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and then move to the next commanded point. The result is a more accurate tracking of the generated 

trajectory [34].The D-H parameters of the7 DOF arm we have used in our test-bed are given in Table 1.  

Figure 3 shows the frames assigned to each joint and the corresponding D-H parameters. All the joints in 

the robot are revolute joints. It was designed at University of South Florida’s Center for Assistive, 

Rehabilitation and Robotics Technologies [62]. Complete details of the arm are included in [60]. 

 

Figure 3: Cartesian frame assignments and DH parameters for the 7 DOF robotic arm 

Table 1: DH parameters of the 7 DOF robotic arm 

Link i ∝𝑖−1  𝑎𝑖−1 𝑑𝑖 (mm) 𝜃𝑖 

1 -90o 0 102 𝜃1 

2 90o 0 133 𝜃2 

3 -90o 0 502 𝜃3 

4 90o 0 130 𝜃4 

5 -90o 0 387.7 𝜃5 

6 90o 0 -11.8 𝜃6 

7 -90o 0 361 𝜃7 

 











38 
 

Position 1 to Position 2. When it is oriented at a later time and is commanded to move in the same 

direction, it moves in the same direction. We see that the base frame does not orient with the robot. 

  

Initial configuration Configuration at a later time 

Figure 8: Conceptual figure depicting base frame concept. 

 The mapping matrix 𝑅𝑚𝑠  in Equation (16) for frame mapping for the arms used in our test-bed is 

given by the following equation and the frames are pictorially represented in Figure 9, 

 𝑅𝑚𝑠  = �
0 0 −1
−1
0

0 0
1 0

�  (3)  

  

Figure 9: (Left) Omni base frame (Right) 7 DOF arm base frame 
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2.3.2.2 End-effector Frame Control 

At times, it is desirable to control the motion in teleoperation in terms of the end-effector frame of 

the remote arm while the motion at the master is still in the base frame. End-effector frame is important 

when the motion at the remote arm needs to be generated with the objects in the environment as 

reference. The concept is depicted in the figures below in two dimensions. We see that the reference 

frame orients with the robot. 

The Figure 11 shows the master device base frame and the remote arm end-effector frame. The 

mapping matrix 𝑅𝑚𝑠  for end-effector frame mapping for the arms we have used in our test-bed is given 

below. 

 𝑅𝑆𝑀 = �
1        0      0
0
0

   −1       0
       0     −1

�   (4) 

  

Initial configuration Configuration at a later time 

Figure 10: Conceptual figure depicting end-effector frame concept 

We must note that not only the Cartesian velocity vectors are transformed, but the Jacobian 𝐽 

also needs to be transformed to generate the required joint angles to move the remote arm in its end-

effector frame.  
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Figure 11: Omni base frame (left) and 7 DOF end-effector frame (right) 

2.4 Assistance Using Scaled Teleoperation 

Once the intended preshape pose has been determined, the next step is to assist the user to 

traverse and orient the gripper to align with the desired pose. The assistance is provided using scaled 

teleoperation [42] in which the components of motion along the desired directions are scaled up whereas 

those along the direction perpendicular to the desired are scaled down. In this way any deviations from 

the desired path or trajectory are reduced and movements along the desired direction are amplified. This 

way, the errors due to deviation from the desired path are reduced considerably and the users observe an 

appreciable movement along the desired path. This provides an intuitive visual feedback to the user and 

gives them a cue of the direction along which they should teleoperate to reach the target by making less 

number of movements. The method helps the users to teleoperate towards the desired pose quicker and 

with much ease. This will be confirmed from the results that we will generate from the experiments. The 

motion scaling is carried out along translation as well as rotation directions. The convention for describing 

manipulator kinematics is used from the text by John Craig and the frames used for the calculations are 

the Euclidean frames or Cartesian coordinate frames. 

Let 𝑇𝑖𝑂 and 𝑇𝑓𝑂 represent the initial and final transformation matrices of the end-effector frame with 

respect to the manipulator base frame i.e. the transformation matrices of the end-effector as it moves 
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from an initial pose to a final pose. 𝑇𝑖𝑂 and 𝑇𝑓𝑂 are of the order 4X4 and consist of a 3X3 rotation matrix 

and a 3X1 translation vector, both combined into a 4X4 homogenous transformation matrix. 

 𝑅𝑖𝑂= �

𝑛𝑥𝑖
𝑛𝑦𝑖

𝑜𝑥𝑖 𝑎𝑥𝑖 𝑝𝑥𝑖
𝑜𝑦𝑖 𝑎𝑦𝑖 𝑝𝑦𝑖

𝑛𝑧𝑖
0

𝑜𝑧𝑖
0

𝑎𝑧𝑖
0

𝑝𝑧𝑖
1

� and 𝑅𝑓𝑂= 

⎣
⎢
⎢
⎢
⎡𝑛𝑥𝑓𝑛𝑦𝑓

𝑜𝑥𝑓
𝑎𝑥𝑓 𝑝𝑥𝑓

𝑜𝑦𝑓 𝑎𝑦𝑓 𝑝𝑦𝑓
𝑛𝑧𝑓
0

𝑜𝑧𝑓
0

𝑎𝑧𝑓
0

𝑝𝑧𝑓
1 ⎦
⎥
⎥
⎥
⎤
 (5) 

Let, 𝑣 be a 3X1 vector representing linear velocity of the end-effector frame as it moves from initial point 

to final point and let 𝜔 be the angular velocity. Let 𝑣𝑥, 𝑣𝑦, 𝑣𝑧 be the components of 𝑣 and let 𝜔𝑥, 𝜔𝑦, 𝜔𝑧 be 

the components of 𝜔. Thus, 

 𝑣 = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧) (6) 

 𝜔 = (𝜔𝑥, 𝜔𝑦, 𝜔𝑧) (7) 

𝑣 and 𝜔 are computed as follows. 𝑣 is the Euclidean distance between each of the 𝑥, 𝑦 and 𝑧 components 

of the initial and final frames. 𝜔 is computed by taking the cross-product of each of the 𝑥, 𝑦 and 𝑧 principal 

axis of the initial frame with the corresponding axis of the final frame and summing up the three computed 

vectors into a single vector. Thus, 

 𝑣𝑥 = 𝑝𝑥𝑓 - 𝑝𝑥𝑖 (8) 

 𝑣𝑦 = 𝑝𝑦𝑓 - 𝑝𝑦𝑖 (9) 

 𝑣𝑧 = 𝑝𝑧𝑓 - 𝑝𝑧𝑖 (10) 

 𝜔𝑥 = 0.5 ∗ (𝑜𝑦𝑖 ∗ 𝑜𝑧𝑓 −  𝑜𝑧𝑖 ∗ 𝑜𝑦𝑓 +  𝑛𝑦𝑖 ∗ 𝑛𝑧𝑓 −  𝑛𝑧𝑖 ∗ 𝑛𝑦𝑓 + 𝑎𝑦𝑖 ∗ 𝑎𝑧𝑓 −  𝑎𝑧𝑖 ∗ 𝑎𝑦𝑓) (11) 

 𝜔𝑦 = 0.5 ∗ (𝑜𝑧𝑖 ∗ 𝑜𝑥𝑓 −  𝑜𝑥𝑖 ∗ 𝑜𝑧𝑓 + 𝑛𝑧𝑖 ∗ 𝑛𝑥𝑓 −  𝑛𝑥𝑖 ∗ 𝑛𝑧𝑓 +  𝑎𝑧𝑖 ∗ 𝑎𝑥𝑓 −  𝑎𝑥𝑖 ∗ 𝑎𝑧𝑓) (12) 

 𝜔𝑧 = 0.5 ∗ (𝑜𝑥𝑖 ∗ 𝑜𝑦𝑓 −  𝑜𝑦𝑖 ∗ 𝑜𝑥𝑓 + 𝑛𝑥𝑖 ∗ 𝑛𝑦𝑓 −  𝑛𝑦𝑖 ∗ 𝑛𝑥𝑓 +  𝑎𝑥𝑖 ∗ 𝑎𝑦𝑓 −  𝑎𝑦𝑖 ∗ 𝑎𝑥𝑓  ) (13) 

Equations (11) to (13) above for the computation of angular velocity 𝜔 can also be written in a concise 

form as, 

 𝜔 = 1
2

 (𝑛𝑖 × 𝑛𝑓 + 𝑜𝑖 × 𝑜𝑓 +  𝑎𝑖 × 𝑎𝑓) (14) 
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Let 𝑉 be the velocity vector that represents linear and angular velocity as a single unit. Thus, 

 𝑉 = 

⎣
⎢
⎢
⎢
⎢
⎡
𝑣𝑥
𝑣𝑦
𝑣𝑧
𝜔𝑥
𝜔𝑦
𝜔𝑧⎦
⎥
⎥
⎥
⎥
⎤

 (15) 

Let 𝑉𝑚 be the velocity generated every time the master manipulator is moved from one point to another by 

the user and let 𝑉𝑠 be the corresponding velocity of the slave manipulator which moves as a result of 

teleoperation. Let 𝑣𝑚, 𝜔𝑚, 𝑣𝑠 and 𝜔𝑠 be the corresponding linear and angular velocities. These vectors are 

generated at every time instant as the slave arm (remote arm) is being teleoperated with the master 

device. 𝑉𝑚 and 𝑉𝑠 are related by a mapping matrix that relates the base frame orientations of the master 

and slave manipulators. Thus, 

 𝑉𝑠 = 𝑀 𝑉𝑚 (16) 

where, 

 𝑀 = � 𝑅𝑚𝑠
1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1
𝑅𝑚𝑠

� (17) 

𝑅𝑚𝑠  is the 3X3 rotation matrix that specifies the orientation of the base frame  of the slave manipulator with 

respect to the base frame of the master manipulator. Therefore the mapping matrix 𝑀 is a 6X6 matrix. 

Ordinarily, 𝑉𝑠 is computed at every time instant as the master device is being manipulated by the 

user. Inverse kinematics on the 6X1 velocity vector 𝑉𝑠 gives the joint angles that the slave arm needs to 

be commanded by in order to move by the same amount and in the same direction as the master device. 

(The details of inverse kinematics and mapping matrix values are covered in the chapter on Hardware 

implementation). However, in order to provide assistance in scaling 𝑉𝑠 needs to be modified so that its 

components in the desired directions are amplified. Let this modified form of 𝑉𝑠′. Inverse kinematics on 𝑉𝑠′ 

will lead to scaled motion. We now show how 𝑉𝑠′ is calculated. 
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 Scaled Teleoperation for Translation 2.4.1

We first explain how we scale the motion in translation. We know from intention recognition 

algorithm the particular preshape pose that the user is interested in. In other words the system knows the 

location to which the end-effector should be traversing in order to align with the desired preshape pose. 

Let the unit vector along the linear velocity vector that defines this desired linear trajectory be 𝑣𝑘. Let 

𝑣𝑙and 𝑣𝑚be the unit vectors perpendicular to 𝑣𝑘 so that 𝑣𝑘, 𝑣𝑙 and 𝑣𝑚 are orthonormal i.e. mutually 

orthogonal unit vectors. In other words, 𝑣𝑘, 𝑣𝑙 and 𝑣𝑚 form an 𝑥, 𝑦 and 𝑧 Cartesian triad. We already have 

𝑣𝑠 which is the linear velocity of the slave due to teleoperation from master device. We must keep in mind 

that 𝑣𝑠 is not a unit vector. Let, 𝑡𝑘, 𝑡𝑙 and 𝑡𝑚 be vectors generated by projecting 𝑣𝑠 on 𝑣𝑘, 𝑣𝑙 and 𝑣𝑚 and 

having the direction along 𝑣𝑘, 𝑣𝑙 and 𝑣𝑚. Therefore,  

 𝑡𝑘 = (𝑣𝑠 . 𝑣𝑘) 𝑣𝑘 (18) 

 𝑡𝑙 = (𝑣𝑠 . 𝑣𝑙) 𝑣𝑙 (19) 

 𝑡𝑚 = (𝑣𝑠 . 𝑣𝑚) 𝑣𝑚 (20) 

Since, 𝑣𝑘 is the desired direction that the user intends to move the remote arm along, we scale the motion 

along 𝑣𝑘 and scale down along 𝑣𝑙 and 𝑣𝑚. Let 𝑠𝑢be the scaling factor for scaling up and 𝑠𝑑be the scaling 

factor for scaling down. We have, 

 𝑠𝑢 ≥ 1 (21) 

 1 ≥ 𝑠𝑑 ≥ 0 (22) 

Let, 𝑡𝑘′, 𝑡𝑙′ and 𝑡𝑚′ be the scaled versions of 𝑡𝑘, 𝑡𝑙 and 𝑡𝑚, such that, 

 𝑡𝑘′  = 𝑠𝑢 𝑡𝑘 (23) 

 𝑡𝑙′ = 𝑠𝑑 𝑡𝑙  (24) 

 𝑡𝑚′  =𝑠𝑑 𝑡𝑚 (25) 

If, however, 𝑡𝑘  is in the direction opposite to that of 𝑣𝑘 i.e. the user is deviating away from the desired, 

then all the three components of projection are scaled down. In this case, we get, 
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 𝑡𝑘′  = 𝑠𝑑 𝑡𝑘 (26) 

 𝑡𝑙′ = 𝑠𝑑 𝑡𝑙  (27) 

 𝑡𝑚′  =𝑠𝑑 𝑡𝑚 (28) 

Thus, the modified version of 𝑣𝑠 is given by the vector sum of 𝑡𝑘′, 𝑡𝑙′ and 𝑡𝑚′. Let us call it 𝑣𝑠′. Thus, 

 𝑣𝑠′ = 𝑡𝑘′ + 𝑡𝑙′ + 𝑡𝑚′ (29) 

𝑣𝑠′ is thus the scaled form of 𝑣𝑠, It is scaled up in the direction of 𝑣𝑘 which is the desired direction for 

translation of the slave arm. The users teleoperating the arm will not only see a change in the direction of 

motion but also a change in the magnitude. The closer the user teleoperates the slave arm along the 

desired direction, the larger is the magnitude of motion. The more the deviation from the desired 

trajectory, the smaller is the magnitude of motion. In this way the user is assisted along the desired 

direction of motion. The concept of scaled teleoperation along a linear trajectory is shown in the figure 

below. For ease of appearance and understanding, the concept is shown in two dimensions only. 

 

Figure 12: Scaled translation concept 

 Scaled Teleoperation for Rotation 2.4.2

The scaled rotation concept is similar to the scaled translation concept. This is because even 

though a rotation in Euclidean space has to be represented by 3X3 matrix of 9 elements, equivalent 

angle-axis form reduces these elements to just 3. Equations (11) to (13), which give a vectorial 

representation of the differential rotation matrices, are derived from equivalent angle-axis form [19]. Thus, 

when the rotation matrix can be represented in the form of a 3X1 angular velocity vector, given by 
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Equations (11) to (13), the calculations for scaling it become similar to those for translation. All we need to 

do is to replace the linear velocity vectors by angular velocities. The motion scaling along orientation is 

explained next. 

We know that 𝜔𝑠 is the angular velocity of the slave end-effector generated after mapping that of 

the master device end-effector 𝜔𝑚 when the master moves from one point to another under user control. 

𝜔𝑠 and 𝜔𝑚 are generated at every time instant as the user is teleoperating and are related by the 

mapping matrix in a manner similar to the linear velocity vectors given by Equation (16). Based on the 

intention recognition, the desired direction of orientation, that the user should be teleoperating in order to 

align the slave arm with the desired preshape pose, is already known. Let 𝜔𝑘 denote a unit vector in that 

direction and it can be calculated using Equations (11) to (13).  Again, 𝜔𝑘 is a 3X1 vector in Euclidean 

space and can be treated like any other vector in the space. Let 𝜔𝑙 and 𝜔𝑚 be unit vectors perpendicular 

to 𝜔𝑘 such that the three vectors are orthonormal and form an 𝑥, 𝑦 and 𝑧 Cartesian triad. 

Let, 𝑟𝑘, 𝑟𝑙 and 𝑟𝑚 be the vectors generated by projecting 𝜔𝑠 over 𝜔𝑘, 𝜔𝑙 and 𝜔𝑚 respectively. We 

must keep in mind that 𝑟𝑘, 𝑟𝑙 and 𝑟𝑚 are not unit vectors. Thus, 

 𝑟𝑘  = (𝜔𝑠 . 𝜔𝑘) 𝜔𝑘  (30) 

 𝑟𝑙  = (𝜔𝑠 . 𝜔𝑙) 𝜔𝑙  (31) 

 𝑟𝑚  = (𝜔𝑠 . 𝜔𝑚) 𝜔𝑚 (32) 

Now, since the desired direction of rotation is along 𝜔𝑘, the component along that direction should be 

increased while those in the perpendicular directions should be decreased. In other words, we have to 

scale 𝑟𝑘 up and scale 𝑟𝑙 and 𝑟𝑚 down. Let 𝑠𝑢 and 𝑠𝑑 be the scale factors for scaling the motion up and 

down. The amount of scaling depends on the amount of assistance that needs to be provided to the user. 

A higher value of 𝑠𝑢 will result in the slave arm having a higher magnitude of motion along the desired 

orientation direction for the same amount of movement of the master. It will also result in the slave arm 

having lesser magnitude of orientation motion when the arm deviates from the desired orientation 

direction. Here too, 𝑠𝑢 and 𝑠𝑑 follow the constraints given by Equation (21) and (22).  
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Let , 𝑟𝑘′, 𝑟𝑙′ and 𝑟𝑚′ be the scaled versions of 𝑟𝑘, 𝑟𝑙 and 𝑟𝑚 so that,  

 𝑟𝑘′  = 𝑠𝑢 𝑟𝑘 (33) 

 𝑟𝑙′ = 𝑠𝑑 𝑟𝑙  (34) 

 𝑟𝑚′  =𝑠𝑑 𝑟𝑚 (35) 

Just like the case in translation, if 𝑟𝑘 is in a direction opposite to that of 𝜔𝑘, i.e. if the user is deviating away 

from the desired rotation path, all the components are scaled down. In this case, we get,  

 𝑟𝑘′  = 𝑠𝑑  𝑟𝑘 (36) 

 𝑟𝑙′ = 𝑠𝑑 𝑟𝑙  (37) 

 𝑟𝑚′  =𝑠𝑑 𝑟𝑚 (38) 

Let, 𝜔𝑠′ be the vector sum of 𝑟𝑘′, 𝑟𝑙′ and 𝑟𝑚′. Thus, 

 𝜔𝑠′ = 𝑟𝑘′ + 𝑟𝑙′ + 𝑟𝑚′ (39) 

𝜔𝑠′ is the modified angular velocity vector that will result in the angular motion of the end-effector scaled 

up in the desired directions. Thus, the users will see the end-effector rotating with a higher angle towards 

the desired pose with scaled teleoperation. The angle is higher when the user orients the slave end-

effector closer to the desired rotation angle. It also results in the end-effector aligning quicker with the 

desired pose. The concept of scaled orientation is shown in the figure below in two dimensions only, for 

the sake of simplicity and understanding. 

 
Figure 13: Scaled rotation concept  
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Chapter 3: Hidden Markov Model - Theory, Design and Implementation 

In this chapter, first the multi-object multi-grasp-configuration identification problem is defined. An 

explanation of the use of Hidden Markov Model (HMM) to model such a problem and determine the 

intended object and grasp configuration is presented. An HMM is formally defined and the various 

parameters that make-up an HMM are listed. A description of the various quantities that make-up the 

feature vector of an HMM and how its various parameters are estimated from training data is presented. 

Next a mention of the use of output probability of an HMM and the Viterbi state sequence, to 

probabilistically determine the desired object and grasp configuration, is made. Finally, the design of the 

HMM used in the project is presented. This includes the various objects we have modeled and the 

specifics of the parameter estimation process. Notes on the implementation of our HMM, which includes 

the user interface developed for testing our algorithm, are presented.  

3.1 Multi-object and Multi-grasp-pose Identification Problem and Hidden Markov Model for 
Motion Intention Recognition  

 

Figure 14: End-effector of a robot and objects from various shape categories with pre-defined grasp 
poses 
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In this sub-section, we give a high-level explanation of identifying the object of interest and the 

grasp pose of interest using Hidden Markov Model (HMM) theory. Consider the environment shown in 

Figure 14. In the figure we see a gripper at an initial pose with its Cartesian frame defined. There are 

objects of general shapes like cylinder, sphere and box. The possible grasping poses for each of those 

objects is shown with gripper jaws surrounding each object. The problem is to identify the object of 

interest and the grasp pose for grasping the object, using motion data, as the user is teleoperating 

towards the object.  

As mentioned in chapter 1, in order to identify an object of interest in a cluttered environment, the 

first step we take is to categorize the objects into classes based on their shapes. Let us assume, for the 

purpose of developing the theory, that we select three basic shapes, a cylinder, a sphere and a box, as 

the object classes. Thus, any object that approximates one of these shapes can be an object of interest. 

We also define pre-set grasp poses for each object shape. Thus, from Figure 14, the cylinder can be 

grasped in certain pre-defined grasp configurations. The same is true for the other shapes. We then 

develop a model for each object shape by training it based on human motion data. Thus a model is 

developed, one for each, the cylinder, the sphere and the box. The human motion data used for training is 

based on the translation and orientation vectors that are generated as the user is teleoperating. For 

training, a skilled teleoperator is asked to repeatedly preshape in teleoperation to each of the grasping 

poses for a particular shape. Each time the teleoperator starts from a random starting pose of the end-

effector and from different approach directions to the object. Thus, a model for that particular shape is 

developed. The states of the model are the various grasp configurations of the object and the 

observations are the projections of incremental master translation and rotation vectors onto each of the 

remote arm reference vectors. Reference vectors are the ideal translation and rotation vectors from the 

current remote arm end-effector pose to each of the grasp configurations for the object for which the 

HMM is being trained. We have observed that the distribution of the projections on the desired reference 

vectors is approximately exponential in nature. Thus, we have used approximated exponential distribution 

as our observation probability distribution for each HMM.  This process of developing the model is 

repeated for all shapes. The models for the shapes differ by the parameters of the exponential distribution 

and by the states. For intention recognition, the likelihood of the HMMs for each object, as the user is 
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better than our method. However, as the user fine-orients and fine-positions in the end, fluctuations are 

experienced. This is because rotations are negligible when the subject is fine-positioning and translations 

are negligible when the subject is fine-orienting. These negligible magnitudes are like noise that 

fluctuates. The unit vectors in the direction of these magnitudes thus fluctuate rapidly and the maximum 

could be any of the possibilities. We also see that the time taken by the subject to execute the task in 

maximum-projection method is almost double than that taken using our method for preshaping over B1 

and P2. 

Figure 44 represents the intention recognition over the length of the trajectory for subject 2, as the 

subject was asked to preshape over B1, P2 and C2 in the two modes, our method and maximum-

projection method, each time starting from the home position. The arrangement of objects and starting 

position of the arm is shown in Figure 42. 

   
(a) (b) (c) 

   
(e) (f) (g) 

Figure 44: Intention recognition over the length of the trajectory for subject 2. (a), (b) and (c) represent our 
method whereas (d), (e) and (f) represent the maximum-projection method 

We see that subject 2 experiences more overall fluctuations than subject 6 since subject 2 is 

unskilled. Also, the fluctuations experienced by subject 2 while executing the task using our method are 

far less than those experienced in the maximum-projection method. The subject experiences some 
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Appendix B Approval to Use Copyrighted Material 

B.1 Permission to Reproduce Figure 3 
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Appendix C Institutional Review Board (IRB) Approval 

 

Figure C1: Insitutional Review Board (IRB) approval letter 


