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Abstract 

 

 

 

Coral habitats span the range from tropical to polar, extremely shallow to thousands of 

meters deep.  The differences in light and temperature experienced in these varied habitats likely 

affect the metabolic rates of the corals residing there.  The metabolism of three coral species 

from different habitats have been examined to elucidate the effects of these environmental 

parameters on metabolism, an under-studied aspect of coral biology.  For all three species, 

measurements of oxygen uptake, ammonium excretion, and activity of the enzymes lactate 

dehydrogenase (LDH), malate dehydrogenase (MDH), and citrate synthase (CS) were used to 

characterize their metabolism.  Off Florida’s Gulf coast, Cladocora arbuscula is known to be 

one of the species least damaged by bleaching events and is one of the quickest to recover, 

making it an ideal candidate for studying the effects of symbionts.  The first set of experiments 

was designed to reveal the effect of disrupting the coral-algal symbiosis between this subtropical 

shallow-water coral and its dinoflagellate symbiont, Symbiodinium.  The metabolic effects were 

described for “normal” C. arbuscula and those “bleached” by being held in total darkness for 4 

months.  Normal C. arbuscula had a relatively low rate of oxygen consumption at 21°C, 

averaging 2.43±0.65 µmol O2 gwm
-1

 h
-1

 (±S.E.), using tissue wet mass, while the bleached 

colonies had an average rate of 2.46±0.49 µmol O2 gwm
-1

 h
-1

.  Ammonium excretion averaged 

0.07±0.02 and 0.10±0.03 µmol NH4
+
 gwm

-1
 h

-1
 (±S.E.) for normal and bleached C. arbuscula, 

respectively.  The activity values of the metabolic enzymes citrate synthase (CS) fell within the 

normal range expected for a cnidarian, averaging around 0.09±0.02 activity units (U) gwm
-1

 for 
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both treatments, indicating normal aerobic ability.  MDH was extremely high for the normal 

corals, compared to other cnidarians, averaging 2.5±0.4 U gwm
-1

, and a bit lower for the bleached 

corals, averaging 1.2±0.3 U gwm
-1

, indicating high MDH activity during both normoxia and 

hypoxia.  LDH activity, also high, averaged 1.3±0.2 U gwm
-1

 for both treatments, indicating 

anaerobic competence.  These experiments show that C. arbuscula is adept at maintaining almost 

completely normal metabolic function when bleached, although the corals quickly become re-

inoculated with symbionts upon return to normal light conditions in a tank with normal corals. 

The second set of experiments served to characterize the metabolism of Lophelia pertusa, 

an azooxanthellate cold-water coral that thrives in water depths between 36 and 3383 m.  L. 

pertusa is rather stenothermal, commonly found between 6-8°C, but in the Gulf of Mexico can 

be subjected to warm water incursions.  This makes it an ideal candidate for the examination of 

the effects of temperature.  L. pertusa exhibited a respiration rate of 1.14 µmol O2 gwm
-1

 h
-1

 at the 

control temperature of 8°C.  Calculating the Q10 for bringing L. pertusa up to the environmental 

temperature of C. arbuscula results in a value of 1.8. The 11°C treatment group exhibited an 

11% increase in respiration, while at 13°C, the corals showed a 23% rise from normal. The 5°C 

group showed a 32% decrease in respiration.  The activity values of the metabolic enzyme citrate 

synthase (CS) fell into the normal range expected for a cnidarian, averaging 0.15, 0.20, 0.10, and 

0.18 activity units (U) gwm
-1

 for the 8°C, 11°C, 13°C, and 5°C treatments, respectively.  Malate 

dehydrogenase (MDH) values were unexpectedly high, averaging 2.05, 1.48, 1.48, and 1.82U 

gwm
-1

 for the 8°C, 11°C, 13°C, and 5°C treatments, respectively.  Lactate dehydrogenase (LDH) 

was undetectable in this species, suggesting it has a different terminal glycolytic enzyme.  

Nonetheless, the other two enzymes indicate metabolic competence in both normoxic and 
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hypoxic conditions.   L. pertusa is adaptable to temperatures within its range, although its 

respiration rate is lower than that of tropical corals. 

The third set of experiments characterized the metabolism of the endemic Antarctic coral 

Flabellum impensum, one of the world’s largest solitary corals.  It resides at roughly the same 

depths as L. pertusa, but the water temperature in its habitat never strays far from 0°C.  F. 

impensum had a low rate of oxygen consumption at 0°C, averaging 0.31 µmol O2 g
-1

 h
-1

, 

calculated using tissue wet mass.  Calculating a Q10 for this species at C. arbuscula’s habitat 

temperature results in a value of 2.7.  Ammonium excretion averaged 4.21 nmol NH4
+
 gwm

-1
 h

-1
.  

The activity values of the metabolic enzymes citrate synthase (CS), malate dehydrogenase 

(MDH), and lactate dehydrogenase (LDH) fell within the normal range expected for a cnidarian, 

averaging 0.13, 1.01, and 0.42 activity units (U) gwm
-1

, respectively.  A count of the skeletal 

growth bands on the calyx suggests that this species has a linear extension rate of approximately 

1 mm per year.  F. impensum is a long-lived, slow-growing coral, with a low metabolic rate.
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Chapter One:  
 

Introduction 

 

History 

Coral reefs have been evolving for 260 million years, having survived and transformed 

through major climatic changes and mass extinctions (Grigg, 1994; Brown, 1997).  Scleractinia, 

or stony corals, first appeared in the fossil record sometime during the mid-Triassic and their 

diversity fluctuated throughout geologic time, with loss of a majority of taxa following the K-T 

mass extinction (Stanley and Swart, 1995; Stanley, 2003).  Some late Triassic Scleractinia were 

zooxanthellate, although this symbiosis was probably not as efficient as it is in modern corals 

(Stanley and Swart, 1995; Leinfelder, 2001).  It can be presumed that the symbiotic relationship 

between stony corals and zooxanthellae is what eventually allowed them to flourish and become 

an ecologically significant component of the reef framework.  Scleractinians were a diverse and 

noteworthy presence on reefs throughout the Mesozoic era and their diversity rebounded during 

the Eocene; zooxanthellate Scleractinia did not become the dominant reef-builder until the 

Oligocene, coincident with declining atmospheric carbon dioxide (Pomar and Hallock, 2007).   

The first deep-water reef frameworks formed by azooxanthellate corals started to appear 

in the Cretaceous period and although the K-T extinction also devastated these corals, it was to a 

lesser degree than experienced by zooxanthellate corals (Stanley and Cairns, 1988; Roberts et al., 

2009).  It took four million years for the diversity of zooxanthellate scleractinians to return to the 

level of diversity of the more extinction-resistant azooxanthellate corals (Rosen and Turnšek, 
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1989; Rosen, 2000; Kiessling and Baron-Szabo, 2004).  Today, the family Caryophylliidae 

contains the highest diversity of azooxanthellate deep-water corals (Roberts et al., 2009), such as 

Lophelia pertusa, as well as a large number of zooxanthellate species, such as another coral of 

interest to this study, Cladocora arbuscula.  Like L. pertusa, the third coral examined in this 

study, Flabellum impensum (family: Flabellidae), is also azooxanthellate. 

Symbiosis in modern corals 

 Mutualism between an animal host and its algal symbionts evolved as a mechanism to 

maintain a competitive edge within an ecological niche, while faced with a low supply of food 

(Muscatine and Porter, 1977; Hallock and Schlager, 1986; Stanley and Swart, 1995; Muller-

Parker and D’Elia, 1997).  The general description of this symbiosis is that the autotrophic 

symbiont recycles inorganic nutrients provided by its heterotrophic host’s metabolism, and in 

combination with photosynthesis, ends up largely supplementing the host’s energy requirements 

(Hallock. 1981; Stanley and Swart, 1995; Yellowlees et al., 2008).  The three clades (A, B, and 

C) of the genus Symbiodinium are the most common photosynthetic dinoflagellates existing in 

symbiosis with a coral host (LaJeunesse, 2002).  A variety of studies report that these 

zooxanthellae provide anywhere from 32% to 92% of their hosts’ daily metabolic needs (Beck, 

1982), but in the tropics, shallow-water corals thrive in well-lit waters where the photosynthetic 

contributions of their symbionts can exceed their metabolic requirements (Piniak, 2002).  Indeed, 

zooxanthellae allow corals access to orders of magnitude more carbon than would typically be 

available to a heterotroph (Beck, 1982; Hallock, 1981, 2001), so the success of zooxanthellate 

corals in nutrient-limited environments can be attributed to the energetic advantage bestowed 

upon the corals by their symbionts (Stanley and Swart, 1995; Stanley, 2003).  In addition to 

utilizing carbon provided by their symbionts, zooxanthellate corals experience differences in 
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growth, metabolism, and ability to acclimate to environmental changes as a result of this 

mutualism (Reed, 1982; Gates and Edmunds, 1999; Muller-Parker and D’Elia, 1997; Hallock, 

2001). 

There is generally little knowledge about the intricacies of the physiological interactions 

between a symbiont and its scleractinian host (Gates and Edmunds, 1999) and there are no 

studies to this author’s knowledge addressing these aspects in regard to the metabolism of C. 

arbuscula.  The genus Cladocora is comprised of species whose associations with Symbiodinium 

span the range from obligately zooxanthellate to azooxanthellate.  C. arbuscula is a 

zooxanthellate coral while a similar species, C. debilis, with which C. arbuscula is often 

confused, is azooxanthellate, resides at greater depth, and has a much larger geographic range 

(Cairns, 2000; Alvarez-Perez 2005).  C. arbuscula is host to type B1 Symbiodinium, S. 

pulchrorum/bermudense (LaJeunesse, 2002), which have a high acclimatization capacity 

throughout a large range of irradiance levels (Iglesias-Prieto and Trench, 1997).  Goreau (1959) 

observed calcification rates of C. arbuscula and found that these rates did not change much 

whether the corals were held in the light or dark, suggesting that this coral is not highly 

dependent upon its symbionts for skeletal formation.  C. arbuscula can survive and reproduce 

after being held for over eighteen months in complete darkness in the laboratory, subsisting only 

on a weekly feeding of Artemia franciscana nauplii (personal observation), which is further 

evidence that the symbiosis is somewhat decoupled in this species and it is likely a facultative 

relationship. 

Buddemeier and Fautin (1993) noted that the degree of specificity a host has for a certain 

symbiont type may be the determining factor of that host’s capability to acclimate to long-term 

environmental changes.  One way around this is that some corals have a more loose association 
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with their symbionts, with many temperate species being facultatively zooxanthellate and 

dissociating from the mutualistic relationship altogether as light levels become too low to 

support photosynthesis (Miller, 1995).  In fact, Reed (1982) found that zooxanthellate Oculina 

varicosa living at 6 m depth actually have a lower growth rate than the azooxanthellate colonies 

living at 80 m depth, indicating that symbionts, despite their benefits, impose a metabolic cost to 

their hosts (Muller-Parker and D’Elia, 1997).  In another species of Oculina, O. arbuscula, 

growth rates are maximal when the coral can benefit from a combination of heterotrophy and 

supplemental energy via zooxanthellae (Piniak, 2002).  Another strategy that some corals may 

employ is to alter the constituents of their symbiont population, trading out some members of 

one type for those of another to optimize the combined physiological performance of the host 

and zooxanthellae for different environmental conditions (Gates and Edmunds, 1999).  The 

ability of a coral to use any of these strategies and the degree to which the coral can control its 

trophic condition is likely unique to each coral-symbiont partnership. 

Deep-sea and cold-water corals 

Deep-sea and shallow-water corals share many similarities in that they occur in both colonial 

and solitary forms, exhibit a variety of colors, sizes and shapes, are hosts to many associated 

fauna, and include reef-building species (Jensen and Frederiksen, 1992; Mortensen et al., 1995; 

Roberts and Hirshfield, 2004).  Although thousands of deep-sea corals have been described, 

researchers estimate that 800 stony species and their associated fauna have yet to be encountered 

(Roberts and Hirshfield, 2004).  Twenty of the 703 known species of deep-sea stony corals form 

reefs (Roberts and Hirshfield, 2004).  Deep-sea corals represent an important ecological niche in 

that they protect inhabitants from currents and predators, act as a nursery habitat, and provide 

feeding, breeding, and spawning ground for economically valuable fish and shellfish (Jensen and 
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Frederiksen, 1992; Mortensen et al., 1995; Roberts and Hirshfield, 2004).  L. pertusa reefs exist 

worldwide, except at the poles (Zibrowius 1980; Cairns 1994) and some living reefs are 

estimated to be thousands of years old (based on the coral’s slow growth rate compared to some 

shallow-water coral) (Freiwald et al., 2002).   

 Despite the evolutionary success conferred upon shallow-water corals by their symbiosis 

with photoautotrophic dinoflagellates, about 3300 (65%) documented species of corals are 

azooxanthellate and live in deep, cold waters, well below the photic zone, from 50-6000 m 

(Roberts and Hirshfield, 2004; Roberts et al., 2009; Etnoyer, 2010).  There have not been many 

studies of deep-sea corals in their natural state, so their biology and ecology are still poorly 

understood.  Although there is limited knowledge about the global distribution of deep-sea 

corals, most seem to occur on seamounts or the edges of continental margins, which are among 

the most diverse deep-sea habitats (Roberts and Hirshfield, 2004; Neulinger et al., 2008).  One of 

the two dominant species of deep-living corals that occurs off the southeast coast of the United 

States is L. pertusa, which is pseudo-colonial and stenothermal, as well as one of the most 

widespread deep-sea corals (Rogers, 1999; Neulinger et al., 2008).  The other dominant coral is 

the facultatively zooxanthellate O. varicosa, which occurs in both shallow and deep water (Reed, 

2002).  Seventeen species of scleractinian corals occur in Antarctic waters.  As is true of most 

high-latitude corals, all Antarctic species, such as the solitary F. impensum, are azooxanthellate 

due to the low temperatures and seasonal swings in irradiance typical of the Antarctic system 

(Cairns, 1990).  

 Because L. pertusa and F. impensum are azooxanthellate, they depend upon the capture 

of plankton and detritus for nutrition.  This, along with the fact that deep-sea corals experience 

lower temperatures and higher pressure, suggests that they might have a lower metabolic rate 
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than shallow-water corals.  Because C. arbuscula seems to have a somewhat looser association 

with its zooxanthellae than other corals with which it co-occurs, it may also have a more flexible 

metabolism to accommodate varying symbiont populations. 

Objectives 

 The purpose of this study was to explore the effects of light, temperature, and depth 

regime on the metabolic rates of corals.  Techniques employed were measurements of 

respiration, ammonia excretion, and activity of the metabolic enzymes LDH, CS, and MDH.   

The zooxanthellate C. arbuscula was examined both with and without its symbionts to assess the 

effects of autotrophic contributions to host metabolism. Observations of the deep-sea, 

azooxanthellate L. pertusa at different temperatures also provided insight into the intricacies of 

coral metabolism.  The azooxanthellate F. impensum was also included in the study to provide a 

polar representative for comparison.  The literature contains a large range of linear extension 

estimates for L. pertusa and none exist for C. arbuscula or F. impensum.  C. arbuscula probably 

has the highest metabolic rate due to its association with zooxanthellae; however, it seems less 

dependent on its symbionts for growth and survival compared to other tropical corals.  Once the 

symbionts are expelled, these shallow-water corals may exhibit metabolic rates similar to that of 

deep-sea corals.  Measuring these parameters allowed for a comparison of the metabolisms of 

these species and provided some insight as to what physiological effects a host coral experiences 

as a result of its symbiosis with Symbiodinium as well as over their temperature and depth 

distributions. 
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Chapter Two: 

 

The Effects of Symbiosis on Coral Metabolism 

 

Abstract 

Species of the scleractinian coral genus Cladocora span the range from azooxanthellate 

to obligately zooxanthellate in their associations with the genus Symbiodinium. The present study 

was designed to elucidate the effect of Symbiodinium symbiosis on the metabolism of a host 

coral, C. arbuscula.  The effects of symbiosis were described for normal C. arbuscula and those 

bleached by being held in total darkness, with measurements of oxygen consumption rate and 

metabolic enzyme activity.  C. arbuscula had a relatively low rate of oxygen consumption at 

21°C, averaging 2.43±0.65 µmol O2 g
-1

 h
-1

 (±S.E.), using tissue wet mass, while the bleached 

colonies had an average rate of 2.46±0.49 µmol O2 g
-1

 h
-1

.  Ammonium excretion averaged 

0.07±0.02 and 0.11±0.03 µmol NH4
+
  g

-1
 h

-1
 (±S.E.) for normal and bleached C. arbuscula, 

respectively, resulting in O:N ratios of about 55.  The activity values of the metabolic enzymes 

citrate synthase (CS) fell within the normal range expected for a cnidarian, averaging about 0.09 

activity units (U) gwm
-1

 for both treatments. Malate dehydrogenase (MDH), and lactate 

dehydrogenase (LDH) activities were high compared to other cnidarians.  MDH was extremely 

high for the normal corals, averaging 2.50 U gwm
-1

, and about half that for the bleached corals, 

averaging 1.20 U gwm
-1

.  LDH activity averaged about 1.27 U gwm
-1 

for both treatments.  C. 

arbuscula is adept at maintaining almost completely normal metabolic function when bleached, 



12 

 

it quickly regains zooxanthellae upon being returned to normal light conditions in a tank with 

normal corals. 

Introduction 

Mutualism between an animal host and its algal symbionts evolved as a mechanism to 

maintain a competitive edge within an ecological niche characterized by a low supply of food 

(Muscatine and Porter, 1977; Hallock, 1981; Muller-Parker and D’Elia, 1997; Stoecker, 1998).  

The seven clades (A, B, and C) of the genus Symbiodinium are the most common photosynthetic 

dinoflagellates existing in symbiosis with a coral host (LaJeunesse, 2002).  A variety of studies 

report that these zooxanthellae provide anywhere from 32% to 92% of their hosts’ daily 

metabolic needs (Beck, 1982; Cook et al.,1988; Gaydos, 2006), but in the tropics, shallow-water 

corals thrive in well-lit waters where the photosynthetic contributions of their symbionts can 

exceed their metabolic requirements (Johannes et al., 1970; Muscatine, 1990; Piniak, 2002).  

Indeed, zooxanthellae allow corals access to orders of magnitude more carbon than would 

typically be available to a heterotroph (Hallock, 1981; 2001), so the success of zooxanthellate 

corals in nutrient-limited environments can be attributed to the energetic advantage bestowed 

upon the corals by their symbionts (Stanley and Swart, 1995; Stanley, 2003).  In addition to 

utilizing energy provided by their symbionts, zooxanthellate corals experience differences in 

growth, metabolism, and ability to acclimate to environmental changes as a result of this 

mutualism (Reed, 1982; Gates and Edmunds, 1999; Muller-Parker and D’Elia, 1997).  

In the Mediterranean, the most extensively studied Cladocora species, C. caespitosa is found 

in a variety of habitats and is host to a Symbiodinium from clade A that is prevalent throughout 

the Mediterranean Sea and also tolerates a large range of irradiance levels (Rodolfo-Metalpa et 

al., 2008b).  C. caespitosa is the main endemic zooxanthellate coral in the Mediterranean and is 
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frequently found in turbid waters from 5-40 m (Rodolfo-Metalpa et al., 2006 and 2008a).  In a 

series of studies, Rodolfo-Metalpa et al. (2006, 2008a, 2008b, 2010) exposed C. caespitosa to 

different levels of temperature, irradiance, and pCO2, finding that both the coral and its 

zooxanthellae displayed extensive tolerance for short-term changes in environmental parameters.  

Buddemeier and Fautin (1993) noted that the degree of specificity a host has for a certain 

symbiont type may be the determining factor of that host’s capability to acclimate to long-term 

environmental changes.  One way around this is that some corals have a more loose association 

with their symbionts, with many temperate species being facultatively zooxanthellate and 

dissociating from the mutualistic relationship altogether as light levels become too low to 

support photosynthesis (Miller, 1995).  In fact, Reed (1982) found that zooxanthellate Oculina 

varicosa living at 6 m depth actually have a lower growth rate than the azooxanthellate colonies 

living at 80 m depth, indicating that symbionts, despite their benefits, impose a metabolic cost to 

their hosts (Muller-Parker and D’Elia, 1997; Stoecker, 1998).  In another species of Oculina, O. 

arbuscula, growth rates are maximal when the coral can benefit from a combination of 

heterotrophy and supplemental nutrition via zooxanthellae (Piniak, 2002).  Another strategy that 

some corals may employ is to alter the constituents of their symbiont population, trading out 

some members of one type for those of another, to optimize the combined physiological 

performance of the coral holobiont depending upon environmental conditions (Gates and 

Edmunds, 1999).  The ability of a coral to use any of these strategies and the degree to which the 

coral can control its trophic condition is likely unique to each coral-symbiont partnership. 

There is generally little knowledge about the intricacies of the physiological interactions 

between a symbiont and its scleractinian host (Gates and Edmunds, 1999) and there are no 

studies to this author’s knowledge addressing these aspects in regard to the metabolism of the 
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species examined in the present study, C. arbuscula.  The genus Cladocora is comprised of 

species whose associations with Symbiodinium span the range from obligately zooxanthellate to 

azooxanthellate.  C. arbuscula was the first species of Cladocora described and its existence has 

been recognized in the Caribbean for over 150 years (Lesuer, 1821; Baron-Szabo, 2005). C. 

arbuscula is unique compared to other species of Cladocora in that it is restricted to carbonate 

and soft bottoms and has a narrow geographic range, existing only off the coast of Florida, the 

Caribbean, and the Bahamas (Lesuer, 1821; Baron-Szabo, 2005).  C. arbuscula is one of the 

most abundant species of endemic scleractinian corals off the west central coast of Florida, and a 

dominant, relatively fast-growing component of the patch reefs in the region (Rice and Hunter, 

1992).  C. arbuscula is a zooxanthellate coral found at a depth range of 0.5-27 m while a similar 

species, C. debilis, with which C. arbuscula is often confused, is azooxanthellate, occupies a 

deeper range of 24-480 m, and has a much larger geographic range (Cairns, 2000; Alvarez-Perez 

2005).   

The objective of this study was to distinguish the effects of zooxanthellae on the metabolic 

processes of C. arbuscula by bleaching individual colonies, then comparing rates of oxygen 

consumption, ammonium excretion, and the activities of the metabolic enzymes, lactate 

dehydrogenase (LDH), malate dehydrogenase (MDH), and citrate synthase (CS) of the normal 

and bleached colonies.  If growth is maximal when a coral has both symbionts and another food 

source, it stands to reason that bleaching a coral would effectively reduce its growth rate by way 

of a reduced metabolic rate.  Thus, I am testing the hypothesis that a possibly facultatively 

zooxanthellate coral provided with ample food can compensate for the lack of symbiont input. 
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Materials and Methods 

Collection.  Colonies of Cladocora arbuscula were collected off the coast of Tarpon 

Springs, Florida in September 2009 at depths between 3 and 4 m.  Tennis ball-sized coral heads 

were hand-collected by divers using a hammer and chisel.  Specimens were immediately placed 

into a cooler on board a boat provided by volunteers from the Tarpon Springs chapter of 

SCUBAnauts International.  The corals were transported to the laboratory and immediately 

placed in a tank of recirculating seawater at 21°C.  The C. arbuscula colonies were broken down 

into smaller chunks of 10-55 polyps each with a hammer and chisel.  The chunks were briefly 

removed from the water (less than 30 sec each) and attached with polyps facing upward onto 1 

in
2
 tiles with parafilm-covered marine epoxy (to avoid permanent attachment).  After the epoxy 

cured under water, the chunks were meticulously cleaned of any epibionts and placed into 

smaller tanks containing artificial seawater (Instant Ocean
®
, salinity: 35ppt).  Half of the chunks 

from each colony were placed into a tank that was kept in complete darkness, while the others 

remained on a 12:12 h light:dark cycle.  Both treatments were fed Artemia franciscana (Great 

Salt Lake, Utah, USA) nauplii, freshly-hatched in the lab once per week.  It took approximately 

two months for the dark-adapted chunks to expel their symbionts.  They were considered to be 

fully bleached when the polyps were a pale pink color when retracted and completely transparent 

when expanded (Figure 2.1; see page 27).  Corals in both treatment groups were kept in their 

tanks for another two months before being used in the experiments. 

Oxygen consumption experiments.  The apparatus for measuring oxygen consumption 

consisted of an array of lucite chambers designed specifically for this type of experiment, as used 

by Torres et al. (1994).  The chambers’ construction allowed for water at 21°C, temperature-

controlled by an electric bath, to continuously flow between the double-layered walls, 
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maintaining the seawater and experimental animals in the inner chamber at a constant 

temperature.  Upon sealing a chamber, no air can enter or leave.  Oxygen microelectrodes (Clark, 

1956; Mickel et al., 1983) fabricated in-house were calibrated using air- and nitrogen-saturated 

water.  Then they were inserted into the top of each chamber and oxygen levels of the water 

inside were measured every half-second while a stir bar under a perforated lucite false bottom 

constantly mixed the water. 

 The pieces of “bleached” C. arbuscula and “normal” C. arbuscula, were placed into 

chambers appropriate for their size with artificial seawater treated with 25 mg/L each of 

Streptomycin and Neomycin to minimize bacterial oxygen consumption (Torres et al., 1994).  A 

control chamber with just the artificial seawater was included in each experimental run to 

confirm negligible bacterial respiration.  Once the chambers were sealed, PO2 of the water was 

measured for 24 hours in the dark.  These measurements were made for 15 pieces of normal and 

15 pieces of bleached C. arbuscula.  At the end of all experimental runs, the polyps were alive 

and had their tentacles extended.  The C. arbuscula samples were immediately prepared for 

enzyme analysis upon removal from the respiration chambers. 

 Before and after each run, a 20 ml sample of water was taken from each chamber to be 

analyzed for ammonia production (Oceanic Nutrient Laboratory, University of South Florida). 

Enzyme analyses.  The polyp tissues from each coral chunk were removed with a scalpel 

and forceps, weighed, and homogenized in a ground glass grinder with a 50 mM Imidazole/HCl 

buffer (pH 7.2 at 20 °C) solution that diluted the homogenate by 1:8.  Each homogenate was 

spun down in a centrifuge for 10 minutes at 4750 x g and the supernatant was used in triplicate 

UV/visible spectrophotometric enzyme analyses at 10°C using the techniques of Torres and 

Somero (1988). Lactate dehydrogenase (LDH) activity was assayed at a wavelength of 340 nm 
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in a 0.2 M Imidazole/HCl buffer solution (pH 8.0 at 10 °C) with 0.15 mM NADH and 5.0 mM 

Na-pyruvate.  Malate dehydrogenase (MDH) was measured at 340 nm in a 40 mM 

Imidazol/MgCl2 buffer solution (pH 8.1 @ 10°C) with 0.15 mM NADH and 0.5 mM 

oxaloacetate.  Citrate synthase (CS) activity was measured at 412 nm in a 50 mM Imidazol/HCl  

buffer solution (pH 8.0 @ 10°C) with 0.4 mM DTNB, 0.1 mM Acetyl-CoA, and 0.5 mM 

oxaloacetate.  Any remaining coral tissue was removed from the skeleton using a Waterpik
®
 

filled with artificial seawater and the cleaned skeleton was then weighed to calculate total tissue 

wet mass for each sample via subtraction. 

Results 

Normal Cladocora arbuscula exhibited an average respiration rate of 2.43±0.65 µmol O2 

gwm
-1

 h
-1

 (±S.E.), using tissue wet mass, while the bleached colonies had an average rate of 

2.46±0.49 µmol O2 gwm
-1

 h
-1

, an insignificant difference (ANOVA, F=0.001, df=1, p=0.97) 

(Table 2.1; see page 27).  The oxygen consumption rates did not scale with wet mass for either 

treatment group (p>0.40 for both), which is atypical for most animal groups (Hemminsen, 1960).  

The reason for this is likely that the coral pieces were similar in size, so the rates measured were 

within the normal range for pieces of that particular size.  The rates fall on the low end of the 

range for tropical/subtropical cnidarians (Davies, 1980; Schick, 1990) (Figure 2.2; see page 28). 

Differences in ammonium excretion were also not significant (ANOVA, F=1.26, df=1, 

p=0.27), averaging 0.07±0.02 and 0.11±0.03 µmol NH4
+
  gwm

-1
 h

-1
 (±S.E.) for normal and 

bleached C. arbuscula, respectively.  Like the respiratory rates, those excretion rates did not 

scale with mass for either group (p>0.20 for both).  The values result in an O:N atomic ratio of 

63 and 46 (p=0.32) for the normal and bleached corals, respectively, indicating that both groups 

were catabolizing lipids, possibly indicating starvation.  Even though the corals were fed weekly, 
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not all the Artemia were cleared over the course of the week, therefore, the corals had a constant 

food supply available.   It is possible that the sudden lack of Artemia triggered a starvation 

response. 

Activities of CS fell within the normal range expected for a cnidarian and were similar for 

both treatments, averaging 0.07±0.02 and 0.11±0.03 activity units (U) gwm
-1 

(±S.E.) (ANOVA, 

F=1.74, df=1, p=0.21), for normal and bleached C. arbuscula, respectively, where activity units 

are micromoles of substrate converted to product per minute.  MDH averaged 2.50±0.40 and 

1.2±0.31U gwm
-1

, for normal and bleached corals, respectively, both of which are high values, 

considering the range reported for other cnidarians (Thuesen and Childress, 1994; Henry and 

Torres, 2013), with the normal corals having significantly higher values than the bleached corals 

(ANOVA, F=5.57, df=1, p=0.03).  LDH activities were similarly very high for both groups, 

averaging 1.25±0.17 and 1.28±0.21U gwm
-1

, for normal and bleached corals, respectively 

(ANOVA, F=0.03, df=1, p=0.87). 

Discussion 

Although some studies have examined short-term growth rates of Cladocora arbuscula or C. 

caespitosa under experimental conditions (Rice and Hunter, 1992 and Rodolfo-Metalpa et al., 

2008a, respectively), there are no records of in situ linear extension rates; anecdotal growth rates 

have been quoted to be about 5 cm y
-1

, which may be unrealistically high.  The Mediterranean C. 

caespitosa has been observed to grow at rates between 1.36-6.15 mm per year (Peirano et al., 

1999; Kruzic and Pozar-Domac, 2002; Peirano et al., 2005; Kruzic and Benkovic, 2008), which 

may be similar to the rate at which C. arbuscula grows in the northern Gulf of Mexico.  This is a 

slow growth rate compared to tropical corals, whose growth rates are typically measured on a 

scale of centimeters.  Goreau (1959) observed calcification rates of C. arbuscula and found that 
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these rates did not change much whether the corals were held in the light or dark, suggesting that 

the species is not highly dependent upon its symbionts for skeletal formation.   

At the conclusion of the present study, some of the bleached coral pieces that were not used 

in the experiments remained in the dark tank for long-term observation (the rest were returned to 

the lab’s main coral tank to be re-inoculated with symbionts).  I observed that C. arbuscula can 

survive, calcify, and asexually reproduce to increase the colony size after being held for over 18 

months in complete darkness, subsisting only on a weekly feeding of Artemia franciscana 

nauplii, which is further evidence that the symbiosis is facultative in this species.  

Two zooxanthellate coral species with similar oxygen consumption rates as C. arbuscula 

(Figure 2.2; see page 28), Montastrea cavernosa and M. annularis, have growth rates of 6 and 

<10 mm y
-1

, respectively (Suggett et al., 2012; Foster et al., 2013).  The relatively low respiration 

rate (2.43 µmol O2 gwm
-1

 h
-1

) observed for C. arbuscula is consistent with the hypothesis that it 

may grow at a slow rate, similar to that of C. caespitosa.  The fact that this rate does not 

significantly differ between the normal colonies and the bleached colonies further supports the 

idea that C. arbuscula may not be dependent on its symbionts for normal metabolic function.  

Upon returning some of the coral pieces to a 12h:12h light/dark cycle in a large tank 

containing species of Montastrea and Siderastrea, signs of re-inoculation with symbionts were 

apparent after less than two weeks.  The corals had reverted to their normal yellow-brown color 

after six weeks.  It would have been interesting to determine if the same species and density of 

Symbiodinium repopulated the corals as were previously present. 

The metabolic enzyme analyses demonstrate that C. arbuscula is both aerobically and 

anaerobically competent.  The activities of the two Krebs cycle enzymes, citrate synthase (CS) 

and malate dehydrogenase (MDH) are indicators of aerobic function.  MDH also has other 
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functions related to metabolism; it shuttles glycolytic reducing equivalents into the 

mitochondrion, as well as back into the cytosol for gluconeogenesis.  The expected rate of CS 

activity combined with the elevated levels of MDH activity, especially in the normal treatment 

group, indicate that C. arbuscula is aerobically active and can also maintain redox balance 

during hypoxia.  Bleaching this coral effectively diminishes its MDH activity, but to a level that 

is still impressive compared to that of other cnidarians (Thuesen and Childress, 1994; Henry and 

Torres, 2013).  Dupont et al. (2010) found that compared to other co-occurring coral species, C. 

arbuscula is highly resistant to bleaching during a red tide event, and when it does bleach, will 

recover quickly, possibly due in part to its continued aerobic competency.   

Cladocora arbuscula is host to type B1 Symbiodinium, S. pulchrorum/bermudense 

(LaJeunesse, 2002), which have a high acclimatization capacity throughout a large range of 

irradiance levels (Iglesias-Prieto and Trench, 1997).  The tissue of C. arbuscula in the field 

contains a high density of zooxanthellae, possibly supporting as many as 17 layers of symbionts 

(Beck, 1982).  The increased access to oxygen as a result of a high symbiont count seems to 

further increase the aerobic metabolic function of the coral.   

The activity of the terminal enzyme in anaerobic glycolysis, lactate dehydrogenase (LDH), is 

an indicator of anaerobic capacity.  The high LDH activity in both treatment groups 

demonstrates an increased anaerobic competence.  The west coast of Florida is prone to 

outbreaks of Karenia brevis, the dinoflagellate responsible for red tides and the subsequent 

anoxic events.  Rice and Hunter (1992) demonstrated that C. arbuscula displays resistance to 

burial by sediment, compared to other corals with which it co-occurs.  The high anaerobic 

capacity of C. arbuscula is likely what allows it to survive red tide-induced anoxic events as well 

as sedimentation events.  There are also regions of western Florida that are subject to riverine 
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outflow; the corals in the present study were collected not far from the mouth of the Alafia River.  

These regions experience intermittent levels of high sediment flow.  The abundance of C. 

arbuscula off the Florida west coast can be partially attributed to its ability to thrive despite 

events that temporarily diminish water quality. 

In summary, C. arbuscula is one of the most abundant species of scleractinian corals off the 

west central coast of Florida, and is a dominant component of the patch reefs in the region (Rice 

and Hunter, 1992).  It thrives in a region subject to red-tides, intermittent high sedimentation, 

and the occasional hurricane.  Despite local anecdotes, it appears to have a low growth rate that 

is similar to the Mediterranean C. caespitosa, since its metabolic rate is on the lower end of the 

spectrum for sub/tropical cnidarians.  At the same time, its high levels of both aerobic and 

anaerobic function allow it to thrive in this environment, even when faced with conditions that 

cause widespread stress and mortality of benthic organisms.  Although C. arbuscula can function 

quite well without zooxanthellae, it seems that its optimal state is to have endosymbionts 

included as members of the holobiont, as evidenced by the rapid re-browning observed both in 

the field and laboratory. 
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Tables and Figures 

 

Table 2.1.  Oxygen respiration, nitrogen excretion, and enzyme activities for normal and 

bleached C. arbuscula. 

 

Respiration Excretion CS MDH LDH 

 

µmol O2 g
-1

 h
-1

 µmol NH4
+  g-1

 h
-1

 U gwm
-1

 U gwm
-1

 U gwm
-1

 

Normal 2.43±0.65 0.07±0.02 0.10±0.02 2.5±0.4 1.3±0.2 

Bleached 2.46±0.49 0.1±0.03 0.07±0.01 1.2±0.3 1.3±0.2 

F 0.001 1.26 1.74 5.57 0.03 

p-value 0.97 0.3 0.2 0.03 0.9 

df 1 1 1 1 1 

 

 

Figure 2.1.  Bleaching over time.  (A) A piece of C. arbuscula before being put into the dark.  

(B) The same piece (rotated) still showing some coloration after about a month in total 

darkness.  The white specks are some leftover Artemia cysts.  (C)  A different piece, fully 

bleached and shown inflated after feeding to demonstrate complete loss of zooxanthellae. 
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Figure 2.2.  Metabolic rates of various cnidarians.  C. arbuscula lies on the low end of 

the metabolic spectrum compared to some other cnidarians.  Species listed in this graph 

include  tropical corals (Davies, 1980), a zoanthid and an anemone (Shick, 1990). 
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Chapter Three: 

 

The Effects of Temperature on Coral Metabolism 

 

Abstract 

Lophelia pertusa is a hermatypic cold-water coral that flourishes around the globe in 

water depths between 36 and 3383 m.  The present study characterizes the metabolism of L. 

pertusa from Miami Terrace and the Gulf of Mexico with measurements of oxygen consumption 

and metabolic enzyme activity at four different temperatures, 5°C, 8 °C (control), 11°C, and 

13°C.  L. pertusa exhibited a respiration rate of 1.08 µmol O2 gwm
-1

h
-1

 at 8°C.  The 5°C group 

showed a 32% decrease in respiration compared with the controls.  The 11°C treatment group 

exhibited an 11% increase in respiration compared to the controls, while the 13°C corals showed 

a 23% increase.  O:N atomic ratios averaged 31 for the Miami Terrace corals, indicating a 

predominantly lipid-based diet, and less than 8 for the Gulf corals, indicating a pure protein diet.  

The activity values of the metabolic enzyme citrate synthase (CS) fell into the normal range 

expected for a cnidarian, averaging 0.18, 0.15, 0.20, and 0.10 activity units (U) gwm
-1 

for the 5°C, 

8°C, 11°C, and 13°C and treatments, respectively.  Malate dehydrogenase (MDH) values were 

unexpectedly high, averaging 1.82, 2.05, 1.48, and 1.48 U gwm
-1 

for the 5°C, 8°C, 11°C, and 

13°C treatments, respectively.  Lactate dehydrogenase (LDH) was undetectable in this species.  

L. pertusa thickets serve as habitat to thousands of animal species, and with more research 
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focusing on deep-sea coral habitats as important deep-sea refugia, it is especially important to 

understand the basic biology of the reef-forming species.   

Introduction 

Despite the evolutionary success conferred upon shallow-water corals by their symbiosis 

with photoautotrophic dinoflagellates, about 3300 (65%) documented species of corals are 

azooxanthellate and live in deep, cold waters, well below the photic zone, from 50-6000 m 

(Roberts and Hirshfield, 2004; Roberts et al., 2009; Etnoyer, 2010).  The existence of those deep-

living corals has been recognized for over two hundred years (Jensen and Frederiksen, 1992; 

Roberts and Hirshfield, 2004), however, it wasn’t until the development of submersible vehicles, 

that they became accessible to scientific research.  There have been few studies of deep-sea 

corals in their natural state, so details about their biology and ecology are still in the process of 

being discovered.  Although there is limited knowledge about the global distribution of deep-sea 

corals, most seem to occur on seamounts or the edges of continental margins, which are among 

the most diverse deep-sea habitats (Jensen and Frederiksen, 1992; Mortensen et al., 1995; 

Roberts and Hirshfield, 2004; Neulinger et al., 2008).  One of the two dominant species of deep-

living corals that occur off the southeast coast of the United States is Lophelia pertusa, which is 

pseudo-colonial and stenothermal, as well as one of the most widespread deep-sea corals 

(Rogers, 1999; Neulinger et al., 2008).  L. pertusa occurs as either completely white or with 

colored polyps ranging from yellow to orange to pink.  The other dominant coral is the 

facultatively zooxanthellate Oculina varicosa, which occurs in both shallow and deep water 

(Reed, 1982; 2002). 

Twenty of the 703 known species of deep-sea stony corals form reefs (Roberts and 

Hirshfield, 2004).  L. pertusa reefs exist worldwide, except at the poles (Zibrowius 1980; Cairns 
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1994) and some living reefs are estimated to be thousands of years old  

(estimated from the coral’s slow growth rate compared to some shallow-water corals) (Freiwald 

et al., 2002).  Linear extension rates for L. pertusa are estimated to be as low as 5 mm per year 

(Roberts, 2002) to at least 34 mm per year (Roberts et al., 2009) as observed from samples taken 

from man-made structures of known age, although Brooke and Young (2009) measured a much 

lower rate of 2.44-3.77 mm per year for transplanted pieces.  L. pertusa has been recorded at 

depths between 36 and 3383 m and at latitudes between 71°N and 51°S (Roberts et al., 2009). 

 Atlantic L. pertusa reefs provide habitat to thousands of species of sponges, anemones, 

bryozoans, gorgonians, worms, fish, mollusks, and crustaceans (Reed et al., 1982; Reed and 

Mikkelsen, 1987; Roberts and Hirshfield, 2004; Etnoyer, 2010) and have three times the 

diversity of the surrounding soft bottom (Fosså  et al., 2002).  They represent oases of high 

diversity in a low-diversity environment (Fosså et al., 2002), both in terms of overall diversity 

and diversity within many taxonomic groups (Jensen and Frederiksen, 1992; Mortensen et al., 

1995; Rogers, 1999).  The high diversity within Lophelia reefs is believed to be possible because 

they occur in a stable environment with a predictable food supply (Rogers, 1999).  Deep-sea 

corals represent an important ecological niche in that they protect inhabitants from currents and 

predators, act as a nursery habitat, and provide feeding, breeding, and spawning ground for 

economically valuable fish and shellfish (Jensen and Frederiksen, 1992; Roberts and Hirshfield, 

2004).  Although thousands of deep-sea corals have been described, researchers estimate that 

800 stony species and their associated fauna have yet to be encountered (Roberts and Hirshfield, 

2004). 

 Because L. pertusa is azooxanthellate, it must depend upon the capture of plankton and 

detritus for nutrition.  L. pertusa have been observed in the field to feed “voraciously” on 
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zooplankton (Rogers, 1999), yet have survived seemingly unharmed in a laboratory for three 

months without supplemental nutrition (Dr. Sandra Brooke, pers. comm.).  This, along with the 

fact that deep-sea corals experience lower temperatures, suggests that they might have a lower 

metabolic rate than shallow-water corals.  L. pertusa is rather stenothermal, commonly found 

between 6-8°C, although they are reported to occur within the range of 4-12°C (Freiwald, 2002).  

A recent thermal tolerance study by Brooke et al. (2012) suggests that 15°C represents the LT25 

for this species.  Corals for this study were collected off the coast of Miami and in the northern 

Gulf of Mexico at sites that were ~8°C.  Some L. pertusa reefs found on the oil/gas lease blocks 

in the Gulf are subject to temperature fluctuations due to internal waves as well as warm water 

intrusions from the Mississippi River (Davies et al., 2010) and Atlantic corals are subject to 

warm water meanders from the Gulf Stream (Bane et al., 2001).  This indicates that L. pertusa 

are tolerant of sporadic warm water pulses that are several degrees higher than what they are 

accustomed to, which indicates that the species can accommodate short term stress.  With Gulf 

temperatures expected to rise over 1°C within the century (Mendoza-Alfaro and P. Alvarez-

Torres, 2012), one can hypothesize that L. pertusa will have enough metabolic flexibility to be 

able to adapt to limited temperature increases associated with climate change.  This study aims to 

characterize the metabolic tolerance of L. pertusa to a range of temperatures that would normally 

be experienced in the field today, as well as what might become the norm within coming 

decades. 

Materials and Methods 

Collection.  The initial collection and study took place in May/June 2007 off Miami 

Terrace aboard the R/V Seward Johnson.  Corals were collected from 683 m depth via the 

manned submersible, Johnson-Sea-Link II.  The second collection and set of experiments took 
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place in October 2010 in the Northern Gulf of Mexico aboard the NOAA ship Ronald H. Brown.  

Corals were collected off the Bureau of Ocean Energy Management lease blocks VK826 (489 m) 

and GC354 (528 m) with the ROV system Jason/Medea.  Immediately following collection, 

Lophelia pertusa branches were broken down with a hammer and chisel to make pieces 

consisting of 1-11 polyps.  For all experiments, these coral pieces were allowed a minimum of 12 

hours of recovery and observation from collection/breakdown in a cold room close to the 

temperature at which they were found (5-8°C) before being used in any experiments.  The 

criteria for suitability of the coral pieces for use in an experiment were that all polyps on the 

piece had to be extended, all polyps reacted to tactile stimulation, and the piece had been broken 

off the main branch in such a manner that there was no damage to any of the polyps (no tissue 

exposed on the bottom or sides of any pieces). 

Oxygen consumption experiments.  The oxygen consumption test apparatus was made 

up of an array of water-jacketed lucite chambers as described in Torres et al. (1994).  Water that 

was temperature-controlled by a circulating water bath continuously flowed between the double-

layered walls of each chamber, keeping the seawater and experimental animals in the inner 

chamber at a constant temperature.  Once the chambers were sealed, the inner chamber was 

airtight.  Oxygen microelectrodes (Clark, 1956; Mickel et al., 1983) manufactured in the lab 

were inserted into each chamber to measure oxygen levels of the water inside, while a magnetic 

stir bar situated beneath a perforated lucite false bottom kept the water well-mixed. 

 Individual L. pertusa pieces were placed into chambers appropriate for their size with 

0.45 µm Millipore-filtered seawater instead of artificial seawater because in situ seawater was 

readily available.  To determine the volume of seawater in the chamber accounting for the 

animal, at the end of each experiment, the coral pieces were placed in a graduated cylinder of 



34 

 

seawater and the volume of water displaced by each piece was subtracted from the previously 

measured water capacity of each chamber (25 replicates).  The seawater was treated with 25 mg 

L
-1

 each of Streptomycin and Neomycin to minimize bacterial respiration and a control chamber 

was run for each experiment to ensure that any microbial consumption had a negligible effect on 

oxygen measurements (Torres et al., 1994).  Upon sealing the chambers, the PO2 of the water 

was measured every 30 seconds for 22 hours.  To minimize effects of transferring the pieces to 

their chambers, no data prior to the 100 minute mark were used.  This was the point by which all 

respiration rates had stabilized.   

The Miami Terrace corals were run only at their habitat temperature of 8°C (18 

replicates).  There were 4 temperature treatment groups for the Gulf experiments, representing 

various points along this species’ reported natural range.  All specimens were collected at 8°C so 

the respiration rates measured in this treatment group (14 replicates) represent L. pertusa’s 

normal rate.  An 11°C treatment (8 replicates) and a 13°C treatment (8 replicates) were selected 

to determine the effects of bringing the corals up to the high end of their temperature tolerance.  

The 5°C treatment (8 replicates) represents the low end of the range and was also chosen because 

the temperature of the cold room on board the Ronald H. Brown ranged between 5°C and 7°C 

and tended to be closer to 5°C during hours when traffic in and out of the room were low.  

Except for the 5°C group, corals were taken from the cold room prior to the experiments and 

placed in a large unsealed chamber of seawater in the array that was increased from 5°C to 

whichever treatment temperature they were going to experience by increasing the temperature of 

the water bath 0.5°C every hour.  The purpose of this was to avoid a heat shock response.  At the 

end of each experimental run, coral pieces were inspected to see if they had their tentacles 

extended and reacted to tactile stimulation, were retracted but still responded to tactile 
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stimulation (by further retracting into the calyx), or were unresponsive (dead).  Then they were 

promptly placed into a -80°C freezer for later analysis of metabolic enzymes. 

 Before and after each run, a 20 ml sample of water was taken from each chamber to be 

used for analysis of ammonium excretion via an auto-analyzer (Oceanic Nutrient Laboratory, 

University of South Florida). 

Enzyme analyses.  The frozen samples were stabilized at 4°C (the lower limit of the 

laboratory cold room) and weighed.  Per the methods described in Chapter 2, after obtaining the 

wet mass of each whole piece, bits of tissue were removed from the skeletons with forceps, 

weighed, then homogenized in a glass grinder with an imidazole buffer solution that diluted the 

samples 1:8.  The homogenate was spun down in a centrifuge for 10 minutes at 4750 x g and the 

supernatant was used in spectrophotometric analysis of lactate dehydrogenase (LDH), malate 

dehydrogenase (MDH), and citrate synthase (CS) activity levels at 8°C using the techniques of 

Torres and Somero (1988).  Any remaining coral tissue was removed from the skeleton using a 

Waterpik® filled with artificial seawater at 4°C and the cleaned skeleton was then weighed again 

to determine total tissue wet mass for each sample. 

Results 

Oxygen consumption.  At 8°C, there was no difference in oxygen consumption between 

the corals from Miami Terrace or the Northern Gulf of Mexico (p=0.01).  At the control 

temperature, Lophelia pertusa exhibited a respiration rate of 1.16±0.18 µmol O2 gwm
-1

h
-1

 and 

1.11±0.16 µmol O2 gwm
-1

h
-1

 (mean±S.E.), respectively.  The 5°C treatment specimens exhibited 

respiration rates averaging 32% lower than that of the control group (Table 3.1; see page 47), 

which is an unexpectedly large drop for a temperature decrease of only 3°C. Corals in the 11°C 

treatment group exhibited an 11% increase in respiration from the control.  At 13°C, the corals 
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showed a 23% rise in oxygen consumption, compared to the control, one quarter of the corals 

died, and all polyps were retracted into their calyces.  The relationship between increasing 

respiration rates and increasing temperature was significant (ANOVA, F=4.29, DF=3, p<0.01).  

Tissue wet mass was not a causative factor in the difference between treatment groups (ANOVA, 

F=0.31, df=3, p=0.8).  Dodds et al. (2007) found that L. pertusa lies midway between being an 

oxyconformer and an oxyregulator and calculated a critical oxygen partial pressure (Pc) of 9-10 

kPa at 9°C, 9 kPa at 11°C, and 5-6 kPa at 6.5°C.  No corals in the 5°C and 8°C treatments 

experienced conditions approaching a Pc, however some chambers did get low on oxygen in the 

11°C and 13°C treatments, so a Pc of 9 kPa was assigned to the 11°C treatment and a Pc of 10 

kPa was estimated for the 13°C treatment and only data from above those points were used in 

calculating respiration rates in order to capture “normal” respiration.  In the few instances that 

the oxygen dropped to zero, the coral from that chamber was removed from the experiment 

early.  Upon reviewing the data for the few corals that did seem to exhibit a Pc effect over the 

course of the experiment, it was discovered that these data aligned quite well with those of 

Dodds et al. (2007); the 11°C group showed a probable Pc around 8.7 kPa, while the 13°C group 

appeared to decline around 9.9 kPa.  Only a few chambers were depleted enough to see a Pc 

effect, so these values are not definitive. 

 As temperature increased, the correlation between respiration rate and tissue wet mass 

became stronger.  There was no significant correlation at 5°C (p=0.1) and 8°C (p>0.05), 

however, at 11°C (p<0.001) and 13°C (p<0.001) there was a clear trend of increased oxygen 

consumption with increasing wet mass (Figure 3.1; see page 47).  

Metabolic enzymes.  Temperature had no significant effect on CS (ANOVA, F=1.44, 

df=3, p=0.3) or MDH activity (ANOVA, F=1.73, df=3, p=0.2).  The activity values of the 
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metabolic enzyme citrate synthase (CS) fell into the normal range expected for a cnidarian, 

averaging 0.18±0.02, 0.15±0.01, 0.20±0.02, and 0.10±0.01 activity units (U) gwm
-1 

for the 5°C, 

8°C, 11°C, and 13°C treatments, respectively, where activity units are micromoles of substrate 

converted to product per minute.  Malate dehydrogenase (MDH) values were unexpectedly high, 

averaging 1.82±0.22, 2.05±0.14, 1.48±0.11, and 1.48±0.12 U gwm
-1 

for the 5°C, 8°C, 11°C, and 

13°C treatments, respectively. MDH activity in other cnidarians (medusae) is generally less than 

1 U gwm
-1

 (Thuesen and Childress, 1994).  Lactate dehydrogenase (LDH) was undetectable in 

this species, suggesting it uses a different terminal glycolytic enzyme.   

O:N ratios.  Ammonium excretion was the only parameter that differed between the 

samples from Miami Terrace and the Gulf.  The in situ O:N atomic ratio (oxygen respiration to 

ammonium excretion) for the Miami Terrace corals averaged 31, indicating that their diet 

consisted of more lipids than protein, while the Gulf corals averaged less than 8 for all 

treatments, indicating a diet of pure protein (Ikeda, 1974; Szmant et al., 1990; Torres et al. 1996). 

Discussion 

A fairly high rate of oxygen uptake was measured for Lophelia pertusa (an average of 

1.14 µmol O2 gwm
-1

h
-1

 tissue wet mass for all corals at control temperature), as compared to other 

cold-water to temperate cnidarians.  However, when making a Q10 correction for temperature 

(assuming Q10=2) and comparing this rate to tropical corals, L. pertusa is on the lower half of the 

metabolic spectrum (Figure 3.2; see page 48).  A Q10 represents the rate change of a 

biological/chemical reaction as a result of raising the temperature 10°C.  Most biochemical 

reactions have a Q10 that lies between 2 and 3.  Brooke and Young (2009) measured in-situ 

growth rates of L. pertusa transplants and found that the species has a linear extension rate of 

around 3 mm per year, which is a much slower rate than most tropical corals and strongly 
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reflects the lower metabolic rate.  Naumann et al. (2013) studied the respiratory and calcification 

rates of L.pertusa and Madrepora oculata at 6°C, 9°C, and 12°C.  Temperature did not affect the 

respiratory rate (reported in relation to surface area rather than tissue wet mass) of L.pertusa, but 

calcification decreased by 58% at the lowest temperature.  The respiration rate of M. oculata 

decreased by 48% at the 6°C and 9°C degree treatments, while calcification decreased by 69% 

and 41%, respectively.   

A wide range of growth rates have been reported, from 5 mm to over 3 cm per year, from 

observations in aquaria, stable isotope measurements, and discovery of colonies growing on 

man-made structures of known age (Roberts et al., 2009), although the growth rates are still well 

below that of many tropical corals.  This may very well be a function of variability in substrate 

quality (zooplankton prey availability/unit time); when a substrate of opportunity arrives, L. 

pertusa have a higher growth rate that allows them to out-compete other would-be colonizers, 

while established colonies have settled into a slower growth rate due to competition for 

zooplankton resources.  As colonies grow and age, the bioherm becomes host to many other 

animal species that then act as competion with the corals for food, reducing access to the 

nutrients necessary to support rapid growth.   

 Raising the temperature 3°C resulted in an 11% increase in oxygen consumption.  The 

corals appeared unstressed by the increase, as all of the polyps were extended.  However, this 

results in a Q10 of only 1.42.  Raising the temperature by 5°C resulted in a 23% increase in 

oxygen consumption and the death of 25% of the corals.  The surviving polyps had all retracted 

into their calyces, indicating stress.  Still, this rise in metabolism only resulted in a Q10 of 1.51.  

These low Q10 values might be explained by the results of the “low temperature” treatment group 

at 5°C.  For only a 3°C decrease in temperature, the 32% drop in oxygen consumption was 
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surprising.  However, all of the control runs were performed first, so by the time the 11°C, 13°C, 

and 5°C experiments were begun, the corals had already been on board for several days in the 

5°C-7°C cold room.  Recalculating the Q10 values for the 11°C and 13°C treatments using the 

new “baseline” metabolism from the 5°C group results in a Q10 of 2.24 and 2.08, respectively.  

Therefore, even though the corals were slowly brought up to their experimental temperatures 

after being removed from the cold room, the observed oxygen consumption rates suggest that 

their metabolism was altered from a baseline closer to 5°C, rather than their in-situ rates.   It is 

certainly interesting if this is indeed the case, as a few days seems like a rather short period of 

time for the mitochondrial densities in the coral tissue to change enough to alter baseline 

respiration (Pörtner, 2002).  Perhaps 5°C isn’t a difficult transition from 8°C because they 

experience slightly cooler water in the winter. 

 Acclimation to a temperature closer to 5°C would also help to explain the mortality 

observed at the highest temperature.  13°C is only one degree above their reported thermal range 

and two degrees below the 30% lethal temperature limit identified by Brooke et al. (2012).   25% 

of the corals didn’t survive a 22-hour exposure to the highest treatment temperature, indicating 

that the reported upper tolerance of 12°C is accurate when adjusting for the lower baseline.  

Studies monitoring various environmental parameters of VK826, the site where most of the 

corals were collected, revealed that the temperature ranges from 6.5–11.6°C and the site can 

experience small fluctuations in temperature of around 0.5°C over 30 minutes to 0.8°C over 8 

hours in 5-11 hour cycles (Davies et al., 2010; Mienis et al., 2012).  Therefore, if the corals were 

acclimatized  to 5°C, not only were they exposed to temperatures 8°C higher than what they had 

become used to, but they were also experiencing a temperature that was higher than anything 

they ever experience in the field.    Brooke et al. (2012) exposed corals to 15°C for 24 hours, 7°C 
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above the ambient temperature.  They all survived, but 30% died within the following week, 

indicating that 15°C is just above their  LT25.  Some even survived a 20°C exposure, but all died 

within the week.  Perhaps the combination of temperature stress and declining oxygen was too 

much for the corals to manage and that is why some of them were unable to handle a temperature 

increase that they normally would be able to survive for 22 hours (Pörtner, 2002).  Some large 

fragments of L. pertusa were brought back to the laboratory after the Gulf cruise and set up in a 

cold room at 8°C.  Unfortunately, the cold room failed sometime over the weekend and the 

temperature rose to 17°C.  This killed all of the corals.  It is unknown how long the corals 

remained at that temperature, but it was somewhere between 24 and 72 hours. 

Metabolic enzyme activity correlates well with respiration (Hochachka and Somero, 

2002), so CS, MDH, and LDH activities were measured.  CS regulates the first step in the Krebs 

cycle.  MDH also plays a part in this cycle, although it has several other roles related to 

metabolic function.  The activities of these two Krebs cycle enzymes are indicators of aerobic 

function.  Temperature did not significantly affect enzyme activity in these experiments.  The CS 

activity values fell within the normal range expected for a cnidarian, however, the MDH values 

were rather high, coming in at 1.5-2 times the expected level (Thuesen and Childress, 1994).  

LDH, the terminal enzyme in anaerobic glycolysis, is an indicator of an animal’s anaerobic 

capacity.  This enzyme had an activity value too low to be detected; perhaps L. pertusa has an 

analogous enzyme to replace LDH.  The coral colonies at VK826 live within an oxygen 

minimum zone, likely near their Pc (Davies et al., 2010).  This region is also subject to high 

sediment flux due to Mississippi River outflow and algal blooms (Davies et al., 2010; Mienis et 

al., 2012).  Additionally, Brooke et al. (2009) found that L. pertusa can tolerate fairly heavy 

sedimentation.  These factors lead to the expectation that Lophelia would be anaerobically 
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competent and display a high level of LDH activity, considering that it is regularly exposed to 

low-oxygen conditions.  Like some mollusks (Hochachka and Somero 2002), Lophelia may have 

another terminal enzyme for glycolysis, or the high MDH values may reflect an increase in 

activity of the malate shuttle to somehow “make up for” an apparent lack of a terminal glycolytic 

enzyme by being highly efficient in passing the reducing equivalents generated by glycolysis 

into the mitochondrion during bouts of hypoxia. 

 The O:N ratios obtained for the Gulf specimens all indicated a pure-protein diet, and this 

is consistent with environmental observations at VK-826.  Both Davies et al. (2010) and Mienis 

et al. (2012) observed large diel vertical migrations of zooplankton over the reef that could serve 

as a consistent source of protein.  As mentioned previously, L. pertusa has been observed to 

avidly feed on live prey in the field, seeming to prefer it.  This does cause a bit of a mystery then, 

as to why L. pertusa from Miami Terrace exhibited an O:N ratio indicative of a lipid-rich diet.  

In this case, the high lipid catabolism is not very likely to indicate starvation, as this species 

survives well in laboratory conditions without food.  Lee and Mooers (1977) observed migration 

of zooplankton as deep as 700m on Miami Terrace, so the corals there do have live prey 

available, although their particular prey spectrum appears to be more lipid-rich than that of the 

Gulf corals, possibly due to the currents near that particular collection site providing an influx of 

more lipid-rich species. 

In summary, at in-situ temperature, L. pertusa has a rather high metabolic rate, as 

compared to cold-water and temperate cnidarians.  However, as its slower growth rate would 

indicate, it has a low metabolic rate compared to tropical corals.  This species seems to adapt 

quickly to temperatures within its normal range.  However, when experiencing declining oxygen 

levels, it struggles to survive at temperatures outside its thermal window.  Many L. pertusa in the 
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Gulf of Mexico live in an oxygen minimum zone and near their Pc.  With water temperature on 

the rise, this may have implications for how this species will survive when faced with increased 

thermal stress.  L. pertusa does exhibit high aerobic capability, however, which may mean that it 

is metabolically efficient.  With the predicted rise in Gulf temperature being a gradual one, this 

coral may be in a position to adapt to this change after all. 
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Tables and Figures 

 
Table 3.1.  Summary of data from all treatment groups. 

Treatment Respiration CS MDH O:N 

 group (µmol O2 gwm
-1

h
-1

± S.E.) (U gwm
-1

) (U gwm
-1

) 

8°C Miami 

8°C Gulf 

1.16±0.18 

0.11±0.16 

0.17±0.01 

0.13±0.01 

2.24±0.19 

1.79±0.02 

34 

7 

11°C 1.20±0.08 0.20±0.02 1.48±0.11 5 

13°C 1.33±0.11 0.10±0.01 1.48±0.12 3 

5°C 0.74±0.15 0.18±0.02 1.82±0.22 2 

 

 

Figure 3.1.  Wet mass versus oxygen consumption at 11 and 13°C. 
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Figure 3.2.  Lophelia within the metabolic spectrum of cnidarians.  L. pertusa lies on the high end of 

the metabolic spectrum compared to some other cnidarians, however, compared to tropical corals, it lies 

on the lower end, even when assuming a Q10 of 2 and adjusting for a temperature of 28°C.  Species 

listed in this graph include medusae (Thuesen and Childress, 1994), zoanthids and anemones (Shick, 

1990), a ctenophore (Scolardi et al., 2006), and corals (Buhl-Mortensen et al., 2007; Davies, 1980; 

Henry and Torres, 2013). 
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Chapter Four: 

 

Metabolism of an Antarctic solitary coral, Flabellum impensum 

 

A Note to Reader 

 This work has been previously published in the Journal of Experimental Biology and 

Ecology.  Permission to reproduce this work can be found in Appendix I.  The author contributed 

>95% of the work involved in this publication. 

Abstract 

Few physiological or behavioral studies have been undertaken on the genus Flabellum, 

particularly on Antarctic species.  The present study characterizes the metabolism of the endemic 

Antarctic coral F. impensum, one of the world’s largest solitary corals, with measurements of 

oxygen consumption rate and metabolic enzyme activity.  F. impensum had a low rate of oxygen 

consumption at 0°C, ranging from 0.06-0.64 µmol O2 gwm
-1

 h
-1

 and averaging 0.31 µmol O2 gwm
-

1
 h

-1
, calculated using tissue wet mass.  Ammonium excretion averaged 4.2 nmol NH4

+
 gwm

 -1 
h

-1
 

(range: 0.5-14 nmol NH4
+
 gwm

 -1 
h

-1
).  The activity values of the metabolic enzymes citrate 

synthase (CS), malate dehydrogenase (MDH), and lactate dehydrogenase (LDH) fell within the 

normal range expected for a cnidarian, averaging 0.13 (range: 0.04-0.32), 1.0 (range: 0-3.5), and 

0.42 (range: 0.18-0.99) activity units (U) gwm
-1

, respectively.  Skeletal density averaged 22% 

more than the density of pure aragonite and a count of the growth bands on the calyx suggests  
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that this species has a linear extension rate of approximately 1 mm per year.  F. impensum is a 

long-lived, slow-growing coral, with a low metabolic rate. 

Introduction 

 Seventeen species of scleractinian corals occur in Antarctic waters.  As is true of most high-

latitude corals, all Antarctic species are azooxanthellate due to the low temperatures and seasonal 

swings in irradiance typical of the Antarctic system (Cairns, 1990). The genus Flabellum is one 

of two flabellid genera known to occur in the Antarctic region (Cairns, 1990). Corals within the 

family Flabellidae are exclusively solitary and the family exhibits a cosmopolitan distribution 

(Cairns, 1990). 

 Flabellum impensum is endemic to Antarctica and has a circumpolar distribution at 

depths of 46-2200 m.  It is most commonly found from 100-1000 m (Cairns, 1990, 1982).  F. 

impensum is one of the largest flabellate corals and also one of the largest solitary Scleractinia, 

achieving a height of up to 8 cm. It exhibits quite a variable range of morphologies (Cairns, 

1990), causing smaller specimens to be mistaken for other species of Flabellum.  Habitat 

information for Antarctic species of Flabellum is sparse.  However, in the North Atlantic, corals 

belonging to the genus are abundant on the soft bottom of the continental slope, in abyssal areas, 

and on the mid-ocean ridge (Buhl-Mortensen et al., 2007; Hamel et al., 2010; Mercier et al., 

2011).   

Waller et al. (2008) found that Flabellum impensum is gonochoric and females brood 

several stages of planulae year-round.  Studies exist for just a handful of other species of 

Flabellum from various sites around the world.  Reproductive strategies have been described for 

F. curvatum (Squires, 1962; Waller et al., 2008), F. thouarsii (Waller et al., 2008), F. alabastrum 
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(Waller and Tyler, 2011), and F. angulare (Mercier et al., 2011; Waller and Tyler, 2011).  Those 

studies revealed that Southern Ocean species of Flabellum (F. curvatum and F. thouarsii) are 

gonochoric brooders, while North Atlantic species (F. alabastrum and F. angulare) are 

gonochoric spawners, producing lecithotrophic larvae.  Buhl-Mortensen et al. (2007) studied 

field/laboratory behavior and respiration in F. alabastrum and found that the species is slightly 

mobile and has a low metabolic rate. Seasonal growth rates described by Hamel et al. (2010) 

indicated that F. alabastrum is also long-lived and slow-growing.  Other than what has been 

ascertained by those few studies, little else is known about the basic biology of corals in the 

genus Flabellum, or that of cold-water corals in general. 

Many polar marine species are stenothermal and, with some exceptions, adaptation to 

their environment includes lower rates of growth and metabolism (Clarke, 1980; Clarke, 1998; 

Peck, 2002), compared to their non-polar relatives.  The present study analyzed the rates of 

oxygen consumption, nitrogen excretion, and metabolic enzyme activity in order to characterize 

the metabolism of F. impensum. 

Materials and Methods 

Collection.  Corals were collected with a small (10 m) otter trawl by the RVIB Nathaniel 

B. Palmer.  Trawls were conducted on the western Antarctic Peninsula during March of 2010 off 

Anvers and Charcot Islands at 600 m and 200 m depth, respectively.  Corals were carefully 

examined after collection for signs of trauma.  Individuals that showed no signs of damage were 

allowed to recover in pre-chilled seawater in a 0°C incubator for 12-22 hours before being used 

in any experiments.  After the recovery period, only those that were fully extended and that 

reacted quickly to tactile stimulation were selected for the experiment.   
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  Oxygen consumption experiments.  The apparatus for measuring oxygen consumption 

consisted of an array of water-jacketed lucite chambers as described in Torres et al. (1994).  The 

chambers’ construction allowed for water (temperature-controlled by a circulating refrigerated 

water bath) to continuously flow between their double-layered walls, keeping the seawater and 

experimental animals in the inner chamber at a constant temperature (0°C).  Once sealed, no air 

can enter or leave the inner chamber.  Oxygen microelectrodes (Clark, 1956; Mickel et al., 1983) 

fabricated in-house were inserted into each chamber to measure oxygen levels of the water inside 

every 30 seconds, while a magnetic stir bar under a perforated lucite false bottom kept the water 

well-mixed. 

 Individual F. impensum were placed into chambers appropriate for their size with 0.45 

µm Millipore-filtered seawater.  To determine the volume of seawater in the chamber, 

accounting for the animal, the volume of each coral was calculated as an elliptical cone and 

subtracted from the previously measured water capacity of each chamber (25 replicates).  The 

water was treated with 25 mg L
-1

 each of Streptomycin and Neomycin to minimize bacterial 

growth and a control chamber was run for each experiment to ensure that any microbial 

consumption had a negligible effect on respiration measurements (Torres et al., 1994).  Once the 

chambers were sealed, the PO2 of the water was measured continuously for 24 hours.  To 

minimize effects of animal transfer, no data were used until 100 minutes had elapsed.  This was 

the point by which each coral’s respiration rate had stabilized.  Measurements were taken on a 

total of 9 specimens; the small sample size was due to the difficulty of obtaining intact 

individuals.  At the end of the experimental runs, all corals appeared healthy, had their tentacles 

extended, and reacted to tactile stimulation.  They were promptly placed into a -80°C freezer for 

later analysis of metabolic enzymes. 
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 Before and after each run, a 20 ml sample of water was taken from each chamber to be 

analyzed for ammonium excretion via an auto-analyzer (Oceanic Nutrient Laboratory, University 

of South Florida). 

Enzyme analyses.  The frozen samples from the respiration experiments were stabilized 

at 4°C (the lower limit of the cold room) and weighed using an adaptation of the buoyant weight 

technique described by Davies (1989).  After obtaining the buoyant weight of each sample, the 

coral tissue was removed from the skeleton using a Waterpik® filled with artificial seawater at 

4°C.  Per the procedure described in Chapter 2, pieces of tissue were separated from the mucus 

and excess water, weighed, and homogenized in a glass grinder with an imidazole buffer solution 

that diluted the samples 1:8.  The homogenate was spun down in a centrifuge for 10 minutes at 

4500 rpm and the supernatant was used in spectrophotometric analysis of lactate dehydrogenase 

(LDH), malate dehydrogenase (MDH), and citrate synthase (CS) activity levels at 0°C using the 

techniques of Torres and Somero (1988). 

 Skeletal observations.  After all the tissue had been cleaned off each calyx, they were 

soaked in a 10% solution of commercial bleach in seawater for 24 hours to remove any 

remaining bits of tissue, rinsed three times in artificial seawater, and buoyantly weighed again 

(all at 4°C) to obtain a value for the percentage buoyant weight of tissue versus skeleton.  The 

skeletons were then rinsed three times with milli-Q water and allowed to soak for another 24 

hours to remove the salt before being put into a 60°C drying oven until they reached a constant 

weight (approximately 3 weeks).  The dry weight of each calyx was then measured to calculate 

skeletal density.  The growth bands were also counted for each specimen.  The bands in this 

species are obvious enough to count under a dissecting microscope with a light illuminating the 
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calyx, without the aid of stains (Figure 4.1; see page 64) that are necessary for smaller, thicker-

walled species (e.g. Goffredo et al., 2004; Hamel et al., 2010). 

Results 

 The corals exhibited a low rate of oxygen consumption, ranging from 0.06-0.64 µmol O2 

g
-1

 h
-1 

and averaging 0.31±0.07 µmol O2 g
-1

 h
-1 

(±S.E.), using tissue wet mass.  Total oxygen 

consumption increased with increasing wet mass (ANOVA, F=6.23, df=1, p=0.02).  However, as 

is typical of most animal groups (Hemmingsen, 1960), the respiration rate per gram of tissue was 

lower in the larger corals (Figure 4.2; see page 64).   

Ammonium excretion fell between 0.5-14 nmol NH4
+
 g

-1 
h

-1
 and averaged 4.2±1.5 nmol 

NH4
+
 g

-1 
h

-1
 (±S.E.), resulting in an O:N atomic ratio (oxygen respiration to ammonium 

excretion) that ranged from 11-91 and averaged 39.  This indicates that individual corals had 

different prey spectra, although most were catabolizing lipids to some degree (Ikeda, 1974; 

Mayzaud and Conover, 1988; Szmant et al., 1990).  Nitrogen excretion per gram of tissue was 

lower than expected for the larger specimens, however, excretion did show a general trend of 

slowly increasing with wet mass (ANOVA, F=5.64, df=1, p=0.03) (Figure 4.2; see page 64).  

Activity of CS and MDH fell within the range previously reported for cnidarians, 

averaging 0.13±0.03 (range: 0.04-0.32) and 1.0±0.3 (range: 0-3.5) activity units (U) gwm
-1 

(±S.E.), respectively, where activity units are micromoles of substrate converted to product per 

minute.  LDH activity was on the higher end of the range for a cnidarian, averaging 0.42±0.08 U 

gwm
-1 

(range: 0.18-0.99). Mass-specific enzyme activities did not change with increasing mass 

(all p-values were greater than 0.3). 
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Tissue weight averaged 20% of total buoyant weight and skeletal density averaged 3.58 g 

cc
-1

, which is above the density of pure aragonite (2.94 g cc
-1

), a value that is sometimes assumed 

in studies where the density of the coral skeleton is used in a calculation.  The difference 

indicates that other substances are being incorporated into the skeletal matrix.  Smaller corals (<5 

g tissue wet mass) had skeletons whose densities averaged 3.13 g cc
-1

, which is fairly close to the 

density of aragonite, while the larger corals (>25 g tissue wet mass) averaged 4.02 g cc
-1

.  

Analysis of two “clean” pieces of two different skeletons with a scanning electron microscope 

(Electron Microscopy Laboratory, University of South Florida) showed that the only element 

heavier than calcium that was detected at a notable concentration was, as expected, strontium, 

which averaged about 2% by weight.  The high density of the whole skeletons is likely due to the 

visible sediment incorporated into the skeleton on the “dirty” side of the calyx (Figure 4.3; see 

page 65), rather than the skeletal matrix taking up heavier elements as it grows. 

 The growth bands nearest the bottom of the calyx were the thickest (~3-4 mm) and 

progressively decrease in thickness from the bottom to the top.  If these bands are laid down 

annually, as in other solitary corals (e.g. Goffredo et al., 2004; Hamel et al., 2010), comparing 

the number of bands to the height of the calyx yields an average linear extension rate of 1.11 mm 

per year for these specimens. 

Discussion 

A fairly low rate of oxygen uptake was measured for Flabellum impensum (an average of 

0.31±0.07 µmol O2 g
-1

 h
-1

 tissue wet mass), placing it in the lower half of the metabolic spectrum 

when compared to other scleractinians for which there are such data, even with a Q10 correction 

for temperature (assuming Q10=2) (Table 4.1; see page 66).  
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As sessile species, most corals have low activity costs and are therefore likely to have a 

low metabolism, particularly in polar or other cold-water environments.  Most species of 

Flabellum, however, are more active than other corals; they are free-living individuals as adults 

and are capable of movement.  Captive individuals of F. alabastrum have been observed leaving 

tracks in the sediment at a rate of 3.2 cm mo
-1

.  Moreover, the polyp can inflate to more than 10x 

its normal, relaxed (not retracted) size, which would give it the ability to use currents as a means 

of transportation (Buhl-Mortensen et al., 2007). At the end of some experimental runs, the larger 

coral polyps had expanded within the respiration chamber.  Presumably, as the oxygen 

concentration in the chamber decreased, the polyps expanded to facilitate oxygen uptake over a 

greater surface area. Alternately, it may have been an attempt to “escape” the declining oxygen 

in the chamber.  Despite the behavioral response, the PO2 within the chambers never dipped 

below 35 mm Hg and respiratory rate remained constant over the course of the experiment, 

suggesting that the corals remained well above their Pc. 

Buhl-Mortensen et al. (2007) found that F. alabastrum had a respiratory rate (2.2 µl O2 g
-

1
 h

-1
 tissue wet mass= 0.10 µmol O2 g

-1
 h

-1
) lower than that of F. impensum.  Further, Hamel et 

al. (2010) reported that F. alabastrum was a slow growing coral, reaching its maximum height of 

about 43 mm at about 45 years of age.  Goffredo et al. (2004) studied a Mediterranean solitary 

coral, Balanophyllia europaea, and determined its maximum size to be about 20 mm after as 

many years.  The maximum size of specimens used in the present study was 62 mm, and with a 

metabolic rate in the same range as that of F. alabastrum, it is likely that it has a similar growth 

rate.  Cairns (1990) noted a maximum size of 80 mm for F. impensum, meaning that the species 

may live to be around 80 years of age.  The specimens examined in the present study appeared to 

have annual growth bands similar to those described by Goffredo et al. (2004) and Hamel et al. 
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(2010), with the thickest bands occurring before the age of 5 years and gradually thinning as the 

coral aged, indicating greater linear extension in earlier years.  This result correlates well with 

the oxygen consumption data, as more energy is needed for growth in the early years, accounting 

for the large differences in metabolic rate among the smaller specimens.  As the corals age, the 

metabolic rate still increases, as the calyx is becoming wider and the coral has a larger body to 

support.  However, less linear extension is occurring in the calyx, so the rise in metabolic rate 

decreases.  This may also explain why the smaller corals had skeletal densities closer to that of 

pure aragonite as compared to their larger counterparts.   

Young corals, which grow quickly and live upright, attached to a substrate, may be 

exposed to fewer particles that could become incorporated into their skeletal matrix than that of 

older, slower-growing and mobile individuals that are in constant contact with the sediment.  

Buhl-Mortensen et al. (2007) noted that in addition to lateral movement across the sediment, F. 

alabastrum was also capable of rotating and righting itself if placed upside-down.  Cairns (1990) 

postulated that F. impensum, after reaching a size at which it becomes dislodged from the 

substrate on which it settled as a planula, remains in an upright position, possibly by partially 

burying itself in the sediment.  This was based on his observation of the placement of epibionts 

on the skeleton.  All specimens collected for this study had a worn pedicel, which indicates they 

had long been detached from their substrate.  The larger F. impensum appeared to have been 

lying in a prone position, as one side of the skeleton appeared “dirtier” than the other, with more 

bits of debris embedded in the skeleton.  This also suggests a “preferred” side upon which to rest, 

which would be possible if they have the same ability as F. alabastrum to rotate.  This was less 

apparent in the smaller specimens, which had no noticeable epibionts or skeletal inclusions. 
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Oxygen consumption isn’t the only variable that can differ between a polar coral and its 

temperate and tropical relatives.  The enzyme-mediated metabolic reactions of a polar marine 

invertebrate can be 10-30 times slower than that of its tropical counterpart (Clarke, 1998).  

Decreases in environmental temperature reduce the number of enzyme molecules available with 

enough energy to catalyze their respective reactions.  Animals that compensate for such 

environmental differences exhibit 1) an increase in the number of enzyme molecules present, 2) 

a different type of enzyme used to catalyze a specific reaction, or 3) a modified activity rate of 

the enzymes (Hochachka and Somero, 1973).  With no observable compensation in oxygen 

uptake, it is unlikely that F. impensum has evolved any change in the activity of its metabolic 

enzymes, as metabolic enzyme activity tends to correlate with respiration. 

Lactate dehydrogenase (LDH) is the terminal enzyme in anaerobic glycolysis and its 

activity in an organism is an indicator of the individual’s anaerobic capacity.  Citrate synthase 

(CS) regulates the first step in the Krebs cycle, and malate dehydrogenase (MDH) also plays a 

role in this cycle, although it has several other functions related to metabolism.  The activities of 

the two Krebs cycle enzymes are indicators of aerobic function.  Activities of CS and MDH 

(0.13±0.03 and 1.0±0.3 U g
-1

, respectively) extracted from F. impensum fell within the ranges 

measured for medusae (Table 4.1; see page 66), indicating that it is similarly aerobically poised.  

The LDH activity (0.42±0.08 U g
-1

), however, was on the higher end of the range reported for 

other cnidarians, indicating a moderate anaerobic potential as well.  Perhaps if sediment becomes 

disturbed (glacial activity, movement of another animal) near an individual and it has the 

capacity to inflate enough to use currents as a means of transportation, as Buhl-Mortensen et al. 

(2007) have suggested, it may need to temporarily rely on anaerobic respiration to dislodge itself 

and move to another location. 
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 F. impensum excreted 4.2±1.5 nmol NH4
+
 g

-1 
h

-1
.   The O:N atomic ratio ranged from 11-

91 and averaged 39, indicating that lipids are an important component in this coral’s diet (Ikeda, 

1974; Youngbluth et al., 1988).  Many planktonic Antarctic organisms experience a drop in their 

metabolism during the winter and go into a state of reduced activity.  To prepare for this, they 

store lipids.  The lipid-rich animals form part of the coral’s diet and contribute to its lipid stores.  

Lipids then become a significant metabolite when the corals are not feeding. 

 In summary, the endemic Antarctic coral, F. impensum, like other related solitary corals, 

is slow-growing and has a low metabolic rate.  It is one of the largest solitary corals, displays 

reasonable aerobic and anaerobic capacity, has a lipid-rich diet, and is quite long-lived, possibly 

capable of reaching 80 years in age.  Polar corals are not a well-studied group; this study adds 

much needed information to the body of knowledge concerning them, as well as contributing 

new physiological insights pertaining to the genus, Flabellum. 
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Tables and Figures 

 

 

Figure 4.1.  A close-up of a specimen of F. impensum.  Growth bands are clearly visible 

on the calyx surface. 

 

 

Figure 4.2.  F. impensum respiration and nitrogen excretion rates in relation to wet mass.  

Increasing body size results in an increased respiratory rate (p=0.005), but as the corals near their 

maximum size, this increase slows.  Nitrogen excretion is variable, but does show some increase 

with mass in smaller specimens (p=0.01). 
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Figure 4.3.  The “dirty” versus “clean” side of the calyx of an F. impensum specimen. 
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Table 4.1.  Respiration and enzymes in comparable cnidarians.  A 95% water content was assumed for values expressed relative to 

dry weight in order to convert to µmol O2
 
gww

-1 
h

-1
.  (“na”= not measured , “nd”= not detected) 

animal  species O2 consumption Tresp CS activity LDH activity MDH activity Tenzymes source 

    

(mean± S.E.) 

(µmol O2 gww
-1 h-1) (°C) (units g-1 ± S.E.) (units g-1 ± S.E.) (units g-1 ± S.E.) (°C)   

scleractinian Flabellum impensum 0.313±0.074 0 0.126±0.029 0.423±0.083 1.008±0.344 0 this study 

scleractinian Flabellum alabastrum 0.10 7.7 na na na na Buhl-Mortensen et al., 2007 

scleractinian Montastrea annularis 3.33 28 na na na na Davies, 1980 

scleractinian Acropora palmata 7.41 28 na na na na Davies, 1980 

scleractinian Acropora cervicornis 8.84 28 na na na na Davies, 1980 

scleractinian Montastrea cavernosa 1.53 28 na na na na Davies, 1980 

scleractinian Agaricia lamarcki 19.98 28 na na na na Davies, 1980 

scleractinian Agaricia undata 12.34 28 na na na na Davies, 1980 

scleractinian Agaricia grahamae 7.14 28 na na na na Davies, 1980 

alcyonacean Gersemia rubiformis 1.0 3-5 na na na na Hargrave et al., 2004 

alcyonacean Acanella arbuscula 1.4 3-5 na na na na Hargrave et al., 2004 

zoanthid Protopalythoa sp. 9.7 30 na na na na Shick, 1990 

zoanthid Zoanthus sociatus 0.38 25 na na na na Shick, 1990 

anemone Phyllodiscus semoni 1.9 30 na na na na Shick, 1990 

anemone Heteractis crispa 0.91 30 na na na na Shick, 1990 

medusa Polyorchis penicillatus na na 0.238±0.029 0.172±0.016 0.939±0.019 20 Thuesen and Childress, 1994 

medusa Haliscera bigelowi 0.128±0.030 5 nd 0.028±0.009 na 20 Thuesen and Childress, 1994 

medusa Halitrephes maasi 0.046±0.006 5 0.004±0.001 0.017±0.005 na 20 Thuesen and Childress, 1994 

medusa Crossota rufobrunnea 0.154±0.024 5 0.147±0.013 0.011±0.007 0.578±0.432 20 Thuesen and Childress, 1994 

medusa Vallentinia adherens 1.932±0.478 15 3.563±0.860 0.057±0.008 na 20 Thuesen and Childress, 1994 

medusa Aegina citrea 0.185±0.037 5 0.043±0.007 0.085±0.015 0.624±0.084 20 Thuesen and Childress, 1994 

medusa Atolla wyvillei 0.134±0.044 5 nd 0.243±0.055 0.768±0.208 20 Thuesen and Childress, 1994 

medusa Paraphyllina ransoni 0.333±0.104 5 0.124±0.044 0.195±0.088 na 20 Thuesen and Childress, 1994 

medusa Periphylla periphylla 0.094±0.017 5 0.017±0.003 1.711±0.552 0.669±0.144 20 Thuesen and Childress, 1994 

ctenophore Callianira antarctica 0.35±0.18 0.5 na na na na Scolardi et al., 2006 

ctenophore Beroe sp. 0.044 -1.5 na na na na Ikeda and Bruce, 1986 

ctenophore Mertensiidae sp. 0.237 -1.6 na na na na Ikeda and Bruce, 1986 
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Chapter Five: 

 

Concluding Remarks 

 

 Symbiosis between corals and their algal symbionts evolved as a mechanism to maintain 

a competitive edge within shallow oligotrophic waters; however, lack of symbiosis has not 

impeded the success of corals in the deep.  Despite the fact that shallow water corals are 

susceptible to bleaching events that disrupt their symbiosis, many species can eventually recover 

and some do not appear to suffer much damage from the process.  From the experiments 

conducted on three different types of corals from different light, temperature, and depth regimes, 

it can be concluded that: 

-  Cladocora arbuscula, one of the most abundant species of endemic scleractinian corals off the 

west central coast of Florida, thrives in a region subject to red-tides, intermittent high 

sedimentation, and the occasional hurricane.  Data from the experiments described here show 

that its metabolic rate is on the lower end of the spectrum for sub/tropical cnidarians, suggesting 

that it has a low growth rate that is similar to the Mediterranean C. caespitosa.  In spite of this, 

its high levels of both aerobic and anaerobic enzyme function allow it to thrive in this 

environment, even when faced with conditions that cause widespread coral bleaching.  Although 

these experiments have shown that C. arbuscula can function well without zooxanthellae, it 

seems to function most optimally with endosymbionts as members of the holobiont. 
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-  The deep-sea coral, Lophelia pertusa, has a high metabolic rate compared to cold-water and 

temperate cnidarians at in-situ temperature, which, expectedly, is low compared to tropical 

corals.  Calculating the Q10 for bringing L. pertusa up to the environmental temperature of 

Cladocora arbuscula results in a value of 1.8.  This species seems to adapt quickly to 

temperatures within its described normal range, however, declining oxygen levels threaten its 

survival at temperatures higher than it normally experiences.  Many L. pertusa in the Gulf of 

Mexico live in an oxygen minimum zone and near their Pc.  With water temperature on the rise, 

this may have implications for how this species will survive when faced with increased thermal 

stress.  L. pertusa does exhibit high aerobic capability, however, which may mean that it is 

metabolically more efficient.  It is likely anaerobically efficient as well, despite the apparent lack 

of LDH.  With the predicted rise in Gulf temperature being a gradual one, this coral may be in a 

position to adapt to this change.  

- Polar corals are not a well-studied group.  The endemic Antarctic coral, Flabellum impensum, 

like other related solitary corals, is slow-growing and has a low metabolic rate.  Calculating a Q10  

for this species at Cladocora arbuscula’s habitat temperature results in a value of 2.7.  It is one 

of the largest solitary corals, displays reasonable aerobic and anaerobic capacity, has a lipid-rich 

diet, and is quite long-lived, possibly capable of reaching 80 years in age.  This study adds much 

needed information to the body of knowledge concerning them, as well as contributing new 

physiological insights pertaining to the genus, Flabellum. 

 In the past, only shallow water corals such as C. arbuscula were given the honor of being 

thought of as great habitat builders that house and protect many other animal species.  It is now 

known that many corals in the mid- to deep-sea can serve this same function.  Gulf and Atlantic 

L. pertusa reefs provide habitat to thousands of species from a wide range of phyla and can have 
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several times the diversity of the surrounding soft bottom.  They create patches of high diversity 

in low-diversity environments, which is possible because they occur in a relatively stable 

environment with a predictable food supply.  Deep-sea corals represent an important ecological 

niche in that they can block currents and predators, act as a nursery habitat, and provide feeding, 

breeding, and spawning ground for economically valuable species.  Although thousands of deep-

sea corals have been described, researchers estimate that 800 stony species and their associates 

have yet to be encountered. 

Exploitation of deep-sea reefs by humans has been rapidly increasing despite the lack of 

biological and ecological information.  It is already known that shallow-water corals recover 

slowly after an acute trauma, and it is likely that deep-sea reefs are even more sensitive to 

destruction.  Natural and anthropogenic causes are to blame for the state of decline both shallow-

water and deep-sea reefs are in a today, as compared to a century ago.  It is important to 

characterize the biology of corals so that resource managers can have the information necessary 

to allow them to appropriately regulate anthropogenic activities in and around reef environments.  

It is also necessary to have a better understanding of coral physiology so that we may have a 

sense of how corals are going to respond to changes in climate, natural disasters, or human-

mediated environmental catastrophes. 
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