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Abstract

Two of the most well-known nonlinear methods for investigating nonlinear dynamic

processes in sciences and engineering are nonlinear variation of constants parameters

and comparison method. Knowing the existence of solution process, these methods

provide a very powerful tools for investigating variety of problems, for example, qual-

itative and quantitative properties of solutions, finding error estimates between solu-

tion processes of stochastic system and the corresponding nominal system, and inputs

for the designing engineering and industrial problems. The aim of this work is to sys-

tematically develop mathematical tools to undertake the mathematical frame-work

to investigate a complex nonlinear nonstationary stochastic systems of differential

equations.

A complex nonlinear nonstationary stochastic system of differential equations are

decomposed into nonlinear systems of stochastic perturbed and unperturbed differ-

ential equations. Using this type of decomposition, the fundamental properties of

solutions of nonlinear stochastic unperturbed systems of differential equations are

investigated(1). The fundamental properties are used to find the representation of so-

lution process of nonlinear stochastic complex perturbed system in terms of solution

process of nonlinear stochastic unperturbed system(2).

Employing energy function method and the fundamental properties of Itô-Doob

type stochastic auxiliary system of differential equations, we establish generalized

variation of constants formula for solution process of perturbed stochastic system of

differential equations(3). Results regarding deviation of solution of perturbed system

with respect to solution of nominal system of stochastic differential equations are de-

veloped(4).

The obtained results are used to study the qualitative properties of perturbed stochas-
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tic system of differential equations(5). Examples are given to illustrate the usefulness

of the results.

Employing energy function method and the fundamental properties of Itô-Doob

type stochastic auxiliary system of differential equations, we establish generalized vari-

ational comparison theorems in the context of stochastic and deterministic differential

for solution processes of perturbed stochastic system of differential equations(6). Re-

sults regarding deviation of solutions with respect to nominal stochastic system are

also developed(7). The obtained results are used to study the qualitative properties

of perturbed stochastic system(8). Examples are given to illustrate the usefulness of

the results.

A simple dynamical model of the effect of radiant flux density and CO2 concentra-

tion on the rate of photosynthesis in light, dark and enzyme reactions are analyzed(9).

The coupled system of dynamic equations are solved numerically for some values of

rate constant and radiant flux density. We used Matlab to solve the system numer-

ically. Moreover, with the assumption that dynamic model of CO2 concentration is

studied.

v



1 Preliminary Concepts and Results

This chapter deals with a basic existing preliminary concepts and tools needed to un-

dertake the study of nonlinear techniques for stochastic systems of differential equa-

tions. Two of the most well known nonlinear methods for investigating nonlinear

dynamic processes in engineering and sciences, are nonlinear variation of constant

parameters and comparison methods[1-4,6-27,30]. Moreover, knowing the existence

of solution process, these methods provide very powerful tools for investigating qual-

itative properties of solution process[14, 15, 16, 19, 36]. Moreover, the qualitative

properties are also used for designing plants. In this chapter, definitions and some

results are outlined.

1.1 Basic Properties of Stochastic Differential Equations

Let us consider a mathematical description of a nonlinear phenomenon under a ran-

dom environmental perturbation described by a complex system of nonlinear nonsta-

tionary Itô-Doob-type stochastic differential equations:

dx = f(t, x)dt+ σ(t, x)dw(t), x(t0) = x0, (1.1.1)

where x ∈ Rn; f and column vectors of σ ∈ C[J × Rn, Rn]; C[J × Rn, Rn] stands for

the class of continuous functions defined on J × Rn into Rn for a positive integer n,

and J = [t0, t0 + a) for some positive real number a > 0; σ = [σ1, σ2, ...σj..., σm] is

n ×m matrix; x0 is an n-dimensional random variable defined on a complete prob-
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ability space (Ω,F, P ); Ft is an increasing family of sub-σ-algebras of F; w(t) =

(w1(t), w2(t), . . . , wm(t))T is an m-dimensional normalized Wiener process with inde-

pendent increments; x0 and w(t) are mutually independent for each t ≥ t0.

Definition 1.1.1 The random process x(t) is said to be a solution of (1.1.1) on J if

it satisfies the following conditions:

1. denoting by Ft, t ∈ J the minimal σ-algebra with respect to which the variables

x(s) for s ≤ t and w(s) for s ≤ t are measurable, the process wt(s) = w(t+ s)−

w(t) does not depend on Ft;

2. denoting by H2[J ] the space of measurable random functions ϕ(t) which, for

each t ∈ J are Ft-measurable and for which the integral
∫ t0+a

t0
ϕ2(t)dt is w.p.1

finite, | f(t, x(t)) |1/2 and σ(t, x(t)) belong to H2[J ];

3. the process x(t) has on J the stochastic differential dx(t) = f(t)dt+ σ(t)dw(t),

also, for all t ∈ J we have w.p.1 f = f(t, x(t)), σ(t) = σ(t, x(t)).

Let x(t) = x(t, t0, x0) be the solution process of (1.1.1) existing for t ≥ t0. Let us

modify the stochastic differential equation (1.1.1) as:

dx = f(t, x, λ)dt+ σ(t, x, λ)dw(t), x(t0, λ) = x0(λ), (1.1.2)

and the corresponding nominal system,

dx = f(t, x, λ0)dt+ σ(t, x, λ0)dw(t), x(t0) = x0, (1.1.3)

where (t0, x0, λ0) ∈ J ×Rn×Λ, with Λ being an open system parameter λ set in Rm.

In the following, we present a very simple result that exhibits the continuous

dependence of solution process of (1.1.2) with respect to (t0, x0, λ0) ∈ J × Rn × Λ.

The proof is given in [15, 17, 19, 20, 21].
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Theorem 1.1.2 Assume that

1. f and the m column vectors of σ ∈ C[J ×Rn × Λ, Rn];

2. There exist positive number M and N such that

‖f(t, x, λ)‖+ ‖σ(t, x, λ)‖ ≤ N +M‖X‖

for (t, x, λ) ∈ J ×Rn × Λ;

3. There exist a positive number L such that

‖f(t, x, λ)− f(t, y, λ)‖+ ‖σ(t, x, λ)− σ(t, y, λ)‖ ≤ L‖x− y‖

(t, x, λ), (t, y, λ) ∈ J ×Rn × Λ;

4. x(t0, λ) = x0(λ) is independent of w(t) and

lim
λ→λ0

E[‖x(t0, λ)− x(t0, λ0)‖2] = 0;

5. E[‖x(t0, λ)‖4 ≤ c1 for some constant c1 > 0;

6. ε > 0, p > 0,

lim
λ→λ0

P [sup‖x‖<p(‖f(t, x, λ)− f(t, x, λ0)‖+ ‖σ(t, x, λ)− σ(t, x, λ0)‖ > ε)] = 0

Then the IVP (1.1.2) admit unique solution processes x(t, t1, x0(λ), λ) and x(t, t0, x0, λ0)

through (t1, x0(λ)) and (t0, x0), respectively. Moreover, for given ε > 0, there exists a

δ(ε) > 0 such that

(E[‖x(t, t1, x0(λ), λ)− x(t, t0, x0, λ0)‖2])1/2 < ε, t ∈ J,

3



whenever

|t1 − t0|+ (E[‖x0(λ)− x0‖2])1/2 + ‖λ− λ0‖ < δ(ε).

Theorem 1.1.3 Assume that σ, f, x0 in (1.1.1) satisfy the hypotheses (1),(2),(4),

and (5) of Theorem 1.1.2. Furthermore, σ and f are continuously differentiable with

respect to x for fixed t. Let x(t, t0, x0) be the solution process of (1.1.1) existing for

t ≥ t0. Then,

Φ(t, t0, x0) =
∂

∂x
x(t, t0, x0)

exists and is the solution of

dy = H(t, t0, x0)ydt+ Γ(t, t0, x0)ydw(t)

where Φ(t0, t0, x0) is the n×n identify matrix, n×n matrices fx(t, x) and σlx(t, x) are

continuous in (t, x) for l = 1, 2, . . . ,m; σx(t, x) is the n× nm matrix

σx(t, x)=[σ1
x(t, x)σ2

x(t, x)...σjx(t, x)...σmx (t, x)]; H(t, t0, x0) = fx(t, x(t, t0, x0)) and

Γ(t, t0, x0)=σx(t, x(t, t0, x0)).

The proof is given in [15, 17, 19, 20, 21].

Definition 1.1.4 The trivial solution process of (1.1.1) is said to be

i) (SM1) stable in the p-th moment, if for each ε > 0, t0 ∈ R+ and p ≥ 1 there exist

a positive function δ = δ(t0, ε) such that the inequality ‖x0‖p ≤ δ implies

‖x(t)‖p < ε, t ≥ t0,

where ‖x(t)‖p = (E[‖x(t)‖p])1/p;

ii) (SM2) asymptotically stable in the p-th moment, if it is stable in the p-th moment

and if for any ε > 0, t0 ∈ R+, there exists δ0 = δ0(t0) and T = T (t0, ε) such that
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the inequality ‖x0‖p ≤ δ0 implies

‖x(t)‖p < ε, t ≥ t0 + T.

1.2 Nominal System and Error Estimate

Let us consider a nominal system of Itô-Doob type stochastic differential equations

dy = G(t, y)dt+H(t, y)dw(t), y(t0) = y0. (1.2.1)

where G ∈ C[J ×Rn, Rn] and H ∈ C[J ×Rn, Rn×m].

Definition 1.2.1 The two differential systems (1.1.1) and (1.2.1) are said to be

i) (RM1) relatively stable in p-th moment, if for each ε > 0, t0 ∈ R+, and p ≥ 1, there

exists a positive function δ = δ(t0, ε) such that the inequality ‖x0 − y0‖p ≤ δ

implies

‖x(t)− y(t)‖p < ε, t ≥ t0;

ii) (RM2) relatively asymptotically stable in the p-th moment, if it is relatively stable

in the p-th moment and if for any ε > 0, t0 ∈ R+, there exist δ0 = δ0(t0) and

T = T (t0, ε) such that the inequality ‖x0 − y0‖ ≤ δ0 implies

‖x(t)− y(t)‖p < ε, t ≥ t0 + T.

1.3 Comparison System and Qualitative Properties

Let us consider the following Itô-Doob type stochastic comparison and auxiliary sys-

tems differential equations

du = g(t, u)dt, u(t0) = u0, (1.3.1)
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and

dz = α(t, z)dt, z(t0) = x0, (1.3.2)

where g ∈ C[R+ ×RN , RN ] and α ∈ C[J ×Rn, Rn]

Definition 1.3.1 The function g(t, u) is said to possess a quasi-monotone nonde-

creasing property if for u, v ∈ RN such that u ≤ v and ui = vi, then gi(t, u) ≤ gi(t, v)

for any i = 1, 2, . . . , N and fixed t.

Let V ∈ C[R+ × Rn, RN ] and its partial derivatives Vt, Vx and Vxx exists and are

continuous on R+ ×Rn.

Definition 1.3.2 The trivial solution processes z ≡ 0 and u ≡ 0 of (1.2.1) and (1.3.1)

are said to be

i) (JM1) jointly stable in the mean, if for ε > 0, t0 ∈ R+, there exists

δ1 = δ1(t0, ε) > 0 such that
∑N

i=1 E[Vi(t0, x0)] ≤ δ1 implies

N∑
i=1

E[ui(t, t0, V (t0, z(t, t0, x0)))] < ε, t ≥ t0;

ii) (JM2) jointly asymptotically stable in the mean, if it is jointly stable in the mean

and if for any ε > 0, t0 ∈ R+, there exist δ0 = δ0(t0) > 0 and T = T (t0, ε) > 0

such that the inequality
∑N

i=1E[Vi(t0, x0)] ≤ δ0 implies

N∑
i=1

E[ui(t, t0, V (t0, z(t, t0, x0)))] < ε, t ≥ t0 + T.

Definition 1.3.3 The systems (1.2.1) and (1.3.1) are said to be

i) (JR1) jointly relatively stable in the mean, if for each ε > 0, t0 ∈ R+, there exists

δ1 = δ1(t0, ε) > 0 such that the inequality
∑N

i=1 E[Vi(t0, x0 − y0)] ≤ δ1 implies

N∑
i=1

E[ui(t, t0, V (t0, z(t, t0, x0 − y0)))] < ε, t ≥ t0;

6



whenever ‖y0‖ is small enough.

ii) (JR2) jointly relatively asymptotically stable in the mean, if it is jointly relatively

stable in the mean and if for each ε > 0, t0 ∈ R+, there exists δ0 = δ0(t0) > 0

and T = T (t0, ε) > 0 such that
∑N

i=1E[Vi(t0, x0 − y0)] < δ0 implies

N∑
i=1

E[ui(t, t0, V (t0, z(t, t0, x0 − y0)))] < ε, t ≥ t0.

Definition 1.3.4 The differential system (1.1.1) has asymptotic equilibrium if every

solution of the system (1.1.1) tends to a finite limit vector ξ as t → ∞ and to

every constant vector ξ there is a solution x(t) of (1.1.1) on t0 ≤ t < ∞ such that

limt→∞x(t) = ξ.

Definition 1.3.5 The differential systems (1.1.1) and (1.2.1) are said to be asymp-

totically equivalent if, for every solution y(t) of (1.2.1), there is a solution x(t) of

(1.1.1) such that

x(t)− y(t)→ 0 as t→∞.

Theorem 1.3.6 If φ is a real-valued continuous and concave function defined on a

convex domain D ⊆ Rn, then

E[φ(x)] ≤ φ(E(x)).

The proof is given in [17, 19, 20].
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2 Fundamental Properties of Solutions of Nonlinear Stochastic

Differential Equations and Method of Variation of Parameters

2.1 Introduction

One of the most well known methods for investigating the nonlinear dynamic processes

in sciences and engineering is the method of nonlinear variation of constant parameters

[14, 15, 16, 19, 36].

Knowing the existence of solution process, the method of variation of parameters

provides a very powerful tool for finding the solution representation of system of

differential equations [14, 15, 16, 19, 36]. The idea is to decompose a complex system

of differential equations in to two parts in such a way that a system of differential

equations corresponding to the simpler part is either easily solvable in a closed form or

analytically analyzable. However, the over all complex system of differential equations

are neither easily solvable in a closed form nor analytically analyzable [14, 15]. The

method of variation of parameters provides a formula for a solution to the complex

system in terms of the solution process of simpler system of differential equations.

In this chapter, an attempt is made to find a representation of solutions of nonlinear

and nonstationary Itô-Doob type stochastic system of differential equations in terms

of solutions processes of smoother system of Itô-Doob type stochastic differentials.

The organization is as follows: In section 2.2, the problem is formulated. In section

2.3, several auxiliary results are established for unperturbed system of nonlinear Itô-

Doob type stochastic differential equations. In section 2.4, a variation of constants

8



formula is established. In section 2.5, examples are given to illustrate the usefulness of

the methods. The Developed results are a convenient tool in discussing the properties

of solutions of the perturbed system.

2.2 Problem Formulation

Let us formulate a problem. We consider a mathematical description of a nonlinear

dynamic phenomenon under randomly varying environmental perturbations described

by a complex system of nonlinear nonstationary Itô-Doob type system of stochastic

differential equations:

dy = c(t, y)dt+ Σ(t, y)dw(t), y(t0) = x0, (2.2.1)

where y ∈ Rn, c ∈ C[J × Rn, Rn],Σ ∈ C[J × Rn, Rn×m]; C[J × Rn, Rn] (C[J ×

Rn, Rn×m]) stands for a class of continuous functions defined on J × Rn into Rn

(Rn×m); n and m are positive integers ; J = [t0, t0 + a) for some positive real number

a; x0 is an n-dimensional random variable defined on a complete probability space

(Ω,F, P ); w(t) = (w1(t), w2(t), ..., wm(t))T is an m-dimensional normalized Wiener

process with independent increments; x0 and w(t) are mutually independent for each

t ≥ t0. We decompose complex system of stochastic differential equations (2.2.1) into

two parts. The decomposition of its drift and diffusion rate functions are as follows:

c(t, y) = f(t, y) + F (t, y)

and

Σ(t, y) = σ(t, y) + Υ(t, y)

where the rate functions f(t, y) and σ(t, y) are considered to be smooth and simpler

form in the sense of better structure and conceptually smooth. Thus, (2.2.1) can be

9



rewritten as

dy = [f(t, y) + F (t, y)]dt+ [σ(t, y) + Υ(t, y)]dw(t)

= [f(t, y) + F (t, y)]dt+
∑m

l=1[σl(t, y) + Υl(t, y)]dwl(t), y(t0) = x0.

(2.2.2)

The smoother and simpler form of mathematical model of dynamic process corre-

sponding to (2.2.2) is described by

dx = f(t, x)dt+ σ(t, x)dw(t)

= f(t, x)dt+
∑m

l=1 σ
l(t, x)dwl(t), x(t0) = x0.

(2.2.3)

Moreover, systems (2.2.2) and (2.2.3) are considered to be perturbed and unperturbed

systems of stochastic differential equations, respectively.

Remark 2.2.1 In the absence of any reasonable decomposition of the type (2.2.2), it

is always possible to consider the above decompositions with F (t, y) = c(t, y)− f(t, y)

and Υ(t, y) = Σ(t, y) − σ(t, y) for any suitable choice of smoother and simpler rate

functions f(t, y) and σ(t, y).

2.3 Auxiliary Results

Our main objective is to develop the variation of constants formula with respect to

(2.2.3) and its perturbed system (2.2.2). For this purpose, first we investigate the

Itô-Doob stochastic partial differentials of solution process x(t, t0, x0) of unperturbed

system (2.2.3) with respect to initial conditions (t0, x0).

In the following, under certain smoothness assumption on the rate functions of

unperturbed stochastic system of differential equations (2.2.3), we establish the second

order Itô-Doob type of differentials of the solution process of (2.2.3) with respect

to (t0, x0). In this section, by recalling the existence of Itô-Doob type differential

of solution process of unperturbed system of stochastic differential equations with

10



respect to initial state, we first establish the existence of second order differential

with respect to x0. Moreover, as a byproduct, we show that the differentials satisfy

Itô-Doob type of stochastic non homogeneous matrix differential equation. In the

following Lemma, we assume that

i) σ is B × F measurable, where B denotes the Borel σ -algebra on [0,∞) and F is

a σ -algebra such that for t1 < t2 Ft1 ⊂ Ft2 such that wt is a martingale with

respect to Ft

ii) ft and σt are Ft-adapted;

iii) P [
∫ t

0
σ2
ij(s, w) <∞ for all t ≥ 0] = 1;

iv) P [
∫ t

0
| fi(s, w) |<∞ for all t ≥ 0] = 1;

v) w(t) is Ft measurable and x is jointly measurable in (t, w).

Lemma 2.3.1 Assume that σ and f in (2.2.3) are twice continuously differentiable

with respect to x for fixed t, and fxx , σxx are bounded with respect to x for fixed t.

Further, assume that the initial value problem (2.2.3) has a unique solution process

x(t, t0, x0) existing for t ≥ t0.

Then
∂

∂x0

Φ(t, t0, x0) =
∂2

∂x2
0

x(t, t0, x0) (2.3.1)

exists, and is the solution process of the following Itô-Doob type nonhomogeneous

stochastic matrix differential equation:

dY = [H(t, t0, x0)Y +P (t)]dt+
m∑
l=1

[Γl(t, t0, x0)Y +Q(t)]dwl(t), Y (t0) = 0; (2.3.2)

where the n×n matrices H(t, t0, x0) = fx(t, x(t, t0, x0)) and Γl(t, t0, x0) = σlx(t, x(t, t0, x0))

are continuous; P (t) = ( ∂2

∂x2
f(t, x(t))⊗

∑n
k=1 Φ(t, t0, x0)ek)Φ(t, t0, x0);

Q(t) = ( ∂2

∂x2
σl(t, x(t))⊗

∑n
k=1 Φ(t, t0, x0)ek)Φ(t, t0, x0), Φ(t0, t0, x0) is the n×n identity

matrix and ⊗ is the tensor product of two matrices.
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Proof. From the assumptions of the lemma, we conclude that Φ(t, t0, x0) = ∂
∂x0
x(t, t0, x0)

exists and is the solution of the Itô-Doob type stochastic matrix differential equations

along the solution process x(t, t0, x0) of (2.2.3)[15, 27]:

dY = H(t, t0, x0)Y dt+ Γ(t, t0, x0)Y dw(t), Y (t0) = In×n. (2.3.3)

In the following, we show that ∂2

∂x20
x(t, t0, x0) exists and it satisfies the stochastic

differential equation (2.3.2). For this purpose, we consider the following: For small

λ > 0, let ∆x0 =
∑n

k=1 λek ; where ek = (0, 0, ..., 1, ..., 0)T whose k-th component is 1.

Moreover, let Φ(t, λ) = Φ(t, t0, x0 +∆x0) and Φ(t) = Φ(t, t0, x0) be solutions of (2.3.3)

through (t0, x0 + ∆x0) and (t0, x0), respectively, and x(t, λ) = x(t, t0, x0 + ∆x0) and

x(t) = x(t, t0, x0) be solutions of (2.2.3) through (t0, x0+∆x0) and (t0, x0) respectively.

Under the assumptions of Lemma 2.3.1 and applying Lemma 6.1[15] , we conclude

that

lim
λ→0

Φ(t, λ) = Φ(t) uniformly on J. (2.3.4)

We set

∆Φ(t, λ) = Φ(t, λ)− Φ(t), ∆Φ(t0, λ) = ∆x0. (2.3.5)

Let R(θ) = ∂
∂x
f(t, x(t, t0, x0 + θ∆x0)) with 0 ≤ θ ≤ 1. From the assumptions , we

note that R is continuously differentiable with respect to θ, and hence

d

dθ
R(θ) = fxx(t, x(t, t0, x0 + θ∆x0))⊗ (Φ(t, t0, x0 + θ∆x0)∆x0). (2.3.6)

By Integrating both sides of (2.3.6) with respect to θ over an interval [0,1], we obtain

R(1)−R(0) =

∫ 1

0

fxx(t, x(t, t0, x0 + θ∆x0))⊗ (Φ(t, t0, x0 + θ∆x0)∆x0)dθ.

This, together with the fact that R(1) = ∂
∂x
f(t, x(t, λ)) and R(0) = ∂

∂x
f(t, x(t)), yields
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∂

∂x
f(t, x(t, λ))− ∂

∂x
f(t, x(t)) = J(t, x(t, λ),Φ(t, λ)),

where

J(t, x(t, λ),Φ(t, λ)) =

∫ 1

0

fxx(t, x(t, t0, x0 + θ∆x0))⊗ (Φ(t, t0, x0 + θ∆x0)∆x0)dθ

(2.3.7)

Similarly, by setting

G(θ) =
m∑
l=1

σlx(t, x(t, t0, x0 + θ∆x0))

and using the continuous differentiability of G with respect to θ and chain rule, we

have

d

dθ
G(θ) =

m∑
l=1

σlxx(t, x(t, t0, x0 + θ∆x0))⊗ (Φ(t, t0, x0 + θ∆x0)∆x0). (2.3.8)

By Integrating both sides of (2.3.8) with respect to θ over an interval [0,1], we get

G(1)−G(0) =
m∑
l=1

∫ 1

0

σlxx(t, x(t, t0, x0 + θ∆x0))⊗ (Φ(t, t0, x0 + θ∆x0)∆x0)dθ.

This, together with the fact thatG(1) =
∑m

l=1 σ
l
x(t, x(t, λ)) andG(0) =

∑m
l=1 σ

l
x(t, x(t)),

yields
m∑
l=1

[σlx(t, x(t, λ))− σlx(t, x(t))] =
m∑
l=1

Λl(t, x(t, λ),Φ(t, λ)),

where

Λl(t, x(t),Φ(t, λ)) =

∫ 1

0

σlxx(t, x(t, t0, x0 + θ∆x0))⊗ (Φ(t, t0, x0 + θ∆x0)∆x0)dθ.

(2.3.9)

Note that the integrals in (2.3.7) and (2.3.9) are cauchy-Riemann integrals. Using the

hypotheses of the Lemma, n×n matrices J(t, x(t, λ),Φ(t, λ)) and Λl(t, x(t, λ),Φ(t, λ))
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are continuous in (t, x, λ) for l = 1, 2, 3, . . . ,m. Furthermore, from (2.3.7), (2.3.9) and

applying the bounded convergence theorem[34], we obtain

lim
λ→0

J(t, x(t, λ),Φ(t, λ))

λ
= fxx(t, x(t, t0, x0))⊗ (

n∑
k=1

Φ(t, t0, x0)ek) (2.3.10)

and

lim
λ→0

Λl(t, x(t, λ),Φ(t, λ))

λ
= σlxx(t, x(t, t0, x0))⊗ (

n∑
k=1

Φ(t, t0, x0)ek). (2.3.11)

From (2.3.5), using the fact that Φ(t, λ) and Φ(t) are solutions of (2.3.3), we obtain

d(Φ(t, λ)− Φ(t)) = dΦ(t, λ)− dΦ(t)

= fx(t, x(t, λ))Φ(t, λ)dt+
m∑
l=1

σlx(t, x(t, λ))Φ(t, λ)dwl(t)

− [fx(t, x(t))Φ(t)dt+
m∑
l=1

σlx(t, x(t))Φ(t)dwl(t)]

= [fx(t, x(t, λ))Φ(t, λ)− fx(t, x(t))Φ(t)]dt

+
m∑
l=1

[σlx(t, x(t, λ))Φ(t, λ)− σlx(t, x(t))Φ(t)]dwl(t).

(2.3.12)

By adding and subtracting fx(t, x(t))Φ(t, λ)dt and
∑m

l=1 σ
l
x(t, x(t))Φ(t, λ)dwl(t) in

(2.3.12), we obtain

d(Φ(t, λ)− Φ(t)) = [fx(t, x(t, λ))Φ(t, λ)− fx(t, x(t))Φ(t, λ)

+fx(t, x(t))Φ(t, λ)− fx(t, x(t))Φ(t)]dt

+[
m∑
l=1

[σlx(t, x(t, λ))Φ(t, λ)− σlx(t, x(t))Φ(t, λ)]dwl(t)

+
m∑
l=1

[σlx(t, x(t))Φ(t, λ)− σlx(t, x(t))Φ(t)]dwl(t)]
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= [fx(t, x(t))(Φ(t, λ)− Φ(t))

+(fx(t, x(t, λ))− fx(t, x(t)))Φ(t, λ)]dt

+
m∑
l=1

[σlx(t, x(t))[Φ(t, λ)− Φ(t)]

+[σlx(t, x(t, λ))− σlx(t, x(t))]Φ(t, λ)]dwl(t).

(2.3.13)

This, together with (2.3.7), (2.3.9) and the definitions of ∆Φ(t, λ) in (2.3.5), yields

d(
∆Φ(t, λ)

λ
) = [fx(t, x(t))

∆Φ(t, λ)

λ
+
J(t, x(t, λ),Φ(t, λ))

λ
Φ(t, λ)]dt

+
m∑
l=1

[σlx(t, x(t))
∆Φ(t, λ)

λ
+

Λl(t, x(t, λ),Φ(t, λ))

λ
Φ(t, λ)]dwl(t).

(2.3.14)

From (2.3.10) and (2.3.11), system (2.3.2) can be considered as the nominal system

corresponding to (2.3.14) with initial data Y (t0) = 0. It is obvious that the initial

value problem (2.3.14) satisfies all the hypothesis of Lemma 6.1 [15], and hence by its

application, we have

lim
λ→0

∆Φ(t, λ)

λ
= Y (t) uniformly on J,

(2.3.15)

where Y(t) is the solution process of (2.3.14). Because of (2.3.4) and (2.3.5), we note

that the limit of ∆Φ(t,λ)
λ

in (2.3.14) is equivalent to ∂
∂x0

Φ(t, t0, x0). Thus ∂
∂x0

Φ(t, t0, x0)

is the solution process of (2.3.2). Moreover, ∂
∂x0

Φ(t, t0, x0) = ∂2

∂x20
x(t, t0, x0).

Example 2.3.2 Let us consider a scalar nonlinear unperturbed stochastic differential

equation:

dx = αx(ρ− x)dt+ βxdw(t), x(t0) = x0. (2.3.16)
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where α, β and ρ are any constant. Find ∂
∂x0
x(t, t0, x0) and ∂2

∂x20
x(t, t0, x0), if it exists.

Solution: We note that f(t, x) = αx(ρ− x) and σ(t, x) = βx are twice continuously

differentiable with respect to x. In fact, ∂
∂x
f(t, x) = α(ρ − 2x), ∂2

∂x2
f(t, x) = −2α,

∂
∂x
σ(t, x) = β, and ∂2

∂x2
σ(t, x) = 0. The closed form solution of (2.3.16) is

x(t, t0, x0) =
[
Φ(t, t0)x−1

0 + α

∫ t

t0

Φ(t, s)ds)
]−1

,

where Φ(t, t0) = exp[−(αρ− 1
2
β2)(t− t0)− β(w(t)−w(t0))]. The partial derivative of

solution process x(t, t0, x0) with respect to x0 is

∂

∂x0

x(t, t0, x0) =
Φ(t, t0)

(Φ(t, t0) + αx0

∫ t
t0

Φ(t, s)ds)2
(2.3.17)

and
∂2

∂x2
0

x(t, t0, x0) =
−2αΦ(t, t0)

∫ t
t0

Φ(t, s)ds

(Φ(t, t0) + αx0

∫ t
t0

Φ(t, s)ds)3
. (2.3.18)

Moreover, ∂2

∂x20
x(t, t0, x0) satisfies the following differential equation:

dy =
[[
α
(
ρ− 2

[
Φ(t, t0)x−1

0 + α

∫ t

t0

Φ(t, s)ds
]−1)]

y − 2αΦ2(t, t0)
]
dt

+βydw(t), y(t0) = 0. (2.3.19)

Example 2.3.3 Consider a scalar nonlinear autonomous differential equation:

dx =
[
− a(t)

1

2
x3 + b(t)x

]
dt+ σxdw(t), x(t0) = x0. (2.3.20)

where a, b, and σ are continuous functions defined on R+ into R. Find ∂
∂x0
x(t, t0, x0)

and ∂2

∂x20
x(t, t0, x0), if it exists.

Solution: We note that f(t, x) = −a(t)1
2
x3 + b(t)x and σ(t, x) = σx are continuously

differentiable with respect to x. In fact ∂
∂x
f(t, x) = −3

2
a(t)x2 + b(t), ∂2

∂x2
f(t, x) =
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−3a(t)x, ∂
∂x
σ(t, x) = σ, and ∂2

∂x2
σ(t, x) = 0. The closed form solution of (2.3.20) is

x(t, t0, x0) =
Φ(t, t0)|x0|√

1 + x2
0

∫ t
t0
a(s)Φ2(s, t0)ds

where Φ(t, t0) = exp
[ ∫ t

t0

[
b(s)− 1

2
σ2(s)

]
ds+

∫ t
t0
σ(s)dw(s)

]
. The solution to the IVP

is differentiable with respect to x0 except at x0 = 0. In this case, by the uniqueness of

the solution process of (2.3.20), x(t, t0, x0) ≡ 0. This process is always differentiable

with respect to x0. The partial derivative of solution processes x(t, t0, x0) with respect

to x0 is
∂

∂x0

x(t, t0, x0) =
Φ(t, t0)sgn(x0)

[1 + x2
0

∫ t
t0
a(s)Φ2(s, t0)ds]3/2

(2.3.21)

and
∂2

∂x2
0

x(t, t0, x0) =
−3|x0|Φ(t, t0)

∫ t
t0
a(s)Φ2(s, t0)ds

[1 + x2
0

∫ t
t0
a(s)Φ2(s, t0)ds]5/2

. (2.3.22)

Moreover, ∂2

∂x20
x(t, t0, x0) satisfies the following differential equation:

dy =
[[ −3a(t)Φ2(t, t0)x2

0

2(1 + x2
0

∫ t
t0
a(s)Φ2(s, t0)ds)

+ b(t)
]
y − 3a(t)Φ3(t, t0)|x0|√

1 + x2
0

∫ t
t0
a(s)Φ2(s, t0)ds

]
dt

+σydw(t), Y (t0) = 0. (2.3.23)

The following result shows the existence of partial differential of solution process

of (2.2.3) with respect to t0.

Lemma 2.3.4 Let us assume that all the hypothesis of Lemma 2.3.1 be satisfied. Let

x(t, t0, x0) be the solution process of (2.2.3) existing for t ≥ t0.

Then

∂t0x(t, t0, x0)
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exists and:

∂t0x(t, t0, x0) =
1

2
[
( n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, t0, x0)σl(t0, x0)σlj(t0, x0)
)
n×1

+Φ(t, t0, x0)[
m∑
l=1

σlx(t0, x0)σl(t0, x0)− f(t0, x0)]]dt0

−
m∑
l=1

Φ(t, t0, x0)σl(t0, x0)dwl(t0) (2.3.24)

with

∂t0x(t0, t0, x0) = [
m∑
l=1

σlx(t0, x0)σl(t0, x0) − f(t0, x0)]dt0 −
m∑
l=1

σl(t0, x0)dwl(t0)

(2.3.25)

Proof. Let ∆t0 = λ > 0 be a positive increment to t0, and define

∆x(t, λ) = x(t, t0 + λ, x0)− x(t, t0, x0) (2.3.26)

where x(t, t0+λ, x0) and x(t, t0, x0) are solution processes of (2.2.3) through (t0+λ, x0)

and (t0, x0), respectively.

Let

∆x(t0) = x(t0 + λ, t0, x0)− x(t0, t0, x0).

Set R(θ) = x(t, t0 +λ, x0 +θ∆x(t0)). It is obvious that R is continuously differentiable

with respect to θ, and hence

d

dθ
R(θ) =

∂

∂x0

x(t, t0 + λ, x0 + θ∆x(t0))∆x(t0) = Φ(t, t0 + λ, x0 + θ∆x(t0))∆x(t0).

(2.3.27)
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By Integrating both sides of (2.3.27) with respect to θ over an interval [0,1], we obtain

R(1)−R(0) =

∫ 1

0

Φ(t, t0 + λ, x0 + θ∆x(t0))∆x(t0)dθ.

This, together with the fact that R(1) = x(t, t0 + λ, x(t0 + λ, t0, x0)) and R(0) =

x(t, t0 + λ, x0), yields

x(t, t0 + λ, x(t0 + λ, t0, x0))− x(t, t0 + λ, x0) =

∫ 1

0

Φ(t, t0 + λ, x0 + θ∆x(t0))∆x(t0)dθ.

(2.3.28)

Because of the uniqueness of solution of (2.2.3) we have x(t, t0, x0) = x(t, t0 +λ, x(t0 +

λ, t0, x0)) and equation (2.3.28) can be written as

x(t, t0 + λ, x0)− x(t, t0, x0) = −
∫ 1

0

Φ(t, t0 + λ, x0 + θ∆x(t0))∆x(t0)dθ. (2.3.29)

By adding and subtracting Φ(t, t0 + λ, x0)∆x(t0) , Φ(t, t0 + λ, x(t0 + λ, t0, x0))∆x(t0)

and Φ(t, t0, x0)∆x(t0) in (2.3.29) and using the fact that

Φ(t, t0, x0) = Φ(t, t0 + λ, x(t0 + λ, t0, x0))Φ(t0 + λ, t0, x0), (2.3.30)

we have

∆x(t, λ) = −
∫ 1

0

[Φ(t, t0 + λ, x0 + θ∆x(t0))− Φ(t, t0 + λ, x0)]∆x(t0)dθ

+ [Φ(t, t0 + λ, x(t0 + λ, t0, x0))− Φ(t, t0 + λ, x0)]∆x(t0)

+ [Φ(t, t0, x0)− Φ(t, t0 + λ, x(t0 + λ, t0, x0))]∆x(t0)− Φ(t, t0, x0)∆x(t0)

= −
∫ 1

0

[Φ(t, t0 + λ, x0 + θ∆x(t0))− Φ(t, t0 + λ, x0)]∆x(t0)dθ

+ [Φ(t, t0 + λ, x(t0 + λ, t0, x0))− Φ(t, t0 + λ, x0)]∆x(t0)

+ [Φ(t, t0 + λ, x(t0 + λ, t0, x0))Φ(t0 + λ, t0, x0)
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−Φ(t, t0 + λ, x(t0 + λ, t0, x0))]∆x(t0)− Φ(t, t0, x0)∆x(t0)

= −
∫ 1

0

[Φ(t, t0 + λ, x0 + θ∆x(t0))− Φ(t, t0 + λ, x0)]∆x(t0)dθ

+ [Φ(t, t0 + λ, x(t0 + λ, t0, x0))− Φ(t, t0 + λ, x0)]∆x(t0)

+ [Φ(t, t0 + λ, x(t0 + λ, t0, x0))(Φ(t0 + λ, t0, x0)− Φ(t0, t0, x0))]∆x(t0)

− Φ(t, t0, x0)∆x(t0). (2.3.31)

We set G(ψ) = Φ(t, t0 + λ, x0 + ψθ∆x(t0)) for 0 ≤ ψ ≤ 1. It is obvious that G is

continuously differentiable with respect to ψ, and hence

d

dψ
G(ψ) =

∂

∂x0

Φ(t, t0 + λ, x0 + ψθ∆x(t0))⊗ (θ∆x(t0)) (2.3.32)

By Integrating both sides of (2.3.32) with respect to ψ over an interval [0,1], we have

G(1)−G(0) =

∫ 1

0

∂

∂x0

Φ(t, t0 + λ, x0 + ψθ∆x(t0))⊗ (θ∆x(t0))dψ.

This, together with G(1) = Φ(t, t0 + λ, x0 + θ∆x(t0)) and G(0) = Φ(t, t0 + λ, x0),

yields

Φ(t, t0+λ, x0+θ∆x(t0))−Φ(t, t0+λ, x0) =

∫ 1

0

∂

∂x0

Φ(t, t0+λ, x0+ψθ∆x(t0))⊗(θ∆x(t0))dψ

(2.3.33)

Similarly, by setting g(β) = Φ(t, t0 + λ, x0 + β∆x(t0)) for 0 ≤ β ≤ 1, and repeating

the previous argument, we obtain

d

dβ
g(β) =

∂

∂x0

Φ(t, t0 + λ, x0 + β∆x(t0))⊗∆x(t0). (2.3.34)
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This, together with g(1) = Φ(t, t0 + λ, x0 + ∆x(t0)) and g(0) = Φ(t, t0 + λ, x0), yields

Φ(t, t0+λ, x0+∆x(t0))−Φ(t, t0+λ, x0) =

∫ 1

0

∂

∂x0

Φ(t, t0+λ, x0+β∆x(t0))⊗∆x(t0)dβ.

(2.3.35)

Using (2.3.33) and (2.3.35), (2.3.31) reduces to

∆x(t, λ) = −
∫ 1

0

∫ 1

0

∂

∂x0

Φ(t, t0 + λ, x0 + ψθ∆x(t0))

⊗(θ∆x(t0))∆x(t0)dψdθ

+

∫ 1

0

∂

∂x0

Φ(t, t0 + λ, x0 + β∆x(t0))⊗∆x(t0)∆x(t0)dβ

+[Φ(t, t0 + λ, x(t0 + λ, t0, x0))(Φ(t0 + λ, t0, x0)− Φ(t0, t0, x0))]∆x(t0)

−Φ(t, t0, x0)∆x(t0). (2.3.36)

Adding and subtracting ∂
∂x0

Φ(t, t0 + λ, x0)⊗ (θ∆x(t0))∆x(t0) and

∂
∂x0

Φ(t, t0 + λ, x0)⊗ (∆x(t0))∆x(t0) in (2.3.36) yields,

∆x(t, λ) = −
∫ 1

0

∫ 1

0

∂

∂x0

[Φ(t, t0 + λ, x0 + ψθ∆x(t0))

−Φ(t, t0 + λ, x0)]⊗ (θ∆x(t0))∆x(t0)dψdθ

+

∫ 1

0

∂

∂x0

[Φ(t, t0 + λ, x0 + β∆x(t0))− Φ(t, t0 + λ, x0)]⊗∆x(t0)∆x(t0)dβ

+[Φ(t, t0 + λ, x(t0 + λ, t0, x0))(Φ(t0 + λ, t0, x0)− Φ(t0, t0, x0))]∆x(t0)

+
1

2

∂

∂x0

Φ(t, t0 + λ, x0)⊗∆x(t0)∆x(t0)− Φ(t, t0, x0)∆x(t0). (2.3.37)

Using the bounded convergence theorem[34], the concept of Itô-Doob type differential

and sufficiently small increment ∆t0 to t0, (2.3.37) reduces to

∂t0x(t, t0, x0) = [Φ(t, t0, x0)dΦ(t0)]dx(t0) +
1

2

∂

∂x0

Φ(t, t0, x0)⊗ dx(t0)dx(t0)

−Φ(t, t0, x0)dx(t0)
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= Φ(t, t0, x0)
m∑
l=1

σlx(t0, x0)dwl(t0)
m∑
l=1

σl(t0, x0)dwl(t0)

+
1

2

∂

∂x0

Φ(t, t0, x0)⊗
m∑
l=1

σl(t0, x0)dwl(t0)
m∑
l=1

σl(t0, x0)dwl(t0)

−Φ(t, t0, x0)[f(t0, x0)dt0 +
m∑
l=1

σl(t0, x0)dwl(t0)]

=
1

2

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, t0, x0)σl(t0, x0)σlj(t0, x0)

)
n×1

dt0

+Φ(t, t0, x0)[
m∑
l=1

σlx(t0, x0)σl(t0, x0)− f(t0, x0)]dt0

−
m∑
l=1

Φ(t, t0, x0)σl(t0, x0)dwl(t0) (2.3.38)

This shows that ∂t0x(t, t0, x0) exists and it is represented as in (2.3.24). This together

with t = t0 and (2.3.2) yields (2.3.25).

Example 2.3.5 Let us consider a scalar linear unperturbed stochastic differential

equation:

dx = f(t)xdt+ σ(t)xdw(t), x(t0) = x0, (2.3.39)

where f and σ are any differentiable functions defined on J = [t0, t0 +a) into R, where

a > 0. Find ∂t0x(t, t0, x0), if it exists.

Solution: Note that f(t, x) = f(t)x and σ(t, x) = σ(t)x are continuously differen-

tiable with respect to x. Moreover, ∂
∂x
f(t, x) = f(t) and ∂

∂x
σ(t, x) = σ(t). The closed

form solution of (2.3.39) is given by

x(t, t0, x0) = Φ(t, t0)x0.
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Let us consider the following:

x(t, t0 + λ, x0)− x(t, t0, x0)

= x(t, t0 + λ, x0)− x(t, t0 + λ, x(t0 + λ, t0, x0))

= Φ(t, t0 + λ)x0 − Φ(t, t0 + λ)x(t0 + λ, t0, x0)

= − Φ(t, t0 + λ)[x(t0 + λ, t0, x0)− x0]

= − Φ(t, t0 + λ)∆x(t0)

= − [Φ(t, t0 + λ)− Φ(t, t0) + Φ(t, t0)]∆x(t0)

= − [Φ(t, t0 + λ)− Φ(t, t0)]∆x(t0)− Φ(t, t0)∆x(t0)

= [Φ(t, t0)− Φ(t, t0 + λ)]∆x(t0)− Φ(t, t0)∆x(t0)

= [Φ(t, t0 + λ)Φ(t0 + λ, t0)− Φ(t, t0 + λ)]∆x(t0)− Φ(t, t0)∆x(t0)

= Φ(t, t0 + λ)[Φ(t0 + λ, t0)− I]∆x(t0)− Φ(t, t0)∆x(t0)

= Φ(t, t0 + λ)∆Φ(t0, t0)∆x(t0)− Φ(t, t0)∆x(t0). (2.3.40)

Using the bounded convergence theorem [34], the concept of Itô-Doob type differential

and sufficiently small increment λ to t0, (2.3.40) reduces to

∂t0x(t, t0, x0) = Φ(t, t0)dΦ(t0, t0)dx(t0)− Φ(t, t0)dx(t0)

= Φ(t, t0)[f(t0)Φ(t0, t0)dt0 + σ(t0)Φ(t0, t0)dw(t0)][f(t0)x0dt0 + σ(t0)x0dw(t0)]

−Φ(t, t0)[f(t0)x0dt0 + σ(t0)x0dw(t0)]

= Φ(t, t0)σ(t0)σ(t0)x0dt0 − Φ(t, t0)[f(t0)x0dt0 + σ(t0)x0dw(t0)]

= Φ(t, t0)[σ2(t0)− f(t0)]x0dt0 − Φ(t, t0)σ(t0)x0dw(t0). (2.3.41)

Example 2.3.6 Let us consider a scalar linear perturbed stochastic differential equa-

tion:

dx = [f(t)x+ p(t)]dt+ [σ(t)x+ q(t)]dw(t), x(t0) = x0, (2.3.42)
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where f , σ, p and q are any differentiable functions defined on J = [t0, t0 + a) into R,

where a > 0. Find ∂t0x(t, t0, x0), if it exists.

Solution: Note that f(t, x) = f(t)x+p(t) and σ(t, x) = σ(t)x+q(t) are continuously

differentiable with respect to x. Moreover, ∂
∂x
f(t, x) = f(t) and ∂

∂x
σ(t, x) = σ(t).

Using the application of Lemma 2.3.4 we obtain

∂t0x(t, t0, x0) = Φ(t, t0)[(σ2(t0)− f(t0))x0 + σ(t0)q(t0)− p(t0)]dt0

−Φ(t, t0)[σ(t0)x0 + q(t0)]dw(t0). (2.3.43)

In the following, we state and prove the existence of Itô-Doob type mixed partial

differentials of solution process of (2.2.3).

Lemma 2.3.7 Assume that all the hypothesis of Lemma 2.3.1 hold. Let x(t, t0, x0)

be the solution process of (2.2.3) existing for t ≥ t0. Then the mixed Itô-Doob type

partial differentials

∂x0(∂t0x(t, t0, x0)) and ∂t0(∂x0x(t, t0, x0)) exists and they are equal. Moreover,

∂x0(∂t0x(t, t0, x0)) = −
[( n∑

j=1

m∑
l=1

∂

∂x0

Φij(t, t0, x0)σl(t0, x0)σlj(t0, x0)

)
n×1

+
m∑
l=1

Φ(t, t0, x0)σlx(t0, x0)σl(t0, x0)
]
dt0

(2.3.44)

With initial condition:

∂x0(∂t0x(t0, t0, x0)) = −
m∑
l=1

σlx(t0, x0)σl(t0, x0)dt0 (2.3.45)

Proof. Let ∆x(t0) = x(t0 + λ, t0, x0)− x(t0, t0, x0). Using (2.3.30), Lemma 2.3.1 and

the continuous dependence of solution process of (2.3.1), we examine the following
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differential:

∂x0x(t, t0 + λ, x0)− ∂x0x(t, t0, x0)

=
∂

∂x0

x(t, t0 + λ, x0)dx0 +
1

2
(
∂

∂x0

Φ(t, t0 + λ, x0)⊗ dx0)dx0

−[
∂

∂x0

x(t, t0, x0)dx0 +
1

2
(
∂

∂x0

Φ(t, t0, x0)⊗ dx0)dx0]

= [Φ(t, t0 + λ, x0)− Φ(t, t0, x0)]dx0 +
1

2
[
∂

∂x0

(Φ(t, t0 + λ, x0)− Φ(t, t0, x0))⊗ dx0]dx0.

(2.3.46)

Since Φ(t, t0, x0) = Φ(t, t0 +λ, x(t0 +λ, t0, x0))Φ(t0 +λ, t0, x0), by adding and subtract-

ing Φ(t, t0 + λ, x(t0 + λ, t0, x0))dx0 in (2.3.46), using generalized mean value theorem

and algebraic manipulations, we get

∂x0x(t, t0 + λ, x0)− ∂x0x(t, t0, x0)

= [Φ(t, t0 + λ, x0)− Φ(t, t0 + λ, x(t0 + λ, t0, x0))Φ(t0 + λ, t0, x0)]dx0

+
1

2
[
∂

∂x0

(Φ(t, t0 + λ, x0)− Φ(t, t0, x0))⊗ dx0]dx0

= [Φ(t, t0 + λ, x0)− Φ(t, t0 + λ, x(t0 + λ, t0, x0)) + Φ(t, t0 + λ, x(t0 + λ, t0, x0))

−Φ(t, t0 + λ, x(t0 + λ, t0, x0))Φ(t0 + λ, t0, x0)]dx0

+
1

2
[
∂

∂x0

(Φ(t, t0 + λ, x0)− Φ(t, t0, x0))⊗ dx0]dx0

= −[

∫ 1

0

∂

∂x0

Φ(t, t0 + λ, x0 + θ∆x(t0))⊗∆x(t0)dθ]dx0

−Φ(t, t0 + λ, x(t0 + λ, t0, x0))(Φ(t0 + λ, t0, x0)− In×n)dx0

+
1

2
[
∂

∂x0

(Φ(t, t0 + λ, x0)− Φ(t, t0, x0))⊗ dx0]dx0

(2.3.47)
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Again by adding and subtracting ∂
∂x0

Φ(t, t0 + λ, x0)⊗∆x(t0)dx0 in (2.3.47), we get

∂x0x(t, t0 + λ, x0)− ∂x0x(t, t0, x0)

= −[

∫ 1

0

∂

∂x0

(Φ(t, t0 + λ, x0 + θ∆x(t0))− Φ(t, t0 + λ, x0))⊗∆x(t0)dθ]dx0

−Φ(t, t0 + λ, x(t0 + λ, t0, x0))∆Φ(t0)dx0 −
∂

∂x0

Φ(t, t0 + λ, x0))⊗∆x(t0)dx0

+
1

2
[
∂

∂x0

(Φ(t, t0 + λ, x0)− Φ(t, t0, x0))⊗ dx0]dx0 (2.3.48)

For sufficiently small ∆t0 = λ > 0, uniform convergence theorem, solution process of

Itô-Doob type stochastic differential equations (2.2.3) and (2.3.3), Itô-Doob calculus

and continuous dependence of solutions with respect to initial conditions, we obtain

∂t0(∂x0x(t, t0, x0)) = −
[( n∑

j=1

m∑
l=1

∂

∂x0

Φij(t, t0, x0)σl(t0, x0)σlj(t0, x0)

)
n×1

+
m∑
l=1

Φ(t, t0, x0)σlx(t0, x0)σl(t0, x0)
]
dt0. (2.3.49)

On the other hand, using (2.3.24) we examine the following differential

∂t0x(t, t0, x0 + ∆x0)− ∂t0x(t, t0, x0)

= [
1

2

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, t0, x0 + ∆x0)σl(t0, x0 + ∆x0)σlj(t0, x0 + ∆x0)

)
n×1

+Φ(t, t0, x0 + ∆x0)[
m∑
l=1

σlx(t0, x0 + ∆x0)σl(t0, x0 + ∆x0)− f(t0, x0 + ∆x0)]]dt0

−
m∑
l=1

Φ(t, t0, x0 + ∆x0)σl(t0, x0 + ∆x0)dwl(t0)

−[[
1

2

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, t0, x0)σl(t0, x0)σlj(t0, x0)

)
n×1

+Φ(t, t0, x0)[
m∑
l=1

σlx(t0, x0)σl(t0, x0)− f(t0, x0)]]dt0 −
m∑
l=1

Φ(t, t0, x0)σl(t0, x0)dwl(t0)]
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= [
1

2

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, t0, x0 + ∆x0)σl(t0, x0 + ∆x0)σlj(t0, x0 + ∆x0)

)
n×1

−1

2

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, t0, x0)σl(t0, x0)σlj(t0, x0)

)
n×1

]dt0

+Φ(t, t0, x0 + ∆x0)[
m∑
l=1

σlx(t0, x0 + ∆x0)σl(t0, x0 + ∆x0)− f(t0, x0 + ∆x0)]dt0

−Φ(t, t0, x0)[
m∑
l=1

σlx(t0, x0)σl(t0, x0)− f(t0, x0)]dt0

−
m∑
l=1

Φ(t, t0, x0 + ∆x0)σl(t0, x0 + ∆x0)dwl(t0) +
m∑
l=1

Φ(t, t0, x0)σl(t0, x0)dwl(t0).

(2.3.50)

By adding and subtracting Φ(t, t0, x0)
∑m

l=1 σ
l(t0, x0 + ∆x0)dwl(t0) in (2.3.50) yields

∂t0x(t, t0, x0 + ∆x0)− ∂t0x(t, t0, x0)

= [
1

2

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, t0, x0 + ∆x0)σl(t0, x0 + ∆x0)σlj(t0, x0 + ∆x0)

)
n×1

−1

2

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, t0, x0)σl(t0, x0)σlj(t0, x0)

)
n×1

]dt0

+Φ(t, t0, x0 + ∆x0)[
m∑
l=1

σlx(t0, x0 + ∆x0)σl(t0, x0 + ∆x0)− f(t0, x0 + ∆x0)]dt0

−Φ(t, t0, x0)[
m∑
l=1

σlx(t0, x0)σl(t0, x0)− f(t0, x0)]dt0

−[Φ(t, t0, x0 + ∆x0)− Φ(t, t0, x0)]
m∑
l=1

σl(t0, x0 + ∆x0)dwl(t0)

−Φ(t, t0, x0)
m∑
l=1

(σl(t0, x0 + ∆x0)− σl(t0, x0))dwl(t0) (2.3.51)

From the continuity of rate coefficient matrices and the continuous dependence of
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solution process, we have

∂x0(∂t0x(t, t0, x0)) = −
[( n∑

j=1

m∑
l=1

∂

∂x0

Φij(t, t0, x0)σl(t0, x0)σlj(t0, x0)

)
n×1

+
m∑
l=1

Φ(t, t0, x0)σlx(t0, x0)σl(t0, x0)
]
dt0

(2.3.52)

This establishes the proof of (2.3.44). Since ∂
∂x0

Φ(t0, t0, x0) = 0 and Φ(t0, t0, x0) =

In×n at t = t0, we have

∂x0(∂t0x(t0)) = −
m∑
l=1

σlx(t0, x0)σl(t0, x0)dt0. (2.3.53)

This completes the proof of the Lemma.

Example 2.3.8 Let us consider Example2.3.5. Find ∂x0(∂t0x(t, t0, x0)).

Solution: Using (2.3.30), Lemma 2.3.1 and the continuous dependence of solution

process of (2.3.1), we examine the following differential:

∂x0x(t, t0 + λ, x0)− ∂x0x(t, t0, x0)

= [
∂

∂x0

x(t, t0 + λ, x0)− ∂

∂x0

x(t, t0 + λ, x(t0 + λ, t0, x0))]dx0

= [Φ(t, t0 + λ)− Φ(t, t0)]dx0

= [Φ(t, t0 + λ)− Φ(t, t0 + λ)Φ(t0 + λ, t0)]dx0

= − Φ(t, t0 + λ)[Φ(t0 + λ, t0)− Φ(t0, t0)]dx0

= − Φ(t, t0 + λ)∆Φ(t0, t0)dx0. (2.3.54)

Using the bounded convergence theorem[34], the concept of Itô-Doob type differential
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and sufficiently small increment λ to t0, (2.3.54) reduces to

∂t0(∂x0x(t, t0, x0))

= − Φ(t, t0)dΦ(t0, t0)dx0

= − Φ(t, t0)[f(t0)Φ(t0, t0)dt0 + σ(t0)Φ(t0, t0)dw(t0)][f(t0)x0dt0 + σ(t0)x0dw(t0)]

= − Φ(t, t0)σ2(t0)x0dt0. (2.3.55)

2.4 Method of Variation of Constants Formula

In this section we shall establish the method of variation of constants formula with

respect to (2.2.3) and its perturbed system (2.2.2).

Theorem 2.4.1 Let the assumption of Lemma 2.3.1 be satisfied. Let y(t, t0, x0) and

x(t, t0, x0) be solution processes of (2.2.2) and (2.2.3), respectively, through the same

initial data (t0, x0), for all t ≥ t0.

Then

y(t, t0, x0) = x(t, t0, x0) +

∫ t

t0

[1

2

( n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, y(s))[Υl(s, y(s))σlj(s, y(s))

+Υl(s, y(s))Υl
j(s, y(s))− σl(s, y(s))Υl

j(s, y(s))]
)
n×1

+Φ(t, s, y(s))[F (s, y(s))−
m∑
l=1

σlx(s, y(s))Υl(s, y(s))]
]
ds

+
m∑
l=1

∫ t

t0

Φ(t, s, y(s))Υl(s, y(s))dwl(s). (2.4.1)
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Proof. From the application of Lemma 2.3.1, Lemma 2.3.4, Lemma 2.3.7 and the

Itô-Doob differential formula with respect to s for t0 ≤ s ≤ t, we have

dsx(t, s, y(s)) = ∂t0x(t, s, y(s)) + ∂x0x(t, s, y(s)) + ∂x0(∂t0x(t, s, y(s)))

+
1

2
(
∂

∂x0

Φ(t, s, y(s))⊗ dy)dy

=
1

2

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, y(s))σl(s, y(s))σlj(s, y(s))

)
n×1

ds

+Φ(t, s, y(s))(
m∑
l=1

σlx(s, y(s))σl(s, y(s))− f(s, y(s)))ds

−Φ(t, s, y(s))
m∑
l=1

σl(s, y(s))dwl(s) + Φ(t, s, y(s))dy(s)

−

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, y(s))σl(s, y(s))(σlj(s, y(s)) + Υl
j(s, y(s)))

)
n×1

ds

−Φ(t, s, y(s))
m∑
l=1

σlx(s, y(s))(σl(s, y(s)) + Υl(s, y(s)))ds

+
1

2
(
∂

∂x0

Φ(t, s, y(s))⊗
m∑
l=1

σl(s, y(s))dwl(s)
m∑
l=1

σl(s, y(s))dwl(s)

+
1

2
(
∂

∂x0

Φ(t, s, y(s))⊗
m∑
l=1

Υl(s, y(s))dwl(s)
m∑
l=1

σl(s, y(s))dwl(s)

+
1

2
(
∂

∂x0

Φ(t, s, y(s))⊗
m∑
l=1

σl(s, y(s))dwl(s)
m∑
l=1

Υl(s, y(s))dwl(s)

+
1

2
(
∂

∂x0

Φ(t, s, y(s))⊗
m∑
l=1

Υl(s, y(s))dwl(s)
m∑
l=1

Υl(s, y(s))dwl(s)

(2.4.2)
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By simplifying (2.4.2), we get

dsx(t, s, y(s)) =
[
− 1

2

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, y(s))σl(s, y(s))Υl
j(s, y(s))

)
n×1

+
1

2

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, y(s))Υl(s, y(s))σlj(s, y(s))

)
n×1

+
1

2

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, y(s))Υl(s, y(s))Υl
j(s, y(s))

)
n×1

+Φ(t, s, y(s))[F (s, y(s))−
m∑
l=1

σlx(s, y(s))Υl(s, y(s))]
]
ds

+
m∑
l=1

Φ(t, s, y(s))Υl(s, y(s))dwl(s). (2.4.3)

Since the right hand side of (2.4.3) is continuous with respect to s, we integrate from

t0 to t, and obtain the variation of constant formula (2.4.1).

Corollary 2.4.2 Let the assumption of Lemma 2.3.1 be satisfied, except that only

c(t, y) in (2.2.2) can be decomposed. Let y(t, t0, x0) and x(t, t0, x0) be solution processes

of (2.2.2) and (2.2.3), respectively, through the same initial data (t0, x0), for all t ≥ t0.

Then

y(t, t0, x0) = x(t, t0, x0) +

∫ t

t0

[1

2

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, y(s))σl(s, y(s))σlj(s, y(s))

)
n×1

−

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, y(s))σl(s, y(s))Σl
j(s, y(s))

)
n×1

+
1

2

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, y(s))Σl(s, y(s))Σl
j(s, y(s))

)
n×1
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+Φ(t, s, y(s))(
m∑
l=1

[σlx(s, y(s))σl(s, y(s))− σlx(s, y(s))Σl(s, y(s))]

+F (s, y(s)))
]
ds

+
m∑
l=1

∫ t

t0

Φ(t, s, y(s))[Σl(s, y(s))− σl(s, y(s))]dwl(s)

(2.4.4)

Proof. From the application of Lemma 2.3.1, Lemma 2.3.4, Lemma 2.3.7 and the

Itô-Doob differential formula with respect to s for t0 ≤ s ≤ t, we have

dsx(t, s, y(s)) = ∂t0x(t, s, y(s)) + ∂x0x(t, s, y(s)) + ∂x0(∂t0x(t, s, y(s)))

+
1

2
(
∂

∂x0

Φ(t, s, y(s))⊗ dy)dy

=
1

2

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, y(s))σl(s, y(s))σlj(s, y(s))

)
n×1

ds

+Φ(t, s, y(s))(
m∑
l=1

σlx(s, y(s))σl(s, y(s))− f(s, y(s)))ds

−Φ(t, s, y(s))
m∑
l=1

σl(s, y(s))dwl(s)

+Φ(t, s, y(s))[(f(s, y(s)) + F (s, y(s)))ds+
m∑
l=1

Σl(s, y(s))dwl(s)]

−

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, y(s))σl(s, y(s))Σl
j(s, y(s))

)
n×1

ds

−Φ(t, s, y(s))
m∑
l=1

σlx(s, y(s))Σl(s, y(s))ds

+
1

2
(
∂

∂x0

Φ(t, s, y(s))⊗
m∑
l=1

Σl(s, y(s))dwl(s)
m∑
l=1

Σl(s, y(s))dwl(s)

(2.4.5)
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By simplifying (2.4.5), we get

dsx(t, s, y(s)) =
[1

2

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, y(s))σl(s, y(s))σlj(s, y(s))

)
n×1

−

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, y(s))σl(s, y(s))Σl
j(s, y(s))

)
n×1

+
1

2

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, y(s))Σl(s, y(s))Σl
j(s, y(s))

)
n×1

+Φ(t, s, y(s))(
m∑
l=1

[σlx(s, y(s))σl(s, y(s))− σlx(s, y(s))Σl(s, y(s))]

+F (s, y(s)))
]
ds

+
m∑
l=1

Φ(t, s, y(s))[Σl(s, y(s))− σl(s, y(s))]dwl(s)

(2.4.6)

Since the right hand side of (2.4.6) is continuous with respect to s, we integrate from

t0 to t, and obtain the variation of constant formula (2.4.4).

Corollary 2.4.3 Let the assumption of Lemma 2.3.1 be satisfied, except that only

Σ(t, y) in (2.2.2) can be decomposed. Let y(t, t0, x0) and x(t, t0, x0) be solution pro-

cesses of (2.2.2) and (2.2.2), respectively, through the same initial data (t0, x0), for

all t ≥ t0. Then

y(t, t0, x0) = x(t, t0, x0) +

∫ t

t0

[1

2

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, y(s))Υl(s, y(s))σlj(s, y(s))

)
n×1

−1

2

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, y(s))σl(s, y(s))Υl
j(s, y(s))

)
n×1

+
1

2

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, y(s))Υl(s, y(s))Υl
j(s, y(s))

)
n×1
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+Φ(t, s, y(s))[c(s, y(s))− f(s, y(s))−
m∑
l=1

σlx(s, y(s))Υl(s, y(s))]
]
ds

+
m∑
l=1

∫ t

t0

Φ(t, s, y(s))Υl(s, y(s))dwl(s). (2.4.7)

Proof. From the application of Lemma 2.3.1, Lemma 2.3.4, Lemma 2.3.7 and the

Itô-Doob differential formula with respect to s for t0 ≤ s ≤ t, we have

dsx(t, s, y(s)) = ∂t0x(t, s, y(s)) + ∂x0x(t, s, y(s)) + ∂x0(∂t0x(t, s, y(s)))

+
1

2
(
∂

∂x0

Φ(t, s, y(s))⊗ dy)dy

=
1

2

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, y(s))σl(s, y(s))σlj(s, y(s))

)
n×1

ds

+Φ(t, s, y(s))(
m∑
l=1

σlx(s, y(s))σl(s, y(s))− f(s, y(s)))ds

−Φ(t, s, y(s))
m∑
l=1

σl(s, y(s))dwl(s)

+Φ(t, s, y(s))[c(s, y(s))ds+
m∑
l=1

(σl(s, y(s)) + Υl(s, y(s)))dwl(s)]

−

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, y(s))σl(s, y(s))(σlj(s, y(s)) + Υl
j(s, y(s)))

)
n×1

ds

−Φ(t, s, y(s))
m∑
l=1

σlx(s, y(s))(σl(s, y(s)) + Υl(s, y(s)))ds

+
1

2
(
∂

∂x0

Φ(t, s, y(s))⊗
m∑
l=1

σl(s, y(s))dwl(s)
m∑
l=1

σl(s, y(s))dwl(s)

+
1

2
(
∂

∂x0

Φ(t, s, y(s))⊗
m∑
l=1

Υl(s, y(s))dwl(s)
m∑
l=1

σl(s, y(s))dwl(s)

+
1

2
(
∂

∂x0

Φ(t, s, y(s))⊗
m∑
l=1

σl(s, y(s))dwl(s)
m∑
l=1

Υl(s, y(s))dwl(s)

+
1

2
(
∂

∂x0

Φ(t, s, y(s))⊗
m∑
l=1

Υl(s, y(s))dwl(s)
m∑
l=1

Υl(s, y(s))dwl(s)

(2.4.8)
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By simplifying (2.4.8), we get

dsx(t, s, y(s)) =
[1

2

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, y(s))Υl(s, y(s))σlj(s, y(s))

)
n×1

−1

2

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, y(s))σl(s, y(s))Υl
j(s, y(s))

)
n×1

+
1

2

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, y(s))Υl(s, y(s))Υl
j(s, y(s))

)
n×1

+Φ(t, s, y(s))[c(s, y(s))− f(s, y(s))−
m∑
l=1

σlx(s, y(s))Υl(s, y(s))]
]
ds

+
m∑
l=1

Φ(t, s, y(s))Υl(s, y(s))dwl(s). (2.4.9)

Since the right hand side of (2.4.9) is continuous with respect to s, we integrate from

t0 to t, and obtain the variation of constant formula (2.4.7).

Corollary 2.4.4 Let the assumption of Lemma 2.3.1 be satisfied, except that c(t, y)

in (2.2.2) and Σ(t, y) in (2.2.3) cannot be decomposed. Let y(t, t0, x0) and x(t, t0, x0)

be solution processes of (2.2.2) and (2.2.3), respectively, through the same initial data

(t0, x0), for all t ≥ t0. Then

y(t, t0, x0) = x(t, t0, x0) +

∫ t

t0

[1

2

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, y(s))σl(s, y(s))σlj(s, y(s))

)
n×1

+
1

2

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, y(s))Σl(s, y(s))Σl
j(s, y(s))

)
n×1

−

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, y(s))σl(s, y(s))Σl
j(s, y(s))

)
n×1
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+Φ(t, s, y(s))[
m∑
l=1

σlx(s, y(s))(σl(s, y(s))− Σl(s, y(s))) + c(s, y(s))

−f(s, y(s))]
]
ds+

m∑
l=1

∫ t

t0

Φ(t, s, y(s))[Σl(s, y(s))− σl(s, y(s))]dwl(s).

(2.4.10)

Proof. From the application of Lemma 2.3.1, Lemma 2.3.4, Lemma 2.3.7 and the

Itô-Doob differential formula with respect to s for t0 ≤ s ≤ t, we have

dsx(t, s, y(s)) = ∂t0x(t, s, y(s)) + ∂x0x(t, s, y(s)) + ∂x0(∂t0x(t, s, y(s)))

+
1

2
(
∂

∂x0

Φ(t, s, y(s))⊗ dy)dy

=
1

2

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, y(s))σl(s, y(s))σlj(s, y(s))

)
n×1

ds

+Φ(t, s, y(s))[(
m∑
l=1

σlx(s, y(s))σl(s, y(s))− f(s, y(s)))ds

−
m∑
l=1

σl(s, y(s))dwl(s)]

+Φ(t, s, y(s))[c(s, y(s))ds+
m∑
l=1

Σl(s, y(s))dwl(s)]

−

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, y(s))σl(s, y(s))Σl
j(s, y(s))

)
n×1

ds

−Φ(t, s, y(s))
m∑
l=1

σlx(s, y(s))Σl(s, y(s))ds

+
1

2
(
∂

∂x0

Φ(t, s, y(s))⊗
m∑
l=1

Σl(s, y(s))dwl(s)
m∑
l=1

Σl(s, y(s))dwl(s)

(2.4.11)
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By simplifying (2.4.11), we get

dsx(t, s, y(s)) =
[1

2

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, y(s))σl(s, y(s))σlj(s, y(s))

)
n×1

+
1

2

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, y(s))Σl(s, y(s))Σl
j(s, y(s))

)
n×1

−

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, y(s))σl(s, y(s))Σl
j(s, y(s))

)
n×1

+Φ(t, s, y(s))[
m∑
l=1

σlx(s, y(s))(σl(s, y(s))− Σl(s, y(s))) + c(s, y(s))

−f(s, y(s))]
]
ds+

m∑
l=1

Φ(t, s, y(s))[Σl(s, y(s))− σl(s, y(s))]dwl(s).(2.4.12)

Since the right hand side of (2.4.12) is continuous with respect to s, we integrate from

t0 to t, and obtain the variation of constant formula (2.4.10).

Remark 2.4.5 In Corollary (2.4.4), if

1. σ(t, x) = 0 and c(t, x) = f(t, x), then the variation of constant formula reduces to

y(t, t0, x0) = x(t, t0, x0) +

∫ t

t0

1

2

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, y(s))Σl(s, y(s))Σl
j(s, y(s))

)
n×1

ds

+
m∑
l=1

∫ t

t0

Φ(t, s, y(s))Σl(s, y(s))dwl(s). (2.4.13)

2. f(t, x) = 0 and Σ(t, x) = σ(t, x), then the variation of constant formula reduces to

y(t, t0, x0) = x(t, t0, x0) +

∫ t

t0

Φ(t, s, y(s))c(s, y(s))d(s). (2.4.14)
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2.5 Examples

Example 2.5.1 Consider a scalar linear unperturbed and perturbed stochastic dif-

ferential equations:

dx = f(t)xdt+ σ(t)xdw(t), x(t0) = x0, (2.5.1)

and

dy = [f(t)y + p(t)]dt+ [σ(t)y + q(t)]dw(t), y(t0) = x0, (2.5.2)

where f , σ, p and q are any differentiable functions defined on J = [t0, t0 + a) into R,

where a > 0. Then

y(t, t0, x0) = x(t, t0, x0)+

∫ t

t0

Φ(t, s)[p(s)−σ(s)q(s)]d(s)+

∫ t

t0

Φ(t, s)q(s)dw(s). (2.5.3)

Solution: Let x(t) = x(t, t0, x0) and y(t) = y(t, t0, x0) be solution processes of (2.5.1)

and (2.5.2) through (t0, x0), respectively. Since x(t) = x(t, t0, x0) = Φ(t, t0)x0 [11],

the partial derivative of x(t, t0, x0) with respect to x0 will be ∂
∂x0
x(t, t0, x0) = Φ(t, t0).

Moreover, ∂2

∂x20
x(t, t0, x0) = 0. From Lemma 2.3.4, the partial differential of x(t, t0, x0)

with respect to t0 is given by

∂t0x(t, t0, x0) = Φ(t, t0)[σ2(t0)− f(t0)]x0dt0 − Φ(t, t0)σ(t0)x0dw(t0) (2.5.4)

At t = t0, we have

∂t0x(t0, t0, x0) = [σ2(t0)− f(t0)]x0dt0 − σ(t0)x0dw(t0) (2.5.5)
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Moreover, from Lemma 2.3.7, the corresponding Itô-Doob mixed partial differential

of solution process x(t0, t0, x0) of (2.5.1) is given by

∂t0x0x(t, t0, x0) = −Φ(t, t0)σ2(t0)x0dt0 (2.5.6)

Using the method of variational constants, Theorem 2.4.1, the solution of (2.5.2) is

given by (2.5.3).

Example 2.5.2 Consider a scalar linear unperturbed and nonlinear perturbed stochas-

tic differential equations:

dx = f(t)xdt+ σ(t)xdw(t), x(t0) = x0, (2.5.7)

and

dy = [f(t)y − p(t)1

2
y3]dt+ σ(t)ydw(t), y(t0) = x0, (2.5.8)

where f , σ and p are any differentiable functions defined on J into R. Then

y(t, t0, x0) = x(t, t0, x0) +

∫ t

t0

1

2
Φ(t, s)p(t)y3(s)ds. (2.5.9)

Solution: Let x(t) = x(t, t0, x0) and y(t) = y(t, t0, x0) be solution processes of (2.5.7)

and (2.5.8) through (t0, x0), respectively. The partial differential of x(t, t0, x0) with

respect to initial data is given in Example 2.5.1. The closed form solution of (2.5.8)

is

y(t, t0, x0) =
Φ(t, t0) | x0 |√

1 + x2
0

∫ t
t0
p(s)Φ2(t, s)ds

. (2.5.10)
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The partial differential of y(t, t0, x0) with respect to t0 is

∂t0y(t, t0, x0) = Φ(t, t0)[(f(t0) + σ2(t0))x0 −
1

2
p(t)x0

3]dt0 − Φ(t, t0)σ(t0)x0dw(t0).

(2.5.11)

At t = t0, we have

∂t0y(t0, t0, x0) = [(f(t0) + σ2(t0))x0 −
1

2
p(t)x0

3]dt0 − σ(t0)x0dw(t0) (2.5.12)

Moreover, the corresponding Itô-Doob mixed partial differential of solution process

y(t0, t0, x0) of (2.5.7) is given by

∂t0x0y(t0, t0, x0) = −Φ(t, t0)σ2(t0)x0dt0 (2.5.13)

Using the method of variational constants, Theorem (2.4.1), the solution of (2.5.8) is

given by (2.5.9).

Example 2.5.3 Consider a nonlinear unperturbed and perturbed stochastic differ-

ential equation:

dx = αx(n− x)dt+ βxdw(t), x(t0) = x0, (2.5.14)

and

dy = [αy(n− y) + g(t, y)]dt+ [βy + σ(t, y)]dw(t), y(t0) = x0, (2.5.15)

where α, β and n are any constant, g and σ are differentiable functions. Then

y(t, t0, x0) = x(t, t0, x0) +

∫ t

t0

[
1

2

∂

∂x0

Φ(t, s, y(s))σ2(s, y(s)) + Φ(t, s, y(s))[g(s, y(s))

−βσ(s, y(s))]]ds+

∫ t

t0

Φ(t, s)σ(s, y(s))dw(s). (2.5.16)
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Solution: Let x(t) = x(t, t0, x0) and y(t) = y(t, t0, x0) be solution processes of

(2.5.14) and (2.5.15) through (t0, x0), respectively. The partial derivative of solution

processes x(t, t0, x0) with respect to x0 is

∂

∂x0

x(t, t0, x0) =
Φ(t, t0)

(Φ(t, t0) + αx0

∫ t
t0

Φ(t, s)ds)2
(2.5.17)

and
∂2

∂x2
0

x(t, t0, x0) =
−2αΦ(t, t0)

∫ t
t0

Φ(t, s)ds

(Φ(t, t0) + αx0

∫ t
t0

Φ(t, s)ds)3
. (2.5.18)

Moreover, the partial differential of x(t, t0, x0) with respect to t0 is

∂t0x(t, t0, x0) =
[ −αβ2x2

0Φ(t, t0)
∫ t
t0

Φ(t, s)ds

(Φ(t, t0) + αx0

∫ t
t0

Φ(t, s)ds)3

+β2Φ(t, t0)x0 − Φ(t, t0)αx0(n− x0)dt0

]
− Φ(t, t0)βx0dw(t0).

(2.5.19)

The corresponding Itô-Doob mixed partial differential of solution process x(t, t0, x0)

of (2.5.14) is given by

∂t0x0x(t, t0, x0) =
[ 2αβ2x2

0Φ(t, t0)
∫ t
t0

Φ(t, s)ds

(Φ(t, t0) + αx0

∫ t
t0

Φ(t, s)ds)3
+ Φ(t, t0)β2x0

]
dt0. (2.5.20)

Using the method of variational constants method, Theorem (2.4.1), with f(t, x) =

αx(n− x) and σ(t, x) = βx, the solution of (2.5.15) is given by (2.5.16).

Example 2.5.4 Consider a scalar linear unperturbed and perturbed stochastic dif-

ferential equation as:

dx = A(t)xdt+
m∑
l=1

σl(t)xdwl(t), x(t0) = x0, (2.5.21)
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and

dy = [A(t)y + P (t)]dt+
m∑
l=1

[σl(t)y + Υl(t)]dwl(t), y(t0) = x0, (2.5.22)

where A and σl are any differentiable functions defined on J into Rn×n and P , Υl are

any differentiable functions defined on J into Rn.Then

y(t, t0, x0) = x(t, t0, x0)+

∫ t

t0

Φ(t, s)[P (s)−
m∑
l=1

σl(s)Υl(s)]ds+
m∑
l=1

∫ t

t0

Φ(t, s)Υl(s)dwl(s).

(2.5.23)

Solution: Let x(t) = x(t, t0, x0) and y(t) = y(t, t0, x0) be solution processes of

(2.5.21) and (2.5.22) through (t0, x0), respectively. The partial differential of x(t, t0, x0)

with respect to initial data is given in Example 2.5.1. Using the method of variational

constants, Theorem (2.4.1) with f(t, x) = A(t)x, σ(t, x) =
∑m

l=1 σ
l(t)x the solution of

(2.5.22) is given by (2.5.23)
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3 Method of Generalized Variation of Constants

Formula: Relative Stability

3.1 Introduction

A closed form representation of a dynamic process of a nonlinear nonstationary solu-

tion process is not always possible or we might not be interested in the closed form

solution [15]. In the absence of this, qualitative or quantitative properties are inves-

tigated for both the ordinary and stochastic dynamic systems [15, 16, 17, 19, 20]. A

well known nonlinear technique [2-30] is to measure a dynamic flow by means of a

suitable auxiliary measurement device, and then to use this measured dynamic flow

to determine the desired information about the original dynamic flow [15, 16, 17, 20].

Employing energy function method as a measurement device and the fundamental

properties of Itô-Doob type stochastic auxiliary system of differential equations [40],

we establish the relationship between the solution processes of stochastic perturbed,

auxiliary and nominal systems of differential equations. In addition, several estimates

are obtained with regard to the deviation of solution process of perturbed system with

respect to the solution process of nominal system of differential equations. Moreover,

stability and relative stability results are developed to illustrate the usefulness of the

results. Presented results generalize the existing results in a systematic and unified

way [2-4, 6-28, 31].

Let us consider the following Itô-Doob type stochastic perturbed and auxiliary

43



systems of differential equations

dx = f(t, x)dt+ σ(t, x)dw(t)

= f(t, x)dt+
∑m

l=1 σ
l(t, x)dwl(t), x(t0) = x0,

(3.1.1)

and

dz = α(t, z)dt+ β(t, z)dw(t)

= α(t, z)dt+
∑m

l=1 β
l(t, z)dwl(t), z(t0) = x0,

(3.1.2)

respectively, where x, z ∈ Rn; f , α, column vectors of σ and β ∈ C[J × Rn, Rn];

J = [t0, t0 +a), a > 0; α and β are twice continuously differentiable with respect to z;

w(t) = (w1(t), w2(t), ..., wm(t))T is an m-dimensional normalized Wiener process with

independent increments; x0 and w(t) are mutually independent for each t ≥ t0; let

z(t, t0, x0) be the solution process of (3.1.2) existing for t ≥ t0; furthermore assume

that its second derivative, ∂2

∂x0∂x0
z(t, t0, x0) is locally Lipschitzian in x0 for each t, t0.

3.2 Energy Function Method and Generalized Variation of Constants

Formula

In the following, by using energy function method as a measurement device and

the fundamental properties of solution of Itô-Doob type stochastic auxiliary system

of differential equations, we develop several basic results in terms of a measure of

solution process of stochastic auxiliary differential equations. The presented results

extend and generalize results [12, 13, 14, 15, 16] in a systematic and unified way.

Examples are given to illustrate the results.

Theorem 3.2.1 Assume that: α and β in (3.1.2) are twice continuously differentiable

with respect to z for fixed t ≥ t0, αzz and βzz are bounded with respect to z. Moreover,

a) z(t, t0, x0) is the solution process of the stochastic auxiliary system of differential

equations (3.1.2) existing for t ≥ t0;
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b) V ∈ C[R+ × Rn, RN ] and its partial derivatives Vt, Vx and Vxx exists and are

continuous on R+ ×Rn;

c) x(t) are solution processes of (3.1.1).

Then,

V (t, x(t)) = V (t0, z(t)) +

∫ t

t0

LV (s, z(t, s, x(s)))ds

+
m∑
l=1

∫ t

t0

Vx(s, z(t, s, x(s)))bl(t, s, x(s))dwl(s), (3.2.1)

where

LV (s, z(t, s, x(s))) = Vs(s, z(t, s, x(s)))

+ Vx(s, z(t, s, x(s)))
[1

2

( n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, x(s))[βl(s, x(s))βlj(s, x(s))

− 2βl(s, x(s))σlj(s, x(s)) + σl(s, x(s))σlj(s, x(s))]
)
n×1

+ Φ(t, s, x(s))[
m∑
l=1

βlx(s, x(s))[βl(s, x(s))− σl(s, x(s))]

+ f(s, x(s))− α(s, x(s))]
]

+
1

2

(
tr
( m∑
l=1

∂2

∂x∂x
Vi(s, z(t, s, x(s)))bl(t, s, x(s))blT (t, s, x(s))

))
N×1

,

(3.2.2)

bl(t, s, x(s)) = Φ(t, s, x(s))[σl(s, x(s))− βl(s, x(s))], and Φ(t, t0, x0) = ∂
∂x0
z(t, t0, x0) is

the fundamental matrix solution process of the variational auxiliary system [31].

Proof. Let x(t) and z(t) be solution processes of (3.1.1) and (3.1.2) through (t0, x0),

respectively. Under the assumptions on the rate coefficients of auxiliary system of

stochastic differential equations (3.1.2), we recall [40] the fundamental properties of

solution process z(t, t0, x0). For t0 ≤ s ≤ t, we apply Itô-Doob differential formula to
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z(t, s, x(s)) and V (s, z(t, s, x(s))) with respect to s for fixed t and t0, and obtain

dsz(t, s, x(s)) = ∂t0z(t, s, x(s)) + ∂x0z(t, s, x(s)) + ∂x0(∂t0z(t, s, x(s)))

+
1

2
[

∂2

∂x0∂x0

z(t, s, x(s))⊗ dx(s)]dx(s)

=
1

2

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, x(s))βl(s, x(s))βlj(s, x(s))

)
n×1

ds

+ Φ(t, s, x(s))
[ m∑
l=1

βlx(s, x(s))βl(s, x(s))− α(s, x(s))
]
ds

−
m∑
l=1

Φ(t, s, x(s))βl(s, x(s))dwl(s)

+ Φ(t, s, x(s))dx(s)

−

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, x(s))βl(s, x(s))σlj(s, x(s))

)
n×1

ds

− Φ(t, s, x(s))
m∑
l=1

βlx(s, x(s))σl(s, x(s))ds

+
1

2

[ ∂
∂x0

Φ(t, s, x(s))⊗
m∑
l=1

σl(s, x(s))dwl(s)
] m∑
l=1

σl(s, x(s))dwl(s).

(3.2.3)

By simplifying (3.2.3), we get

dsz(t, s, x(s)) =
[1

2

( n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, x(s))[βl(s, x(s))βlj(s, x(s))

−2βl(s, x(s))σlj(s, x(s)) + σl(s, x(s))σlj(s, x(s))]
)
n×1

+Φ(t, s, x(s))[
m∑
l=1

βlx(s, x(s))[βl(s, x(s))− σl(s, x(s))]

+f(s, x(s))− α(s, x(s))]
]
ds+

m∑
l=1

bl(t, s, x(s))dwl(s).

(3.2.4)
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Similarly, using (3.2.4), we have

dsV (s, z(t, s, x(s)))

= ∂sV (s, z(t, s, x(s))) + ∂xV (s, z(t, s, x(s)))

+
1

2
(Vxx(s, z(t, s, x(s)))⊗ dsz(t, s, x(s)))dsz(t, s, x(s))

= Vs(s, z(t, s, x(s)))ds

+Vx(s, z(t, s, x(s)))
[1

2

( n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, x(s))[βl(s, x(s))βlj(s, x(s))

−2βl(s, x(s))σlj(s, x(s)) + σl(s, x(s))σlj(s, x(s))]
)
n×1

+Φ(t, s, x(s))[
m∑
l=1

βlx(s, x(s))[βl(s, x(s))− σl(s, x(s))] + f(s, x(s))− α(s, x(s))]ds

+
m∑
l=1

bl(t, s, x(s))dwl(s)
]

+
1

2

(
Vxx(s, z(t, s, x(s)))⊗

m∑
l=1

bl(t, s, x(s))dwl(s)
) m∑
l=1

bl(t, s, x(s))dwl(s).

(3.2.5)

Simplifying (3.2.5) yields,

dsV (s, z(t, s, x(s)))

=
[
Vs(s, z(t, s, x(s)))

+Vx(s, z(t, s, x(s)))
[1

2

( n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, x(s))[βl(s, x(s))βlj(s, x(s))

−2βl(s, x(s))σlj(s, x(s)) + σl(s, x(s))σlj(s, x(s))]
)
n×1

+Φ(t, s, x(s))[
m∑
l=1

βlx(s, x(s))[βl(s, x(s))− σl(s, x(s))] + f(s, x(s))− α(s, x(s))]
]
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+
1

2

(
tr(

m∑
l=1

∂2

∂x∂x
Vi(s, z(t, s, x(s)))bl(t, s, x(s))blT (t, s, x(s)))

)
N×1

]
ds

+
m∑
l=1

Vx(s, z(t, s, x(s)))bl(t, s, x(s))dwl(s)

= LV (s, z(t, s, x(s)))ds+
m∑
l=1

Vx(s, z(t, s, x(s)))bl(t, s, x(s))dwl(s).

(3.2.6)

Now, using the uniqueness of solution process of (3.1.2) and integrating both sides of

(3.2.6) with respect to s from t0 to t, we get

V (t, z(t, t, x(t)))− V (t0, z(t, t0, x(t0)))

=

∫ t

t0

LV (s, z(t, s, x(s)))ds+
m∑
l=1

∫ t

t0

Vx(s, z(t, s, x(s)))bl(t, s, x(s))dwl(s),

where LV (s, z(t, s, x(s))) is defined in (3.2.2). Hence the desired result (3.2.1) follows.

This completes the proof of the theorem.

Example 3.2.2 Consider a stochastic perturbed and auxiliary system of differential

equations

dx = [A(t)x+ p(t, x)]dt+ [B(t)x+ q(t, x)]dw(t), x(t0) = x0, (3.2.7)

dz = A(t)zdt+B(t)zdw(t), z(t0) = x0, (3.2.8)

respectively, where x, z ∈ Rn; A and B are any n × n continuous matrix functions

defined on J ; J = [t0, t0 + a), a > 0; p and q are any n-dimensional smooth functions

defined on J×Rn into Rn that insure the existence of the solution processes of (3.2.7)

and (3.2.8); for each t ∈ J , w(t) is a scalar normalized Wiener process independent

of x0. If V (t, x) = 1
2
‖x‖2, then Vt(t, x) = 0, ∂

∂x
V (t, x) = xT ; ∂2

∂x∂x
V (t, x) = I,

n × n identity matrix; ∂
∂x0
z(t, s, x(s)) = Φ(t, s); and ∂2

∂x20
z(t, s, x(s)) = 0 [15]. The
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generalized variation of constants formula in Theorem 3.2.1, reduces to a well-known

result [11]

‖x(t)‖2 = ‖z(t)‖2

+

∫ t

t0

[2xT (s)ΦT (t, s)Φ(t, s)[p(s, x(s))−B(s)q(s, x(s))] + ‖c(s, x(s))‖2]ds

+2

∫ t

t0

xT (s)ΦT (t, s)Φ(t, s)q(s, x(s))dw(s),

where c(s, x(s)) = Φ(t, s)q(s, x(s)).

In the following, we present a few special cases of Theorem 3.2.1. These special

cases exhibit the significance of Theorem 3.2.1.

Corollary 3.2.3 Let the assumptions of Theorem 3.2.1 be satisfied.

a) If β ≡ 0 in (3.1.2) [19], then Theorem 3.2.1 reduces to

V (t, x(t)) = V (t0, z(t)) +

∫ t

t0

LV (s, z(t, s, x(s)))ds

+
m∑
l=1

∫ t

t0

Vx(s, z(t, s, x(s)))bl(t, s, x(s))dwl(s), (3.2.9)

where

LV (s, z(t, s, x(s)))

= Vs(s, z(t, s, x(s)))

+ Vx(s, z(t, s, x(s)))
[1

2

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, x(s))σl(s, x(s))σlj(s, x(s))

)
n×1

+ Φ(t, s, x(s))[f(s, x(s))− α(s, x(s))]
]

+
1

2

(
tr
( m∑
l=1

∂2

∂x∂x
Vi(s, z(t, s, x(s)))bl(t, s, x(s))blT (t, s, x(s))

))
N×1

,
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and

bl(t, s, x(s)) = Φ(t, s, x(s))σl(s, x(s)).

b) Furthermore, if β ≡ 0, and α ≡ f in (3.1.1) and (3.1.2), then (3.2.9) reduces to

a well known result [16, 19]

V (t, x(t)) = V (t0, z(t)) +

∫ t

t0

LV (s, z(t, s, x(s)))ds

+
m∑
l=1

∫ t

t0

Vx(s, z(t, s, x(s)))bl(t, s, x(s))dwl(s), (3.2.10)

where

LV (s, z(t, s, x(s)))

= Vs(s, z(t, s, x(s)))

+
1

2
Vx(s, z(t, s, x(s)))

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, x(s))σl(s, x(s))σlj(s, x(s))

)
n×1

+
1

2

(
tr
( m∑
l=1

∂2

∂x∂x
Vi(s, z(t, s, x(s)))bl(t, s, x(s))blT (t, s, x(s))

))
N×1

,

and

bl(t, s, x(s)) = Φ(t, s, x(s))σl(s, x(s)).

c) Moreover, if β ≡ 0, and α ≡ 0, then (3.2.9) reduces to a well known result [19, 20]

V (t, x(t)) = V (t0, x0) +

∫ t

t0

LV (s, x(s))ds

+
m∑
l=1

∫ t

t0

Vx(s, x(s))σl(s, x(s))dwl(s), (3.2.11)
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where

LV (s, x(s)) = Vs(s, x(s)) + Vx(s, x(s))f(s, x(s))

+
1

2

(
tr
( m∑
l=1

∂2

∂x∂x
Vi(s, x(s))σl(t, s, x(s))σlT (t, s, x(s))

))
N×1

.

d) If V (t, x) = x, x ∈ Rn, in (b) and (c), respectively, then equation (3.2.10) and

(3.2.11) reduces to well known Alekseev type nonlinear variation of constants

formula for system of stochastic differential equations(3.1.1) [16, 19, 20]

x(t, t0, x0) = z(t, t0, x0)

+
1

2

∫ t

t0

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, x(s))σl(s, x(s))σlj(s, x(s))

)
n×1

ds

+
m∑
l=1

∫ t

t0

Φ(t, s, x(s))σl(s, x(s))dwl(s)

and

x(t, t0, x0) = x0 +

∫ t

t0

f(s, x(s))ds+
m∑
l=1

∫ t

t0

σl(s, x(s))dwl(s),

respectively.

The following presented examples show the scope of Theorem 3.2.1. In fact, The-

orem 3.2.1 extends and generalizes the results [14, 19] in a systematic and unified

way.

Example 3.2.4 Let us choose V (t, x) = 1
2
‖x‖2 in Corollary 3.2.3 (c) and (d). We

note that Vt(t, x) ≡ 0, ∂
∂x
V (t, x) = xT and ∂

∂x∂x
V (t, x) = I . In this case, (3.2.10) and
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(3.2.11) reduces to

‖x(t)‖2 = ‖z(t)‖2

+

∫ t

t0

[
zT (t, s, x(s))

(
m∑
l=1

n∑
j=1

∂

∂x0

Φij(t, s, x(s))σl(s, x(s))σlj(s, x(s))

)
n×1

+
m∑
l=1

tr(Φ(t, s, x(s))σl(s, x(s))σlT (s, x(s))ΦT (t, s, x(s)))
]
ds

+2

∫ t

t0

zT (t, s, x(s))Φ(t, s, x(s))σ(s, x(s))dw(s)

and

‖x(t)‖2 = ‖x0‖2 +

∫ t

t0

[
2xT (s)f(s, x(s)) +

m∑
l=1

σl(s, x(s))σlT (s, x(s))
]
ds

+

∫ t

t0

2xT (s)σ(s, x(s))dw(s),

respectively.

Example 3.2.5 Consider the following stochastic scalar differential equation

dx = −1

2
x3dt+ σ(t, x)dw(t), x(t0) = x0,

where σ ∈ C[J × R,R], w(t) is defined in Example 3.2.2, and the corresponding

auxiliary system

dz = −1

2
z3dt z(t0) = x0.

Here, we assume (without loss in generality) that x0 > 0, then z(t, t0, x0) = x0√
1+(t−t0)x20

,

Φ(t, t0, x0) = 1
(1+(t−t0)x20)3/2

and ∂
∂x0

Φ(t, t0, x0) = −3(t−t0)x0
(1+(t−t0)x20)5/2

. Let V (t, x) = x, then

Vt(t, x) = 0, ∂
∂x
V (t, x) = 1 and ∂2

∂x2
V (t, x) = 0. Applying Corollary 3.2.3 (b), we have
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x(t) = z(t)− 3

2

∫ t

t0

(t− s)x(s)σ2(s, x(s))

(1 + (t− s)x2(s))5/2
ds

+

∫ t

t0

σ(s, x(s))

(1 + (t− s)x2(s))3/2
dw(s).

Example 3.2.6 Consider a scalar stochastic differential equation

dx =
x

1 + t
dt+ σ(t, x)dw(t), x(t0) = x0,

where σ and w(t) are as defined in Example 3.2.5, and an auxiliary system

dz =
z

1 + t
dt z(t0) = x0.

Here z(t, t0, x0) = 1+t
1+t0

x0, Φ(t, t0) = 1+t
1+t0

and ∂
∂x0

Φ(t, t0) = 0. Let V (t, x) = x, then

Vt(t, x) = 0, ∂
∂x
V (t, x) = 1 and ∂2

∂x2
V (t, x) = 0. Applying Corollary 3.2.3 (b), we have

x(t) = z(t) +

∫ t

t0

1 + t

1 + s
σ(s, x(s))dw(s)

=
1 + t

1 + t0
x0 +

∫ t

t0

1 + t

1 + s
σ(s, x(s))dw(s).

In the following, we present another special cases of Theorem 3.2.1. These spe-

cial cases shows the importance of Theorem 3.2.1. Moreover, it extends the results

presented in [15] in a systematic way.

Corollary 3.2.7 Under the assumption of Theorem 3.2.1,
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a) If α = 0 in (3.1.2), then

V (t, x(t)) = V (t0, z(t)) +

∫ t

t0

LV (s, z(t, s, x(s)))ds

+
m∑
l=1

∫ t

t0

Vx(s, z(t, s, x(s)))bl(t, s, x(s))dwl(s),

where

LV (s, z(t, s, x(s)))

= Vs(s, z(t, s, x(s)))

+Vx(s, z(t, s, x(s)))
[1

2

( n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, x(s))[βl(s, x(s))βlj(s, x(s))

−2βl(s, x(s))σlj(s, x(s)) + σl(s, x(s))σlj(s, x(s))]
)
n×1

+Φ(t, s, x(s))[
m∑
l=1

βlx(s, x(s))[βl(s, x(s))− σl(s, x(s))] + f(s, x(s))]
]

+
1

2

(
tr(

m∑
l=1

∂2

∂x∂x
Vi(s, z(t, s, x(s)))bl(t, s, x(s))blT (t, s, x(s)))

)
N×1

,

and

bl(t, s, x(s)) = Φ(t, s, x(s))[σl(s, x(s))− βl(s, x(s))].

b) If α = 0 and β = σ in (3.1.2), then Corollary 3.2.7 (a) reduces to

V (t, x(t)) = V (t0, z(t))

+

∫ t

t0

[Vs(s, z(t, s, x(s))) + Vx(s, z(t, s, x(s)))Φ(t, s, x(s))f(s, x(s))]ds.

(3.2.12)

Moreover, if V (t, x) = x, then (3.2.12) reduces to
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x(t, t0, x0) = z(t, t0, x0) +

∫ t

t0

Φ(t, s, x(s))f(s, x(s))ds.

Remark 3.2.8 We note that the integral equations in Corollary 3.2.7 (b) and (c) are

with stochastic process varying coefficient functions.

3.3 Robustness of Solution Process

Let us consider a nominal system of Itô-Doob type stochastic differential equations

dy = G(t, y)dt+H(t, y)dw(t)

= G(t, y)dt+
∑m

l=1H
l(t, y)dwl(t), y(t0) = y0,

(3.3.1)

with respect to (3.1.1), where G and column vectors of H ∈ C[J × Rn, Rn], J =

[t0, t0 + a) for a > 0; w(t) = (w1(t), w2(t), ..., wm(t))T is an m-dimensional normalized

Wiener process with independent increments; y0 and w(t) are mutually independent

for each t ≥ t0. Let x(t, t0, x0) and y(t, t0, y0) be the solution process of (3.1.1) and

(3.3.1) existing for t ≥ t0, respectively.

The following theorem provides a deviation of the solution process of perturbed

system of stochastic differential equations(3.1.1) with respect to the solution process of

nominal system of stochastic differential equations (3.3.1) through (t0, x0) and (t0, y0),

respectively.

Theorem 3.3.1 Assume that all the hypothesis of Theorem 3.2.1 hold. Furthermore,
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let y(t) = y(t, t0, y0) be a solution process of (3.3.1) through (t0, y0). Then,

V (t, x(t)− y(t)) = V (t0, z(t, t0, x0)− z(t, t0, y0)) +

∫ t

t0

LV (s,∆z)ds

+
m∑
l=1

∫ t

t0

Vx(s,∆z)bl(t, s, x(s), y(s))dwl(s),

(3.3.2)

where

LV (s,∆z) = Vs(s,∆z)

+ Vx(s,∆z)
[1

2

( n∑
j=1

m∑
l=1

[
∂

∂x0

Φij(t, s, x(s))βl(s, x(s))βlj(s, x(s))

− ∂

∂x0

Φij(t, s, y(s))βl(s, y(s))βlj(s, y(s))]
)
n×1

+
( n∑
j=1

m∑
l=1

[
∂

∂x0

Φij(t, s, y(s))βl(s, y(s))H l
j(s, y(s))

− ∂

∂x0

Φij(t, s, x(s))βl(s, x(s))σlj(s, x(s))]
)
n×1

+
1

2

( n∑
j=1

m∑
l=1

[
∂

∂x0

Φij(t, s, x(s))σl(s, x(s))σlj(s, x(s))

− ∂

∂x0

Φij(t, s, y(s))H l(s, y(s))H l
j(s, y(s))]

)
n×1

+ Φ(t, s, x(s))[
m∑
l=1

βlx(s, x(s))[βl(s, x(s))− σl(s, x(s))] + f(s, x(s))− α(s, x(s))]

− Φ(t, s, y(s))[
m∑
l=1

βlx(s, y(s))[βl(s, y(s))−H l(s, y(s))] +G(s, y(s))− α(s, y(s))]
]

+
1

2

(
tr(

m∑
l=1

∂2

∂x∂x
Vi(s,∆z)bl(t, s, x(s), y(s))blT (t, s, x(s), y(s)))

)
N×1

,

bl(t, s, x(s), y(s)) = Φ(t, s, x(s))[σl(s, x(s)) − βl(s, x(s))] − Φ(t, s, y(s))[H l(s, y(s)) −

βl(s, y(s))] and ∆z = z(t, s, x(s))− z(t, s, y(s)).
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Proof. By following the proof of Theorem 3.2.1 with ∆z = z(t, s, x(s))− z(t, s, y(s)),

we have

dsV (s,∆z)

= Vs(s,∆z)ds+ Vx(s,∆z)ds∆z +
1

2
[Vxx(s,∆z)⊗ ds∆z]ds∆z

= Vs(s,∆z)ds+ Vx(s,∆z)
[1

2

( n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, x(s))[βl(s, x(s))βlj(s, x(s))

−2βl(s, x(s))σlj(s, x(s)) + σl(s, x(s))σlj(s, x(s))]
)
n×1

−1

2

( n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, y(s))[βl(s, y(s))βlj(s, y(s))

−2βl(s, y(s))H l
j(s, y(s)) +H l(s, y(s))H l

j(s, y(s))]
)
n×1

+Φ(t, s, x(s))[
m∑
l=1

βlx(s, x(s))[βl(s, x(s))− σl(s, x(s))] + f(s, x(s))− α(s, x(s))]

−Φ(t, s, y(s))[
m∑
l=1

βlx(s, y(s))[βl(s, y(s))−H l(s, y(s))] +G(s, y(s))− α(s, y(s))]
]
ds

+
m∑
l=1

Vx(s,∆z)bl(t, s, x(s), y(s))dwl(s)

+
1

2
[Vxx(s,∆z)⊗

m∑
l=1

bl(t, s, x(s), y(s))dwl(s)]
m∑
l=1

bl(t, s, x(s), y(s))dwl(s)

Hence,

dsV (s,∆z) = LV (s,∆z)ds+
m∑
l=1

Vx(s,∆z)bl(t, s, x(s), y(s))dwl(s). (3.3.3)

By integrating both sides of (3.3.3) with respect to s from t0 to t, we establish the

result (3.3.2).

Example 3.3.2 We consider a stochastic perturbed, auxiliary and nominal system
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of differential equations

dx = [(A(t) + ∆A(t))x+ a(t) + ∆a(t) + p(t, x)]dt

+[(B(t) + ∆B(t))x+ b(t) + ∆b(t) + q(t, x)]dw(t), x(t0) = x0,

(3.3.4)

dz = [A(t)z + a(t)]dt+ [B(t)z + b(t)]dw(t), z(t0) = x0, (3.3.5)

and

dy = [A(t)y + a(t) + p(t, y)]dt+ [B(t)y + b(t) + q(t, y)]dw(t), y(t0) = y0,

(3.3.6)

respectively, where x, y, z ∈ Rn; A,B, p and q are defined in Example 3.2.2; a, b,∆a

and ∆b are any n-dimensional smooth functions defined on J into Rn; ∆A and ∆B

are any n × n smooth matrix functions defined on J ; J, w(t), x0, and y0 are defined

in Example 3.2.2. We note that Φ(t, s, x(s)) = Φ(t, s, y(s)) = Φ(t, s). We apply

Theorem 3.3.1 to (3.3.4) in the context of (3.3.5) and (3.3.6) with N = 1 ( scalar

function), we have

V (t, x(t)− y(t)) = V (t0, z(t, t0, x0)− z(t, t0, y0)) +

∫ t

t0

LV (s,∆z)ds

+

∫ t

t0

Vx(s,∆z)Φ(t, s)[∆B(s)x(s)

+q(s, x(s))− q(s, y(s)) + ∆b(s)]dw(s),

(3.3.7)
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where

LV (s,∆z)

= Vs(s,∆z) + Vx(s,∆z)Φ(t, s)[(∆A(s)−B(s)∆B(s))x(s) + p(s, x(s))− p(s, y(s))

−B(s)[q(s, x(s))− q(s, y(s))] + ∆a(s)−B(s)∆b(s)]

+
1

2
(tr(

∂2

∂x2
V (s,∆z)c(t, s, x(s), y(s))cT (t, s, x(s), y(s)))),

c(t, s, x(s), y(s)) = Φ(t, s)[∆B(s)x(s) + q(s, x(s)) − q(s, y(s)) + ∆b(s)] and ∆z =

z(t, s, x(s))− z(t, s, y(s)).

Moreover, in the absence of ∆a and ∆b, (3.3.7) reduces to

V (t, x(t)− y(t)) = V (t0, z(t, t0, x0)− z(t, t0, y0)) +

∫ t

t0

LV (s,∆z)ds

+

∫ t

t0

Vx(s,∆z)Φ(t, s)[∆B(s)x(s) + q(s, x(s))− q(s, y(s))]dw(s),

(3.3.8)

where

LV (s,∆z)

= Vs(s,∆z) + Vx(s,∆z)Φ(t, s)[(∆A(s)−B(s)∆B(s))x(s) + p(s, x(s))− p(s, y(s))

+B(s)[q(s, y(s))− q(s, x(s))]]

+
1

2
(tr(

∂2

∂x2
V (s,∆z)c(t, s, x(s), y(s))cT (t, s, x(s), y(s)))),

c(t, s, x(s), y(s)) = Φ(t, s)[∆B(s)x(s)+q(s, x(s))−q(s, y(s))] and ∆z = z(t, s, x(s))−

z(t, s, y(s)).
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Example 3.3.3 For V (t, x) = 1
2
‖x‖2 and imitating the argument used in Example

3.2.2, (3.3.7) reduces to

‖x(t)− y(t)‖2 = ‖z(t, t0, x0)− z(t, t0, y0)‖2 + 2

∫ t

t0

LV (s,∆z)ds

+2

∫ t

t0

(x(s)− y(s))TΦT (t, s)Φ(t, s)[∆B(s)x(s)

+q(s, x(s))− q(s, y(s)) + ∆b(s)]dw(s),

where

LV (s,∆z)

= (x(s)− y(s))TΦT (t, s)Φ(t, s)[(∆A(s)−B(s)∆B(s))x(s) + p(s, x(s))− p(s, y(s))

−B(s)[q(s, x(s))− q(s, y(s))] + ∆a(s)−B(s)∆b(s)]

+
1

2
c(t, s, x(s), y(s))cT (t, s, x(s), y(s)),

c(t, s, x(s), y(s)) = Φ(t, s)[∆B(s)x(s) + q(s, x(s)) − q(s, y(s)) + ∆b(s)] and ∆z =

z(t, s, x(s))− z(t, s, y(s)).

Moreover, for ∆a ≡ 0 ≡ ∆b, (3.3.8) reduces to

‖x(t)− y(t)‖2 = ‖z(t, t0, x0)− z(t, t0, y0)‖2 + 2

∫ t

t0

LV (s,∆z)ds

+2

∫ t

t0

(x(s)− y(s))TΦT (t, s)Φ(t, s)[∆B(s)x(s)

+q(s, x(s))− q(s, y(s))]dw(s),
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where

LV (s,∆z)

= (x(s)− y(s))TΦT (t, s)Φ(t, s)[(∆A(s)−B(s)∆B(s))x(s) + p(s, x(s))− p(s, y(s))

−B(s)[q(s, x(s))− q(s, y(s))]] +
1

2
c(t, s, x(s), y(s))cT (t, s, x(s), y(s)),

and c is defined in (3.3.8).

The following corollary provides a deviation of the solution process of the perturbed

system(3.1.1) with respect to the solution process of the nominal system (3.3.1).

Corollary 3.3.4 Under the hypotheses of Theorem 3.3.1 with β ≡ 0 in (3.1.2), H ≡ 0

in (3.3.1) and G ≡ f , then Theorem 3.3.1 reduces to

V (t, x(t)− y(t)) = V (t0, z(t, t0, x0)− z(t, t0, y0)) +

∫ t

t0

LV (s,∆z)ds

+
m∑
l=1

∫ t

t0

Vx(s,∆z)Φ(t, s, x(s))σl(s, x(s))dwl(s), (3.3.9)

where

LV (s,∆z)

= Vs(s,∆z) + Vx(s,∆z)
[1

2

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, x(s))σl(s, x(s))σlj(s, x(s))

)
n×1

+Φ(t, s, x(s))[f(s, x(s))− α(s, x(s))]− Φ(t, s, y(s))[f(s, y(s))− α(s, y(s))]
]

+
1

2

(
tr
( m∑
l=1

∂2

∂x∂x
Vi(s,∆z)blT (t, s, x(s))bl(t, s, x(s))

))
N×1

,

bl(t, s, x(s)) = Φ(t, s, x(s))σl(s, x(s)), and ∆z = z(t, s, x(s))− z(t, s, y(s)).

Example 3.3.5 Under the assumptions of Corollary 3.3.4 and V (t, x) = x, (3.3.9)
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becomes

x(t)− y(t)

= z(t, t0, x0)− z(t, t0, y0) +

∫ t

t0

[
1

2

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, x(s))σl(s, x(s))σlj(s, x(s))

)
n×1

+Φ(t, s, x(s))[f(s, x(s))− α(s, x(s))]− Φ(t, s, y(s))[f(s, y(s))− α(s, y(s))]]ds

+
m∑
l=1

∫ t

t0

Φ(t, s, x(s))σl(s, x(s))dwl(s).

The following result provides an expression for the difference between the solution

processes of (3.1.1) with solution processes of (3.3.1).

Corollary 3.3.6 Suppose all the hypotheses of Theorem 3.3.1 hold. Assume that

α = G and H = σ = β = 0, then

V (t, x(t)− y(t))− V (t0, z(t, t0, x0)− z(t, t0, y0))

=

∫ t

t0

Vs(s, z(t, s, x(s))− z(t, s, y(s)))

+Vx(s, z(t, s, x(s))− z(t, s, y(s)))Φ(t, s, x(s))[f(s, x(s))− α(s, x(s))]ds.

(3.3.10)

Example 3.3.7 For V (t, x) = ‖x‖2, under the conditions of Corollary 3.3.6, (3.3.10)

reduces to

‖x(t)− y(t)‖2 = ‖z(t, t0, x0)− z(t, t0, y0)‖2

+2

∫ t

t0

(z(t, s, x(s))− z(t, s, y(s)))TΦ(t, s, x(s))[f(s, x(s))− α(s, x(s))]ds.

The following theorem provides another version for a deviation of a solution process

of the perturbed system(3.1.1) with respect to a solution process of nominal system

(3.3.1).

Theorem 3.3.8 Assume that all the hypothesis of Theorem 3.3.1 hold. Furthermore,
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x(t) = x(t, t0, x0) and y(t) = y(t, t0, y0) are the solution process of (3.1.1) and (3.3.1)

through (t0, x0) and (t0, y0), respectively. Then,

V (t, n(t)) = V (t0, z(t, t0, n0)) +

∫ t

t0

LV (s, z(t, s, n(s)))ds

+
m∑
l=1

∫ t

t0

Vx(s, z(t, s, n(s)))bl(t, s, x(s), y(s))dwl(s), (3.3.11)

where

LV (s, z(t, s, n(s)))

= Vs(s, z(t, s, n(s)))

+Vx(s, z(t, s, n(s)))
[1

2

( n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, n(s))[βl(s, n(s))βlj(s, n(s))

−2βl(s, n(s))(σlj(s, x(s))−H l
j(s, y(s)))

+(σl(s, x(s))−H l(s, y(s)))(σlj(s, x(s))−H l
j(s, y(s)))

)
n×1

+Φ(t, s, n(s))[
m∑
l=1

βlx(s, n(s))[βl(s, n(s))− σl(s, x(s)) +H l(s, y(s))]

+f(s, x(s))−G(s, y(s))− α(s, n(s))]
]

+
1

2

(
tr(

m∑
l=1

∂2

∂x∂x
Vi(s, n(s))bl(t, s, x(s), y(s))blT (t, s, x(s), y(s)))

)
N×1

,

bl(t, s, x(s), y(s)) = Φ(t, s, n(s))[σl(s, x(s)) − H l(s, y(s)) − βl(s, n(s))], and n(s) =

x(s)− y(s).
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Proof. By following the proof of Theorem 3.2.1, we have

dsV (s, z(t, s, n(s)))

= Vs(s, z(t, s, n(s)))ds+ Vx(s, z(t, s, n(s)))dsz(t, s, n(s))

+
1

2
[Vxx(s, z(t, s, n(s)))⊗ ds(z(t, s, n(s)))]ds(z(t, s, n(s)))

= Vs(s, z(t, s, n(s)))ds

+Vx(s, z(t, s, n(s)))
[1

2

( n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, n(s))[βl(s, n(s))βlj(s, n(s))

−2βl(s, n(s))(σlj(s, x(s))−H l
j(s, y(s)))

+(σl(s, x(s))−H l(s, y(s)))(σlj(s, x(s))−H l
j(s, y(s)))

)
n×1

+Φ(t, s, n(s))[
m∑
l=1

βlx(s, n(s))[βl(s, n(s))− σl(s, x(s)) +H l(s, y(s))]

+f(s, x(s))−G(s, y(s))− α(s, n(s))]

]
ds

+
m∑
l=1

Vx(s, z(t, s, n(s)))bl(t, s, x(s), y(s))dwl(s)

+
1

2
Vxx(s, z(t, s, n(s)))⊗

m∑
l=1

bl(t, s, x(s), y(s))dwl(s)
m∑
l=1

bl(t, s, x(s), y(s))dwl(s)

= LV (s, z(t, s, n(s)))ds+
m∑
l=1

Vx(s, z(t, s, n(s)))bl(t, s, x(s), y(s))dwl(s).

(3.3.12)

Integrating both sides of (3.3.12) with respect to s from t0 to t, we have(3.3.11).

The following corollary provides a deviation of the solution process of the perturbed

system(3.1.1) with respect to the solution process of the nominal system(3.3.1).

Corollary 3.3.9 Let the hypotheses of Theorem 3.3.8 be satisfied. If β ≡ 0 in (3.1.2),
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H ≡ 0 in (3.3.1) and G ≡ α, then

V (t, x(t)− y(t))− V (t0, z(t, t0, x0 − y0))

=

∫ t

t0

LV (s, z(t, s, x(s)− y(s)))ds

+
m∑
l=1

∫ t

t0

Vx(s, z(t, s, x(s)− y(s)))bl(t, s, x(s), y(s))dwl(s),

(3.3.13)

where

LV (s, z(t, s, x(s)− y(s)))

= Vs(s, z(t, s, x(s)− y(s))) + Vx(s, z(t, s, x(s)− y(s)))[1

2

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, x(s)− y(s))σl(s, x(s))σlj(s, x(s))

)
n×1

+Φ(t, s, x(s)− y(s))[f(s, x(s))− α(s, y(s))− α(s, x(s)− y(s))]
]

+
1

2

(
tr(

m∑
l=1

∂2

∂x∂x
Vi(s,∆z)bl(t, s, x(s), y(s))blT (t, s, x(s), y(s)))

)
N×1

and bl(t, s, x(s), y(s)) = Φ(t, s, x(s)− y(s))σl(s, x(s)).

Example 3.3.10 For V (t, x) = ‖x‖2, equation (3.3.13) in Corollary 3.3.9 becomes

‖x(t)− y(t)‖2 − ‖z(t, t0, x0 − y0)‖2

=

∫ t

t0

LV (s, z(t, s, x(s)− y(s)))ds

+

∫ t

t0

2zT (t, s, x(s)− y(s))b(t, s, x(s), y(s))dw(s),
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where

LV (s, z(t, s, x(s)− y(s)))

= 2zT (t, s, x(s)− y(s))
[1

2

(
n∑
j=1

∂

∂x0

Φij(t, s, x(s)− y(s))σ(s, x(s))σj(s, x(s))

)
n×1

+Φ(t, s, x(s)− y(s))[f(s, x(s))− α(s, y(s))− α(s, x(s)− y(s))]
]

+
1

2
b(t, s, x(s), y(s))bT (t, s, x(s), y(s))

and b(t, s, x(s), y(s)) = Φ(t, s, x(s)− y(s))σ(s, x(s)).

Example 3.3.11 We apply Theorem 3.3.8 to Example 3.3.2, and we have

V (t, n(t)) = V (t0, z(t, t0, n0)) +

∫ t

t0

LV (s, z(t, s, n(s)))ds

+

∫ t

t0

Vx(s, z(t, s, n(s)))Φ(t, s)[∆B(s)x(s)

+q(s, x(s))− q(s, y(s)) + ∆b(s)− b(s)]dw(s), (3.3.14)

where

LV (s, z(t, s, n(s))) = Vs(s, z(t, s, n(s))) + Vx(s, z(t, s, n(s)))Φ(t, s)
[
[∆A(s)

−B(s)∆B(s)]x(s)

+p(s, x(s))− p(s, y(s))−B(s)[q(s, x(s))− q(s, y(s))]

+B(s)(b(s)−∆b(s)) + ∆a(s)− a(s)
]

+
1

2
tr(

n∑
k=1

n∑
j=1

∂2

∂x∂x
V (s,∆z)c(t, s, x(s), y(s))cT (t, s, x(s), y(s))),

c(t, s, x(s), y(s)) = Φ(t, s)[∆B(s)x(s) + q(s, x(s)) − q(s, y(s)) + ∆b(s) − b(s)], and

n(s) = x(s)− y(s).
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Example 3.3.12 If V (t, x) = 1
2
‖x‖2, then following the argument used in Example

3.2.2, Example 3.3.11 reduces to

‖x(t)− y(t)‖2 = ‖z(t, t0, x0 − y0)‖2 + 2

∫ t

t0

LV (s, z(t, s, x(s)− y(s)))ds

+2

∫ t

t0

(x(s)− y(s))TΦT (t, s)Φ(t, s)[∆B(s)x(s)

+q(s, x(s))− q(s, y(s)) + ∆b(s)− b(s)]dw(s),

where

LV (s, z(t, s, x(s)− y(s)))

= (x(s)− y(s))TΦT (t, s)Φ(t, s)[(∆A(s)−B(s)∆B(s))x(s) + p(s, x(s))− p(s, y(s))

−B(s)[q(s, x(s))− q(s, y(s))] +B(s)(b(s)−∆b(s)) + ∆a(s)− a(s)]

+
1

2
c(t, s, x(s), y(s))cT (t, s, x(s), y(s)),

c(t, s, x(s), y(s)) = Φ(t, s)[∆B(s)x(s) + q(s, x(s))− q(s, y(s)) + ∆b(s)− b(s)].

3.4 Stability Analysis

In this section, stability results are constructed in the context of the method of gen-

eralized variation of constants parameters. For this purpose, it is assumed that f and

σ in (3.1.1) satisfy desired conditions to insure that the IVP (3.1.1) has p-th order

solution process.

Theorem 3.4.1 Let the hypotheses of Theorem 3.2.1 be satisfied. Furthermore, we

assume that

a) b(‖x‖p) ≤
∑N

i=1 |Vi(t, x)| ≤ a(‖x‖p) for all (t, x) ∈ R+ × Rn where p ≥ 1, b ∈ VK
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and a ∈ CK;

b) f(t, 0) ≡ 0, σ(t, 0) ≡ 0, α(t, 0) ≡ 0 and β(t, 0) ≡ 0 for t ∈ R+;

c) E[
∑m

l=1 Vx(s, z(t, s, x(s)))Φ(t, s, x(s))[σl(t, s, x(s))−βl(t, s, x(s))]] exists for t ≥ t0;

d) E[
∑N

i=1 |LVi(s, z(t, s, x(s)))|] ≤ λ(s)
∑N

i=1 E[|Vi(s, x(s))|] for t0 ≤ s ≤ t and

E[‖x(s)‖p] ≤ ρ, where LV (s, z(t, s, x)) defined in (3.2.2) and z(t, s, x) is the

solution process of (3.1.2) through (s, x), ρ > 0 and λ ∈ C[R+, R+]∩L1[R+, R+];

e) E[
∑N

i=1 |Vi(t0, z(t))|] ≤ µ(E[‖x0‖p]), whenever E[‖x0‖p] ≤ ρ for some ρ > 0, where

µ ∈ CK.

Then the trivial solution process of (3.1.1) is stable in the p-th mean.

Proof. Let x(t, t0, x0) and z(t, s, x(s)) be a solution process of (3.1.1) and (3.1.2)

through (t0, x0) and (s, x(s)), respectively, for t0 ≤ s ≤ t and t0 ∈ R+. From hypoth-

esis (b) x(t, t0, 0) ≡ 0 and z(t, t0, 0) ≡ 0 be the trivial solution process of (3.1.1) and

(3.1.2), respectively. From (3.2.1) and assumption (c), we obtain

E[|Vi(t, x(t))|] ≤ E[|Vi(t0, z(t))|] +

∫ t

t0

E[|LVi(s, z(t, s, x(s)))|]ds.

Hence

N∑
i=1

E[|Vi(t, x(t))|] ≤ E[
N∑
i=1

|Vi(t0, z(t))|] +

∫ t

t0

E[
N∑
i=1

|LVi(s, z(t, s, x(s)))|]ds.

This together with hypotheses (d), (e), and setting

m(t) =
N∑
i=1

E[|Vi(t, x(t))|]

yields

m(t) ≤ µ(E[‖x0‖p]) +

∫ t

t0

λ(s)m(s)ds, (3.4.1)
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as long as E[‖x(s)‖p] ≤ ρ for t0 ≤ s ≤ t. By applying Bellman-Gronwell-Reid

Inequality [14,16], we get

m(t) ≤ µ(E[‖x0‖p])exp
[ ∫ t

t0

λ(s)ds
]
,

as long as E[‖x(s)‖p] ≤ ρ for t0 ≤ s ≤ t. This implies that

N∑
i=1

E[|Vi(t, x(t))|] ≤ µ(E[‖x0‖p])exp
[ ∫ t

t0

λ(s)ds
]
, (3.4.2)

as long as E[‖x(s)‖p] ≤ ρ for t0 ≤ s ≤ t. From (3.4.2) and condition (a), we have

b(E[‖x(t)‖p]) ≤ E[b(‖x(t)‖p)] ≤
N∑
i=1

E[|Vi(t, x(t))|] ≤ µ(E[‖x0‖p])exp
[ ∫ t

t0

λ(s)ds
]
,

(3.4.3)

as long as E[‖x(s)‖p] ≤ ρ for t0 ≤ s ≤ t. First we show that (3.4.2) is valid for all

t ≥ t0. For this purpose, we choose x0 such that

µ(E[‖x0‖p])exp
[ ∫ ∞

t0

λ(s)ds
]
< b(ρ). (3.4.4)

We claim that E[‖x(t)‖p] < ρ for all t ≥ t0 whenever (3.4.4) holds. Assume that

this claim is false, that is, there exists t1 ∈ R+ such that t1 > t0, E[‖x(s)‖p] < ρ for

t0 ≤ s < t1 and E[‖x(t1)‖p] = ρ. This implies that (3.4.2) is valid for t ∈ [t0, t1].

Hence, using (3.4.3) and (3.4.4) we get

b(ρ) = b(E[‖x(t1)‖p]) ≤ µ(E[‖x0‖p])exp
[ ∫ ∞

t0

λ(s)ds
]
< b(ρ).

This contradiction establishes the impossibility of the existence of such a t1. This

proves the validity of the claim. Hence, (3.4.2) is true for all t ≥ t0. Finally, we need
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to conclude (SM1) of (3.1.1). Let 0 < ε < ρ and t0 ∈ R+. Choose x0 such that

µ(E[‖x0‖p])exp
[ ∫ ∞

t0

λ(s)ds
]
< b(εp) (3.4.5)

Under this, we have

‖x0‖p = (E[‖x0‖p])1/p < δ1,

where,

δ1 = δ1(ε, t0) =
(
µ−1
( b(εp)

exp[
∫∞
t0
λ(s)ds]

))1/p

.

Moreover, from the continuity of V (t, x) and the fact that V (t0, 0) ≡ 0, we can

find a δ2 = δ2(ε, t0) > 0 such that |V (t0, x0)| < δ1, whenever ‖x0‖p < δ2. We

define δ = Min{δ1, δ2} and B( p
√
ρ) = {x0 ∈ Rn : ‖x0‖p < p

√
ρ}. For x0 ∈ B( p

√
ρ),

‖x(s)‖p ≤ ρ for all t0 ≤ s ≤ t. Therefore, condition (d) is valid for all t ≥ t0.

Moreover, using (3.4.3) and (3.4.5), we have

b(E[‖x(t)‖p]) < b(εp), t ≥ t0.

Hence ‖x(t)‖p < ε whenever ‖x0‖p < δ, t ≥ t0. This completes the proof.

The next theorem provides sufficient conditions for asymptotic stability of the p-th

moment of the trivial solution of (3.1.1) in the context of the method of generalized

variation of parameters.

Theorem 3.4.2 Assume that the hypotheses of Theorem 3.4.1 hold except (d) and

(e) are replaced by

f) E[
∑N

i=1 |LVi(s, z(t, s, x(s)))|] ≤ λ(s)η(t − s)
∑N

i=1 E[|Vi(s, x)|] for t0 ≤ s ≤ t,

‖x‖p ≤ ρ;

g) E[
∑N

i=1 |Vi(t0, z(t))|] ≤ µ(‖x0‖p)τ(t− t0), for E[‖x0‖p] ≤ ρ, where λ and µ are as
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in (d) and (e), η, τ ∈ L, and η and τ satisfy

η(t− s)η1(s− t0) ≤ kη1(t− t0) for some η1 ∈ L, k > 0

and

lim
t→∞

(η1(t− t0))

∫ t

t0

kλ(s)τ(s− t0)

η1(s− t0)
exp
[ ∫ t

s

kλ(u)du
]
ds = 0. (3.4.6)

Then the trivial solution process of (3.1.1) is asymptotically stable in the p-th mean.

Proof. From the proof of Theorem 3.4.1 we have

N∑
i=1

E[|Vi(t, x(t))|] ≤ E[
N∑
i=1

|Vi(t0, z(t))|] +

∫ t

t0

E[
N∑
i=1

|LVi(s, z(t, s, x(s)))|]ds.

This together with hypotheses (f) and (g) yields

N∑
i=1

E[|Vi(t, x(t))|] ≤ µ(‖x0‖p)τ(t−t0)+

∫ t

t0

λ(s)η(t−s)
N∑
i=1

E[|Vi(s, x(s))|]ds, (3.4.7)

as long as E[‖x(t)‖p] ≤ ρ. By setting

m(t) =
∑N

i=1 E[|Vi(t,x(t))|]
η1(t−t0)

, n(t) = µ(‖x0‖p)τ(t−t0)
η1(t−t0)

and ν(t) = kλ(t), (3.4.7) is rewritten as

m(t) ≤ n(t) +

∫ t

t0

ν(s)m(s)ds

as long as E[‖x(t)‖p] ≤ ρ. Applying Theorem A.2.5 [19], we obtain

m(t) ≤ n(t) +

∫ t

t0

ν(s)n(s)exp
[ ∫ t

s

ν(u)du
]
ds. (3.4.8)
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From the nature of functions η, λ, and the definitions of ν(t), m(t) and n(t), (3.4.8)

becomes

N∑
i=1

E[|Vi(t, x(t))|] ≤ µ(‖x0‖p)τ(t−t0)+η1(t−t0)

∫ t

t0

ν(s)µ(‖x0‖p)τ(s− t0)

η1(s− t0)
exp
[ ∫ t

s

ν(u)du
]
ds

(3.4.9)

as long as E[‖x(t)‖p] ≤ ρ. From (3.4.9), condition (a) and properties of functions µ,

λ, and the nature of x0 and λ, we obtain

b(E[‖x(t)‖p]) ≤ µ(‖x0‖p)
[
τ(t− t0)

+η1(t− t0)

∫ t

t0

kλ(s)τ(s− t0)

η1(s− t0)
exp
[ ∫ t

s

kλ(u)du
]
ds
]
(3.4.10)

as long as E[‖x(t)‖p] ≤ ρ. From (3.4.6), (3.4.10) and the fact that τ ∈ L, we can

conclude that E[‖x(t)‖p] ≤ ρ for all t ≥ t0. Moreover, from (3.4.8) and (3.4.10),

relations (3.4.2) and (3.4.3) remain true. Moreover, the (SM1) property of the trivial

solution of (3.1.1) can be conclude by the following the argument of Theorem 3.4.1.

To conclude the (SM2), it is obvious from (3.4.10) and the nature of τ , b(E[‖x(t)‖p])

tends to zero as t→∞. Hence, one can manipulate the technical details to validate

the definition of (SM2).

To appreciate the assumptions of Theorem 3.4.2, we present the following result

which is applicable to many problems.

Corollary 3.4.3 Let the hypotheses of Theorem 3.4.2 be satisfied except that (3.4.6)

and the condition on η are replaced by

η(t− s)τ(s− t0) ≤ kτ(t− t0), t ≥ t0 (3.4.11)
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and

lim
t→∞

[
τ(t− t0)exp

[
k

∫ t

t0

λ(s)ds
]]

= 0, (3.4.12)

where k is some positive constant. Then the trivial solution process of (3.1.1) is p-th

mean asymptotically stable.

Proof. By following the proof of Theorem 3.4.2, we arrive at (3.4.7). Now, by using

(3.4.11), (3.4.7) can be rewritten as

m(t) ≤ µ(‖x0‖p) +

∫ t

t0

kλ(s)m(s)ds, (3.4.13)

as long as E[‖x(t)‖p] ≤ ρ, where

m(t) =

∑N
i=1E[|Vi(t, x(t))|]

τ(t− t0)
.

By applying Lemma A.2.4 [14] to (3.4.13), we get

m(t) ≤ µ(‖x0‖p)exp
[
k

∫ t

t0

λ(s)ds
]

which implies

N∑
i=1

E[|Vi(t, x(t))|] ≤ µ(‖x0‖p)τ(t− t0)exp
[
k

∫ t

t0

λ(s)ds
]
.

Using the properties of b, µ and x0, we have

b(E[‖x(t)‖p]) ≤ µ(‖x0‖p)τ(t− t0)exp
[
k

∫ ∞
t0

λ(s)ds
]
. (3.4.14)

Hence, b(E[‖x(t)‖p]) tends to zero as t → ∞. By using the argument used in the

proof of Theorem 3.4.2, we complete the proof of the corollary.
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Example 3.4.4 We consider Example 3.2.2, and assume that p(t, 0) ≡ 0 ≡ q(t, 0)

and

E[xT (s)ΦT (t, s)Φ(t, s)(p(s, x(s))−B(s)q(s, x(s)))] ≤ η(t−s)λ1(s)E[‖x(s)‖2] (3.4.15)

and

E[qT (s, x(s))ΦT (t, s)Φ(t, s)q(s, x(s))] ≤ η(t− s)λ2(s)E[‖x(s)‖2] (3.4.16)

From (3.4.15) and (3.4.16), LV (s, z(t, s, x(s))) satisfies Theorem 3.4.2,

LV (s, z(t, s, x(s))) = 2xT (s)ΦT (t, s)Φ(t, s)[p(s, x(s))−B(s)q(s, x(s))]

+qT (s, x(s))ΦT (t, s)Φ(t, s)q(s, x(s))

≤ η(t− s)λ(s)E[‖x(s)‖2], t0 ≤ s ≤ t,

where λ(s) = λ1(s) + λ2(s).

Further assume that

E[‖z(t, t0, x0)‖2] ≤ µ(E[‖x(s)‖2])τ(t− t0).

Therefore, by the application of Theorem 3.4.2, we conclude that the trivial solution

of (3.2.7) is asymptotically mean square stable.

3.5 Relative Stability

The following result provides sufficient conditions for relative stability of Itô-Doob

type systems of stochastic differential equations in the context of method of variation

of parameters.

Theorem 3.5.1 Let the assumption of Theorem 3.3.1 be satisfied. Further assume
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that

a) α(t, 0) ≡ 0 and β(t, 0) ≡ 0 for t ∈ R+;

b) b(‖x‖p) ≤
∑N

i=1 |Vi(t, x)| ≤ a(‖x‖p) for (t, x) ∈ R+×Rn where p ≥ 1, b ∈ VK and

a ∈ CK;

c) E[
∑N

i=1 |LVi(s, z(t, s, x(s))−z(t, s, y(s)))|] ≤ η(t−s)λ(s)
∑N

i=1E[|Vi(s, x(s)−y(s))|]

for t0 ≤ s ≤ t, ‖x(s) − y(s)‖p < ρ, ‖y(s)‖p < ρ for some ρ > 0, λ is locally

integrable function and η ∈ L;

d)
∑N

i=1 |Vi(t0, z(t, t0, x0) − z(t, t0, y0))| ≤ µ(‖x0 − y0‖p)τ(t − t0), t ≥ t0, whenever

E[‖x0 − y0‖p] < ρ and E[‖y0‖p] < ρ, where µ ∈ CK, τ ∈ L;

e) there exists a positive number k such that

η(t− s)τ(s− t0) ≤ kτ(t− t0);

f) E
[∑N

l=1 Vx(s,∆z)[Φ(t, s, x(s))[σl(s, x(s))−βl(s, x(s))]−Φ(t, s, y(s))[H l(s, y(s))−

βl(s, y(s))]]
]

exists for t ≥ t0, where ∆z = z(t, s, x(s))− z(t, s, y(s)).

Then

(i) the boundedness of τ(t − t0)exp
[
k
∫ t
t0
λ(s)ds

]
implies relative stability in the p-th

moment, (RM1), of (3.1.1) and (3.3.1);

(ii) limt→∞

[
τ(t− t0)exp

[
k
∫ t
t0
λ(s)ds

]]
= 0 implies relatively asymptotically stability

in the p-th moment, (RM2), of (3.1.1) and (3.3.1).

Proof. Let x(t) = x(t, t0, x0), z(t) = z(t, t0, x0) and y(t) = y(t, t0, y0) be the solution

processes as defined in Theorem 3.3.1. From Theorem 3.3.1, hypotheses (c), (d) and
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(f), we have

N∑
i=1

|Vi(t, x(t)− y(t))| ≤ µ(‖x0 − y0‖p)τ(t− t0)

+

∫ t

t0

η(t− s)λ(s)
N∑
i=1

|Vi(s, x(s)− y(s))|ds.

(3.5.1)

as long as E[‖x(t)‖p] ≤ ρ and E[‖y(t)‖p] ≤ ρ. By setting m(t) =
∑N

i=1 E[|Vi(t,x(t)−y(t))|]
τ(t−t0)

and using hypothesis (e), relation (3.5.1) reduces to

m(t) ≤ R(t) (3.5.2)

as long as E[‖x(t)‖p] ≤ ρ and E[‖y(t)‖p] ≤ ρ, where

R(t) = µ(E[‖x0 − y0‖p]) +

∫ t

t0

kλ(s)m(s)ds. (3.5.3)

Therefore,

R′(t) = kλ(t)m(t) ≤ kλ(t)R(t) (3.5.4)

with

R(t0) = µ(E[‖x0 − y0‖p]).

Solving this differential inequality, we have

R(t) ≤ µ(E[‖x0 − y0‖p])exp
[
k

∫ t

t0

λ(s)ds
]
. (3.5.5)

This together with the definition of m(t), (3.5.2) reduces to

N∑
i=1

E[|Vi(t, x(t)− y(t))|] ≤ τ(t− t0)µ(E[‖x0 − y0‖p])exp
[
k

∫ t

t0

λ(s)ds
]
.(3.5.6)
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From hypotheses (b), (3.5.6) and by using the argument used in the proof of Theorem

3.4.1, we get

b(E[‖x(t)− y(t)‖p])| ≤ τ(t− t0)µ(E[‖x0 − y0‖p])exp
[
k

∫ t

t0

λ(s)ds
]

≤ K1µ(E[‖x0 − y0‖p]). (3.5.7)

for all t ≥ t0, where K1 > 0 is the bound of (i).

Finally, we need to conclude (RM1) property of (3.1.1) and (3.3.1). For given 0 <

ε < ρ and t0 ∈ R+, we choose x0 and y0 such that

K1µ(E[‖x0 − y0‖p]) < b(εp) (3.5.8)

Under these considerations, we have

‖x0 − y0‖p = (E[‖x0 − y0‖p])1/p < δ1,

where,

δ1 = δ1(ε, t0) =
(
µ−1
(b(εp)
K1

))1/p

.

From the continuity of V (t, x) and the fact that V (t0, 0) ≡ 0, we can find a δ2 =

δ2(ε, t0) > 0 such that |V (t0, x0 − y0)| < δ1 whenever ‖x0 − y0‖p < δ2. We define

δ = Min{δ1, δ2} and hence ‖x(t) − y(t)‖p < ε, t ≥ t0 whenever ‖x0 − y0‖p < δ.

Similarly, using (ii), we have b(E[‖x(t) − y(t)‖p]) tends to zero as t → ∞ and hence

(RM2). This completes the proof.

Example 3.5.2 Let us consider Example 3.3.2. We assume ∆A ≡ ∆B ≡ ∆a ≡

∆b ≡ 0. Under these assumptions, (3.3.4), (3.3.5) and (3.3.6) reduces to

dx = [A(t)x+ a(t) + p(t, x)]dt+ [B(t)x+ b(t) + q(t, x)]dw(t), x(t0) = x0, (3.5.9)
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dz = [A(t)z + a(t)]dt+ [B(t)z + b(t)]dw(t), z(t0) = x0, (3.5.10)

and

dy = [A(t)y+ a(t) + p(t, y)]dt+ [B(t)y+ b(t) + q(t, y)]dw(t), y(t0) = y0, (3.5.11)

respectively. We note that auxiliary system (3.5.10) acts like a nominal system corre-

sponding to a system (3.5.9). Choosing V (t, x) = 1
2
‖x(t)‖2 and following the argument

used in Example 3.2.2, Example 3.3.2 reduces to

‖x(t)− y(t)‖2

= ‖z(t, t0, x0)− z(t, t0, y0)‖2 +

∫ t

t0

2LV (s,∆z)ds

+2

∫ t

t0

(x(s)− y(s))TΦT (t, s)Φ(t, s)[q(s, x(s))− q(s, y(s))]dw(s),

(3.5.12)

where

LV (s,∆z)

= (x(s)− y(s))TΦT (t, s)Φ(t, s)[p(s, x(s))− p(s, y(s))

−B(s)[p(s, x(s))− p(s, y(s))]] +
1

2
c(t, s, x(s), y(s))cT (t, s, x(s), y(s)),

c(t, s, x(s), y(s)) = Φ(t, s)[q(s, x(s))− q(s, y(s))] and ∆z = z(t, s, x(s))− z(t, s, y(s)).

Further assume that E[LV (s,∆z)] ≤ η(t − s)λ(s)E[‖x(s) − y(s)‖2], where η and λ

satisfies all conditions in Theorem 3.5.1. Thus, by the application of Theorem 3.5.1,

systems (3.5.9) and (3.5.11) are relatively asymptotically stable in the mean square

sense. In fact, the solution process (3.5.9) has asymptotic equilibrium property [16].
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4 Variational Comparison Method: Relative Stability

4.1 Introduction

In general, a closed or exact form representation of time evolution flow described by

a nonlinear nonstationary interconnected system is not always feasible. Having the

knowledge about the existence and in the absence of a closed or exact form repre-

sentation of dynamic flow, the time evolution of flow satisfying a stochastic dynamic

inequality generated by silent or characteristic features of the dynamic system is esti-

mated by the corresponding stochastic comparison dynamic flow [15, 16]. In particu-

lar, it is well known that an arbitrary measure of dynamic flow satisfying differential

inequality is estimated by the extremal solution of the corresponding comparison sys-

tem of differential equations [15, 16, 19, 35]. This technique is referred as the method

of comparison. In the following, we generalize the comparison theorems based on the

ideas of the classical Lyapunov’s second method [15, 16] and its extensions to variety

of systems of differential equations [2, 6, 7, 8, 9, 30]. By employing the concept of

Lyapunov function and random differential inequalities, we present a generalized vari-

ational comparison theorems. These result connects solution processes of the auxiliary

and perturbed systems of stochastic differential equations with the maximal solution

of the corresponding system of comparison dynamic equations. Using the comparison

results, the stochastic stability analysis of perturbed system of differential equations

are investigated.
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4.2 Energy Function Method and Variational Comparison Theorems

We consider the following Itô-Doob type stochastic perturbed and auxiliary systems

of differential equations

dx = f(t, x)dt+ σ(t, x)dw(t)

= f(t, x)dt+
∑m

l=1 σ
l(t, x)dwl(t), x(t0) = x0,

(4.2.1)

and

dz = α(t, z)dt+ β(t, z)dw(t)

= α(t, z)dt+
∑m

l=1 β
l(t, z)dwl(t), z(t0) = x0,

(4.2.2)

respectively, where x, z, x0 ∈ Rn; f , α, and column vectors of n×m matrices σ and β

∈ C[R+×Rn, Rn]; t0 ∈ R+; α and β are twice continuously differentiable with respect

to z; w(t) = (w1(t), w2(t), ..., wm(t))T is an m-dimensional normalized Wiener process

with independent increments; x0 and w(t) are mutually independent for each t ≥ t0;

moreover, we assume that solutions of (4.2.1) and (4.2.2) exist for t ≥ t0.

By employing the concept of Lyapunov function and differential inequalities, we

present a generalized variational comparison theorem. This result connects solution

processes of stochastic dynamic system described by (4.2.1) with the maximal so-

lution of corresponding stochastic /deterministic comparison systems of differential

equations and solution of auxiliary stochastic dynamic system described by (4.2.2).

As a byproduct of this, several auxiliary comparison results are formulated. Presented

results generalize and extend the existing results [15, 16, 19, 20] in a systematic way.

Prior to the presentation of comparison results, we assume that V ∈ C[R+ ×

Rn, RN ], and its partial derivatives Vt, Vx and Vxx exists and are continuous on R+×

Rn. We define the Itô-Doob differential of V (s, z(t, s, x)) with respect to (4.2.1) as

dV (s, z(t, s, x)) = LV (s, z(t, s, x))ds

+ Vx(s, z(t, s, x))Φ(t, s, x)[σ(s, x)− β(s, x)]dw(s), (4.2.3)
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where z(t, s, x) is solution process of (4.2.2) with initial value (s, x) ∈ R+ × Rn;

t0 ≤ s ≤ t; t0, s, t ∈ R+;

LV (s, z(t, s, x))

= Vs(s, z(t, s, x)) + Vx(s, z(t, s, x))
[1

2

( n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, x)[βl(s, x)βlj(s, x)

−2βl(s, x)σlj(s, x) + σl(s, x)σlj(s, x)]
)
n×1

+Φ(t, s, x)[
m∑
l=1

βlx(s, x)[βl(s, x)− σl(s, x)] + f(s, x)− α(s, x)]
]

+
1

2

(
tr
( m∑
l=1

∂2

∂x∂x
Vi(s, z(t, s, x))bl(t, s, x)blT (t, s, x)

))
N×1

,

(4.2.4)

bl(t, s, x) = Φ(t, s, x)[σl(s, x)− βl(s, x)]; and Φ(t, t0, x0) = ∂
∂x0
z(t, t0, x0) is the funda-

mental matrix solution process of the variational auxiliary system [38].

Theorem 4.2.1 Assume that

(a) V (s, z(t, s, x)) satisfies the following stochastic differential inequalities

 LV (s, z(t, s, x)) ≤ g(s, V (s, z(t, s, x))),

Vx(s, z(t, s, x))Φ(t, s, x)[σ(s, x)− β(s, x)] = Σ(s, V (s, z(t, s, x))),
(4.2.5)

where LV (s, z(t, s, x)) is defined in (4.2.4); g and column vectors of N × m

matrix Σ ∈ C[R+ ×RN , RN ] and satisfy the following conditions

(i) g(t, u) is concave and quasi-monotone nondecreasing in u for each t ∈ R+;

(ii)
∑m

l=1 |Σl
i(t, u) − Σl

i(t, v)| ≤ hi(‖u − v‖) on (t, u), (t, v) ∈ R+ × RN , hi ∈

C[R+, R+], hi(0) = 0, hi is non-decreasing and
∫

0+
ds
hi(s)

= ∞ for each

i = 1, 2, ..., N ;

(b) r(t) = r(t, t0, u0) is the maximal solution of the following stochastic comparison
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system of differential equations

du = g(t, u)dt+ Σ(t, u)dw(t)

= g(t, u)dt+
∑m

l=1 Σl(t, u)dwl(t), u(t0) = u0,
(4.2.6)

existing for t ≥ t0;

(c) Let x(t) = x(t, t0, x0) and z(t) = z(t, t0, x0) be solution processes of (4.2.1) and

(4.2.2) existing for t ≥ t0.

Then,

V (t, x(t, t0, x0)) ≤ r(t, t0, u0), t ≥ t0, (4.2.7)

provided that

V (t0, z(t, t0, x0)) ≤ u0. (4.2.8)

Proof. For t0 ≤ s ≤ t and 0 < ∆s = ds, using (4.2.3) and (4.2.5), we have

dV (s, z(t, s, x(s))) ≤ g(s, V (s, z(t, s, x(s))))ds+Σ(s, V (s, z(t, s, x(s))))dw(s). (4.2.9)

Set

m(s) = V (s, z(t, s, x(s))), m(t0) = V (t0, z(t, t0, x0)). (4.2.10)

From (4.2.10), (4.2.9) reduces to

dm(s) ≤ g(s,m(s))ds+ Σ(s,m(s))dw(s), m(t0) = V (t0, z(t, t0, x0)). (4.2.11)

From (4.2.11) and application of Theorem 6.4.1 [16], we obtain

m(t) ≤ r(t, t0, u0), t ≥ t0,
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provided that

V (t0, z(t, t0, x0)) ≤ u0.

Hence

V (t, z(t, t, x(t))) ≤ r(t, t0, u0), t ≥ t0.

This completes the proof.

A few special cases of Theorem 4.2.1 in literature [15, 16, 19] are exhibited in the

following corollary.

Corollary 4.2.2 a) For g(t, u) ≡ 0 and Σ(t, u) ≡ 0 in (4.2.5), the inequality (4.2.9)

reduces to dV (s, z(t, s, x)) ≤ 0. The stochastic comparison differential equation

(4.2.6) reduces to du = 0. Then the function V (s, z(t, s, x(s))) is non-decreasing

in t, and the relation (4.2.7) reduces to

V (t, x(t)) ≤ V (t0, z(t)), t ≥ t0.

b) For g(t, u) = λ(t)u and Σ(t, u) = diag[G1(t)u,G2(t)u, ..., Gm(t)u] in (4.2.5), the

comparison stochastic differential equation in (4.2.6) is

du = λ(t)u+
m∑
l=1

Gl(t)udwl(t),

where λ and Gl ∈ C[R,R]. In this case, differential inequality (4.2.9) becomes

dV (s, z(t, s, x(s))) ≤ λ(s)V (t, z(t, s, x(s))) +
m∑
l=1

Gl(s)V (s, z(t, s, x(s)))dwl(t).

Then relation (4.2.7) reduces to,

V (t, x(t)) ≤ V (t0, z(t))exp
[ ∫ t

t0

(λ(s)− 1

2

m∑
l=1

(Gl)2(s))ds+
m∑
l=1

∫ t

t0

Gl(s)dwl(s)
]
,
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t ≥ t0.

Example 4.2.3 Let us consider stochastic perturbed and auxiliary systems of differ-

ential equations

dx = [A(t)x+ p(t, x)]dt+ [B(t)x+ q(t, x)]dw(t), x(t0) = x0, (4.2.12)

and

dz = A(t)zdt+B(t)zdw(t), z(t0) = x0, (4.2.13)

respectively, where x, z ∈ Rn; A and B are any n × n continuous matrix functions

defined on J ; J = [t0, t0 + a), a > 0; p and q are any n-dimensional smooth functions

defined on J × Rn into Rn that insures the existence of the solution processes of

(4.2.12); for each t ∈ J , w(t) is a scalar normalized Wiener process independent of

x0. For given V (t, x) = 1
2
‖x‖2, we have Vt(t, x) = 0; ∂

∂x
V (t, x) = xT ; ∂2

∂x∂x
V (t, x) = I,

n× n identity matrix; ∂
∂x0
z(t, s, x(s)) = Φ(t, s); ∂2

∂x20
z(t, s, x(s)) = 0 [15] and

dV (s, z(t, s, x(s))) = LV (s, z(t, s, x(s)))ds

+xT (s)ΦT (t, s)Φ(t, s)q(s, x(s))dw(s),

where

LV (s, z(t, s, x(s))) = xT (s)ΦT (t, s)Φ(t, s)[p(s, x(s))−B(s)q(s, x(s))] +
1

2
‖Φ(t, s)q(s, x(s))‖2.

We assume that
xT (s)ΦT (t, s)Φ(t, s)[p(s, x(s))−B(s)q(s, x(s))] ≤ λ(s)1

2
‖Φ(t, s)x(s)‖2,

‖Φ(t, s)q(s, x(s))‖2 ≤ γ(s)‖Φ(t, s)x(s)‖2,

e(s) = λ(s) + γ(s);
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and

xT (s)ΦT (t, s)Φ(t, s)q(s, x(s)) = Σ(s, V (s, z(t, s, x(s))))

=
1

2
ν(s)‖Φ(t, s)x(s)‖2.

Under these considerations, we have (4.2.5) with g(s, u) = e(s)u and Σ(s, u) = ν(s)u,

e and γ are defined above. Here, a stochastic comparison differential equation is

du = e(s)uds+ ν(s)udw(s). (4.2.14)

We note that q(s, x(s)) = η(s)x(s). Thus, Theorem 4.2.1 is applicable to the stochas-

tic perturbed differential equation (4.2.12). In this case, estimate (4.2.7) on the solu-

tion process of (4.2.12) in the context of V is

V (t, x(t)) ≤ V (t0, z(t))exp
[ ∫ t

t0

(e(s)− ν2(s))ds+

∫ t

t0

ν(s)dw(s)
]
, for t ≥ t0.

From the definition of V , we have

‖x(t, t0, x0)‖2 ≤ ‖z(t, t0, z0)‖2exp
[ ∫ t

t0

(e(s)− ν2(s))ds+

∫ t

t0

ν(s)dw(s)
]
, t ≥ t0.

Moreover, we have the following mean square estimate:

E[‖x(t, t0, x0)‖2] ≤ E[‖z(t, t0, z0)‖2]exp
[ ∫ t

t0

e(s)ds
]
.

Corollary 4.2.4 a) For β ≡ 0 in (4.2.2) [19] the conclusion of Theorem 4.2.1 re-
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mains true. In this case, we note that (4.2.4) reduces to:

LV (s, z(t, s, x(s)))

= Vs(s, z(t, s, x(s)))

+ Vx(s, z(t, s, x(s)))
[1

2

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, x(s))σl(s, x(s))σlj(s, x(s))

)
n×1

+ Φ(t, s, x(s))[f(s, x(s))− α(s, x(s))]
]

+
1

2

(
tr(

m∑
l=1

∂2

∂x∂x
Vi(s, z(t, s, x(s)))bl(t, s, x(s))blT (t, s, x(s)))

)
N×1

,

and

bl(t, s, x(s)) = Φ(t, s, x(s))σl(s, x(s)).

Thus, Theorem 4.2.1 includes a result [19] as a special case.

b) For β ≡ 0, and α ≡ f in (4.2.1) and (4.2.2), LV (s, z(t, s, x(s))) in (4.2.4) is

replaced by

LV (s, z(t, s, x(s)))

= Vs(s, z(t, s, x(s)))

+
1

2
Vx(s, z(t, s, x(s)))

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, x(s))σl(s, x(s))σlj(s, x(s))

)
n×1

+
1

2

(
tr(

m∑
l=1

∂2

∂x∂x
Vi(s, z(t, s, x(s)))bl(t, s, x(s))blT (t, s, x(s)))

)
N×1

,

where

bl(t, s, x(s)) = Φ(t, s, x(s))σl(s, x(s)).

In this case, Theorem 4.2.1 yields a special case [19].
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c) For β ≡ 0, and α ≡ 0, LV (s, z(t, s, x(s))) in (4.2.4) becomes

LV (s, x(s)) = Vs(s, x(s)) + Vx(s, x(s))f(s, x(s))

+
1

2

(
tr(

m∑
l=1

∂2

∂x∂x
Vi(s, x(s))σl(t, s, x(s))σlT (t, s, x(s)))

)
N×1

.

In view of this, Theorem 4.2.1 reduces to well known results in [16, 19].

Example 4.2.5 Let us choose V (t, x) = 1
2
‖x‖2 in Corollary 4.2.4 (c). We note that

Vt(t, x) ≡ 0, ∂
∂x
V (t, x) = xT and ∂

∂x∂x
V (t, x) = I . In this case, LV , in (4.2.4) reduces

to

LV (s, z(t, s, x(s))) = zT (t, s, x(s))

(
m∑
l=1

n∑
j=1

∂

∂x0

Φij(t, s, x(s))σl(s, x(s))σlj(s, x(s))

)
n×1

+
m∑
l=1

tr(Φ(t, s, x(s))σl(s, x(s))σlT (s, x(s))ΦT (t, s, x(s))).

In this case, Theorem 4.2.1 reduces to a well known result [?, 14].

Remark 4.2.6 Corollary 4.2.2 and several other comparison results play a very im-

portant role in the study of highly nonlinear and nonstationary system of stochastic

differential equations. The use of the deterministic system of differential inequali-

ties [14, 16, 19, 20, 35] and comparison theorems are attractive and computationally

easy to verify. In particular, the condition Vx(s, z(t, s, x(s)))Φ(t, s, x(s))[σ(s, x(s)) −

β(s, x(s))] = Σ(s, V (s, z(t, s, x(s)))) in (4.2.5) is very restrictive. However, in the

absence of this relation, the comparison results in the context of deterministic sys-

tems of differential inequalities have played a significant role in the theory of stochas-

tic [15, 16, 19, 35] and deterministic [2,6-9, 15-28, 35, 38] systems of differential

equations. In the following, we present a comparison theorem in the frame-work of

deterministic system of differential inequalities [14, 16, 19, 20, 35].

Theorem 4.2.7 Assume that all the hypotheses of Theorem 4.2.1 remain true except
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that stochastic differential inequality (4.2.5) is replaced by the following:

E[LV (s, z(t, s, x(s)))|Fs] ≤ g(s, E[V (s, z(t, s, x(s)))|Fs]) (4.2.15)

where g is defined in Theorem 4.2.1 and E[V (s, z(t, s, x(s)))] exists for t ≥ s ≥ t0.

Then,

E[V (t, x(t))] ≤ r(t), for t ≥ t0, (4.2.16)

where r(t) = r(t, t0, u0) is the maximal solution of system of nonlinear deterministic

comparison differential equations

du = g(t, u)dt, u(t0) = u0. (4.2.17)

Proof. Set

m(s) = E[V (s, z(t, s, x(s)))|Fs], m(t0) = E[V (t0, z(t))].

From (b) and assumptions on V implies that m(s) is continuous for t0 ≤ s ≤ t. Let

h > 0 be sufficiently small so that s + h ≤ t. Using (4.2.15), properties of solution

process and sub - σ-algebra Ft, and concavity of g(t, u), we have

m(s+ h)−m(s) = E[V (s+ h, z(t, s+ h, x(s+ h)))|Fs]− E[V (s, z(t, s, x(s)))|Fs]

= E
[ ∫ s+h

s

LV (u, z(t, u, x(u)))du|Fs

]
≤

∫ s+h

s

E
[
LV (u, z(t, u, x(u)))|Fs

]
du

≤
∫ s+h

s

g(u,E[V (u, z(t, u, x(u)))|Fs])du.

(4.2.18)
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Therefor, it follows that

D+m(s) ≤ g(s,m(s)), t0 ≤ s < t.

An application of comparison theorem in [14, 15] establishes the result.

Example 4.2.8 We apply Theorem 4.2.7 to Example 4.2.3, and obtain

E[LV (s, z(t, s, x(s)))|Fs] ≤ e(s)E[V (s, z(t, s, x(s)))|Fs], (4.2.19)

whenever E[‖Φ(t, s)x(s)‖|2Fs] exists for t ≥ s ≥ t0. Here the deterministic comparison

differential equation is

du = e(s)uds, u(t0) = u0, (4.2.20)

where e is defined in Example 4.2.3. From the definition of V and the application of

Theorem 4.2.7, we arrive at

E[‖x(t, t0, x0)‖2] ≤ E[‖z(t, t0, z0)‖2]exp
[ ∫ t

t0

e(s)ds
]
, t ≥ t0.

Remark 4.2.9 Based on Example 4.2.8, Examples corresponding to Example 4.2.5

can be constructed, analogously.

4.3 Comparison Theorems Robustness of Solution Process

Let us consider a nominal system of Itô-Doob type stochastic differential equations

dy = G(t, y)dt+H(t, y)dw(t)

= G(t, y)dt+
∑m

l=1H
l(t, y)dwl(t), y(t0) = y0,

(4.3.1)

with respect to (4.2.1), whereG and column vectors of n×mmatrixH ∈ C[J×Rn, Rn],

J = [t0, t0 + a) for a > 0; w(t) = (w1(t), w2(t), ..., wm(t))T is an m-dimensional
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normalized Wiener process with independent increments; y0 and w(t) are mutually

independent for each t ≥ t0. Let x(t, t0, x0) and y(t, t0, y0) be the solution process of

(4.2.1) and (4.3.1) existing for t ≥ t0, respectively.

The following theorem provides an estimate on the deviation of the solution process

of perturbed system of stochastic differential equations (4.2.1) with respect to the

solution process of nominal system of stochastic differential equations (4.3.1) through

(t0, x0) and (t0, y0), respectively.

Theorem 4.3.1 Let the hypotheses of Theorem 4.2.1 be satisfied except the system

of stochastic differential inequalities (4.2.5) is replaced by


LV (s,∆z) ≤ g(s, V (s,∆z))

Vx(s,∆z)[Φ(t, s, x(s))[σ(s, x(s))− β(s, x(s))]− Φ(t, s, y(s))[H(s, y(s))− β(s, y(s))]

= Σ(s, V (s,∆z))

(4.3.2)

where

LV (s,∆z) = Vs(s,∆z) + Vx(s,∆z)
[1

2

( n∑
j=1

m∑
l=1

[
∂

∂x0

Φij(t, s, x(s))βl(s, x(s))βlj(s, x(s))

− ∂

∂x0

Φij(t, s, y(s))βl(s, y(s))βlj(s, y(s))]
)
n×1

+
( n∑
j=1

m∑
l=1

[
∂

∂x0

Φij(t, s, y(s))βl(s, y(s))H l
j(s, y(s))

− ∂

∂x0

Φij(t, s, x(s))βl(s, x(s))σlj(s, x(s))]
)
n×1

+
1

2

( n∑
j=1

m∑
l=1

[
∂

∂x0

Φij(t, s, x(s))σl(s, x(s))σlj(s, x(s))

− ∂

∂x0

Φij(t, s, y(s))H l(s, y(s))H l
j(s, y(s))]

)
n×1

90



+ Φ(t, s, x(s))[
m∑
l=1

βlx(s, x(s))[βl(s, x(s))− σl(s, x(s))] + f(s, x(s))− α(s, x(s))]

− Φ(t, s, y(s))[
m∑
l=1

βlx(s, y(s))[βl(s, y(s))−H l(s, y(s))] +G(s, y(s))− α(s, y(s))]
]

+
1

2

(
tr(

m∑
l=1

∂2

∂x∂x
Vi(s,∆z)bl(t, s, x(s), y(s))blT (t, s, x(s), y(s)))

)
N×1

,

(4.3.3)

bl(t, s, x(s), y(s)) = Φ(t, s, x(s))[σl(s, x(s)) − βl(s, x(s))] − Φ(t, s, y(s))[H l(s, y(s)) −

βl(s, y(s))] and ∆z = z(t, s, x(s))− z(t, s, y(s)).

Then

V (t, x(t)− y(t)) ≤ r(t, t0, u0), t ≥ t0, (4.3.4)

whenever

V (t0, z(t, t0, x0)− z(t, t0, y0)) ≤ u0, (4.3.5)

where r(t, t0, u0) is the maximal solution of (4.2.6).

Proof. The proof of the theorem follows by imitating the proof of Theorem 4.2.1.

The details are omitted [15, 16, 19].

In the following, we present an example to illustrate the usefulness of Theorem 4.3.1.

Example 4.3.2 We consider a stochastic perturbed, auxiliary and nominal system

of differential equations

dx = [(A(t) + ∆A(t))x+ a(t) + ∆a(t) + p(t, x)]dt

+[(B(t) + ∆B(t))x+ b(t) + ∆b(t) + q(t, x)]dw(t), x(t0) = x0,(4.3.6)

dz = [A(t)z + a(t)]dt+ [B(t)z + b(t)]dw(t), z(t0) = x0, (4.3.7)
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and

dy = [A(t)y + a(t) + p(t, y)]dt+ [B(t)y + b(t) + q(t, y)]dw(t), y(t0) = y0,

(4.3.8)

respectively, where x, y, z ∈ Rn; A and B are any n× n continuous matrix functions

defined on J ; J = [t0, t0 + a), a > 0; p and q are any n-dimensional smooth functions

defined on J × Rn into Rn that insure the existence of solution processes of (4.3.6)

and (4.3.8); for each t ∈ J , w(t) is a scalar normalized Wiener process independent of

x0 and y0. Note that Φ(t, s, x(s)) = Φ(t, s, y(s)) = Φ(t, s). We apply Theorem 4.3.1

to (4.3.6) in the context of (4.3.7) and (4.3.8) with N = 1 ( scalar function), we have

LV (s,∆z)

= Vs(s,∆z) + Vx(s,∆z)Φ(t, s)[(∆A(s)−B(s)∆B(s))x(s) + p(s, x(s))− p(s, y(s))

−B(s)[q(s, x(s))− q(s, y(s))] + ∆a(s)−B(s)∆b(s)]

+
1

2
(tr(

∂2

∂x2
V (s,∆z)c(t, s, x(s), y(s))cT (t, s, x(s), y(s)))),

(4.3.9)

c(t, s, x(s), y(s)) = Φ(t, s)[∆B(s)x(s) + q(s, x(s)) − q(s, y(s)) + ∆b(s)] and ∆z =

z(t, s, x(s))− z(t, s, y(s)). We assume that

 LV (s,∆z) ≤ e(s)V (s,∆z) + λ(s)

Vx(s,∆z)[Φ(t, s)[∆B(s))x(s) + q(s, x(s))− q(s, y(s)) + ∆b(s)] = ν(s)V (s,∆z) + γ(s).

(4.3.10)

Under these assumptions we have g(s, u) = e(s)u + λ(s) and Σ(s, u) = ν(s)u + γ(s).

Here, the comparison differential equation is given by

du = [e(s)u+ λ(s)]ds+ [ν(s)u+ γ(s)]dw(s). (4.3.11)
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By the application of Theorem 4.3.1, we have

V (t, x(t)− y(t)) ≤ Φ(t, t0)V (t0, z(t, t0, x0)− z(t, t0, y0)) +

∫ t

t0

Φ(t, s)[e(s)− γ(s)ν(s)]ds

+

∫ t

t0

Φ(t, s)γ(s)dw(s)
]
, t ≥ t0, (4.3.12)

where

Φ(t, t0) = exp
[ ∫ t

t0

(e(s)− 1

2
ν2(s))ds+

∫ t

t0

ν(s)dw(s)
]
.

The following theorem provides another version for an estimate on the deviation of a

solution process of the perturbed system (4.2.1) with respect to a solution process of

nominal system (4.3.1).

Theorem 4.3.3 Assume that all the hypothesis of Theorem 4.3.1 hold except inequal-

ity (4.3.2) is replaced by:

E[LV (s,∆z)|Fs] ≤ g(s, E[V (s,∆z)|Fs]) (4.3.13)

where g is defined in Theorem 4.2.1 and E[V (s,∆z)] exists for t ≥ s ≥ t0. Then,

E[V (t, x(t)− y(t))] ≤ r(t), t ≥ t0, (4.3.14)

where r(t) = r(t, t0, u0) is the maximal solution of system of nonlinear deterministic

comparison differential equations (4.2.17).

Proof. To avoid the monotonicity, the proof is omitted [15, 16, 19].

Example 4.3.4 We consider Example 4.3.2 and replace (4.3.10) by

E[LV (s,∆z)|Fs] ≤ e(s)V (s,∆z) + λ(s) (4.3.15)
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Under this consideration, we have

du = [e(s)u+ λ(s)]ds, (4.3.16)

Hence,

E[V (t, x(t)− y(t))|Fs] ≤ exp
[ ∫ t

t0

e(s)ds
]
V (t0, z(t, t0, x0)− z(t, t0, y0)))

+

∫ t

t0

exp
[ ∫ t

s

e(u)du
]
λ(s)ds, t ≥ t0. (4.3.17)

We state without proofs other versions of Theorems 4.3.1, and 4.3.3 [15, 16, 19].

Theorem 4.3.5 Let the hypotheses of Theorem 4.2.1 be satisfied except the system

of stochastic differential inequalities (4.2.5) is replaced by

 LV (s, z(t, s, n(s))) ≤ g(s, V (s, z(t, s, n(s))))

Vx(s, z(t, s, n(s)))[Φ(t, s, n(s))[σ(s, x(s))−H(s, y(s))− β(s, n(s))] = Σ(s, V (s, z(t, s, n(s))))

(4.3.18)

where

LV (s, z(t, s, n(s)))

= Vs(s, z(t, s, n(s))) + Vx(s, z(t, s, n(s)))
[1

2

( n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, n(s))[βl(s, n(s))βlj(s, n(s))

−2βl(s, n(s))(σlj(s, x(s))−H l
j(s, y(s)))

+(σl(s, x(s))−H l(s, y(s)))(σlj(s, x(s))−H l
j(s, y(s)))]

)
n×1

+Φ(t, s, n(s))[
m∑
l=1

βlx(s, n(s))[βl(s, n(s))− σl(s, x(s)) +H l(s, y(s))]

+f(s, x(s))−G(s, y(s))− α(s, n(s))]
]

+
1

2

(
tr(

m∑
l=1

∂2

∂x∂x
Vi(s, n(s))blT (t, s, x(s), y(s))bl(t, s, x(s), y(s)))

)
N×1

,

(4.3.19)
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bl(t, s, x(s), y(s)) = Φ(t, s, n(s))[σl(s, x(s)) − H l(s, y(s)) − βl(s, n(s))], and n(s) =

x(s)− y(s). Then

V (t, x(t)− y(t)) ≤ r(t, t0, u0), t ≥ t0, (4.3.20)

whenever

V (t0, z(t, t0, x0 − y0)) ≤ u0, (4.3.21)

where r(t, t0, u0) is the maximal solution of (4.2.6).

Theorem 4.3.6 Assume that all the hypothesis of Theorem 4.3.5 hold except (4.3.18)

is replaced by

E[LV (s, z(t, s, n(s)))|Fs] ≤ g(s, E[V (s, z(t, s, n(s)))|Fs]) (4.3.22)

where g is defined in Theorem 4.2.1 and E[V (s, z(t, s, n(s)))] exists for t ≥ s ≥ t0.

Then,

E[V (t, x(t)− y(t))] ≤ r(t), for t ≥ t0, (4.3.23)

where r(t) = r(t, t0, u0) is the maximal solution of system of nonlinear deterministic

comparison differential equations (4.2.17).

In the following we present a corollary that illustrates the significance of Theorems

4.3.1, 4.3.3, 4.3.5, and 4.3.6.

Corollary 4.3.7 Let us assume that β ≡ 0 in (4.2.2), H ≡ 0 in (4.3.1) and G ≡ α.
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Under this assumption, LV (s, z(t, s, x(s)− y(s)) in (4.3.3) and (4.3.19) reduce to

LV (s,∆z) = Vs(s,∆z) + Vx(s,∆z)[Φ(t, s, x(s))[f(s, x(s))

−α(s, x(s))]]
1

2

( n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, x(s))σl(s, x(s))σlj(s, x(s))
)
n×1

,

+
1

2

(
tr(

m∑
l=1

∂2

∂x∂x
Vi(s,∆z)bl(t, s, x(s), y(s))blT (t, s, x(s), y(s)))

)
N×1

,

(4.3.24)

where bl(t, s, x(s), y(s)) = Φ(t, s, x(s))σl(s, x(s)), ∆z = z(t, s, x(s))− z(t, s, y(s));

and

LV (s, z(t, s, n(s)))

= Vs(s, z(t, s, n(s)))

+Vx(s, z(t, s, n(s)))
[1

2

(
n∑
j=1

m∑
l=1

∂

∂x0

Φij(t, s, n(s))σl(s, x(s))σlj(s, x(s))

)
n×1

+Φ(t, s, n(s))[f(s, x(s))− α(s, y(s))− α(s, n(s))]
]

+
1

2

(
tr(

m∑
l=1

∂2

∂x∂x
Vi(s, n(s))blT (t, s, x(s), y(s))bl(t, s, x(s), y(s)))

)
N×1

,

(4.3.25)

where bl(t, s, x(s), y(s)) = Φ(t, s, n(s))σl(s, x(s)) and n(s) = x(s)− y(s), respectively.

Under these simplifications, Theorem 4.3.1 , Theorem 4.3.3, Theorem 4.3.5, and The-

orem 4.3.6 include respective results [19] as a special cases.
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Example 4.3.8 We apply Theorem 4.3.5 to Example 4.3.2, and we have

LV (s, z(t, s, n(s))) = Vs(s, z(t, s, n(s))) + Vx(s, z(t, s, n(s)))Φ(t, s)
[
[∆A(s)

−B(s)∆B(s)]x(s) + p(s, x(s))− p(s, y(s))

−B(s)[q(s, x(s))− q(s, y(s))] +B(s)(b(s)−∆b(s))

+∆a(s)− a(s)
]

+
1

2
tr(

n∑
k=1

n∑
j=1

∂2

∂x∂x
V (s,∆z)c(t, s, x(s), y(s))cT (t, s, x(s), y(s))),

(4.3.26)

c(t, s, x(s), y(s)) = Φ(t, s)[∆B(s)x(s) + q(s, x(s)) − q(s, y(s)) + ∆b(s) − b(s)], and

n(s) = x(s)− y(s). We assume that


LV (s, z(t, s, n(s))) ≤ e(s)V (s, z(t, s, n(s))) + λ(s)

Vx(s, z(t, s, n(s)))[Φ(t, s)[∆B(s))x(s) + q(s, x(s))− q(s, y(s)) + ∆b(s)]

= ν(s)V (s, z(t, s, n(s))) + γ(s).

(4.3.27)

Under these assumptions, we have g(s, u) = e(s)u+ λ(s) and Σ(s, u) = ν(s)u+ γ(s).

Here, the comparison differential equation is (4.3.11).

By the application of Theorem 4.3.5, we have

V (t, x(t)− y(t)) ≤ Φ(t, t0)V (t0, z(t, t0, x0 − y0)) +

∫ t

t0

Φ(t, s)[e(s)− γ(s)ν(s)]ds

+

∫ t

t0

Φ(t, s)γ(s)dw(s)
]
, t ≥ t0, (4.3.28)

where

Φ(t, t0) = exp
[ ∫ t

t0

(e(s)− 1

2
ν2(s))ds+

∫ t

t0

ν(s)dw(s)
]
.

Example 4.3.9 We consider Example 4.3.8 and replace (4.3.27) by

E[LV (s, z(t, s, n(s)))|Fs] ≤ e(s)V (s, z(t, s, n(s))) + λ(s) (4.3.29)
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In this case, deterministic comparison equation is (4.3.16). By the application of

Theorem 4.3.6, we have

E[V (t, x(t)− y(t))|Ft0 ] ≤ exp
[ ∫ t

t0

e(s)ds
]
V (t0, z(t, t0, x0 − y0)))

+

∫ t

t0

exp
[ ∫ t

s

e(u)du
]
λ(s)ds, t ≥ t0. (4.3.30)

4.4 Stability Analysis

In this section, we develop the qualitative properties of solution process of (4.2.1). In

particular, depending on the mode of convergence, we present several results regard-

ing the stability properties of solution process. This is achieved in the frame-work

of Lypunov-type function, system of both deterministic and stochastic differential in-

equalities and variational comparison theorems. For this purpose, we need to modify

the stability properties of comparison system of differential equations. The modified

definitions are based on existing definitions[19], and are as follows.

Definition 4.4.1 The trivial solution process of (4.2.1) is said to be

i) (AS1) almost sure stable, if for each ε > 0, t0 ∈ R+, there exists a positive function

δ = δ(t0, ε) such that the inequality ‖x0‖ ≤ δ implies

‖x(t)‖ < ε, t ≥ t0, almost surely (a.s.) .

ii) (AS2) almost sure asymptotically stable, if it is almost sure stable and if for any

ε > 0, t0 ∈ R+, there exist a positive function δ0 = δ(t0) and T = T (t0, ε) such

that the inequality ‖x0‖ ≤ δ0 implies

‖x(t)‖ < ε, t ≥ t0 + T, with a.s.

Definition 4.4.2 The trivial solution process of (4.2.1) is said to be

98



i) (SM1) stable in the p-th moment, if for each ε > 0, t0 ∈ R+ and p ≥ 1 there exists

a positive function δ = δ(t0, ε) such that the inequality ‖x0‖p ≤ δ implies

‖x(t)‖p < ε, t ≥ t0

where ‖x(t)‖p = (E[‖x(t)‖p])1/p

ii) (SM2) asymptotically stable in the p-th moment, if it is stable in the p-th moment

and if for any ε > 0, t0 ∈ R+, there exist δ0 = δ(t0) and T = T (t0, ε) such that

the inequality ‖x0‖p ≤ δ0 implies

‖x(t)‖p < ε, t ≥ t0 + T.

Definition 4.4.3 The trivial solution processes u ≡ 0 and z ≡ 0 of (4.2.6) and (4.2.2)

are said to be

i) (JAS1) jointly almost surely stable, if for ε > 0, t0 ∈ R+, there exists a δ1 =

δ1(t0, ε) > 0 such that
∑N

i=1 Vi(t0, x0) ≤ δ1 implies

N∑
i=1

ri(t, t0, V (t0, z(t, t0, x0))) < ε, t ≥ t0,

ii) (JAS2) jointly almost surely asymptotically stable, if it is jointly almost surely

stable and if for any ε > 0, t0 ∈ R+, there exist δ0 = δ0(t0) > 0 and T =

T (t0, ε) > 0 such that the inequality
∑N

i=1 Vi(t0, x0) ≤ δ1 implies

N∑
i=1

ri(t, t0, V (t0, z(t, t0, x0))) < ε, t ≥ t0 + T.

Define

ν(t, t0, x0) = u(t, t0, V (t0, z(t0, x0))
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and note that ν(t0, t0, x0) = V (t0, x0) and V ∈ C[R+×Rn, RN ] and its partial deriva-

tives Vt, Vx and Vxx exists and are continuous on R+ ×Rn.

Definition 4.4.4 The trivial solution processes u ≡ 0 and z ≡ 0 of (4.2.17) and

(4.2.2) are said to be

i) (JSM1) jointly stable in the mean, if for ε > 0, t0 ∈ R+, there exists a δ1 =

δ1(t0, ε) > 0 such that
∑N

i=1E[Vi(t0, x0)] ≤ δ1 implies

N∑
i=1

E[ri(t, t0, V (t0, z(t, t0, x0)))] < ε, t ≥ t0;

ii) (JSM2) jointly asymptotically stable in the mean, if it is jointly stable in the mean

and if for any ε > 0, t0 ∈ R+, there exist δ0 = δ0(t0) > 0 and T = T (t0, ε) > 0

such that the inequality
∑N

i=1E[Vi(t0, x0)] ≤ δ0 implies

N∑
i=1

E[ri(t, t0, V (t0, z(t, t0, x0)))] < ε, t ≥ t0 + T.

The following result provide sufficient conditions for stability properties of the trivial

solution of (4.2.1) in the context of Theorem 4.2.1.

Theorem 4.4.5 Let the hypotheses of Theorem 4.2.1 be satisfied. Further assume

that

(i) α(t, 0) ≡ 0, β(t, 0) ≡ 0, g(t, 0) ≡ 0, G(t, 0) ≡ 0, for t ∈ R+, and for all (t, x) ∈

R+ ×Rn,

(ii) b(‖x‖) ≤
∑N

i=1 Vi(t, x) ≤ a(t, ‖x‖), where b ∈ VK, and a ∈ CK.

Then

1. (JAS1) of (4.2.6) and (4.2.2) implies (AS1) of (4.2.1), and
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2. (JAS2) of (4.2.6) and (4.2.2) implies (AS2) of (4.2.1)

Proof. Let ε > 0, t0 ∈ R+ be given. Assume that (JAS1) of (4.2.2) and (4.2.6) holds.

From assumption (a), we have x ≡ 0 and u ≡ 0. Then for b(ε) > 0 and t0 ∈ R+, there

exists a δ1 = δ1(ε, t0) such that
∑N

i=1 ri(t0, t0, V (t0, z(t0, t0, x0))) < δ1, implies

N∑
i=1

ri(t, t0, V (t0, z(t, t0, x0))) < b(ε), t ≥ t0 (4.4.1)

where r(t, t0, u0) is the maximal solution process of (4.2.6) and z(t) = z(t, t0, x0) is the

solution process of (4.2.2) through (t0, x0). Since
∑N

i=1 ri(t0, t0, V (t0, z(t0, t0, x0))) =∑N
i=1 Vi(t0, x0),

∑N
i=1 Vi(t0, 0) ≡ 0 and (ii), there exists δ(t0, ε) > 0 such that

∑N
i=1 Vi(t0, x0) <

δ1 whenever ‖x0‖ ≤ δ. Now, we claim that if ‖x0‖ ≤ δ implies ‖x(t)‖ < ε, t ≥ t0 with

probability one(w.p.1). Assume that this claim is false, that is, there exists a solution

process x(t, t0, x0) with ‖x0‖ ≤ δ, t1 > t0 and event A ∈ Ft1 such that p(A) > 0,

‖x(t1)‖ = ε and ‖x(t)‖ ≤ ε, t ∈ [t0, t1]. (4.4.2)

On the other hand, by Theorem 4.2.1, with u0 = V (t0, z(t, t0, x0)), we have

V (t, x(t)) ≤ r(t, t0, V (t0, z(t, t0, x0))), t ≥ t0. (4.4.3)

From (ii) and using the convexity of b, we obtain

b(‖x(t)‖) ≤
m∑
i=1

Vi(t, x(t))

≤
m∑
i=1

ri(t, t0, V (t0, z(t, t0, x0))), t ≥ t0. (4.4.4)

Relations (4.4.1), (4.4.2), (4.4.3) and (4.4.4) lead to the contradiction

b(ε) ≤
m∑
i=1

Vi(t1, t0, x0) < b(ε), (4.4.5)
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with p(A) > 0. This exhibits the almost sure property of the trivial solution of (4.2.1).

To prove the second part, lets assume (JAS2) of (4.2.2) and (4.2.6). We note that

(JAS2) implies, (JAS1) of (4.2.2) and (4.2.6), and hence one can conclude that (AS1)

property of (4.2.1) is valid. Moreover, by imitating the above argument, one can

prove the almost sure asymptotic stability property of the trivial solution process of

(4.2.1).

Example 4.4.6 We consider Example 4.2.3, and assume that p(t, 0) ≡ 0 ≡ q(t, 0).

Using the estimate on the solution process of (4.2.12) in Example 4.2.3, we obtain

‖x(t, t0, x0)‖2 ≤ ‖x0‖2‖Φ(t, t0)‖2exp[

∫ t

t0

(e(s)− 1

2
ν2(s))ds+

∫ t

t0

ν(s)dw(s)],

where

‖z(t, t0, x0)‖2 = ‖Φ(t, t0)x0‖2 ≤ ‖x0‖2‖Φ(t, t0)‖2.

Depending on the nature of the real parts of the eigen values of A(s) and B(s), e(s)

and the magnitude of ν2(s) in Example 4.2.3, the joint almost sure stability and joint

almost sure asymptotic stability conditions can be imposed on (4.2.13) and (4.2.14)

to conclude the corresponding almost sure stability and asymptotic stability of the

trivial solution of (4.2.12).

The following result provides sufficient conditions for the p-th moment stability

properties of the trivial solution of (4.2.1) in the context of Theorem 4.2.7.

Theorem 4.4.7 Let the hypotheses of Theorem 4.2.7 be satisfied. Further assume

that

(i) α(t, 0) ≡ 0, β(t, 0) ≡ 0, g(t, 0) ≡ 0, G(t, 0) ≡ 0, for t ∈ R+, and for all (t, x) ∈

R+ ×Rn,
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(ii) b(‖x‖p) ≤
∑N

i=1 Vi(t, x) ≤ a(t, ‖x‖p), where p ≥ 1, b ∈ VK, and a ∈ CK.

Then

1. (JSM1) of (4.2.17) and (4.2.2) implies (SM1) of (4.2.1), and

2. (JSM2) of (4.2.17) and (4.2.2) implies (SM2) of (4.2.1)

Proof. Let ε > 0, t0 ∈ R+ be given. Assume that (JSM1) of (4.2.2) and (4.2.17) holds.

From assumption (i), we have x ≡ 0 and u ≡ 0. Then for b(ε) > 0 and t0 ∈ R+, there

exists a δ1 = δ1(ε, t0) such that
∑N

i=1E[ri(t0, t0, V (t0, z(t0, t0, x0)))|Ft0 ] < δ1, implies

N∑
i=1

E[ri(t, t0, V (t0, z(t, t0, x0)))|Ft0 ] < b(εp), t ≥ t0 (4.4.6)

where r(t, t0, u0) is the maximal solution process of (4.2.16) and z(t) = z(t, t0, x0) is

the solution process of (4.2.2) through (t0, x0). Since
∑N

i=1E[ri(t0, t0, V (t0, z(t0, t0, x0)))|Ft0 ] =∑N
i=1 E[Vi(t0, x0)],

∑N
i=1 E[Vi(t0, 0)] = 0 and (ii), there exists δ(t0, ε) > 0 such that∑N

i=1 E[Vi(t0, x0)] < δ1 whenever ‖x0‖p ≤ δ. Now we claim that if ‖x0‖p ≤ δ implies

‖x(t)‖p < ε, t ≥ t0. Assume that this claim is false, that is, there exists a solution

process x(t, t0, x0) with ‖x0‖p ≤ δ and a t1 > t0 such that

‖x(t1)‖p = ε and ‖x(t)‖p ≤ ε, t ∈ [t0, t1]. (4.4.7)

On the other hand, by Theorem 4.2.7, with u0 = E[V (t0, z(t))|Ft0 ], we have

E[V (t, x(t))|Ft0 ] ≤ r(t, t0, E[V (t0, z(t))|Ft0 ]), t ≥ t0. (4.4.8)
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From (ii) and using the convexity of b, we obtain

b(E[‖x(t)‖p]) ≤
N∑
i=1

E[Vi(t, x(t))]

≤
N∑
i=1

ri(t, t0, E[V (t0, z(t))|Ft0 ]), t ≥ t0. (4.4.9)

Relations (4.4.6), (4.4.7), (4.4.8) and (4.4.9) lead to the contradiction

b(εp) ≤
N∑
i=1

E[Vi(t1, t0, x0)] < b(εp), (4.4.10)

which proves (SM1).

To prove the second part, lets assume (JSM2) of (4.2.2) and (4.2.17), we note (JSM2)

implies, (JSM1) of (4.2.2) and (4.2.17), and hence , one can use the same argument

to conclude (SM2) property of (4.2.1).

Example 4.4.8 We apply Theorem 4.4.7 to Example 4.2.8, and obtain

E[LV (s, z(t, s, x(s)))|Fs] ≤ e(s)E[V (s, z(t, s, x(s)))|Fs], (4.4.11)

whenever E[‖Φ(t, s)x(s)‖|2|Fs] exists for t ≥ s ≥ t0. Here the deterministic compari-

son differential equation is (4.2.20). From Example 4.2.8, we have

E[‖x(t, t0, x0)‖2] ≤ E[‖z(t, t0, z0)‖2]exp
[ ∫ t

t0

e(s)ds
]
, t ≥ t0.

Further assume that

E[‖z(t, t0, x0)‖2] ≤ µ(E[‖x0‖2])τ(t− t0),

where τ(u) > 0 and τ(u)→ 0 as u→∞. Under this assumption, (JSM2) of (4.2.20)
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and (4.2.13) follows immediately. Therefore, by the application of Theorem 4.4.7, we

conclude that the trivial solution of (4.2.12) is asymptotically mean square stable.

4.5 Error Estimate and Relative Stability

In this section, we develop the qualitative properties of solution process of (4.2.1)

relative to (4.3.1). In particular, depending on the mode of convergence, we present

several results regarding error estimates and relative stability properties of solution

process. This is achieved in the frame-work of Lypunov-type function, system of both

deterministic and stochastic differential inequalities and variational comparison theo-

rems. For this purpose, we need to modify the concept of relative stability properties

of comparison system of differential equations. The modified definitions are based on

existing definitions[19], and are as follows.

Definition 4.5.1 The two differential systems (4.2.1) and (4.3.1) are said to be

i) (ARS1) relatively almost surely stable, if for each ε > 0, t0 ∈ R+, there exists a

positive function δ0 = δ(t0, ε) such that the inequality ‖x0 − y0‖ ≤ δ0 implies

‖x(t)− y(t)‖ < ε, t ≥ t0;

ii) (AR2) relatively asymptotically almost surely stable, if it is relatively almost surely

stable and if for any ε > 0, t0 ∈ R+, there exist δ = δ(t0) and T = T (t0, ε) such

that the inequality ‖x0 − y0‖ ≤ δ implies

‖x(t)− y(t)‖ < ε, t ≥ t0 + T.

Definition 4.5.2 The two differential systems (4.2.1) and (4.3.1) are said to be

i) (RSM1) relatively stable in p-th moment, if for each ε > 0, t0 ∈ R+, and p ≥ 1,

there exists a positive function δ = δ(t0, ε) such that the inequality ‖x0−y0‖p ≤ δ
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implies

‖x(t)− y(t)‖p < ε, t ≥ t0;

ii) (RSM2) relatively asymptotically stable in the p-th moment, if it is relatively

stable in the p-th moment and if for any ε > 0, t0 ∈ R+, there exist δ0 = δ0(t0)

and T = T (t0, ε) such that the inequality ‖x0 − y0‖ ≤ δ0 implies

‖x(t)− y(t)‖p < ε, t ≥ t0 + T.

Definition 4.5.3 The system (4.2.6) and (4.2.2) are said to be

i) (JAS1) jointly relatively almost surely stable, if for each ε > 0, t0 ∈ R+, there exists

δ1 = δ1(t0, ε) > 0 such that the inequality
∑N

i=1 Vi(t0, x0 − y0)] ≤ δ1 implies

N∑
i=1

ri(t, t0, V (t0, z(t, t0, x0 − y0))) < ε, t ≥ t0;

ii) (JAS2) jointly relatively asymptotically almost surely stable, if it is jointly rel-

atively almost surely stable and if for each ε > 0, t0 ∈ R+, there exists δ0 =

δ0(t0) > 0 and and T = T (t0, ε) > 0 such that
∑N

i=1 Vi(t0, x0 − y0)] ≤ δ0 implies

N∑
i=1

ri(t, t0, V (t0, z(t, t0, x0 − y0))) < ε, t ≥ t0 + T.

Definition 4.5.4 The system (4.2.6) and (4.2.2) are said to be

i) (JSM1) jointly relatively stable in the mean, if for each ε > 0, t0 ∈ R+, there exists

δ1 = δ1(t0, ε) > 0 such that the inequality
∑N

i=1E[Vi(t0, t0, x0− y0)] ≤ δ1 implies

N∑
i=1

E[ri(t, t0, V (t0, z(t, t0, x0 − y0)))] < ε, t ≥ t0;
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ii) (JSM2) jointly relatively asymptotically stable in the mean, if it is jointly rela-

tively stable in the mean and if for each ε > 0, t0 ∈ R+, there exists δ0 = δ0(t0) >

0 and and T = T (t0, ε) > 0 such that
∑N

i=1 E[Vi(t0, t0, x0 − y0)] < δ0 implies

N∑
i=1

E[ri(t, t0, V (t0, z(t, t0, x0 − y0)))] < ε, t ≥ t0.

Definition 4.5.5 The differential systems (4.2.1) and (4.3.1) are said to be almost

surely asymptotically equivalent if, for every solution y(t) of (4.3.1), there is a solution

x(t) of (4.2.1) such that

x(t)− y(t)→ 0 as t→∞.

Definition 4.5.6 The differential system (4.2.1) has asymptotic equilibrium if every

solution of the system (4.2.1) tends to almost surely a finite limit vector ξ as t→∞

and to every constant vector ξ there is a solution x(t) of (4.2.1) on t0 ≤ t <∞ such

that limt→∞ = ξ.

In the following, we present an error estimate and relative stability results in the

context of Theorems 4.3.1 and 4.3.3.

Theorem 4.5.7 Let the hypotheses of Theorem 4.3.1 be satisfied. Further assume

that

b(‖x‖) ≤
N∑
i=1

Vi(t, x), (4.5.1)

where b ∈ VK. Then

1. (JAS1) of (4.2.6) and (4.2.2) implies (ARS1) of (4.2.1) and (4.3.1),

2. (JAS2) of (4.2.6) and (4.2.2) implies (ARS2) of (4.2.1) and (4.3.1).
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Proof. By the choice of u0 = V (t0, z(t, t0, x0)− z(t, t0, y0)), Theorem 4.3.1 reduces to

m∑
i=1

Vi(t, x(t)− y(t)) ≤
m∑
i=1

ri(t, t0, V (t0, z(t, t0, x0)− z(t, t0, y0))).

This together with (4.5.1), we have

b(‖x(t)− y(t)‖) ≤
m∑
i=1

ri(t, t0, V (t0, z(t, t0, x0)− z(t, t0, y0))).

The proofs of statements 1 and 2 follow by repeating the argument used in the proofs

of Theorem 4.4.5. The details are omitted.

Theorem 4.5.8 Let the hypotheses of Theorem 4.3.3 be satisfied. Further assume

that

b(‖x‖p) ≤
N∑
i=1

Vi(t, x), (4.5.2)

where p ≥ 1, b ∈ VK.

1. (JSM1) of (4.2.17) and (4.2.2) implies (RSM1) of (4.2.1) and (4.3.1),

2. (JSM2) of (4.2.17) and (4.2.2) implies (RSM2) of (4.2.1) and (4.3.1).

Proof. By the choice of u0 = V (t0, z(t, t0, x0)− z(t, t0, y0)), Theorem 4.3.3 reduces to

m∑
i=1

E[Vi(t, x(t)− y(t))] ≤
m∑
i=1

ri(t, t0, E[V (t0, z(t, t0, x0)− z(t, t0, y0))]).

This together with (4.5.2), we obtain

b(E[‖x(t)− y(t)‖p]) ≤
m∑
i=1

ri(t, t0, E[V (t0, z(t, t0, x0)− z(t, t0, y0))|Fs]).
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The proofs of statements 1 and 2 follow by imitating the proofs of Theorem 4.4.7.

The details are omitted.

Example 4.5.9 Let us consider Example 4.3.2. We assume ∆A ≡ ∆B ≡ ∆a ≡

∆b ≡ 0. Under these assumptions, (4.3.6) and (4.3.8) reduces to

dx = [A(t)x+ a(t) + p(t, x)]dt+ [B(t)x+ b(t) + q(t, x)]dw(t), x(t0) = x0, (4.5.3)

and

dy = [A(t)y + a(t) + p(t, y)]dt+ [B(t)y + b(t) + g(t, y)]dw(t), y(t0) = y0, (4.5.4)

respectively. Here, we assume the auxiliary system (4.2.2) is as:

dz = A(t)zdt+B(t)zdw(t), z(t0) = x0. (4.5.5)

We note that auxiliary system (4.5.5) acts like a nominal system corresponding to

a system (4.5.3). Choosing V (t, x) = 1
2
‖x(t)‖2 and following the argument used in

Example 4.3.2, we have

LV (s,∆z)

= (x(s)− y(s))TΦT (t, s)Φ(t, s)[p(s, x(s))− p(s, y(s))

−B(s)[p(s, x(s))− p(s, y(s))]] +
1

2
c(t, s, x(s), y(s))cT (t, s, x(s), y(s)),

(4.5.6)

c(t, s, x(s), y(s)) = Φ(t, s)[q(s, x(s))− q(s, y(s))] and ∆z = z(t, s, x(s))− z(t, s, y(s)).
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In this case, (4.3.10) and the comparison differential equation are given by

 LV (s, z(t, s, x(s))) ≤ e(s)‖z(t, s, x(s))‖2 = e(s)V (s, z(t, s, x(s)))

(x(s)− y(s))TΦT (t, s)Φ(t, s)[q(s, x(s))− q(s, y(s))] = ν(s)V (s, z(t, s, x(s))).

(4.5.7)

and

du = e(s)uds+ν(s)udw(s), u(t0) = u0 = ‖z(t, t0, x0)‖2 = V (t0, z(t, t0, x0)), (4.5.8)

respectively. Moreover,

r(t, t0, u0) = u0exp
[ ∫ t

t0

(e(s)− 1

2
ν2(s))ds+

∫ t

t0

ν(s)dw(s)
]
.

From Theorem 2.1, we have V (t, x(t) − y(t)) ≤ r(t, t0, u0). The final conclusion of

Theorem 4.5.7, 4.5.8 follows by assuming

limsupt→∞
1

t− t0

[ ∫ t

t0

(e(s)− 1

2
ν2(s))ds+

∫ t

t0

ν(s)dw(s)
]

is finite and negative number, respectively. Then joint property of (4.5.7) and (4.5.5)

are valid.

We present Theorems corresponding to Theorems 4.3.5 and 4.3.6 parallel to the-

orems 4.5.7 and 4.5.8. The proofs are omitted [15, 16, 19].

Theorem 4.5.10 Let the hypotheses of Theorem 4.3.5 be satisfied. Further assume

that

b(‖z‖) ≤
N∑
i=1

Vi(t, z), (4.5.9)

where b ∈ CK. Then

1. (JAS1) of (4.2.6) and (4.2.2) implies (ARS1) of (4.2.1) and (4.3.1);
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2. (JAS2) of (4.2.6) and (4.2.2) implies (ARS2) of (4.2.1) and (4.3.1).

Theorem 4.5.11 Let the hypotheses of Theorem 4.3.5 be satisfied. Further assume

that

b(‖z‖p) ≤
N∑
i=1

Vi(t, z), (4.5.10)

where p ≥ 1, b ∈ CK. Then

1. (JSM1) of (4.2.17) and (4.2.2) implies (RSM1) of (4.2.1) and (4.2.2);

2. (JSM2) of (4.2.17) and (4.2.2) implies (RSM2) of (4.2.1) and (4.2.2).

Example 4.5.12 Let us consider Example 4.5.9. Choosing V (t, x) = 1
2
‖x(t)‖2 and

following the argument used in Example 4.5.9, we have

LV (s, z(t, s, n(s))) = Vx(s, z(t, s, n(s)))Φ(t, s)
[
p(s, x(s))− p(s, y(s))

−B(s)[q(s, x(s))− q(s, y(s))]

+B(s)b(s)− a(s)
]

+
1

2
c(t, s, x(s), y(s))cT (t, s, x(s), y(s))),

(4.5.11)

c(t, s, x(s), y(s)) = Φ(t, s)[q(s, x(s)) − q(s, y(s)) − b(s)], and n(s) = x(s) − y(s). We

assume that 
LV (s, z(t, s, n(s))) ≤ e(s)V (s, z(t, s, n(s)))

Vx(s, z(t, s, n(s)))[Φ(t, s)[q(s, x(s))− q(s, y(s))]

= ν(s)V (s, z(t, s, n(s))).

(4.5.12)

Hence the conclusion of Theorem 4.5.10 follows.

Remark 4.5.13 We note that conclusion 2 of Theorems 4.5.7 and 4.5.10 implies that

stochastic differential systems of differential equations (4.2.1) and (4.3.1) are almost

surely asymptotically equivalent. Similarly, conclusion 2 of Theorems 4.5.8 and 4.5.11
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implies that stochastic differential systems of differential equations (4.2.1) and (4.3.1)

are p-th moment asymptotically equivalent. Moreover, these results also exhibit the

asymptotic equilibrium properties in almost sure/p-th moment sense.
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5 Stochastic Dynamic Model for Photosynthesis

5.1 Introduction

All living beings require energy for their maintenance and normal activities. The

activities include, reproduction, growth, or other activities. Photosynthetic organisms

use light energy to produce glucose. The glucose is used at a latter time to supply

energy.

Equations for photosynthesis and cellular respiration are [10]

6CO2 + 6H2O + Energy → C6H12O6 + 6O2

and

C6H12O6 + 6O2 → 6CO2 + 6H2O + Energy,

respectively. The photosynthetic mechanism is composed of receptors, X, that can

be decomposed in two states. The radiant energy, I, transforms the receptors in the

state X in to an excited state X∗. Pigments are receptors. When a photon of light

strikes a photosynthetic pigment X, an electron in an atom contained in the molecule

becomes excited, X∗. Energized electrons move further from the nucleus of the atom.

The excited molecule can pass the energy to another molecule or release it in the form

of light or heat. The reaction can be expressed as follows:

X + I
k1−→ X∗, (5.1.1)
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(X∗ + Z → X + Z∗, Z∗ +X → X∗ + Z,X∗ + CO2 → X∗, where Z and X∗ are light

energy compound and RUBP -Ribulose-5-phosphate) where X∗ is activated state with

respect to carbon-dioxide CO2, and k1 is a rate constant. Being in the state X∗, the

receptor can react with CO2. This reaction transfers the receptor back to the state

X and yields sugar CH2O.

X∗ + CO2
k2−→ X + CH2O, (5.1.2)

where k2 is a rate constant. It is assumed that the capacity of photosynthesis is

limited by

[X0] = [X] + [X∗], (5.1.3)

where [X0] is the constant total concentration of the receptors. Let P be the rate of

photosynthesis, which is defined as

P = hk2[X∗][CO2], (5.1.4)

where h is the thickness of the homogenous leaf and [CO2] is the concentration of

CO2.

From reactions (5.1.1), (5.1.2) and assumption (5.1.3), we have


d[X∗]
dt

= k1[X0]I − k1[X∗]I − k2[X∗][CO2]

d[CO2]
dt

= −k2[X∗][CO2]
(5.1.5)

Under the assumptions on the photosynthesis process and using (5.1.3), (5.1.4), and

(5.1.5), a dynamic equation for the rate of photosynthesis is as follows:

dP

dt
= hk2[CO2](k1X0I − k1[X∗]I − k2[X∗][CO2])− hk2[X∗]k2[CO2][X∗]

= hk2k1[CO2][X0]I − k1Ihk2[X∗][CO2]− k2[CO2]hk2[X∗][CO2]− k2[X∗]hk2[X∗][CO2]

= hk2k1[CO2][X0]I − k1IP − k2([CO2]− [X∗])P.
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Hence,
dP

dt
= hk2k1[CO2][X0]I − k1IP − k2([CO2]− [X∗])P. (5.1.6)

5.2 A Dynamic Model for Photosynthesis

The photosynthetic process is divided into two complex reactions called light reaction

and dark reaction. These reactions are briefly outlined below.

5.2.1 Light Dependent Reactions

The light dependent reactions require light. It produces ATP (Adenosine triphos-

phate) and NADPH (nicotinamide adenine dinucleotide phosphate): these com-

pounds are needed to produce glucose in the light independent reactions. Based

on the following main chemical reactions, NADP+ is the natural biological electron

acceptor:

2H2O + 2NADP+ + I → 2NADPH + 2H+ +O2.

The model of light reactions is based on the following assumptions[9].

L1) The dynamics of the light reactions are determined by the dynamics of the concen-

tration of NADP+ (primary electron acceptor) and NADPH. This assumption

is made because more ATP is produced in the light reactions than it is imme-

diately needed in the reduction of CO2 in dark reactions.

L2) There is a maximum activity level of light reactions determined by some regulat-

ing mechanism. This level in weak radiant flux densities is proportional to the

radiant flux density. Due to assumption (L1), this activity level is supposed to

determine the total concentrations of NADP+ and NADPH that take part in

the process at each constant radiant flux of a longer period.
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L3) The rate of the formation of NADPH is proportional to the product of the

radiant flux density I, and the concentration of NADP+.

From assumption(L2), we have

Nmax(I) = [NADP+] + [NADPH]. (5.2.1)

Here, light reactions are described by: NADP+ + I
k1−→ NADPH,

NADPH + PGA
k′2−→ NADP+,

(5.2.2)

where PGA is a 3-phosphoglyceric acid formed in dark reactions, and k1 and k′2 are

dynamic rate parameters. So the dynamics of light reaction is as follows:

d[NADPH]

dt
= k1I[NADP+]− k′2[NADPH][PGA]. (5.2.3)

Denoting N = [NADPH], M = [PGA], and C = [CO2], (5.2.3) reduces to

dN

dt
= k1I(Nmax −N)− k′2NM. (5.2.4)

This is a nonlinear differential equation for the dynamics of light reactions showing the

rate of change in absorbing radiant energy and turning it into so called assimilatory

power in the form of NADPH.

5.2.2 Dark (Light Independent) Reactions

The light independent reactions occur in light or dark conditions. The products of

the light reactions, ATP and NADPH, are used to reduce CO2 to glucose in the
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Calvin cycle as

CO2 +NADPH + ATP → NADP+ + C6H12O6 + ADP.

The following assumptions are made for the dark reaction[9].

D1) The reactions take place in constant environmental conditions (except with re-

spect to the radiation and CO2 concentration).

D2) Of the photo-products needed in dark reactions only NADPH is considered.

D3) The reversible reactions in the calvin cycles are omitted.

D4) The regeneration of RUBP is in a quasi-stationary state, that is, the rate of the

formation of RUBP (Ribulose-5-phosphate) (≡ X∗-excited receptor) is equal to

the rate of formation of G3P (glyceraldehyde 3-phosphate).

D5) There is a maximum constant rate of the regeneration of RUBP .

The description of the dark reaction are as follows: CO2 +RUBP
k3−→ 2PGA,

2PGA+ 2NADPH
k′4−→ 2G3P + 2NADP+,

(5.2.5)

with rate constants k3 and k′4 respectively. The dynamic equations for [RUBP ], [G3P ]

and [PGA] are
d[RUBP ]

dt
= −k3[CO2][RUBP ] (5.2.6)

d[PGA]

dt
= k3[CO2][RUBP ]− k′4[PGA][NADPH] (5.2.7)

d[G3P ]

dt
= k′4[PGA][NADPH]. (5.2.8)
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From (5.2.6), (5.2.8) and assumption (D4), the net rate of change of RUBP can be

written in the form

d[RUBP ]

dt
= −k3[CO2][RUBP ] + k′4[PGA][NADPH]. (5.2.9)

From (5.2.7) and (5.2.9), it is obvious that

d[RUBP ]

dt
= −d[PGA]

dt
.

From assumption (D5), we have

Mmax = [RUBP ] + [PGA]. (5.2.10)

From (5.2.7), the model for dark reaction will be

d[M ]

dt
= k3C(Mmax −M)− k′4MN

From the light and dark reactions, the overall dynamic model for CO2 assimilation

controlled by the radiant flux density and CO2 concentration is dN
dt

= k1I(Nmax −N)− k′2NM
dM
dt

= k3C(Mmax −M)− k′4NM,
(5.2.11)

were k1 in (5.2.2) is the rate of the radiant conversion to chemical energy by photo

receptors; k3 in (5.2.5)is the rate of CO2 fixation by CO2 receptors; k′2 in (5.2.2) and

k′4 in (5.2.5) express the effects of the reaction of the receptors with each other. The

rate of photosynthesis, P, is

P = k3[CO2][RUBP ] = k3C(Mmax −M). (5.2.12)
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From (5.2.12), (5.1.6) reduces to

dP

dt
= −k2

3C(Mmax −M)2 − k3C
2(Mmax −M). (5.2.13)

The concentration of CO2 in the closed measurement system changes according to

the following dynamic equation [35]

dC

dt
= −k5C(1− M

Mmax

) + k6, (5.2.14)

where k5 and k6 are parameters.

5.2.3 Enzyme Reactions

For biochemical reactions, enzymes play very important role. The enzymes and

proteins act as a catalyst. Enzymes react selectively on definite compounds called

substrate. In the following, we use basic enzymatic reaction mechanisms initiated

by Michaelis and Menten [1, 3]. Let S,E, and SE stand for substrate, enzyme,

and enzyme-substrate complex that generates a product p, respectvely. The reaction

mechanism is as follows: 
S + E

k7−⇀↽−
k8
SE

SE
k9−→ p+ E,

(5.2.15)

where k7, k8 and k9 are parameters associated with the rates of reactions respectively.

Note that, the rate of a reaction is proportional to the product of the concentrations

of the reactants.
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Let us denote s = [S], e = [E], se = [SE], p = [p]



ds
dt

= −k7es+ k8se

dse
dt

= k7es− (k8 + k9)se

de
dt

= −k7es+ (k8 + k9)se

dp
dt

= k9se.

(5.2.16)

We assume that s(0) = s0, e(0) = e0, se(0) = 0, p(0) = 0. From (5.2.16), we note that


p(t) = k9

∫ t
0
se(r)dr,

de
dt

+ dse
dt

= 0,

e(t) + se(t) = constant = e0.

(5.2.17)

From (5.2.17), (5.2.16) reduces to


ds
dt

= −k7e0s+ (k7s+ k8)se

dse
dt

= k7e0s− (k7s+ k8 + k9)se

dp
dt

= k9se.

(5.2.18)

Using (5.2.11), (5.2.14) and (5.2.18), we obtain

dN
dt

= k1I(Nmax −N)− k′2NM
dM
dt

= k3C(Mmax −M)− k′4NM
dC
dt

= −k5C(1− M
Mmax

) + k6

ds
dt

= −k7e0s+ (k7s+ k8)se

dse
dt

= k7e0s− (k7s+ k8 + k9)se

dp
dt

= k9se.

(5.2.19)

Since,
ds

dt
+
dse
dt

+
dp

dt
= 0,
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we have s(t) + se(t) + p(t) = s0. Thus, se = s0 − s − p. Since, se = s0 − s − p, we

formulate the following initial value problem

dN
dt

= k1I(Nmax −N)− k′2NM
dM
dt

= k3C(Mmax −M)− k′4NM
dC
dt

= −k5C(1− M
Mmax

) + k6

ds
dt

= −k7e0s+ (k7s+ k8)(s0 − s− p)
dp
dt

= k9(s0 − s− p),

(5.2.20)

where N(0) = N0,M(0) = M0, C(0) = C0, s(0) = s0, p(0) = 0. (5.2.20) is a determin-

istic mathematical dynamic model for photosynthetic process.

5.3 Normalizing and Equilibrium States of Deterministic Model

Let us use the following transformation to normalize the system of differential equa-

tions (5.2.20) as:  n = N
Nmax

m = M
Mmax

.
(5.3.1)

Using (5.3.1) and following the argument used in [10, 11] the effects of enzymatic

reactions characterized by replacing k′4 with p , the system of dynamical differential

equations (5.2.20) can be written as

dn
dt

= k1I(1− n)− k2nm

dm
dt

= k3C(1−m)−Nmaxnmp

dC
dt

= −k5C(1−m) + k6

ds
dt

= −k7e0s+ (k7s+ k8)(s0 − s− p)
dp
dt

= k9(s0 − s− p),

(5.3.2)
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where k2 = k′2Mmax. The system (5.3.2) can be written as

dx = f(t, x)dt, x(t0) = x0, (5.3.3)

where x = (n,m,C, s, p)T ≡ (x1, x2, x3, x4, x5)T ∈ R5;

f(t, x) = (f1(t, x), f2(t, x), f3(t, x), f4(t, x), f5(t, x))T ; f1(t, x) = k1I(1− x1)− k2x1x2,

f2(t, x) = k3x3(1− x2)−Nmaxx1x2x5, f3(t, x) = −k5x3(1− x2) + k6,

f4(t, x) = −k7e0x4 + (k7x4 + k8)(s0 − x4 − x5), f5(t, x) = k9(s0 − x4 − x5); and

x0 = (n0,m0, C0, s0, 0)T . The equilibrium states of the dynamic system (5.3.2),

x∗ = (n∗,m∗, C∗, s∗, p∗)T , satisfies the following system of algebraic equations

0 = k1I(1− n∗)− k2n
∗m∗,

0 = k3C
∗(1−m∗)−Nmaxn

∗m∗p∗,

0 = −k5C
∗(1−m∗) + k6,

0 = −k7e0s
∗ + (k7s

∗ + k8)(s0 − s∗ − p∗),

0 = k9(s0 − s∗ − p∗).

(5.3.4)

Solving the system of equations (5.3.4) for I > 0, yields

n∗ = k1I
k1I+k2m∗

(m∗)2 + k1INmaxp∗+k1k3IC∗−k2k3C∗
k2k3C∗

m∗ − k1I
k2

= 0

C∗ = k6
k5(1−m∗)

s∗ = 0

p∗ = s0.

(5.3.5)

Now, let us find the linearized system with respect to system (5.3.3) at the equilibrium

state. For this purpose, from x = (n,m,C, s, p)T , x∗ = (n∗,m∗, C∗, s∗, p∗)T , we define

G(θ) = f(t, θx+(1−θ)x∗) for 0 ≤ θ ≤ 1. We note that G is continuously differentiable
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with respect to θ, and hence

d

dθ
G(θ) = fx(t, θx+ (1− θ)x∗)(x− x∗). (5.3.6)

By Integrating both sides of (5.3.6) with respect to θ over an interval [0,1], we have

G(1)−G(0) =

∫ 1

0

fx(t, θx+ (1− θ)x∗)(x− x∗)dθ.

This together with the fact that G(1) = f(t, x) and G(0) = f(t, x∗) = 0 yields

f(t, x) =

∫ 1

0

fx(t, θx+ (1− θ)x∗)(x− x∗)dθ. (5.3.7)

Adding and subtracting fx(t, x
∗) in (5.3.7) and applying again the generalized Mean

Value Theorem[?], yields

f(t, x) =

∫ 1

0

fx(t, θx+ (1− θ)x∗)(x− x∗)dθ

= fx(t, x
∗)(x− x∗) +

∫ 1

0

[fx(t, θx+ (1− θ)x∗)− fx(t, x∗)](x− x∗)dθ

= fx(t, x
∗)(x− x∗) +R(t, x∗, x− x∗)(x− x∗) (5.3.8)

where

R(t, x∗, x− x∗)(x− x∗) =

∫ 1

0

[fx(t, θx+ (1− θ)x∗)− fx(t, x∗)](x− x∗)dθ
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and 5× 5 matrices fx(t, x
∗) is defined by:

−(k1I + k2m
∗) −k2n

∗ 0 0 0

−Nmaxs0m
∗ −(k3C

∗ +Nmaxn
∗s0) k3(1−m∗) 0 −Nmaxn

∗m∗

0 k5C
∗ −k5(1−m∗) 0 0

0 0 0 −(k7e0 + k8) −k8

0 0 0 −k9 −k9


(5.3.9)

System (5.3.3) at the equilibrium state is rewritten as

dx = [fx(t, x
∗)x+R(t, x∗, x)x]dt, x(t0) = x0, (5.3.10)

where x ≡ x− x∗. Considering system (5.3.10) as perturbed system of the following

unperturbed system

dz = fx(t, x
∗)zdt, z(t0) = x0. (5.3.11)

Here, system (5.3.11) is assumed to be auxiliary system. We note that the diagonal

elements of fx(t, x
∗) are negative. We further assume that if V (t, x) = 1

2
‖x‖2, then

Vt(t, x) = 0, ∂
∂x
V (t, x) = xT ; ∂2

∂x∂x
V (t, x) = I, n× n identity matrix; ∂

∂x0
z(t, s, x(s)) =

Φ(t, s); and ∂2

∂x20
z(t, s, x(s)) = 0 [3]. The generalized variation of constants formula

(3.2.1), reduces to

‖x(t)‖2 = ‖z(t)‖2

+

∫ t

t0

xT (s)ΦT (t, s)Φ(t, s)R(s, x∗, x(s))x(s)ds. (5.3.12)

Remark 5.3.1 a) Further assume that

xT (s)ΦT (t, s)Φ(t, s)R(s, x∗, x(s))x(s) ≤ η(t− s)λ‖x(s)‖2 (5.3.13)

124



and

‖z(t, t0, x0)‖2 ≤ µ(‖x(s)‖2)τ(t− t0), (5.3.14)

where λ is a positive constant. Now, applying Theorem 3.4.2, we conclude that

the trivial solution of (5.3.10) is asymptotically stable.

b) In the context of (5.3.10), (5.3.11), (5.3.12), (5.3.13),(5.3.14), considering auxil-

iary system (5.3.11) to be a nominal system corresponding to a system (5.3.10)

and following the argument used in Example 3.3.3, we get

‖x(t)− y(t)‖2 = ‖z(t, t0, x0)− z(t, t0, y0)‖2 + 2

∫ t

t0

LV (s,∆z)ds(5.3.15)

where

LV (s,∆z)

= (x(s)− y(s))TΦT (t, s)Φ(t, s)[R(t, x∗, x(s))x(s)−R(t, x∗, y(s))y(s)],

and ∆z = z(t, s, x(s)) − z(t, s, y(s)). Further assume that LV (s,∆z) ≤ η(t −

s)λ‖x(s)− y(s)‖2, where η and λ are defined in (5.3.13) satisfy all conditions in

Theorem 3.5.1. Thus, by the application of Theorem 3.5.1, systems (5.2.10) and

(5.3.11) are relatively asymptotically stable. In fact, the solution process (5.3.10)

has asymptotic equivalence property [6].

c) Imitating the argument used in Example 4.4.6, we apply Theorem 4.4.7 in the

context of Example 4.2.8, and obtain

LV (s, z(t, s, x(s))) ≤ e(s)V (s, z(t, s, x(s))). (5.3.16)

Here the deterministic comparison differential equation is (4.2.20). From Exam-
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ple 4.2.8, we have

‖x(t, t0, x0)‖2 ≤ ‖z(t, t0, z0)‖2exp
[ ∫ t

t0

e(s)ds
]
, t ≥ t0.

Further assume that

‖z(t, t0, x0)‖2 ≤ µ(‖x0‖2)τ(t− t0),

where τ(u) > 0 and τ(u) → 0 as u → ∞. Under this assumption, (JSM2)

of (4.2.20) and (4.2.13) follows immediately. Therefore, by the application of

Theorem 4.4.7, we conclude that the trivial solution of (5.3.10) is asymptotically

stable.

d) From Example 4.5.9 and (b), we have

LV (s, z(t, s, n(s))) = Vx(s, z(t, s, n(s)))Φ(t, s)
[
R(t, x∗, x(s))x(s)−R(t, x∗, y(s))y(s)]

(5.3.17)

where n(s) = x(s)− y(s). We assume that

LV (s, z(t, s, n(s))) ≤ e(s)V (s, z(t, s, n(s))). (5.3.18)

Hence the conclusion of Theorem 4.5.11 follows.

5.4 Stochastic Dynamical model for photosynthesis

In this section, we assume that the photosynthesis is under random perturbations.

Following the argument used in the deterministic case, stochastic differential equation
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can be written as a perturbed system:

dx = f(t, x)dt+ σ(t, x)dw(t), x(t0) = x0, (5.4.1)

and its unperturbed as well as auxiliary system is as:

dz = fx(t, x
∗)zdt+ σx(t, x

∗)zdw(t), z(t0) = x0, (5.4.2)

where,

f(t, x) = R(t, x∗, x− x∗)(x− x∗) + fx(t, x
∗)(x− x∗), (5.4.3)

σ(t, x) = γR(t, x∗, x− x∗)(x− x∗) + γfx(t, x
∗)(x− x∗) (5.4.4)

fx(t, x
∗) is defined in (5.3.9).

Using the generalized variation of constants formula(Theorem 3.2.1) with V (t, x) =

1
2
xTx, we obtain

V (t, x(t)) = V (t0, z(t)) +

∫ t

t0

LV (s, z(t, s, x(s)))ds

+

∫ t

t0

Vx(s, z(t, s, x(s)))γR(t, x∗, x(s))x(s)dw(s), (5.4.5)

where

LV (s, z(t, s, x(s)))

= zT (t, s, x(s))ΦT (t, s)Φ(t, s)(I − γ2fx(s, x
∗))R(s, x∗, x(s))x(s)

+
1

2
c(t, s, x(s))cT (t, s, x(s)),

(5.4.6)

and c(t, s, x(s)) = γΦ(t, s)R(s, x∗, x(s))x(s).
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Remark 5.4.1 a) From Example 3.4.4, we consider Example 3.2.4, and assume that

E[xT (s)ΦT (t, s)Φ(t, s)(I − γ2fx(s, x
∗))R(s, x∗, x(s))x(s)

≤ η(t− s)λ1E[‖x(s)‖2]

(5.4.7)

and

γ2E[xT (s)RT (s, x∗, x(s))ΦT (t, s)Φ(t, s)R(s, x∗, x(s))x(s))] ≤ η(t−s)λ2E[‖x(s)‖2]

(5.4.8)

From (5.4.7) and (5.4.8), LV (s, z(t, s, x(s))) satisfies Theorem 3.4.2,

LV (s, z(t, s, x(s))) = xT (s)ΦT (t, s)Φ(t, s)((I − γ2fx(s, x
∗))R(s, x∗, x(s))x(s)

+γ2xT (s)RT (s, x∗, x(s))ΦT (t, s)Φ(t, s)R(s, x∗, x(s))x(s)

≤ η(t− s)λ1

2
E[‖x(s)‖2], t0 ≤ s ≤ t,

where λ = λ1 + λ2.

Further assume that

E[‖z(t, t0, x0)‖2] ≤ µ(E[‖x(s)‖2])τ(t− t0). (5.4.9)

Therefore, by the application of Theorem 3.4.2, we conclude that the trivial so-

lution of (5.3.10) is asymptotically mean square stable.

b) Imitating Example 3.5.2 and using (5.4.1),(5.4.2),(5.4.6), (5.4.9), considering aux-

iliary system (5.4.2) to be a nominal system corresponding to a system (5.4.1)

and following the argument used in Example 3.2.2, Example 3.3.3, we obtain
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‖x(t)− y(t)‖2

= ‖z(t, t0, x0)− z(t, t0, y0)‖2 + 2

∫ t

t0

LV (s,∆z)ds

+2

∫ t

t0

(x(s)− y(s))TΦT (t, s)Φ(t, s)γ[R(s, x∗, x(s))x(s)−R(s, x∗, y(s))y(s)]dw(s),

(5.4.10)

where

LV (s,∆z)

= (x(s)− y(s))TΦT (t, s)Φ(t, s)(I − γ2fx(s, x
∗))(R(s, x∗, x(s))x(s)−R(s, x∗, y(s))y(s))

+
1

2
c(t, s, x(s), y(s))cT (t, s, x(s), y(s)),

c(t, s, x(s), y(s)) = γΦ(t, s)[R(s, x∗, x(s))x(s) − R(s, x∗, y(s))y(s)] and ∆z =

z(t, s, x(s))−z(t, s, y(s)). Further assume that 2E[LV (s,∆z)] ≤ η(t−s)λE[‖x(s)−

y(s)‖2], where η and λ are defined in (5.3.12) and satisfy all conditions in The-

orem 3.5.1. Thus, by the application of Theorem 3.5.1, systems (5.4.1) and

(5.4.2) are relatively asymptotically stable in the mean square sense. In fact, the

solution process (5.4.1) has asymptotic equivalence property [19].

c) Considering Example 4.4.8, we apply Theorem 4.4.7 to Example 4.2.8, and obtain

E[LV (s, z(t, s, x(s)))|Fs] ≤ e(s)E[V (s, z(t, s, x(s)))|Fs], (5.4.11)

whenever E[‖Φ(t, s)x(s)‖|2|Fs] exists for t ≥ s ≥ t0. Here the deterministic
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comparison differential equation is (4.2.20). From Example 4.2.8, we have

E[‖x(t, t0, x0)‖2] ≤ E[‖z(t, t0, z0)‖2]exp
[ ∫ t

t0

e(s)ds
]
, t ≥ t0.

Further assume that

E[‖z(t, t0, x0)‖2] ≤ µ(E[‖x0‖2])τ(t− t0),

where τ(u) > 0 and τ(u) → 0 as u → ∞. Under this assumption, (JSM2)

of (4.2.20) and (5.4.2) follows immediately. Therefore, by the application of

Theorem 4.4.7, we conclude that the trivial solution of (5.4.1) is asymptotically

mean square stable.

d) From Example 4.5.9, and (b), we obtain

LV (s, z(t, s, n(s)))

= Vx(s, z(t, s, n(s)))Φ(t, s)(I − γ2fx(s, x
∗))(R(s, x∗, x(s))x(s)−R(s, x∗, y(s))y(s))

+
1

2
c(t, s, x(s), y(s))cT (t, s, x(s), y(s))),

(5.4.12)

c(t, s, x(s), y(s)) = γΦ(t, s)[R(s, x∗, x(s))x(s) − R(s, x∗, y(s))y(s)], and n(s) =

x(s)− y(s). We assume that


LV (s, z(t, s, n(s))) ≤ e(s)V (s, z(t, s, n(s)))

Vx(s, z(t, s, n(s)))[Φ(t, s)[R(s, x∗, x(s))x(s)−R(s, x∗, y(s))y(s)]

= ν(s)V (s, z(t, s, n(s))).

(5.4.13)

Hence the conclusion of Theorem 4.5.10 follows.
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5.5 Numerical Illustration

In this section, we conduct a numerical study of dynamic model of photosynthetic

process. For this purpose, we consider the numerical solution of the system of differ-

ential equation (5.3.2), including se, using MATLAB and the following rate constants:

k1 = 0.1; k2 = 0.6;k3 = 1.0; k5 = 0.0036; k6 = 0.000105; k7 = 0.08; k8 = 0.08;

k9 = 0.01; I = 424. We used the parameters as suggested in [11]. Figures 5.1 to

5.6 show the numerical solution of the normalized differential equation(5.3.2). The

model describes the property of light and dark reactions. The processes occurring in

the light reactions are very rapid, Figure 2 compared with those occurring in the dark

reactions. Thus, the concentration of photoreceptors in the model is almost constant.

The dark reactions show more dynamic behaviour.

Figure 5.1: NADPH concentration as a function of time(min)
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Figure 5.2: PGA concentration as a function of time(min)

Figure 5.3: Carbon-dioxide concentration as a function of time(min)
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Figure 5.4: The product p as a function of time(min)

Figure 5.5: Concentration of the complex se as a function of time(min)
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Figure 5.6: Substrate concentration s as a function of time(min)

Remark 5.5.1 Figures 5.4 to 5.6 confirms the steady state exhibited in (5.3.5) in the

context of e(t) + se(t) = e0 and s(t) + sI(t) + p(t) = s0 where e0 and s0 are given

constants. We further examine the qualitative properties of (5.3.10) and (5.3.11). For

this purpose we compute fx(t, x
∗), and it is the matrix whose entries are as follows

−(42.4 + 0.6m∗) −0.6n∗ 0 0 0

−Nmaxs0m
∗ −(C∗ +Nmaxn

∗s0) (1−m∗) 0 −Nmaxn
∗m∗

0 0.0036C∗ −0.0036(1−m∗) 0 0

0 0 0 −(0.08e0 + 0.08) −0.08

0 0 0 −0.01 −0.01



134



References

[1] Agarwal, R. P. and Lakshmikantham, V., “Uniqueness and Nonuniqueness Crite-

ria for Ordinary Differenetial Equations”, World Scientific publishers, Singapore,

1993.

[2] Bainov, D., Lakshmikantham, V. and Simeonov, P., “Theory of Impulsive Dif-

ferential Equations”, World Scientific Publishers, Singapore, 1989.

[3] Bernt Øksendal, “ Stochastic Differential Equations, An Introduction with Ap-

plications”, Springer, 2003.

[4] Deo, S. G. and Lakshmikantham, V., “Method of Variation of Parameteres for

Nonlinear Problems”, Gordon and Breach Scientific Publishers, 1997.

[5] G. Ladas, G. Ladde, and Lakshmikantham, V., “Annali di Matematica pura ed

applicata”, 1973, XCV, 255.

[6] Gihman, I. I. and Skorohod, A. V., “Stochastic Differential Equations”, Springer-

verlag, New york, 1972.

[7] Guo, D. and Lakshmikantham, V., “Nonlinear Problems in Abstract Cones”,

Academic Press, New York,1988.

[8] Guo, D., Lakshmikantham,V., and Liu,X., “Nonlinear Integral Equations in Ab-

stract Spaces”, Kluwer Publishing,1996.

[9] Hasminiski, R. Z. “Stochastic Stability of Differential Equations”, Rochkvillr,

Maryland, 1980.

135



[10] J.D. Murray, “Mathematical Biology”, 1991, Spring-verlag.

[11] J. Milstein and H.J. Bremermann, J. Math. Biology, 1979,7,99.

[12] Kaymackcalan, B., Lakshmikantham, V., and Sivasundarm,S., “Dynamic Sys-

tems on Measure Chains”, Kluwer Publishing,1996.

[13] Ladas, G. and Lakshmikantham, V., “Diffrential Equations in Abstract

Spaces”,Academic Press, New York, 1972.

[14] Ladde, Anil G. and Ladde, G. S, “An Introdction to Differential Equations-

I: Deterministic Modeling, Methods and Analysis”, World scientific Publishing

Campany, Singapore, 2012.

[15] Ladde, Anil G. and Ladde, G. S, “An Introdction to Differential Equations-II:

Stochastic Modeling, Methods and Analysis”, World scientific Publishing Cam-

pany, Singapore, 2013.

[16] Ladde, G. S. and Lakshmikantham, V., “Random Differential Inequalities”, Aca-

demic Press, New York, 1980.

[17] Ladde, G. S., “Variational Comparison Thorem and Perturbation of Nonlinear

Systems of Differential Equations”, Proc. of Amer. Math. Soc, vol 52, pp.181-187,

1975.

[18] Ladde, G. S. Modeling of Dynamic systems by Itô-type systems of Stochastic Dif-
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