
	
  

96 

adequately because the satellite data were saturated. Offshore stations were selected manually 

and data were extracted from the image on August 26, 2011 (Fig. 3.15a). Karenia spp. locations 

were the same as stations occupied during in field campaign 3 in Campeche on September 22, 

2011 (Fig. 3.15a) and the stations occupied in campaign 4 on October 11, 2011 (Fig. 3.2a).  

The mean satellite-derived aph*(λ) normalized at 443 nm was different for each group 

(Karenia spp., Scrippsiella sp., and clear waters; Fig. 3.15b). The spectral slope between the 

normalized aph*(443) and aph*(488) was above 0.005 for Karenia spp. stations; below -0.002 for 

clear waters; and between [-0.001 to 0.005] for Scrippsiella sp. stations. Based on these results, 

a technique was developed to distinguish between Karenia spp. and Scrippsiella sp. blooms. 

First, the Rrs-FLH criteria (FLH > 0.033 mW cm-2 µm-1 sr-1, Rrs (555 nm) <0.007 sr-1); Chapter One) 

is used to define a bloom. If the aph slope between 443 and 488 nm is above 0.005, then pixels 

are classified as Karenia spp. If the slope is -0.001 to 0.005, they are classified as Scrippsiella sp.  

The results of the detection technique using the aph slope and the Rrs-FLH are presented 

in Figure 3.16. On August 26, 2011, a Scrippsiella sp. bloom was observed (Figs. 3.1; 3.15a). 

Few pixels were classified as Karenia spp., however I do not have data to confirm if they were 

correctly classified or not. Figure 3.16b shows the output for September 22, 2011, which had a 

Karenia spp. bloom in Campeche (Figs. 3.1; 3.15a). The algorithm also highlighted a large region 

as Karenia spp. in the Northern Yucatan, but no in situ data were available for validation in that 

zone. Figure 3.16c shows the output for October 11, 2011, which had a Karenia spp. bloom in the 

WFS (Figs. 3.2a; Fig. 3.15a). The Karenia spp. bloom was classified correctly. A few pixels were 

classified as Scrippsiella sp., possibly a false detection. 

3.5. Discussion  

Oceanographic and optical data from several field campaigns were used to do an 

assessment of the optical properties of algal blooms in the GOM. Satellite ocean color imagery 

was used to monitor the extension and movement of the HAB in these waters.  In the WFS, 

blooms of Karenia spp. occur on an annual basis, and they are often spatially extensive and 

mono-specific. The regularity of the blooms and their unique spectral characteristics makes it 

possible to testing satellite HAB detection techniques.  
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Figure 3.16. Output of the Rrs-FLH and aph slope technique to distinguish Karenia spp. vs. 
Scrippsiella sp. blooms. Output for a) August 26, 2011, b) September 22, 2011, and c) October 
11, 2011.  
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In the case of the Mexican waters in the GOM, Karenia spp. blooms are frequent, 

especially in the States of Tamaulipas, Veracruz and Tabasco. Karenia spp., blooms were not 

reported until 2011 off Campeche Bank (including the States of Yucatan and Campeche). The 

higher number of reported blooms might be related to increased sampling efforts and awareness.  

However, in ten years of routine monitoring off the Yucatan Peninsula by CINVESTAV, Karenia 

spp. were not reported as blooming species until 2011. This raises the question of whether these 

blooms are expanding into Mexico waters and increasing in frequency. 

Three HABs scenarios were observed in the Campeche Bank region: massive harmful 

diatom blooms, blooms dominated by Scrippsiella sp., and Karenia spp. blooms. The diatom 

bloom observed in Yucatan in early August 2011 caused high mortality of fish, octopus and other 

marine life. Octopi are one of the main fisheries in the region (Arreguin-Sanchez et al., 2000). No 

toxic species were associated with the bloom, however low oxygen conditions can lead to 

mortality. Similar mixed blooms have been reported for 2001, 2003, 2005, 2008 (Alvarez-

Góngora and Herrera-Silveira, 2006; Herrera et al., 2006; Alvarez-Góngora, 2011). The blooms in 

previous years have been dominated by Cylindrotheca closterium, Nitzschia longissima, 

Pyrodinium bahamense var, compressum, and Prorocentrum mexicanum. Off Dzilam de Bravo, a 

diatom bloom was dominated by a decaying bloom of Rhizosolenia spp. CINVESTAV reported 

that the bloom continued to intensify during the following months, while the phytoplankton 

community shifted to other phytoplankton species like Chaetoceros spp., Cylindrotheca sp., 

Pseudo-nitzschia spp., among others. 

Nutrient contributions from groundwater discharge are an important factor stimulating 

near-shore phytoplankton populations, while nutrient inputs from the Yucatan upwelling region 

support blooms in offshore waters (Herrera-Silveira et al., 2004; Alvarez-Góngora, 2011). 

Currents over the Yucatan Shelf are modulated by wind and momentum from the Yucatan 

Current (Enriquez et al., 2010).  Enriquez et al. (2010), using a 2-D dispersion model, showed 

how a patch seeded near Cabo Catoche [~21.60°N, -87.10°W] can travel to the West close to the 

coast to San Felipe [~21.56°N, -88.23°W]. If westward currents are dominant over the continental 



	
  

99 

shelf, the patch may continue to the West along the coast. The patch can also move offshore, 

carried by the Yucatan Current.   

A sequence of MODIS images collected in August-September 2011 (Fig. 3.11) shows a 

bloom near the Yucatan upwelling region long the shelf break north of Yucatan Strait that moved 

west toward the coast and seemed to merge with a coastal bloom. This helps explain why the 

phytoplankton community was similar at Dzilam de Bravo, Holbox, and at coastal areas in 

Campeche. The optical properties of these mixed blooms are likely to be complex and change 

with time as the phytoplankton community evolves and is advected.  

Results from the 2011 field campaigns show three main scenarios with distinctive optical 

properties. The Karenia spp. aph* spectra was consistent with previous results from Millie et al. 

(1997), Craig et al. (2006) and Cannizzaro et al. (2008), and very similar between Campeche and 

the WFS. Phytoplankton absorption spectra of Scrippsiella sp. collected on the WFS and off 

Mexico, six years apart, were also similar. In contrast, aph* spectra of the diatom blooms were 

different for Florida and off Campeche. Both diatom phytoplankton assemblages were different 

(Campeche stations dominated by Rhizosolenia spp. and Florida stations dominated by Pseudo-

nitzschia spp. or Skeletonema sp.; see Tables A2 and A3 in the appendix section).  

I grouped all the stations that did not have a HAB into “neritic communities”. To develop 

HAB detection techniques using satellite imagery, the ultimate goal is to be able to correctly 

classify such areas as not being HABs. The mean absorption spectra for this category showed 

high absorption in the blue and low in the green. This means that a HAB detection techniques 

that uses a low Rrs at 555 nm threshold (i.e., FLH-Rrs technique discussed in Chapter One; Rrs 

(555) below 0.007 sr-1) to discard non- Karenia spp. pixels would discard these waters as non-

HAB.  

The results from the ag(λ) spectra were not as expected for the Karenia spp. bloom 

stations. The spectral peak near 550 nm in the ag(λ) was not documented before. This shoulder 

was observed in almost all the samples in which concentrations of Karenia ssp. were above 105 

cells L-1. The sampling and processing methods were the same as the one used by Cannizzaro et 

al. (2008). It is possible that this spectral feature is related to phycobiliproteins, which can be 
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present in Trichodesmium or cryptophytes, and which has an absorption peak near 550 nm.  

Trichodesmium and cryptophytes were present at locations in Mexico and Florida in low 

concentrations. It is possible that the phycobiliproteins were released by either grazing or cell 

exudation.   

A positive correlation was observed between chlorophyll-a and absorption coefficients for 

phytoplankton (443 nm), detrital (443 nm) and CDOM (400 nm) at the stations that had Karenia 

spp. above 105 cells L-1 (Fig. 3.8, Table 3.4). Cannizzaro et al. (2008), using samples from the 

WFS with the same criteria, found only a strong relationship between the phytoplankton 

absorption coefficients and chlorophyll-a but not between chlorophyll and CDOM absorption. 

Different from the WFS, the region where the Karenia spp. bloom was found in Campeche was 

not heavily affected by river discharge, so the CDOM and detritus are likely covarying with and 

generated by the bloom. The isolation of the bloom in Campeche from any fresh water discharge 

may explain some of the differences.  

The contribution from CDOM to the total absorption was very strong in the blue and 

green wavelengths at over 80% of the stations (Fig. 3.9). The contribution of CDOM was still 

noticeable in the red wavelengths. The total absorption coefficient at 550 nm was also dominated 

by CDOM at stations with Karenia spp. blooms.  The shoulder observed near 550 nm in the 

CDOM absorption spectra significantly contributes to the total absorption and consequently 

decreased the Rrs in the green wavelengths.  

The Karenia spp. blooms observed off Campeche and Florida were both observed at the 

surface. High concentrations were found below the surface to a depth of at least 16 m at one 

station. The bloom in Campeche was observed quickly after the pass of the storm Nate, which in 

its trajectory led to the upwelling of colder waters and high resuspension of sediments. Karenia 

spp. was also reported the previous month in neighboring states (Tabasco and Yucatan; Merino-

Virgilio et al., 2012). It is possible that this earlier bloom may have seeded the bloom off 

Campeche (Figs. 3.10; 3.11). 

The normalized mean aph*(λ) spectra for Scrippsiella sp. and Karenia spp. blooms were 

different. Scrippsiella sp. blooms showed higher normalized mean aph* between 450 to 550 nm 
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than Karenia spp. blooms. Based on the current MODIS data calibration and processing 

algorithms,	
  differences between Scrippsiella sp. and Karenia spp. blooms were detectable using 

the MODIS normalized mean aph*(λ) spectra. These differences show potential for the 

development of detection techniques that can distinguish between Karenia spp. and Scrippsiella 

sp. blooms. 

With the recent appearance of Karenia spp. blooms in the Campeche Bank region, the 

need for a detection technique capable of distinguishing these blooms is very important. The 

prototype technique presented here using the Rrs-FLH technique and the slope between 

normalized aph*(443) and aph*(488) showed promising results and distinguished between blooms. 

Noise and possible false detection were not validated due to lack of enough in situ data. The in 

situ data for Scrippsiella sp. blooms was very limited to further evaluate this technique. Future 

work is necessary to gather more in situ information about Scrippsiella sp. blooms. More in situ 

data in the region will allow for improvement of the thresholds in the techniques and possibly 

simplify the technique. 

3.6. Conclusions 

Results from satellite data analyses and field campaigns in coastal and shelf waters of 

the Yucatan Peninsula, Mexico, suggest that there are three general scenarios of large and 

possibly harmful phytoplankton blooms. Specifically: a mixed bloom dominated by diatoms, 

Karenia spp. dominated blooms, and blooms dominated by Scrippsiella sp. These have 

distinctive optical properties.  Karenia spp. bloom off Mexico showed similar optical characteristic 

to those observed in the WFS. A new Rrs-FLH technique (Chapter One) has the potential to 

distinguish Karenia blooms in Mexico, but it fails when there are also Scrippsiella sp. blooms 

present. 

The mean aph*(λ) spectra normalized at 443 nm were different for Scrippsiella sp. and 

Karenia spp. blooms. Scrippsiella sp. blooms showed higher normalized mean aph* between 450 

to 550 nm than Karenia spp. blooms. The prototype technique combines the Rrs-FLH technique 

and a threshold using the slope between normalized aph*(443) and aph*(488). The results clearly 
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show that it is possible to distinguish blooms using satellite imagery; however further work is 

necessary to simplify and improve the techniques presented here.  

There are several knowledge gaps that need to be address to better understand HABs in 

waters off the Yucatan Peninsula. One is improved observations of phytoplankton succession in 

the upwelling regions and downstream.  It will be important to develop better understanding of the 

interaction of shelf waters with waters offshore. Additional and better bio-optical data, including 

field observations of remote sensing reflectance are needed for the various bloom types. Future 

fieldwork in the region should consider a suite of bio-optical measurements, including Rrs, light 

attenuation, HPLC measurements of phytoplankton pigments, and zooplankton assessments. A 

better understanding of the phytoplankton community and the optical properties in the region will 

lead to better detection techniques. 
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Summary and conclusions 

The main two objectives of this dissertation were to evaluate and improved the 

techniques for detection of Karenia brevis blooms and expand their use to Mexican waters, so 

that they can be integrated into a Gulf-wide observing system for HABs. An important goal was to 

better understand the dynamics and evolution of Karenia spp. blooms in the West Florida Shelf 

(WFS) and off Mexico. The dissertation was divided in three main chapters.  

The first chapter is a comprehensive statistical evaluation of five techniques used for 

detection of Karenia spp. blooms. This used a large in situ phytoplankton dataset and ocean color 

data from the MODIS sensor onboard the Aqua satellite. A comprehensive set of metrics (e.g. F-

measure (FM), specificity and sensitivity) were used to evaluate performance of different methods 

across the WFS. Optimization increased the FM for all techniques and reduced the percentage of 

false positives. Maximum FM was obtained by the optimized Red Band Difference-Karenia Brevis 

Bloom Index (RBD-KBBI; 0.63). A new method that is practical for its simplicity identifies Karenia 

spp. blooms as those pixels showing Fluorescence Line Height (FLH) above 0.033 mW cm-2 µm-1 

sr-1 and spectral Remote Sensing Reflectance (Rrs (555)) below 0.007 sr-1. This method 

performed similar to the more complex RBD-KBBI technique. This new, simple approach yielded 

an FM of 0.62 and generated only 3% false negatives.  

The Northern region and Southern regions of Florida represented a challenge for most of 

the techniques due to the high absorption by colored dissolved organic matter (cdom) in the North 

or high reflectance in shallow waters in the South. The RBD-KBBI technique and the new Rrs-FLH 

technique seemed to perform better in these regions as well as in the Central WFS. FLH alone is 

an excellent satellite product for the detection of blooms. During the optimization process, FLH 

was the satellite product helping to reduce false positives, especially those due to dark waters 

associated with high absorption of CDOM in riverine waters.  The use of Rrs (555) helped reduce 
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the problems in regions with high bottom reflectance or resuspended sediment concentration. 

The combination of FLH-Rrs is in theory the same as the RBD-KBBI technique, but it is easier to 

implement and allows for easier adjustment of thresholds. 

The second chapter used ocean color satellite Imagery coupled with Harmful Algal 

Blooms (HABs) detection techniques and in situ phytoplankton data to delineate the spatial 

coverage and development of four Karenia spp. bloom events in the WFS and one in Campeche. 

The delineations helped to visualize the spatial extension of the blooms, their development and 

intensification, and the movement of each patch. Each case study was unique and different, 

suggesting multiple mechanisms for the intensification and maintenance of Karenia spp. blooms. I 

concluded from the case studies that meteorological events such as hurricanes and winter storms 

play a key role in the initiation and maintenance of these events. Mixing of benthic nutrients 

associated with large resuspension events caused by meteorological forcing can fuel massive 

Karenia spp. blooms such as the one observed in 2005 that extended over 40,000 km2 from 

Charlotte Harbor to Panama City. Each Karenia spp. bloom can behave very differently, so a 

single mechanism involving nutrient input cannot be generalized for Karenia spp. blooms. This 

exercise showed the importance and utility of ocean color imagery to get a larger spatial view of 

these types of events and gain a better understanding of their development. Since satellite 

imagery only provides surface observations, further work should integrate additional below-

surface in situ observations, three dimensional circulation models and meteorological parameters 

to get a better understanding of the movement and development of these blooms. 

The main objective of the third chapter was to study HABs in the Campeche Bank, 

Mexico, and explore the potential for the development of detection techniques that can distinguish 

between the three major blooms observed in the region: Karenia spp., Scrippsiella sp., and mixed 

diatoms blooms. Data were collected during three field campaigns in Mexico in 2011 and 

compared with similar data collected in the WFS in 2005 and 2011. This is the very first bio-

optical dataset for the Campeche area of the Gulf of Mexico. The Karenia spp. bloom off Mexico 

showed similar characteristics to those Karenia spp. blooms observed in the WFS in this study 

and also observations published previously. The normalized mean aph*(λ) spectra for Scrippsiella 
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sp. and Karenia spp. blooms were different. Scrippsiella sp. blooms showed higher normalized (at 

443 nm) mean aph* between 450 to 550 nm than Karenia spp. blooms. Based on the current 

Moderate Resolution Imaging Spectroradiometer (MODIS) data calibration and processing 

algorithms, distinctive differences between Scrippsiella sp. and Karenia spp. blooms were also 

observed using the MODIS normalized mean aph*(λ) spectra. The prototype technique presented 

here consisted of a combination between the Rrs-FLH technique developed in Chapter 1 and a 

threshold using the slope between the normalized (at 443 nm) aph*(443) and aph*(488).  

The prototype technique showed promising results and classified the separate blooms, 

but in situ data for Scrippsiella sp. blooms was limited to further evaluate this technique. The 

results clearly show that it is possible to distinguish and separate these blooms using satellite 

imagery; however further work is necessary to simplify and improve these techniques.   

There are several knowledge gaps that need to be addressed to better understand HABs 

in waters off the Yucatan Peninsula. One is phytoplankton succession in the upwelling regions 

and downstream.  Another is to develop a better understanding of the interaction of shelf waters 

with waters offshore. Additional and better bio-optical data, including field observations of remote 

sensing reflectance, light attenuation, High Performance Liquid Chromatography (HPLC) 

measurements of phytoplankton pigments, and zooplankton assessments are needed for the 

various bloom types. A better understanding of the phytoplankton community and the optical 

properties in the region will lead to better detection techniques. 
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Table A2. Taxonomy results for all the stations in Mexico. 
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Table A3. Taxonomy results for all the stations in Florida. 
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