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Abstract
This research provides insight into changes in volumetric flushing of the Tampa Bay
estuary caused by synoptic scale wind events. The two main studies of this dissertation
involve 1) using wavelet analysis to investigate the link between the El Nifio-Southern
Oscillation (ENSO) and the frequency and strength of volumetric flushing driven by
synoptic variability and 2) using a multi-decadal model simulation to examine how
extratropical/winter storms and hurricanes affect the overall flushing rates for Tampa
Bay, FL.

In the first study, two analyses are performed on 55 years of observational data to
investigate the effect of multiple small wind events on estuarine flushing. First I use
subtidal observed water level as a proxy for mean tidal height to estimate the rate of
volumetric bay outflow. Second, | use wavelet analysis on sea level and wind data to
isolate the synoptic sea level and surface wind variance. For both analyses the long-term
monthly climatology is removed to focus on the volumetric and wavelet variance
anomalies. The overall correlation between the Oceanic Nifio index and volumetric
anomalies is small (r>=0.097) due to the seasonal dependence on the ENSO response.
The mean monthly climatology between the synoptic wavelet variance of elevation and
axial winds have similar seasonal behavior. During the winter, El Nifio (La Nifia)
increases (decreases) the synoptic variability, but decreases (increases) it during the
summer. The difference in winter EI Nifio/La Nifia wavelet variances is about 20% of the

climatological value. ENSO can swing the synoptic flushing of the bay by 0.22 bay

Xiv



volumes per month. These changes in circulation associated with synoptic variability
have the potential to impact mixing and transport within the bay.

In the second study, volumetric changes from large scale weather events are
investigated using a numerical circulation model simulation (1975-2006) to find the
cumulative impact of flushing on the bay by extreme events. The strong wind speeds,
duration of high winds and wind direction during these events all affect the amount of
water flushed in and out of the estuary. Normalized volume anomalies are largest when
wind components blow up/down the estuary in the NE/SW direction. Wind induced
normalized flushing rates for all 10 extratropical/winter storms range from 12% to 40%
and from 14% to 40% for all 10 hurricanes. All storms discussed in this study caused
winds greater than 15 m s™ (~30 knots). The direction of the winds had an impact on the
flushing rates during these extreme events. Storm9 (February 1998) and Hurricane
Gabrielle (September 2001) experienced the smallest total volume changes (14% and
13%). Both storms experienced weak axial and co-axial winds causing volume changes
to be small. The Storm of the Century (March 1993) and Hurricane Frances (September
2004) saw the largest total volume changes of 40%. They both had strong winds blowing
in the NE direction. Hurricane Frances had two wind peaks and lingered in the area for
approximately 48 hours, so both strength and duration of winds played a large role in the
total volume change. Total inflow and outflow rates per year show that there is year to

year variability of flushing in Tampa Bay.
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Introduction

Estuaries are semi-enclosed coastal regions where ocean water mixes with significant
amounts of freshwater from rivers (Dyer, 1973). They form a transition zone between
river environments and marine environments that are biologically productive and
economically important. They range from pristine bays to highly urbanized estuaries.
About half of the largest cities in the world are built around estuaries (Shi and Singh,
2003). Tampa Bay is the largest open water estuary in Florida and is home to the 10"
largest port system in the United States (Lewis et al., 1999). It is also one of the most
biologically diverse subtropical estuarine areas in the United States (Harwell et al., 1995).
The water quality and overall health of the bay is critical to the humans and wildlife that
live near or in the estuary and is often related to its ability to remove pollutants through
hydrodynamic flushing. Flushing rate is defined as the time required to replace the
volume of a basin by the volume influx. Flushing can be affected by multiple
mechanisms such as tidal currents, baroclinic exchange, and winds. These mechanisms
can influence the mixing and transport within an estuary. The mixing or circulation of
water can have an impact on transport and retention of organisms, nutrients, oxygen,
sediments and waste. It is important to understand of how flushing is affected or altered
by synoptic wind events to help aid in determining and improving water quality within an
estuarine system.

With the use of 55 years of observational data and a 32-year model simulation the

long-term cumulative impacts of wind driven volumetric changes in Tampa Bay will be



the main focus of this dissertation. Estuarine circulation is controlled by many factors
that include density-driven circulation, tides, and wind driven currents that all contribute
to the horizontal exchange processes in estuaries (Geyer and Signell, 1992). Specifically,
winds can induce subtidal variability in an estuary through remote and local effects.
Remote wind effects come predominantly from along-shelf winds, which produce coastal
sea level fluctuations along the shelf at the mouth of an estuary. Local wind effects act
directly over the surface of an estuary to produce subtidal variability within the system
(Janzen and Wong, 2002). Remote and local wind effects can produce very different
patterns of exchange between an estuary and the continental shelf (Wong and Valle-
Levinson, 2002). Weisberg and Sturges (1976) found that wind fluctuations dominated
the low frequency circulation in the Providence River and the west passage of
Narragansett Bay. Changes in wind patterns due to extratropical/winter storms and
hurricanes can also alter the wind-induced circulation. Throughout the Gulf of Mexico
coastline winds caused by winter weather systems affect sea level at times of several days
(Kennedy et al., 2007). Strong winds associated with winter storms can flush 30-50% of
water volume out of shallow bays in the Atchafalaya/\VVeermilion Bay regions in
Louisiana (Walker and Hammack, 2000). Hurricane induced winds can also produce
massive disturbances in estuaries (Greening et al., 2006). Approximately one-third of the
net outflow in Chesapeake Bay during Hurricane Floyd was caused by wind forcing
(\Valle-Levinson et al., 2002). Wilson et al. (2006) found that winds caused by Hurricane
Frances displaced about 40% of Tampa Bay’s volume in a single day. These studies
discuss short term impacts of strong wind events on estuarine flushing. Long-term

(multi-decadal) studies are rare.



This dissertation has two main objectives: 1) to investigate the link between the El
Nifio-Southern Oscillation (ENSO) and the frequency and strength of volumetric flushing
driven by synoptic variability and 2) to use model output from a multi-decadal run to
investigate how extratropical/winter storms and hurricanes affect the overall flushing
rates for Tampa Bay, FL. Inthe first study, wavelet analysis, as described by Torrence
and Compo (1998) and (Grinsted et al., 2004), is used to isolate the synoptic sea level and
surface wind variance. In the second, study the findings of Schmidt and Luther (2002)
and Burwell (2001) are combined to examine the changes in volumetric flushing caused
by strong wind events and to possibly find a link between ENSO and yearly flushing
rates of the bay.

The model used in this study is the Environmental Fluid Dynamics Code (EFDC).
It is equivalent to the Blumberg-Mellor model and was developed at the Virginia institute
of Marine Science (Hamrick, 1992). The main reason this model was chosen is that it
can simulate wetting and drying allowing for improved simulation of water level changes
during extreme events compared to models that do not simulate wetting and drying.

The first step of this study was to gather data from many different agencies
around the bay area. This data are used to make input files to run a numerical estuarine
circulation model and perform short tests to validate model output. The input files used
to run the model consist of freshwater input, salinity, zonal and meridional wind
components, and elevation. Once input files are created, they are added one at a time
between test runs to make sure that input files are formatted correctly and do not cause
any instabilities within the model. After all input files are included, short test runs of

approximately 1 year are done and model output is evaluated. Evaluation of the model



entails comparing model output with observational data as well as calculating mean
errors for model accuracy. Once evaluation of model output is complete, the multi-decal
model run (1970-2006) is started.

This dissertation begins with a description of the bay, and operational data. This
is followed by a description of observational data. The type of data gathered, the
agencies that provide the data, and any formatting done to average or fill in gaps is
discussed in detail. The next section describes the EFDC model. Specifics about the
computational and numerical scheme, mass conservation, and model bathymetry are
explained. The chapter then ends with an explanation of the multi-decadal model
simulation and evaluation. Mean errors and correlation values are also calculated
evaluate model accuracy.

The next chapter presents a wavelet analysis investigating a link between ENSO
and the frequency and strength of volumetric flushing driven by synoptic variability,
building on Wilson et al. (2013). Two types of analyses are performed on the 55 years of
observational data. The first analysis uses the residual observed water level as a
surrogate for mean tidal height to calculate total volume and get an estimate of the rate of
volumetric outflow. The second analysis uses wavelet analysis to isolate and quantify the
variance of elevation and winds in the synoptic frequency band. Details about the
volumetric analysis and how wavelet variance is used to examine the time-frequency
variations in the synoptic activity are described. The chapter ends by describing the
results from applying these methods and discusses the impacts of ENSO on estuarine

flushing.



The second study is described in the final chapter. This study uses the model
output from the multi-decadal run. The objectives of this study are: 1) to use the model
to examine how large-scale weather patterns such as winter storms and hurricanes alter
the wind-induced circulation, and 2) to find the cumulative impact of flushing of the bay
by these wind events. Model elevation is used to calculate normalized volume anomalies
and flushing rates for the entire 32-year period. Volume anomalies and flushing rates for
10 extratropical/winter storms and 10 hurricanes that occurred during 1975-2006 are then
estimated. The specifics of two of these extratropical/winter storms and hurricanes are
discussed in detail. The chapter ends with results for each extreme event, describes the
differences in the volume changes and flushing rates between extreme events, and
evaluates how characteristics of individual events (e.g. wind speeds, directions, and
duration) affect flushing rates to either increase or decrease.

Together, these studies will provide a better understanding of how the Tampa Bay
estuary responds to synoptic scaled weather events. The influence of flushing, mixing
and transport caused by synoptic events can affect the nutrient and pollutant distribution,
sediment resuspension, and turbidity, potentially affecting the biological condition of the

Bay.



Chapter 1: Tampa Bay, Data Collection, Model Simulation and Evaluation

Tampa Bay

Tampa Bay is located on the central part of the west coast of Florida., and is the
largest estuary and port in Florida as well as the tenth largest U.S. commercial port in
terms of tonnage handled (Lewis et al., 1999). It is also one of the most biologically
diverse subtropical estuarine areas in the United States (Schmidt and Luther, 2002). The
bay is a significant marine resource for the State of Florida and provides major ports of
commerce, supports a variety of fisheries, offers important recreational opportunities for
Florida’s residents and visitors, and also accommodates the community needs of power
generation, fresh water supply and wastewater reception (Weisberg and Williams, 1991;
Weisberg and Zheng, 2006).
Tampa Bay begins at the Gulf of Mexico near 82.50° W and 27.60° N, and extends in a
northeast direction approximately 53 km. The bay has natural channels that follow the
main core of the Y-shaped estuary with depths up to 10 meters. The estuary has two
branches and lower and middle stem segments that are referred to as Old Tampa Bay,
Hillsborough Bay, Lower and Middle Tampa Bay (Figure 1), respectively (Lewis, 1982).
Tampa Bay covers approximately one thousand square kilometers and has an average
depth of approximately 4 meters (Goodwin, 1987). The width of the bay is about 15 km
at its midsection. Dredged navigation channels lead to many of the main port facilities.

The depths of the channels have increased to 15 meters to meet the requirements of
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shipping to occur in the bay (Zervas, 1993). The maximum depth is about 27 meters in
Egmont Channel near the mouth of the Bay.

Tampa Bay has a circulation that is 3-dimensional and time dependent. Tides,
winds, and rivers all have a significant effect on the circulation (Galperin, 1991,
Weisberg and Zheng, 2006). Tides are mixed semidiurnal and diurnal, with a range of
less than a meter at the Bay mouth to over a meter at the Bay head. The tidal entering the
Bay can be characterized as a progressive wave, that transitions into a standing wave in
Hillsborough Bay. Tidal epochs indicate that the tide travels from the mouth of the Bay to
the head of Old Tampa Bay and Hillsborough Bay in approximately 4.6 hours and 3.2
hours, respectively (Zervas, 1993). In the ship channel under the Sunshine Skyway
Bridge, tidal currents are uniform with depth and have peak amplitudes ranging from 0.5
m s™ during a neap cycle and 1 m s™ during a spring cycle (Li, 1993). The tidal currents
have also been observed to have maximum speeds on the order of 1.0 to 1.5 ms™ in the
Egmont Channel and the channel leading to Old Tampa Bay (Vincent, 2001).

The Bay has major inputs of fresh water located on the east and south sides. The
Alafia and Hillsborough Rivers drain into the bay from the northeast, near the head of the
bay. The Little Manatee River enters on the eastern side and the Manatee River on the
south near the mouth of the Bay. Using flow rates from table 4 in Meyers et al. (2007),
these four rivers account for 27% of the average total freshwater input to the bay.

The salinity of the bay is regulated by the fresh water sources and the Gulf of
Mexico water at the open boundary. Salinities in the bay vary from a high of
approximately 35 at the entrance of the bay to a low of 20 ppt or less in the northern and

eastern parts of Hillsborough Bay and the northwest part of Old Tampa Bay (Boler,



1992). Salinities in the bay are lowest in the summer and highest in the winter due to the
pronounced influence of seasonal precipitation patterns, characterized by wet summers
and dry winters.

With the amount of freshwater inflow into the bay, shallow average depth, and
strong tidal mixing, salinity is well mixed vertically. Significant horizontal salinity
gradients persist due to the distribution of fresh water inflow. These horizontal gradients
and surface wind forcing maintain the fully three-dimensional circulation of the bay (L,
1993). Lower salinity at the head of the Bay and higher salinity at the mouth cause an
axial pressure gradient force to exist that drives the non-tidal (residual), gravitational
convection mode of circulation (Weisberg and Zheng, 2006).

Burwell (2001) found the residual circulation in Tampa Bay appears to be a mix
of classical two layer flow over the shipping channels with denser ocean water flowing in
at depth and fresher water flowing out of the bay near the surface and along the relatively
shallow sides of the bay. The residual circulation speed can vary by a factor of 3 and
alter in direction (Meyers et al., 2007). Flushing of the bay occurs through the deep
navigational channels running northeast/southwest from the mouth. Residence times in
the channels are on the order of 15 days to one month and increase to over three months

outside the channels near the edges of the bay and in persistent eddies (Burwell, 2001).

Data Collection
57 years of observational data are collected from various sources. Data includes
precipitation, streamflow, waste water treatment plant discharge, water level, winds, and

salinity. Precipitation data for 22 sites around the bay are used, with four of the sites



having data dating back to 1950 (Southwest Florida Water Management District; Figure
2). Daily averages are calculated for sites that had complete daily records for 1/1/1950—
12/31/2006 (Figure 3). The least number of sites available to compute the daily averages
is 3 and the most is 13 (Figure 4). These daily averages are used uniformly across the
model grid and will contribute to the total fresh water input.

Streamflow data from the United States Geological Survey (USGS) for 22 sites
are downloaded and compared with 3 (Little Manatee, Alafia, and Hillsborough) sites

having data dating back to 1950 (Table 1). Correlations are done between all the sites

that have 5 years of data (2002-2007). The average flow from 2002-2007 (riv) from all
sites are calculated and used to find scales (1) between sites that have correlations higher
than 0.7, these scales are used to fill in the gaps of all the rivers with missing data from

January 1, 1950 to December 31, 2006. Equation 2 is an example of how gaps are filled

within the data.

if correlationof rivland riv2> 0.7 then scale = LV; 1)
riv

to fill riv2, riv2 = rivlx scale (2

Each site is filled with the scaled data from another site with the highest correlation first,
if there are still gaps in the data the scale of the site with the next highest correlation is
used, and so on. At most, this process is done 4 times, but most of the sites are
completely filled when this process is done twice. Each site is correlated with the Little
Manatee, Alafia, or Hillsborough River, so every river is able to be filled to January 1,
1950.

Discharge are collected from each waste water treatment plant. Data from the

Tampa Bypass Canal is collected from Tampa Bay Water. The Tampa Bypass Canal and
10
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Table 1. Streamflow gauges, discharge start and end date used for fresh water input.

Discharge
Station Name Start End

Ward Lake near Bradenton, FL 4/1/1992 | 5/27/2007
Gamble Creek near Parrish, FL 10/1/2000 | 5/27/2007
Manatee River near Myakka Head, FL 4/20/1966 | 5/27/2007
Little Manatee River near Wimauma, FL 4/1/1939 | 5/27/2007
Bullfrog Creek near Wimauma, FL 10/1/1956 | 5/27/2007
Alafia River near Lithia, FL 10/1/1932 | 6/17/2007
Archie Creek at 78th Street near Tampa, FL 2/1/1999 | 5/27/2007
North Archie Creek at Progress Blvd. near Tampa, FL 2/1/1999 | 5/27/2007
Delaney Creek popoff canal near Tampa, FL 2/8/1999 | 5/27/2007
Delaney Creek near Tampa, FL 10/1/1984 | 5/27/2007
East Lake outfall at E. Chelsea St. near Tampa, FL 2/3/1999 | 5/27/2007
Sulphur Springs at Sulphur Springs, FL 7/1/1959 | 5/27/2007

4/25/1974 | 9/30/2006
Hillsborough River near Tampa, FL 10/1/1938 | 5/27/2007
Sweetwater Creek near Tampa, FL 10/1/1985 | 5/27/2007
Henry Street Canal near Tampa, FL 10/1/1985 | 5/27/2007
Rocky Creek at St Hwy 587 at Citrus Park, FL 10/1/1985 | 5/27/2007
Brushy Creek near Citrus Park, FL 6/1/1993 | 5/27/2007
Brooker Creek near Tarpon Springs, FL 9/1/1950 | 5/24/2007
Curlew Creek at County Road 1 near Ozona, FL 8/9/1999 | 5/27/2007
Curlew Creek at Evans Road near Dunedin, FL 8/9/1999 | 5/27/2007
Pinebrook Canal at Bryan Dairy Road at Pinellas Park, FL| 8/1/1999 | 5/27/2007
Saint Joe Creek at Pinellas Park, FL 6/29/2000 | 5/27/2007

the Howard Curren Waste Water Treament Plant discharge the largest amounts of water
into the bay (Meyers et al., 2007), so these two sites are used. The Howard Curren
treatment plant has monthly data available from 1951 to present and the Tampa Bypass
Canal has daily data dating back to 1974.

Hourly water levels referenced to mean sea level (MSL) are available for are the
St. Petersburg tide gauge (station 8726520) for the entire 57-year period (NOAA Tides
and Currents). Two 1-2 year gaps in the data are omitted from the record; small gaps (<

1 week) are filled with predicted tide data from the NOAA Tides and Currents website.
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The filled data is given a 2 hour lag (the approximate lag from the St. Petersburg tide
station to Egmont Key) to represent the water level at the open boundary of the model
located at the mouth of the bay (Figure 5).

Hourly wind speed and direction are from Albert Whitted Airport, MacDill Air
Force Base, and Tampa International Airport (NOAA National Climatic Data Center).
MacDill Air Force Base and Tampa International Airport each had data dating back to
1950 (Table 2). Zonal (east/west, u-component) and meridional (north/south, v-
component) components are calculated using the wind speeds and directions from each
site, then the hourly components from all three sites are averaged. After averaging, any
small gaps are filled by interpolation.

Monthly salinity data is collected and provided from the Environmental
Protection Commission of Hillsborough County (EPCHC) at approximately 100 sites in
the bay (Figure 6). Salinity data is available from 1974-present. Salinity from site 93,
just south of Egmont Key, is used at the open boundary of the model. Small gaps in the

data are filled by interpolation (Figure 7).

Table 2. Start and end date of wind data downloaded from the NOAA National Climatic
Data Center.

Start Spd.
Station Date End Date Type Dir. Units Units
Angular
Albert Whitted | 1/1/1986 | 12/31/2006 | Hourly Degrees m/s
Angular
MacDill 1/1/1950 | 12/31/1999 | Hourly Degrees m/s
Angular
1/1/2000 | 12/29/2006 | Hourly Degrees m/s
Angular
Tampa 1/1/1950 | 12/31/1972 | Hourly Degrees m/s
Angular
1/1/1973 | 12/31/2006 | Hourly Degrees m/s

15
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EFDC Model

The model used for this study is the Environmental Fluid Dynamics Code (EFDC)
model that was developed at the Virginia Institute of Marine Science (Hamrick, 1992).
The physics and many aspects of the computational scheme of the EFDC model are
equivalent to the Blumberg-Mellor model. The model solves the three-dimensional,
vertically hydrostatic, free surface, turbulent averaged equations of motion for a variable
density fluid. EFDC uses a stretched or “sigma” vertical coordinate and Cartesian or
curvilinear, orthogonal horizontal coordinates and solves the dynamically coupled
transport equations for turbulent kinetic energy, turbulent length scale, salinity and
temperature. The model allows for drying and wetting in shallow areas by a mass
conservative scheme. This wetting and drying capability allows for model stability
during extreme events. Without this stability the model bathymetry would have to be
artificially deepened so that no grid cells go dry during an extreme event. With this
capability a more accurate picture of how water levels change during extreme events can
be produced.

The numerical scheme to solve the equations of motion uses second order
accurate spatial finite difference on a staggered or C grid. The model’s time integration
employs a second order accurate three time level, finite difference scheme with an
internal-external mode splitting proceducre to separate the internal shear or baroclinic
mode from the external free surface gravity wave or barotropic mode. The internal
momentum equation solution is implicit with respect to vertical diffusion and is in terms

of the vertical profile of shear stress and velocity shear, which results in the simplest and

19



most accurate form of the baroclinic pressure gradients and eliminates the over
determined character of the alternate internal mode formulations.

The EFDC model implements a second order accurate in space and time, mass
conservation fractional step solution scheme for the Eulerian transport equations at the
same time step or twice the time step of the momentum equation solution. The advective
stop of the transport solution uses either the central difference scheme used in the
Blumberg-Mellor model or a hierarchy of positive definite upwind difference schemes
(Hamrick, 1996). The difference scheme of Blumberg-Mellor will be used in this study.

Bathymetry of the model is based on the previous ECOM-3D model of Tampa
Bay. It usesa 70 by 100 grid in the horizontal and 11 sigma levels in the vertical and has
a minimum depth of 1.3 MLLW (Figure 8). Model input consist of freshwater input,
salinity, zonal and meridional wind components, and elevation. Open boundary
conditions at the mouth are provided by measured salinity and sea surface elevation. The
EFDC runs on a Dell Precision Workstation 470. A 60 second time step is used. This
represents a compromise between the need to satisfy numerical stability and the need for
the most rapid computation time. Even with this compromise, the total computation time

for the 37 year run was approximately 2 months.

Model Simulation/Evaluation

The EFDC model is run from 1970-2006, with a model time step of 60 seconds.
The input files needed to run the model are created from the observational data described
previously. The model is initialized with uniform salinity of 35 and elevation throughout

the model grid. Salinity from EPCHC site 93 and 2-hr lagged elevation data from the
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St.Petersburg tide gauge are used at the open boundary of the model, near the mouth of
the estuary. Spatially uniform winds were used throughout the model grid. Winds speed
and directions from 5 airports around the bay and the CCUT tower located in the middle
of the bay show that wind speeds and directions do not vary much across the bay (Figure
9). This justifies the use of spatially uniform winds. Freshwater was used at the point
source locations mentioned previously. The model output was archived hourly for all 37
years.

The 37 year model simulation is divided into two separate model runs (run 100
and run 101). Run 100 archives model output from 1970 -1993 and run 101 archives
years 1985 — 2006. Run 100 started in January of 1970 and crashed in April of 1993.
This run took approximately two weeks to complete. Reasons as to why the model
crashed are still unknown. Model output during the end of run 100 is looked over
extensively and no known source for the crash is found. Speculation is that the total run
time of 37 years is too long for the model to handle. To accomplish the second half of
the 37 year run the model is restarted in 1985. A cold start is used with elevation and
velocity initialized to 0. A new salinity initialization file is created using model salinity
output for 1985 from run 100. Run 101 starts in January of 1985 and ends at the end of
2006. To get a continuous 37 years of model output, comparisons between the
overlapping years of run 100 and run 101 are done. Mean differences of model output
between runs 100 and 101 are calculated for the years of 1985 to 1993 for elevation,
salinity, and the u, v, and w-components of velocity (Figures 10-14). These plots show
that it takes ~5 years for the model to converge, so we allow 5 years for model spin up

time and model output from 1970-1974 is omitted and a total record of 32 years is used.
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Figure 9. Comparison of wind speeds and directions from 5 airports surrounding the bay
and the CCUT tower (black) located in the middle of the bay for September 2004.
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The plots also show that by the beginning of 1993 the mean differences are almost 0 for
all variables. This allows the piecing together of model output from both runs without
having to do any type of smoothing between years 1992 and 1993.

To evaluate model accuracy, model salinity and elevation output from 1975-2006
are compared to observational salinity and elevation data. | allowed for five years of
model spin up time so model output from 1970-1974 is omitted and a total record of 32
years is used. Salinity data from the Bay are compared to the model salinity from the
grid cell closest to the locations of each EPCHC site (Appendix A). Model salinity
closest to the time of each salinity measurement are extracted from 1975-2006 for a total
of 432 data points to calculate bias mean errors and normalized root mean square errors
(RMSE) between model salinity output and observed monthly salinity. Normalized

RMSE was calculated using the following equation

JZ(XM«)— X (1))
n
Op

N RMSE —

where Xu(t) is model ouput, Xo(t) is observational data, n is the number of data points in
the integration, and oo is the standard deviation of Xo(t). Yearly bias bay mean errors
and normalized RMSE for the near surface and bottom are shown in Appendix B. The
average bay mean error and normalized RMSE for all 32 years at the near surface is -
1.336 and 0.916, -1.455 and 0.993 at the bottom (Figures 15-18). The largest bias errors
are seen in Hillsborough Bay and Old Tampa Bay. This is most likely due to the
freshwater input flow not being represented accurately and the model resolution. Model
elevation is compared to elevation data from the St. Petersburg, Old Port Tampa, Port

Manatee, and McKay Bay tide gauges at the 4 grid cell locations closest to each tide
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gauge for the year 2005 (Figure 19). The bias mean errors for elevation at the four
different locations are -0.024, -0.019, -0.006, and -0.022, respectively, and 0.21, 0.262,
0.192, and 0.284 for the normalized RMSE. The r? values are 0.965, 0.941, 0.965, and
0.925. Yearly comparisons of the model output and the St. Petersburg tide gauge for the
entire 32 year period can be seen in Appendix C.

The axial (v) velocities of the model at grid cell (34, 24) and the bottom mounted
ADCP located under the Sunshine Skyway Bridge are also compared for 2004 (Figure
20). The ADCP failed twice during 2004 splitting the data into three segments (first,
second, and third in figure 20). The axial model velocities corresponding to the time
frames of the three segments are compared to the ADCP data. The three segments for
both the model and ADCP are averaged and compared as well. Positive values indicate
inflow into the estuary and negative values indicate outflow. Both the model and ADCP
velocities show an inflow at depth and outflow near the surface. The ADCP shows
stronger inflows than the model, this is due to the model bathymetry. The ADCP is
located in the middle of the shipping channel, and the model bathymetry is unable to
exactly replicate the steep and narrow channel. The shipping channel in the model
bathymetry is wider, causing velocities to be slower at depth. The width of the shipping
channel under the Sunshine Skyway Bridge is ~213 m and the depth is ~14 m, making
the cross-sectional area ~2982 m®. The cross-sectional area of the channel represented by
the model grid cell at the location of the ADCP is ~6064 m?. The ratio of the cross-
sectional areas is ~2 which would account for the velocity differences between the model
and the ADCP. The good representation of salinity throughout the bay by the model

shows that the transport is correct.
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Chapter 2: Synoptic Volumetric Variations and Flushing of the Tampa Bay Estuary

Note to Reader
Work, tables, and figures from this chapter has been previously published (Wilson

et al., 2013) and is utilized with permission of the publisher (Springer).

Introduction

In the extratropics, day-to-day weather is controlled by synoptic-scale atmospheric
circulation. The main features of this circulation dictate the type of air mass, radiation,
temperature, moisture, and pressure over an area (Comrie and Yarnal, 1992). There are
two dominant air masses over the southeastern United States, the maritime tropical and
continental polar. During summer the maritime tropical air masses are driven into the
Southeast by the clockwise flow of air around the Bermuda High. As these warm, the
moist air moves inland and interacts with the relatively hot surface to produce frequent
air mass thunderstorms (Critchfield, 1983). This convective storm activity, usually in the
form of late afternoon thunderstorms, supplies most of the precipitation for the southeast
during the summer. In winter, the southeastern states are an interaction zone between the
warm, moist maritime tropical air from the Gulf of Mexico and the cold, dry polar air
from Canada. The contrast in air masses creates baroclinic instability, which leads to
cyclogenesis, and the development of middle latitude wave cyclones. The wave cyclone

is associated with warm, cold, and occluded fronts that supply the bulk of wintertime
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precipitation in the region. The polar front jet stream also tracks directly across the
Southeast, which causes the region to experience frequent cyclonic activity in winter
from storms that are spawned within the region (Soulé, 1998). In Florida, winter-frontal
systems pass through bringing cold air from Canada and generating strong, sustained
wind and increased precipitation (Schoellhamer, 1995).

The EI Nifio-Southern Oscillation (ENSO) is a dominant source of interannual
climate variability around the world (Trenberth, 1997). Changes in atmospheric pressure
across the equatorial Pacific during ENSO are accompanied by shifts in tropical rainfall,
and affect wind patterns over most of the globe (Rasmusson and Carpenter, 1982),
e.g.strengthening of jet streams and steering of extratropical storms and frontal systems
along paths that are significantly different than normal. Climate changes associated with
ENSO occur across the United States (Enloe et al., 2004). At time scales greater than a
year, ENSO dominates the sea level signal in San Francisco Bay where it creates a 10-15
cm fluctuation (Ryan and Noble, 2007). During El Nifio enhanced precipitation occurs
over the Gulf Coast and Florida (Smith et al., 1998). Kennedy et al. (2007) analyzed the
effects of ENSO on sea level anomalies along the Gulf of Mexico coast and showed that
the maximum sea level variability occurred during the winter months of the ENSO warm
phase. These changes are caused by deviations in wind speed and direction from
extratropical cyclones and frontal boundaries, sea level pressure differences, and tropical
cyclones near or in the Gulf of Mexico. Midlatitude synoptic winter weather patterns
shift equatorward (poleward) across North America during EI Nifio (La Nifia) events and
lead to shifts in temperature and precipitation patterns (Rasmusson and Carpenter, 1982).

In Florida, El Nifo years tend to be cooler and wetter, and La Nifia years tend to be
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warmer and drier than normal from fall to spring, with the strongest effect in the winter
(Sittel, 1994).

ENSO impacts can also be highly local. Schmidt and Luther (2002) showed that
the connection between Tampa Bay (TB) salinity and ENSO is a complicated chain of
impacts, from ENSO sea surface temperature anomalies, to global weather patterns, local
precipitation effects, spatially variable discharge and runoff patterns within the TB
drainage area, through to the salinity distribution. The residual circulation in Tampa Bay
estuary is largely driven by the salinity (density) gradient between the bay head and
mouth which has a strong annual and interannual signal (Meyers et al., 2007). Important
supports of this gradient are freshwater sources near the head which in turn are fed by
rainfall in the estuarine watershed. Over the TB watershed, winter wind and rainfall are
dominated by synoptic weather events, and in the summer, hurricanes contain energy at
the synoptic scale. Strong wind events can drive water across the mouth of the bay,
producing a relatively rapid change in bay volume. This happened, for example, when
Hurricane Frances displaced about 40% of the bay volume with new ocean water and
enhanced the freshwater discharge for days in September of 2004 (Wilson et al., 2006).
The effect of multiple smaller wind events on estuarine flushing is not yet well
understood, and is what we focus on here.

Estuaries are semi-enclosed coastal regions where ocean water mixes with
significant amounts of freshwater (Dyer, 1973; Pritchard, 1956). These
freshwater/ocean/land interfaces are biologically productive and economically important.
They range from nearly pristine bays to highly urbanized estuaries with extensive built

infrastructure supporting large human populations. About half of the largest cities in the
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world are built around estuaries (Shi and Singh, 2003). The health of estuaries is often
related to their ability to remove pollutants through hydrodynamic flushing, which in turn
is driven by multiple mechanisms (Geyer and Signell, 1992). These include tidal
currents, baroclinic exchange, and surface wind stress along the main estuarine axis. The
tidal and wind-driven flushing produces changes in the estuarine volume, whereas the
exchange flow is associated with constant volume (Knudsen, 1900). The biology within
an estuary can also be affected by estuarine flushing. For example, by relating
phytoplankton species composition to estuary hydrology, Ketchum (1954) demonstrated
how the rate of estuarine flushing can be a determining factor for the presence of
phytoplankton populations. With phytoplankton playing a key role in the biological food
chain, changes in flushing that affect phytoplankton populations could potentially harm
the biology at higher trophic levels.

In spite of this complexity, the overall flushing of an estuary often simplifies to a
simple mathematical form (Meyers et al., 2013). The linear response of sea level to
winds at angular frequency «=27f in a narrow estuary of length L, constant depth h, and

bottom stress r(U/h), is given by (Wong and Moses-Hall, 1998)

_ (cos [k(L—x)] 1 sin(kx)
n(x, m) - { cos (kL) }:'?0 + ghk cos{kL}T(m) (1)

where n is the elevation at the mouth, x is the distance from the head (x=0) to the mouth
(x=L) in the estuary, g is gravitational acceleration (10 m%s), and

w? . Tw
= Jgn i )

with i =+/—1. The first term is the response to the total remote signal or coastal setup,

generated by winds and currents outside the estuary. The second term is the response to
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local wind forcing. At low frequencies || k|l << L™ (1) becomes = 1, + x7/gh,
indicating the estuarine response loses phase information and the water level response is

“instantaneous.” Synoptic winds satisfy this low frequency condition since their

frequency is given by f « %wlﬁ x 1075 s,

Wavelet analysis has become a common tool for analyzing localized variations of
power within a time series (Torrence and Compo, 1998). The analysis shows how the
spectral amplitude and phase change in time-frequency space. Goring and Bell (1999)
used wavelets to analyze interannual and decadal variability in sea-level data from two
sites in Northern New Zealand along with the Southern Oscillations Index (SOI). Their
results show that during EI Nifio, negative SOI is accompanied by negative mean sea
level, however, the relationship is sometimes weak and non-stationary. Percival and
Mofjeld (1997) demonstrated that subtidal sea level fluctuations are strongest during the
winter and occur at the synoptic scales of 4-16 days, and that there were interannual
variations in both the seasonal and intraseasonal fluctuations that coincided with major
ENSO events in the Equatorial Pacific Ocean.

This study investigates the link between ENSO and the frequency and strength of
volumetric flushing driven by synoptic variability in Tampa Bay. The next section
details the data used in this study and explains the volumetric analysis performed and
how wavelet variance is used to examine the time-frequency variations in the synoptic
activity. The third section gives the results of applying these methods to the
observational data. The final section discusses the results and implications of ENSO

impacts on estuarine flushing.
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Data and Methods

Data

Fifty-seven years of hourly elevation and wind data are obtained. Elevation, relative to
Mean Sea Level (MSL), is provided by National Oceanic and Atmospheric
Administration (NOAA) Tides and Currents for the St. Petersburg tide gauge
(#8726520). Small gaps (< 1 week) in the record are filled with predicted tides. The
years 1952 and 1964 are omitted due to large gaps (> few months) in the record.

Hourly wind data are obtained from the NOAA National Climatic Data Center at
three locations: Albert Whited Airport, MacDill Air Force Base, and Tampa International
Airport (Figure 21). Both the MacDill Air Force Base and Tampa International Airport
had data dating back to 1950. The zonal (u) and meridional (v) components are
calculated using the wind speeds and directions from each site, then the hourly
components from all three sites are averaged. All three sites are used to fill gaps and
reduce local effects. All remaining gaps in the data are small and filled by linear
interpolation. The zonal and meridional wind components are rotated 40° clockwise
from true north to yield the axial (along the main axis of the bay) and co-axial
(perpendicular to the main axis of the bay) wind components.

Sea surface temperature monthly Oceanic Nifio Index (ONI) is obtained from
NOAA’s Climate Prediction Center. The warm and cold episodes are identified using a
threshold of +/- 0.5°C relative to the average of the 1971-2000 base period

(http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml).

42



l|I1[I|1|I|.|[|[|[1[I|l|ll;l|l|.|

L1l

28.0 ot

eTIA
I "; .

27.9

1
7
>
=
F.
|II||IIII]III.l

27.8 g™

JIIIIIII]Il]I

27.7

|

||III.III

27.6

I . |

Figure 21. Map of Tampa Bay. Red circle indicates location of the St. Petersburg tide
gauge (SPTG) and blue circles indicate airport locations (TIA Tampa International
Airport, MDAFB MacDill Air Force Base, AWA Albert Whitted Airport). Arrows show
direction of axial and co-axial winds.
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Volumetric Analysis

Elevation data from the St. Petersburg tide gauge is used to calculate volumetric changes
in the bay. Using a least squares method, the 10 largest tidal constituents in TB are
removed from the elevation data. It is then smoothed with a 25-hr box-car filter to
remove any residual signals outside the synoptic band. The observed and filtered time
series are shown in figure 22. Equation 1 presumes that the synoptic elevation changes at
any point are in phase across the estuary so the elevation at any point can be used to
represent the mean elevation change and therefore the volumetric change. That is, the

synoptic volume is given by
V@ = « || nodxay
A

where n; is the filtered elevation at location i, the integration is over the surface area
(dxdy) of the bay, and « is an unknown scaling factor to account for the spatial variations
of the response in (1) to 7. This is not as simple as creating a linear function ~ xt/gh as
the i, term is also largely driven by the wind stress (Wong and Moses-Hall, 1998). For
simplicity we assume « = 1.

Ignoring temporal changes to the coastline induced by the contrast between high
and lower water levels, the total bay volume can be estimated as V(t) = aAn(t). All
though this approximation is less accurate at tidal frequencies it still provides a useful
value by which to assess the relative importance of the synoptic-scale flushing. The total

volumetric flushing is estimated as
av
FO) = 55 ®3)

with the summation limited to time periods j when the derivative is negative. F(t) is then
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normalized by the mean bay volume (3.8 x 10% m?). A monthly time series E,, (t) is
formed by calculating the total of (3) for each month m over all the years of data (Figure
23). These monthly values are then used to obtain the monthly climatology, E,(t), which
is subtracted from the monthly values to produce monthly anomalies FE,(t). F,(t) is then
smoothed with a 5-month box-car filter, and the same is done with the monthly ONI sea

surface temperatures also shown in figure 23.

Wavelet Analysis

Traditional Fourier spectral methods assume that the underlying (synoptic) processes are
stationary in time. However, it is well established that there is a significant seasonal
dependence on the impact of ENSO in Tampa Bay. The assumption of stationarity in
these methods would “smooth out” this seasonal dependency in the data.

Continuous wavelet transforms expand a time series into time frequency space
and as a result find the localized intermittent periodicities (Grinsted et al., 2004).
Wavelet analysis provides a better method to filter the synoptic signal and allows for the
synoptic scale variance to be calculated without losing the seasonal dependency.

In order to isolate and quantify the variance in the synoptic frequency band as a
function of time a wavelet transform (4) is performed on normalized hourly elevation,
and the axial and co-axial components of the wind for the entire 55 year record
(Appendix D). The wavelet transform is a consecutive series of band-pass filters applied
to the time series where the wavelet scale is linearly related to the period of the filter

(Grinsted et al., 2004). The one-dimensional continuous wavelet transform is given by

T,@ta) = -5 [ g (25) F@ear’ (4)
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where f(t) is the data time series, t corresponds to the time, and a is a scaling parameter
(Farge, 1992). All time series examined here are normalized to unit variance before the
transform is computed. The Morlet wavelet

g(t) — e:‘cte—tz,fz (5)
is used, where i =+/—1 and c is a scalar here chosen to be 5. The Morlet wavelet
provides a good balance between time and frequency localization (Grinsted et al., 2004).
The relation of Meyers et al. (1993) converts between the more commonly used and

intuitive Fourier period A and wavelet scale (for the Morlet wavelet) as

c+(24c2)1/2

a=——/—4 (6)
Equation (4) yields a two-dimensional parameter space (t,a) from a one dimensional time

series (Emery and Thomson, 2001). The total wavelet variance between periods of A=2

to 20 days is:

E@ = %7, (e, D (7)

Using the same methods described in the previous subsection a monthly time
series E,,(t) and monthly climatology E.(t) are calculated to produce monthly
anomalies E,(t) as shown in figure 24. The anomalies are then averaged over seasons
as defined by Schmidt and Luther (2002), binned according to the warm, cold, or neutral
ENSO phases defined by ONI, and then averaged to produce seasonal anomalies (SA)
(Figure 25).

A Kruskal-Wallis test is used to compare variations of ENSO phases during each
season for each variable. The Kruskal-Wallis test is a non-parametric form of the
ANOVA (a collection of statistical models used to analyze the differences between group

means and their associated procedures) that is used to compare three or more groups of
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Figure 24. Monthly annual climatology, Ea(t), of synoptic wavelet variance for
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about 4m/s for wind, respectively.
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sample data. This method is used to determine if the mean anomalies are significantly
distinct from each other within each season. The Kruskal-Wallis test returns the H-
statistic and the probability of obtaining a value equal to or greater than H from a Chi-

square distribution (Table 3) (Kruskal and Wallis, 1952).

Table 3. Results of Kruskal-Wallis test. Table provides the H-statistic and probabilities
of the null hypothesis being true.

Winter Spring Summer Fall

Variable H-stat | Prob. H-stat | Prob. | H-stat | Prob. | H-stat | Prob.

Elevation 4.825 | 0.096 | 0.7418 | 0.69 2.841 | 0.242 | 2.12 | 0.346

Co-axial 1.201 | 0.548 | 0.305 | 0.859 | 2.389 | 0.302 | 2.789 | 0.248

Axial 4868 | 0.0878 | 0.145 | 0.93 | 2452 | 0.294 | 2.029 | 0.363

Results
The volumetric flushing (3) has an annual cycle ranging from approximately -0.1 to -0.7
bay volumes per month (Figure 23). The mean total monthly outflow is -0.331 bay
volumes. The minimal outflow occurs during the summer/early fall months and
maximums in the winter. The summer/early fall outflows are typically -0.15. A large
summer outflow, about -0.25 bay volumes/month, is found during 2005. This increase in
volumetric outflow flushing can be attributed to an extremely active hurricane season in
Florida with a total of 6 named hurricanes passing through the area that year. The winter
volumetric outflow ranges from -0.4 to -0.9 bay volumes/month and varies much more
than the summer.

The volumetric anomalies are nominally +0.1 bay volumes per month and

weakly anti-correlated with ONI anomalies (r? = 0.097) (Figure 23). The low r? value
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is partly due to the use of a stationary technique to analyze a non-stationary signal.
Wavelet analysis allows for improved temporal-spectral analysis of the synoptic variance.

The climatological wavelet variance E,(t), as defined by (7), for elevation and
the axial component of the wind have similar seasonal behavior (Figure 24). Both have
an annual cycle with summer minimums and winter maximums. The maximum mean
normalized variance for elevation is approximately 12 and the minimum is about 2, a
factor of 6. For the axial wind component the maximum mean normalized variance is
approximately 33.5 and the minimum is about 12. For both elevation and the axial wind
the standard errors are much less than the seasonal variation. The co-axial variance is
semi-annual and shows a double maximum, during the spring (~30) and early fall (29),
and minimums during the summer and winter (17 and 21, respectively). All
climatological values in figure 24 are above the 95% confidence level (not shown).

The SAs of elevation and the axial component show a similar pattern for all three
ENSO phases (Figure 25). The SA of the axial component of the wind is positive during
all seasons of EI Nifio years. SA is negative during winter, spring, and fall and positive
during summer of La Nifia years. Elevation shows a similar pattern to the axial
component of the wind, during EI Nifio (La Nifia) years, SA is positive (negative) during
the winter, spring, and fall seasons and negative (positive) during the summer season.
The highest SA for elevation (~1) and the axial component (~5) of the wind occur during
El Nifio winters and the lowest (-1.8 for elevation, -1.2 for the axial component) occur
during La Nifia winters. For the co-axial component during the spring and summer of La
Nifia years, SA is positive. During El Nifio years, SA is almost 0 in the spring and

negative in the summer. Inthe winter and fall of La Nifia years, SA is negative. During
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El Nifio years, it is negative in the winter and positive in the fall. The elevation and axial
wind component show greater synoptic variance during El Nifio winters.

The Kruskal-Wallis test is carried out with the null hypothesis that all values of
each ENSO phase in a season are the same. The test results are summarized in table 4.
The lowest probabilities of the null hypothesis being true is found during the winter
season for both elevation (0.096) and the axial wind component (0.088). The other values

range from 0.242 to 0.859.

Summary and Discussion

Changes to the synoptic wind-driven flushing of the Tampa Bay estuary in response to
the ENSO cycle is examined using tide gauge data at St. Petersburg, FL for a period of
55-years (Figure 22). Two types of analysis are performed. The first uses the subtidal
observed water level as a proxy for mean tidal height (and therefore total volume) to
estimate the rate of volumetric outflow. The second uses wavelet analysis to bandpass
elevation and wind data in the time-frequency domain in order to isolate the synoptic
variance of the elevation and winds.

At time scales longer than about one day, the synoptic scales dominate the
variability of surface winds. The response of the water level to wind forcing along the
axis of the estuary at these frequencies is in phase across the estuary, though the
amplitude will vary, according to (1). This implies elevation at any point in the estuary
(in this case St. Petersburg) is a good proxy for total bay volume, this is presumed
throughout the analysis here. The strength of the axial synoptic wind varies seasonally,

with a summer minimum and winter maximum. This drives a strong seasonal cycle of
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volumetric flushing (3) in phase with the wind. The synoptic volume exchange F(t) in
winter is about 3.5 times the summer minimum (Figure 23). Mean annual total
volumetric flushing is about 4 bay volumes. Winter anomalies of F(t) also vary with the
ENSO phase, with higher flushing in the warm phase and lower flushing in the cool
phase. The difference between the EI Nifio and La Nifia values is about 0.2 bay
volumes/month. If this is maintained over one three-month season it would represent
about 15% of the net annual volumetric flushing.

The overall correlation between the ONI and the anomalies of F(t) is small due
to the seasonal dependence of the ENSO response. This might suggest using a window
technique over a few weeks, but standard Fourier techniques are insufficient for
quantifying a 2-20 day signal over a time period of one month. Wavelet analysis provides
a quantitative measure of variance and its temporal evolution. The wavelet variance of
the elevation and wind components is filtered according to (7) and the monthly average
climatology and anomalies are computed. The analysis here examines the average
wavelet amplitude between 2-20 days. The quantitative results are weighted to the longer
synoptic scales as the wavelet transform puts more energy into the longer scales relative
to the shorter scales, both in terms of peak amplitude and scale-“width” of the transform.
A partial solution for this is to rectify the amplitude by the wavelet scale a™? (Liu et al.,
2007). This does not solve the issue associated with the spread (proportional to a) of the
wavelet power over multiple scales. The true wavelet amplitude is used since an unbiased
measure is not available.

There is close agreement in the mean monthly climatology between the synoptic

wavelet variance of elevation and axial winds (Figure 24). The axial wind has a single
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summer minimum and winter maximum, as does the elevation. In contrast, the co-axial
wind component has both a summer and a winter minimum. The summer minimum in the
variance of the axial wind component (Figure 24) is by a factor of three lower than the
peak in late winter. The elevation also has a summer lull that is almost a factor of six
lower than the winter peak. The increased seasonal change in elevation variance relative
to that of the axial wind may be due to additional effects of the co-axial wind component
which, though semi-annual, has a late winter/early spring maximum and a summer
minimum. Other influences such as freshwater input are not sufficient to account for this
variation.

El Nifio increases the synoptic variability in elevation during the winter, but
decreases it during the summer (Figure 25). The converse is true for La Nifia. However,
only in the winter season are the difference between all ENSO phases statistically
significant (Table 3). This is consistent with previous studies that showed EI Nifio (La
Nifa) suppressing (enhancing) hurricane activity in the tropical Atlantic (Bove et al.,
1998; Gray, 1984; Smith et al., 2007) and by extension, Florida.

The difference in winter El Nifio-La Nifia wavelet variances of the synoptic
elevation signal is about 20% of the climatological value. Since the winter flushing is
about 0.5 bay volumes per month, this means that ENSO can swing the synoptic flushing
of the bay by 0.22 bay volumes per month. This contrasts with the volumetric changes of
the bay generated by the tides, which is nominally 5.8 bay volumes per month. However,
the tidal excursions are only O(1 km) because the frequency of the tidal signal is
relatively large. This limits the exchange of water with the Gulf of Mexico to lower

Tampa Bay. The tidal excursions associated with the synoptic winds might be longer than
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those due to tides because of their relatively low frequency. This is difficult to assess
analytically, though a simple model of the length of the tidal excursion is I = uT/2,
where u is the velocity generated by the wind stress t,, = Cppw over the synoptic period
T, with drag coefficient €, = 0.0012 and density of air p = 1.2 kg/m°®. The axial
velocity is proportional to v = 7,,H/A,, where H=4 m is the water depth and 4, is the
vertical eddy viscosity. A recent estimate of 4, = 0.0025 m?/s (Arnott et al., 2012) was
obtained using observational data from an Acoustic Doppler Current Profiler and a Self
Contained Autonomous Microstructure Profiler. If the sustained synoptic wind speed is
nominally 1 m/s for 2 days then [ =~ 86 km, larger than the length of TB. Even though
this calculation is simplistic it does demonstrate the capacity for slow sustained wind
stress to have an important impact on mass exchange between the estuary and the ocean.
A detailed study of the Lagrangian displacement associated with tides, winds, and
exchange flow is beyond the scope of this paper.

The described changes in circulation associated with synoptic variability have the
potential to impact mixing and transport within the bay, as well as flushing of the bay and
the exchange of water with the Gulf of Mexico. This could in turn impact the retention of
pollutants and nutrients, sediment re-suspension and turbidity. These impacts would not
only affect the water quality of the bay, but the biological aspects as well. Future work
can address these topics by examining time series of velocity, water quality and turbidity

for synoptic variability and their links to larger scale climate patterns.
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Chapter 3: Simulated Wind Driven Anomalies in Tampa Bay, FL 1975-2006

Introduction

Estuaries are regions of transition from rivers to the open ocean and are characterized by
tidal motions from the ocean and gradients of salinity and density associated with the
mixing of river water and sea water. These coastal regions are biologically productive
and economically important, making the health of these estuaries very important. The
health of estuaries is directly related to the ability for pollutants to be removed through
hydrodynamic flushing. The rate of estuarine flushing can be a determining factor for the
presence of phytoplankton populations (Ketchum, 1954). Flushing times in estuaries can
range from hours to minutes for small streams entering directly into the sea, to weeks or
months in bigger systems having a large volume (Statham, 2012). To help aid in
determining and improving the water quality of an estuary, the effects of winds, tides,
and freshwater inflow on these systems must be well understood. The effect of these
physical processes, primarily winds, in Tampa Bay, Florida will be the focus of this
study.

Circulation plays a key role in nutrient distribution, pollutant distribution and
overall health of an estuary, it is important to understand how wind events can alter
estuarine circulation and hydrodynamic flushing. Winds can induce subtidal variability
in an estuary through remote and local effects. The remote wind effects come
predominantly from along-shelf winds, which produce coastal sea level fluctuations

along the shelf at the mouth of an estuary. The local wind effect acts directly over the
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surface of an estuary and induces estuarine sea level and current fluctuations (Janzen and
Wong, 2002). The remote and local wind effects can produce very different patterns of
exchange between an estuary and the continental shelf (Wong and Valle-Levinson,
2002).

Weisberg and Sturges (1976) found that fluctuations caused by winds dominated
the low-frequency circulation in the Providence River and the west passage of
Narragansett Bay. Valle-Levinson et al. (2001) used water density and velocity data
from two 75-day deployments across the entrance of Chesapeake Bay in conjunction with
wind velocity and sea level records to identify three different scenarios of wind-induced
exchange. Their results showed that 1) northeasterly winds tend to cause depth-
independent volume inflow only over the northern half of the entrance to the estuary, 2)
southwesterly winds caused opposite sea level gradients (relative to NE winds) which
caused near surface outflows throughout the entrance and near bottom inflows restricted
to the channels, and 3) northwesterly winds were the most efficient in flushing estuarine
waters out at every depth. Wong (2002) used data from 2 surveys, lasting approximately
2 months, to show that coastal sea level fluctuations at the entrance to the Indian River
Inlet are coherent with winds over periods of 2-10 days, with the highest response
corresponding to winds aligned along two directional bands, one broadly centered around
the large-scale alongshelf direction and the other centered around the local across-shore
direction. In the first case, a positive alongshelf wind toward 40°T forces a drop in coast
sea level by prompting a large-scale across-shelf Ekman transport over the continental

shelf to the right of the wind. For the second case, winds blowing in the direction normal
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to the coastline (90°T) cause a rise/drop in coastal sea level corresponding to an
onshore/offshore wind.

Large-scale weather patterns such as winter storms and hurricanes have been
known to also alter the wind-induced circulation causing an increase or decrease of water
flow into or out of an estuary. Winter storms, extratropical storms, or extratropical
cyclones are all large-scale weather systems that are related to strong cold fronts (Feng,
2009). Cold fronts are the boundary between air masses where colder, denser air is
moving towards warmer, lighter air (Hsu, 1988). They are the dominate synoptic scale
disturbance in the Gulf of Mexico and occur most frequently during the months of
October through April, with storm frequency increasing from September to October,
reaching a maximum in midwinter, and decreasing more gradually in the spring (Dagg,
1988). They propagate from the northwest to southeast with a recurrence interval of 4-7
days (Angelovic, 1976). Extratropical cyclones tend to form along these fronts due to the
atmospheric instability produced by the strong horizontal temperature gradients.
Associated with these extratropical cyclones are strong wind fields that can then generate
waves and storm surges that may cause large sea level fluctuations along the coasts
(Davis and Dolan, 1993). Throughout the Gulf of Mexico coastline these winter weather
systems affect sea level at times of several days (Kennedy et al., 2007). The coastal
responses, particularly volume exchange between the Gulf of Mexico and coastal bays, to
cold fronts and winter storms in the northern Gulf of Mexico have been studied by many.
Swenson and Chuang (1983) found that a frontal passage that occurred near Lake
Pontchartrain, Louisiana on March 3, 1980 induced volume fluxes that were about six

times greater than the normal tidal prism. Walker and Hammack (2000) showed that the
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strong northwest winds associated with winter storms could flush 30-50% of water
volume out of the shallow bays in the Atchafalaya/Vermilion Bay regions in Louisiana.
In Tampa Bay, the high winds and fresh water inflow associated with these extreme
events alter the circulation of the bay, producing a significant flushing by increasing
water exchange with the Gulf of Mexico (Wilson et al., 2006). On time scales of days,
persistent winds that occur during winter frontal passages have a strong impact on
residence time in Tampa Bay (Burwell, 2001).

Hurricanes can produce sudden massive disturbances in estuaries and other
coastal ecosystems around the world (Greening et al., 2006). Each hurricane has its own
individual characteristics causing their effects on ecosystems to be unpredictable. Valle-
Levinson et al. (2002) used the data mentioned in Valle-Levinson et al. (2001) to study
the response of lower Chesapeake Bay to Hurricane Floyd. The northeasterly winds prior
to the passage of the storm caused a net inflow over the shallow northern half of the bay
entrance and outflow in the deep channel to the south of the entrance. After the passage
the winds shifted to the northwest and coincided with a pulse of freshwater, which set up
a seaward barotropic pressure gradient force that drove a net outflow everywhere across
the entrance to the bay, allowing no inflow for almost 24 hours. Approximately one-third
of the net outflow was caused by wind forcing and two-thirds by freshwater discharge.
Walker (2001) studied changes in circulation, water level, salinity, suspended sediments
and sediment flux in the Vermiliona-Atchafalaya Bay caused by winds from Tropical
Storm Frances and Hurricane Georges in 1998. Both storms caused the highest salinity
spikes in the 16-month record and turbidity levels increased by an order of magnitude in

this shallow bay system. The winds associated with Tropical Storm Frances cause water
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levels to reach the highest value of the year. Wilson et al. (2006) found that during
Hurricane Frances there was a displacement of about 40% of the Tampa Bay’s volume in
a single day. Results indicated that Hurricane Frances dominated the residual circulation
during its passage. The high winds associated with Hurricane Frances directly affected
the circulation of the bay by increasing surface wind stress. These changes in circulation
produced a significant flushing of Tampa Bay.

The previously mentioned studies discuss the short term impacts of extreme
weather events on estuarine flushing, long-term (multi-decadal) studies are rare. With the
use of a realistic numerical model of Tampa Bay called the Environmental Fluid
Dynamics Code (EFDC) the long-term effects of these extreme weather events are
examined. Observational data only provides us with point source information, the use of
the model allows us to create a 37-year (1970-2007) simulation of salinity, currents, and
elevation within the bay. The model output aids in accounting for water level spatial
variations when examining the volumetric flushing and calculating flushing rates, allows
the investigation of year to year flushing variability, and the examination of the long-term
cumulative impacts of wind driven volumetric changes in Tampa Bay.

Flushing rates are a key variable for maintaining estuarine viability. Due to these
large scale weather events volumetric changes are induced and so are the associated
flushing rates of these estuaries. The objectives of this study are: 1) to use the model
output to calculate the wind induced volumetric changes caused by winter extratropical
storms and hurricanes, and 2) to find the cumulative impact of flushing of the bay by
these wind events. The paper proceeds as follows: section 2 describes the study site,

Tampa Bay, Florida, section 3 (model and methods) describes the EFDC model used, the
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observational data used to construct the model boundary conditions, model simulation,
and the evaluation of model output, section 4 will present our results, and the summary

and discussion of this study will be discussed in section 5.

Study Site

Tampa Bay

Tampa Bay is located on the central part of the west coast of Florida, covering
approximately one thousand square kilometers with an average depth of approximately 4
meters (Figure 1) (Goodwin, 1987). The width of the Bay is about 15 km at its
midsection and roughly 53 km in length. Dredged navigation channels lead to the main
port facilities. The depths of the channels have been increased to 15 meters to create the
minimum depth required for large container ships to have access to the Bay (Zervas,
1993). The bay has a maximum depth of about 27 meters in Egmont Channel near the
mouth of the Bay.

Tampa Bay has a circulation that is 3-dimensional and time dependent (Galperin
et al., 1991; Weisberg and Zheng, 2006). Tampa Bay sea level and current variations are
controlled by the tides, winds, and river discharge. Tides in the Bay consist of mixed
semidiurnal and diurnal tides, with a tidal range of just less than a meter at the mouth to
over a meter at the head (Wilson, 2007).

The major freshwater sources for the Bay are located on the east and south sides.
The Alafia and Hillsborough rivers drain into the Bay from the northeast, the Little

Manatee enters on the eastern side, and the Manatee on the south near the mouth.
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Salinities in the bay vary from a high of approximately 35 at the entrance of the
Bay to a low of 22 ppt or less in the northern and eastern portions of Hillsborough Bay
and the northwest portion of Old Tampa Bay (Boler, 1992).

Ocean water from the Gulf of Mexico enters Tampa Bay through the mouth
located on the southwest boundary. With the amount of freshwater inflow into the Bay,
its shallow depths, and strong tidal mixing, the salinity is well mixed vertically, however,
it does have significant horizontal salinity gradients due to the distribution of fresh water
inflow. Freshwater from the north together with saltwater coming from the south
produce a strong horizontal salinity gradient. These horizontal gradients and surface
wind forcing maintain the fully three-dimensional circulation of the Bay (Li, 1993).
Lower salinities at the head of the Bay and the higher salinities at the mouth cause an
axial pressure gradient force to exist that drives the non-tidal, gravitational convection
mode of circulation (Weisberg and Zheng, 2006).

Burwell (2001) found the residual circulation in Tampa Bay appears to be a mix
of classical two layer flow over the shipping channels, denser ocean water flowing in at
depth, and fresher water flowing out of the Bay near the surface and along the relatively
shallow sides of the Bay. Flushing occurs through the deep navigational channels
running northeast/southwest from the mouth. Residence times in the channel are 15 days

to one month and increase to over 3 months in regions outside the channels.

Model and Methods

EFDC Model
The Environmental Fluid Dynamics Code (EFDC) model (developed at the Virginia

Institute of Marine Science (Hamrick, 1992)) is used for this study. The physics and
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computational scheme of the EFDC model are equivalent to the Blumberg-Princeton
Ocean Model (Blumberg, 1990). The model solves the three-dimensional, vertically
hydrostatic, free surface, turbulent averaged equations of motion for a variable density
fluid. It uses a stretched or “sigma” vertical coordinate and Cartesian or curvilinear,
orthogonal horizontal coordinates. The model allows for drying and wetting in shallow
areas by a mass conservative scheme and a number of alternatives are in place in the
model to simulate general discharge control structures.

The numerical scheme to solve the equations of motion uses second order
accurate spatial finite difference on a staggered or C grid. The model’s time integration
employs a second order accurate three time level, finite difference scheme with an
internal-external mode splitting procedure to separate the baroclinic mode or internal
shear from the barotropic mode or external free surface gravity wave. The internal
momentum equation solution is implicit with respect to vertical diffusion and is in terms
of the vertical profile of shear stress and velocity shear. This results in the simplest and
most accurate form of the baroclinic pressure gradients and eliminates the over
determined character of the alternate internal mode formulations.

The model implements a second order accurate in space and time, mass
conservation fractional step solution scheme for the Eulerian transport equations at the
same time step or twice the time step of the momentum equation solution. The advective
stop of the transport solution uses either the central difference scheme used in the
Blumberg-Mellor model or a hierarchy of positive definite upwind difference schemes

(Hamrick, 1996). The difference scheme of Blumberg-Mellor will be used in this study.
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Bathymetry of the model is based on the previous ECOM-3D model of Tampa
Bay. It usesa 70 by 100 grid in the horizontal and 11 sigma levels in the vertical and has
a minimum depth of 1.3 m MLLW (Figure 8). Model inputs consist of freshwater input,
salinity, zonal and meridional wind components, and elevation. Measured salinity and
sea surface elevation provide the open boundary conditions at the mouth of the bay. The
EFDC runs on a Dell Precision Workstation 470. To reach a compromise between the
need to satisfy numerical stability and the need for the most rapid computation time, a 60
second time step is used. The total computation time for the entire run was

approximately 2 months.

Data Collection

Observational data for a period of 57 years are collected from various sources.
Data includes: precipitation, streamflow, waste water treatment plant discharge, water
level, winds, and salinity. Precipitation data is provided by the Southwest Florida Water
Management District for 22 sites around the bay. Four of the sites have data dating back
to 1950. Daily averages are calculated using any available data from the 22 sites. From
1950-1976 there are only 3-4 sites available to compute daily averages. After 1976 that
number increased and by 2000 13 sites are available to compute daily averages (Figure
4). These daily averages contribute to the total fresh water input.

Streamflow data from 22 sites is downloaded from the USGS real-time water data
website. The Little Manatee, Alafia, and Hillsborough sites have data that dates back to
1950. Once all the data is gathered correlations are done between all the sites that have

10 years of data (1997-2007). The average flow from all sites is calculated and used to
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find scaling factors (8) between sites that have correlations higher than 0.7. These
scaling factors are then used to fill in the gaps of all the rivers that have missing data
from January 1, 1950 to December 31, 2006. Equation 2 is an example of how gaps are

filled within the data.

if correlation of rivl and riv2 > 0.7 then scale = LV; (8)
riv

to fill riv2, riv2 = rivl x scale 9)
Each site is filled with the scaled data from the site with the highest correlation first, if
there are still gaps in the data the scale of the site with the next highest correlation is
used, and so on. Each site is correlated to the Little Manatee, Alafia, or Hillsborough
rivers, so gaps for every river are able to be filled to January 1, 1950.

Discharge from the Howard Curren Waste Water Treatment Plant and the Tampa
Bypass Canal is collected from each individual treatment plant. These two sites are used
because according to Meyers et al. (2007) they discharge the largest amounts of water
into the bay. The Howard Curren treatment plant has monthly data available from 1951
to present and the Tampa Bypass Canal had daily data dating back to 1974. The data
from these sites are combined with the precipitation and streamflow/river data to make a
total freshwater inflow source file for the model.

Hourly water levels from the St. Petersburg tide gauge, station #8726520, are
provided by NOAA Tides and Currents. Water level data is available for the entire 57-
year period. The data is in hourly time intervals and is relative to MSL. There are two
noticeable gaps in the data that are between 1-2 years long. These years (1954 and 1962)
are omitted from the record and all small gaps (< 1 week) are filled with predicted tide

data from the NOAA Tides and Currents website.
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Hourly wind speeds and directions are provided from the NOAA National
Climatic Data Center. Data from the Albert Whitted Airport, MacDill Air Force Base,
and Tampa International Airport is downloaded. Both the MacDill Air Force Base and
Tampa International Airport have data dating back to 1950. Zonal (u) and meridional (v)
components are calculated using the wind speeds and directions from each site using

equations 10 and 11:

wdir
U = WSp x COS 10
p x (72‘ X 180 j (10)
v —WSpXSin(ﬂ'x Wdir) (12)
180

where wsp is wind speed and wdir is wind direction in degrees T. Hourly components
from all three sites are then averaged and small gaps are filled by interpolation.

Monthly salinity data is provided by the Environmental Protection Commission of
Hillsborough County (EPCHC) at approximately 100 sites in the bay (Figure 6). Salinity

data is available from 1974-present. Small gaps in the data are filled by interpolation.

Model Simulation/Evaluation

The EFDC model is run from 1970-2006. The input files needed to run the model
are created from the observational data previously mentioned. The model is initialized
with uniform elevation and salinity of 35 throughout the model grid. Salinity from
EPCHC site 93 and elevation data from the St. Petersburg tide gauge are used at the open
boundary of the model, near the mouth of the estuary. A 2-hour lag is added to the St.
Petersburg tide gauge elevation data, this is the approximate lag time for tides to travel

from the entrance of the estuary at Egmont Key to the location of the St. Petersburg tide
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gauge. Spatially uniformed winds are used throughout the model grid. Freshwater is
used at the point source locations mentioned previously. The model output is archived
hourly for all 36 years.

To evaluate model accuracy, model salinity and elevation output from 1975-2007
are compared to salinity and elevation data. As stated earlier, | allow five years of model
spin up time so model output from 1970-1974 is omitted. Salinity sites within the bay are
compared to the model salinity from the grid cells closest to the locations of each site.
Model salinity data closest to the time of the salinity measurements are extracted from
1975-2006. Mean errors between observed monthly salinity and model salinity are
calculated for all sites. The bias bay mean error for all sites at the near surface is -1.336
and -1.455 at the bottom (Figures 15 and 17). The normalized RMSE for the near surface
and bottom are 0.916 and 0.993 (Figures 16 and 18).

Model elevation at grid cell (17, 36) is compared to elevation data from the St.
Petersburg tide gauge for 2004 (Figure 26). The year 2004 is chosen due to that year
being an extremely active hurricane year and | wanted to test the response of the model
and make sure it captured the large elevation changes observed during these extreme
weather events. The mean error for elevation in 2004 is 0.022, with an absolute mean
error of 0.036, and an r* value of 0.97.

The axial (v) velocities of the model at grid cell (24, 34) and the bottom mounted
ADCEP located under the Sunshine Skyway Bridge were also compared for 2004 (Figure
20). Inflow into the estuary is indicated by positive values and outflow by negative
values. Both the model and ADCP velocities show an inflow at depth and outflow near

the surface. The ADCP shows stronger inflows than the model, this is due to the model
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bathymetry. The ADCP is located in the middle of the shipping channel, and the model
bathymetry is unable to replicate the steep and narrow channel. The shipping channel is
wider in the model bathymetry, causing velocities to be slower than the ADCP at depth.

The bay volume is
VO = [let), +h)xx, xdy, ] (12)
Model elevation (e) at location (i,)) is added to the mean model depth (h), multiplied by

the area of each grid cell (dx,dy), and then summed up for all grid cells in the model grid.

The same method is used to calculate predicted bay tidal volume:

VO = D [Buae® + 1y )x A, xcly, ] (13)
where eiiges cONsists of the sum of the eight primary tidal constituents for Tampa Bay plus
the annual and semi-annual constituents. The amplitude and phase of each constituent
(Table 4) is derived by performing a least square analysis on elevation at each i,j location

for each tidal frequency. The difference yields bay volume anomalies for the entire 32
year period.
V() anomaty =V (Diotar =V (D ices (14)

Two main drivers of water volume in the bay are winds and tides, by removing the tides
we can assume that V(t) gnomary is the wind-generated signal.

Volume anomalies are normalized by dividing by the mean bay volume, ~3.8 x
10° m®. The time derivative of the normalized volume anomalies is used to calculate
volumetric component of the flushing.

% =flushing rate (15)
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Table 4. Amplitude, epoch, and period for each tidal constituent used to perform a least
square analysis.

Constituents Amplitude (m) Epoch (°) Period (hr)
M, 0.175 197 12.4206
Sy 0.057 211.7 12
N, 0.03 191.3 12.6583
Ky 0.167 49.9 23.9345
O, 0.155 37.7 25.8193
Q1 0.029 26.2 26.8684
P, 0.049 57.6 24.0659
K> 0.025 215 11.9672

SSa 0.033 41 4382.9052
Sa 0.092 150.8 8765.8211

Positive flushing rates indicate inflow conditions and negative flushing rates indicate

outflow conditions. Positive and negative flow conditions were integrated over time to
produce total inflow (positive)/outflow (negative) flushing rates for each year of the 32-
year record. Flushing rates are binned by month for the entire record and then averaged

to produce a monthly climatology of the net average flushing rate.

Results

The results for two extratropical/winter storms and two hurricanes are discussed in detail
below. The two extratropical/winter storms chosen occurred in March of 1993 named the
Storm of the Century (Storm6) and in February of 1998 (Storm9). The hurricanes chosen
are Hurricane Gabrielle that occurred in September of 2001 and Hurricane Frances that
moved through the Tampa Bay area in September 2004. In March of 1993 an unnamed
hurricane-like storm, known as the Storm of the Century, passed through the Tampa Bay
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area. The storm had hurricane force winds, storm surges up to 12 feet, and created 14
tornadoes. Figure 27 shows the normalized bay volume anomalies and flushing rates for
1993. Results show that the Storm of the Century caused about a 25% increase above the
mean in bay volume and then dropped to 15% below the mean, for a total change of 40%
between peaks. It produced a peak inflow rate of 25% of bay volumes per day and a peak
outflow rate of 35% of bay volumes per day (Figure 27). On February 2 of 1998 an area
of severe weather moved across the Gulf of Mexico and through the south Florida region
causing severe thunderstorms, winds, and tornadoes. This storm (Storm9) caused an
increase of 13% above the mean in bay volume and then dropped to 1% below the mean,
for a total volume change of 14%. Storm9 produced a peak inflow rate of 8% and a peak
outflow rate of 12% of bay volumes per day (Figure 28).

In September of 2001 Hurricane Gabrielle made landfall on the west coast of
Florida as a tropical storm with 60-knot sustained winds. It produced major river floods
over west-central Florida. Gabrielle produced a loss of about 9% bay volume followed by
an increase of 4%, for a total change of 13%. Outflow/inflow rates for Gabrielle were
11% bay volume per day in both directions (Figure 29). In 2004 Tampa Bay experienced
3 hurricanes in the course of 3 weeks. Hurricane Frances passed by the Tampa Bay area
on September 6, Ivan occurred on September 15, and Jeanne came through on September
27. Wilson (2007), explains the individual impacts that Hurricane Frances and Jeanne
had on the Bay area. As Hurricane Frances moved through the Bay there was a loss of
11% bay volume followed by a 25% gain for a total change of 36% between peaks.
Frances produce a peak inflow rate of 30% of bay volume per day and a peak outflow

rate of 20% bay volume per day (Figure 30). The total % volume changes and flushing
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rates for all 10 extratropical/winter storms and 10 hurricanes are listed in tables 5 and 6.
Bay volume anomalies and flushing rates for all other years can be seen in Appendices E
and F. If we sum up the total normalized inflow and outflow rates from the tides we get a
flushing of approximately 40 bay volumes per year. Once the tides are removed and we
do the same calculation the total normalized inflow/outflow rates from the anomalies is
3.4+0.27 (standard deviation of annual total) bay volumes per year. This shows that
approximately 9% of the volumetric changes in a year are due to winds.

Volume changes and flushing rates are then compared to the wind components.
Scatter plots of normalized volume anomalies and normalized rates of change versus the
zonal (u, east/west, x-axis) and meridional (v, north/south, y-axis) components of the
wind for the extratropical/winter storms and hurricanes are shown in figures 31 - 34. The
black line indicates the path of the storms, approximate start and end dates are indicated
by the + and the *, and the color bar represents the volume anomalies and rates of change
per day. Scatter plots for all extratropical/winter storms and hurricanes are shown in
Appendix G. At the beginning of the Storm of the Century (Storm6) winds are fairly
weak and are in the SE direction (Figure 31). As the winds begin to strengthen they
rotate towards the NW direction and the normalized volume anomaly begins to increase.
The anomalies reach their maximum value of about 25% when the winds are blowing
towards the NE/E. The same occurs for the volume rate of change (Figure 31), there is a
large positive rate of change when the winds are blowing towards the NE/E direction, but
as the winds begin to slow slightly and blow towards the SE the rates of change switch
from a positive to large negative rate of change. As soon as the winds begin to relax all

the water that was being pushed into the Bay starts to make its way out. At the
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Table 5. Total volume changes and flushing rates for all 10 extratropical storms.
Negative flushing rates indicate outflow

Total Volume
Name Start Date End Date Change Flushing rate
Storm1l 1/11/1982 1/14/1982 20% 9%, -20%
Storm2 2/27/1983 2/27/1983 21% 16%, -12%
Storm3 11/22/1984 | 11/24/1984 25% -9%, 9%
Storm4 12/22/1989 | 12/25/1989 17% -8%, 10%
Storm5 3/8/1990 3/10/1990 22% -12%, 16%
Storm6 3/11/1993 | 3/13/1993 40% 25%, -35%
Storm7 3/2/1994 3/2/1994 22% 14%, 16%
Storm8 2/5/1996 2/5/1996 27% 7%, -12%
Storm9 2/1/1998 2/3/1998 14% 8%, -12%
Storm10 | 12/26/2004 | 12/26/2004 29% 20%, -25%
Table 6. Same as table 6 for all 10 hurricanes.
Name Start Date | End Date TothL;/:;:me Flushing rate
David 9/3/1979 | 9/4/1979 12% -5%, 10%
Elena 8/31/1985 | 9/1/1985 35% 25%, -19%
Andrew 8/24/1992 | 8/25/1992 21% -7%, 15%
Allison 6/5/1995 | 6/5/1995 20% 14%, -11%
Josephine 10/7/1996 | 10/8/1996 32% 22%, 26%
Gordon 9/17/2000 | 9/18/2000 26% 15%, -17%
Gabrielle 9/11/2001 | 9/15/2001 13% -11%, 11%
Frances 9/5/2004 | 9/6/2004 36% 30%, -20%
Dennis 7/9/2005 | 7/10/2005 23% 22%,-15%
Alberto 6/10/2006 | 6/14/2006 26% 16%, -20%

start of Storm9 the winds stayed fairly weak, were blowing towards the SW, and the
normalized volume anomalies were close to 0 (Figure 32). As the winds strengthened
they began to blow towards the NW and normalized volume anomalies increased to their
maximum values of 13%. The volume rates of change were low and negative at the

beginning of the storm and transitioned to positive rates of change as the winds
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transitioned towards the NW. Towards the end of the storm the winds began to blow
towards the NE and the rates of change switched back to negative values.

By the time Hurricane Gabrielle made landfall, it had been downgraded to a
tropical storm. The winds were weak and blowing in the NW/W direction and the
normalized volume anomalies stayed close to 0. The normalized volume anomalies
began to transition to negative values and reach a maximum of 9% as the winds increased
and shifted from the NW/W direction towards the S/SE direction. As the winds began to
calm towards the end of Gabrielle, the volume anomalies began to weaken and go back
towards a 0 value. The rates of changed during Gabrielle stayed close to 0 and in the
positive direction at the beginning of the storm. The largest rates of changed occurred
during the shifting of the winds from the NW/W to the S/SE direction as the winds blew
towards the SW direction (out of the bay). The rates of change changed to positive
values towards the end of the storm when the winds began to blow towards the SE and
the water that had been flushed out began to make its way back into the Bay (Figure 33).
Hurricane Frances lasted approximately 2.5 days and had two phases of strong winds
(>20 m/s) with a short time of relaxed winds (9m/s) in between the two phases. In the
beginning winds were blowing towards the SE causing about a 10% outflow of volume.
As the winds relaxed and began rotating towards the NE, the volume anomalies begin to
shift from outflow to inflow. As the second wind peak occurs winds begin to blow
towards the NE direction causing the 25% increase in volume anomalies mentioned
previously. As for the volume rates of change, we see the largest positive changes

happening when the winds begin to transition from the SE to the NE. The largest volume
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outflow occurs at the end of the storm when the winds begin to die down and the water
begins to make its way out of the bay (Figure 34).

The scatter plots shown in figure 35 show the normalized volume anomalies and
rates of change versus the wind components for the entire 32-year record. The largest
outflows occur when the winds are blowing towards the southwest, out of the estuary,
and the largest inflows are seen when the winds are blowing in the northeast direction up
the main axis of the Bay. As previously stated, we see that the largest inflow/outflow
rates of change occur when the winds are blowing towards the southeast and northwest.

Monthly climatologies of the net average flushing rates are shown in figure 36.
The difference between the inflow and outflow shows that TB experiences a net inflow
during the summer months and a net outflow during all other months. Figure 37 shows
the year to year variability of total inflow/outflow flushing rates of the bay. The total
inflow/outflow flushing rates appear to be symmetrical, and there is a definite year to
year variability. The maximum and minimum total inflows are 3.9 and 2.7 bay volumes
per year in 1983 and 1975, respectively. The maximum and minimum total outflows are

-4 and -2.7 bay volumes per year in 1983 and 1975.

Summary and Discussion

Changes to the normalized volume anomalies and flushing rates of the Tampa Bay
estuary caused by extratropical/winter storms and hurricanes is examined using numerical
model output over a period of 32 years. The strong wind speeds, duration of the high
winds, and wind direction during these extreme events has a direct impact on the amount

of water that gets flushed in and out of the estuary. The wind induced total flushing rates
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for all 10 hurricanes range from 12% to 36%, and 14% to 40% for the
extratropical/winter storms.

Although all the storms discussed here experienced high winds (> 15 m s, ~30
knots), each individual storm experienced high winds blowing in different directions. As
seen in figure 35, the largest volume anomalies occur mostly when the winds are blowing
in the NE/SW direction along the main axis of the Bay. Storm9 and Hurricane Gabrielle
had the smallest total volume changes of all storms, 14% and 13% respectively. Both
Storm9 and Hurricane Gabrielle experienced relatively weak axial and co-axial winds
compared to the Storm of the Century and Hurricane Frances (Figure 38). During both
storms winds were blowing in directions off the main axis of the bay which is not optimal
for large volume anomalies to occur, causing volume anomalies to be small. At the
beginning of Storm9 axial winds were positive and co-axial winds were negative, causing
winds to blow in the NW direction. This caused a slight positive increase in the volume
anomalies. As the axial winds slowed and became negative, the co-axial winds became
positive and the volume anomalies began to decrease. The initial decrease in the volume
anomalies for Hurricane Gabrielle was caused by the sudden increase in the negative
direction (out of the bay) of the axial winds. During the hurricane axial winds continued
to blow out of the estuary causing water to flush out of the Bay. The outflow began to
decrease and switched to inflow when the axial winds weakened. The Storm of the
Century (Storm6) and Hurricane Frances had the highest total percent volume changes
and strongest winds (40%, ~25 m/s and 36%, ~23 m/s, respectively) out of all
extratropical/winter storms and hurricanes in this study. Just prior to the time of the

maximum volume anomaly during the Storm of the Century, both the axial and co-axial
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winds were positive (meaning winds blowing in the NE direction) which caused a large
inflow of water into the bay (25% above the mean). At the time when the volume
anomaly reached its peak, the axial winds began to shift and blow out of the Bay but the
co-axial winds were still strongly positive. The volume anomaly began to decrease once
the axial winds became strongly negative. The largest negative volume anomaly (15%)
occurs when both the axial and co-axial winds are negative, causing winds to blow in the
SW direction. As Hurricane Frances came through the Bay area, we experienced two
wind peaks. During the first wind peak, both the axial and co-axial components were
strongly negative causing winds to blow towards the S/SE and the outflow volume
anomaly to reach its peak of 11%. As the winds shifted towards the E, they weakened
and so did the outflow volume anomaly. When the winds peaked for a second time, both
axial and co-axial winds were strongly positive, blowing towards the NE (optimal
direction for large volume inflow) causing the positive volume anomalies to reach their
maximum of 25%. The volume anomaly began to decrease when the winds weakened
after the hurricanes passing. Tides could also be another factor affecting the volume
changes, but they are not examined in this study.

Yearly total flushing in Tampa Bay is approximately 3.5 bay volumes per year
(Figure 37). Total inflow flushing rates range from 2.75 to 3.9 bay volumes per year and
total outflow rates range from -2.7 to -4. There is definitely year to year variability in the
volume rates for Tampa Bay, FL. What the exact causes of this year to year variability is
yet to be determined.

Flushing rates are a key variable for maintaining estuarine viability. Extreme

events only occur a few times a year and are short lived, but they can cause large volumes
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of water to flush in and out of the bay. By comparing 4 different extreme events that all
experienced strong winds, we are able to conclude that different physical processes,
specifically wind speed and direction, can cause large differences in the total volume
anomaly changes and flushing rates. This flushing leads to large scale overturning of bay
volume. Wind driven volume change is a significant fraction (~9%, (Wilson et al., 2013)
of the total volume changes. Any type of change in storminess can have a huge impact

on Bay health by altering the flushing rates.
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Conclusion
Effects of wind events on estuarine flushing have been studied by many. Most studies
mentioned here discuss the short term impacts of synoptic wind events on the flushing of
an estuary, long-term studies are rare. In this study | used 55 years of observational data
as well as the aid of a numerical model to investigate the synoptic to interannual
variability in volumetric flushing in the Tampa Bay estuary caused by synoptic wind
events.

Two separate analyses, volumetric analysis and wavelet analysis, are done on 55
years of observational data. Results from the first analysis show that at time scales longer
than about one day, the synoptic scales dominate the variability of surface winds. The
response of water level to local wind forcing along the axis of the estuary is in phase
across the estuary, though the amplitude will vary, according to (1). This implies that
elevation at any point is a good representation for the total bay volume. The strength of
the axial wind component varies seasonally, driving a strong seasonal cycle of volumetric
flushing (3) that is in phase with the wind. The long-term record of monthly normalized
volume anomalies (F4(t)) show that winter anomalies vary with the ENSO phase. Higher
flushing is seen during warm phases and lower flushing during cool phases (Figure 23).
Correlations between the ONI and the volume anomalies are low and lead us to believe
that there is a seasonal dependence of the ENSO response. To understand the seasonal
dependency, wavelet analysis is applied to the observational data and amplitudes are

averaged between 2-20 days to isolate the synoptic scale variability. There is close
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agreement in the monthly climatology between the synoptic wavelet variance of elevation
and axial winds. Both the axial winds and elevation have single summer minimum and
winter maximum. EI Nifio increases the synoptic variability in elevation during the
winter but decreases it during the summer (Figure25). However, only in the winter
season are the differences between ENSO phases statistically significant (table 4).

Winter extratropical storms and hurricanes have effects on the flushing rates of
Tampa Bay. All 4 events examined in this study show how the individual characteristics
of each storm can cause differences in the total volume changes and flushing rates.
Storm9 and Hurricane Gabrielle had winds that were greater than 15 m s, however due
to the wind speed, direction, duration, and tidal phase, total volume changes were the
lowest of all 20 storms studied (Figures 32 and 33). The Storm of the Century and
Hurricane Frances had the highest total volume changes of all the storms (tables 6 and 7).
High winds were blowing in the NE/E direction (Figures 31 and 34) and volume
anomalies were in phase with the tides. Winter extratropical storms cause total volume
changes to range from 14% to 40%, and hurricanes from 12% to 40%.

Annual flushing in Tampa Bay is approximately 3.5 bay volumes per year.
Figure 37 shows that total inflow/outflow rates are almost symmetrical and that there is
definite year to year variability. The exact causes of this year to year variability have yet
to be examined, however, any type of change in storminess can alter the flushing rates in
the estuary.

These studies conclude that synoptic wind events affect the overall flushing of the
estuary. Flushing can have large impacts on multiple aspects of an estuary. Flushing can

influence the mixing and transport within the Bay and by extention the circulation as
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well. Circulation plays a key role in the distribution of nutrients and pollutants, as well as
the transportation or retention of sediments and waste. The overall water quality and
health of an estuary is dependent upon how an estuary flushes out pollutants or waste and
how it recycles its nutrients. The rates of estuarine flushing can be a determining factor
for the presence of phytoplankton and other biological organisms within an estuary. Itis
important to understand the details of how flushing is affected or altered to help aid in

determining and improving water quality within an estuarine system.

Future Studies
Possible directions for future research include:

1) Using velocity model output other short/long term studies can be done
to get a better understanding of how circulation is being altered during extreme events.
This could be done on portions of the Bay or the estuary as a whole.

2) Using the salinity model output, investigations on baywide salinity or
salinity gradients between the head and the mouth can be done to get a better
understanding of the density-driven circulation of the Bay and how that varies on long
term scales and short term scales.

3) Direct links between extreme events and water quality of the Bay can be
examined. Water quality measurements before and after an extreme event can help
understand if the flushing that occurs during these events is helping flush out pollutants
or causing them to reside longer in the estuary.

4) Lagrangian studies can also be done to examine the spatial displacement

of water, mixing, and retention.
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Comparison of monthly observation and model salinity
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Appendix B: Yearly bias bay mean error and normalized RMSE

Surface Salinity Mean Error 1976 Bottom Salinity Normalized RMSE 1976
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Figure A15. Near surface (top row) and bottom (bottom row) salinity bias mean errors
and normalized RMSE for 1976
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Appendix B (Continued)

Surface Salinity Mean Error 1977 Surface Salinity Normalized RMSE 1977
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Figure A16. Same as figure A15 for 1977.
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Appendix B (Continued)

Surface Salinity Mean Error 1978 _ Surface Salinity Normalized RMSE 1978
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Figure A17. Same as figure A15 for 1978.
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Appendix B (Continued)

Surface Salinity Mean Error 1979 Surface Salinity Normalized RMSE 1979
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Figure A18. Same as figure A15 for 1979.
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Appendix B (Continued)

Surface Salinity Mean Error 1980 Surface Salinity Normalized RMSE 1980
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Figure A19. Same as figure A15 for 1980.
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Appendix B (Continued)

Surface Salinity Mean Error 1981 Surface Salinity Normalized RMSE 1981
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Figure A20. Same as figure A15 for 1981.
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Figure A21. Same as figure A15 for 1982.
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Figure A22. Same as figure A15 for 1983.
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Surface Salinity Mean Error 1984
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Figure A23. Same as figure A15 for 1984.
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Figure A24. Same as figure A15 for 1985.
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Figure A25. Same as figure A15 for 1986.
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Surface Salinity Mean Error 1987
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Figure A26. Same as figure A15 for 1987.
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Surface Salinity Mean Error 1988 Surface Salinity Normalized RMSE 1988
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Figure A27. Same as figure A15 for 1988.
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Surface Salinity Mean Error 1989 Surface Salinity Normalized RMSE 1989
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Figure A28. Same as figure A15 for 1989.
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Surface Salinity Mean Error 1990 Surface Salinity Normalized RMSE 1990
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Figure A29. Same as figure A15 for 1990.
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Figure A30. Same as figure A15 for 1991.
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Figure A31. Same as figure A15 for 1992.
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Surface Salinity Normalized RMSE 1993
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Figure A32. Same as figure A15 for 1993.
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Surface Salinity Mean Error 1994 Surface Salinity Normalized RMSE 1994
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Figure A33. Same as figure A15 for 1994.
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Surface Salinity Mean Error 1995 Surface Salinity Normalized RMSE 1995
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Figure A34. Same as figure A15 for 1995.
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Figure A35. Same as figure A15 for 1996.
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Surface Salinity Mean Error 1997 Surface Salinity Normalized RMSE 1997

(LA L L B I_"fl-ﬁ\\l\\ TTTT T TT T T T T T[T TTTTT T T

280

279

27.8F5

2771 27.7;
2?.6i— 276}
5 -0.62 018
L ¢
275 x\ 275
NN g T L RS FEEEEEEEEE L PR R
-82.8 -82.7 -82.6 -82.5 -82.4 -82.8 -82.7 -82.6 -82.5 -82.4

Bottom Salinity Mean Error 1997 ) Bottom Salinity Normalized RMSE 1997

T A WY

h TN

276 Bay Average = 1.089

275}

L I L Wi N
-82.8 -82.7 -82.6 -82.5 -82.4

Figure A36. Same as figure A15 for 1997.
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Figure A37. Same as figure A15 for 1998.
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Surface Salinity Mean Error 1999 Surface Salinity Normalized RMSE 1999
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Figure A38. Same as figure A15 for 1999.
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Figure A39. Same as figure A15 for 2000.
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Surface Salinity Mean Error 2001 Surface Salinity Normalized RMSE 2001
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Figure A40. Same as figure A15 for 2001.
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Surface Salinity Mean Error 2002 Surface Salinity Normalized RMSE 2002
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Figure A41. Same as figure A15 for 2002.
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Figure A42. Same as figure A15 for 2003.
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Surface Salinity Mean Error 2004 Surface Salinity Normalized RMSE 2004
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Figure A43. Same as figure A15 for 2004.
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Surface Salinity Mean Error 2005 Surface Salinity Normalized RMSE 2005
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Figure A44. Same as figure A15 for 2005.
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Appendix D: Yearly wavelet transforms for elevation, axial, and co-axial wind
components

i 1950 1951
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1953 1954
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Time (days)

[ T N Y B [ N R A — |

0 max 0

0 100 200 300 0
Time (days)

Figure A77. Instantaneous elevation (gray) and 25-hr smoothed elevation (thick black).
Elevation wavelet transform for 1950, 1951, 1953, and 1954 with 80% significance levels
(white lines) and 95% significance levels (black lines) shown.
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Figure A78. Same as figure A77, 1955-1958.
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Appendix D (Continued)
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Figure A79. Same as figure A77, 1959-1962.
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Figure A80. Same as A77, 1963, 1965, 1966, and 1967.
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Figure A81. Same as figure A77, 1968-1971.
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Figure A82. Same as figure A77, 1972-1975.
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Appendix D (Continued)
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Figure A83. Same as figure A77, 1976-1979.
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Appendix D (Continued)
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Figure A84. Same as figure A77, 1980-1983.
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Appendix D (Continued)
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Figure A85. Same as figure A77, 1984-1987.
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Figure A86. Same as figure A77, 1988-1991.
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Appendix D (Continued)
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Figure A87. Same as figure A77, 1992-1995.
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Figure A88. Same as figure A77, 1996-1999.
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Figure A89. Same as figure A77, 2000-2003.
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Figure A90. Same as figure A77, 2004-2006.
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Appendix D (Continued)

1950 1951

axial speed (m/s)
>

N
S

axial speed (m/s)

Period (days)

200

200
Time (days) Time (days)

BT | [ [

Figure A91. Instantaneous axial wind component (gray) and 25-hr smoothed axial wind
component (thick black). Axial wind component wavelet transform for 1950, 1951,
1953, and 1954, with 95% significance levels (white lines) and 99% significance levels
(black lines) shown.
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Figure A92. Same as figure A91, 1955-1958.
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Figure A93. Same as figure A91, 1959-1962.
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Figure A94. Same as figure A91, 1963, 1965, 1966, and 1967.
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Appendix D (Continued)
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Figure A95. Same as figure A91, 1968-1971.
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Appendix D (Continued)
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Figure A96. Same as figure A91, 1972-1975.
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Figure A97. Same as figure A91, 1976-1979.
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Appendix D (Continued)
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Figure A98. Same as figure A91, 1980-1983.
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Figure A99. Same as figure A91, 1984-1987.
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Figure A100. Same as figure A91, 1988-1991.
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Figure A101. Same as figure A91, 1992-1995.
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Figure A102. Same as figure A91, 1996-1999.
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Figure A103. Same as figure A91, 2000-2003.
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Appendix D (Continued)
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Figure A104. Same as figure A91, 2004-2006.
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Appendix D (Continued)
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Figure A105. Instantaneous co-axial wind component (gray) and 25-hr smoothed co-
axial wind component (thick black). Co-axial wind component wavelet transform for
1950, 1951, 1953, and 1954, with 95% significance levels (white lines) and 99%
significance levels (black lines) shown.
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Figure A106. Same as figure A105, 1955-1958.
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Figure A107. Same as figure A105, 1959-1962.
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Figure A108. Same as figure A105, 1963, 1965, 1966, and 1967.
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Figure A109. Same as figure A105, 1968-1971.
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Figure A110. Same as figure A105, 1972-1975.
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Figure A111. Same as figure A105, 1976-1979.
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Figure A112. Same as figure A105, 1980-1983.

213



Period (days)

co-axial speed (m/s)

Period (days)

co-axial speed (m/s)

Appendix D (Continued)

1984 1985

=]

=5

1987

0 100 200 300 0 100 200 300
Time (days) Time (days)
I [ [ [ mem O [ ] [ e
0 max 0 max

Figure A113. Same as figure A105, 1984-1987.
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Figure A114. Same as figure A105, 1988-1991.
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Figure A115. Same as figure A105, 1992-1995.
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Figure A116. Same as figure A105, 1996-1999.
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Figure A117. Same as figure A105, 2000-2003.
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Figure A118. Same as figure A105, 2004-2006.
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Appendix E: Yearly normalized bay volume anomalies
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Appendix F: Yearly normalized flushing rates
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Normalized Flushing Rates
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Appendix G: Scatter plots of normalized bay volume anomalies and flushing rates

versus wind components
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Appendix G (Continued)
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Figure A136. Same as figure A135 for Storm 2 in 1982.
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normalized volume rate of change vs. wind components

normalized volume anomaly vs. wind components

Appendix G (Continued)

LN L L L L L L L L L B O L

L

LA B N B T L

TSI S S S SN NS S S U S A AU AT

Start Date: 9/3/1979 (+)
End Date: 9/4/1979 (*)

Hurricane David

PRSI S SR S A NI N S S S

LI L L B

L1

cov v be v b b bl
[=1 f=
v o Y

(s/w) pum ay} Jo Jusuodwiod-a

LANLENL L L L L L N L L L L L L L B

LENL I L L

e by v e by

Lo v v by

Start Date: 9/3/1979 (+)
End Date: 9/4/1979 (*)
20

Hurricane David

LI L L L

TR

ETENI R S SR SRS AR e b v b gy
o

- - 59
v )

(s/w) puim ayy o Juauodwiod-A

244

0.48 0.64

0.32

10
0.16

0.00
rate of change/day

-10
u-component of the wind (m/s)
0.32 -0.16

20

-0.48

20
0.30

10
0.12 0.18 0.24

Figure A143. Same as figure A135 for Hurricane David.

0.06

unitless

0.00

u-component of the wind (m/s)

-10

-0.06

-0.12

-0.18



Appendix G (Continued)

"BUS|J 8URJLIINKH 10 GETY 84nBly se swes TV a4nbi-

KepjaBueyo jo ajel
¥9'0 870 20 910 000 910 A0 8Y'0-

] e ——

(s/w) puim ayy jo jusuodwod-n
02 [\]} 0 0t 0z~

LANLEEL L L L

LA L L B L L LA

T
'

LI B
s e b a sy

ISV R O I L I 1

() G861/1/6 :8%eq pu3
(+) G861/16/8 ‘o1 MBIS
BUB|J BUBDIINH

LI L L L L L L

FYTET MR YO0 U R TR Y O N YOO O A M o W T B I YO O YT 0 Y S W VI W

Ok

(s/w) puim ayj Jo Jusuodwod-A

ssapun
0€0 20 8l'0 cko 900 000 90°0- ¢k 810~

e ———

(s/w) puim ayj Jo Jusuodwoo-n
02 0t 0 0t 02

LANL L L L L N L L |

LI L L L L L

T

LI L L L L

b v bv v b

(,) G861/1/6 :e¥eqQ pu3
(+) G861/1€/8 ‘01BQ HEIS
BUB|3 BUBDIINH

vov by by

LI L L L L L L

O O T 1 O T SR 0 7 S R 7 B 1T 0 T B0 T o T [ Y

sjuauodwod puim “sA 8Bueyd Jo sjes BWN|OA pazijeusou

SJUBLOALLIOD PuIM *SA AJBLIOUB BLUNJOA PEZI[BULIOU

oL

o
N

(s/w) puim ay} jo Jusuoduwiod-A

245



Appendix G (Continued)

‘M3IPUY aUedLINH 10) GETV a4nbly Se awes "Gy a4nbi4

Kepyabueyo jo ajel
¥9°0 87'0 20 91’0 000 91'0- 20 8y'0-

] e ——

(s/w) puim ay} jo yusuodwoo-n

ssajyun
0€0 20 80 4%} 900 000 90°0- cko- 810~

L —

(s/w) puim ay} Jo Jusuodwod-n
02 1] 0 04 02-

LIS L L L L L L

o v v b v e by

02 oL 0 ol 02

o de
- o b
- -4 < -
r 1 8
L 7] 3 [

o

C 1 8 [
L il m [
r 1, 2 |
. |O m -
C 1
- - m -
r 1 8 [
L 1 & ¢
- ot E
- (,) 2664/S¢/8 :olAPUI o7 r
C (+) 2661/v2/8 BlRQ MBIS - L
r M3Ipuy SUBdLINH | r
TRV U T S T S T TN S W U N T SV S W S [ ST S S ST S AR C

Lovovn v a b anninay

(,) 2661/52/8 :81eQ PU3
(+) 2661/p2/8 :o¥eqQ HEIS
MBJpUY 8UBdLLINH

111

PRSI IS A S IS U S S S S S T T AV TR M AT VAT

SjuaLOdWOoo puim “sA 8BUBYD JO 81BI BWN|OA PaZI[BULIOU

SJuBUOAWOO puIm "SA AjBWOUR SWINJOA Pazi[ewlIoU

ok

0L

(S/w) pum ayj Jo Jusuodwod-A

246



Appendix G (Continued)

"UOSI||\ UBdLIINH 10} GETV anB1) se awes "9y Ty 84nbi4

Kep/abueyo jo ajes
90 8v'0 20 91’0 000 910 €0 80

] ——

(S/w) puim ayj Jo yusuodwoo-n
02 0t 0 oL~ (4
- e
C . ]
L ooo: 3 1
- T e o
[ . ]
r . : 1

0L

(,) G661/5/9 ‘@jeQ pu3
(+) 5661/5/9 ‘01EQ MEIS
uosl||y auedLINy

s b e Ly

sjuauodwod puim ‘sa aBuByD JO 8B BWN|OA PaZI[BWIOU

RN R I ISR A N W RS S S A S A A A

LI L L L L L L L
L4

PRI B S S S S U S S R

(s/w) puim ay} Jo Juauodwod-A

ssapun
0€'0 $2'0 810 [4XY 900 000 900~ cko- 810

| e —

(s/w) puim 8y} jo Jusuodwoo-n
02 [\]} 0 Ok 02

LA L L L L L L L L L

LA L L L L I L

se v b by

LIS B L L L B
@

TR I AT RT AT AT AR AT

(,) 661/5/9 el pu3 |
(+) 5661/5/9 :8leQ MBIS
uosl||y suedlny

v e b

SjuBUOdLI0D PUIM *SA AJEWIOUB SUWN|OA PAZI[RULIOU

LU L L L
L

o B |

PRSI N TN Y S U A S S S

0k

0

(s/w) puim ay} Jo Juauodwiod-A

247



Appendix G (Continued)

‘aulydasor auedLLINH 10} GETY 8Inbiy se swes ‘T a4nbi4

s e vl

Kepyabueyo jo ajel ssajiun
¥9°0 87°0 20 91’0 000 910 €0 80 0€0 1A 810 cro 900 000 900- 2k0- 810"
(s/w) puim ay} jo yusuodwoo-n (s/w) puim ay Jo Juauodwod-n
02 oL 0 0t (1 0C [W]8 0 0L 02-
3 o | Joz
W 0t- C ||or.

o
(s/w) puim 8y Jo Jusuodwod-A

- ° o
o —ou o —ou
a () 9661/8/0} :eiQPUT r ; ]
: (+}ogeL/z0L oeaums | - (T shsu 0y g v |
” _ _ SURROr RN i auydasor sUBOINH
PRI T T T S T N T P W PR SR T U S T ST U T S U S S S S A S S A L 4
TEST S T 0 O T O O R V|7 N Y T WO WV W VU [ O 0 G Y Y O S OO0 0 0V W S 0| WYY

sjuauodwod puim s 8BuBYD JO B}l SWIN|JOA PaZI[eWIOU SUBUOWI0D PUIM “SA A[BLIOUE SWINJOA PaZI[BWLIOU

(s/w) puim ay} o yusuodwod-A

248



Appendix G (Continued)

"UOPJ0S) auedLLINH 10} GETY a4nbIy se swes "8y TV a4nbi4

Kep/abueyo jo ajes
¥9'0 8y'0 20 91’0 000 91'0- €0 810

e ——

(s/w) puim ayj Jo Jusuodwoa-n

ssapun
0€°0 $20 810 ¢ko 900 000 90°0- 2Lo- 810~

T e —

(s/w) puim ay} Jo yuauoduwod-n
02 0k 0 0k 0e-

02 oL 0 ok 02

- oz
- Jor-
- 10
- o
- () 0002/81/6 :@1BQ PUT oz
- (+) 0002/L1/6 ‘eleQ MBIS -

r uopIoY) BUBdINH |

.\__________.V___VVV______ _____—_>>__»___»__>H__~_A

sjusuodwoo PuUIM "SA wmcm_._o JO 9jel 8WN|OA pazijeullou

(s/w) pum ay} Jo Jusuodwod-A

I i B i 2 o i

I B
pa v b Ly

(,) 0002/81/6 :81eq Pu3

(+) 0002/L}/6 ‘oveqd HeIS

UOPIOY) BUBILUNH

Py o YV Vo T VA 1 o VSV £ Y b [ o Y

SjuaUOdwWO0d PUIM "SA A[BLIOUE SWN|OA PaZIjewou

L B I L
EETINE AT AT AT AT AT AT T A A AR A A A A

0L

o

4

(s/w) puim ay} Jo Jusuoduwiod-A

249



normalized volume rate of change vs. wind components

Appendix G (Continued)

normalized volume anomaly vs. wind components
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Figure A149. Same as figure A135 for Hurricane Dennis.
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