. 

Furthermore, the largest shells collected for the Mixed diet group are also not 

represented in the summaries or analyses.  

 As the baseline (January) collection occurred prior to the initiation of the feeding 

trials, each of the diet-specific statistics represent the March – October collections.  In 

addition, inclusion of right valve summary statistics only occurs for the baseline, March 
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and May collections due to experimental design and planned later use of the right 

valves collected during July and October. 

 An initial random subsample of clams was used to provide a baseline 

measurement with which all measurements taken during the experiment have been 

compared to determine changes over time related to the experimental variables. Thus, 

the changes in shell length and valve mass for each feeding group are compared to the 

same base line values.  Figure 3.1 depicts the median shell length of each feeding 

group by collection month.  As apparent from the figure, shell length per diet for each of 

the collections was variable and do not depict a consistent increasing trend for any of 

the treatments.   

 

 

Figure 3.1: Shell length versus time by diet received. 
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Table 3.1A: Median left valve length (mm) by diet and month collected. The January collection period is 
equivalent to the baseline measurement with each subsequent month an experimental collection.  
Length January March May July October 

CTRL 7.50 7.50 6.75 7.00 7.50 

TI 7.50 8.00 8.00 6.00 7.75 

ISO 7.50 8.50 11.50 7.50 10.00 

CG 7.50 6.50 8.00 8.00 11.00 

CM 7.50 9.00 8.50 8.25 12.00 

Pav(609) 7.50 9.00 11.50 7.00 9.25 

Pav(1209) 7.50 9.00 10.00 7.25 9.50 

Mixed 7.50 7.50 10.00 9.75 12.00 

 

Table 3.1B: Median right valve length (mm) by diet and month collected. The January collection period is 
equivalent to the baseline measurement with each subsequent month an experimental collection.  
Length January March May 

CTRL 7.50 7.50 6.75 

TI 7.50 8.00 8.00 

ISO 7.50 8.50 11.50 

CG 7.50 6.50 8.00 

CM 7.50 9.00 8.50 

Pav(609) 7.50 9.00 11.50 

Pav(1209) 7.50 9.00 10.00 

Mixed 7.50 7.50 10.00 

  

 The control group (CTRL) of starved clams (7.5 mm, 6.75 mm, 7.0 mm, and 

7.5mm) did not exceed the baseline shell length (7.5mm) during the experiment. The TI 

fed clams exhibited a slight increase in shell length above the base line in the first 

collection (8.0 mm vs. 7.5 mm); however, none of the following collections exhibited a 

further increase – the specimens collected in May, in fact, had a median shell length 

below base line (6.0 mm vs. 7.5 mm). Only the Mixed diet (7.5 mm, 10 mm, 9.75 mm, 

and 12 mm) and CM diet (9.0 mm, 8.5 mm, 8.25 mm, and 12 mm) resulted in clams 

consistently above the base line shell length (7.5 mm).  All remaining diet groups were 

variable in reference to baseline shell length, with at least one each whose median shell 
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length was equal to or below baseline.  Table 3.1A provides the median shell length 

values/measurements by diet per collection month for comparison while Table 3.1B 

illustrates the similarity of the right valve lengths for the first three collections. 

 The median mass of the left valves by diet over time are illustrated in Figure 3.2 

and presented in Table 3.2.  All diets with the exception of CG (2.41E-02 g) show an 

increased median mass over baseline (3.72E-02 g) during the March collection. The 

valve median mass of the control group is below baseline during the May collection.  In 

the July collection, the median valve mass for the control and TI fed groups were below 

that of the baseline group. In the October collection, the control group was again the 

only experimental group whose median valve mass was below that of the baseline while 

the other experimental groups valve mass followed the general pattern 

Mixed>CM>CG>ISO>Pav1209>Pav609>TI>Baseline. 

 

 

Figure 3.2: Median mass of the analyzed left valves by diet and month collected. 
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Table 3.2: Median mass (g) of the analyzed left valves by diet and month collected. 
Mass January March May July October 

Ctrl 0.0372 0.0397 0.0270 0.0263 0.0341 

TI 0.0372 0.0477 0.0411 0.0263 0.0539 

ISO 0.0372 0.0540 0.1180 0.0419 0.0903 

CG 0.0372 0.0241 0.0448 0.0479 0.1230 

CM 0.0372 0.0717 0.0455 0.0506 0.1650 

Pav(609) 0.0372 0.0617 0.0891 0.0414 0.0666 

Pav(1209) 0.0372 0.0688 0.0921 0.0400 0.0782 

Mixed 0.0372 0.0435 0.0831 0.0744 0.1730 
 

 The mass of the right valves collected and analyzed during the first two 

collections post- baseline measurements follow similar trends to that of the left valves 

collected during the same months.  The median mass of the right valves per diet and 

collection are depicted in Figure 3.3 and presented in Table 3.3.   

 

 

Figure 3.3: Median mass of the right valves by diet and month collected. 
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 Again, the median mass for each diet is above baseline except CG in the first 

collection.  The only median mass below baseline during the second collection was the 

control group with the remaining groups showing the general ranking of 

ISO>Pav1209>Mixed>Pav609>CM>CG>TI>Baseline. 

 

Table 3.3: Median mass (g) of the right valves by diet and month collected. 
Mass January March May 

Ctrl 0.0372 0.0386 0.0205 

TI 0.0372 0.0481 0.0409 

ISO 0.0372 0.0524 0.1210 

CG 0.0372 0.0254 0.0449 

CM 0.0372 0.0745 0.0454 

Pav(609) 0.0372 0.0621 0.0878 

Pav(1209) 0.0372 0.0720 0.0923 

Mixed 0.0372 0.0440 0.0893 
 

Shell length and valve mass by diet 

 The statistical analysis of the shell length measurements established that the 

collected valve composites for six of the experimental diets (Cm, Cg, Pav609, Pav1209, 

ISO, and Mixed) were significantly larger than the control group.  The total collections 

for both the Baseline valves and those for the TI fed group were not significantly 

different from the control group’s shell length. The shell length was not significantly 

different between any of the other diet comparisons, and importantly, no feeding group 

was significantly different from the baseline. There were, however, three comparisons 

which resulted in significant differences when all collected valves were included: Mixed 

vs. TI, Mixed vs. Baseline, and Cm vs. Baseline. Figures 3.4A and 3.4B illustrate the 

median shell length of the collected left and right valves, respectively, by treatment. 
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Tables 3.4A and 3.4B provide the summary of results for the statistical analyses 

performed. 
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Figure 3.4A: Median left valve length by treatment. 
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Figure 3.4B: Median right valve length by treatment. 
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Table 3.4A: Results for the Kruskal-Wallis analysis of shell length among diets. 
One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N Missing Median 25% 75% 

Baseline 14 1 7.50 7.00 8.00 

CTRL 61 1 7.00 6.50 7.50 

TI 57 1 7.50 6.25 8.50 

ISO 50 1 9.00 7.38 10.63 

Cg 59 1 8.50 7.00 10.00 

Cm 64 1 9.00 7.63 11.38 

Pav(609) 59 1 8.50 7.00 10.00 

Pav(1209) 54 1 9.00 7.00 9.50 

Mixed 68 1 10.00 7.00 12.00 

H = 75.9 with 8 degrees of freedom  (P = <0.001) 

 

Table 3.4B: Results for post hoc pair wise comparisons of shell length between diets. 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Mixed vs. CTRL 167.61 6.84 Yes 

Cm vs. CTRL 164.79 6.63 Yes 

ISO vs. CTRL 132.33 4.99 Yes 

Cg vs. CTRL 112.51 4.43 Yes 

Pav(609) vs. CTRL 111.67 4.40 Yes 

Pav(1209) vs. CTRL 104.07 4.01 Yes 

Mixed vs. Baseline 127.48 3.05 No 

Mixed vs. TI 120.38 4.82 No 

Mixed vs. Pav(1209) 63.54 2.51 No 

Mixed vs. Pav(609) 55.94 2.26 No 

Mixed vs. Cg 55.10 2.23 No 

Mixed vs. ISO 35.28 1.36 No 

Mixed vs. Cm 2.82 0.12 No 

Cm vs. Baseline 124.66 2.97 No 

Cm vs. TI 117.56 4.64 No 

Cm vs. Pav(1209) 60.72 2.36 No 

Cm vs. Pav(609) 53.12 2.12 No 

Cm vs. Cg 52.28 2.08 No 

Cm vs. ISO 32.46 1.24 No 

ISO vs. Baseline 92.20 2.14 No 

ISO vs. TI 85.10 3.16 No 
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Table 3.4B (Continued) 
Comparison Diff of Ranks Q P<0.05 

ISO vs. Pav(1209) 28.26 1.04 No 

ISO vs. Pav(609) 20.66 0.77 No 

ISO vs. Cg 19.82 0.74 No 

Cg vs. Baseline 72.38 1.71 No 

Cg vs. TI 65.28 2.53 No 

Cg vs. Pav(1209) 8.44 0.32 No 

Cg vs. Pav(609) 0.84 0.03 No 

Pav(609) vs. Baseline 71.54 1.69 No 

Pav(609) vs. TI 64.44 2.50 No 

Pav(609) vs. Pav(1209) 7.60 0.29 No 

Pav(1209) vs. Baseline 63.94 1.50 No 

Pav(1209) vs. TI 56.84 2.15 No 

TI vs. CTRL 47.22 1.84 No 

TI vs. Baseline 7.10 0.17 No 

Baseline vs. CTRL 40.13 0.95 No 

 

 Analyses of the left valve shell mass by experimental diet (Table 3.5) established 

significant differences among ten diets with subsequent ranking as follows: Mixed > 

CTRL, Mixed > Baseline, Mixed > TI, Cm > CTRL, Cm > Baseline, Cm > TI, ISO > 

CTRL, Pav(1209) > CTRL, Pav(609) > CTRL, Cg > Ctrl. No other comparisons were 

significant.  These results are similar to those for analysis of shell length in that the 

Mixed, Cm, Cg, ISO, Pav609 and Pav1209 diets show significantly increased median 

values above the control.  In addition, however, both the mixed diet and Cm diet proved 

to have larger median masses compared to the baseline and TI diet. Figure 3.6 depicts 

the median masses of each diet per collection and the summary of the statistical 

analyses are presented in Tables 3.5A and 3.5B. 
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Figure 3.5: Median left valve masses by treatment 

 

Table 3.5A: Results of analyses of left valve mass by treatment. 
One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N Missing Median 25% 75% 

Baseline 14 1 0.037 0.0336 0.0419 

CTRL 61 1 0.029 0.023 0.0405 

TI 57 1 0.0452 0.0263 0.0572 

ISO 50 1 0.0642 0.0414 0.102 

Cg 59 1 0.0521 0.0311 0.102 

Cm 64 1 0.0724 0.0421 0.13 

Pav(609) 59 1 0.0524 0.0336 0.0814 

Pav(1209) 54 1 0.0644 0.0367 0.0823 

Mixed 68 1 0.0884 0.0361 0.139 

H = 81.0 with 8 degrees of freedom  (P = <0.001)  
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Figure 3.5B: Results of post hoc pairwise analyses of left valve mass and treatment. 
All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Mixed vs. CTRL 175.408 7.159 Yes 

Mixed vs. Baseline 143.769 3.441 Yes 

Mixed vs. TI 105.857 4.241 Yes 

Cm vs. CTRL 174.527 7.019 Yes 

Cm vs. Baseline 142.888 3.403 Yes 

Cm vs. TI 104.976 4.147 Yes 

ISO vs. CTRL 149.806 5.644 Yes 

Pav(1209) vs. CTRL 129.437 4.981 Yes 

Pav(609) vs. CTRL 119.158 4.695 Yes 

Cg vs. CTRL 118.693 4.676 Yes 

Mixed vs. Cg 56.716 2.294 No 

Mixed vs. Pav(609) 56.25 2.275 No 

Mixed vs. Pav(1209) 45.972 1.814 No 

Mixed vs. ISO 25.602 0.988 No 

Mixed vs. Cm 0.881 0.0364 No 

Cm vs. Cg 55.835 2.226 No 

Cm vs. Pav(609) 55.369 2.207 No 

Cm vs. Pav(1209) 45.091 1.755 No 

Cm vs. ISO 24.721 0.942 No 

ISO vs. Baseline 118.167 2.748 No 

ISO vs. TI 80.255 2.976 No 

ISO vs. Cg 31.113 1.163 No 

ISO vs. Pav(609) 30.648 1.146 No 

ISO vs. Pav(1209) 20.37 0.746 No 

Pav(1209) vs. Baseline 97.798 2.292 No 

Pav(1209) vs. TI 59.885 2.267 No 

Pav(1209) vs. Cg 10.744 0.41 No 

Pav(1209) vs. Pav(609) 10.278 0.392 No 

Pav(609) vs. Baseline 87.519 2.069 No 

Pav(609) vs. TI 49.607 1.921 No 

Pav(609) vs. Cg 0.466 0.0182 No 

Cg vs. Baseline 87.054 2.058 No 

Cg vs. TI 49.142 1.903 No 

TI vs. Ctrl 69.551 2.716 No 

TI vs. Baseline 37.912 0.893 No 

Baseline vs. CTRL 31.639 0.75 No 
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 Figure 3.6 depicts the median mass of the collected right valves per diet in each 

of the collections.  During statistical analyses, it was determined that the valve mass of 

clams in each the Cm, ISO, Mixed, Pav(1209), and Pav(609) treatments was 

significantly different from the CTRL group (Tables 3.6A and 3.6B).  Additionally, 

Pav(1209) vs. Cg was determined to be significant. No other comparisons were 

significant in terms of valve mass and diet received.  The general trend that valve mass 

of clams fed unique diets increased compared to the control, as seen in both the valve 

length comparisons and left valve mass, is again supported by data for the right valve 

mass. The main difference from previously presented comparisons is that of Pav1209 

versus Cg. 
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Figure 3.6: Median mass of the collected right valves by treatment. 
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Table 3.6A: Results of analysis of right valve mass comparison by treatment. 
One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N  Missing  Median  25% 75% 

Baseline 14 1 0.0372 0.0336 0.043 

CTRL 26 1 0.0305 0.0219 0.0417 

TI 17 1 0.0479 0.0402 0.0538 

ISO 10 1 0.0634 0.0405 0.11 

Cg 19 1 0.0333 0.0203 0.0448 

Cm 27 1 0.0671 0.0375 0.0836 

Pav(609) 19 1 0.0628 0.0345 0.0809 

Pav(1209) 14 1 0.0785 0.0549 0.0932 

Mixed 31 1 0.0523 0.0337 0.0918 

H = 38.3 with 8 degrees of freedom  (P = <0.001) 
 

Table 3.6B: Results of post hoc pairwise comparisons of right valve shell mass by diet. 
All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Cm vs. CTRL 54.746 4.018 Yes 

ISO vs. CTRL 61.122 3.233 Yes 

Mixed vs. CTRL 49.217 3.736 Yes 

Pav(1209) vs. Cg 59.543 3.363 Yes 

Pav(1209) vs. CTRL 64.054 3.851 Yes 

Pav(609) vs. CTRL 51.456 3.422 Yes 

Baseline vs. Cg 10.697 0.604 No 

Baseline vs. CTRL 15.208 0.914 No 

Cg vs. CTRL 4.511 0.3 No 

Cm vs. Baseline 39.538 2.393 No 

Cm vs. Cg 50.235 3.368 No 

Cm vs. Mixed 5.529 0.424 No 

Cm vs. Pav(609) 3.291 0.221 No 

Cm vs. TI 15.534 1.005 No 

ISO vs. Baseline 45.915 2.177 No 

ISO vs. Cg 56.611 2.851 No 

ISO vs. Cm 6.376 0.339 No 

ISO vs. Mixed 11.906 0.644 No 

ISO vs. Pav(609) 9.667 0.487 No 

ISO vs. TI 21.91 1.081 No 

Mixed vs. Baseline 34.009 2.106 No 

Mixed vs. Cg 44.706 3.083 No 
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Table 3.6B (Continued) 
Comparison Diff of Ranks Q P<0.05 

Mixed vs. TI 10.004 0.664 No 

Pav(1209) vs. Baseline 48.846 2.56 No 

Pav(1209) vs. Cm 9.308 0.563 No 

Pav(1209) vs. ISO 2.932 0.139 No 

Pav(1209) vs. Mixed 14.837 0.919 No 

Pav(1209) vs. Pav(609) 12.598 0.712 No 

Pav(1209) vs. TI 24.841 1.368 No 

Pav(609) vs. Baseline 36.248 2.047 No 

Pav(609) vs. Cg 46.944 2.895 No 

Pav(609) vs. Mixed 2.239 0.154 No 

Pav(609) vs. TI 12.243 0.733 No 

TI vs. Baseline 24.005 1.322 No 

TI vs. Cg 34.701 2.076 No 

TI vs. CTRL 39.212 2.518 No 

 

Differences between the left and right valves: valve length and mass 

 Further analyses were performed to determine the difference between the valves 

within each of the feeding groups during the baseline, March and May collections in 

reference to length and mass.  Three separate comparative analyses were performed: 

1) an overall comparison of left and right valve independent of time and diet, 2) a 

comparison of the baseline valves and all experimental valves, and 3) comparison 

within each individual group.   

 The left and right valves were similar in length when considering all valves 

measured with no significant difference found (P=0.233) between neither left and right 

valve composites nor between the left and right valve lengths of the baseline and 

feeding group composite (P=0.334).  The valve lengths within each feeding group were 

found to be virtually identical (P=1.00). 
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 Figure 3.7 depicts the masses of both the left and right valves collected for each 

diet by month. The statistical comparisons revealed no significant differences between 

the composited right and left valves (P=0.877), the left and right valves for the 

experimental and base line groups (P=0.118), or the left and right valves within the 

specific feeding groups.  Tables 3.7-3.8 provide the summary of the statistical tests 

associated with the comparisons of valve mass.    
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Figure 3.7.Median left (L) and right (R) valve mass by diet received. 

 

Table 3.7A: Results of analyses of all valves collected, left vs. right valve mass. 
One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N Missing Median 25% 75% 

Left - all 169 1 0.0445 0.0314 0.0721 

Right All 169 1 0.0445 0.03 0.0741 

H = 0.024 with 1 degrees of freedom  (P = 0.877) 
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Table 3.7B: Summary results of analyses of baseline data versus experimental composite. 
One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N Missing Median 25% 75% 

Baseline-Left 14 1 0.037 0.0336 0.0419 

Baseline-Right 14 1 0.0372 0.0336 0.043 

Experimental-Left 156 1 0.045 0.0303 0.0748 

Experimental-Right 156 1 0.0454 0.0294 0.0752 

H = 5.87 with 3 degrees of freedom  (P = 0.118) 
 

Table 3.8A: Summary of results for diet specific left and right valve comparisons. 
One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N Missing Median 25% 75% 

Baseline-Left 14 1 0.037 0.0336 0.0419 

Baseline-Right 14 1 0.0372 0.0336 0.043 

CTRL-Left 26 1 0.0321 0.0229 0.0429 

CTRL-Right 26 1 0.0305 0.0219 0.0417 

TI-Left 17 1 0.0467 0.04 0.0557 

TI-Right 17 1 0.0479 0.0402 0.0538 

ISO-Left 10 1 0.0642 0.0422 0.107 

ISO-Right 10 1 0.0634 0.0405 0.11 

Cg-Left 19 1 0.0372 0.0192 0.0445 

Cg-Right 19 1 0.0333 0.0203 0.0448 

Cm-Left 27 1 0.0642 0.0395 0.0833 

Cm-Right 27 1 0.0671 0.0375 0.0836 

Pav(609)-Left 19 1 0.0626 0.0336 0.0814 

Pav(609)-Right 19 1 0.0628 0.0345 0.0809 

Pav(1209)-Left 14 1 0.0777 0.0542 0.0934 

Pav(1209)-Right 14 1 0.0785 0.0549 0.0932 

Mixed-Left 31 1 0.0516 0.0339 0.0908 

Mixed-Right 31 1 0.0523 0.0337 0.0918 

H = 74.7 with 17 degrees of freedom  (P = <0.001) 
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Table 3.8B: Results of post hoc pairwise analyses of diet specific left and right valve comparisons. 
All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Baseline-Right vs. Baseline-Left 1.192 0.0313 No 

Cg-Left vs. Cg-Right 0.278 0.00858 No 

Cm-Left vs. Cm-Right 5.577 0.207 No 

CTRL-Left vs. CTRL-Right 12.1 0.44 No 

ISO-Right vs. ISO-Left 0.167 0.00364 No 

Mixed-Right vs. Mixed-Left 2.583 0.103 No 

Pav(1209)-Right vs. Pav(1209)-Left 4.231 0.111 No 

Pav(609)-Right vs. Pav(609)-Left 0.444 0.0137 No 

TI-Right vs. TI-Left 1.25 0.0364 No 
 

Elemental shell chemistry 

 Due to the results from the ICP-OES and the post- processing procedures, 

described previously, the total number of shells (n) is specific to each experimental diet 

and element ratio analyzed. Only the concentrations of boron, barium, cadmium, 

calcium, cobalt, copper, iron, potassium, lithium, magnesium, manganese, nickel, 

potassium, lead, silica, strontium, and zinc were detected from each single valve 

sample overall, so, only these elements are reported herein. Subsequent analyses were 

further limited by the observed variability and the different number of quantifiable 

observations for each element by diet which restricted reporting of differences in 

cadmium, cobalt, copper, nickel and lead. 

 The associated chemistries are provided for all collections for the left valves 

while the right valve chemistries are only available for the Baseline, March and May 

collections. Figures 3.8 – 3.20 depict the median element/Ca for each diet by collection 

month. The baseline measures for P/Ca and Sr/Ca, all Cd/Ca, all Ni/Ca, and Co/Ca for 

the right valves are not depicted due to measurement complications or elimination 

during post-processing as previously described. 
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 The provided graphics (Figures 3.8-3.20) illustrate the variability in 

element/calcium ratios among the different diets and collections. Visually, it is evident 

that many of the reported ratios decreased from baseline during the course of the 

experiment.  It is also obvious that there is not a clear trend over time with multiple diets 

showing random spikes in specific ratios.  

 Some of the observed elemental ratios do appear to remain relatively stable (i.e., 

B/Ca) throughout the experimental time frame regardless of diet received, while others 

are extremely variable.  In many cases, the left and right valves do not mirror one 

another, though usually representative of the same clams. 
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Figure 3.8A: Median B/Ca versus diet received for the collected left valves by collection month. The 
feeding groups are labeled as follows: starvation control = CTRL, TI = Isochrysis sp. (CCMP1324), ISO = 
Isochrysis sp. (CCMP1611), Pav609 = Pavlova pinguis (CCMP609), Pav1209 = Pavlova sp. 
(CCMP1209), CG = Chaetoceros galvestonensis (CCMP186), CM = Chaetoceros mulleri (CCMP609), 
and Mixed = the mixed diet of all species. 
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Figure 3.8B: Median B/Ca versus diet received for the collected right valves by collection month. The diet 
labels are the same as those in Fig. 3.8A. 
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Figure 3.9A: Median Ba/Ca versus diet received for the collected left valves by collection month. The diet 
labels are the same as those in Fig. 3.8A. 
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Figure 3.9B: Median Ba/Ca versus diet received for the collected right valves by collection month. The 
diet labels are the same as those in Fig. 3.8A. 
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Figure 3.10: Median Co/Ca versus diet received for the collected left valves by collection month. The diet 
labels are the same as those in Fig. 3.8A. 
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Figure 3.11A: Median Cu/Ca versus diet received for the collected left valves by collection month. The 
diet labels are the same as those in Fig. 3.8A. 
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Figure 3.11B: Median Cu/Ca versus diet received for the collected right valves by collection month. The 
diet labels are the same as those in Fig. 3.8A. 
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3.12A: Median Fe/Ca versus diet received for the collected left valves by collection month. The diet labels 
are the same as those in Fig. 3.8A. 
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3.12B: Median Fe/Ca versus diet received for the collected right valves by collection month. The diet 
labels are the same as those in Fig. 3.8A. 
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3.13A: Median K/Ca versus diet received for the collected left valves by collection month. The diet labels 
are the same as those in Fig. 3.8A. 
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3.13B: Median K/Ca versus diet received for the collected right valves by collection month. The diet labels 
are the same as those in Fig. 3.8A. 
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3.14A: Median Li/Ca versus diet received for the collected left valves by collection month. The diet labels 
are the same as those in Fig. 3.8A. 
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3.14B: Median Li/Ca versus diet received for the collected right valves by collection month. The diet 
labels are the same as those in Fig. 3.8A. 

76 
 



C
TR

L TI

IS
O

C
G

C
M

P
av

(6
09

)

P
av

(1
20

9)

M
ix

ed

M
g/

C
a

0.000

0.001

0.002

0.003

0.004

January
March
May
July
October

 

3.15A: Median Mg/Ca versus diet received for the collected left valves by collection month. The diet 
labels are the same as those in Fig. 3.8A. 
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3.15B: Median Mg/Ca versus diet received for the collected right valves by collection month. The diet 
labels are the same as those in Fig. 3.8A. 
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3.16A: Median Mn/Ca versus diet received for the collected left valves by collection month. The diet 
labels are the same as those in Fig. 3.8A. 
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3.16B: Median Mn/Ca versus diet received for the collected right valves by collection month. The diet 
labels are the same as those in Fig. 3.8A. 
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3.17A: Median P/Ca versus diet received for the collected left valves by collection month. The diet labels 
are the same as those in Fig. 3.8A. 
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3.17B: Median P/Ca versus diet received for the collected right valves by collection month. The diet labels 
are the same as those in Fig. 3.8A. 
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3.18A: Median Si/Ca versus diet received for the collected left valves by collection month. The diet labels 
are the same as those in Fig. 3.8A. 
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3.18B: Median Si/Ca versus diet received for the collected right valves by collection month. The diet 
labels are the same as those in Fig. 3.8A. 
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3.19A: Median Sr/Ca versus diet received for the collected left valves by collection month. The diet labels 
are the same as those in Fig. 3.8A. 
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3.19B: Median Sr/Ca versus diet received for the collected right valves by collection month. The diet 
labels are the same as those in Fig. 3.8A. 
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3.20A: Median Zn/Ca versus diet received for the collected left valves by collection month. The diet labels 
are the same as those in Fig. 3.8A. 
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3.20B: Median Zn/Ca versus diet received for the collected right valves by collection month. The diet 
labels are the same as those in Fig. 3.8A. 
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Statistical comparison of elemental shell chemistry between left and right valves 

 Two levels of analysis for examination of possible differences between left and 

right valve shell chemistry were conducted:1) all left and right valves were compared 

regardless of diet received to determine any chemical differences that might be 

expected at a population or species level, and 2) the right and left valves specific to the 

diet received to determine any differences in shell chemistry resultant of experimental 

variables and procedures as well as determine dominant influences  observed during 

the first left versus right valve analysis. 

 Analysis of all collected left and right valves resulted in only two ratios being 

determined significantly different in regard to valve orientation – Ni/Ca and Zn/Ca.  The 

summary of statistical tests is presented in Tables 3.9 and 3.10.  The difference in Ni/Ca 

between valves was based on fewer than 20 left and right valves, which were 

representative of only a few diets.  Though a significant difference was determined 

(P<0.05), these results were primarily attributable to differences between the Control 

and Baseline with the other diets unevenly represented with regard to valve orientation.  

Zinc measurements were, on the other hand, represented for all diets and in each 

collection.  A P value of <0.05 was determined from the Dunn’s method pairwise 

analysis and established right valve Zn/Ca > left valve Zn/Ca. 

 When each individual diet was examined with regard to the differences between 

left and right valve elemental chemistry, significant differences were observed in both 

the Control (CTRL) and Chaetoceros mulleri (CM) diet groups (Table 3.11). Three 

ratios, B/Ca, Si/Ca and Zn/Ca, were identified as being significantly higher in the right 

valve compared to the left valve in the Control (P=0.001, 0.046, and 0.002 respectively).  
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Only the Ba/Ca ratio was identified as significantly different between valves (P=0.030) in 

the CM group, though Li/Ca (P=0.053) was borderline.  The right valve was again 

identified as having a higher ratio. 

 

Table 3.9: Results for left versus right valve comparisons with respect to Ni/Ca. 
Ni 

One Way Analysis of Variance 

Normality Test: Passed (P = 0.831) 

Equal Variance Test: Passed (P = 0.256) 

Group Name  N  Missing Mean Std Dev SEM 

Left 143 124 9.04E-07 4.58E-07 1.05E-07 

Right 152 137 4.74E-07 3.45E-07 8.91E-08 

Source of Variation  DF   SS   MS    F    P  

Between Groups 1 1.55E-12 1.55E-12 9.138 0.005 

Residual 32 5.44E-12 1.70E-13     

Total 33 7.00E-12       

Power of performed test with alpha = 0.050: 0.803 

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 

Overall significance level = 0.05 

Comparison Diff of Means t Unadjusted P Critical Level Significant? 

Left vs. Right 4.31E-07 3.023 0.0049 0.05 Yes 

 

Table 3.10: Results for left versus right valve comparisons with respect to Zn/Ca. 
Zn 

One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N  Missing  Median  25% 75% 

Left 167 35 1.65E-05 1.08E-05 3.37E-05 

Right 167 46 2.30E-05 1.35E-05 3.79E-05 

H = 3.88 with 1 degrees of freedom.  (P = 0.049) 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Left vs. Right 18.137 1.969 Yes 
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 All associated P-values for the statistical tests used for each diet and elemental 

ratio are provided in Table 3.11.  The median ratio values with 95% confidence intervals 

are depicted in Figures 3.21 – 3.24 for the CTRL and CM examinations. As well, Tables 

3.12 – 3.15 provide the statistical test summaries for the CTRL and CM left and right 

valve group comparisons. 

 

Table 3.11:  Significance of diet-specific left and right valve comparisons.  
Bl Left vs. Right P value TI Left vs. Right P value ISO Left vs. Right P value 

B 0.391 B 0.609 B 0.821 

Ba 0.892 Ba 0.102 Ba 0.735 

Cd Na Cd Na Cd Na 

Co 0.747 Co 1.000 Co Na 

Cu 1.000 Cu 0.640 Cu 0.314 

Fe 0.765 Fe 0.877 Fe 0.158 

K 0.807 K 0.954 K 0.245 

Li 0.765 Li 0.765 Li 0.885 

Mg 0.977 Mg 0.721 Mg 0.229 

Mn 0.840 Mn 0.369 Mn 0.209 

Ni Na Ni Na Ni Na 

P Na P 0.598 P 0.994 

Pb Na Pb Na Pb Na 

Si 0.887 Si 0.841 Si 0.102 

Sr Na Sr 0.554 Sr 0.996 

Zn 0.840 Zn 0.910 Zn 0.284 

CG Left vs. Right P value CM Left vs. Right P value Pav609 Left vs. Right P value 

B 0.580 B 0.309 B 0.728 

Ba 0.937 Ba 0.030 Ba 0.817 

Cd Na Cd Na Cd Na 

Co Na Co 0.410 Co 0.451 

Cu 0.397 Cu 0.297 Cu 0.381 

Fe 0.669 Fe 0.750 Fe 0.531 

K 0.856 K 0.489 K 0.385 

Li 0.978 Li 0.053 Li 0.753 

Mg 0.319 Mg 0.705 Mg 0.197 

Mn 0.812 Mn 0.922 Mn 0.978 

Ni Na Ni Na Ni Na 
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Table 3.11 (Continued) 
CG Left vs. Right P value CM Left vs. Right P value Pav609 Left vs. Right P value 

P 0.517 P 0.962 P 0.394 

Pb Na Pb Na Pb Na 

Si 0.740 Si 0.421 Si 0.717 

Sr 0.809 Sr 0.091 Sr 0.994 

Zn 0.812 Zn 0.125 Zn 0.869 

Pav1209 Left vs. Right P value CTRL Left vs. Right P value Mixed Left vs. Right P value 

B 0.716 B 0.001 B 0.418 

Ba 0.505 Ba 0.222 Ba 0.554 

Cd Na Cd Na Cd Na 

Co 0.391 Co 0.418 Co 0.189 

Cu 0.878 Cu 0.231 Cu 0.323 

Fe 0.915 Fe 0.831 Fe 0.845 

K 0.837 K 0.421 K 0.796 

Li 0.864 Li 0.171 Li 0.687 

Mg 0.779 Mg 0.614 Mg 0.829 

Mn 0.887 Mn 0.771 Mn 0.580 

Ni Na Ni 0.123 Ni Na 

P 0.608 P 0.561 P 0.473 

Pb Na Pb Na Pb Na 

Si 0.878 Si 0.046 Si 0.845 

Sr 0.561 Sr 0.985 Sr 0.798 

Zn 0.918 Zn 0.002 Zn 0.820 

 

Comparison of elemental shell chemistry by to diet 

 Statistical comparisons of differences in shell chemistry between experimental 

diets were performed using the composite of all month collections by diet on both the 

left and right valves.  Kruskal-Wallis One way Analysis of Variance on Ranks was used, 

followed by appropriate post-hoc pairwise examinations to determine if there were 

significant differences among diets with regard to elemental shell chemistry and which 

elements, if any, were influenced. It is important to recognize that the comparison of 

right valves only included individuals from the Baseline, March and May collections, 

whereas, the left valve comparisons include individuals from all experimental collections 
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January – October as time and growth influences must be closely examined during 

interpretation. 

 

Valve

B/
C

a

0.0000

0.0001

0.0002
0.0005

Left
Right

 

Figure 3.21: Left versus right valve for the Control feeding group with regard to B/Ca. 

 

Table 3.12: Results of the comparison of the left and right valves from the Control group with regard to 
B/Ca. 

CTRL-B 

t-test 

Normality Test: Failed (P < 0.050) 

Mann-Whitney Rank Sum Test 

Group N  Missing  Median  25% 75% 

Left 26 1 2.83E-05 2.40E-05 3.22E-05 

Right 26 1 5.23E-05 3.09E-05 7.90E-04 

Mann-Whitney U Statistic= 510.000 

T = 440  n(small)= 25  n(big)= 25  (P = <0.001) 
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Figure 3.22: Left versus right valve for the Control feeding group with regard to Si/Ca. 

 

Table 3.13: Results of the comparison of the left and right valves from the Control group with regard to 
Si/Ca. 

CTRL-Si 

t-test 

Normality Test: Failed (P < 0.050) 

Mann-Whitney Rank Sum Test 

Group N  Missing  Median  25% 75% 

Left 26 1 1.65E-04 1.42E-04 2.30E-04 

Right 26 1 1.99E-04 1.73E-04 2.47E-04 

Mann-Whitney U Statistic= 416.000 

T = 534  n(small)= 25  n(big)= 25  (P = 0.046) 

 

 Inadequate sample sizes preclude analyses for Cd/Ca, Cu/Ca, Ni/Ca, and Pb/Ca.  

Comparisons P/Ca and Sr/Ca are included despite baseline comparisons not being 

available. 

 Ten differences  based on diet were identified for B/Ca of the left valves: Cg vs. 

ISO, Cg vs. Pav609, Mixed vs. ISO, Mixed vs. Pav609, TI vs. Baseline, TI vs. Cm, TI vs. 
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CTRL, TI vs. ISO, TI vs. Pav1209, and TI vs. Pav609 (Table 3.16B).  The median 

values and associated 95% confidence intervals are provided in Figure 3.25, and the 

analyses summaries are provided in Tables 3.16 and 3.17.  The analyses support the  
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Figure 3.23: Left versus right valve for the Control feeding group with regard to Zn/Ca. 

 

Table 3.14: Results of the comparison of the left and right valves from the Control group with regard to 
Zn/Ca. 

CTRL-Zn 

t-test 

Normality Test: Failed (P < 0.050) 

Mann-Whitney Rank Sum Test 

Group N  Missing  Median  25% 75% 

Left 26 2 1.71E-05 1.15E-05 3.16E-05 

Right 26 1 3.40E-05 2.44E-05 4.68E-05 

Mann-Whitney U Statistic= 454.000 

T = 446  n(small)= 24  n(big)= 25  (P = 0.002) 
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Figure 3.24: Left versus right valve for the CM feeding group with regard to Ba/Ca. 

 

Table 3.15: Results of the comparison of the left and right valves from the CM group with regard to 
Ba/Ca. 

CM-Ba 

t-test 

Normality Test: Failed (P < 0.050) 

Mann-Whitney Rank Sum Test 

Group N Missing Median 25% 75% 

Left 27 9 1.44E-05 1.23E-05 1.70E-05 

Right 27 9 1.69E-05 1.53E-05 1.81E-05 

Mann-Whitney U Statistic= 231.000 

T = 264 n(small)= 18  n(big)= 18  (P = 0.030) 

 

following ranking: Cg> ISO and Pav609, Mixed> ISO and Pav609, and finally, 

TI>Baseline, Cm, CTRL, ISO, Pav609, and Pav1209. 

 The comparison of right valve B/Ca between experimental diet groups 

determined that only the CTRL diet was significantly different from the Baseline, Cm, 
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Mixed, Pav1209, and Pav609 diets (Table 17B). The associated ranking is as follows: 

CTRL > Baseline, Cm, Mixed, Pav1209, and Pav609. 
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Figure 3.25: Left valve median B/Ca values compared to diet. Error bars depict the 95% confidence 
intervals and diets are represented as follows: Baseline = baseline/January collection, starvation control = 
CTRL, TI = Isochrysis sp. (CCMP1324), ISO = Isochrysis sp. (CCMP1611), Pav609 = Pavlova pinguis 
(CCMP609), Pav1209 = Pavlova sp. (CCMP1209), Cg = Chaetoceros galvestonensis (CCMP186), Cm = 
Chaetoceros mulleri (CCMP609), and Mixed = the mixed diet of all species. The lower graph is a close up 
of the first to allow a closer examination not limited by the error bar range. 
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Table 3.16A: Results of analysis of variance of left valve B/Ca among experimental diets.  Diets are 
represented as previously identified in Figure 3.25. 

One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N Missing Median 25% 75% 

Baseline 14 1 2.86E-05 2.71E-05 3.17E-05 

CTRL 61 1 3.05E-05 2.39E-05 5.23E-05 

TI 54 4 4.09E-05 3.13E-05 5.39E-05 

ISO 50 1 2.76E-05 1.92E-05 3.20E-05 

Cg 58 3 3.30E-05 2.64E-05 3.92E-05 

Cm 64 8 2.88E-05 2.44E-05 3.70E-05 

Pav609 59 7 2.84E-05 2.39E-05 3.18E-05 

Pav1209 52 1 3.14E-05 2.59E-05 3.96E-05 

Mixed 53 13 3.63E-05 2.91E-05 1.35E-04 

H = 61.1 with 8 degrees of freedom  (P = <0.001) 
 
 
Table 3.16B: Results of pairwise comparison of left valve B/Ca between experimental diets.  Diets are 
represented as previously identified in Figure 3.25. 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Cg vs. ISO 87.071 3.6 Yes 

Cg vs. Pav609 76.485 3.212 Yes 

Mixed vs. ISO 123.566 4.71 Yes 

Mixed vs. Pav609 112.981 4.363 Yes 

TI vs. Baseline 124.238 3.241 Yes 

TI vs. Cm 103.325 4.313 Yes 

TI vs. CTRL 75.717 3.212 Yes 

TI vs. ISO 149.516 6.041 Yes 

TI vs. Pav1209 87.759 3.582 Yes 

TI vs. Pav609 138.931 5.697 Yes 

Baseline vs. ISO 25.278 0.658 No 

Baseline vs. Pav609 14.692 0.385 No 

Cg vs. Baseline 61.793 1.627 No 

Cg vs. Cm 40.88 1.749 No 

Cg vs. Ctrl 13.271 0.577 No 

Cg vs. Pav1209 25.313 1.058 No 

Cm vs. Baseline 20.913 0.552 No 

Cm vs. ISO 46.191 1.918 No 

Cm vs. Pav609 35.606 1.502 No 

CTRL vs. Baseline 48.522 1.288 No 
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Table 3.16B (Continued) 
Comparison Diff of Ranks Q P<0.05 

CTRL vs. Cm 27.608 1.207 No 

CTRL vs. ISO 73.8 3.113 No 

CTRL vs. Pav1209 12.042 0.514 No 

CTRL vs. Pav609 63.214 2.71 No 

Mixed vs. Baseline 98.288 2.501 No 

Mixed vs. Cg 36.495 1.426 No 

Mixed vs. Cm 77.375 3.036 No 

Mixed vs. Ctrl 49.767 1.98 No 

Mixed vs. Pav1209 61.809 2.377 No 

Pav1209 vs. Baseline 36.48 0.954 No 

Pav1209 vs. Cm 15.566 0.653 No 

Pav1209 vs. ISO 61.758 2.508 No 

Pav1209 vs. Pav609 51.172 2.109 No 

Pav609 vs. ISO 10.586 0.432 No 

TI vs. Cg 62.445 2.596 No 

TI vs. Mixed 25.95 0.994 No 
 

Table 3.17A: Results of analysis of variance of right valve B/Ca among experimental diets.  Diets are 
represented as previously identified in Figure 3.25. 

One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N Missing Median 25% 75% 

Baseline 14 2 2.79E-05 2.68E-05 2.99E-05 

CTRL 29 1 4.61E-05 3.08E-05 7.77E-04 

TI 17 7 3.42E-05 2.73E-05 3.81E-05 

ISO 10 1 3.02E-05 2.40E-05 3.25E-05 

Cg 19 1 3.31E-05 2.67E-05 3.87E-05 

Cm 27 9 2.87E-05 2.41E-05 3.10E-05 

Pav609 19 9 2.62E-05 2.22E-05 3.11E-05 

Pav1209 14 1 2.35E-05 2.11E-05 2.67E-05 

Mixed 31 13 2.98E-05 2.57E-05 3.18E-05 

H = 38.9 with 8 degrees of freedom  (P = <0.001) 
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Table 3.17B: Results of pairwise comparison of right valve B/Ca between experimental diets.  Diets are 
represented as previously identified in Figure 3.25. 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

CTRL vs. Baseline 44.833 3.298 Yes 

CTRL vs. Cm 41.583 3.493 Yes 

CTRL vs. Mixed 38.194 3.208 Yes 

CTRL vs. Pav1209 71.865 5.434 Yes 

CTRL vs. Pav609 50.35 3.469 Yes 

Baseline vs. Pav1209 27.032 1.714 No 

Baseline vs. Pav609 5.517 0.327 No 

Cg vs. Baseline 23.139 1.576 No 

Cg vs. Cm 19.889 1.514 No 

Cg vs. ISO 13.111 0.815 No 

Cg vs. Mixed 16.5 1.256 No 

Cg vs. Pav1209 50.171 3.498 No 

Cg vs. Pav609 28.656 1.844 No 

Cm vs. Baseline 3.25 0.221 No 

Cm vs. Pav1209 30.282 2.111 No 

Cm vs. Pav609 8.767 0.564 No 

CTRL vs. Cg 21.694 1.822 No 

CTRL vs. ISO 34.806 2.305 No 

CTRL vs. TI 20.25 1.395 No 

ISO vs. Baseline 10.028 0.577 No 

ISO vs. Cm 6.778 0.421 No 

ISO vs. Mixed 3.389 0.211 No 

ISO vs. Pav1209 37.06 2.169 No 

ISO vs. Pav609 15.544 0.859 No 

Mixed vs. Baseline 6.639 0.452 No 

Mixed vs. Cm 3.389 0.258 No 

Mixed vs. Pav1209 33.671 2.348 No 

Mixed vs. Pav609 12.156 0.782 No 

Pav609 vs. Pav1209 21.515 1.298 No 

TI vs. Baseline 24.583 1.457 No 

TI vs. Cg 1.444 0.0929 No 

TI vs. Cm 21.333 1.373 No 

TI vs. ISO 14.556 0.804 No 

TI vs. Mixed 17.944 1.155 No 

TI vs. Pav1209 51.615 3.114 No 

TI vs. Pav609 30.1 1.708 No 
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 The median Ba/Ca value for left valves by diet is depicted in Figure 3.26. 

Analysis of variance and post hoc pairwise analysis revealed 10 significant differences 

based on diet:  Baseline vs. Cg, Baseline vs. Cm, Baseline vs. CTRL, Baseline vs. ISO, 

Baseline vs. Mixed, Baseline vs. Pav1209, Baseline vs. Pav609, Baseline vs. TI, ISO 

vs. Mixed, and TI vs. Mixed (Tables 3.18A and 3.18B).  The ranking of these diet groups 

is as follows: Baseline > Cg, Cm, CTRL, ISO, Mixed, Pav1209, Pav609, and TI, as well 

as, TI and ISO > Mixed. 

 The comparison of Ba/Ca values between diets using the right valves resulted in 

four significant differencest:  Baseline vs. CTRL, Baseline vs. ISO, Baseline vs. Mixed, 

and Baseline vs. TI.  These differences support Baseline Ba/Ca > CTRL, ISO, Mixed, 

and TI. Summaries of the statistical results have been provided in Tables 3.19A and 

3.19B. 
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Figure 3.26: Left valve median Ba/Ca values compared to diet. Error bars depict the 95% confidence 
intervals and diets are represented as previously identified in Figure 3.25. 
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Table 3.18A: Results of analysis of variance of left valve Ba/Ca among diets.  Diets are represented as 
previously identified in Figure 3.25. 

One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N Missing Median 25% 75% 

Baseline 14 1 2.21E-05 1.83E-05 2.65E-05 

CTRL 61 1 1.36E-05 1.17E-05 1.51E-05 

TI 54 8 1.43E-05 1.18E-05 1.69E-05 

ISO 50 1 1.41E-05 1.31E-05 1.58E-05 

Cg 58 3 1.29E-05 1.15E-05 1.56E-05 

Cm 64 9 1.32E-05 1.18E-05 0.000015 

Pav609 59 7 0.000013 1.18E-05 1.46E-05 

Pav1209 52 1 1.33E-05 1.15E-05 1.55E-05 

Mixed 53 9 1.06E-05 7.99E-06 1.53E-05 

H = 50.7 with 8 degrees of freedom  (P = <0.001) 
 

Table 3.18B: Results of pairwise comparison of left valve Ba/Ca between diets. Diets are represented as 
previously identified in Figure 3.25. 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Baseline vs. Cg 189.568 5.004 Yes 

Baseline vs. Cm 183.077 4.833 Yes 

Baseline vs. Ctrl 177.76 4.731 Yes 

Baseline vs. ISO 145.832 3.806 Yes 

Baseline vs. Mixed 253.509 6.538 Yes 

Baseline vs. Pav1209 177.587 4.653 Yes 

Baseline vs. Pav609 189.269 4.969 Yes 

Baseline vs. TI 149.946 3.886 Yes 

ISO vs. Mixed 107.677 4.221 Yes 

TI vs. Mixed 103.562 3.998 Yes 

Cg vs. Mixed 63.941 2.574 No 

Cm vs. Cg 6.491 0.277 No 

Cm vs. Mixed 70.432 2.835 No 

Cm vs. Pav609 6.192 0.261 No 

CTRL vs. Cg 11.808 0.515 No 

CTRL vs. Cm 5.317 0.232 No 

CTRL vs. Mixed 75.748 3.107 No 

CTRL vs. Pav609 11.509 0.495 No 

ISO vs. Cg 43.736 1.813 No 

ISO vs. Cm 37.245 1.544 No 
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Table 3.18B (Continued) 
Comparison Diff of Ranks Q P<0.05 

ISO vs. Ctrl 31.928 1.35 No 

ISO vs. Pav1209 31.755 1.292 No 

ISO vs. Pav609 43.437 1.776 No 

ISO vs. TI 4.114 0.163 No 

Pav1209 vs. Cg 11.981 0.502 No 

Pav1209 vs. Cm 5.49 0.23 No 

Pav1209 vs. Ctrl 0.174 0.00742 No 

Pav1209 vs. Mixed 75.922 3.004 No 

Pav1209 vs. Pav609 11.683 0.483 No 

Pav609 vs. Cg 0.299 0.0126 No 

Pav609 vs. Mixed 64.24 2.553 No 

TI vs. Cg 39.621 1.614 No 

TI vs. Cm 33.13 1.35 No 

TI vs. Ctrl 27.814 1.155 No 

TI vs. Pav1209 27.64 1.107 No 

TI vs. Pav609 39.323 1.582 No 
 

Table 3.19A: Results of analysis of variance of right valve Ba/Ca among diets. Diets are represented as 
previously identified in Figure 3.25. 

One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N Missing Median 25% 75% 

Baseline 14 2 2.36E-05 1.87E-05 2.70E-05 

Ctrl 29 1 1.49E-05 1.33E-05 1.77E-05 

TI 17 7 1.46E-05 1.01E-05 1.49E-05 

ISO 10 1 1.28E-05 1.24E-05 1.71E-05 

Cg 19 1 1.75E-05 1.08E-05 2.27E-05 

Cm 27 9 1.69E-05 1.53E-05 1.81E-05 

Pav(609) 19 9 1.44E-05 1.23E-05 1.96E-05 

Pav(1209) 14 1 1.41E-05 1.25E-05 2.22E-05 

Mixed 31 11 1.20E-05 1.04E-05 1.65E-05 

H = 30.4 with 8 degrees of freedom  (P = <0.001) 
 

 

 

 

97 
 



Table 3.19B: Results of pairwise comparison of right valve Ba/Ca between diets.  Diets are represented 
as previously identified in Figure 3.25. 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Baseline vs. CTRL 46.869 3.398 Yes 

Baseline vs. ISO 57.306 3.25 Yes 

Baseline vs. Mixed 71.383 4.89 Yes 

Baseline vs. TI 66.833 3.904 Yes 

Baseline vs. Cg 39.417 2.645 No 

Baseline vs. Cm 31.139 2.09 No 

Baseline vs. Pav1209 43.353 2.709 No 

Baseline vs. Pav609 46.383 2.709 No 

Cg vs. Ctrl 7.452 0.617 No 

Cg vs. ISO 17.889 1.096 No 

Cg vs. Mixed 31.967 2.461 No 

Cg vs. Pav1209 3.936 0.27 No 

Cg vs. Pav609 6.967 0.442 No 

Cg vs. TI 27.417 1.739 No 

Cm vs. Cg 8.278 0.621 No 

Cm vs. CTRL 15.73 1.302 No 

Cm vs. ISO 26.167 1.603 No 

Cm vs. Mixed 40.244 3.098 No 

Cm vs. Pav1209 12.214 0.839 No 

Cm vs. Pav609 15.244 0.967 No 

Cm vs. TI 35.694 2.264 No 

CTRL vs. ISO 10.437 0.681 No 

CTRL vs. Mixed 24.514 2.094 No 

CTRL vs. TI 19.964 1.355 No 

ISO vs. Mixed 14.078 0.877 No 

ISO vs. TI 9.528 0.519 No 

Pav1209 vs. CTRL 3.516 0.262 No 

Pav1209 vs. ISO 13.953 0.805 No 

Pav1209 vs. Mixed 28.031 1.968 No 

Pav1209 vs. Pav609 3.031 0.18 No 

Pav1209 vs. TI 23.481 1.396 No 

Pav609 vs. CTRL 0.486 0.033 No 

Pav609 vs. ISO 10.922 0.595 No 

Pav609 vs. Mixed 25 1.615 No 

Pav609 vs. TI 20.45 1.144 No 

TI vs. Mixed 4.55 0.294 No 
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 Statistical comparison of diet groups as relates to Co/Ca could only be performed 

on the left valves (Figure 3.27). Two significant differences were found: ISO > Mixed 

and TI > Mixed (Tables 3.20A and 3.20B).  
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Figure 3.27: Left valve median Co/Ca values compared to diet. Error bars depict the 95% confidence 
intervals and diets are represented as previously identified in Figure 3.25. 
 

Table 3.20A: Results of analysis of variance of left valve Co/Ca among diets. Diets are represented as 
previously identified in Figure 3.25. 

One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N  Missing  Median  25% 75% 

Baseline 12 7 1.36E-06 1.17E-06 1.71E-06 

CTRL 59 44 9.26E-07 7.46E-07 1.39E-06 

TI 53 44 1.93E-06 1.45E-06 2.21E-06 

ISO 48 35 1.90E-06 1.70E-06 2.12E-06 

Cg 57 40 1.58E-06 7.36E-07 1.79E-06 

Cm 63 31 9.77E-07 8.69E-07 1.91E-06 

Pav609 58 33 1.06E-06 9.26E-07 1.94E-06 

Pav1209 52 38 1.06E-06 8.91E-07 2.38E-06 

Mixed 53 35 8.27E-07 7.05E-07 1.17E-06 

H = 22.6 with 8 degrees of freedom  (P = 0.004) 
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Table 3.20B: Results of pairwise comparison of left valve Co/Ca between diets. Diets are represented as 
previously identified in Figure 3.25. 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

ISO vs. Mixed 59.701 3.826 Yes 

TI vs. Mixed 57.778 3.301 Yes 

Baseline vs. Cg 16.8 0.77 No 

Baseline vs. Cm 12.144 0.589 No 

Baseline vs. CTRL 32.133 1.452 No 

Baseline vs. Mixed 43.578 2.011 No 

Baseline vs. Pav1209 9.586 0.429 No 

Baseline vs. Pav609 9.24 0.44 No 

Cg vs. CTRL 15.333 1.01 No 

Cg vs. Mixed 26.778 1.847 No 

Cm vs. Cg 4.656 0.362 No 

Cm vs. CTRL 19.99 1.49 No 

Cm vs. Mixed 31.434 2.489 No 

CTRL vs. Mixed 11.444 0.764 No 

ISO vs. Baseline 16.123 0.715 No 

ISO vs. Cg 32.923 2.085 No 

ISO vs. Cm 28.267 2.005 No 

ISO vs. CTRL 48.256 2.971 No 

ISO vs. Pav1209 25.709 1.557 No 

ISO vs. Pav609 25.363 1.73 No 

ISO vs. TI 1.923 0.103 No 

Pav1209 vs. Cg 7.214 0.466 No 

Pav1209 vs. Cm 2.558 0.186 No 

Pav1209 vs. CTRL 22.548 1.415 No 

Pav1209 vs. Mixed 33.992 2.225 No 

Pav609 vs. Cg 7.56 0.561 No 

Pav609 vs. Cm 2.904 0.254 No 

Pav609 vs. CTRL 22.893 1.635 No 

Pav609 vs. Mixed 34.338 2.591 No 

Pav609 vs. Pav1209 0.346 0.0242 No 

TI vs. Baseline 14.2 0.594 No 

TI vs. Cg 31 1.754 No 

TI vs. Cm 26.344 1.629 No 

TI vs. CTRL 46.333 2.563 No 

TI vs. Pav1209 23.786 1.299 No 

TI vs. Pav609 23.44 1.407 No 
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 Figure 3.28 depicts the left valve Fe/Ca median values by diet received.  In all, 

15 comparisons were determined to be significant as relates to diet-specific Fe/Ca: 

Baseline vs. Cg, Baseline vs. Cm, Baseline vs. CTRL, Baseline vs. Mixed, ISO vs. Cg, 

ISO vs. Cm, ISO vs. CTRL, ISO vs. Mixed, Pav1209 vs. Cg, Pav1209 vs. Cm, Pav1209 

vs. CTRL, Pav1209 vs. Mixed, Pav609 vs. Cg, Pav609 vs. CTRL, and TI vs. Cg.  Based 

on the analyses, the following rankings are supported (Table 3.21A, B): Baseline > Cg, 

Cm, CTRL, and Mixed; ISO > Cg, Cm, CTRL, and Mixed; Pav1209 > Cg, Cm, CTRL, 

and Mixed; Pav609 > Cg and CTRL; and finally, TI > Cg. 

 The assessment of Fe/Ca in the right valves (Table 3.22A, B) revealed significant 

differences between four diet pairs: Baseline vs. CTRL, Baseline vs. TI, ISO vs. CTRL, 

and Mixed vs. CTRL.  The ratios of the shells from the Baseline, ISO, and Mixed 

treatments were higher than those from CTRL group, and the ratios from the Baseline 

higher than those from the TI treatment. 
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Figure 3.28: Left valve median Fe/Ca values compared to diet. Error bars depict the 95% confidence 
intervals and diets are represented as previously identified in Figure 3.25. 
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Table 3.21A: Results of analysis of variance of left valve Fe/Ca among diets. Diets are represented as 
previously identified in Figure 3.25. 

One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N Missing Median 25% 75% 

Baseline 14 1 8.01E-05 5.74E-05 7.70E-04 

CTRL 61 1 4.42E-05 2.22E-05 6.41E-05 

TI 54 7 5.00E-05 3.85E-05 7.05E-05 

ISO 50 2 8.02E-05 5.55E-05 9.67E-05 

Cg 58 3 3.32E-05 2.50E-05 4.29E-05 

Cm 64 14 4.57E-05 2.84E-05 6.40E-05 

Pav609 59 7 5.89E-05 4.75E-05 8.22E-05 

Pav1209 52 5 6.66E-05 4.57E-05 9.26E-05 

Mixed 53 12 4.18E-05 3.29E-05 5.67E-05 

H = 93.0 with 8 degrees of freedom  (P = <0.001) 
 

 
Table 3.21B: Results of pairwise comparisons of left valve Fe/Ca between diets. Diets are represented as 
previously identified in Figure 3.25. 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Baseline vs. Cg 189.99 5.161 Yes 

Baseline vs. Cm 127.154 3.422 Yes 

Baseline vs. CTRL 136.821 3.747 Yes 

Baseline vs. Mixed 129.398 3.406 Yes 

ISO vs. Cg 177.836 7.543 Yes 

ISO vs. Cm 115 4.768 Yes 

ISO vs. Ctrl 124.667 5.393 Yes 

ISO vs. Mixed 117.244 4.619 Yes 

Pav1209 vs. Cg 144.858 6.109 Yes 

Pav1209 vs. Cm 82.021 3.382 Yes 

Pav1209 vs. CTRL 91.688 3.943 Yes 

Pav1209 vs. Mixed 84.265 3.303 Yes 

Pav609 vs. Cg 130.375 5.647 Yes 

Pav609 vs. CTRL 77.205 3.414 Yes 

TI vs. Cg 87.347 3.684 Yes 

Baseline vs. ISO 12.154 0.326 No 

Baseline vs. Pav1209 45.133 1.207 No 

Baseline vs. Pav609 59.615 1.611 No 

Baseline vs. TI 102.643 2.744 No 
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Table 3.21B (Continued) 
Comparison Diff of Ranks Q P<0.05 

Cm vs. Cg 62.836 2.694 No 

Cm vs. CTRL 9.667 0.423 No 

Cm vs. Mixed 2.244 0.0892 No 

Ctrl vs. Cg 53.17 2.386 No 

ISO vs. Pav1209 32.979 1.346 No 

ISO vs. Pav609 47.462 1.986 No 

ISO vs. TI 90.489 3.694 No 

Mixed vs. Cg 60.592 2.46 No 

Mixed vs. CTRL 7.423 0.307 No 

Pav1209 vs. Pav609 14.483 0.603 No 

Pav1209 vs. TI 57.511 2.336 No 

Pav609 vs. Cm 67.538 2.857 No 

Pav609 vs. Mixed 69.782 2.799 No 

Pav609 vs. TI 43.028 1.791 No 

TI vs. Cm 24.511 1.011 No 

TI vs. Ctrl 34.177 1.47 No 

TI vs. Mixed 26.755 1.049 No 
 

Table 3.22A:  Results of analysis of variance of right valve Fe/Ca among diets.  Diets are represented as 
previously identified in Figure 3.25. 

One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N Missing Median 25% 75% 

Baseline 14 2 9.88E-05 5.51E-05 5.04E-04 

CTRL 29 1 2.10E-05 1.67E-05 3.46E-05 

TI 17 7 2.49E-05 1.86E-05 4.84E-05 

ISO 10 1 7.83E-05 3.86E-05 1.01E-04 

Cg 19 1 3.75E-05 2.89E-05 5.45E-05 

Cm 27 9 3.73E-05 2.54E-05 6.75E-05 

Pav609 19 9 3.18E-05 2.47E-05 5.65E-05 

Pav1209 14 1 3.19E-05 2.34E-05 5.03E-05 

Mixed 31 11 4.16E-05 2.97E-05 6.51E-05 

H = 39.1 with 8 degrees of freedom  (P = <0.001) 
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Table 3.22B: Results of pairwise comparisons of right valve Fe/Ca between diets. Diets are represented 
as previously identified in Figure 3.25. 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Baseline vs. CTRL 74.488 5.4 Yes 

Baseline vs. TI 65.117 3.804 Yes 

ISO vs. CTRL 57.683 3.765 Yes 

Mixed vs. CTRL 39.221 3.351 Yes 

Baseline vs. Cg 45.75 3.07 No 

Baseline vs. Cm 44.194 2.966 No 

Baseline vs. ISO 16.806 0.953 No 

Baseline vs. Mixed 35.267 2.416 No 

Baseline vs. Pav1209 51.532 3.22 No 

Baseline vs. Pav609 52.317 3.056 No 

Cg vs. CTRL 28.738 2.379 No 

Cg vs. Pav1209 5.782 0.397 No 

Cg vs. Pav609 6.567 0.416 No 

Cg vs. TI 19.367 1.228 No 

Cm vs. Cg 1.556 0.117 No 

Cm vs. CTRL 30.294 2.508 No 

Cm vs. Pav1209 7.338 0.504 No 

Cm vs. Pav609 8.122 0.515 No 

Cm vs. TI 20.922 1.327 No 

ISO vs. Cg 28.944 1.773 No 

ISO vs. Cm 27.389 1.678 No 

ISO vs. Mixed 18.461 1.15 No 

ISO vs. Pav1209 34.726 2.003 No 

ISO vs. Pav609 35.511 1.933 No 

ISO vs. TI 48.311 2.63 No 

Mixed vs. Cg 10.483 0.807 No 

Mixed vs. Cm 8.928 0.687 No 

Mixed vs. Pav1209 16.265 1.142 No 

Mixed vs. Pav609 17.05 1.101 No 

Mixed vs. TI 29.85 1.928 No 

Pav1209 vs. CTRL 22.956 1.711 No 

Pav1209 vs. Pav609 0.785 0.0467 No 

Pav1209 vs. TI 13.585 0.808 No 

Pav609 vs. CTRL 22.171 1.505 No 

Pav609 vs. TI 12.8 0.716 No 

TI vs. CTRL 9.371 0.636 No 
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 Comparison of the diet groups with regard to K/Ca in the left valves (Figure 3.29) 

initially revealed significant differences (P=0.011) within the dataset (Table 3.23A); 

however, no pairwise comparisons revealed significant differences between the 

individual diets (Table 3.23B). One comparison, CTRL vs. Baseline, did result in a 

Difference of Ranks of 111 and associated Q value of 3.04, which was assessed further 

and the labeled insignificance regarded as questionable. Comparison of diets with 

regard to K/Ca in the collected right valves did result in two significant pairwise 

comparisons (Tables 3.24A,B): Baseline > Cg and Pav1209 > Cg.   
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Figure 3.29: Left valve median K/Ca values compared to diet. Error bars depict the 95% confidence 
intervals and diets are represented as previously identified in Figure 3.25. 
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Table 3.23A: Results of analysis of variance of left valve K/Ca among diets. Diets are represented as 
previously identified in Figure 3.25. 

One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N Missing Median 25% 75% 

Baseline 14 1 3.40E-03 3.72E-06 4.72E-03 

CTRL 61 1 2.38E-04 2.25E-05 1.49E-03 

TI 54 13 4.80E-04 3.18E-04 8.12E-04 

ISO 50 1 5.78E-04 2.83E-04 8.34E-04 

Cg 58 4 5.34E-04 2.85E-04 8.46E-04 

Cm 64 7 7.20E-04 3.61E-04 1.27E-03 

Pav609 59 5 6.84E-04 4.40E-04 9.13E-04 

Pav1209 52 5 4.58E-04 3.33E-04 1.21E-03 

Mixed 53 15 1.00E-03 4.29E-04 1.26E-03 

H = 19.9 with 8 degrees of freedom  (P = 0.011) 
 

Table 3.23B: Results of pairwise comparisons of left valve K/Ca between diets. Diets are represented as 
previously identified in Figure 3.25. 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Baseline vs. Cm 45.128 1.23 No 

Baseline vs. Pav609 55.499 1.505 No 

Baseline vs. Pav1209 69.951 1.87 No 

Baseline vs. Mixed 42.462 1.107 No 

Baseline vs. CTRL 111.162 3.044 No 

Baseline vs. TI 92.535 2.435 No 

Baseline vs. ISO 76.686 2.059 No 

Baseline vs. Cg 89.295 2.421 No 

Cm vs. Pav609 10.37 0.457 No 

Cm vs. Pav1209 24.823 1.055 No 

Cm vs. CTRL 66.033 2.991 No 

Cm vs. TI 47.407 1.939 No 

Cm vs. ISO 31.558 1.357 No 

Cm vs. Cg 44.167 1.948 No 

Pav609 vs. Pav1209 14.452 0.607 No 

Pav609 vs. CTRL 55.663 2.486 No 

Pav609 vs. TI 37.036 1.498 No 

Pav609 vs. ISO 21.187 0.9 No 

Pav609 vs. Cg 33.796 1.471 No 

Pav1209 vs. CTRL 41.211 1.772 No 
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Table 3. 23B (Continued) 
Comparison Diff of Ranks Q P<0.05 

Pav1209 vs. TI 22.584 0.885 No 

Pav1209 vs. ISO 6.735 0.276 No 

Pav1209 vs. Cg 19.344 0.812 No 

Mixed vs. Cm 2.667 0.107 No 

Mixed vs. Pav609 13.037 0.516 No 

Mixed vs. Pav1209 27.489 1.056 No 

Mixed vs. CTRL 68.7 2.776 No 

Mixed vs. TI 50.073 1.863 No 

Mixed vs. ISO 34.224 1.326 No 

Mixed vs. Cg 46.833 1.853 No 

TI vs. CTRL 18.627 0.77 No 

ISO vs. CTRL 34.476 1.5 No 

ISO vs. TI 15.849 0.627 No 

ISO vs. Cg 12.609 0.535 No 

Cg vs. CTRL 21.867 0.977 No 

Cg vs. TI 3.24 0.131 No 
 
 
Table 3.24A: Results of analysis of variance of right valve K/Ca among diets. Diets are represented as 
previously identified in Figure 3.25. 

One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N Missing Median 25% 75% 

Baseline 14 2 3.57E-03 1.32E-03 4.85E-03 

Ctrl 29 2 1.42E-03 1.87E-04 2.41E-03 

TI 17 7 1.02E-03 4.79E-04 1.44E-03 

ISO 10 2 1.35E-03 9.65E-04 1.54E-03 

Cg 19 1 3.35E-04 1.88E-04 1.31E-03 

Cm 27 6 7.16E-04 4.16E-04 2.04E-03 

Pav(609) 19 6 1.59E-03 8.92E-04 2.03E-03 

Pav(1209) 14 1 2.17E-03 1.36E-03 4.01E-03 

Mixed 31 10 1.26E-03 8.67E-04 1.52E-03 

H = 23.3 with 8 degrees of freedom  (P = 0.003) 
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Table 3.24B: Results of pairwise comparisons of right valve K/Ca between diets.  Diets are represented 
as previously identified in Figure 3.25. 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Baseline vs. Cg 51.278 3.322 Yes 

Pav(1209) vs. Cg 59.406 3.94 Yes 

Baseline vs. Cm 33.143 2.211 No 

Baseline vs. CTRL 31.148 2.167 No 

Baseline vs. ISO 26.333 1.393 No 

Baseline vs. Mixed 22.429 1.496 No 

Baseline vs. Pav(609) 15.026 0.906 No 

Baseline vs. TI 39.133 2.206 No 

Cm vs. Cg 18.135 1.363 No 

Cm vs. TI 5.99 0.376 No 

Ctrl vs. Cg 20.13 1.597 No 

Ctrl vs. Cm 1.995 0.165 No 

Ctrl vs. TI 7.985 0.521 No 

ISO vs. Cg 24.944 1.417 No 

ISO vs. Cm 6.81 0.396 No 

ISO vs. CTRL 4.815 0.289 No 

ISO vs. TI 12.8 0.651 No 

Mixed vs. Cg 28.849 2.168 No 

Mixed vs. Cm 10.714 0.838 No 

Mixed vs. CTRL 8.72 0.723 No 

Mixed vs. ISO 3.905 0.227 No 

Mixed vs. TI 16.705 1.05 No 

Pav1209 vs. Baseline 8.128 0.49 No 

Pav1209 vs. Cm 41.271 2.823 No 

Pav1209 vs. Ctrl 39.276 2.809 No 

Pav1209 vs. ISO 34.462 1.851 No 

Pav1209 vs. Mixed 30.557 2.09 No 

Pav1209 vs. Pav(609) 23.154 1.425 No 

Pav1209 vs. TI 47.262 2.712 No 

Pav609) vs. Cg 36.252 2.404 No 

Pav609 vs. Cm 18.117 1.239 No 

Pav609 vs. Ctrl 16.123 1.153 No 

Pav609 vs. ISO 11.308 0.607 No 

Pav609 vs. Mixed 7.403 0.506 No 

Pav609 vs. TI 24.108 1.384 No 

TI vs. Cg 12.144 0.743 No 
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 Figure 3.30 illustrates the left valve median Li/Ca values by diet.  Statistical 

comparison of the diet groups suggests significant differences between 11 of the groups 

(Tables 3.25A, B): Baseline vs. Cg, Baseline vs. Cm, Baseline vs. CTRL, Baseline vs. 

ISO, Baseline vs. Mixed, Baseline vs. Pav1209, Baseline vs. Pav609, TI vs. Cg, TI vs. 

Cm, TI vs. ISO, and TI vs. Pav1209.  The determined relationships are as follows: 

Baseline> Cg, Cm, CTRL, ISO, Mixed, Pav1209, Pav609; TI > Cg, Cm, ISO, and 

Pav1209. 

 The statistical comparison of the diet groups with regard to right valve Li/Ca 

(Tables 3.26A, B) identified six significant differences: Baseline vs. Cg, Baseline vs. 

Cm, Baseline vs. CTRL, Baseline vs. Mixed, Baseline vs. Pav1209, TI vs. Cg.  The 

relationships established are as follows: Baseline > Cg, Cm, CTRL, Mixed, Pav1209 

and TI> Cg. 
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Figure 3.30: Left valve median Li/Ca values compared to diet. Error bars depict the 95% confidence 
intervals and diets are represented as previously identified in Figure 3.24. 
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Table 3.25A: Results of analysis of variance of left valve Li/Ca among diets.  Diets are represented as 
previously identified in Figure 3.25. 

One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N Missing Median 25% 75% 

Baseline 14 1 4.03E-06 3.86E-06 9.15E-04 

Ctrl 61 1 2.86E-06 2.20E-06 3.30E-06 

TI 54 12 3.24E-06 2.84E-06 4.19E-06 

ISO 50 1 2.61E-06 1.94E-06 3.06E-06 

Cg 58 5 2.71E-06 1.95E-06 3.25E-06 

Cm 64 8 2.82E-06 2.08E-06 3.32E-06 

Pav(609) 59 6 2.95E-06 1.87E-06 3.89E-06 

Pav(1209) 52 5 2.68E-06 2.34E-06 3.27E-06 

Mixed 53 14 2.78E-06 2.45E-06 3.13E-06 

H = 48.1 with 8 degrees of freedom  (P = <0.001) 
 

Table 3.25B:  Results of pairwise comparisons of left valve Li/Ca between diets.  Diets are represented as 
previously identified in Figure 3.25. 
All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Baseline vs. Cg 183.868 4.989 Yes 

Baseline vs. Cm 160.536 4.379 Yes 

Baseline vs. CTRL 154.383 4.238 Yes 

Baseline vs. ISO 196.204 5.281 Yes 

Baseline vs. Mixed 157.692 4.135 Yes 

Baseline vs. Pav1209 171.617 4.599 Yes 

Baseline vs. Pav609 158.566 4.302 Yes 

TI vs. Cg 102.392 4.162 Yes 

TI vs. Cm 79.06 3.253 Yes 

TI vs. ISO 114.728 4.582 Yes 

TI vs. Pav1209 90.141 3.565 Yes 

Baseline vs. TI 81.476 2.156 No 

Cg vs. ISO 12.336 0.523 No 

Cm vs. Cg 23.332 1.022 No 

Cm vs. ISO 35.668 1.531 No 

Cm vs. Pav1209 11.081 0.47 No 

CTRL vs. Cg 29.485 1.314 No 

CTRL vs. Cm 6.152 0.278 No 

CTRL vs. ISO 41.821 1.824 No 

CTRL vs. Mixed 3.309 0.135 No 
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Table 3.25B (Continued) 
Comparison Diff of Ranks Q P<0.05 

CTRL vs. Pav1209 17.234 0.743 No 

CTRL vs. Pav609 4.183 0.186 No 

Mixed vs. Cg 26.176 1.042 No 

Mixed vs. Cm 2.843 0.114 No 

Mixed vs. ISO 38.512 1.507 No 

Mixed vs. Pav1209 13.925 0.54 No 

Mixed vs. Pav609 0.874 0.0348 No 

Pav1209 vs. Cg 12.251 0.513 No 

Pav1209 vs. ISO 24.587 1.011 No 

Pav609 vs. Cg 25.302 1.094 No 

Pav609 vs. Cm 1.97 0.0863 No 

Pav609 vs. ISO 37.638 1.595 No 

Pav609 vs. Pav1209 13.051 0.547 No 

TI vs. CTRL 72.907 3.043 No 

TI vs. Mixed 76.216 2.878 No 

TI vs. Pav609 77.09 3.134 No 
 

Table 3.26A:  Results of analysis of variance of right valve Li/Ca among diets.  Diets are represented as 
previously identified in Figure 3.25. 

One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N Missing Median 25% 75% 

Baseline 14 2 3.96E-06 3.80E-06 4.71E-04 

CTRL 29 2 2.88E-06 2.33E-06 3.68E-06 

TI 17 7 5.72E-06 2.79E-06 7.15E-06 

ISO 10 2 3.09E-06 3.02E-06 3.65E-06 

Cg 19 1 2.40E-06 1.16E-06 3.11E-06 

Cm 27 9 2.62E-06 2.55E-06 3.03E-06 

Pav609 19 7 2.97E-06 2.56E-06 3.21E-06 

Pav1209 14 1 2.79E-06 2.47E-06 3.26E-06 

Mixed 31 13 2.76E-06 2.50E-06 2.83E-06 

H = 41.0 with 8 degrees of freedom  (P = <0.001) 
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Table 3.26B: Results of pairwise comparisons of right valve Li/Ca between diets. Diets are represented 
as previously identified in Figure 3.25. 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Baseline vs. Cg 74.306 5.06 Yes 

Baseline vs. Cm 64.25 4.375 Yes 

Baseline vs. CTRL 50.398 3.687 Yes 

Baseline vs. Mixed 67.528 4.598 Yes 

Baseline vs. Pav1209 57.122 3.621 Yes 

TI vs. Cg 54.622 3.515 Yes 

Baseline vs. ISO 27.708 1.541 No 

Baseline vs. Pav609 48.333 3.005 No 

Baseline vs. TI 19.683 1.167 No 

Cm vs. Cg 10.056 0.766 No 

Cm vs. Mixed 3.278 0.25 No 

CTRL vs. Cg 23.907 1.994 No 

CTRL vs. Cm 13.852 1.155 No 

CTRL vs. Mixed 17.13 1.429 No 

CTRL vs. Pav1209 6.724 0.505 No 

ISO vs. Cg 46.597 2.783 No 

ISO vs. Cm 36.542 2.182 No 

ISO vs. Ctrl 22.69 1.43 No 

ISO vs. Mixed 39.819 2.378 No 

ISO vs. Pav1209 29.413 1.661 No 

ISO vs. Pav609 20.625 1.147 No 

Mixed vs. Cg 6.778 0.516 No 

Pav1209 vs. Cg 17.184 1.198 No 

Pav1209 vs. Cm 7.128 0.497 No 

Pav1209 vs. Mixed 10.406 0.726 No 

Pav609 vs. Cg 25.972 1.769 No 

Pav609 vs. Cm 15.917 1.084 No 

Pav609 vs. CTRL 2.065 0.151 No 

Pav609 vs. Mixed 19.194 1.307 No 

Pav609 vs. Pav1209 8.788 0.557 No 

TI vs. Cm 44.567 2.868 No 

TI vs. CTRL 30.715 2.106 No 

TI vs. ISO 8.025 0.429 No 

TI vs. Mixed 47.844 3.079 No 

TI vs. Pav1209 37.438 2.259 No 

TI vs. Pav609 28.65 1.698 No 
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 Comparison of left valve Mg/Ca between experimental diets (Tables 3.27A, B)  

revealed no significant differences, probably as a consequence of high variability 

(Figure 3.31).  Comparison of right valve Mg/Ca with regard to diet (Tables 3.28A, B) 

revealed significant differences between three of the diets: CTRL < Baseline, CTRL < 

Cg, and CTRL < Mixed.  
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Figure 3.31: Left valve median Mg/Ca values compared to diet. Error bars depict the 95% confidence 
intervals and diets are represented as previously identified in Figure 3.25. 
 

Table 3.27A: Results of analysis of variance of left valve Mg/Ca among diets.  Diets are represented as 
previously identified in Figure 3.25. 

One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N Missing Median 25% 75% 

Baseline 12 2 1.29E-03 1.13E-03 1.43E-03 

CTRL 61 1 7.14E-04 5.33E-04 1.80E-03 

TI 54 6 9.57E-04 8.38E-04 1.16E-03 

ISO 50 1 9.50E-04 7.58E-04 1.17E-03 
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Table 3.27A (Continued) 
Group N Missing Median 25% 75% 

Cg 58 3 1.02E-03 6.92E-04 1.20E-03 

Cm 64 7 1.08E-03 8.40E-04 1.57E-03 

Pav609 59 6 9.20E-04 7.60E-04 1.07E-03 

Pav1209 52 3 9.41E-04 7.54E-04 1.15E-03 

Mixed 53 12 1.13E-03 8.10E-04 1.40E-03 

H = 20.0 with 8 degrees of freedom  (P = 0.010) 
 

Table 3.27B: Results of pairwise comparisons of left valve Mg/Ca between diets.  Diets are represented 
as previously identified in Figure 3.25. 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Baseline vs. Cg 89.582 2.137 No 

Baseline vs. Cm 34.109 0.816 No 

Baseline vs. CTRL 105.983 2.544 No 

Baseline vs. ISO 90.294 2.134 No 

Baseline vs. Mixed 44.21 1.028 No 

Baseline vs. Pav1209 86.784 2.051 No 

Baseline vs. Pav609 94.826 2.255 No 

Baseline vs. TI 78.975 1.863 No 

Cg vs. CTRL 16.402 0.72 No 

Cg vs. ISO 0.712 0.0297 No 

Cg vs. Pav609 5.245 0.223 No 

Cm vs. Cg 55.473 2.406 No 

Cm vs. CTRL 71.875 3.186 No 

Cm vs. ISO 56.185 2.365 No 

Cm vs. Mixed 10.101 0.404 No 

Cm vs. Pav1209 52.675 2.217 No 

Cm vs. Pav609 60.718 2.609 No 

Cm vs. TI 44.866 1.878 No 

ISO vs. CTRL 15.689 0.668 No 

ISO vs. Pav609 4.533 0.188 No 

Mixed vs. Cg 45.372 1.803 No 

Mixed vs. CTRL 61.774 2.5 No 

Mixed vs. ISO 46.084 1.785 No 

Mixed vs. Pav1209 42.574 1.649 No 

Mixed vs. Pav609 50.617 1.995 No 

Mixed vs. TI 34.765 1.34 No 

Pav1209 vs. Cg 2.798 0.117 No 

Pav1209 vs. CTRL 19.2 0.818 No 
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Table 3.27B (Continued) 
Comparison Diff of Ranks Q P<0.05 

Pav1209 vs. ISO 3.51 0.142 No 

Pav1209 vs. Pav609 8.043 0.333 No 

Pav609 vs. CTRL 11.157 0.485 No 

TI vs. Cg 10.607 0.44 No 

TI vs. CTRL 27.008 1.144 No 

TI vs. ISO 11.319 0.457 No 

TI vs. Pav1209 7.809 0.315 No 

TI vs. Pav609 15.851 0.652 No 
 

Table 3.28A: Results of analysis of variance of right valve Mg/Ca among diets.  Diets are represented as 
previously identified in Figure 3.25. 

One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N Missing Median 25% 75% 

Baseline 14 4 1.30E-03 1.14E-03 1.47E-03 

CTRL 29 1 1.90E-03 1.69E-03 2.71E-03 

TI 17 4 1.69E-03 1.30E-03 2.26E-03 

ISO 10 2 1.54E-03 1.30E-03 1.78E-03 

Cg 19 1 1.30E-03 1.07E-03 1.58E-03 

Cm 27 6 1.72E-03 1.41E-03 2.13E-03 

Pav609 19 6 1.50E-03 1.24E-03 1.75E-03 

Pav1209 14 1 1.58E-03 1.23E-03 1.68E-03 

Mixed 31 10 1.26E-03 1.15E-03 1.52E-03 

H = 27.5 with 8 degrees of freedom  (P = <0.001) 
 

Table 3.28B: Results of pairwise comparisons of right valve Mg/Ca between diets.  Diets are represented 
as previously identified in Figure 3.25. 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

CTRL vs. Baseline 51.864 3.352 Yes 

CTRL vs. Cg 46.575 3.67 Yes 

CTRL vs. Mixed 48.036 3.962 Yes 

Cg vs. Baseline 5.289 0.319 No 

Cg vs. Mixed 1.46 0.108 No 

Cm vs. Baseline 37.543 2.326 No 

Cm vs. Cg 32.254 2.391 No 

Cm vs. ISO 10.893 0.624 No 

Cm vs. Mixed 33.714 2.601 No 
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Table 3.28B (Continued) 
Comparison Diff of Ranks Q P<0.05 

Cm vs. Pav1209 15.297 1.032 No 

Cm vs. Pav609 16.374 1.105 No 

CTRL vs. Cm 14.321 1.181 No 

CTRL vs. ISO 25.214 1.497 No 

CTRL vs. Pav1209 29.618 2.101 No 

CTRL vs. Pav609 30.695 2.177 No 

CTRL vs. TI 14.234 1.01 No 

ISO vs. Baseline 26.65 1.338 No 

ISO vs. Cg 21.361 1.197 No 

ISO vs. Mixed 22.821 1.308 No 

ISO vs. Pav1209 4.404 0.233 No 

ISO vs. Pav609 5.481 0.29 No 

Mixed vs. Baseline 3.829 0.237 No 

Pav1209 vs. Baseline 22.246 1.259 No 

Pav1209 vs. Cg 16.957 1.109 No 

Pav1209 vs. Mixed 18.418 1.243 No 

Pav1209 vs. Pav(609) 1.077 0.0654 No 

Pav609 vs. Baseline 21.169 1.198 No 

Pav609 vs. Cg 15.88 1.039 No 

Pav609 vs. Mixed 17.341 1.17 No 

TI vs. Baseline 37.631 2.13 No 

TI vs. Cg 32.342 2.116 No 

TI vs. Cm 0.0879 0.00593 No 

TI vs. ISO 10.981 0.582 No 

TI vs. Mixed 33.802 2.28 No 

TI vs. Pav1209 15.385 0.934 No 

TI vs. Pav609 16.462 0.999 No 
 

 The Mn/Ca median values of the collected left valves for each diet group are 

depicted in Figure 3.32. Fifteen of the diet group comparisons were significant (Tables 

3.29A, B) with regard to Mn/Ca associated with the collected left valves - Baseline vs. 

CTRL, Cg vs. CTRL, Cm vs. CTRL, ISO vs. Cg, ISO vs. Cm, ISO vs. CTRL, Mixed vs. 

Cg, Mixed vs. Ctrl, Pav1209 vs. Cg, Pav1209 vs. Ctrl, Pav609 vs. Cg, Pav609 vs. 

CTRL, TI vs. Cg, TI vs. Cm, TI vs. CTRL. The relationships determined are as follows: 
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CTRL< Baseline, Cg, Cm, ISO, Mixed, Pav1209, Pav609, TI; Cg< ISO, Mixed, 

Pav1209, Pav609, TI; Cm<ISO, TI. 

 Comparison of the right valve Mn/Ca between diet groups revealed 12 significant 

differences (Tables 3.30A, B):  Baseline vs. Cg, Baseline vs. CTRL, Cm vs. Cg, Cm vs. 

CTRL, ISO vs. Cg, ISO vs. CTRL, Mixed vs. Cg, Mixed vs. CTRL, Mixed vs. Pav 609, 

Mixed vs. Pav1209, TI vs. Cg, TI vs. CTRL.  The subsequent ranking of these diet 

comparisons is as follows: Cg < Baseline, Cm, ISO, Mixed, TI; CTRL < Baseline, Cm, 

ISO, Mixed, TI; Mixed> Pav609, Pav1209. 
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Figure 3.32: Left valve median Mn/Ca values compared to diet. Error bars depict the 95% confidence 
intervals and diets are represented as previously identified in Figure 3.25. 
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Table 3.29A: Results of analysis of variance of left valve Mn/Ca among diets. Diets are represented as 
previously identified in Figure 3.25. 

One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N Missing Median 25% 75% 

Baseline 14 2 5.01E-05 3.18E-05 2.00E-04 

CTRL 61 1 1.74E-05 1.20E-05 2.21E-05 

TI 54 5 8.61E-05 6.26E-05 1.13E-04 

ISO 50 1 8.96E-05 6.89E-05 1.11E-04 

Cg 58 3 3.25E-05 2.71E-05 4.02E-05 

Cm 64 7 5.20E-05 4.13E-05 7.28E-05 

Pav609 59 6 6.48E-05 5.15E-05 7.64E-05 

Pav1209 52 4 6.80E-05 5.04E-05 8.40E-05 

Mixed 53 11 6.98E-05 5.68E-05 8.27E-05 

H = 231 with 8 degrees of freedom  (P = <0.001) 
 
 
Table 3.29B: Results of pairwise comparisons of left valve Mn/Ca between diets. Diets are represented 
as previously identified in Figure 3.25. 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Baseline vs. CTRL 180.983 4.659 Yes 

Cg vs. CTRL 79.458 3.465 Yes 

Cm vs. CTRL 176.584 7.773 Yes 

ISO vs. Cg 199.64 8.274 Yes 

ISO vs. Cm 102.513 4.284 Yes 

ISO vs. CTRL 279.097 11.801 Yes 

Mixed vs. Cg 147.371 5.855 Yes 

Mixed vs. CTRL 226.829 9.179 Yes 

Pav1209 vs. Cg 130.213 5.367 Yes 

Pav1209 vs. CTRL 209.671 8.815 Yes 

Pav609 vs. Cg 125.581 5.312 Yes 

Pav609 vs. CTRL 205.038 8.855 Yes 

TI vs. Cg 186.354 7.723 Yes 

TI vs. Cm 89.227 3.729 Yes 

TI vs. Ctrl 265.812 11.239 Yes 

Baseline vs. Cg 101.526 2.594 No 

Baseline vs. Cm 4.399 0.113 No 

Cm vs. Cg 97.127 4.183 No 

ISO vs. Baseline 98.114 2.48 No 

ISO vs. Mixed 52.269 2.024 No 
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Table 3.29B (Continued) 
Comparison Diff of Ranks Q P<0.05 

ISO vs. Pav1209 69.426 2.783 No 

ISO vs. Pav609 74.059 3.042 No 

ISO vs. TI 13.286 0.535 No 

Mixed vs. Baseline 45.845 1.14 No 

Mixed vs. Cm 50.244 2.012 No 

Mixed vs. Pav1209 17.158 0.661 No 

Mixed vs. Pav609 21.79 0.859 No 

Pav1209 vs. Baseline 28.688 0.724 No 

Pav1209 vs. Cm 33.087 1.375 No 

Pav1209 vs. Pav609 4.632 0.189 No 

Pav609 vs. Baseline 24.055 0.613 No 

Pav609 vs. Cm 28.454 1.214 No 

TI vs. Baseline 84.828 2.144 No 

TI vs. Mixed 38.983 1.509 No 

TI vs. Pav1209 56.141 2.251 No 

TI vs. Pav609 60.773 2.497 No 
 

Table 3.30A: Results of analysis of variance of right valve Mn/Ca among diets. Diets are represented as 
previously identified in Figure 3.25. 

One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N Missing Median 25% 75% 

Baseline 14 2 5.43E-05 3.56E-05 2.32E-04 

Ctrl 29 1 1.83E-05 1.23E-05 2.49E-05 

TI 17 4 5.60E-05 4.94E-05 7.79E-05 

ISO 10 1 6.15E-05 4.54E-05 6.95E-05 

Cg 19 1 2.46E-05 1.97E-05 3.16E-05 

Cm 27 8 5.04E-05 3.63E-05 6.00E-05 

Pav (609) 19 7 3.80E-05 2.89E-05 4.73E-05 

Pav(1209) 14 1 3.51E-05 2.76E-05 4.47E-05 

Mixed 31 11 6.67E-05 6.22E-05 6.99E-05 

H = 91.5 with 8 degrees of freedom  (P = <0.001) 
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Table 3.30B: Results of pairwise comparisons of right valve Mn/Ca between diets.  Diets are represented 
as previously identified in Figure 3.25. 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Baseline vs. Cg 54.694 3.518 Yes 

Baseline vs. CTRL 71.738 4.984 Yes 

Cm vs. Cg 48.83 3.559 Yes 

Cm vs. CTRL 65.874 5.313 Yes 

ISO vs. Cg 60.333 3.543 Yes 

ISO vs. Ctrl 77.377 4.841 Yes 

Mixed vs. Cg 74.878 5.525 Yes 

Mixed vs. CTRL 91.921 7.527 Yes 

Mixed vs. Pav609 49.433 3.245 Yes 

Mixed vs. Pav1209 50.638 3.407 Yes 

TI vs. Cg 67.701 4.459 Yes 

TI vs. Ctrl 84.745 6.053 Yes 

Baseline vs. Cm 5.864 0.381 No 

Baseline vs. Pav609 29.25 1.718 No 

Baseline vs. Pav1209 30.455 1.824 No 

Cg vs. CTRL 17.044 1.352 No 

Cm vs. Pav 609 23.386 1.52 No 

Cm vs. Pav1209 24.591 1.638 No 

ISO vs. Baseline 5.639 0.307 No 

ISO vs. Cm 11.503 0.681 No 

ISO vs. Pav609 34.889 1.897 No 

ISO vs. Pav1209 36.094 1.995 No 

Mixed vs. Baseline 20.183 1.325 No 

Mixed vs. Cm 26.047 1.949 No 

Mixed vs. ISO 14.544 0.869 No 

Mixed vs. TI 7.177 0.483 No 

Pav609 vs. Cg 25.444 1.637 No 

Pav609 vs. CTRL 42.488 2.952 No 

Pav609 vs. Pav1209 1.205 0.0722 No 

Pav1209 vs. Cg 24.239 1.597 No 

Pav1209 vs. CTRL 41.283 2.949 No 

TI vs. Baseline 13.006 0.779 No 

TI vs. Cm 18.87 1.257 No 

TI vs. ISO 7.368 0.407 No 

TI vs. Pav609 42.256 2.531 No 

TI vs. Pav1209 43.462 2.656 No 
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 The median P/Ca values for the collected left valves and associated diet are 

depicted in Figure 3.33. No baseline data are available for this elemental ratio. Ten diet 

comparisons with regard to P/Ca were determined significant (Tables 3.31A, B): ISO vs. 

Cg, ISO vs. Cm, ISO vs. CTRL, ISO vs. Mixed, ISO vs. Pav1209, ISO vs. Pav609, ISO 

vs. TI, TI vs. Cg, TI vs. Cm, and TI vs. Mixed.  The subsequent ranking of these diet 

groups is as follows: ISO> Cg, Cm, CTRL, Mixed, Pav1209, Pav609, TI and TI> Cg, Cm 

and Mixed. 

 Analysis of variance related to the right valve P/Ca per diet also identified 

significant differences within the dataset (P=0.006, Table 3.32A).  The post hoc pairwise 

analysis, however,  revealed no significant difference between any of the individual diet 

groups (Table 3.32B).  
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Figure 3.33: Left valve median P/Ca values compared to diet. Error bars depict the 95% confidence 
intervals and diets are represented as previously identified in Figure 3.25. 
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Table 3.31A: Results of analysis of variance of left valve P/Ca among diets. Diets are represented as 
previously identified in Figure 3.25. 

One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N Missing Median 25% 75% 

CTRL 61 6 5.61E-04 3.02E-04 1.37E-03 

TI 53 13 8.73E-04 6.10E-04 1.15E-03 

ISO 50 7 1.15E-03 9.35E-04 2.09E-03 

Cg 57 10 5.38E-04 3.62E-04 8.93E-04 

Cm 62 18 5.49E-04 4.80E-04 6.66E-04 

Pav609 58 18 5.83E-04 4.97E-04 7.82E-04 

Pav1209 52 12 7.95E-04 5.63E-04 9.05E-04 

Mixed 53 12 5.11E-04 4.41E-04 7.38E-04 

H = 81.7 with 7 degrees of freedom  (P = <0.001) 
 

Table 3.31B: Results of pairwise comparisons of left valve P/Ca between diets.  Diets are represented as 
previously identified in Figure 3.25. 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

ISO vs. Cg 142.666 6.682 Yes 

ISO vs. Cm 150.024 6.915 Yes 

ISO vs. Ctrl 133.924 6.502 Yes 

ISO vs. Mixed 153.753 6.962 Yes 

ISO vs. Pav1209 96.195 4.328 Yes 

ISO vs. Pav609 133.42 6.003 Yes 

ISO vs. TI 72.22 3.249 Yes 

TI vs. Cg 70.446 3.237 Yes 

TI vs. Cm 77.805 3.52 Yes 

TI vs. Mixed 81.533 3.626 Yes 

Cg vs. Cm 7.359 0.347 No 

Cg vs. Mixed 11.087 0.513 No 

Cm vs. Mixed 3.728 0.17 No 

CTRL vs. Cg 8.741 0.435 No 

CTRL vs. Cm 16.1 0.787 No 

CTRL vs. Mixed 19.828 0.95 No 

Pav1209 vs. Cg 46.471 2.135 No 

Pav1209 vs. Cm 53.83 2.435 No 

Pav1209 vs. Ctrl 37.73 1.794 No 

Pav1209 vs. Mixed 57.558 2.56 No 

Pav1209 vs. Pav609 37.225 1.645 No 
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Table 3.31B (Continued) 
Comparison Diff of Ranks Q P<0.05 

Pav609 vs. Cg 9.246 0.425 No 

Pav609 vs. Cm 16.605 0.751 No 

Pav609 vs. Ctrl 0.505 0.024 No 

Pav609 vs. Mixed 20.333 0.904 No 

TI vs. Ctrl 61.705 2.935 No 

TI vs. Pav1209 23.975 1.06 No 

TI vs. Pav609 61.2 2.705 No 
 

Table 3.32A: Results of analysis of variance of right valve P/Ca among diets. Diets are represented as 
previously identified in Figure 3.25. 

One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N Missing Median 25% 75% 

CTRL 26 1 8.23E-04 6.38E-04 1.39E-03 

TI 17 7 8.75E-04 4.76E-04 1.56E-03 

ISO 10 1 7.96E-04 6.94E-04 1.33E-03 

Cg 19 1 9.91E-04 6.06E-04 1.88E-03 

Cm 27 9 5.60E-04 4.65E-04 6.12E-04 

Pav609 19 9 6.51E-04 4.49E-04 8.70E-04 

Pav1209 14 1 9.23E-04 6.63E-04 1.10E-03 

Mixed 31 11 6.03E-04 4.66E-04 9.19E-04 

H = 20.0 with 7 degrees of freedom  (P = 0.006) 
 

Table 3.32B: Results of pairwise comparisons of right valve P/Ca between diets. Diets are represented as 
previously identified in Figure 3.25. 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

CTRL vs. Cm 33.791 3.066 No 

CTRL vs. Mixed 24.73 2.312 No 

CTRL vs. Pav609 24.98 1.873 No 

CTRL vs. TI 4.48 0.336 No 

Cg vs. CTRL 3.042 0.276 No 

Cg vs. Cm 36.833 3.099 No 

Cg vs. ISO 0.278 0.0191 No 

Cg vs. Mixed 27.772 2.398 No 

Cg vs. Pav609 28.022 1.993 No 

Cg vs. Pav1209 2.722 0.21 No 
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Table 3.32B (Continued) 
Comparison Diff of Ranks Q P<0.05 

Cg vs. TI 7.522 0.535 No 

ISO vs. CTRL 2.764 0.199 No 

ISO vs. Cm 36.556 2.512 No 

ISO vs. Mixed 27.494 1.921 No 

ISO vs. Pav609 27.744 1.694 No 

ISO vs. Pav1209 2.444 0.158 No 

ISO vs. TI 7.244 0.442 No 

Mixed vs. Cm 9.061 0.782 No 

Mixed vs. Pav609 0.25 0.0181 No 

Pav609 vs. Cm 8.811 0.627 No 

Pav1209 vs. CTRL 0.32 0.0262 No 

Pav1209 vs. Cm 34.111 2.629 No 

Pav1209 vs. Mixed 25.05 1.972 No 

Pav1209 vs. Pav609 25.3 1.687 No 

Pav1209 vs. TI 4.8 0.32 No 

TI vs. Cm 29.311 2.085 No 

TI vs. Mixed 20.25 1.467 No 

TI vs. Pav609 20.5 1.286 No 
 

 The median Si/Ca values by diet for the left valves collected are depicted in 

Figure 3.34.  Significant differences were revealed in ten diet group comparisons with 

regard to left valve Si/Ca (Tables 3.33A, B), and the following ranks established: Mixed 

< Baseline, CTRL, ISO, Pav1209, Pav609, TI; Pav1209 > Cg, Cm; Pav609 > Cg, Cm. 

 The comparisons of right valves collected with regard to Si/Ca revealed 

significant differences in nine comparisons (Tables 3.34A, B): Baseline vs. Cg, Baseline 

vs. Cm, Baseline vs. Mixed, Baseline vs. Pav609, Baseline vs. Pav1209, Ctrl vs. Cg, 

CTRL vs. Mixed, CTRL vs. Pav609, and CTRL vs. Pav1209. Based on these 

assessments, the subsequent rankings of the diet groups are as follows: Baseline > Cg, 

Cm, Mixed, Pav609, Pav1209 and CTRL > Cg, Mixed, Pav609, and Pav1209. 
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Figure 3.34: Left valve median Si/Ca values compared to diet. Error bars depict the 95% confidence 
intervals and diets are represented as previously identified in Figure 3.25. 
 

Table 3.33A: Results of analysis of variance of left valve Si/Ca among diets. Diets are represented as 
previously identified in Figure 3.25. 

One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N Missing Median 25% 75% 

Baseline 10 1 4.17E-04 2.93E-04 5.26E-04 

CTRL 61 1 3.13E-04 1.66E-04 5.09E-04 

TI 54 7 3.64E-04 2.28E-04 7.26E-04 

ISO 50 1 3.21E-04 2.13E-04 4.98E-04 

Cg 58 3 1.68E-04 1.24E-04 2.36E-04 

Cm 64 8 1.64E-04 9.96E-05 2.69E-04 

Pav609 59 7 6.27E-04 4.74E-04 7.29E-04 

Pav1209 52 4 6.22E-04 4.17E-04 8.29E-04 

Mixed 53 12 1.23E-04 9.46E-05 1.95E-04 

H = 109 with 8 degrees of freedom  (P = <0.001) 
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Table 3.33B: Results of pairwise comparisons of left valve Si/Ca between diets.  Diets are represented as 
previously identified in Figure 3.25. 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Baseline vs. Mixed 146.965 3.313 Yes 

CTRL vs. Mixed 113.37 4.642 Yes 

ISO vs. Mixed 111.609 4.375 Yes 

Pav1209 vs. Cg 149.294 6.271 Yes 

Pav1209 vs. Cm 137.324 5.793 Yes 

Pav1209 vs. Mixed 171.874 6.706 Yes 

Pav609 vs. Cg 148.677 6.378 Yes 

Pav609 vs. Cm 136.707 5.89 Yes 

Pav609 vs. Mixed 171.258 6.804 Yes 

TI vs. Mixed 137.492 5.338 Yes 

Baseline vs. Cg 124.384 2.87 No 

Baseline vs. Cm 112.415 2.597 No 

Baseline vs. CTRL 33.594 0.78 No 

Baseline vs. ISO 35.356 0.809 No 

Baseline vs. TI 9.473 0.216 No 

Cg vs. Mixed 22.581 0.908 No 

Cm vs. Cg 11.969 0.523 No 

Cm vs. Mixed 34.55 1.395 No 

CTRL vs. Cg 90.789 4.035 No 

CTRL vs. Cm 78.82 3.52 No 

CTRL vs. ISO 1.762 0.0759 No 

ISO vs. Cg 89.028 3.76 No 

ISO vs. Cm 77.059 3.269 No 

Pav1209 vs. Baseline 24.91 0.569 No 

Pav1209 vs. CTRL 58.504 2.507 No 

Pav1209 vs. ISO 60.266 2.462 No 

Pav1209 vs. Pav609 0.617 0.0256 No 

Pav1209 vs. TI 34.383 1.39 No 

Pav609 vs. Baseline 24.293 0.558 No 

Pav609 vs. CTRL 57.887 2.535 No 

Pav609 vs. ISO 59.649 2.486 No 

Pav609 vs. TI 33.766 1.392 No 

TI vs. Cg 114.911 4.8 No 

TI vs. Cm 102.942 4.318 No 

TI vs. CTRL 24.122 1.027 No 

TI vs. ISO 25.883 1.052 No 
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Table 3.34A: Results of analysis of variance of right valve Si/Ca among diets. Diets are represented as 
previously identified in Figure 3.25. 

One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N Missing Median 25% 75% 

Baseline 10 1 3.68E-04 2.94E-04 5.58E-04 

CTRL 29 1 2.03E-04 1.76E-04 3.10E-04 

TI 17 8 1.50E-04 1.11E-04 1.90E-04 

ISO 10 1 1.40E-04 1.26E-04 2.56E-04 

Cg 19 1 7.78E-05 5.92E-05 1.72E-04 

Cm 27 9 8.49E-05 5.32E-05 2.90E-04 

Pav 609 19 9 3.34E-05 9.35E-06 1.18E-04 

Pav1209 14 1 3.39E-05 2.02E-05 1.05E-04 

Mixed 31 11 1.06E-04 7.17E-05 1.32E-04 

H = 46.9 with 8 degrees of freedom  (P = <0.001) 
 

Table 3.34B: Results of pairwise comparisons of right valve Si/Ca between diets.  Diets are represented 
as previously identified in Figure 3.25. 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Baseline vs. Cg 59.833 3.775 Yes 

Baseline vs. Cm 54.778 3.456 Yes 

Baseline vs. Mixed 58.456 3.751 Yes 

Baseline vs. Pav609 77.056 4.319 Yes 

Baseline vs. Pav1209 79.786 4.739 Yes 

CTRL vs. Cg 39.385 3.358 Yes 

CTRL vs. Mixed 38.007 3.344 Yes 

CTRL vs. Pav609 56.607 3.958 Yes 

CTRL vs. Pav1209 59.338 4.554 Yes 

Baseline vs. CTRL 20.448 1.374 No 

Baseline vs. ISO 36.778 2.009 No 

Baseline vs. TI 40.222 2.198 No 

Cg vs. Pav609 17.222 1.125 No 

Cg vs. Pav1209 19.953 1.412 No 

Cm vs. Cg 5.056 0.391 No 

Cm vs. Mixed 3.678 0.292 No 

Cm vs. Pav609 22.278 1.455 No 

Cm vs. Pav1209 25.009 1.77 No 

CTRL vs. Cm 34.329 2.927 No 

CTRL vs. ISO 16.329 1.098 No 
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Table 3.34B (Continued) 
Comparison Diff of Ranks Q P<0.05 

CTRL vs. TI 19.774 1.329 No 

ISO vs. Cg 23.056 1.455 No 

ISO vs. Cm 18 1.136 No 

ISO vs. Mixed 21.678 1.391 No 

ISO vs. Pav609 40.278 2.258 No 

ISO vs. Pav1209 43.009 2.555 No 

ISO vs. TI 3.444 0.188 No 

Mixed vs. Cg 1.378 0.109 No 

Mixed vs. Pav609 18.6 1.237 No 

Mixed vs. Pav1209 21.331 1.542 No 

Pav 609 vs. Pav1209 2.731 0.167 No 

TI vs. Cg 19.611 1.237 No 

TI vs. Cm 14.556 0.918 No 

TI vs. Mixed 18.233 1.17 No 

TI vs. Pav609 36.833 2.065 No 

TI vs. Pav1209 39.564 2.35 No 
 

 Again there was no baseline data for the examination of Sr enrichment. With 

regard to comparison of Sr/Ca in the left valves (Figure 3.35), significant differences 

were revealed to exist between four diet groupings: Cm vs. ISO, Cm vs. Pav1209, Cm 

vs. Pav609, and Mixed vs. Pav1209.  The subsequent ranking of these comparisons 

(Tables 35A, B) is as follows: Cm > ISO, Pav609, Pav1209 and Mixed > Pav1209.  In 

terms of right valve comparisons of Sr/Ca by diet (Tables 36A, B), only the TI vs. CG 

comparison proved significant, and the TI group revealed to have a higher Sr/Ca than 

that from the Cg group. 
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Figure 3.35: Left valve median Sr/Ca values compared to diet. Error bars depict the 95% confidence 
intervals and diets are represented as previously identified in Figure 3.25. 
 

Table 3.35A: Results of analysis of variance of left valve Sr/Ca among diets.  Diets are represented as 
previously identified in Figure 3.25. 

One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N Missing Median 25% 75% 

CTRL 61 1 4.80E-03 4.48E-03 5.46E-03 

TI 54 5 5.20E-03 4.54E-03 6.30E-03 

ISO 50 1 4.77E-03 4.19E-03 5.84E-03 

Cg 58 3 4.99E-03 4.11E-03 6.50E-03 

Cm 64 7 5.73E-03 4.51E-03 7.48E-03 

Pav609 59 1 4.91E-03 4.34E-03 5.36E-03 

Pav1209 52 10 4.56E-03 4.06E-03 5.21E-03 

Mixed 53 6 5.41E-03 4.59E-03 6.68E-03 

H = 28.9 with 7 degrees of freedom  (P = <0.001) 
 

 

 

 

129 
 



Table 3.35B: Results of pairwise comparisons of left valve Sr/Ca between diets. Diets are represented as 
previously identified in Figure 3.25. 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Cm vs. ISO 73.511 3.131 Yes 

Cm vs. Pav1209 102.218 4.171 Yes 

Cm vs. Pav609 71.485 3.18 Yes 

Mixed vs. Pav1209 90.414 3.533 Yes 

Cg vs. CTRL 12.385 0.55 No 

Cg vs. ISO 25.006 1.056 No 

Cg vs. Pav1209 53.713 2.175 No 

Cg vs. Pav609 22.98 1.013 No 

Cm vs. Cg 48.505 2.129 No 

Cm vs. CTRL 60.889 2.731 No 

Cm vs. Mixed 11.804 0.497 No 

Cm vs. TI 23.47 1 No 

CTRL vs. ISO 12.621 0.544 No 

CTRL vs. Pav1209 41.329 1.704 No 

CTRL vs. Pav609 10.595 0.477 No 

ISO vs. Pav1209 28.707 1.133 No 

Mixed vs. Cg 36.701 1.533 No 

Mixed vs. CTRL 49.086 2.091 No 

Mixed vs. ISO 61.707 2.508 No 

Mixed vs. Pav609 59.681 2.523 No 

Mixed vs. TI 11.666 0.474 No 

Pav609 vs. ISO 2.026 0.0866 No 

Pav609 vs. Pav1209 30.733 1.259 No 

TI vs. Cg 25.035 1.057 No 

TI vs. CTRL 37.42 1.612 No 

TI vs. ISO 50.041 2.055 No 

TI vs. Pav1209 78.748 3.107 No 

TI vs. Pav609 48.015 2.053 No 
 

 The final elemental ratio analyzed was Zn/Ca.  In the comparisons of the left 

valves (Figure 3.36), only two significant differences between diets were revealed – ISO 

vs. Baseline and ISO vs. Cg.  In both cases, the left valve Zn/Ca was lower in the ISO 

diet group (Tables 3.37A, B). In the comparisons of the right valves by diet with regard 
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to Zn/Ca (Tables 3.38A, B), four significant differences between diets were revealed 

and the following ranking established: Cg and CTRL > Mixed and Pav1209. 

 

Table 3.36A: Results of analysis of variance of right valve Sr/Ca among diets.  Diets are represented as 
previously identified in Figure 3.25. 

One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N Missing Median 25% 75% 

CTRL 29 1 4.89E-03 4.33E-03 5.86E-03 

TI 17 3 6.40E-03 5.05E-03 7.42E-03 

ISO 10 1 4.79E-03 4.25E-03 5.88E-03 

Cg 19 1 3.70E-03 3.24E-03 5.04E-03 

Cm 27 7 4.99E-03 4.57E-03 5.51E-03 

Pav (609) 19 2 4.95E-03 4.19E-03 5.28E-03 

Pav(1209) 14 11 5.12E-03 4.90E-03 5.69E-03 

Mixed 31 6 4.81E-03 4.38E-03 5.82E-03 

H = 21.0 with 7 degrees of freedom  (P = 0.004) 
 

Table 3.36B: Results of pairwise comparisons of right valve Sr/Ca between diets. Diets are represented 
as previously identified in Figure 3.25. 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

TI vs. Cg 61.722 4.461 Yes 

CTRL vs. Cm 1.507 0.133 No 

CTRL vs. Cg 33.329 2.841 No 

CTRL vs. Mixed 6.167 0.577 No 

CTRL vs. Pav609 8.137 0.682 No 

CTRL vs. ISO 5.94 0.399 No 

Cm vs. Cg 31.822 2.523 No 

Cm vs. Mixed 4.66 0.4 No 

Cm vs. Pav609 6.629 0.518 No 

Cm vs. ISO 4.433 0.284 No 

TI vs. CTRL 28.393 2.234 No 

TI vs. Cm 29.9 2.21 No 

TI vs. Mixed 34.56 2.667 No 

TI vs. Pav609 36.529 2.607 No 

TI vs. Pav1209 19 0.769 No 

TI vs. ISO 34.333 2.07 No 
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Table 3.36B (Continued) 
Comparison Diff of Ranks Q P<0.05 

Mixed vs. Cg 27.162 2.263 No 

Mixed vs. Pav609 1.969 0.161 No 

Pav609 vs. Cg 25.193 1.919 No 

Pav1209 vs. CTRL 9.393 0.398 No 

Pav1209 vs. Cm 10.9 0.453 No 

Pav1209 vs. Cg 42.722 1.764 No 

Pav1209 vs. Mixed 15.56 0.656 No 

Pav1209 vs. Pav609 17.529 0.721 No 

Pav1209 vs. ISO 15.333 0.592 No 

ISO vs. Cg 27.389 1.728 No 

ISO vs. Mixed 0.227 0.015 No 

ISO vs. Pav609 2.196 0.137 No 
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Figure 3.36: Left valve median Zn/Ca values compared to diet. Error bars depict the 95% confidence 
intervals and diets are represented as previously identified in Figure 3.25. 
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Table 3.37A: Results of analysis of variance of left valve Zn/Ca among diets.  Diets are represented as 
previously identified in Figure 3.25. 

One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N Missing Median 25% 75% 

Baseline 14 2 2.00E-05 1.61E-05 2.80E-05 

CTRL 58 17 9.74E-06 3.23E-06 1.96E-05 

TI 35 21 1.28E-05 9.36E-06 2.58E-05 

ISO 25 11 5.27E-06 -2.54E-04 1.18E-05 

Cg 39 7 2.45E-05 4.28E-06 8.13E-05 

Cm 45 27 1.12E-05 7.03E-06 1.59E-05 

Pav609 39 17 6.96E-06 2.59E-06 1.98E-05 

Pav1209 20 5 1.07E-05 9.01E-06 2.02E-05 

Mixed 29 10 1.49E-05 9.21E-06 2.37E-05 

H = 20.2 with 8 degrees of freedom  (P = 0.010) 
 

Table 3.37B: Results of pairwise comparisons of left valve Zn/Ca between diets. Diets are represented as 
previously identified in Figure 3.25. 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Baseline vs. ISO 72.357 3.398 Yes 

Cg vs. ISO 57.42 3.311 Yes 

Baseline vs. Cg 14.938 0.815 No 

Baseline vs. Cm 37.056 1.837 No 

Baseline vs. CTRL 46.378 2.611 No 

Baseline vs. Mixed 20.816 1.043 No 

Baseline vs. Pav1209 25.367 1.21 No 

Baseline vs. Pav609 44.136 2.272 No 

Baseline vs. TI 32.714 1.536 No 

Cg vs. Cm 22.118 1.387 No 

Cg vs. CTRL 31.441 2.463 No 

Cg vs. Mixed 5.878 0.375 No 

Cg vs. Pav1209 10.429 0.616 No 

Cg vs. Pav609 29.199 1.948 No 

Cg vs. TI 17.777 1.025 No 

Cm vs. CTRL 9.322 0.609 No 

Cm vs. ISO 35.302 1.83 No 

Cm vs. Pav609 7.081 0.412 No 

CTRL vs. ISO 25.979 1.551 No 

Mixed vs. Cm 16.24 0.912 No 
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Table 3.37B (Continued) 
Comparison Diff of Ranks Q P<0.05 

Mixed vs. CTRL 25.562 1.702 No 

Mixed vs. ISO 51.541 2.704 No 

Mixed vs. Pav1209 4.551 0.243 No 

Mixed vs. Pav609 23.321 1.376 No 

Mixed vs. TI 11.898 0.624 No 

Pav1209  vs. Cm 11.689 0.618 No 

Pav1209 vs. Ctrl 21.011 1.286 No 

Pav1209 vs. ISO 46.99 2.336 No 

Pav1209 vs. Pav609 18.77 1.036 No 

Pav1209 vs. TI 7.348 0.365 No 

Pav609 vs. CTRL 2.242 0.157 No 

Pav609 vs. ISO 28.221 1.525 No 

TI vs. Cm 4.341 0.225 No 

TI vs. CTRL 13.664 0.816 No 

TI vs. ISO 39.643 1.938 No 

TI vs. Pav609 11.422 0.617 No 
 

Table 3.38A: Results of analysis of variance of right valve Zn/Ca among diets. Diets are represented as 
previously identified in Figure 3.25. 

One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N Missing Median 25% 75% 

Baseline 14 2 2.10E-05 1.41E-05 2.62E-05 

CTRL 27 1 3.35E-05 2.30E-05 4.63E-05 

TI 17 12 1.50E-05 1.25E-05 2.11E-05 

ISO 10 5 1.70E-05 1.30E-05 2.60E-05 

Cg 19 1 7.23E-05 3.03E-05 8.46E-05 

Cm 24 9 2.03E-05 1.79E-05 2.67E-05 

Pav609 19 9 2.43E-05 1.51E-05 6.42E-05 

Pav1209 14 1 1.32E-05 9.40E-06 2.02E-05 

Mixed 29 11 1.25E-05 9.75E-06 2.17E-05 

H = 43.9 with 8 degrees of freedom  (P = <0.001) 
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Table 3.38B: Results of pairwise comparisons of right valve Zn/Ca between diets. Diets are represented 
as previously identified in Figure 3.25. 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Cg vs. Mixed 63.667 5.401 Yes 

Cg vs. Pav1209 60.158 4.674 Yes 

CTRL vs. Mixed 42.47 3.917 Yes 

CTRL vs. Pav1209 38.962 3.244 Yes 

Baseline vs. Cm 1.117 0.0815 No 

Baseline vs. ISO 8.85 0.47 No 

Baseline vs. Mixed 21.528 1.634 No 

Baseline vs. Pav1209 18.019 1.273 No 

Baseline vs. TI 14.45 0.768 No 

Cg vs. Baseline 42.139 3.197 No 

Cg vs. Cm 43.256 3.499 No 

Cg vs. CTRL 21.197 1.955 No 

Cg vs. ISO 50.989 2.852 No 

Cg vs. Pav609 32.889 2.358 No 

Cg vs. TI 56.589 3.166 No 

Cm vs. ISO 7.733 0.423 No 

Cm vs. Mixed 20.411 1.651 No 

Cm vs. Pav1209 16.903 1.261 No 

Cm vs. TI 13.333 0.73 No 

CTRL vs. Baseline 20.942 1.697 No 

CTRL vs. Cm 22.059 1.924 No 

CTRL vs. ISO 29.792 1.725 No 

CTRL vs. Pav609 11.692 0.889 No 

CTRL vs. TI 35.392 2.05 No 

ISO vs. Mixed 12.678 0.709 No 

ISO vs. Pav1209 9.169 0.493 No 

ISO vs. TI 5.6 0.25 No 

Pav609 vs. Baseline 9.25 0.611 No 

Pav609 vs. Cm 10.367 0.718 No 

Pav609 vs. ISO 18.1 0.934 No 

Pav609 vs. Mixed 30.778 2.207 No 

Pav609 vs. Pav1209 27.269 1.833 No 

Pav609 vs. TI 23.7 1.224 No 

Pav1209 vs. Mixed 3.509 0.273 No 

TI vs. Mixed 7.078 0.396 No 

TI vs. Pav1209 3.569 0.192 No 
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Correlation analysis: time, growth, and element association 

 Because the dataset being analyzed was shown to have different degrees of 

normality dependent upon the variables being examined, two separate correlation 

analyses were conducted: 1) Pearson Product Moment Correlation and 2) Spearman’ 

Correlation.  These tests were used to further examine the association of elemental 

composition (element/Ca ratios) with 1) time (month of collection), 2) growth (shell 

length and mass), and 3) other elements present. 

 Table 3.39A provides the Correlation Coefficients, associated P-value, and 

Sample size (n) for each correlation determined significant with regard to element ratio 

association with time, shell length and valve mass using the Pearson’s correlation 

procedure. Ranking of the strength of association was based on weak <0.3, moderate 

0.3-0.7, and strong >0.7. The Ba/Ca, Co/Ca, K/Ca, Li/Ca, Mg/Ca, and Zn/Ca ratios all 

showed a weak to moderate association with time with the only positive correlation 

revealed for Co/Ca (Table 3.39A, B). Barium/calcium, Co/Ca, Mg/Ca, and Ni/Ca were 

associated with length and mass with directionality element specific (Table 3.39B). The 

Ni/Ca associations, as with the prior analyses, however, were based on a small sample 

size and considered indeterminate. 

 The Spearman’s correlation procedure was performed after the Pearson 

correlation analysis on the same dataset (Table 3.40).  A different strategy for 

classifying level of association was used:  moderate association was assumed 0.4-0.6 

and weak and strong either side of the moderate. Those comparisons showing 

significant association with time were length, mass, B/Ca, Ba/Ca, Co/Ca, Cu/Ca, Fe/Ca, 

K/Ca, Mg/Ca, Mn/Ca, P/Ca, Si/Ca, and Zn/Ca.   Associations with length were shown to 
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exist in variable degrees with mass, Ba/Ca, Co/Ca, Fe/Ca, K/Ca, Li/Ca, Mg/Ca, Ni/Ca, 

P/Ca, Sr/Ca, and Zn/Ca.  Lastly, associations with mass were revealed for Ba/Ca, 

Co/Ca, Fe/Ca, K/Ca, Li/Ca, Mg/Ca, Ni/Ca, P/Ca, Sr/Ca, and Zn/Ca.  

 After consideration of the descriptive statistics, data plots, and results of the 

correlation analyses, the most appropriate and best fit function was determined.  Table 

3.41 identifies the best fit identified between monotonic and linear relationships by 

variable.  It is important to understand that these associations and descriptions are 

specific to the dataset being used and overall results of the present study.  

 Further analyses were performed to determine if any associations were evident 

between the different elemental ratios examined during the course of this study.  Again, 

a Pearson correlation and Spearman correlation were performed due to the mixed 

nature of the data set. Many of the comparisons show a moderate to strong association 

within the context of the Pearson correlation procedure with Fe, Mg, Mn, Si, and Sr 

being most often seemingly associated with the other elemental ratios.  The majority of 

the associations identified was positive and summarized in Table 3.42. For comparison, 

the results of the Spearman correlations are provided in Table 3.43. It is evident that 

there is more often an association between the ratios than not.  This interpretation, 

however, is specific to the findings of the present study.   

 

Discussion 
 
 The dominant focus of past research has been aimed at determining chemical 

signatures in bivalve shells that are capable of being used as environmental proxies.  

Researchers, however, have frequently noted apparent confounded trends in these  
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Table 3.39A: Pearson correlation analysis results of significance for element/calcium ratio associations with time, shell length, and valve mass.  
The correlation coefficient (Corr Coef), the P value (P), and the number of samples examined (n) are provided.  The shading variations indicate 
level of association based on the correlation coefficient (light shade = weak, medium shade = moderate, dark shade = strong). 

  Length Mass Ba Co K Li Mg Ni Zn 

Time  

Corr 
Coef 0.253 0.304 -0.301 0.666 -0.277 -0.216 -0.319   -0.285 

P 
1.30E-

07 
1.79E-

10 2.90E-09 2.96E-18 8.68E-08 3.35E-05 3.23E-10   3.70E-04 

n 422 422 373 132 362 362 370   152 

Length 

Corr 
Coef   0.906 -0.261 0.295     0.112 -0.564   

P   
6.03E-

181 4.07E-08 2.56E-04     2.12E-02 2.19E-03   

n   480 428 149     425 27   

Mass 

Corr 
Coef     -0.227 0.345     0.0961 -0.511   

P     2.00E-06 1.69E-05     4.77E-02 6.49E-03   

n     428 149     425 27   
 

 

Table 3.39B: Direction of association for initial Pearson correlations 
 
 
 
 
 
 
 
 
 

 
 
 
 

  time length mass Ba Co K Li Mg Ni Zn 

time   + + - + - - - - - 

length     + - +   + -  

mass       - +   + -  
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Table 3.40 Spearman’s correlation analysis results of significance for element/calcium ratio associations with time, shell length, and valve mass. 

 
Len mass B Ba Co Cu Fe K Li Mg Mn Ni P Si Sr Zn 

time 

CC 0.216 0.252 0.174 -0.186 0.63 -0.439 0.356 -0.415   -0.435 0.269   0.17 0.502   -0.687 

P Value 0 0 0 0 0 0 0 0   0 0   0.003 0   0 

n 422 422 374 373 132 237 361 362   370 373   303 365   152 

length 

CC   0.957   -0.305 0.235   -0.153 0.44 0.311 0.381   -0.626 0.154   0.645 -0.174 

P Value   0   0 0.004   0.0017 0 0 0   0 0.004   0 0.0182 

n   480   428 149   416 416 415 425   27 350   420 184 

mass 

CC       -0.306 0.258   -0.14 0.447 0.296 0.371   -0.611 0.185   0.641 -0.18 

P Value       0 0.002   0.0042 0 0 0   0 0   0 0.0144 

n       428 149   416 416 415 425   27 350   420 184 
 

 

Table 3.41 Best fit correlation function for data description. 
Linear  Ba/Ca Co/Ca Li/Ca Mg/Ca Ni/Ca           
Monotonic length mass B/Ca Cu/Ca Fe/Ca K/Ca P/Ca Si/Ca Sr/Ca Zn/Ca 
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Table 3.42: Significant element/calcium ratio correlation results – Pearson correlation. Weak associations 
have been highlighted in light grey; moderate in a shade darker and the strong associations the darkest 
shade. The correlation coefficient (Corr Coef), the P value (P), and the number of samples examined (n) 
are provided in order. 

  Co/Ca Fe/Ca K/Ca Li/Ca Mg/Ca Mn/Ca P/Ca Si/Ca Sr/Ca Zn/Ca 

B/Ca 

-0.175 0.997 0.925   0.83 0.985 -0.231 0.999 0.983   

0.0326 0 
2.92E-

173   
1.54E-

107 
6.818E-
322 

0.00001
35 0 

1.35E-
291   

149 413 408   418 420 348 417 395   

Ba/Ca 

    0.217             0.314 

    9.91E-06             
0.00001

41 

    409             184 

Co/Ca 

            0.516 0.268 0.251 -0.499 

            2.71E-09 0.00102 0.00322 
0.00001

46 

            117 147 136 68 

Fe/Ca 

    0.915 0.84 0.829 0.989 0.118 0.999 0.997   

    
5.15E-

159 
5.90E-

108 
3.99E-

105 0 0.0289 0 0   

    401 400 410 413 344 411 383   

K/Ca 

        0.905 0.894 0.227 0.914 0.959   

        
1.30E-

154 
4.97E-

145 
0.00002

99 
7.16E-

160 
4.19E-

212   

        412 413 333 405 386   

Li/Ca 

          0.718     0.554   

          1.24E-66     2.36E-32   

          413     385   

Mg/Ca 

          0.809 0.233 0.823 0.842   

          2.79E-99 
0.00001

15 
5.67E-

104 
8.58E-

108   

          423 346 417 396   

Mn/Ca 

            0.116 0.995 0.99   

            0.0302 0 0   

            347 418 397   

P/Ca 

                    

                    

                    

Si/Ca 

                0.995 -0.16 

                0 0.0312 

                391 181 
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Table 3.43 Significant element/calcium ratio correlation results – Spearman correlation. Weak 
associations have been highlighted in light grey; moderate in a shade darker and the strong associations 
the darkest shade. The correlation coefficient, The P value, and the number of samples examined 
provided in order (Top to bottom) for each comparison. 

  Ba/Ca Co/Ca Cu/Ca Fe/Ca K/Ca Li/Ca 
Mg/ 
Ca 

Mn/ 
Ca Ni/Ca P/Ca Si/Ca Sr/Ca Zn/Ca 

B/Ca 

-0.186 0.167     -0.102 0.425     0.4 -0.166 0.186 0.412   

0 0.042     
0.039

3 0     
0.038

4 
0.001

9 0 0   

424 149     408 409     27 348 417 395   

Ba/Ca 

    0.162 0.294       0.15       -0.31 0.353 

    
0.008

1 0       
0.002

1       0 0 

    267 412       419       394 184 

Co/Ca 

      0.291   0.449   0.185   0.59 0.371 0.267   

      0   0   
0.024

4   0 0 
0.001

7   

      143   149   148   117 147 136   

Cu/Ca 

        0.192 0.25 0.417 -0.24     -0.194   0.563 

        
0.001

9 0 0 0     
0.001

6   0 

        259 260 268 272     264   132 

Fe/Ca 

        -0.356 -0.152 -0.276 0.617 0.465 0.115 0.723 -0.288 -0.17 

        0 
0.002

3 0 0 
0.016

8 
0.032

9 0 0 
0.020

9 

        401 400 410 413 26 344 411 383 184 

K/Ca 

          0.386 0.818 -0.194   0.317 -0.331 0.382 0.434 

          0 0 0   0 0 0 0 

          408 412 413   333 405 386 182 

Li/Ca 

            0.523     0.108   0.589 0.363 

            0     
0.049

6   0 0 

            410     334   385 179 

Mg/C
a 

              -0.143   0.313 -0.306 0.388 0.573 

              
0.003

3   0 0 0 0 

              423   346 417 396 181 

Mn/C
a 

                  0.143 0.372 -0.14   

                  
0.007

8 0 
0.005

2   

                  347 418 397   

P/Ca 

                        0.224 

                        
0.003

55 

                        169 

Si/Ca 

                        -0.43 

                        0 

                        181 
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Table 3.43 (Continued) 

  Ba/Ca Co/Ca Cu/Ca Fe/Ca K/Ca Li/Ca 
Mg/ 
Ca 

Mn/ 
Ca Ni/Ca P/Ca Si/Ca Sr/Ca Zn/Ca 

Sr/Ca 

                        -0.159 

                        
0.047

3 

                        156 

 

signatures due to biologic factors (Rosenberg, 1980; Wheeler, 1992; Carre et al., 2006; 

Strasser et al., 2008).  Research specific to biologic controls and influences on shell 

chemistry is limited despite the assertion that elemental composition is highly 

dependent on these factors (Wheeler, 1992). 

 The results presented in this chapter elaborate on the potential influences of 

specific algal diets on the elemental shell chemistry of Mercenaria mercenaria under 

controlled conditions. Overall, the differences observed in this study can be categorized 

as influenced by pre experimental factors, seemingly biologic/metabolic factors not 

assessed, assumed metabolic factors due to stress or nutritional variance, or directly 

associated with diet received.  All factors aside from pre experimental influences can be 

related to the study design and project variables which ultimately link the observations 

to diet; however, direct influences and indirect influences have been regarded as 

separate due to project scope and reliance on previous findings to explain observations 

outside the analytical design. 

 
 
Shell length and mass 
 

In general diets composed of multiple algal species have been shown to be 

superior to those composed of single algal species (Romberger and Epifanio, 1981; 

Albentosa et al., 1993; Brown et al., 1997).  Diatoms, however, have been shown to be 
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rich in fatty acids (Brown et al., 1997) and support healthy growth rates and survival of 

cultured Argopecten irradians (Milke et al., 2006), though Prymnesiophytes such as 

Pavlova and Isochrysis species have also been shown to be relatively rich in fatty acids 

(Brown et al., 1997).  In fact, Prymnesiophytes were shown to have the highest 

percentage of saturated fatty acids which were suggested to be more beneficial to C. 

gigas (the pacific oyster) larval growth compared to polyunsaturated fatty acids 

(Thompson et al., 1993). The results of the present study seemingly supported the 

noted benefit of mixed algal diets and the correlation with growth rates and diatom 

inclusion; however, previous observations associated with Prymnesiophyte diets were 

not duplicated.  Replication of results determined for different species of bivalve is not 

necessarily expected due to different requirements of the animal being examined 

(Brown, 2002) as well nutritional value of the microalgae fed can change due to 

differences in culture conditions (Enright et al., 1986). 

In my experiment, clams fed the Mixed diet or Chaetoceros mulleri 

(CCMP1316)[Cm] diet exhibited the most consistent increase in shell length. The 

Chaetoceros galvestonensis (CCMP186)[Cg] fed group exhibited the next most 

consistent shell length increase following the second collection which was suspected to 

be a consequence of algal strain culture problems prior to the March collection. The 

Isochrysis species (CCMP1611) [ISO], Pavlova species (CCMP1209)[Pav1209], and 

Pavlova pinguis (CCMP609)[Pav609] fed clams exhibited moderate to poor shell length 

increase with Isochrysis sp. (CCMP1324)[TI] fed clams and the control group [CTRL] 

exhibiting virtually no growth during the experiment.  All feeding groups except for the 

Isochrysis sp. (CCMP1324)[TI] fed group differed significantly from the control group in 
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terms of overall shell length.  Regarding the valves used in the elemental chemistry 

analyses, median collected shell length never significantly exceeded the baseline 

measurements. When the same comparisons were made using all valves collected 

throughout the experiment, however, the Mixed and Chaetoceros mulleri diets were 

found to promote significant growth over baseline. 

The valve mass followed the same trends as the shell length in regard to the 

overall mass increase of the left valves collected.  The right valves collected and 

subsequently analyzed for the purposes of this experiment exhibited a different trend 

where ISO>Pav1209>Mixed>Pav609>Cm>Cg>TI; however, the right valves did not 

differ significantly from the left and  were only specifically measured during the first two 

trials, thus did not reflect changes occurring through the entire experiment.  Statistically, 

the left valve mass for both the mixed and Cm diet groups exceeded those of the control 

and baseline valves.  The remaining groups, excluding TI, significantly differed only 

from the control group. 

Overall, only the Cm and Mixed diet groups exhibited significant growth 

throughout the experiment.  This is an important consideration. It has been suggested 

variable growth or shifts in shell morphology could possibly affect shell deposition and 

elemental shell chemistry of the valves of bivalve molluscs (Rhoades and Lutz, 1980) 

with one of the associated factors of shell form being food supply (Stanley, 1970).  

Additionally, past research has identified potential associations between growth and 

element incorporation, i.e. Strontium (Gilken et al., 2005), Manganese (Carre et al.; 

2006; Strasser et al., 2006), and Magnesium (Carriker, 1996). 
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Left versus right valve elemental chemistry 

Due to the observed variation between left and right shell mass, as well as 

previous observations in the eastern oyster having increased elemental concentration in 

the right valve (Carriker et al., 1996), element/Ca ratios were compared between the left 

and right valves of the experimental clams.  A step-wise approach was taken during 

analysis to develop a more comprehensive picture of the elemental dynamics between 

the shell valves.  

In the previous chapter, no significant differences were found between the right 

and left valve groups of Argopecten irradians. This result did not support the original 

hypothesis, but was suggested as a function of the more equivalved nature of the 

scallops as compared to observations made by Carriker et al. (1996) in reference to the 

eastern oyster, Crassostrea virginica.  The other possibilities explaining the results 

being different than expected were, 1. the use of element/Ca ratios to normalize 

concentration for the examination as compared to the previously identified oyster study 

which examined straight elemental concentrations or 2. the analytical methodology was 

insufficient to identify any differences between valves if present. In the current study, 

Mercenaria mercenaria, an equivalved bivalve, was examined using similar analytical 

procedures which provided for somewhat different results from that of the scallop study.   

Both Ni/Ca and Zn/Ca differed significantly between the left and right valves; however, 

the nickel ratio comparison was based, overall, on only a few diets and not 

representative of all clams analyzed.  A notable difference in the experimental design 

was the addition of a starvation control in the present clam study which contributed an 

additional influence for consideration – starvation and associated stress.  
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When the left and right valves were examined specific to diet received, two diet 

groups exhibited significant differences with respect to four different element/Ca ratios.  

The right valves from the Control were determined to have a higher ratio value with 

respect to B/Ca, Si/Ca and Zn/Ca as compared to the left valve.  The right valves of the 

Cm group had a higher ratio with respect to Ba/Ca as compared to the left.  This similar 

to the observations of Carriker et al. (1996), enrichment was specific to the right valve in 

each case.   

The enrichment of elements or of specific elements in the right valve could be 

due to a genetic disposition such as remnant biologic controls for torsion (personal 

communication with Sandra E. Shumway) or potentially, metabolic differences between 

the mantle tissues associated with each valve.  The difference between the valves 

being a function of metabolic change is partially supported by the results of the control 

group. Three separate elemental ratios differed between the left and right valves 

compared to only one in the Cm group and zero in the other groups. Additionally, the 

difference determined in the composite comparison was mirrored by one of the 

differences in the diet specific comparison - Zn/Ca.  The control group valves were most 

probably the dominant influence of the Zn/Ca result from the composite analysis. It is 

believed that an increased differences between the left and right valve is a function of 

stress related metabolic changes. 

With respect to the difference observed between the valves of the Cm feeding 

group in the present study, metabolic stress or changes do not seem as suspect when 

taking into consideration experimental procedure and the comparisons of shell length 

and mass discussed previously.  The specific diet received, however, could potentially 
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explain the difference. Barium is released during phytoplankton decay (Stecher and 

Kogut, 1999) and Ba is often linked to diatoms (Vander Putten et al., 2000) as it can 

substitute for Si in the frustules.  A minor fraction of Ba in the water column is 

transformed to barite crystals but most remains labile (Ganeshram et al., 2003).  It is 

proposed that Ba/Ca was enriched in the right valve due to exposure of one valve to 

settled barite or increased dissolved barium as might occur at the sediment-water 

interface (Tabouret et al., 2012). 

 

Elemental shell composition differences as a function of diet 

Assimilation of material from ingested food particles is directly related to the food 

itself, i.e., size, biochemical composition, quantity and cell wall (Bayne, 1993; Reinfelder 

and Fisher, 1991). Furthermore, the partitioning of an element within an algal cell has 

been directly related to assimilation efficiencies of specific elements studied in Mytilus 

edulis shells and soft tissues (Wang and Fischer, 1996).  It  follows that elements are 

more readily available for assimilation from certain algal cells than in others and 

selective feeding could potentially limit the elements internalized providing for a 

mechanism of diet associated elemental shell signatures.  Additionally, elemental 

composition has been shown to differ among algal taxa and between oceanic and 

neritic strains (Martin and Knauer, 1973; Lee and Morel, 1995; Sunda and Huntsman, 

1995; Ho et al., 2003) thus increasing potential for diet associated signatures. 

With this in mind, the algal cultures used in this experiment were selected based 

on multiple criteria.  First all genus- species pairs obtained had been isolated from as 

different areas and climates as possible.  Second, one of the Genus species pair was 

147 
 



used commonly in aquaculture settings.  Third, one species was isolated from inshore 

waters. Fourth, one pair were diatom species. The final criterion was that the algae 

would grow in the laboratory and in outdoor cultures. As identified by the Provasoli-

Guillard National Center for Marine Algae and Microbiota of Bigelow Laboratory for 

Ocean Sciences, the Pavlova species (CCMP1209) was isolated from an unknown 

tropical site and Pavlova pinguis (CCMP609) the Sargasso Sea; Isochrysis sp. 

(CCMP1324) was isolated from the South Pacific off the Society Islands and Isochrysis 

species (CCMP1611) from Chesapeake Bay; and finally, Chaetoceros galvestonensis 

(CCMP186) was isolated from the Gulf of Mexico off St. Petersburg, FL while 

Chaetoceros mulleri (CCMP1316) from the North Pacific off Hawaii.  

Of the 29 elements originally assessed, only 16 were detected in sufficient 

concentrations for use in the analyses.  All valves collected from each experimental diet 

were initially assessed for differences in B/Ca, Ba/Ca, Cd/Ca, Co/Ca, Cu/Ca, Fe/Ca, 

K/Ca, Li/Ca, Mg/Ca, Mn/Ca, Ni/Ca, P/Ca, Pb/Ca, Si/Ca, Sr/Ca and Zn/Ca.  Due to 

sample size limitations created for specific elements during analysis and post 

processing procedures, Cd/Ca, Cu/Ca, Ni/Ca, and Pb/Ca were eliminated from most of 

the analyses conducted. 

As within the scallop experiments discussed in Chapter 2, the elemental data 

were highly variable both across diet groups as well as within diet groups. This, 

however, was similar to results previously reported with cultured bivalves (Carriker, 

1996; Strasser et al., 2008), as well as, cultured foraminifera (Hintz et al., 2006).  This 

consistent problem with cultured molluscs and other taxa further complicates analysis 

and, especially, evaluation of elemental trends in the shell.  
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I found that, in hard clams fed unique diets, the boron concentration with respect 

to calcium in the shell was higher in both the Cg and Mixed groups compared to the ISO 

and Pav609 groups and higher in the TI diet group as compared to the baseline, Cm, 

Control, ISO, Pav609 and Pav1209 groups. Boron has been associated with salinity 

(Schopf, 1980) and isotopes have been used as proxies for environmental pH (Rollion-

Bard et al., 2003). Salinity was held constant among all feeding groups and therefore 

was considered non-influential with regard to differences revealed in my study.  The 

growth parameters assessed also do not lend any evidence that this ratio was directly 

influenced by growth rates observed during the feeding trials, though, upon further 

consideration and examination of the right valves of the Control group, it was noted that 

the significant increases in B/Ca occurred in the two groups associated with the lowest 

level of growth.  Furthermore, the increased ratio in the Cg group over two compared 

groups could account for influence of the clams in the specific collection (March) 

exhibiting poor growth.  The increased ratio over the same two diets in the mixed group 

did contradict this association.  It was previously identified in Rosenberg (1980) that 

effects of nutrition on boron concentrations not assessed could complicate associations 

between boron and environmental factors. I examined specific dietary factors in the 

current study with seemingly confounded results. As such, based on the deviation of 

trends observed, it is suggested that B/Ca is influenced by multiple factors with 

substitution, pre experimental conditions , and stress plausible explanations for the 

differences observed.   

The examination of Ba/Ca suggested that Baseline values tended to be higher 

than or similar to those of the majority of diets in both the left and right valves. 
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Commonly, as in Stecher et al. (1996), Thebault et al. (2009), Putten et al. (2000), and 

Lazareth et al. (2007), barium is associated with phytoplankton bloom dynamics 

(diatoms mostly). This association was further developed by Tabouret et al. (2012) 

when concluding Ba enrichment was most likely due to incorporation of dissolved Ba 

such as might be available following an algal bloom (Stecher and Kogut 1999) or at the 

water-sediment interface.  The conclusion made in reference to the observations in the 

present study is that the higher Ba/Ca ratios are due to influences prior to the start of 

the feeding experiment and potentially a consequence of the brown water culture 

methodology immediately prior to the investigation. 

The analysis of Co/Ca in the left valves of the different feeding groups showed 

higher ratios in both the ISO and TI groups than in the Mixed diet group.  Research 

performed by Ho et al 2003 suggested the examined Coccolithophores to have a higher 

Co quota than that of diatoms though this ultimately suggested being due to the origin of 

the isolates – the Coccolithophores being oceanic and the Diatoms being neritic.  The 

differences in metal requirements between oceanic and neritic algal species was 

examined in Brand et al. 1983 where it was suggested oceanic species are associated 

with higher Co quotas than neritic species. Because all diet groups were seemingly 

similar based on the statistical analyses besides the shown difference between the 

Mixed diet and the two Prymesiophycea species, Co/Ca was interpreted as mostly 

stable during the course of this study and without experimental influence; though, 

sample size attributable to this result and interpretation may not be fully representative 

of all changes. 
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The results obtained from statistical analysis of Fe/Ca are interesting.  Specific to 

the left valve comparisons, the Baseline, ISO and Pav1209 groups are all associated 

with higher Fe/Ca values than Cg, Cm, CTRL, and Mixed diet groups. The Pav609 

group had a higher ratio value associated as compared to Cg and CTRL, while, the TI 

associated ratio was higher than Cg.  In respect to the right valve analysis, the ISO, 

Baseline and Mixed diet groups were associated with a higher Fe/Ca than the control, 

furthermore; Baseline Fe/Ca was higher than the TI associated value. Iron has been 

labeled as a major component in shell deposition and otherwise linked to shell 

development, proteins and pigments (Almeida et al. 1996).  The differences between 

diet groups in this study appear more attributable to the diet received versus related 

factors such as growth. The consistent enrichment in the Pavlovophycea and 

Coccolithophyceae (Prymnesiophycidae) over the Bacillariophycea 

(Coscinodiscophyceae) or in a diet containing the Pavlovophycea and 

Coccolithophyceae suggests the possibility of Fe enrichment by ingestion of particular 

algae.  This would follow the results of Ho et al 2003 which demonstrate a slightly 

higher average Fe/P in Prymesiophycea species examined than in the Bacillariophycea 

species. Confounding factors, however, might be loss of Ca in the Pavlovophycea diets, 

or loss of iron in the control group giving the impression pre experimental causes were 

not dominant. 

The findings in reference to right valve associated K/Ca are similar to those 

observed during the scallop research presented in Chapter 2.  The K/Ca ratio value is 

higher in both the Baseline and Pav1209 groups as compared to Cg but all remaining 

diets similar.  The left valve comparisons did not identify any significant differences 
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despite the Baseline value appearing larger than all other diet group medians and the 

control seemingly smaller which would support a gradual decrease in element 

enrichment.  Carriker et al. (1996) concluded that differences in the potassium 

concentrations observed were possibly from ingestion of sedimentary particles 

containing potassium though specific examination of the algal cells being ingested was 

not included in the scope of the research. Conversely, Ho et al. (2003) suggested K is in 

higher concentration in algal cells than in seawater and that diatoms have a much 

higher K quota than the other taxonomic classes examined. The results of the current 

study do not support enrichment of potassium in clam shell by dietary intake but do 

suggest pre experimental factors might have influenced the observed ratios. 

The analysis of Li/Ca was similar in both the left and right valve assessments. 

Baseline values were significantly larger as compared to the majority of the 

experimental diets.  The ratio for TI was also significantly larger than Cg in valve 

assessments as well as Cm, ISO, and Pav1209 for the left valve assessment.  

Research conducted on Li/Ca in Arctica islandica concluded patterns of the elemental 

ratio were most likely associated with calcification rate or river inputs (Thebault et al., 

2009). Thebault and Chauvaud (2011) examined Li/Ca signatures in Pecten maximus 

with the conclusion that growth, potentially temperature and increased Lithium due to 

diatom blooms were responsible for enrichment.  In the present study, the differences 

observed seem more indicative of the preserved signature from pre experimental 

growth similar to baseline with potential loss or signature dilution due to new growth. 

The left valves of each feeding group were found not to differ significantly with 

respect to Mg/Ca; however, the right valve comparison resulted in three significant 
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comparisons between the control, baseline, Cg, and mixed diet groups with the control 

group being associated with the highest ratio value.  Magnesium has been proposed to 

fluctuate with temperature in certain species of bivalve (Rucker and Valentine, 1961; 

Dodd, 1965; Rosenburg, 1980); though, recent research suggests temperature or 

salinity have minor to no influence on Mg/Ca for specific bivalves (Strasser et al., 2008; 

Carre et al., 2006).   In Crassostrea virginica (Carriker, 1996) and certain gastropods 

(Foster and Cravo, 2003) Mg has been shown to increase with size and through 

ontogeny. Ho et al. (2003) suggests that of the five taxonomic classes of algae 

examined in their study, diatoms had the largest Mg/P quota while the others were 

mostly similar. Assimilation of Magnesium, however, was suggested from the dissolved 

phase in Poigner et al. (2012). Because temperature was not a variable in the present 

study and enrichment was not specific to the diatom diets, growth rates, metabolic 

control, or calcium replacement may be plausible explanations. 

The results of the diet comparisons with regard to Mn/Ca for the collected left 

valves established that the control group ratio was lower than all the other groups. The 

Cg group associated ratio was determined smaller than the ratios for Isochrysis species, 

the mixed diet, and both Pavlova species; and following the developing trend, the Cm 

group ratio was deemed smaller that of both Isochrysis groups. 

The same analysis using the collected right valve ratios established that Mn/Ca 

was smaller in the Cg and CTRL groups than that of the baseline, Cm, ISO, Mixed, and 

TI groups.  It was also determined the mixed diet associated ratio was larger than that 

of both Pavlova species. 
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Defining environmental associations for manganese has been problematic. 

Blanchard and Chasteen (1976) surmised the amount of substitution of Ca2+ by Mn2+ 

was correlated with tidal level, though did not consider the oxygenation of the 

environment (Rosenburg, 1980).  Crisp (1975) attempted to correlate the Mn 

concentration to salinity, while Strasser et al. (2008) correlated Mn/Ca levels with that of 

seawater concentration, potentially confounded by biological activity. Carre et al. (2006) 

suggested positive Mn/Ca association with growth rates while Strasser et al. (2006) 

showed negative correlation.  Though, Poigner et al. (2012) suggests manganese is 

assimilated most often through its dissolved phase, the results of the current study in 

conjunction with the trends visualized in Figure 3.31 seem to support the possibility that 

manganese enrichment was influenced by the diet received, more specifically the 

Prymnesiophyceae diets, which was supported in Ho et al. 2003 where it was shown 

average Mn/P concentrations in the Coccolithophores were greater than those in other 

phyla inspected, including diatom species. These results, however, do not support any 

differences between oceanic and neritic species (as suggested in Brand et al., 1983 and 

Ho et al., 2003) being translated to the shells. 

The comparisons of P/Ca between diet groups only resulted in significant 

differences with respect to the left valve. It was determined P/Ca was increased in the 

ISO group over all other diets and in TI over Cg, Cm, and mixed diets. This suggests a 

fairly stable association with increased P/Ca in the two Isochrysis species. Ho et al. 

(2003) points out the major nutrients C, N, P, and S are variable in algae but the 

average quotas of the organic biomass being similar to that of Redfield et al. (1963). 

This current observation could be attributed to an increased P concentration in the shell 
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from feeding solely or selectively upon specific cells in conjunction with an otherwise 

relatively stable signature. 

The Si/Ca ratio was higher in both Pavlova species as compared to Cg and Cm 

in the left collected valves, additionally; the mixed diet had an associated Si/Ca lower 

than the remaining diets.  When the right valves of the feeding groups were compared, 

baseline Si/Ca was higher than in the diatom species, Pavlova species and mixed diet 

treatments, in addition, the Si/Ca in the control treatment higher than those associated 

with Cg, Mixed, Pav609 and Pav1209 feeding groups.  Carriker et al. (1996) concluded 

that the oysters maintained in the natural environment received silica through seston not 

incorporated in the laboratory habitat.  Considering this, the differences in Si/Ca 

observed are most seemingly due to pre experimental conditions with a potential 

secondary dietary influence. 

 Four comparisons with regard to Sr/Ca between feeding groups were deemed 

significant and established Cm group left valves were Sr enriched compared to ISO, 

Pav609, and Pav1209 and Mixed diet group valves enriched compared to Pav1209.  

When the right valves were compared, only the TI was determined enriched over the Cg 

group.  These results do not consistently align with the description in Ho et al. (2003) 

where Coccolithophores were determined to have a higher Sr quota than studied 

diatoms and other algal phyla. As such, there is no clear association with any 

experimental variable nor is there an obvious indication of an artifact effect from the 

rearing procedure.  This, however, is a common problem in determining factors 

influencing Sr in shells.  Researchers have documented associations with temperature 

(Dodd, 1965), growth rates (Gilken et al., 2005; Hamer and Jenkins, 2007), and 
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ontogeny (Dodd, 1970; Crisp, 1975); however, there are equal accounts of opposing 

influence as well as results indicating no influence when considering the same factors.  

Poigner et al. (2012) concluded that Strontium was predominantly assimilated in 

particulate phase; however, the current results do not support a dietary influence on 

Strontium incorporation.  The results do suggest multiple controlling factors with one 

potentially being shell growth and growth rate. 

Zinc to calcium inspections revealed two significant comparisons with regard to 

the left shell and four with regard to the right.  The baseline and Cg group were 

determined significantly enriched compared to the ISO group left valves.  The right 

valve comparison established that the Cg and control were associated with higher 

Zn/Ca than were the Mixed and Pav1209 diet groups. As with strontium, there is not a 

clear indication of what contributed to the limited differences observed. Many 

researchers have paired zinc concentrations with environmental concentrations for 

purpose of contaminant surveys (Fang and Shen, 1984; Martincie et al., 1984; Puente 

et al., 1996; Markich, 2002; etc.). Zinc has been, however, recognized as a dietary 

element metabolically transformed and passed through food web interactions (Windisch 

2001, Wang 2002). In the present research, the differences observed were not 

seemingly attributable to a contaminant source as the association was specific to diet 

groups. The differences observed in the current study, though, do not support, 

definitively, a specific algal diet contributing to relative zinc concentration.  
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Correlation analyses 

Correlation analyses revealed associations between B, Fe, K, Mg, Mn, Si and Sr 

as well as Fe and Li.  In relation to the current project, both Fe and Mn were determined 

to be potentially related to the Prymnesiophyceae diets thus a correlation between the 

two is logical if influenced by the same variable.  Similarly, Thebault and Chauvaud 

(2011) suggested Li was enriched due to diatom blooms which would indicate 

potentially similar influences between Fe and Li though different pathways/mechanisms 

are suspected based on previous research discussed. Because the original 

assessments of B, K, Mg and Sr were uncertain as to the dominant influences 

surrounding enrichment, the relationship is still unclear.  The correlation analyses 

performed with respect to Time, Length and Mass do support influence of pre 

experimental factors (K and Mg), size and early growth rates (Sr and Mg), or 

undetermined biological influences (B and Mg). 

Iron, manganese and phosphorus showed no strong associations with time or 

growth.  Because the majority of potential influences identified in the literature were held 

constant or consistent among trials and they seemingly acted in varied association with 

one another, diet still appears to be a plausible primary influence.  

Silica did show moderate association with time and strontium was strongly 

correlated with growth. Neither Silica nor Strontium showed a clear association with the 

diets or assessed experimental parameters. Strontium, however, was determined to 

show a potential relationship with growth and pre-experimental growth rates due to the 

diet groups associated with the highest Sr/Ca ratios.  The positive association between 

Si and time does not agree with the conclusions made when comparing direct dietary 
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influence; this however, does substantiate the possibility of two or more influences and 

subsequent confounded results. 

 The Ba, K, Li, Mg and Zn associated ratios were all negatively associated with 

time. The original assessments of Ba, K, Li, and Mg with regard to algal diet influence 

suggested the relative concentration of these elements was more strongly associated 

with pre experimental conditions or related factors. The determined overall decrease 

through time does not preclude this determination; however, exact reasoning for the 

decrease is seemingly element specific and dependent on the influence of the 

experimental feeding group. The correlation between zinc and time is potentially 

attributable to an experimental complication.  As previously noted, Windisch (2001) and 

Wang (2002) demonstrated zinc to be metabolically influenced and associated with food 

web transfer.  An association between Zn/Ca with specific algal diets was not 

demonstrated in this study; however, production of feeding cultures was ultimately 

limited by available space and laboratory equipment. Similar to the differences between 

valves with regard to relative zinc concentrations in the starvation control, the negative 

association to time is likely a consequence of limited food availability and associated 

metabolic influence.  

The initial interpretation made concerning Co/Ca was that it appeared stable 

across diets and did not seem influenced by the experimental variables.  Here it was 

strongly associated with time and moderately with mass and shell length.  These 

associations, however, are very specific to particular diet groups and do not represent 

overall changes in this elements concentrations. 
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Conclusion 

Once all results were considered, three ratios were directly associated with diet 

received: Fe/Ca, Mn/Ca, and P/Ca.  In all three cases, the Prymnesiophycidae (the two 

Isochrysis diets) had a significant impact on the relative elemental concentrations, as 

did the Pavlovophycea diets with regard to Fe/Ca.  The Mg/Ca and Sr/Ca ratios were 

both influenced by growth or more specifically growth rates; however, it should be noted 

that pre experimental growth was most attributable to this conclusion and biologic 

factors not assessed also seemingly contributed to differences observed.  With regard 

to Zn/Ca and B/Ca, the results favor differences observed being most attributable to 

stress and assumed metabolic shifts; while the remaining elemental ratios examined, 

Ba/Ca, K/Ca, Li/Ca and Si/Ca, were determined to be primarily influenced by factors 

associated with pre experimental conditions not encompassed in the experimental 

scope and design. 

Manganese, copper, zinc, and cadmium have been shown to be primarily 

associated with the organic matrix in oyster shells (Carriker et al. 1980) as was Iron 

(Almeida et al. 1998) and magnesium in mussel shells (Lorens and Bender 1980). This 

association of specific elements with the organic matrix alone suggests a high level of 

biologic control.  In the present study, iron, manganese, and phosphorous were 

revealed to be influenced by diet.  It has been suggested that the organic matrix is 

responsible for shell strength (Addadi et al. 2006) and that the organic matrix potentially 

influences elemental content and structure of the shell (Watabe et al. 2001, Takesue 

and van Green 2004, Morse et al. 2007, and Johnstone 2008).  If diet associated 

elements are incorporated into the organic matrix and can be manipulated by dietary 
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changes as demonstrated, the diet of cultured bivalves could potentially be implicated in 

differences in shell strength and structure between wild and aquacultured Pecten 

maximus as described in Gresfrude and Strand (2006).  This demonstrated diet 

influence also demands consideration of diet composition when conducting experiments 

aimed at describing influences on shell dynamics or determining cause and effect 

relationships. 

Though diet was shown to directly affect the shell chemistry of Mercenaria 

mercenaria, resolution of the algal contribution was limited to taxonomic class with 

regard to only a few elements, and algal isolate origin related differences were not 

apparently translated to the shells as had been hypothesized.  It also is evident that 

other contributing factors will potentially complicate detection of diet associated signals 

when outside a controlled environment (higher food concentrations, multiple influences 

on the same element, contamination, multiple algal species with similar elemental 

quotas, age influence, etc.). As such, applications or use of diet related elemental 

signatures is currently limited. It is believed that diet associated signatures can 

eventually be used as shell markers or in determination of food web interactions related 

to eutrophication, ocean acidification, or other environmental impacts capable of 

changing plankton composition; however, before these applications can be pursued, 

further research and development of alternative analytical techniques are needed. 
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4.  Can phosphorous normalization indicate dietary influence on elemental 

chemistry in bivalve shells? 

 

Introduction 

 The productivity and species composition of marine phytoplankton communities 

are controlled by a number of trace metal nutrients (iron, zinc, cobalt, manganese, 

copper, and cadmium) as well as major nutrients (nitrogen, phosphorus, and silicon)  in 

biologically available forms (Sunda, 2012). Trace metals can play important roles in 

regulating the species composition of phytoplankton communities because of large 

differences in cellular trace metal concentrations and growth requirements among 

species (Brand et al., 1983; Sunda and Huntsman, 1995; Crawford et al., 2003; Ho et 

al., 2003). The species composition will ultimately affect consumers, namely bivalves as 

related to present research, as it defines the available food source. 

 As presented in Chapters 2 and 3, the types of algae ingested by marine bivalve 

molluscs can influence the elemental composition of the shell with differences in cellular 

elemental concentrations, assimilation controls, or metabolic influences being plausible 

mechanisms for the differences. The influences of individual algal diets, however, were 

not completely evident.  An analytical process with more resolution to determine the 

contribution of an algal species appears to be necessary to allow ecological/trophic 

interpretations of the bivalve diets by use of shell chemistries.  
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 Elemental composition of algae is most often analyzed by normalizing to 

phosphorous (referred to as element quotas) following the protocol of Redfield (1934, 

1958) and facilitating the comparison of individual organisms and natural plankton 

samples independent of cell volume (Ho et al., 2003).  These quotas can be highly 

variable among algal taxa (Figure 4.1), with a range of 14-57% RSE (Ho et al., 2003; 

Quigg et al., 2003). 

 In studies of shell chemistry, elemental composition is commonly normalized to 

calcium to offset the spatial variability within the shell. I hypothesize that normalizing 

element concentrations to phosphorous or phosphorous and calcium will enhance 

resolution to determine species-specific influence of algae on elemental shell dynamics, 

provided that phosphorous signatures are stable.  

 Although different parameters can influence phosphorous composition in algal 

cells versus marine bivalve molluscan shells, a finding in the previous chapter with 

regard to P/Ca indicated a potential opportunity, as did findings that phosphorous 

concentrations in the shells of freshwater bivalves were similar within the same water 

shed (Jurkiewicz-Karnkowska, 2002).  Certain elements can be good environmental 

proxies based on their relative stability in shell material from different individuals until an 

environmental flux occurs (Tabouret et al., 2012). In my study, I observed that P/Ca in 

the experimental clam shells remained fairly consistent with the exception of particular 

diets. This chapter examines the use of (element/P)/Ca ratios and (element/Ca)/ (P/Ca) 

(mathematically equivalent to element/P) to test the utility for analyzing shell dynamics 

with respect to diet. 
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Figure 4.1: Comparison of average elemental quotas among different algal taxa from Ho et al. (2003) 
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Methods 

 The general procedures for mariculture of both the algal cultures and clams were 

presented in Chapter 3, as were the ICP-OES analysis methods.  This chapter uses 

information collected during the experiments described in Chapter 3 to test the 

hypothesis that a modified data-analysis procedure could be used to determine the 

influence of algal diets and ultimately used in field diagnostics. 

 The elemental concentration findings from the ICP-OES analysis of Mercenaria 

mercenaria valves subsampled from different feeding experiments were transformed to 

new elemental ratios in the form of (element/P)/Ca  and (element/Ca)/(P/Ca) [referred to 

herein as shell quotas]. The general trends were statistically compared using a Kruskal-

Wallis analysis of ranks and subsequent post hoc analysis to determine the differences 

in elemental shell chemistry between feeding groups. The results were then compared 

to previous findings discussed in Chapter 3 to evaluate utility of the proposed alternative 

ratios.  

 Boron, barium, cobalt, iron, potassium, lithium, magnesium, manganese, silica, 

strontium, and zinc concentrations from left shells were analyzed using both 

(element/P)/Ca and element/P. No baseline comparisons could be made because ICP 

data for phosphorous were not usable from the baseline shell analyses. 

 

Results 

 Significant differences in boron, when normalized to phosphorous and calcium 

were found when comparing shells from several dietary treatments (Tables 4.1 and A1).  

These comparisons (Figure 4.2) revealed the (B/P)/Ca ratios in shells of clams fed ISO 
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were lower than all other treatments except for the Pav609, while the shells from the 

Mixed diet treatment were higher than the Cm, Ctrl, and Pav609 diet treatments.   
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Figure 4.2: Median (B/P)/Ca ratios versus diet received. The letters indicate the similarities and 
differences revealed by Dunn’s post hoc analyses (Table A1). 
 

Table 4.1: Results of Kruskal-Wallis analysis for (B/P)/Ca by diet. 
One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N  Missing  Median  25% 75% 

CTRL 61 6 1.41E-10 8.26E-11 2.29E-09 

TI 56 16 1.77E-10 1.14E-10 4.72E-10 

ISO 50 7 7.62E-11 2.81E-11 1.21E-10 

Cg 58 11 1.82E-10 1.32E-10 3.24E-10 

Cm 62 18 1.71E-10 1.26E-10 2.21E-10 

Pav609 58 18 1.39E-10 1.1E-10 1.71E-10 

Pav1209 54 14 1.68E-10 1.3E-10 2.3E-10 

Mixed 65 26 3.85E-10 1.93E-10 2.54E-09 

H = 75.2 with 7 degrees of freedom  (P = <0.001) 
  

b 

b,c 

a 

b,c 

b 

a,b 

b,c c 
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 When B/P data were compared among the diets (Figure 4.3), results (P< 0.05, 

Tables 4.2 and A2) were similar to those of (B/P)/Ca. The ratio for the ISO diet was 

lower than for all other experimental diets, while the Mixed diet ratio was significantly 

higher than the Pavlova diets, but no others. 
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Figure 4.3: Median B/P ratios in M. mercenaria shells compared to diet.  Letters indicate the similarities 
and differences revealed by Dunn’s post hoc analyses (Table A2). 
 

Table 4.2: Results of Kruskal-Wallis analysis for (B/P) by diet. 
One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N  Missing  Median  25% 75% 

CTRL 61 6 4.39E-02 2.38E-02 1.49E-01 

TI 56 13 5.34E-02 3.38E-02 7.78E-02 

ISO 50 7 2.70E-02 9.15E-03 3.37E-02 

Cg 58 9 5.36E-02 3.43E-02 9.91E-02 

Cm 62 18 4.79E-02 4.00E-02 5.63E-02 

Pav609 58 18 4.55E-02 3.44E-02 5.39E-02 

Pav1209 54 12 4.47E-02 3.16E-02 6.61E-02 

Mixed 68 20 6.49E-02 4.72E-02 1.04E-01 

H = 76.8 with 7 degrees of freedom  (P = <0.001) 

b,c 

b,c 
a 

b,c 
b b,c b 

c 

166 
 



 The results for barium with respect to phosphorous and calcium followed similar 

trends as for boron (P< 0.05; Tables 4.3 and A3):  The ratios for the ISO group were 

lower than for all other diets, while the ratios for the Mixed diet were higher than for all 

diet treatments except Cg and Cm (Chaetoceros) diets (Figure 4.4).  

 The shell Ba/P ratio differed significantly (P<0.05) between seven diets. Again, 

ISO was determined to have the lowest ratio as compared to the other diets (Figure 4.5, 

Tables 4.4 and A4). All other experimental diets were found to be similar. 
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Figure 4.4 Median (Ba/P)/Ca ratios with associated 95% confidence intervals in Mercenaria shells by diet. 
Letters indicate the similarities and differences revealed by Dunn’s post hoc analyses (Table A3). 
 

 The analysis of (Co/P)/Ca revealed somewhat different relationships among the 

dietary treatments, (P=0.02, Table 4.5). In this case, the ratio in the CTRL group was 

significantly lower than in the Pav1209 group (Figure 4.6, Table A5).  The analysis of 

Co/P did not reveal any significant differences among diets (P=0.118). 
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Table 4.3: Results of Kruskal-Wallis analysis for (Ba/P)/Ca by diet. 
One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N  Missing  Median  25% 75% 

CTRL 61 6 5.06E-06 2.41E-06 8.35E-06 

TI 56 16 5.18E-06 3.3E-06 8.71E-06 

ISO 50 7 2.9E-06 1.42E-06 3.84E-06 

Cg 58 11 5.58E-06 4.39E-06 7.8E-06 

Cm 62 18 6.06E-06 4.82E-06 7.5E-06 

Pav609 58 18 5.71E-06 4.39E-06 6.29E-06 

Pav1209 54 14 5.35E-06 4.01E-06 5.92E-06 

Mixed 65 24 8.79E-06 5.46E-06 1.54E-05 

H = 80.3 with 7 degrees of freedom  (P = <0.001) 
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Figure 4.5: Median Ba/P ratios with associated 95% confidence intervals in Mercenaria shells by diet. 
Letters indicate the similarities and differences revealed by Dunn’s post hoc analyses (Table A4). 
 

Table 4.4: Results of Kruskal-Wallis analysis for (Ba/P) by diet. 
One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N  Missing  Median  25% 75% 

CTRL 61 6 2.52E-02 1.09E-02 4.16E-02 

TI 56 18 1.56E-02 1.23E-02 2.52E-02 

b 
b b b 

b b 
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a 
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Table 4.4 (Continued) 
Group N  Missing  Median  25% 75% 

ISO 50 7 1.05E-02 6.94E-03 1.47E-02 

Cg 58 9 2.86E-02 1.29E-02 3.52E-02 

Cm 62 18 2.49E-02 2.19E-02 3.08E-02 

Pav609 58 18 2.26E-02 1.78E-02 2.61E-02 

Pav1209 54 12 1.66E-02 1.45E-02 2.62E-02 

Mixed 68 18 1.70E-02 1.37E-02 2.44E-02 

H = 57.8 with 7 degrees of freedom  (P = <0.001) 
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Figure 4.6: Median (Co/P)/Ca ratios with associated 95% confidence intervals in Mercenaria shells by 
diet. Letters indicate the similarities and differences revealed by Dunn’s post hoc analyses (Table A5). 
 

Table 4.5: Results of Kruskal-Wallis analysis for (Co/P)/Ca by diet. 
One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N  Missing  Median  25% 75% 

CTRL 54 40 3.91E-12 3.09E-12 5.01E-12 

TI 56 49 6.53E-12 5.71E-12 8.92E-12 

ISO 48 36 4.85E-12 3.13E-12 6.99E-12 

Cg 58 46 6.61E-12 4.77E-12 1.00E-11 

Cm 58 34 6.01E-12 4.49E-12 1.14E-11 

Pav609 58 39 5.35E-12 4.77E-12 6.35E-12 
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Table 4.5 (Continued) 
Group N  Missing  Median  25% 75% 

Pav1209 54 44 9.11E-12 5.64E-12 1.33E-09 

Mixed 65 47 6.87E-12 5.37E-12 9.09E-12 

H = 16.6 with 7 degrees of freedom  (P = 0.020) 
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Figure 4.7: Median Co/P ratios with associated 95% confidence intervals in Mercenaria shells by diet. No 
significant differences among diets were determined. 
 

Table 4.6: Results of Kruskal-Wallis analysis for (Co/P) by diet. 
One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N  Missing  Median  25% 75% 

CTRL 54 40 1.35E-03 9.23E-04 1.95E-03 

TI 56 48 2.07E-03 1.55E-03 2.63E-03 

ISO 48 36 1.14E-03 9.06E-04 1.94E-03 

Cg 58 46 1.97E-03 1.41E-03 2.30E-03 

Cm 58 34 1.77E-03 1.56E-03 1.95E-03 

Pav609 58 39 1.65E-03 1.54E-03 2.05E-03 

Pav1209 54 43 1.63E-03 1.06E-03 2.22E-03 

Mixed 68 45 2.08E-03 1.43E-03 2.41E-03 

H = 11.5 with 7 degrees of freedom  (P = 0.118) 
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 The analyses of the iron shell quota as compared to calcium revealed the ratios 

for the ISO and Cg treatments to be significantly lower than for those of Cm, Mixed and 

Pav1209 treatments, while the ratios for the CTRL treatment to be lower than only the 

Mixed and Pav1209 treatments (Figure 4.8,Tables 4.7 and A6). The only significant 

differences in the Fe/P ratio were found between the Pav609 group and both the Cg 

and ISO groups (Figure 4.9, Tables 4.8 and A7).   

 Comparison of median (K/P)/Ca values for each experimental diet (Figure 4.10) 

indicated that the shells from the Mixed diet had significantly more potassium 

incorporated than did the shells from the ISO and CTRL groups (P < 0.05, Tables 4.9 

and A8). The comparisons based on K/P provided similar results (Figure 4.11), with 

Mixed and Cm treatment ratios revealed as significantly higher than those from the ISO 

treatment (Tables 4.10 and A9). 
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Figure 4.8: Median (Fe/P)/Ca ratios with associated 95% confidence intervals in Mercenaria shells by 
diet. Letters indicate the similarities and differences revealed by Dunn’s post hoc analyses (Table A6). 
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Table 4.7: Results of Kruskal-Wallis analysis for (Fe/P)/Ca by diet. 
One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N  Missing  Median  25% 75% 

CTRL 61 6 1.4E-10 7.41E-11 4.41E-10 

TI 56 18 2.41E-10 1.58E-10 3.83E-10 

ISO 50 8 1.65E-10 1.2E-10 2.56E-10 

Cg 58 11 1.69E-10 1.31E-10 2.5E-10 

Cm 58 15 2.88E-10 1.95E-10 5.14E-10 

Pav609 58 18 3.27E-10 1.66E-10 4.74E-10 

Pav1209 54 14 4.09E-10 2.28E-10 6.54E-10 

Mixed 65 26 3.86E-10 2.5E-10 8.16E-10 

H = 53.7 with 7 degrees of freedom.  (P = <0.001) 
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Figure 4.9: Median Fe/P ratios with associated 95% confidence intervals in Mercenaria shells by diet. 
Letters indicate the similarities and differences revealed by Dunn’s post hoc analyses (Table A7). 
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Table 4.8: Results of Kruskal-Wallis analysis for (Fe/P) by diet. 
One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N  Missing  Median  25% 75% 

CTRL 61 6 4.84E-02 2.72E-02 1.89E-01 

TI 56 16 6.52E-02 3.47E-02 9.29E-02 

ISO 50 8 5.18E-02 3.98E-02 7.09E-02 

Cg 58 10 5.30E-02 4.23E-02 7.38E-02 

Cm 58 15 7.70E-02 5.04E-02 1.35E-01 

Pav609 58 18 1.02E-01 5.29E-02 1.53E-01 

Pav1209 54 12 9.24E-02 4.65E-02 1.32E-01 

Mixed 68 20 7.17E-02 5.75E-02 9.40E-02 

H = 26.4 with 7 degrees of freedom  (P = <0.001) 
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Figure 4.10: Median (K/P)/Ca ratios with associated 95% confidence intervals in Mercenaria shells by 
diet. Letters indicate the similarities and differences revealed by Dunn’s post hoc analyses (Table A8). 
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Table 4.9: Results of Kruskal-Wallis analysis for (K/P)/Ca by diet. 

One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N  Missing  Median  25% 75% 

CTRL 61 6 5.55E-10 1.61E-10 5.71E-09 

TI 56 25 2.7E-09 9.98E-10 4.11E-09 

ISO 50 7 1.83E-09 5.38E-10 3.54E-09 

Cg 58 12 3.09E-09 2.37E-09 4.35E-09 

Cm 62 18 2.78E-09 1.86E-09 6.02E-09 

Pav609 58 18 3.29E-09 1.48E-09 5.31E-09 

Pav1209 54 16 2.34E-09 1.49E-09 7.14E-09 

Mixed 65 29 4.88E-09 1.39E-09 9.66E-09 

H = 23.9 with 7 degrees of freedom  (P = 0.001) 
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Figure 4.11: Median K/P ratios with associated 95% confidence intervals in Mercenaria shells by diet. 
Letters indicate the similarities and differences revealed by Dunn’s post hoc analyses (Table A9). 
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Table 4.10: Results of Kruskal-Wallis analysis for (K/P) by diet. 
One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N  Missing  Median  25% 75% 

CTRL 61 6 1.76E-01 7.07E-02 1.98E+00 

TI 56 24 6.66E-01 3.18E-01 1.11E+00 

ISO 50 7 5.82E-01 1.80E-01 1.00E+00 

Cg 58 10 9.87E-01 6.48E-01 1.30E+00 

Cm 62 18 8.66E-01 6.56E-01 1.68E+00 

Pav609 58 18 1.01E+00 5.66E-01 1.63E+00 

Pav1209 54 16 6.71E-01 4.63E-01 2.17E+00 

Mixed 68 24 1.32E+00 7.13E-01 2.19E+00 

H = 24.9 with 7 degrees of freedom  (P = <0.001) 
  

 Comparison of median (Li/P)/Ca values between feeding groups (Figure 4.12, 

Tables 4.11 and A10) revealed that ratios from the ISO diet were significantly lower 

from all other treatments except those fed the Pav609 diet. The Mixed diet ratios were 

also revealed as significantly higher than those from the Pav609 diet. Comparing Li/P 

(Figure 4.13) only revealed that the ratios from the ISO diet group were significantly 

lower than those from all other diet groups (Tables 4.12 and A11). 

 The comparisons of magnesium concentrations as compared to phosphorous 

and calcium (Figure 4.14) by diet revealed that the mixed diet produced the highest 

ratio, being significantly higher than ratios from all diets except Cm.  And again, the ISO 

diet produced a ratio significantly lower than most other diets, with the exception being 

Pav609. All other diets resulted in intermediate (Mg/P)/Ca ratios (Tables 4.13 and A12).  

 The shell Mg/P quota comparisons among diets (Figure 4.15, Tables 4.14 and 

A13) revealed once again that the ISO treatment produced the lowest shell ratios, 

significantly lower than all diets except the TI and the Pav1209 diets. At the other end of 

the spectrum, the CTRL group had the highest Mg/P ratio, though not significantly 
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higher than those from the Mixed, Chaetoceros (Cg and Cm), and Pav609 treatments.  

Overall, the ranking supported was ISO < Cg, Cm, CTRL, Mixed, Pav609; CTRL > ISO, 

Pav1209, TI; Cm> TI; and Mixed > ISO and TI. 
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Figure 4.12: Median (Li/P)/Ca ratios with associated 95% confidence intervals in Mercenaria shells by 
diet. Letters indicate the similarities and differences revealed by Dunn’s post hoc analyses (Table A10). 
 

Table 4.11: Results of Kruskal-Wallis analysis for (Li/P)/Ca by diet. 
One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N  Missing  Median  25% 75% 

CTRL 61 6 1.72E-11 8.48E-12 2.43E-11 

TI 56 24 1.59E-11 9.91E-12 2.02E-11 

ISO 50 7 7.65E-12 2.66E-12 1.19E-11 

Cg 58 13 1.43E-11 1.14E-11 1.94E-11 

Cm 62 18 1.41E-11 9.82E-12 2.32E-11 

Pav609 58 18 1.18E-11 9.21E-12 1.74E-11 

Pav1209 54 14 1.37E-11 1.09E-11 1.78E-11 

Mixed 65 28 2.04E-11 1.40E-11 6.09E-11 

H = 49.0 with 7 degrees of freedom  (P = <0.001) 
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Figure 4.13: Median Li/P ratios with associated 95% confidence intervals in Mercenaria shells by diet. 
Letters indicate the similarities and differences revealed by Dunn’s post hoc analyses (Table A11). 
 

Table 4.12: Results of Kruskal-Wallis analysis for (Li/P) by diet. 
One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N  Missing  Median  25% 75% 

CTRL 61 6 5.10E-03 2.60E-03 9.20E-03 

TI 56 23 3.88E-03 3.15E-03 5.72E-03 

ISO 50 7 2.38E-03 8.71E-04 3.46E-03 

Cg 58 10 4.40E-03 3.52E-03 6.14E-03 

Cm 62 18 4.09E-03 3.51E-03 5.31E-03 

Pav609 58 18 3.69E-03 3.50E-03 4.75E-03 

Pav1209 54 15 3.86E-03 3.35E-03 4.59E-03 

Mixed 68 24 4.66E-03 3.54E-03 6.53E-03 

H = 54.1 with 7 degrees of freedom  (P = <0.001) 
 

 As depicted in Figure 4.16, the comparisons of manganese concentrations as 

compared to phosphorous and calcium among diets revealed the Mixed diet as the 

highest ratio, differing close to an order of magnitude from the lowest ratios in the CTRL 
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group (Tables 4.15 and A14).  The ratios from the Cm, Ti, and Pav1209 groups were 

identified as statistically similar to that of the Mixed group with the remaining diet groups 

falling between the end values. The ratios in the CTRL treatment were significantly 

lower than in all other treatments. 
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Figure 4.14: Median (Mg/P)/Ca ratios with associated 95% confidence intervals in Mercenaria shells by 
diet. Letters indicate the similarities and differences revealed by Dunn’s post hoc analyses (Table A12). 
 

Table 4.13: Results of Kruskal-Wallis analysis for (Mg/P)/Ca by diet. 
One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N  Missing  Median  25% 75% 

CTRL 61 6 5.4E-09 3.92E-09 7.33E-09 

TI 56 18 4.93E-09 3.69E-09 7.53E-09 

ISO 50 7 2.97E-09 1.11E-09 4.92E-09 

Cg 58 11 5.22E-09 4.06E-09 5.98E-09 

Cm 62 18 6.52E-09 4.49E-09 1.06E-08 

Pav609 58 18 4.34E-09 3.66E-09 5.95E-09 

Pav1209 54 14 4.47E-09 3.65E-09 6.24E-09 

Mixed 65 26 8.22E-09 4.79E-09 1.69E-08 

H = 58.4 with 7 degrees of freedom  (P = <0.001) 
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Figure 4.15: Median Mg/P ratios with associated 95% confidence intervals in Mercenaria shells by diet. 
Letters indicate the similarities and differences revealed by Dunn’s post hoc analyses (Table A13). 
 

Table 4.14: Results of Kruskal-Wallis analysis for (Mg/P) by diet. 
One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N  Missing  Median  25% 75% 

CTRL 61 6 2.17E+00 1.73E+00 2.40E+00 

TI 56 16 1.09E+00 9.36E-01 1.34E+00 

ISO 50 7 8.92E-01 3.54E-01 1.27E+00 

Cg 58 9 1.58E+00 1.28E+00 1.96E+00 

Cm 62 18 1.78E+00 1.37E+00 2.39E+00 

Pav609 58 18 1.44E+00 1.20E+00 1.82E+00 

Pav1209 54 13 1.39E+00 1.16E+00 1.53E+00 

Mixed 68 21 1.68E+00 1.28E+00 2.43E+00 

H = 81.0 with 7 degrees of freedom  (P = <0.001) 
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 The comparison of Mn/P ratios between experimental diets (Figure 4.17) 

supported similar interpretations as those for the (Mn/P)/Ca comparisons. The ratios 

from CTRL group were significantly lower than all other treatments. The ratios for the 

ISO and Cg groups were revealed as similar, while the ratios for the Mixed, Cm, Ti, 

Pav609, and Pav1209 revealed to be similar (Tables 4.16 and A15). 
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Figure 4.16: Median (Mn/P)/Ca ratios with associated 95% confidence intervals in Mercenaria shells by 
diet. Letters indicate the similarities and differences revealed by Dunn’s post hoc analyses (Table A14). 
 

Table 4.15: Results of Kruskal-Wallis analysis for (Mn/P)/Ca by diet 
One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N  Missing  Median  25% 75% 

CTRL 61 6 6.87E-11 5.13E-11 1.2E-10 

TI 56 17 4.23E-10 2.63E-10 7.1E-10 

ISO 50 7 1.75E-10 1.31E-10 3.71E-10 

Cg 58 11 2E-10 1.13E-10 3.03E-10 

Cm 62 18 4.08E-10 2.44E-10 6.27E-10 

Pav609 58 18 3.59E-10 1.96E-10 4.77E-10 
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Table 4.15 (Continued) 
Group N  Missing  Median  25% 75% 

Pav1209 54 14 3.42E-10 2.61E-10 5.25E-10 

Mixed 65 26 6.26E-10 4.18E-10 1.01E-09 

H = 152 with 7 degrees of freedom  (P = <0.001) 
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Figure 4.17: Median Mn/P ratios with associated 95% confidence intervals in Mercenaria shells by diet. 
Letters indicate the similarities and differences revealed by Dunn’s post hoc analyses (Table A15). 
 

Table 4.16: Results of Kruskal-Wallis analysis for (Mn/P) by diet. 
One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N  Missing  Median  25% 75% 

CTRL 61 6 2.26E-02 1.63E-02 4.66E-02 

TI 56 15 9.62E-02 6.39E-02 1.46E-01 

ISO 50 7 5.46E-02 4.22E-02 9.31E-02 

Cg 58 9 4.76E-02 3.36E-02 1.01E-01 

Cm 62 18 1.17E-01 6.43E-02 1.60E-01 

Pav609 58 18 1.13E-01 6.16E-02 1.61E-01 

Pav1209 54 12 8.57E-02 5.04E-02 1.31E-01 

Mixed 68 20 1.12E-01 9.05E-02 1.50E-01 

H = 122 with 7 degrees of freedom  (P = <0.001) 
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 The (Si/P)/Ca ratios were highest in Pavlova diets with TI and Mixed diets 

ranking next highest and the remaining diet groups being somewhat similar (Figure 

4.18). The ISO diet resulted in the lowest (Si/P)/Ca, which along with the Cg diet yielded 

ratios significantly lower than the Pavlova diets. The ratios for the Cm and CTRL were 

also revealed to be significantly lower than those of the Pav1209 group (Tables 4.17 

and A16). 

 In comparing Si/P shell content between diet groups, again the highest ratios 

were in the two Pavlova diet groups, followed by TI and the CTRL, while the remaining 

diets were similar (Figure 4.19). The ratios from the ISO group were the lowest but not 

significantly different from those of the Cg, Cm, and Mixed groups (Tables 4.18 and 

A17). 
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4.18: Median (Si/P)/Ca ratios with associated 95% confidence intervals in Mercenaria shells by diet. 
Letters indicate the similarities and differences revealed by Dunn’s post hoc analyses (Table A16). 
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4.17: Result of Kruskal-Wallis analysis for (Si/P)/Ca by diet 

One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N  Missing  Median  25% 75% 

CTRL 61 6 1.08E-09 6.65E-10 3.23E-09 

TI 56 18 1.9E-09 1.14E-09 3.43E-09 

ISO 50 7 7.35E-10 4.27E-10 1.25E-09 

Cg 58 11 1.04E-09 5.39E-10 1.67E-09 

Cm 62 18 1.08E-09 6.37E-10 2.61E-09 

Pav609 58 18 3.26E-09 7.75E-10 4.54E-09 

Pav1209 54 14 3.45E-09 2.5E-09 4.81E-09 

Mixed 65 24 1.47E-09 7.88E-10 3.13E-09 

H = 49.7 with 7 degrees of freedom  (P = <0.001) 
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4.19: Median Si/P ratios with associated 95% confidence intervals in Mercenaria shells by diet. Letters 
indicate the similarities and differences revealed by Dunn’s post hoc analyses (Table A17).  
 

 With respect to (Sr/P)/Ca, the highest concentration of Sr was found in the mixed 

diet group, followed by the Chaetoceros diet groups, then by the TI, CTRL, Pav609 and 

Pav1209 groups, with the ISO group significantly lowest (Figure 4.20).  The statistical 

analyses (Tables 4.19 and A18) also revealed the ratios from the Mixed group were 
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significantly higher than that those of the CTRL, Pav609, and Pav1209 groups but 

similar to that of the Chaetoceros and TI groups. 

 

4.18: Results of Kruskal-Wallis analysis for (Si/P) by diet 
One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N  Missing  Median  25% 75% 

CTRL 61 6 3.74E-01 2.21E-01 1.40E+00 

TI 56 16 4.67E-01 3.11E-01 7.57E-01 

ISO 50 7 2.40E-01 1.41E-01 3.37E-01 

Cg 58 9 3.03E-01 1.96E-01 4.83E-01 

Cm 62 18 2.96E-01 1.82E-01 5.79E-01 

Pav609 58 18 9.86E-01 4.16E-01 1.35E+00 

Pav1209 54 12 9.57E-01 2.91E-01 1.24E+00 

Mixed 68 19 2.53E-01 1.91E-01 3.92E-01 

H = 48.8 with 7 degrees of freedom  (P = <0.001) 
 

  The Mixed diet group was associated with the highest concentration of strontium 

when Sr/P was compared among diet treatments, but not significantly different from that 

of the Cg, Cm, Pav609, or CTRL diet groups. The ratios from the ISO group were once 

again revealed as significantly lower than those from all other treatments (Figure 4.21, 

Tables 4.20 and A19). 

 Zinc as compared to phosphorus and calcium was significantly higher in Mixed 

diet group than in the CTRL and Pav609 groups (Figure 4.22, Tables 4.21 and A20). 

The ratio from the ISO group was revealed to be significantly lower than those from the 

Cg, Cm, Mixed, and Pav1209 groups.  All other diets were revealed to be similar with 

respect to (Zn/P)/Ca. 

 Median Zn/P by diet (Figure 4.23) very closely resembled that of (Zn/P)/Ca.  

Again Cg group had the highest ratio, though not significantly different from the other 
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diet groups aside from ISO. The ratio from the ISO group was the lowest but revealed to 

only be significantly different from the Cg and Mixed groups (Tables 4.22 and A21). 
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Figure 4.20: Median (Sr/P)/Ca ratios with associated 95% confidence intervals in Mercenaria shells by 
diet. Letters indicate the similarities and differences revealed by Dunn’s post hoc analyses (Table A18). 
 

Table 4.19: Results of Kruskal-Wallis analysis for (Sr/P)/Ca by diet. 
One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N  Missing  Median  25% 75% 

CTRL 61 6 2.46E-08 1.38E-08 4.09E-08 

TI 56 19 2.2E-08 1.79E-08 4.72E-08 

Table 4.36 Continued  
Group N  Missing  Median  25% 75% 

ISO 50 7 1.43E-08 6.61E-09 2.07E-08 

Cg 58 11 3.07E-08 2.19E-08 3.96E-08 

Cm 62 22 2.93E-08 2.13E-08 3.98E-08 

Pav609 58 18 2.5E-08 1.93E-08 3.25E-08 

Pav1209 54 23 2.41E-08 2.01E-08 2.67E-08 

Mixed 65 28 4.07E-08 2.81E-08 7.58E-08 

H = 65.3 with 7 degrees of freedom  (P = <0.001) 

b 
b 

b 

a 
b,c b,c b,c 

c 

185 
 



 

Diet

S
r/P

0

5

10

15

20

25

30

CTRL
TI
ISO
Cg
Cm
Pav609
Pav1209
Mixed

 

Figure 4.21: Median Sr/P ratios with associated 95% confidence intervals in Mercenaria shells by diet. 
Letters indicate the similarities and differences revealed by Dunn’s post hoc analyses (Table A19). 
 

Table 4.20: Results of Kruskal-Wallis analysis for (Sr/P) by diet 
One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N  Missing  Median  25% 75% 

CTRL 61 6 8.42E+00 4.33E+00 1.66E+01 

TI 56 17 7.27E+00 4.81E+00 9.22E+00 

ISO 50 7 4.28E+00 2.19E+00 5.72E+00 

Cg 58 9 9.26E+00 7.41E+00 1.26E+01 

Cm 62 22 9.00E+00 7.90E+00 1.07E+01 

Pav609 58 18 8.64E+00 6.34E+00 9.73E+00 

Pav1209 54 21 7.07E+00 5.56E+00 8.47E+00 

Mixed 68 22 9.97E+00 8.19E+00 1.48E+01 

H = 80.3 with 7 degrees of freedom  (P = <0.001) 
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Figure 4.22: Median (Zn/P)/Ca ratios with associated 95% confidence intervals in Mercenaria shells by 
diet. Letters indicate the similarities and differences revealed by Dunn’s post hoc analyses (Table A20). 
 

Table 4.21: Results of Kruskal-Wallis analysis for (Zn/P)/Ca by diet. 
One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N  Missing  Median  25% 75% 

CTRL 53 16 4.72E-11 3.48E-11 7.70E-11 

TI 37 25 5.67E-11 3.26E-11 1.75E-10 

ISO 25 11 1.91E-11 -3.1E-10 4.54E-11 

Cg 39 7 1.1E-10 2.76E-11 2.48E-10 

Cm 45 27 7.60E-11 2.05E-11 5E-10 

Pav609 39 17 4.57E-11 1.60E-11 1.06E-10 

Pav1209 20 5 7.65E-11 5.31E-11 4.22E-08 

Mixed 29 10 9.60E-11 7.38E-11 4E-08 

H = 32.3 with 7 degrees of freedom  (P = <0.001) 
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Figure 4.23: Median Zn/P ratios with associated 95% confidence intervals in Mercenaria shells by diet. 
Letters indicate the similarities and differences revealed by Dunn’s post hoc analyses (Table A21). 
 

Table 4.22: Results of Kruskal-Wallis analysis for (Zn/P) by diet 
One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N  Missing  Median  25% 75% 

CTRL 53 16 1.67E-02 1.33E-02 2.52E-02 

TI 37 25 1.87E-02 7.18E-03 5.94E-02 

ISO 25 11 5.02E-03 -1.08E-01 1.34E-02 

Cg 39 7 3.48E-02 9.85E-03 5.61E-02 

Cm 45 27 1.88E-02 1.17E-02 2.43E-02 

Pav609 39 17 1.28E-02 4.23E-03 3.63E-02 

Pav1209 20 5 1.62E-02 1.11E-02 2.00E-02 

Mixed 29 10 2.46E-02 1.97E-02 3.21E-02 

H = 21.3 with 7 degrees of freedom  (P = 0.003) 

 

Discussion 

 In general, problems associated with comparing the elemental concentrations to 

phosphorus include a) variance in P concentrations potentially not being uniform and 
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attributable to the same factor in each group, b) high P concentrations contributing to 

unrelated minimal ratios with specific diets, and c) potential confounding factors outside 

controlled environments as identified in previous studies.  Analyses using both the 

(element/P)/Ca and element/P did, however, produced results considered to be of 

interest with regard to six elements, either due to their similarity to elemental trends 

observed in algae quotas described by Ho et al (2003), Sunda and Huntsman (1995), 

and Brand et al. (1983), or mirroring trends observed in the results described in 

Chapters 2 and 3. Iron, potassium, magnesium, manganese, silica, and zinc were found 

to most possibly be directly associated with the diet received or assumed metabolic 

influences. Observed relative strontium concentrations, again, support an association 

with growth rate. Conversely, analysis of boron, barium, cobalt, and lithium appeared to 

be associated with other environmental factors or factors not associated with 

experimental variables. 

 Ho et al. (2003) presented analyses of the cellular content of 15 phytoplankton 

species with regard to C, N, P, S, K, Mg, Ca, Sr, Fe, Mn, Zn, Cu, Co, Cd and Mo (Figure 

4.1). In general, they found that K concentrations are higher than in seawater and Mg 

lower, except in the case of diatoms where both Mg and K are relatively high. The major 

nutrients C, N, P, and S are variable with the average quotas of the organic biomass 

being similar to that of Redfield et al. (1963). The trace metals followed the general 

pattern of Fe>Mn>Zn>Cu>Co=Cd>Mo.  The coccolithophores examined by Ho et al. 

(2003) had higher Mn, Co, and Cd quotas compared to the diatoms. This difference was 

explained by the possible difference between metal requirements of oceanic and neritic 

species, as the oceanic diatom examined had low Fe, Mn, and Cu quotas and higher 
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Co and Cd quotas compared to the coastal diatoms. Table 4.44 provides a summary of 

the quota comparisons by algal class as adapted from Ho et al. (2003). 

 

Table 4.23: Interpreted ranking of algae element quotas as depicted in Ho et al. (2003). 1=highest 
concentration and 5 the lowest. 
  Chloro Prasino Dino Cocco Diatoms 

S/P 5 3 2 4 1 

K/P 5 2 4 3 1 

Mg/P 3 4 2 5 1 

Sr/P 5 3 2 1 4 

Fe/P 1 2 3 4 5 

Mn/P 5 2 3 1 4 

Zn/P 1 2 3 5 4 

Cu/P 2 1 1 5 4 

Co/P 4 3 2 1 3 

Cd/P 4 2 3 1 5 

Mo/P 5 2 1 3 4 
 

 In the present research, two species each representative of three taxonomic 

classes (Pavlovacea, Prymesiophycea, and Bacillariophycea) were used as diet 

variables. Pavlova sp. (CCMP1209, Pav1209) was isolated from an unknown tropical 

site and Pavlova pinguis (CCMP609) from the Sargasso Sea. Isochrysis sp.1 

(CCMP1324, TI) was isolated from the South Pacific off the Society Islands while 

Isochrysis sp.2 (CCMP1611, ISO) from Chesapeake Bay. Finally, Chaetoceros 

galvestonensis (CCMP186, Cg) was isolated from the Gulf of Mexico off St. Petersburg, 

FL, and C. mulleri (CCMP1316, Cm) from the North Pacific off Hawaii. Originally, two 

species of Tetraselmis were proposed for inclusion in the study, however, trouble 

maintaining these cultures ultimately lead to their removal from the feeding trials. 

 Iron has been suggested as a major constituent of shell deposition (Almeida et 

al. 1998) as well as suggested to be associated with sediment concentrations during 
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experiments with Crassostrea virginica by Carriker et al. (1996).  The hypothesis that 

metabolic/biologic controls or ingestion of particulates could be responsible for iron 

concentrations observed in the shells of studied bivalves was based upon these 

previous findings. The Fe/P ratios appeared to suggest a link between Pavlova spp. and 

the highest concentrations of iron, though the trend was not significant. The 

comparisons in Ho et al. (2003), unfortunately, did not include specific Pavlovacea 

species, thus direct comparison is not fully possible as to the potential relationship of 

iron with this class of algae. However, an increased iron quota and hypothesized 

subsequent contribution similar to what was expected for the 

Coccolithophores/Prymnesiophycea is based on similarities between the classes.  Of 

particular interest, analyses of both (Fe/P)/Ca and Fe/P, revealed the ratios from the 

Cg, ISO, and the CTRL groups as the lowest among the feeding groups, though again 

not significantly different from the majority of the remaining diet groups.  Both the Cg 

and ISO were neritic isolates and hypothesized to be associated with iron enrichment of 

the shells based on findings from Sunda and Huntsman (1997), which evidently is the 

opposite of the current trends observed. 

 Potassium concentrations were expected to be higher in the shells of clams fed 

diatom-rich diets based on Ho et al. (2003) as compared to other classes of algae 

examined.  Shells in the Chaetoceros treatments did appear to be more enriched with 

potassium than those from the Isochrysis spp. treatments, though not significantly so. 

The shells from the Pavlova spp. treatments exhibited more similar ratios to the 

Chaetoceros spp. treatments. Significant differences, however, were found only 

between the ratios from the Mixed group and those from the ISO and CTRL groups with 
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respect to (K/P)/Ca and both the Cm and Mixed groups from ISO with respect to K/P.  

As such, the observed trends do not support the hypothesis that trends in potassium as 

normalized to phosphorous can be attributable to specific classes of algae but rather 

indicate potential species specific influences confounded by nutritional value of the diet 

and potentially differences between inshore algal strains and nearshore/offshore strains.  

 Magnesium/phosphorous ratios presented a marginally significant trend with diet.  

Median ratios for both Chaetoceros spp. were higher than those for Isochrysis spp. with 

ratios in shells from the Cm diet significantly higher than both Isochrysis spp.  When 

(Mg/P)/Ca ratios were considered, direct dietary influence was not apparent, in fact, the 

trends indicate growth rate as the most likely dominant influence.  These findings were 

interpreted as suggesting multiple factors being associated with magnesium 

concentrations. Foster et al. (2008) demonstrated that magnesium was associated with 

the organic partitions of aragonitic shells and, as such, was related to compositional 

changes in the organic matter or extra pallial fluid contributing to changes in 

incorporation rate.  In context of the present study, both growth rate and element 

availability had the potential to influence the composition of the organic matter and 

therefore element incorporation. 

 Shells of clams fed the neritic species had lower relative manganese 

concentrations than those fed the oceanic species, or diets composed of both, as did 

the CTRL group.  This trend, however, was significant only when using Mn/P ratios, 

though the algal species of unknown origin was not significantly different from the 

known neritic species. These findings did support the hypothesis that oceanic algal 

isolates would be associated with higher manganese shell concentrations than the 
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neritic isolates. Of interest is the low value in the CTRL group, as this indicates potential 

for metabolic/stress associated changes or the influence of the pre-experimental brown-

water diet composed only of neritic algal species. Though associations between 

manganese and biologic influences have been suggested (Strasser et al., 2008) 

alternative factors cannot be dismissed. Blanchard and Chasteen (1976) surmised that 

the amount of substitution of Ca2+ by Mn2+ was correlated with tidal level, though did not 

consider the oxygenation of the environment (Rosenberg, 1980).  Crisp (1975) 

attempted to correlate the Mn concentration to salinity, while Strasser et al. (2008) 

correlated Mn/Ca levels with that of seawater concentration, potentially confounded by 

biological activity. Carre et al. (2006) suggested positive Mn/Ca association with growth 

rates while Strasser et al. (2006) found a negative correlation. Most researchers, 

however, have not considered dietary influence or stress-related influences potentially 

associated with their observations.  

 The silica ratios in the shells from clams fed Pavlova spp. were consistently 

higher than in shells from those fed diatoms.  Interestingly, shells of clams fed ISO were 

among the least Si enriched treatments, including when compared to TI.  Again, multiple 

factors are likely associated with these findings, however, the trends do indicate that 

diet can influence the Si concentration of clam shells. 

 Zinc-associated ratios appeared to have a similar trend to that observed by Ho et 

al. (2003) in that Zn concentrations in the shells from diatom treatments were higher 

than for the Coccolithophores/ Prymnesiophytes treatments.  Furthermore, the trends 

for both Zn ratios were similar, with the shells from the Mixed diet, one or both the 

diatom diets, and Pav1209 significantly more enriched than those from the ISO group.  
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The Mixed diet ranked higher for both Zn ratios as compared to the control and Pav609 

groups. Based on previous findings associating zinc with dietary factors and metabolic 

transformations (Windisch, 2001), incorporation of zinc specific to diet as well as 

metabolic differences amongst clams in the different feeding groups did both likely 

contribute to the results. 

 

Conclusion 

 Because the ratios from the ISO group were consistently the lowest in the study, 

it is suspected that factors not assessed and potential contamination of these shells 

influenced the results and ultimately complicated interpretations. The results of this 

study, thusly, are inconclusive with respect to the influence of diet on elemental 

composition of the shell of M. mercenaria. The (Element/P)/Ca and Element/P ratios, 

while not necessarily capable of being a primary line of evidence, have potential utility in 

support of findings from standard normalized comparisons, as well as in revealing 

possible secondary and tertiary influences on elemental shell composition.  
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5.  Temporal changes in the elemental shell chemistry of Mercenaria mercenaria 

during starvation-induced stress and death 

 

Introduction 

 The composition of fossil shells is generally determined by some combination of 

the physiochemical environment inhabited by the organism, biologic controls of skeletal 

growth, and diagenetic alterations (Gomez-Alday and Elorza, 2001). Shell alteration 

begins while the organism is living and factors that cause shell weathering are among 

the same factors associated with changes in the shell-deposition metabolism 

(Rosenberg, 1980).  Thus, knowledge of initial shell chemistry is vital in making 

interpretations as to chemical alterations and subsequent reconstruction of 

environments (Rosenberg, 1980). 

 Shell dissolution can occur during periods of anaerobiosis in bivalve molluscs 

(Crenshaw, 1980) which are characterized by decreased pH and increased succinic 

acid (Crenshaw and Neff, 1969).  Environmental stresses can also cause shell 

dissolution and ultrastructural changes (Davies and Sayre, 1970; Wilbur, 1972).  As 

discussed in chapters 2 and 3, environmental stresses can ultimately lead to changes in 

organismal metabolism and changes in chemical composition. 

195 
 



 The focus of this chapter is the description of changes in elemental chemistry 

observed in the shells of starved individuals and that of the dead individuals.  The goal 

is to provide a chronological view of changes potentially occurring in bivalve populations 

with regard to shell chemistry during events leading to death of the organism and shortly 

after death. 

 

Methods 

 The shells analyzed during this research were originally cultured as part of the 

control group for the feeding experiments described in Chapter 3.  A subsample of 

valves was collected at the start of the starvation period to provide a baseline to 

compare elemental changes through time with subsequent collections in March, May, 

July and October. The collected clams were examined during valve separation and 

notes taken to document the visible changes in health of the animals by use of mantle 

retraction, tissue occupancy of the shell, gaping, tissue deterioration, and the lack of 

tissue.   

 The shells were treated identically as described in Chapter 3 and analyzed for 

elemental composition using the ICP-OES.  Each elemental concentration was again 

transformed to a ratio as compared to calcium for statistical analysis. 

 The element/Ca levels were initially graphed by collection month to determine the 

general trends associated with each element. The data were then examined by 

collection month using analysis of variance or Kruskall-Wallis one-way analysis of 

variance on ranks followed by an appropriate post hoc analysis as in the previous 

chapters.    
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Results 

 No dead clams were observed until July though mantle retraction, small tissue 

volumes and some intermediate gaping was observed during March with increased 

signs of stress noted in both May and July.  The July collection was the first time empty 

valves and deteriorating tissue were observed.  All the animals in the October collection 

were dead, with the majority of shells void of tissue and only a few with small remnants 

of decomposing tissue apparent. 

 Due to unsuccessful analysis of specific elements for some of the collection 

groups, the analyses were confined to B, Ba, Co, Fe, K, Li, Mg, Mn, Si, and Zn.  The 

results herein thus focus on these elements as compared to Ca and changes in those 

ratios over the course of the experiment. 

 The B/Ca ratios by collection month (Figure 5.1, Tables 5.1 and B1) revealed a 

higher relative boron concentration in July compared to all other collections.  The only 

other significant difference was observed between the March and October collections. 

 The Ba/Ca ratios (Figure 5.2, Tables 5.2 and B2) indicate significant loss of Ba 

from the shells between January and March. The ratios thereafter, however, did not 

significantly change. Of note was the apparent decrease in deviation from the median 

values through the course of the experiment. 

 Cobalt concentrations as compared to calcium again were associated with a 

general downward trend to the July collection with a significant increase observed in 

October (Figure 5.3). The Co/Ca ratios in the shells from July were significantly lower 

than those from the baseline (January) and March collections (Tables 5.3 and B3). 
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There is a large degree of uncertainty as to the amount of change between January and 

July as the May median is based upon of a single clam. 
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Figure 5.1: Median B/Ca compared to month collected with associated 95% confidence intervals. 
 

Table 5.1: Summary of analysis of variance on ranks for B/Ca.  
One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N  Missing  Median  25% 75% 

January 14 1 2.86E-05 2.71E-05 3.17E-05 

March 16 1 2.92E-05 2.78E-05 4.87E-05 

May 11 1 2.43E-05 2.19E-05 2.66E-05 

July 21 1 6.70E-04 3.80E-05 7.91E-04 

October 16 1 2.20E-05 2.14E-05 2.60E-05 

H = 46.0 with 4 degrees of freedom  (P = <0.001) 
 

 The Fe/Ca ratios exhibited a significant decrease between the baseline (January) 

and both the March and May collections followed by a significant increase between the 

May and October collections (Figure 5.4, Tables 5.4 and B4).  The ratios of the shells 

from the March and May collections were not significantly different, nor were the ratios 
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of the shells from the July and October collections. Furthermore, the ratios from the 

baseline collection and those from the July and October collections were not 

significantly different. 
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Figure 5.2: Median Ba/Ca compared to month collected with associated 95% confidence intervals. 
 

Table 5.2: Summary of analysis of variance on ranks for Ba/Ca. 
One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N  Missing  Median  25% 75% 

January 14 1 2.21E-05 1.83E-05 2.66E-05 

March 16 1 1.49E-05 1.29E-05 2.02E-05 

May 11 1 1.28E-05 1.14E-05 1.49E-05 

July 21 1 1.17E-05 1.13E-05 1.41E-05 

October 16 1 1.36E-05 1.29E-05 1.51E-05 

H = 33.1 with 4 degrees of freedom  (P = <0.001) 
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Figure 5.3: Median Co/Ca compared to month collected with associated 95% confidence intervals. 
 

Table 5.3: Summary of analysis of variance for Co/Ca. 
One Way Analysis of Variance 

Normality Test: Passed (P = 0.742)       

Equal Variance Test: Passed (P = 0.182)       

Group Name  N  Missing Mean Std Dev SEM 

January 12 7 1.44E-06 3.59E-07 1.61E-07 

March 13 8 1.26E-06 2.05E-07 9.18E-08 

May 11 10 7.60E-07 0.00E+00 0.00E+00 

July 20 14 6.99E-07 1.39E-07 5.68E-08 

October 14 11 2.00E-06 3.33E-07 1.92E-07 

Source of Variation  DF   SS   MS    F    P  

Between Groups 3 3.67E-12 1.22E-12 18.32 <0.001 

Residual 15 1.00E-12 6.68E-14     

Total 18 4.68E-12       

Power of performed test with alpha = 0.050: 1.000 
  

 The median K/Ca ratios over time (Figure 5.5) revealed a significant decrease 

between both the baseline (January) and March collections, and between the March 

and July collections (Tables 5.5 and B5). A further decrease was revealed between the 
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May and July collections. Again, the variability observed decreased through the 

experiment. 

 The temporal comparison of Li/Ca (Figure 5.6) revealed a gradual decrease in 

relative Li concentrations of the shells. The Li/Ca ratios of the clam shells from the 

January collection were higher than those from the July and October collections (Tables 

5.6 and B6). The ratios of the shells from the March and May collections were also 

revealed to be higher than those from October. The variability of Li/Ca ratios by 

collection again decreased through the experiment. 
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Figure 5.4: Median Fe/Ca compared to month collected with associated 95% confidence intervals. 
 

Table 5.4: Summary of analysis of variance on ranks for Fe/Ca. 
One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N  Missing  Median  25% 75% 

January 14 1 8.01E-05 5.73E-05 7.70E-04 

March 16 1 2.01E-05 1.28E-05 4.12E-05 
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Table 5.4 (Continued) 

Group N  Missing  Median  25% 75% 

May 11 1 2.16E-05 1.90E-05 2.39E-05 

July 21 1 6.17E-05 4.61E-05 7.70E-05 

October 16 1 6.25E-05 4.53E-05 7.00E-05 

H = 41.4 with 4 degrees of freedom  (P = <0.001) 
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Figure 5.5: Median K/Ca compared to month collected with associated 95% confidence intervals. 
 

Table 5.5: Summary of analysis of variance on ranks for K/Ca. 
One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N  Missing  Median  25% 75% 

January 14 1 3.40E-03 3.72E-06 4.72E-03 

March 16 1 2.62E-03 1.57E-03 3.23E-03 

May 11 1 1.15E-03 9.58E-04 1.60E-03 

July 21 1 1.51E-05 9.83E-06 2.25E-05 

October 16 1 2.05E-04 1.58E-04 2.46E-04 

H = 41.2 with 4 degrees of freedom  (P = <0.001) 
 
 

202 
 



 

Li
/C

a

0.0000

0.0008

0.0010

0.0012

0.0014

0.0016

0.0018

January
March
May
July
October

 

Figure 5.6: Median Li/Ca compared to month collected with associated 95% confidence intervals. 
 

Table 5.6: Summary of analysis of variance on ranks for Li/Ca. 
One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N  Missing  Median  25% 75% 

January 14 1 4.03E-06 3.86E-06 9.14E-04 

March 16 1 3.29E-06 2.91E-06 4.29E-06 

May 11 1 3.16E-06 2.92E-06 3.60E-06 

July 21 1 2.83E-06 2.16E-06 3.32E-06 

October 16 1 2.19E-06 2.01E-06 2.27E-06 

H = 37.5 with 4 degrees of freedom  (P = <0.001) 
 

 The Mg/Ca trend revealed an increase in relative Mg concentration between the 

baseline and March collections followed by a decrease in Mg concentration (Figure 5.7). 

The Mg/Ca ratios were significantly higher in the shells from the March collection 

compared to those of the January, July and October collections; while Mg/Ca ratios of 

the shells from the May collection were significantly higher than those of the July and 
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October collections (Tables 5.7 and B7). Of note, the only significant differences from 

baseline ratios were those from the March collection. 
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Figure 5.7: Median Mg/Ca compared to month collected with associated 95% confidence intervals. 
 

 The Mn/Ca ratios revealed a decrease in relative Mn concentration of the shells 

followed by a small increase in the shells of the October collection (Figure 5.8), though 

all changes appeared to be within the deviation of the baseline (January) collection. 

Statistical analyses (Tables 5.8 and B8) revealed that Mn/Ca ratios were higher in the 

shells from the baseline collection than those from the shells in the May, July, and 

October collections.  In addition, March Mn/Ca ratios were higher than May and July. 

 

Table 5.7: Summary of analysis of variance on ranks for Mg/Ca. 
One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N  Missing  Median  25% 75% 

January 14 2 1.27E-03 5.35E-04 1.41E-03 
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Table 5.7 (Continued) 
Group N  Missing  Median  25% 75% 

March 16 1 2.89E-03 1.87E-03 3.35E-03 

May 11 1 1.66E-03 1.30E-03 1.89E-03 

July 21 1 5.80E-04 5.19E-04 6.51E-04 

October 16 1 5.91E-04 5.13E-04 7.31E-04 

H = 43.8 with 4 degrees of freedom  (P = <0.001) 
 

M
n/

C
a

0.00000

0.00005

0.00010

January
March
May
July
October

 

Figure 5.8: Median Mn/Ca compared to month collected with associated 95% confidence intervals. 
 

Table 5.8: Summary of analysis of variance on ranks for Mn/Ca. 
One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N  Missing  Median  25% 75% 

January 14 2 5.01E-05 3.18E-05 2.00E-04 

March 16 1 2.32E-05 2.17E-05 3.01E-05 

May 11 1 1.20E-05 9.44E-06 1.27E-05 

July 21 1 1.23E-05 1.02E-05 1.80E-05 

October 16 1 2.02E-05 1.77E-05 2.21E-05 

H = 47.3 with 4 degrees of freedom  (P = <0.001) 
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 The Si/Ca ratios over time were more variable than the elements previously 

discussed (Figure 5.9). The statistical analyses (Tables 5.9 and B9) revealed a 

significant decrease of Si/Ca ratios in the shells collected between January and May  

and that relative concentrations of silica were higher in shells collected in both July and 

October as compared to those collected in March and May. 
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Figure 5.9: Median Si/Ca compared to month collected with associated 95% confidence intervals.  
 

Table 5.9: Summary of analysis of variance on ranks for Si/Ca. 
One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N  Missing  Median  25% 75% 

January 10 1 4.17E-04 2.93E-04 5.26E-04 

March 16 1 1.65E-04 1.45E-04 2.64E-04 

May 11 1 1.55E-04 1.26E-04 1.69E-04 

July 21 1 5.09E-04 3.70E-04 6.31E-04 

October 16 1 3.82E-04 3.52E-04 5.24E-04 

H = 35.7 with 4 degrees of freedom  (P = <0.001) 
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 The trend in Zn/Ca by collection month (Figure 5.10) was a small increase in 

median Zn/Ca ratios of the shells collected between January and March followed by a 

gradual decrease through July followed by a more dramatic decrease between July and 

October. The Zn/Ca ratios of the shells from both January and March collections were 

significantly higher than those from the July and October collections (Tables 5.10 and 

B10).  Thusly, a significantly decreased concentration of zinc was observed from 

baseline to the final experimental collection. 
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Figure 5.10: Median Zn/Ca compared to month collected with associated 95% confidence intervals. The 
October measurements were below the concentration of the standard. 
 

Table 5.10: Summary of analysis of variance on ranks for Zn/Ca. 
One Way Analysis of Variance 

Normality Test: Failed (P < 0.050) 

Kruskal-Wallis One Way Analysis of Variance on Ranks 

Group N  Missing  Median  25% 75% 

January 14 2 2.00E-05 1.61E-05 2.80E-05 

March 16 2 2.65E-05 1.87E-05 4.07E-05 

May 11 1 1.15E-05 8.27E-06 1.45E-05 

July 21 10 4.09E-06 3.06E-06 4.91E-06 

October 13 7 -2.22E-04 -2.75E-04 -1.45E-04 

H = 39.7 with 4 degrees of freedom  (P = <0.001) 
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Discussion 

 The current study demonstrates the changes in 10 element/calcium ratios 

through time for starved Mercenaria mercenaria.  These results illustrate both changes 

due to assumed metabolic stress and alterations occurring post mortem which provides 

valuable insight into the mechanisms of shell dissolution and utility of specific elements 

in paleontological analyses aimed at environment reconstruction. The importance of 

knowledge pertaining to incorporation pathways, organic versus inorganic partitioning, 

and shell dissolution mechanisms is emphasized. 

 Boron concentrations as compared to calcium of the collected shells were not 

found to be significantly lower than the baseline concentrations; instead, there was a 

dramatic increase in the Ba/Ca of the shells from the July collection. Studies of mollusc 

shells by Furst et al. (1976) suggested that boron was associated with the inorganic 

shell fraction and that it appeared to substitute for carbon. The substitution of carbon by 

boron was later supported during analysis performed by Cook (1977).  It was noted, 

though, that effects of other factors such as temperature and nutrition were not 

considered (Rosenberg 1980). Additionally, the results of Hemming and Hanson (1992) 

demonstrated an association between pH and boron incorporation in carbonates, 

however, the findings were more specific to isotopic ratios. The results of the current 

study are not ultimately explained by incorporation of boron into the shell void of 

adequate carbon levels. However, association between the changes in relative 

concentration of boron in the collected shells and assumed metabolic changes due to 

starvation stresses cannot be dismissed.   

208 
 



  Barium concentrations as compared to calcium were associated with a general 

decrease over time as compared to the baseline concentration, though a small increase 

associated with dead shells was observed. The factors associated with incorporation of 

barium into bivalve shells are still in debate, but recent evidence in Tabouret et al. 

(2012) with regard to Pecten maximus suggests Ba to be directly incorporated into the 

shell via dissolved phases and in proportion to the concentrations observed in the 

surrounding waters.  This conclusion supported that given in Gilliken (2006) which 

determined the Ba concentrations observed in the shells of Mytillus edulis to be directly 

associated with [Ba/Ca]Water and not determined by diet or solely/primarily influenced by 

phytoplankton blooms, thus salinity extrapolations could be made using Ba/Ca from 

archival shells.  Seemingly missing from the discussions of these studies is the potential 

for change when the target bivalve species is under stress. The present study identified 

a gradual decrease in Ba/Ca in the shells of starved M. mercenaria with a significant 

decrease from baseline.  The gradual loss observed in this study was potentially related 

to shell dissolution and lost metabolic controls due to starvation/stress, as such, these 

results suggest that Ba/Ca may not be consistently preserved nor dependable for 

environmental interpretations. The partitioning of Ba between the mineral and organic 

shell fractions, however, is an important consideration in determining the effectiveness 

of Ba as an environmental proxy. 

 Cobalt concentrations as compared to calcium were associated with a general 

downward trend to the third experimental collection with a sharp increase observed for 

the last collection.  Cobalt has been a focus of research generally specific to 

environmental contamination studies (for example, Byron et al., 1978; Szefer et al., 
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1990; Hedouin et al., 2006; Rainbow et al., 1993).  In a study conducted by Babukutty 

and Chacko (1992), cobalt was determined to be mostly associated with the shells of 

Villorita cyprinoides; however, Cravo et al. 2004 suggested Co was partitioned in the 

soft tissues of Patella aspera. In the current study, with recognition of potential 

differences between phyla and mineralogical differences, the observed trend in Co as 

compared to calcium is seemingly attributable to shell dissolution and organic matter 

decomposition mechanisms, as well as indicating a possible higher concentration in the 

organic matter.  

 Iron concentrations exhibited an initial decrease from baseline levels but were 

determined to be within the range of baseline values during the last two collections. Iron 

has been described as an essential component of shell deposition often associated with 

the organic matrix (Almeida, 1998; Wang et al. 2003; Zhang et al., 2003), and has been 

suggested to more easily incorporated into soft tissues than in shells (Cravo et al., 

2004).  Conversely, iron has been associated with the shell and soft tissues of bivalves 

due to metal contamination (Pitts et al., 1994; Bryan et al., 1978). The trends observed 

in the current study were probably influenced by ratio alteration due to shell dissolution 

and preservation of organic fractions. 

 The relative concentrations of potassium were observed to follow a downward 

trend with a small, but insignificant, increase between collections four and five.  

Potassium has been suggested be incorporated through ingestion of particulates 

(Carriker et al., 1996). The downward trend was potentially associated with shell 

dissolution and the increase potentially signifying organic content being retained (Lutz 

and Rhoads, 1977).  
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 An overall decrease in Li/Ca was observed in the present study. Though 

incorporation dynamics have been associated with plankton and water concentration 

dynamics (Thebault et al., 2009; Thebault, 2012), the decreased concentrations were 

determined to be associated with loss due to shell dissolution. 

 The trend observed regarding Mg/Ca as compared to collection suggested an 

initial increase in relative concentration followed by a downward trend. Magnesium has 

been shown to substitute for calcium though primarily into calcite rather than in 

aragonite (Clarke and Wheeler, 1922; Dodd, 1965). Overall, influences attributable to 

magnesium incorporation have the potential to be highly variable (Rosenberg, 1980).  

As such the initial increase in magnesium in the current study could be due to 

replacement of calcium followed by effects of shell dissolution.  

 The trend in Mn/Ca over time showed a decreased relative concentration 

followed by a small increase in the last collection.  Manganese has been described as 

being partitioned in both organic and mineral phases of the bivalve shell (Comfort, 1951; 

Fox, 1966) as well as capable of substituting for calcium in biogenic carbonates (White 

et al., 1977; Blanchard and Chasteen, 1976).  Overall, the decrease seems to have 

suggested loss through shell dissolution followed by a potential ratio shift due to 

retained organic-phase associations.  

 Silica concentrations relative to calcium decreased initially then rebounded to 

within baseline ranges.  Silica has been shown to be involved with early diagenetic 

transformations in association with microbial activity and decay of organic matter 

(Holdaway et al., 1982).  These described transformations, however, were aligned with 

specific sediment environments.  The present results were not influenced by diagenetic 
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effects isolated during burial but were equivalent to changes occurring prior to burial if 

occurring in the natural environment.  The Si/Ca associated trends are most likely due 

to shell dissolution, with potential influence from microbial activity. 

 Zinc showed a general decrease over time in the present study, though the 

concentrations determined for collection four were below the ICP standard 

concentrations, thus the actual degree of change is not known.  As discussed in 

previous chapters, zinc is often discussed in terms of environmental contamination, 

though Windisch (2001) did specify zinc as important biologically and associated with 

metabolic and food web interactions.  As shown in Chapter 3, zinc appeared to be 

associated with metabolic change.  As such, the decrease in zinc observed in the 

current study is likely attributable to both metabolic shifts and shell dissolution 

alterations. 

 

Conclusion 

 In summary, Ba, Co, Fe and Si were higher relative to Ca in shells at the start of 

the experiment then declined as the animals starved, with some increase following the 

death of the clams. Potassium, Li, Mg, and Mn relative to Ca were high in the baseline 

shell group then declined at somewhat different rates through the course of the 

experiment.  Zinc to Ca ratios remained high in the live or recently dead shells (through 

July), but then dropped, with high variability, in the dead shells analyzed from the final 

collection.  Only B, which as described above, tends to substitute for C, appeared to 

behave very differently relative to Ca, compared to the trends seen in the other trace 
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elements analyzed.  If the major factor in the elemental changes was dissolution, boron 

could be expected to behave somewhat differently.  
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6.  Conclusions 

 

Recent research specific to the bivalve shell has been predominantly focused on 

associating changes in elemental concentrations with environmental parameters such 

as temperature, salinity, seasonal variability in water concentrations, pollution, and 

effluent river waters.  The influences of phytoplankton dynamics (Stecher et al., 1996) or 

their elemental composition (e.g. Gilliken, 2005) have only recently been suggested as 

potential factors in the variability of bivalve shell chemistry.  Barium and lithium have 

been the primary elements of interest with regard to phytoplankton associations, though 

the majority of the studies allude to phytoplankton bloom dynamics as being attributed 

to elemental signals observed. Barium correlated with phytoplankton blooms (diatoms 

mostly) in several studies (Stecher et al., 1996; Putten et al., 2000; Thebault et al., 

2009; and Lazareth et al., 2007), which was further developed in Tabouret et al. (2012) 

where Ba enrichment was determined to be most likely due to incorporation of dissolved 

Ba, which as might be available following an algal bloom (Stecher and Kogut, 1999). 

Research presented in Gilliken et al. (2006) demonstrated an influence of [Ba/Ca] water 

on [Ba/Ca] shell of Mytillus edulis and they concluded that there was no direct association 

between Ba/Ca enrichment and dietary uptake.  The influence of phytoplankton blooms 

on [Ba/Ca]water, however, were later suggested as being a possible explanation for Ba 

peaks observed and that feeding on algal species with high Ba concentrations is 
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another plausible influence based on examination of Ba concentration in the gut, though 

the degree of dietary Ba incorporation was not discussed. With respect to Li/Ca, 

Thebault and Chauvaud (2011) examined signatures in Pecten maximus with the 

conclusion that growth, potentially temperature and increased lithium due to diatom 

blooms were responsible for enrichment.  Interestingly, though it has been suggested 

that algal elemental compositions are a plausible influence on the elemental 

composition of bivalve shells, confirming information remains scarce. 

The goal of this dissertation was to assess the influence of diet, specifically 

consumption of algal taxa, on the elemental chemistries of the shells of two marine 

bivalve mollusks. Overall, differences were observed between the two bivalve species, 

as well as among treatments within species.  However, experimental design and 

logistical challenges are suspected to have influenced the results and thereby limited 

interpretations. Because whole shell samples were examined, including the organic 

matrix, results were influenced by both the mineral phase and organic phase. 

Additionally, ontogenetic influences cannot be compared because the ages and sizes of 

the experimental scallops and clams were different. Algal cultures produced insufficient 

concentrations for adequate feeding during the last months of the Mercenaria 

experiments. And finally, complications during elemental analysis restricted sample 

sizes and the elements reported. Nevertheless, the dissertation yielded the following 

conclusions: 

1. Chapter 2 experiments with Argopecten irradians concentricus revealed: 

a. highest growth rates and survivorship in treatments fed Pavlova 

pinguis or mixed algal diets, 
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b.  no differences in shell chemistry between the left and right valves, 

c. significant differences in shell chemistries for only two elements (Mg 

and K) between feeding groups, and 

d. only K in the shells appeared to be directly influenced by diet.  

2.  Chapter 3 experiments with Mercenaria mercenaria revealed that: 

a. axial growth and shell thickening were variable among treatments, with 

only the Mixed and Cm treatments exhibiting significant growth, though  

experimental procedure prevented true growth determinations; 

b. significant differences in shell chemistry between the left and right 

valves, with the higher ratios in the right valve; 

c. several elemental ratios were significantly different between feeding 

groups, including Fe, Mn, and P;   

d. Mg/Ca and Sr/Ca ratios appeared to be primarily influenced by growth 

rates, though pre-experimental growth and biologic factors not 

assessed also probably contributed to differences observed;  

e. Zn/Ca and B/Ca were likely influenced by stress and metabolic 

changes; 

f. Ba/Ca, K/Ca, Li/Ca and Si/Ca were likely influenced by factors not 

addressed in the experimental design; and  

g. in both scallop and clam shells, Mg/Ca was directly related to growth 

rate, with diet as a contributing factor as nutritional value of the algal 

species or algal mix was directly associated with growth rate. 
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3. Normalizing elemental ratios to phosphorus did not enhance resolution of 

trends in ratios among dietary treatments. 

4. Temporal assessment of shell chemistry in clams starved for the duration of 

the experiment indicated changes associated with shell dissolution.   

 

The development of inter-valve differences in the clam experiment was primarily 

attributed to assumed metabolic changes associated with stress/starvation of the 

animals, potentially coupled with genetic controls. This association was further 

supported during diet group comparisons, where relative Zn and B concentrations were 

determined likely related to stress as exemplified in the starved clams. A starvation 

control, however, was not established during the scallop trials, thus a comparison 

between species cannot be made. Interestingly, the differences between clam left and 

right valves revealed a higher ratio for the right valve, which follows the observations of 

Carriker et al. (1996) in that right valves of Crassostrea virginica were elementally 

enriched compared to the left valve. This suggests a common genetic control which is 

emphasized in equivalved bivalves during times of stress. 

In both scallop and clam shells, Mg/Ca was most directly attributable to growth 

rate, but seemingly was confounded by other biologic controls.  This association 

supports previous findings associated with multiple bivalve species (e.g., Carre et al., 

2006; Gilliken et al., 2006; and Strasser et al., 2008).  The results of this study, 

however, include Mg in the organic fraction as well as potential influences of shell 

dissolution. Diet, none-the-less, is a contributing factor as nutritional value of the algal 

species or algal mix has been demonstrated to be directly associated with growth. 
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The identification of different elements being attributable to algal diet for the 

scallops (K/Ca) and clams (Fe/Ca, Mn/Ca, and P/Ca) indicates a potential species 

specific effect. A difference between the experiments, however, may also have 

contributed to differences in interpretation.  Prior to the experiment, the clams were 

moved to a brown water system, which increased chances for influence of sediment on 

K enrichment as proposed by Carriker et al. (1996). This complication was eliminated 

from the scallop trials. The potential for this or alternative pre-experimental factors 

influencing the differences revealed in the K/Ca of the clam shell is more plausible than 

algal diet.  Both possibilities, however, suggest K incorporation by ingestion of enriched 

particles. Partitioning of K in diatoms, the algal class having the highest average K/P 

(Ho et al., 2003), as well as the digestibility of the cells, may also be inhibiting 

translation of the algal signal to the shell. 

Manganese, copper, zinc, and cadmium have been shown to be primarily 

associated with the organic matrix in oyster shells (Carriker et al., 1980), as was iron 

(Almeida et al., 1998) and magnesium in mussel shells (Lorens and Bender, 1980). This 

association of specific elements with the organic matrix suggests a high level of biologic 

control. In the present clam study, iron, manganese, and phosphorous were 

demonstrated to be directly influenced by diet.  Because the organic matrix is 

responsible for shell strength (Addadi et al., 2006), the organic matrix potentially 

influences elemental content and structure of the shell (Watabe et al., 2001; Takesue 

and van Green, 2004; and Johnstone, 2008). If diet associated elements are 

incorporated into the organic matrix and can be manipulated by dietary changes as 

demonstrated, diet of cultured bivalves could potentially be implicated in differences in 
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shell strength and structure between wild and aquacultured animals such as those 

described in Gresfrude and Strand (2006) regarding Pecten maximus.  At the very least, 

the demonstrated dietary influence of specific algal classes on shell chemistry demands 

consideration of diet composition when conducting experiments aimed at describing 

influences on shell dynamics or determining cause and effect relationships. The 

elements influenced and subsequent effects of the alteration, however, are most 

probably species specific, as are the pathways of element incorporation. 

The variations in Ba/Ca and Li/Ca in the clam experiments cannot be attributed 

to the experimental diets.  Instead, both ratios indicate pre-experimental factors as the 

dominant influence of the differences revealed.  Though partitioning of Ba in diatoms 

and digestibility again comes into question, the revealed difference between the right 

and left valves from the Cm diet seemingly supports direct incorporation as might occur 

at the sediment-water interface as previously suggested by Tabouret et al. (2012). 

Though diet was shown to directly affect the shell chemistry of Mercenaria 

mercenaria, resolution of the algal contribution was limited to taxonomic class with 

regard to only a few elements, and differences related to the origin of the algal isolate 

were not apparently translated to the shells as had been hypothesized.  The lack of 

resolution between clams fed different algal diets may, in part, be due to the taxonomic 

classes of algae used and similarity in element quotas with respect to specific elements.  

Other explanations include, a. partitioning of the elements in the algal cell or digestibility 

of the cell inhibiting transfer of elements in concentrations high enough to produce an 

associated signal, b. incorporation pathway in clams does not support dietary uptake as 

a major contributor, and c. multiple influences are associated with the elemental 
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dynamics with any dietary influence being masked. In an attempt to increase the ability 

to discern the contribution of specific species of algae to shell chemistry and gain insight 

as to potential cofactors influencing elemental signatures, experimental analyses using 

Element/P and (Element/P)/Ca were employed .  

Several problems were identified with comparing the elemental concentrations to 

phosphorus, which include variance in P concentrations potentially not being uniform 

and attributable to the same factor in each group, high P concentrations contributing to 

unrelated minimal ratios with specific diets, and potential confounding factors outside 

controlled environments as identified in previous studies. Though there was a greater 

degree of separation apparent between species in the same taxonomic class, most 

differences observed were not significant; furthermore, the differences between the 

neritic and oceanic diets were not translated to the shells, in fact, the results were 

opposite of those hypothesized. Additionally, because the ratios from the ISO group 

were consistently revealed as the lowest in the study, factors not assessed and 

potential contamination of these shells influenced the results, ultimately complicating 

interpretations. In short, the results of this study are inconclusive. These ratios might be 

used in succession with currently used methods to provide multiple lines of evidence 

ultimately helping to further describe element incorporation and associations between 

controlling influences. However, more research is required and measures must be taken 

to ensure P concentrations are relatively stable and influenced by a single factor. 

 The inspection of shell chemistry through time of clams starved for the duration 

of the experiment showed that, in general, elemental concentration as compared to 

calcium decreases as the animal approaches death or is under stress.  The main 
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factors are seemingly due to the mechanics of shell dissolution.  The results of this 

study appear to support the retention of original shell elemental chemistry for some 

elements. However, elements easily absorbed to the shell surface, and those 

associated with metabolic influences or with the organic fractions of shells, will deviate 

from initial shell chemistries when compared with calcium as a function of shell 

dissolution mechanics thus are unreliable as environmental proxies. Continued analysis 

of incorporation pathways and determination of the degree to which an element is 

partitioned between the mineral and organic portions of the shell for individual bivalve 

species is again recommended before environmental factors are associated with 

elemental composition of archival shell.  

The mechanisms of shell deposition and factors controlling elemental 

incorporation are complex and influenced by many factors.  The results of this 

dissertation demonstrate that specific algal diets can influence elemental shell chemistry 

both directly and indirectly. Thus, diet should be considered when interpreting shell 

chemistry during both laboratory and field experiments.  Though further research is 

needed, algal diet may influence shell chemistry in ways that hold promise for 

developing proxies of ecological shifts associated with changes in phytoplankton 

composition. 

 

Recommendations for future work 

• Laboratory work similar to Ho et al. (2003) is needed to address element quotas 

on a species-specific basis for algal species commonly used in aquaculture and 

commonly ingested by bivalves. Associations between shell elemental 
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composition and diet cannot be definitively made unless the differences between 

algal species are known. 

• Further examination of dietary influence on shell dynamics for multiple species of 

bivalves exhibiting different shell microstructural properties and life histories is 

necessary to determine species-specific influences and commonalities among 

similar species. Experimental design should allow for uniform growth and 

analysis of shell fractions separately in conjunction with ontogenetic 

examinations. 

• Fracture analysis on subsamples of shells with known diet is necessary to 

determine the effects diet can have on the strength of the shell. 

• Microstructural analyses on fractured shells are needed to determine differences 

based on elemental chemistry and dietary influences.  This will further increase 

knowledge as to the influence organic matter has on the microstructure and 

elemental composition of the mineral partition. 

• Determine algae combinations for specific study areas to allow differentiation 

between the cultured animals and wild populations, then test length of retention 

of the signature. For a marker to be useful, it must be retained long enough to 

provide the resolution needed as well be distinguishable from environmental 

variability.  

• Perform feeding experiments with controlled environmental changes to further 

determine influences potentially confounding dietary influences or that are 

dominant over dietary influence. 
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• Increased experimentation with local species of bivalve and algae to catalogue 

potential signatures that can then be examined in the field.  Upon these 

determinations, the use of shell for ecological association will be possible given 

ability to differentiate between the signatures and natural variability. 

• Use information obtained from feeding experiments and microstructural analysis 

to determine capability of manipulating shell structure via diet. This will potentially 

allow shell strength engineering or pearl composition engineering by a low cost 

mean. 
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Appendix A: 

 Chapter 4 Post Hoc analysis results 

 
 
Table A1: Results summary of the post hoc analyses (Dunn’s Method) for (B/P)/Ca differences between 
diets 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Cg vs. ISO 114.869 5.411 Yes 

Cm vs. ISO 107.152 4.967 Yes 

CTRL vs. ISO 93.427 4.562 Yes 

Mixed vs. Cm 73.134 3.305 Yes 

Mixed vs. CTRL 86.859 4.124 Yes 

Mixed vs. ISO 180.286 8.104 Yes 

Mixed vs. Pav609 112.777 4.981 Yes 

Pav1209 vs. ISO 117.822 5.331 Yes 

TI vs. ISO 116.359 5.265 Yes 

Cg vs. Cm 7.716 0.366 No 

Cg vs. CTRL 21.441 1.073 No 

Cg vs. Pav609 47.36 2.188 No 

Cm vs. CTRL 13.725 0.675 No 

Cm vs. Pav609 39.643 1.804 No 

CTRL vs. Pav609 25.918 1.24 No 

Mixed vs. Cg 65.417 3.002 No 

Mixed vs. Pav1209 62.464 2.759 No 

Mixed vs. TI 63.927 2.824 No 

Pav1209 vs. Cg 2.953 0.136 No 

Pav1209 vs. Cm 10.669 0.485 No 

Pav1209 vs. CTRL 24.394 1.167 No 

Pav1209 vs. Pav609 50.313 2.237 No 

Pav1209 vs. TI 1.463 0.065 No 

Pav609 vs. ISO 67.509 3.055 No 
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Table A1 (Continued) 
Comparison Diff of Ranks Q P<0.05 

TI vs. Cg 1.49 0.0689 No 

TI vs. Cm 9.207 0.419 No 

TI vs. CTRL 22.932 1.097 No 

TI vs. Pav609 48.85 2.172 No 
 

Table A2: Results summary of the post hoc analyses (Dunn’s Method) for (B/P) differences between diets 
All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Cg vs. ISO 141.186 6.421 Yes 

Cm vs. ISO 126.495 5.606 Yes 

CTRL vs. ISO 129.922 6.066 Yes 

Mixed vs. ISO 181.038 8.194 Yes 

Mixed vs. Pav1209 77.854 3.502 Yes 

Mixed vs. Pav609 78.621 3.49 Yes 

Pav1209 vs. ISO 103.184 4.52 Yes 

Pav609 vs. ISO 102.417 4.431 Yes 

TI vs. ISO 129.57 5.71 Yes 

Cg vs. Cm 14.691 0.672 No 

Cg vs. CTRL 11.264 0.545 No 

Cg vs. Pav1209 38.002 1.718 No 

Cg vs. Pav609 38.768 1.729 No 

Cg vs. TI 11.616 0.528 No 

Cm vs. Pav1209 23.311 1.027 No 

Cm vs. Pav609 24.077 1.047 No 

CTRL vs. Cm 3.427 0.161 No 

CTRL vs. Pav1209 26.738 1.24 No 

CTRL vs. Pav609 27.505 1.258 No 

CTRL vs. TI 0.352 0.0164 No 

Mixed vs. Cg 39.852 1.865 No 

Mixed vs. Cm 54.544 2.484 No 

Mixed vs. CTRL 51.116 2.459 No 

Mixed vs. TI 51.469 2.33 No 

Pav1209 vs. Pav609 0.767 0.033 No 

TI vs. Cm 3.075 0.136 No 

TI vs. Pav1209 26.386 1.156 No 

TI vs. Pav609 27.152 1.175 No 
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Table A3: Results summary of the post hoc analyses (Dunn’s Method) for (Ba/P)/Ca differences between 
diets 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Cg vs. ISO 122.247 5.725 Yes 

Cm vs. ISO 138.969 6.405 Yes 

CTRL vs. ISO 95.778 4.65 Yes 

Mixed vs. CTRL 91.824 4.398 Yes 

Mixed vs. ISO 187.602 8.494 Yes 

Mixed vs. Pav1209 77.426 3.443 Yes 

Mixed vs. Pav609 81.901 3.642 Yes 

Mixed vs. TI 77.651 3.453 Yes 

Pav1209 vs. ISO 110.176 4.957 Yes 

Pav609 vs. ISO 105.701 4.756 Yes 

TI vs. ISO 109.951 4.947 Yes 

Cg vs. CTRL 26.468 1.317 No 

Cg vs. Pav1209 12.071 0.555 No 

Cg vs. Pav609 16.546 0.76 No 

Cg vs. TI 12.296 0.565 No 

Cm vs. Cg 16.722 0.788 No 

Cm vs. CTRL 43.191 2.111 No 

Cm vs. Pav1209 28.793 1.303 No 

Cm vs. Pav609 33.268 1.505 No 

Cm vs. TI 29.018 1.313 No 

Mixed vs. Cg 65.355 3.023 No 

Mixed vs. Cm 48.633 2.214 No 

Pav1209 vs. CTRL 14.398 0.685 No 

Pav1209 vs. Pav609 4.475 0.198 No 

Pav1209 vs. TI 0.225 0.00994 No 

Pav609 vs. CTRL 9.923 0.472 No 

TI vs. CTRL 14.173 0.674 No 

TI vs. Pav609 4.25 0.188 No 
 

Table A4: Results summary of the post hoc analyses (Dunn’s Method) for (Ba/P) differences between 
diets 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Cg vs. ISO 128.058 5.873 Yes 

Cm vs. ISO 144.482 6.457 Yes 

CTRL vs. ISO 122.712 5.777 Yes 
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Table A4 (Continued) 
Comparison Diff of Ranks Q P<0.05 

Mixed vs. ISO 88.741 4.089 Yes 

Pav1209 vs. ISO 91.709 4.051 Yes 

Pav609 vs. ISO 121.183 5.286 Yes 

TI vs. ISO 77.379 3.33 Yes 

Cg vs. CTRL 5.346 0.261 No 

Cg vs. Mixed 39.317 1.874 No 

Cg vs. Pav1209 36.349 1.656 No 

Cg vs. Pav609 6.874 0.309 No 

Cg vs. TI 50.679 2.247 No 

Cm vs. Cg 16.425 0.758 No 

Cm vs. CTRL 21.77 1.031 No 

Cm vs. Mixed 55.741 2.584 No 

Cm vs. Pav1209 52.773 2.344 No 

Cm vs. Pav609 23.299 1.022 No 

Cm vs. TI 67.103 2.904 No 

CTRL vs. Mixed 33.971 1.666 No 

CTRL vs. Pav1209 31.003 1.45 No 

CTRL vs. Pav609 1.528 0.0705 No 

CTRL vs. TI 45.333 2.059 No 

Mixed vs. TI 11.362 0.506 No 

Pav1209 vs. Mixed 2.968 0.136 No 

Pav1209 vs. TI 14.33 0.613 No 

Pav609 vs. Mixed 32.442 1.466 No 

Pav609 vs. Pav1209 29.474 1.278 No 

Pav609 vs. TI 43.805 1.853 No 
 

Table A5: Results summary of the post hoc analyses (Dunn’s Method) for (Co/P)/Ca differences between 
diets 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Pav1209 vs. CTRL 44.029 3.162 Yes 

Mixed vs. CTRL 34.595 2.887 No 

Pav1209 vs. ISO 34.267 2.38 No 

Cg vs. Cm 2.458 0.207 No 

Cg vs. CTRL 29.512 2.231 No 

Cg vs. ISO 19.75 1.439 No 

Cg vs. Pav609 13.32 1.074 No 

Cm vs. CTRL 27.054 2.392 No 
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Table A5 (Continued) 
Comparison Diff of Ranks Q P<0.05 

Cm vs. ISO 17.292 1.454 No 

Cm vs. Pav609 10.862 1.052 No 

ISO vs. CTRL 9.762 0.738 No 

Mixed vs. Cg 5.083 0.406 No 

Mixed vs. Cm 7.542 0.719 No 

Mixed vs. ISO 24.833 1.981 No 

Mixed vs. Pav609 18.404 1.664 No 

Mixed vs. TI 2.238 0.149 No 

Pav1209 vs. Cg 14.517 1.008 No 

Pav1209 vs. Cm 16.975 1.341 No 

Pav1209 vs. Mixed 9.433 0.711 No 

Pav1209 vs. Pav609 27.837 2.119 No 

Pav1209 vs. TI 11.671 0.704 No 

Pav609 vs. CTRL 16.192 1.367 No 

Pav609 vs. ISO 6.43 0.519 No 

TI vs. Cg 2.845 0.178 No 

TI vs. Cm 5.304 0.367 No 

TI vs. CTRL 32.357 2.078 No 

TI vs. ISO 22.595 1.413 No 

TI vs. Pav609 16.165 1.087 No 
 

Table A6: Results summary of the post hoc analyses (Dunn’s Method) for (Fe/P)/Ca differences between 
diets 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Cm vs. Cg 65.925 3.141 Yes 

Cm vs. ISO 68.015 3.153 Yes 

Mixed vs. Cg 102.604 4.763 Yes 

Mixed vs. CTRL 97.942 4.705 Yes 

Mixed vs. ISO 104.694 4.734 Yes 

Pav1209 vs. Cg 93.503 4.371 Yes 

Pav1209 vs. CTRL 88.841 4.299 Yes 

Pav1209 vs. ISO 95.593 4.351 Yes 

Cm vs. CTRL 61.263 3.026 No 

Mixed vs. TI 61.183 2.699 No 

Pav609 vs. ISO 64.368 2.93 No 

Cg vs. ISO 2.09 0.099 No 

Cm vs. Pav609 3.647 0.167 No 
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Table A6 (Contiunued) 
Comparison Diff of Ranks Q P<0.05 

Cm vs. TI 24.504 1.107 No 

CTRL vs. Cg 4.662 0.236 No 

CTRL vs. ISO 6.752 0.331 No 

Mixed vs. Cm 36.679 1.668 No 

Mixed vs. Pav1209 9.101 0.407 No 

Mixed vs. Pav609 40.326 1.802 No 

Pav1209 vs. Cm 27.578 1.262 No 

Pav1209 vs. Pav609 31.225 1.404 No 

Pav1209 vs. TI 52.082 2.312 No 

Pav609 vs. Cg 62.278 2.911 No 

Pav609 vs. CTRL 57.616 2.788 No 

Pav609 vs. TI 20.857 0.926 No 

TI vs. Cg 41.422 1.909 No 

TI vs. CTRL 36.759 1.752 No 

TI vs. ISO 43.511 1.954 No 
 

Table A7: Results summary of the post hoc analyses (Dunn’s Method) for (Fe/P) differences between 
diets 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Pav609 vs. Cg 81.171 3.664 Yes 

Pav609 vs. ISO 80.629 3.526 Yes 

Cm vs. Cg 58.412 2.688 No 

Cm vs. CTRL 33.763 1.603 No 

Cm vs. ISO 57.87 2.578 No 

Cm vs. Mixed 9.256 0.426 No 

Cm vs. TI 41.728 1.836 No 

CTRL vs. Cg 24.649 1.206 No 

CTRL vs. ISO 24.108 1.137 No 

CTRL vs. TI 7.966 0.37 No 

ISO vs. Cg 0.542 0.0248 No 

Mixed vs. Cg 49.156 2.327 No 

Mixed vs. CTRL 24.507 1.199 No 

Mixed vs. ISO 48.615 2.223 No 

Mixed vs. TI 32.473 1.466 No 

Pav1209 vs. Cg 64.506 2.95 No 

Pav1209 vs. Cm 6.094 0.271 No 

Pav1209 vs. CTRL 39.857 1.879 No 
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Table A7 (Continued) 
Comparison Diff of Ranks Q P<0.05 

Pav1209 vs. ISO 63.964 2.832 No 

Pav1209 vs. Mixed 15.35 0.702 No 

Pav1209 vs. TI 47.823 2.092 No 

Pav609 vs. Cm 22.759 1.001 No 

Pav609 vs. CTRL 56.522 2.628 No 

Pav609 vs. Mixed 32.015 1.445 No 

Pav609 vs. Pav1209 16.665 0.729 No 

Pav609 vs. TI 64.488 2.787 No 

TI vs. Cg 16.683 0.753 No 

TI vs. ISO 16.142 0.706 No 
 

Table A8: Results summary of the post hoc analyses (Dunn’s Method) for (K/P)/Ca differences between 
diets 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Mixed vs. CTRL 73.426 3.558 Yes 

Mixed vs. ISO 75.382 3.466 Yes 

Cg vs. CTRL 42.074 2.187 No 

Cg vs. ISO 44.03 2.156 No 

Cg vs. TI 25.694 1.149 No 

Cm vs. Cg 11.571 0.57 No 

Cm vs. CTRL 53.645 2.755 No 

Cm vs. ISO 55.601 2.693 No 

Cm vs. Pav1209 7.136 0.335 No 

Cm vs. Pav609 2.936 0.14 No 

Cm vs. TI 37.265 1.651 No 

CTRL vs. ISO 1.956 0.0998 No 

Mixed vs. Cg 31.351 1.463 No 

Mixed vs. Cm 19.78 0.914 No 

Mixed vs. Pav1209 26.917 1.202 No 

Mixed vs. Pav609 22.717 1.027 No 

Mixed vs. TI 57.046 2.418 No 

Pav1209 vs. Cg 4.435 0.21 No 

Pav1209 vs. CTRL 46.509 2.29 No 

Pav1209 vs. ISO 48.465 2.261 No 

Pav1209 vs. TI 30.129 1.293 No 

Pav609 vs. Cg 8.635 0.415 No 

Pav609 vs. CTRL 50.709 2.535 No 
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Table A8 (Continued) 
Comparison Diff of Ranks Q P<0.05 

Pav609 vs. ISO 52.665 2.49 No 

Pav609 vs. Pav1209 4.2 0.193 No 

Pav609 vs. TI 34.329 1.49 No 

TI vs. CTRL 16.38 0.758 No 

TI vs. ISO 18.336 0.808 No 
 

Table A9: Results summary of the post hoc analyses (Dunn’s Method) for (K/P) differences between diets 
All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Cm vs. ISO 67.17 3.15 Yes 

Mixed vs. ISO 77.864 3.651 Yes 

Cg vs. CTRL 32.346 1.647 No 

Cg vs. ISO 50.219 2.405 No 

Cg vs. TI 34.625 1.526 No 

Cm vs. Cg 16.952 0.817 No 

Cm vs. CTRL 49.298 2.451 No 

Cm vs. Pav1209 13.644 0.62 No 

Cm vs. Pav609 0.77 0.0355 No 

Cm vs. TI 51.577 2.232 No 

CTRL vs. ISO 17.873 0.883 No 

CTRL vs. TI 2.279 0.103 No 

Mixed vs. Cg 27.645 1.332 No 

Mixed vs. Cm 10.693 0.504 No 

Mixed vs. CTRL 59.991 2.982 No 

Mixed vs. Pav1209 24.337 1.105 No 

Mixed vs. Pav609 11.464 0.528 No 

Mixed vs. TI 62.27 2.695 No 

Pav1209 vs. Cg 3.308 0.153 No 

Pav1209 vs. CTRL 35.654 1.7 No 

Pav1209 vs. ISO 53.526 2.417 No 

Pav1209 vs. TI 37.933 1.59 No 

Pav609 vs. Cg 16.181 0.76 No 

Pav609 vs. CTRL 48.527 2.348 No 

Pav609 vs. ISO 66.4 3.039 No 

Pav609 vs. Pav1209 12.874 0.571 No 

Pav609 vs. TI 50.806 2.154 No 

TI vs. ISO 15.594 0.672 No 
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Table A10: Results summary of the post hoc analyses (Dunn’s Method) for (Li/P)/Ca differences between 
diets 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Cg vs. ISO 86.382 4.17 Yes 

Cm vs. ISO 93.122 4.471 Yes 

CTRL vs. ISO 86.858 4.393 Yes 

Mixed vs. ISO 142.2 6.528 Yes 

Mixed vs. Pav609 87.826 3.964 Yes 

Pav1209 vs. ISO 82.399 3.861 Yes 

TI vs. ISO 93.724 4.133 Yes 

Cg vs. Pav1209 3.983 0.189 No 

Cg vs. Pav609 32.008 1.516 No 

Cm vs. Cg 6.739 0.327 No 

Cm vs. CTRL 6.264 0.319 No 

Cm vs. Pav1209 10.723 0.505 No 

Cm vs. Pav609 38.748 1.826 No 

CTRL vs. Cg 0.476 0.0244 No 

CTRL vs. Pav1209 4.459 0.221 No 

CTRL vs. Pav609 32.484 1.609 No 

Mixed vs. Cg 55.818 2.589 No 

Mixed vs. Cm 49.079 2.265 No 

Mixed vs. CTRL 55.342 2.679 No 

Mixed vs. Pav1209 59.801 2.699 No 

Mixed vs. TI 48.476 2.067 No 

Pav1209 vs. Pav609 28.025 1.29 No 

Pav609 vs. ISO 54.374 2.548 No 

TI vs. Cg 7.342 0.327 No 

TI vs. Cm 0.602 0.0267 No 

TI vs. CTRL 6.866 0.318 No 

TI vs. Pav1209 11.325 0.492 No 

TI vs. Pav609 39.35 1.708 No 
 

Table A11: Results summary of the post hoc analyses (Dunn’s Method) for (Li/P) differences between 
diets 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Cg vs. ISO 115.098 5.48 Yes 

Cm vs. ISO 110.215 5.138 Yes 

CTRL vs. ISO 125.724 6.175 Yes 
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Table A11 (Continued) 
Comparison Diff of Ranks Q P<0.05 

Mixed vs. ISO 130.555 6.087 Yes 

Pav1209 vs. ISO 75.455 3.411 Yes 

Pav609 vs. ISO 90.054 4.098 Yes 

TI vs. ISO 99.139 4.283 Yes 

Cg vs. Cm 4.884 0.234 No 

Cg vs. Pav1209 39.643 1.838 No 

Cg vs. Pav609 25.044 1.169 No 

Cg vs. TI 15.959 0.706 No 

Cm vs. Pav1209 34.76 1.58 No 

Cm vs. Pav609 20.16 0.923 No 

Cm vs. TI 11.076 0.481 No 

CTRL vs. Cg 10.626 0.538 No 

CTRL vs. Cm 15.509 0.767 No 

CTRL vs. Pav1209 50.269 2.401 No 

CTRL vs. Pav609 35.669 1.716 No 

CTRL vs. TI 26.585 1.207 No 

Mixed vs. Cg 15.457 0.74 No 

Mixed vs. Cm 20.341 0.954 No 

Mixed vs. CTRL 4.832 0.239 No 

Mixed vs. Pav1209 55.101 2.505 No 

Mixed vs. Pav609 40.501 1.853 No 

Mixed vs. TI 31.417 1.364 No 

Pav609 vs. Pav1209 14.6 0.649 No 

TI vs. Pav1209 23.684 1.001 No 

TI vs. Pav609 9.084 0.386 No 
 

Table A12: Results summary of the post hoc analyses (Dunn’s Method) for (Mg/P)/Ca differences 
between diets 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Cg vs. ISO 78.114 3.701 Yes 

Cm vs. ISO 121.729 5.675 Yes 

CTRL vs. ISO 84.475 4.149 Yes 

Mixed vs. Cg 74.517 3.439 Yes 

Mixed vs. CTRL 68.157 3.255 Yes 

Mixed vs. ISO 152.631 6.901 Yes 

Mixed vs. Pav1209 82.413 3.661 Yes 

Mixed vs. Pav609 95.513 4.243 Yes 
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Table A12 (Continued) 
Comparison Diff of Ranks Q P<0.05 

Mixed vs. TI 78.433 3.44 Yes 

Pav1209 vs. ISO 70.218 3.196 Yes 

TI vs. ISO 74.198 3.332 Yes 

Cg vs. Pav1209 7.896 0.367 No 

Cg vs. Pav609 20.996 0.976 No 

Cg vs. TI 3.916 0.179 No 

Cm vs. Cg 43.615 2.079 No 

Cm vs. CTRL 37.255 1.841 No 

Cm vs. Pav1209 51.511 2.357 No 

Cm vs. Pav609 64.611 2.957 No 

Cm vs. TI 47.531 2.146 No 

CTRL vs. Cg 6.361 0.32 No 

CTRL vs. Pav1209 14.257 0.686 No 

CTRL vs. Pav609 27.357 1.316 No 

CTRL vs. TI 10.277 0.487 No 

Mixed vs. Cm 30.902 1.405 No 

Pav1209 vs. Pav609 13.1 0.586 No 

Pav609 vs. ISO 57.118 2.599 No 

TI vs. Pav1209 3.98 0.176 No 

TI vs. Pav609 17.08 0.754 No 
 

Table A13: Results summary of the post hoc analyses (Dunn’s Method) for (Mg/P) differences between 
diets 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Cg vs. ISO 101.91 4.699 Yes 

Cm vs. ISO 137.851 6.194 Yes 

Cm vs. TI 103.77 4.577 Yes 

CTRL vs. ISO 151.067 7.151 Yes 

CTRL vs. Pav1209 83.319 3.891 Yes 

CTRL vs. TI 116.986 5.425 Yes 

Mixed vs. ISO 127.771 5.834 Yes 

Mixed vs. TI 93.69 4.197 Yes 

Pav609 vs. ISO 87.23 3.826 Yes 

Cg vs. Pav1209 34.163 1.555 No 

Cg vs. Pav609 14.68 0.664 No 

Cg vs. TI 67.83 3.067 No 

Cm vs. Cg 35.941 1.667 No 
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Table A13 (Continued) 
Comparison Diff of Ranks Q P<0.05 

Cm vs. Mixed 10.08 0.463 No 

Cm vs. Pav1209 70.103 3.112 No 

Cm vs. Pav609 50.62 2.233 No 

CTRL vs. Cg 49.157 2.411 No 

CTRL vs. Cm 13.216 0.63 No 

CTRL vs. Mixed 23.296 1.13 No 

CTRL vs. Pav609 63.836 2.96 No 

Mixed vs. Cg 25.861 1.221 No 

Mixed vs. Pav1209 60.023 2.707 No 

Mixed vs. Pav609 40.54 1.816 No 

Pav1209 vs. ISO 67.747 2.991 No 

Pav1209 vs. TI 33.667 1.46 No 

Pav609 vs. Pav1209 19.483 0.845 No 

Pav609 vs. TI 53.15 2.29 No 

TI vs. ISO 34.08 1.495 No 
 

Table A14: Results summary of the post hoc analyses (Dunn’s Method) for (Mn/P)/Ca differences 
between diets 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Cg vs. CTRL 81.388 4.084 Yes 

Cm vs. Cg 85.662 4.071 Yes 

Cm vs. CTRL 167.05 8.233 Yes 

Cm vs. ISO 75.309 3.501 Yes 

ISO vs. CTRL 91.741 4.493 Yes 

Mixed vs. Cg 135.393 6.231 Yes 

Mixed vs. CTRL 216.781 10.323 Yes 

Mixed vs. ISO 125.041 5.637 Yes 

Mixed vs. Pav609 76.036 3.368 Yes 

Pav1209 vs. Cg 76.557 3.548 Yes 

Pav1209 vs. CTRL 157.945 7.577 Yes 

Pav609 vs. CTRL 140.745 6.752 Yes 

TI vs. Cg 87.445 4.024 Yes 

TI vs. CTRL 168.833 8.04 Yes 

TI vs. ISO 77.092 3.475 Yes 

Cm vs. Pav1209 9.105 0.415 No 

Cm vs. Pav609 26.305 1.2 No 

ISO vs. Cg 10.353 0.489 No 
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Table A14 (Continued) 
Comparison Diff of Ranks Q P<0.05 

Mixed vs. Cm 49.731 2.254 No 

Mixed vs. Pav1209 58.836 2.606 No 

Mixed vs. TI 47.949 2.111 No 

Pav1209 vs. ISO 66.205 3.004 No 

Pav1209 vs. Pav609 17.2 0.767 No 

Pav609 vs. Cg 59.357 2.751 No 

Pav609 vs. ISO 49.005 2.224 No 

TI vs. Cm 1.783 0.0808 No 

TI vs. Pav1209 10.887 0.482 No 

TI vs. Pav609 28.087 1.244 No 
 

Table A15: Results summary of the post hoc analyses (Dunn’s Method) for (Mn/P) differences between 
diets 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Cg vs. CTRL 81.535 3.966 Yes 

Cm vs. Cg 85.192 3.92 Yes 

Cm vs. CTRL 166.727 7.877 Yes 

Cm vs. ISO 74.519 3.321 Yes 

ISO vs. CTRL 92.208 4.329 Yes 

Mixed vs. Cg 104.541 4.919 Yes 

Mixed vs. CTRL 186.077 9.002 Yes 

Mixed vs. ISO 93.868 4.272 Yes 

Pav1209 vs. CTRL 135.415 6.315 Yes 

Pav609 vs. Cg 83.873 3.761 Yes 

Pav609 vs. CTRL 165.408 7.607 Yes 

Pav609 vs. ISO 73.2 3.184 Yes 

TI vs. Cg 69.705 3.147 Yes 

TI vs. CTRL 151.241 7.005 Yes 

Cm vs. Pav1209 31.313 1.387 No 

Cm vs. Pav609 1.319 0.0577 No 

Cm vs. TI 15.487 0.682 No 

ISO vs. Cg 10.673 0.488 No 

Mixed vs. Cm 19.349 0.886 No 

Mixed vs. Pav1209 50.662 2.291 No 

Mixed vs. Pav609 20.669 0.923 No 

Mixed vs. TI 34.836 1.565 No 

Pav1209 vs. Cg 53.879 2.449 No 
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Table A15 (Continued) 
Comparison Diff of Ranks Q P<0.05 

Pav1209 vs. ISO 43.206 1.903 No 

Pav609 vs. Pav1209 29.993 1.297 No 

Pav609 vs. TI 14.167 0.609 No 

TI vs. ISO 59.032 2.584 No 

TI vs. Pav1209 15.826 0.689 No 
 

Table A16: Results summary of the post hoc analyses (Dunn’s Method) for (Si/P)/Ca differences between 
diets 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Mixed vs. ISO 69.106 3.147 Yes 

Pav1209 vs. Cg 110.926 5.126 Yes 

Pav1209 vs. Cm 77.984 3.548 Yes 

Pav1209 vs. CTRL 75.02 3.589 Yes 

Pav1209 vs. ISO 132.912 6.014 Yes 

Pav609 vs. Cg 69.801 3.225 Yes 

Pav609 vs. ISO 91.787 4.153 Yes 

TI vs. ISO 85.206 3.804 Yes 

Cg vs. ISO 21.986 1.036 No 

Cm vs. Cg 32.942 1.561 No 

Cm vs. ISO 54.928 2.546 No 

CTRL vs. Cg 35.906 1.797 No 

CTRL vs. Cm 2.964 0.146 No 

CTRL vs. ISO 57.892 2.827 No 

Mixed vs. Cg 47.119 2.192 No 

Mixed vs. Cm 14.177 0.649 No 

Mixed vs. CTRL 11.214 0.54 No 

Pav1209 vs. Mixed 63.807 2.854 No 

Pav1209 vs. Pav609 41.125 1.828 No 

Pav1209 vs. TI 47.707 2.093 No 

Pav609 vs. Cm 36.859 1.677 No 

Pav609 vs. CTRL 33.895 1.621 No 

Pav609 vs. Mixed 22.682 1.014 No 

Pav609 vs. TI 6.582 0.289 No 

TI vs. Cg 63.219 2.881 No 

TI vs. Cm 30.278 1.359 No 

TI vs. CTRL 27.314 1.287 No 

TI vs. Mixed 16.1 0.711 No 
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Table A17: Results summary of the post hoc analyses (Dunn’s Method) for (Si/P) differences between 
diets 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

CTRL vs. ISO 80.815 3.794 Yes 

Pav1209 vs. Cg 75.645 3.438 Yes 

Pav1209 vs. ISO 103.239 4.548 Yes 

Pav1209 vs. Mixed 85.777 3.898 Yes 

Pav609 vs. Cg 84.059 3.77 Yes 

Pav609 vs. Cm 76.338 3.339 Yes 

Pav609 vs. ISO 111.654 4.857 Yes 

Pav609 vs. Mixed 94.192 4.224 Yes 

TI vs. ISO 76.529 3.329 Yes 

Cg vs. ISO 27.595 1.262 No 

Cg vs. Mixed 10.133 0.479 No 

Cm vs. Cg 7.722 0.355 No 

Cm vs. ISO 35.317 1.574 No 

Cm vs. Mixed 17.855 0.822 No 

CTRL vs. Cg 53.22 2.589 No 

CTRL vs. Cm 45.498 2.15 No 

CTRL vs. Mixed 63.352 3.082 No 

CTRL vs. TI 4.285 0.197 No 

Mixed vs. ISO 17.462 0.799 No 

Pav1209 vs. Cm 67.923 3.009 No 

Pav1209 vs. CTRL 22.425 1.046 No 

Pav1209 vs. TI 26.71 1.155 No 

Pav609 vs. CTRL 30.84 1.418 No 

Pav609 vs. Pav1209 8.415 0.364 No 

Pav609 vs. TI 35.125 1.501 No 

TI vs. Cg 48.934 2.194 No 

TI vs. Cm 41.213 1.803 No 

TI vs. Mixed 59.067 2.649 No 
 

Table A18: Results summary of the post hoc analyses (Dunn’s Method) for (Sr/P)/Ca differences between 
diets 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Cg vs. ISO 107.723 5.35 Yes 

Cm vs. ISO 110.844 5.289 Yes 

CTRL vs. ISO 82.581 4.252 Yes 
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Table A18 (Continued) 
Comparison Diff of Ranks Q P<0.05 

Mixed vs. CTRL 80.596 3.973 Yes 

Mixed vs. ISO 163.177 7.627 Yes 

Mixed vs. Pav1209 89.303 3.844 Yes 

Mixed vs. Pav609 83.332 3.829 Yes 

Pav1209 vs. ISO 73.873 3.286 Yes 

Pav609 vs. ISO 79.844 3.81 Yes 

TI vs. ISO 96.231 4.498 Yes 

Cg vs. CTRL 25.142 1.327 No 

Cg vs. Pav1209 33.85 1.533 No 

Cg vs. Pav609 27.879 1.358 No 

Cg vs. TI 11.492 0.548 No 

Cm vs. Cg 3.121 0.152 No 

Cm vs. CTRL 28.264 1.426 No 

Cm vs. Pav1209 36.971 1.619 No 

Cm vs. Pav609 31 1.453 No 

Cm vs. TI 14.614 0.672 No 

CTRL vs. Pav1209 8.707 0.406 No 

CTRL vs. Pav609 2.736 0.138 No 

Mixed vs. Cg 55.454 2.645 No 

Mixed vs. Cm 52.332 2.405 No 

Mixed vs. TI 66.946 3.018 No 

Pav609 vs. Pav1209 5.971 0.262 No 

TI vs. CTRL 13.65 0.673 No 

TI vs. Pav1209 22.357 0.962 No 

TI vs. Pav609 16.386 0.753 No 
 

Table A19: Results summary of the post hoc analyses (Dunn’s Method) for (Sr/P) differences between 
diets 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Cg vs. ISO 137.971 6.62 Yes 

Cm vs. ISO 149.743 6.835 Yes 

CTRL vs. ISO 125.375 6.175 Yes 

Mixed vs. ISO 162.158 7.665 Yes 

Mixed vs. Pav1209 78.338 3.443 Yes 

Mixed vs. TI 71.975 3.315 Yes 

Pav1209 vs. ISO 83.82 3.631 Yes 

Pav609 vs. ISO 114.843 5.242 Yes 
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Table A19 (Continued) 
Comparison Diff of Ranks Q P<0.05 

TI vs. ISO 90.183 4.089 Yes 

Cg vs. CTRL 12.596 0.643 No 

Cg vs. Pav1209 54.15 2.411 No 

Cg vs. Pav609 23.128 1.088 No 

Cg vs. TI 47.788 2.233 No 

Cm vs. Cg 11.772 0.554 No 

Cm vs. CTRL 24.368 1.176 No 

Cm vs. Pav1209 65.923 2.811 No 

Cm vs. Pav609 34.9 1.565 No 

Cm vs. TI 59.56 2.654 No 

CTRL vs. Pav1209 41.555 1.892 No 

CTRL vs. Pav609 10.532 0.508 No 

CTRL vs. TI 35.192 1.686 No 

Mixed vs. Cg 24.188 1.181 No 

Mixed vs. Cm 12.415 0.576 No 

Mixed vs. CTRL 36.783 1.846 No 

Mixed vs. Pav609 47.315 2.194 No 

Pav609 vs. Pav1209 31.023 1.323 No 

Pav609 vs. TI 24.66 1.099 No 

TI vs. Pav1209 6.362 0.27 No 
 

Table A20: Results summary of the post hoc analyses (Dunn’s Method) for (Zn/P)/Ca differences 
between diets 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Cg vs. ISO 58.313 3.719 Yes 

Cm vs. ISO 56 3.212 Yes 

Mixed vs. CTRL 45.979 3.329 Yes 

Mixed vs. ISO 84.039 4.876 Yes 

Mixed vs. Pav609 48.971 3.196 Yes 

Pav1209 vs. ISO 72.25 3.973 Yes 

Cg vs. Cm 2.313 0.16 No 

Cg vs. CTRL 20.252 1.714 No 

Cg vs. Pav609 23.244 1.715 No 

Cg vs. TI 9.229 0.557 No 

Cm vs. CTRL 17.939 1.276 No 

Cm vs. Pav609 20.932 1.346 No 

Cm vs. TI 6.917 0.379 No 
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Table A20 (Continued) 
Comparison Diff of Ranks Q P<0.05 

CTRL vs. ISO 38.061 2.479 No 

CTRL vs. Pav609 2.993 0.227 No 

Mixed vs. Cg 25.727 1.815 No 

Mixed vs. Cm 28.039 1.742 No 

Mixed vs. Pav1209 11.789 0.698 No 

Mixed vs. TI 34.956 1.937 No 

Pav1209 vs. Cg 13.938 0.91 No 

Pav1209 vs. Cm 16.25 0.95 No 

Pav1209 vs. CTRL 34.189 2.283 No 

Pav1209 vs. Pav609 37.182 2.269 No 

Pav1209 vs. TI 23.167 1.222 No 

Pav609 vs. ISO 35.068 2.096 No 

TI vs. CTRL 11.023 0.678 No 

TI vs. ISO 49.083 2.55 No 

TI vs. Pav609 14.015 0.798 No 
 

Table A21: Results summary of the post hoc analyses (Dunn’s Method) for (Zn/P) differences between 
diets 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

Cg vs. ISO 62.538 3.989 Yes 

Mixed vs. ISO 68.692 3.986 Yes 

Cg vs. Cm 19.387 1.345 No 

Cg vs. CTRL 17.988 1.523 No 

Cg vs. Pav1209 22.743 1.485 No 

Cg vs. Pav609 26.178 1.932 No 

Cg vs. TI 16.776 1.013 No 

Cm vs. ISO 43.151 2.475 No 

Cm vs. Pav1209 3.356 0.196 No 

Cm vs. Pav609 6.79 0.437 No 

CTRL vs. Cm 1.399 0.0995 No 

CTRL vs. ISO 44.55 2.902 No 

CTRL vs. Pav1209 4.755 0.317 No 

CTRL vs. Pav609 8.19 0.622 No 

Mixed vs. Cg 6.154 0.434 No 

Mixed vs. Cm 25.541 1.587 No 

Mixed vs. CTRL 24.142 1.748 No 

Mixed vs. Pav1209 28.896 1.71 No 
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Table A21 (Continued) 
Comparison Diff of Ranks Q P<0.05 

Mixed vs. Pav609 32.331 2.11 No 

Mixed vs. TI 22.93 1.271 No 

Pav1209 vs. ISO 39.795 2.189 No 

Pav1209 vs. Pav609 3.435 0.21 No 

Pav609 vs. ISO 36.36 2.174 No 

TI vs. Cm 2.611 0.143 No 

TI vs. CTRL 1.212 0.0745 No 

TI vs. ISO 45.762 2.377 No 

TI vs. Pav1209 5.967 0.315 No 

TI vs. Pav609 9.402 0.535 No 
 

 

  

266 
 



 

 

 

Appendix B:  

Chapter 5 post hoc analysis summaries 

 

Table B1: Statistical analysis results summary – Dunn’s pairwise comparison procedure – for B/Ca 
All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

July vs. January 28.077 3.714 Yes 

July vs. March 21.133 2.916 Yes 

July vs. May 42.4 5.16 Yes 

July vs. October 43.067 5.943 Yes 

March vs. October 21.933 2.831 Yes 

January vs. May 14.323 1.605 No 

January vs. October 14.99 1.864 No 

March vs. January 6.944 0.864 No 

March vs. May 21.267 2.455 No 

May vs. October 0.667 0.077 No 
 

Table B2: Statistical analysis results summary – Dunn’s pairwise comparison procedure – for Ba/Ca 
All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

January vs. July 40.848 5.404 Yes 

January vs. March 23.356 2.905 Yes 

January vs. May 38.223 4.283 Yes 

January vs. October 30.156 3.751 Yes 

March vs. July 17.492 2.414 No 

March vs. May 14.867 1.716 No 

March vs. October 6.8 0.878 No 

May vs. July 2.625 0.319 No 

October vs. July 10.692 1.475 No 

October vs. May 8.067 0.931 No 
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Table B3: Statistical analysis results summary – pairwise comparison procedure – for Co/Ca 
All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 

Overall significance level = 0.05 

Comparison Diff of Means t Unadjusted P Critical Level Significant? 

January vs. July 7.39E-07 4.723 0.000272 0.006 Yes 

March vs. July 5.60E-07 3.575 0.00276 0.009 Yes 

October vs. January 5.59E-07 2.96 0.00974 0.01 Yes 

October vs. July 1.30E-06 7.101 0.00000362 0.005 Yes 

October vs. March 7.38E-07 3.911 0.00139 0.007 Yes 

October vs. May 1.24E-06 4.145 0.000864 0.006 Yes 

January vs. March 1.80E-07 1.099 0.289 0.025 No 

January vs. May 6.78E-07 2.396 0.0301 0.013 No 

March vs. May 4.99E-07 1.761 0.0985 0.017 No 

May vs. July 6.08E-08 0.218 0.831 0.05 No 
 

Table B4: Statistical analysis results summary – Dunn’s pairwise comparison procedure – for Fe/Ca 
All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

January vs. March 39.056 4.858 Yes 

January vs. May 40.323 4.518 Yes 

July vs. March 29.283 4.041 Yes 

July vs. May 30.55 3.718 Yes 

October vs. March 30.8 3.976 Yes 

October vs. May 32.067 3.702 Yes 

January vs. July 9.773 1.293 No 

January vs. October 8.256 1.027 No 

March vs. May 1.267 0.146 No 

October vs. July 1.517 0.209 No 
 

Table B5: Statistical analysis results summary – Dunn’s pairwise comparison procedure – for K/Ca 
All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

January vs. July 32.808 4.34 Yes 

March vs. July 42.3 5.837 Yes 

March vs. October 24.533 3.167 Yes 

May vs. July 31.5 3.833 Yes 

January vs. May 1.308 0.147 No 

January vs. October 15.041 1.871 No 

March vs. January 9.492 1.181 No 
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Table B5 (Continued) 
Comparison Diff of Ranks Q P<0.05 

March vs. May 10.8 1.247 No 

May vs. October 13.733 1.585 No 

October vs. July 17.767 2.452 No 
 

Table B6: Statistical analysis results summary – Dunn’s pairwise comparison procedure – for Li/Ca 
All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

January vs. July 30.815 4.077 Yes 

January vs. October 45.749 5.69 Yes 

March vs. October 30.6 3.95 Yes 

May vs. October 26.333 3.04 Yes 

January vs. March 15.149 1.884 No 

January vs. May 19.415 2.176 No 

July vs. October 14.933 2.061 No 

March vs. July 15.667 2.162 No 

March vs. May 4.267 0.493 No 

May vs. July 11.4 1.387 No 
 

Table B7: Statistical analysis results summary – Dunn’s pairwise comparison procedure – for Mg/Ca 
All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

March vs. January 26.833 3.31 Yes 

March vs. July 41.667 5.829 Yes 

March vs. October 39.333 5.147 Yes 

May vs. July 27.8 3.43 Yes 

May vs. October 25.467 2.981 Yes 

January vs. July 14.833 1.941 No 

January vs. October 12.5 1.542 No 

March vs. May 13.867 1.623 No 

May vs. January 12.967 1.447 No 

October vs. July 2.333 0.326 No 
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Table B8: Statistical analysis results summary – Dunn’s pairwise comparison procedure – for Mn/Ca 
All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

January vs. July 42.233 5.526 Yes 

January vs. May 49.283 5.5 Yes 

January vs. October 23.55 2.905 Yes 

March vs. July 27.35 3.826 Yes 

March vs. May 34.4 4.026 Yes 

October vs. May 25.733 3.012 Yes 

January vs. March 14.883 1.836 No 

July vs. May 7.05 0.87 No 

March vs. October 8.667 1.134 No 

October vs. July 18.683 2.614 No 
 

Table B9: Statistical analysis results summary – Dunn’s pairwise comparison procedure – for Si/Ca 
All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

January vs. May 28.9 3.135 Yes 

July vs. March 29.233 4.266 Yes 

July vs. May 36.2 4.659 Yes 

October vs. March 25.8 3.522 Yes 

October vs. May 32.767 4.001 Yes 

January vs. March 21.933 2.593 No 

July vs. January 7.3 0.907 No 

July vs. October 3.433 0.501 No 

March vs. May 6.967 0.851 No 

October vs. January 3.867 0.457 No 
 

Table B10: Statistical analysis results summary – Dunn’s pairwise comparison procedure – for Zn/Ca 
All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

Comparison Diff of Ranks Q P<0.05 

January vs. July 23.917 3.71 Yes 

January vs. October 33.333 4.317 Yes 

March vs. July 28.143 4.523 Yes 

March vs. October 37.56 4.984 Yes 

January vs. May 12.167 1.84 No 

July vs. October 9.417 1.201 No 

March vs. January 4.226 0.696 No 

March vs. May 16.393 2.564 No 
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Table B10 (Continued) 
Comparison Diff of Ranks Q P<0.05 

May vs. July 11.75 1.741 No 

May vs. October 21.167 2.654 No 
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