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ABSTRACT

Major challenges in the management of blood supply chain are related to the

shortage and wastage of the blood products. Given the perishability characteristics

of blood which can be stored up to a limited number of days, if hospitals and blood

centers keep an excessive number of blood units on inventory, wastages may occur.

On the other hand, if sufficient number of blood units are not stored on inventory,

shortages of this resource may cause the cancellations of important activities and

increase the fatality rates at hospitals. Three mathematical models have been de-

veloped with the goal to improve the efficiency of blood related activities at blood

centers and hospitals. The first model uses an integer programming (IP) approach to

identify the optimal order levels that minimizes the total cost, shortage and wastage

levels of blood products at a hospital within a specified planning horizon. The IP

model explicitly considers the age of blood inventory, uncertain demand, the demand

for two types of patients and crossmatch-to-transfusion ratio. The second model for-

mulates the different shortage and inventory distribution strategies of a blood center

supplying blood products to multiple hospitals. The third model develops a vehicle

routing problem for blood centers to minimize the daily distance travelled by blood-

mobiles during the blood collection process. Optimal routing for each bloodmobiles

is identified using CPLEX solver, branch & bound and column generation algorithms

and their solution times are compared.

vii



CHAPTER 1: INTRODUCTION

Human blood is a scarce resource. It is only produced by human beings and there

are currently no other products or alternative chemical process that can be used to

generate blood. The blood carries substances such as nutrients and oxygen to the

cells and delivers waste away from the cells.

Blood is usually drawn as “whole blood” but then it could be mechanically sep-

arated into other useful components. These components are then used to meet the

specific transfusion demands of patients. One unit of whole blood can be divided

into five different blood products: red blood cells (RBCs), plasma, white blood cells,

serum or platelets. Red blood cells are the most abundant cells in blood and contain

a protein called hemoglobin that moves oxygen to our cells. Plasma is a yellowish

liquid component and is obtained by removing RBCs from whole blood. White blood

cells are part of the immune system and defend the body against infectious agents.

Serum is a blood plasma without clotting factor, white and red blood cells. Finally,

platelets are the clotting factors that are contained in the plasma and relate to the

process of coagulation which repairs the body when a wound and bleeding occurs.

Platelets can also be drawn directly from a person through the use of an apheresis

device. All blood components except for plasma can become outdated. Platelets,

especially, are considered highly perishable since they can only be stored up to five

days before deteriorating. The second most perishable blood component, RBC, can

be kept for up to forty two days on inventory.

Figure 1.1 shows the general process related to the supply chain of blood prod-

ucts. It starts with the collection process. Blood units for transfusion purposes are

collected from donors either at a blood center or through bloodmobiles on remote
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locations. After a thorough process of rules and regulations for compliance of donors,

units are tested. Then, the whole blood units are either stored or mechanically sep-

arated (extracted) into components. Hospitals place orders to blood center based on

the forecasted demand for the various procedures scheduled. A recipient’s blood is

tested against a donor’s blood (this process is known as crossmatching) and, when

compatible, blood units are reserved for the specific patient for the period known as

crossmatch release period.

Figure 1.1: Supply Chain of Blood Products

When comparing blood products with any other item several differences directly

connected to the supply chain become evident. First, supply of blood is volunteer-

based whereas there is a cost associated with most products. Second, the structure of

the blood supply chain is considered as reverse to the majority of traditional products

since the whole blood produced by the living beings is mechanically separated into

components in many cases before it is used. However, in traditional supply chain,

parts are manufactured and then assembled to create a finished product. Third, the

price associated with the acquisition of the blood is always linear, that is, no economies

of scale are present. Finally, the most significant difference is about the inventory
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issuing policy as shown in Figure 1.2. When the hospital blood bank receives a blood

request for a specific patient, the crossmatched blood is moved from unassigned (free)

inventory to assigned (reserved) inventory and kept for this patient until the blood

is transfused or the crossmatch release period is over. If the blood is not transfused

and the crossmatch release period is over, it could be returned to the unassigned

inventory to be used for other purposes. Since the amount of blood needed for a

medical procedure is uncertain, physicians tend to overestimate units required for

safety issues. Approximately 50% of blood units requested by physicians are returned

to the unassigned inventory without being transfused [1]. Depending on the patient,

organizational policy and types of procedures, the crossmatch-to-transfusion ratio

(C/T ratio) varies. This ratio is typically higher for the cases in emergency rooms

[2].

Figure 1.2: Blood Inventory Model

Minimizing shortage and wastage of the blood is the major challenge related to the

management of blood both at a hospital and at a blood center. Due to the perishable

characteristic of blood (it becomes outdated if not used during its predetermined shelf

life) it is critical to avoid storing an excessive number of blood units. At the same

time, insufficient number of blood products on inventory may increase cancellations
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of the scheduled activities at a hospital and as a result increase fatality rates. In

2004, 17% of platelet units that were collected in the U.S. were outdated before being

transfused [3] (wastage); and a total of 492 reported cancellations of elective surgeries

on one or more days were due to blood shortages at 1700 U.S. hospitals participating

in a survey in 2007 [4]. Thus, managing outdates and shortages of blood products

continues to pose a challenging problem for hospitals.

1.1. Intellectual Merit

This research considers the supply chain of blood products and presents models

to improve the efficiency of both blood collection process at blood centers as well as

blood ordering policies at hospitals.

The existing literature shows the need for models that incorporate the age of

blood units into the formulations. In addition, the majority of the models do not

differentiate demand among patient groups with specific blood age requirements.

We develop stochastic integer programming models that explicitly consider age of

blood units on inventory as well as the demand for two types of patients (one which

requires fresh blood). Furthermore, due to the impact of unique blood characteristics

on blood ordering policy, unlike other models, we take C/T ratio and crossmatch

release period into consideration and propose a deterministic integer programming

model to investigate their effects on the operational efficiency of the hospitals.

Most problems discussed in the literature analyze a decentralized hospital net-

work where each hospital controls and being responsible for its own blood inventory.

However, in real life practices, many blood centers have informational access to the

hospitals’ inventory levels through online inventory control system and are responsi-

ble for replenishing and maintaining certain blood levels at hospitals. That is, the

blood center takes into account the availability of blood both at the blood center and

at hospitals in its network before making any decision related to the number of units

to be distributed to each hospital. Using integer programming approach, our models
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explicitly incorporate centralized decision making to minimize the cost and shortage

levels in overall system.

1.2. Broader Impact

In this study, a decision support mechanism is developed for hospitals to manage

blood resources more efficiently which will ultimately result in both cost reduction

and improved service to hospitals’ patients. An extensive computational study is

provided to analyze the effects of several factors such as average age of blood in blood

shipments, C/T ratio, and the length of crossmatch release period. The obtained

results will be beneficial to hospital administrators and will aid in the process of

determining adequate order sizes to minimize shortage, wastage and total costs.

Another decision support tool developed in our study selects a set of locations

from among a group of potential locations to collect blood units each day. Using the

formulation of vehicle routing problem we design blood mobile routes that minimize

the total distance travelled during blood collection process while satisfying the daily

blood demand at the blood center.

1.3. Dissertation Outline

This dissertation is organized as follows: Chapter 2 reviews the existing literature.

Chapter 3 analyzes a decentralized hospital network consisting of a single hospital and

a blood center. Chapter 4 outlines the different shortage and inventory distribution

strategies of a centralized hospital network managed by a blood center. Chapter 5

presents a vehicle routing problem for a blood center in order to improve its efficiency

in blood collection process. Chapter 6 concludes the dissertation and provides the

opportunities for future work.
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CHAPTER 2: LITERATURE REVIEW

This section discusses the research related to the supply chain problem of blood

products including inventory management and decision models. In addition, the

literature associated with column generation algorithms and their application to solve

vehicle routing problems discussed.

2.1. Overview of the Literature related to Supply Chain of Blood Products

The research related to supply chain management of perishable products in general

and blood products in particular was initiated in the 1960’s by Van Zyl [5]. The paper

written by Nahmias [6] in 1982 focuses on the perishable inventory and provides a

brief review for the applications of the models to the blood bank management. In

1984, Prastacos [7] overviews the theory and practice of blood inventory management.

Since then, close to one hundred blood related publications have become available in

the literature. Two peaks in the publication history of blood products are observed

[8] as shown in Figure 2.1; one in the period between 1976 and 1985 and more recently

in the period between 2001 and 2010.

Supply chain problems of blood products have been modeled using a variety of

analytical decision models. In particular, simulation methodology, dynamic program-

ming, integer programming, goal programming and multi objective approaches are

some of the most common solution methods in the literature. These approaches are

either used alone or in combination with other methods to analyze and solve real-life

problems.

As can be seen in Figure 2.2, most of the researches are focused on the problems

in either individual hospital level or regional blood center level. Only small number

of researches have considered the complete supply chain network of blood products.
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Figure 2.1: Publication History ([8])

Figure 2.2: Trends in Hierarchical Level ([8])
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Trends have been towards total inventory management and a limited number of

studies are available in planning for blood collections (Figure 2.3).

Figure 2.3: Trends in Problem Categories ([8])

Haijema et al. [9] applies markov dynamic programming and simulation approach

to a real life case of a Dutch blood bank. Their paper focuses on the production and

inventory management of platelets where they only consider costs that are directly

related to the production and inventory of platelets. Zhou et al. [10] analyzes a

platelet inventory problem assuming a fixed life span of three days and considering

stochastic demand. The problem is formulated using dynamic programming approach

where dual sourcing alternative is available and the decision maker has the option

of placing an expedited order besides the regular order. Alfonso et al. [11] address

the blood collection problem in France considering both fixed site and mobile blood

collection. They use Petri net models to describe different blood collection processes,
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donor behaviors, human resource requirements and apply simulation approach to

identify appropriate human resource planning and donor appointment strategies.

Hemmelmayr et al. [12] develop integer programming models to decide which

hospitals a vendor (through vehicles from blood centers) should visit each day given

that the routes are fixed for each region. Authors consider recourse action in order

for hospitals to be hedged against the uncertainty associated with blood product us-

age. Both, integer programming and variable neighborhood search approaches are

used and compared in terms of their efficiencies. Sahin et al. [13] formulate three

problems using integer programming to address the location-allocation aspects of re-

gionalization of blood services. The experimental results obtained using real data

for Turkish Red Crescent blood services were reported. Jacobs et al. [14] build

two integer programming models to investigate a facility relocation problem for the

mid-Atlantic region of the American Red Cross in Norfolk, Virginia. They provide

insights into the current scheduling activities of blood collections and distributions.

The integer programming model explained in [15] considers the orders for fresh blood

separately and allocates blood units from regional blood transfusion service to the

hospitals. The objective is to minimize the total expected number of units that are

sent back to the blood transfusion service. Ghandforoush and Sen [16] formulates a

nonlinear integer programming model to determine the minimum cost platelet pro-

duction schedule for the regional blood center. Since the initial formulation carries a

non-convex objective function that is difficult to solve and would not guarantee con-

vergence to optimality, the formulation is simplified to achieve a better structure. As

both objective function and constraints of the revised formulation include quadratic

terms, a two-step transformation called linear 0-1 integer alternative is proposed to

guarantee optimality.

Kendall and Lee [17] develop a goal programming model to attain multiple goals

related to inventory levels, the availability of fresh blood, blood outdating, the age

9



of blood, and the cost of collecting it. The data for a large urban-rural blood region

in the Midwest are collected for a period of one year; computational results of the

model are reported. Cetin and Sarul [18] use a hybrid mathematical programming

model that is the integration of gravity model of continuous location models and set

covering model of discrete location approaches. The objective function of the problem

is formulated using binary nonlinear goal programming technique and the goals are

to minimize the total traveled distance between the blood banks and hospitals, the

total fixed cost of locating blood banks, and the cost associated with an inequality

index that is a type of fairness mechanism for the distances.

Nagurney et al. [4] analyze the complex supply chain of human blood consisting of

collection sites, testing and processing facilities, storage facilities, distribution centers,

as well as demand points. Authors develop a generalized network optimization model

where multi criteria system-optimization approach enables decision makers to mini-

mize both total operational cost and total risk function. Computational results are

obtained by utilizing variational inequality method. The analytical model described

in [19] is a tool for blood centers to model trade-offs between multiple demand levels,

service levels, costs, as well as the shortages and expiration. The paper uses queuing

model and level crossing techniques to determine an optimal policy. The results are

validated with a simulation model using real data obtained from Canadian Blood

Services.

2.2. Overview of the Literature Using Column Generation Algorithm to

Solve Vehicle Routing Problem

The column generation (CG) algorithm is a widely used approach to solve vehi-

cle routing problems (VRPs). Papers in the literature ranges from classical VRPs

to more sophisticated VRPs which includes the options of time window limitations,

heterogeneous vehicles and multi-depot locations.
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Chabrier [20] formulates a VRP with time windows and the different limitations

on vehicles capacities. The original problem is then modified using Dantzig-Wolfe

decomposition [21] and column generation algorithm is applied under branch and

bound framework. Labeling algorithm is generated to solve the subproblems and cuts

are used to improve the solution obtained from the relaxed problem. Righini et al.

[22] presents a branch-and-cut-and-price algorithm to solve multi-depot problem with

time windows. The study considers heterogeneous vehicles with different capacities

and fixed costs. Tcha and Choi [23] analyze a VRP using integer programming model

with time windows and a fleet of vehicles having various capacities and costs. The

linear programming relaxation is solved by column generation algorithm and several

dynamic programming schemes are developed to generate feasible columns.

The livestock collection problem in [24] is formulated as a rich VRP with inventory

and vehicle capacity constraints where the capacity depends on the loading sequence.

The goal is to design a set of vehicle routes to collect animals from farms while sat-

isfying certain constraints related to animal welfare. The paper presents a column

generation based exact solution algorithm to solve richer model with much larger

instances compared to the previously published studies. Vanderbeck and Mourgaya

[25] builds a periodic VRP to optimize the vehicle routes while satisfying some ser-

vice levels during a given time horizon. The tactical planning model schedules vehicle

visits and operational model identifies sequences of each vehicles. The objective is to

specialize each routes with geographical area and to evenly distribute the workload

between vehicles. Ledesma and Gonzales [26] describes a school bus routing prob-

lem that aims to select a set of bus stops among a group of potential ones and to

design their visiting sequences. The problem constraints include minimum number

of students to be picked up, maximum number of stops to be visited and maximum

distance travelled by students. The paper proposes branch-and-price algorithm based

on a set partitioning formulation. Batta et al. [27] address the simultaneous sensor

11



selection and routing problem of unmanned aerial vehicles (UAVs). The goal is to

assign sensors to UAVs so as to maximize the intelligence gain while not exceeding

flight time limitations and the number of sensors that can be hold by aircraft. Heuris-

tics and column generation algorithms are used to find good and improved solutions

respectively.

12



CHAPTER 3: DECENTRALIZED HOSPITAL NETWORK

CONSISTING OF ONE BLOOD CENTER AND ONE HOSPITAL

We consider a two-level supply chain of blood products consisting of one hospital

and one blood center. The bolded red line in Figure 3.1 shows the point of this

section’s interest in complete blood supply chain. The hospital faces blood demands

that need to be satisfied in order to perform its daily operation related to blood

supply. Thus, optimal blood order levels should be identified over multiple periods.

Figure 3.1: Two Level Supply Chain with One Hospital and One Blood Center

In this research, the following assumptions have been made:

• The capacity of the blood center is limited.

• Lead times for blood supply are zero.

• The age of blood units received from the blood center is known and varies over

time.
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• The lifetime of platelets is limited to five days including two days of testing [3].

• The lifetime of red blood cells is limited to forty two days including two days

of testing [19].

• General blood issuing policy for the hospital is FIFO where oldest units on

inventory are issued first when the blood units are requested by physicians for

patient needs [6].

• If demand is not satisfied due to the unavailability of blood units, a shortage

cost is incurred.

• If a blood unit expires, a wastage cost is incurred associated with discarding

blood units.

3.1. Formulation of Random Blood Demand

Hospitals usually face two types of uncertainties associated with the use of blood

products. The first relates to the uncertainty of emergency cases which are difficult

to anticipate. Unlike scheduled procedures, emergency cases are unexpected and ran-

dom. Thus, the amount of blood units needed is unknown in advance. The second

uncertainty relates to the C/T ratio. Prior to a procedure, blood is requested by

the physician for a specific patient and the number of blood units cross-matched is

typically overestimated for safety issues. Thus, some blood may be returned back to

inventory after the crossmatch release period is over. To address these challenges,

we use stochastic programming to handle demand uncertainty and build integer pro-

gramming models that explicitly consider age of blood on inventory.

Table 3.1-3.3 summarize the indices, the parameters and the variables that are

used in the models. It is valuable to note that t = 1 refer to a Monday.
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Table 3.1: Indices for Models

Index Description

s Demand scenario, s=1,2,...,S

i Age of blood, i=1,2,...,I (days)

t Time period, t= 1,2,...,T (days)

a Age group of blood (‘young’ (0) or ‘old’ (1)), a ∈ {0, 1}

Table 3.2: Parameters for Models

Parameter Description
S Number of scenarios
I Lifetime of blood product
T Length of planning horizon
b Unit shortage cost of blood at the hospital
c Unit purchasing cost of blood
ca Unit purchasing cost of ‘young’ blood (0) and ‘old’ blood (1)
h Unit holding cost of blood at the hospital
M Big M (Big Number)

ps Probability of scenario s,
∑S

s=1 ps = 1
w Unit wastage cost of blood at the hospital
θit Proportion of i days old blood in blood shipments from blood

center in time period t, 0 ≤ θit ≤ 1,
∑I

i=3 θit = 1 ∀t
θait Proportion of i days old blood in ‘young’ blood shipments

(a=0) and in ‘old’ blood shipments (a=1) from blood center

in time period t, 0 ≤ θait ≤ 1, θ03t = 1,
∑I

i=4 θ1it = 1 ∀t
d

(s)
t Blood demand at the hospital in time t (for scenario s)

d
(s)
at ‘Young’ blood (a=0) demand and ‘any’ blood (a=1) demand

at the hospital in time t (for scenario s)
CAPt Capacity of the blood center (allocated to the hospital)

in time period t
CRP Crossmatch release period at the hospital
CT Average C/T ratio at the hospital

Using the indices, parameters and decision variables in Table 3.1-3.3, the non-

linear stochastic integer programming model is formulated as follows:
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Table 3.3: Decision Variables for Models

Decision Variable Description

m
(s)
it Auxiliary variable associated with age group i

in time t (for scenario s). It captures the number of
blood units in an age group left to be used for the
next period if all available blood in this age group is
not fully used to satisfy the demand in current period

r
(s)
t Number of blood shortage at the end of time t

(for scenario s) at the hospital

π
(s)
t Number of ‘old’ blood demand in time t

(for scenario s) that are not satisfied by older blood
units on inventory due to unavailability

u
(s)
t Number of blood wastage at the end of time t

(for scenario s) at the hospital

v
(s)
it Inventory level of i days old blood at the end of

time t (for scenario s) at the hospital
xt Number of blood ordered by the hospital from

the blood center at the beginning of time t
xat Number of ‘young’ blood (0) and ‘old’ blood (1)

ordered by the hospital from the blood center
at the beginning of time t

yit Number of i days old blood received by the
hospital at the beginning time t

z
(s)
it 1 if i days old blood used to satisfy the demand

in time period t (for scenario s), 0 otherwise

β
(s)
it Number of i days old blood returned from

assigned inventory to unassigned inventory
at the beginning of time t (for scenario s)

Minimize
T∑
t=1

c · xt + ps · (
S∑

s=1

I∑
i=3

T∑
t=1

h · vsit +
S∑

s=1

T∑
t=1

w · ust +
S∑

s=1

T∑
t=1

b · rst ) (3.1)

subject to:

xt ≤ CAPt ∀t (3.2)
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yit = 0, i = 1, 2,∀t (3.3)

yit = xtθit, i = 3, 4, ..., I,∀t (3.4)

zsit ≥ zs(i−1)t i = 3, 4, ..., I,∀s, t (3.5)

dst =
I∑

i=3

((vs(i−1)(t−1) + yit)z
s
it −ms

it) + rst ,∀s, t (3.6)

(zsit − zs(i−1)t)(v
s
(i−1)(t−1) + yit) ≥ ms

it i = 3, 4, ..., I,∀s, t (3.7)

zs2t = 0 ∀s, t (3.8)

dst −
I∑

i=3

(vs(i−1)(t−1) + yit) ≤ rst ∀s, t (3.9)

vsit = (1− zsit)(vs(i−1)(t−1) + yit) + (zsit − zs(i−1)t)m
s
it i = 3, ..., I,∀s, t (3.10)

vs(2)t = 0 ∀s, t (3.11)

vsi(0) = 0 ∀s, i (3.12)

ust = vs(I)t ∀s, t (3.13)

xt ∈ Z+ ∀t (3.14)
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rst , u
s
t ∈ Z+ ∀s, t (3.15)

yit ∈ Z+ ∀i, t (3.16)

ms
it, v

s
it ∈ Z+ ∀s, i, t (3.17)

zsit ∈ {0, 1} ∀s, i, t (3.18)

The objective function (3.1) seeks to minimize the purchasing cost and the ex-

pected inventory, wastage and shortage costs during the planning horizon. Constraint

(3.2) is the capacity constraint of the blood center (supplier). Constraint (3.3) en-

sures that the hospital never receives one or two days old blood units from the blood

center as two days are required for testing after the blood is collected. Constraint

(3.4) allocates blood units to each age group. Constraint (3.5) guarantees the FIFO

blood issuing policy. Constraint (3.6) requires demand to be fully satisfied when

blood supply exceeds demand. Otherwise, the hospital faces a shortage issue. ms
it is

an auxiliary variable that captures the number of blood units in an age group left on

inventory when at least one unit is absorbed from inventory during the given time

period. Otherwise, it would be equal to zero. Note that there is at most one age

group having ms
it with non-zero value in each period. Constraint (3.7) assures that

the values of auxiliary variable, ms
it, do not exceed the number of blood units avail-

able in their age groups. Constraint (3.8) ensures that two days old blood units are

not used to satisfy the demand as the hospital only receives blood units older than

two days old from the blood center. Constraint (3.6) and Constraint (3.9) capture

the number of blood shortages. Constraint (3.10) updates end-period blood inven-

tory levels for each age group. Constraint (3.11) assures two days old blood is never
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available on inventory. Constraint (3.12) states that there is no inventory available at

the beginning of the analysis period. Constraint (3.13) identifies the wastage levels

of the hospital at the end of each period. Constraints (3.14)-(3.17) show rst , ust , xt,

ms
it, v

s
it and yit are non-negative discrete variables since the blood units are received

in blood bags. Constraint (3.18) states that zsit is a binary variable.

Due to the interactions between binary and discrete variables, the optimization

problem includes non-linear terms in the above formulation. After the first lineariza-

tion technique is applied which is detailed in Appendix A, the interactions between v,

y, m and z variables in constraints (3.6), (3.7) and (3.10) are replaced with the cor-

responding linearization variables from which constraints (3.19)-(3.21) are obtained.

In addition, constraints (A.1)-(A.26) are added into the new formulation.

dst =
I∑

i=3

(γsit + αs
it −ms

it) + rst ∀s, t (3.19)

γsit + αs
it − µs

(i−1)t − ψs
it ≥ ms

it i = 3, 4, ..., I,∀s, t (3.20)

vsit = vs(i−1)(t−1) + yit − γsit − αs
it + λsit − δsit i = 3, 4, ..., I,∀s, t (3.21)

In summary, constraints (3.2)-(3.5), (3.8), (3.9), (3.11)-(3.21), (A.1)-(A.26) are

present in the model discussed in this section.

3.1.1. Model Extension: Formulation of Blood Demand for Two Types

of Patients

Freshness of the blood products (a.k.a. young blood) may be critical and required

for certain types of patient groups. Fresh blood (specifically RBC) is highly prefer-

able for operations such as open-heart surgeries [17]. Also, according to the study

from University of Texas Southwestern [28], it is suggested to have younger blood
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units for the transfusion of pediatric heart surgery patients, open heart pediatric

and cardiopulmonary bypass surgeries. In the absence of fresh blood units, some of

the blood related procedures may need to be postponed to a later date. Similarly,

young platelets are highly preferred for oncology and hematology patients. However,

platelets of any age (up to the shelf life) can be used for traumatology or other general

surgery patients [9].

Based on these requirements, two types of patients are defined: Type 1 which

requires fresh/young blood and Type 2 which could use blood of any age (young or

old). Young platelets are defined as being younger than three days old [9]. Young

red blood cells are younger than 5 days old [17].

The general procedure to order and manage blood units at a hospital is as follows:

The hospital places separate orders for units of any age and/or specifically young units

to the blood center. If no age is specified, blood centers will typically send only old

age units. Upon arrival, units are grouped and stored based on their age group; then,

they are allocated to the procedures using the FIFO policy. The demand for Type

1 patients can only be satisfied with young products. If demand for young products

exceeds supply, the hospital faces a shortage issue. On the other hand, demand for

Type 2 patients can be satisfied by units of any age. That is, young units of blood can

also be used to satisfy demand for Type 2 patients but only when old blood units are

not available on inventory. To incorporate the demand for two types of patients into

our formulation, Constraints (3.4)-(3.7) and (3.9) of the initial model are replaced

with the following constraints.

x0t · θ0it = yit i = 3,∀t (3.22)

x1t · θ1it = yit i = 4, ..., I,∀t (3.23)
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zsit ≥ zs(i−1)t i = 3,∀s, t (3.24)

zsit ≥ zs(i−1)t i = 5, ..., I,∀s, t (3.25)

(zsit − zs(i−1)t)(v
s
(i−1)(t−1) + yit) ≥ ms

it i = 3, ∀s, t (3.26)

(zsit − zs(i−1)t)(v
s
(i−1)(t−1) + yit) ≥ ms

it i = 5, ..., I,∀s, t (3.27)

ds0t + πs
t =

3∑
i=3

((vs(i−1)(t−1) + yit) · zsit −ms
it) + rst∀s, t (3.28)

ds1t =
I∑

i=4

((vs(i−1)(t−1) + yit) · zsit −ms
it) + πs

t ,∀s, t (3.29)

ds0t + ds1t −
I∑

i=3

(vs(i−1)(t−1) + yit) ≤ rst ∀s, t (3.30)

xat ∈ Z+ a ∈ {0, 1},∀t (3.31)

πs
t ∈ Z+ ∀s, t (3.32)

Constraints (3.22) and (3.23) allocate young and old units to each age group.

Constraints (3.24) and (3.25) enforce the FIFO policy. To guarantee that young units

are not prevented from being allocated to meet demand for fresh blood, some links

are removed from the formulations; otherwise, young units cannot be used before all

of the old units on inventory are used. Constraint (3.26) and (3.27) guarantee that

the values of ms
it do not exceed the number of units available in their age groups.

Constraints (3.28) and (3.29) are demand constraints and ensure the usage of young

units for Type 2 patients when all old units on inventory are depleted. Constraint
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(3.28) in conjunction with constraint (3.30) identifies the shortage levels. Finally,

constraints (3.31) and (3.32) force xat and πs
t to take non-negative discrete values.

Since the purchasing cost of young units exceeds the cost of old units, the first

term of the objective function in the first formulation is replaced by the following

revised term.

T∑
t=1

c0 · x0t +
T∑
t=1

c1 · x1t (3.33)

Similar to the model described by (3.1)-(3.18), the first linearization technique

is applied to the constraints (3.26)-(3.29) as they indicate non-linear terms. After

the interactions between v, y and z are replaced with the corresponding linearization

variables, constraints (3.34)-(3.37) are obtained as follows:

ds0t + πs
t =

8∑
i=3

γs(i−1)(t−1) + αs
it −ms

it + rst ∀s, t (3.34)

ds1t =
I∑

i=9

γs(i−1)(t−1) + αs
it −ms

it + πs
t ∀s, t (3.35)

γsit + αs
it − µs

(i−1)t − ψs
it ≥ ms

it i = 3, 4, ..., 8, ∀s, t (3.36)

γsit + αs
it − µs

(i−1)t − ψs
it ≥ ms

it i = 10, 11, ..., I,∀s, t (3.37)

In summary, constraints (3.2)-(3.3), (3.8), (3.10)-(3.18), (3.22)-(3.25), (3.30)-(3.32),

(3.34)-(3.37), (A.1)-(A.26) are present in the model discussed in this section.

3.2. Formulation of C/T Ratio and Crossmatch Release Period

According to [29], crossmatch-to-transfusion ratio should ideally be 1:1. They also

mentioned a C/T ratio less than 2.5 to be acceptable; that is, out of five units cross-

matched only two are used. In order to incorporate C/T ratio and crossmatch release

period into our formulation, the problem is modified so as to obtain deterministic

integer programming formulation as follows:
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Minimize
T∑
t=1

c · xt +
I∑

i=3

T∑
t=1

h · vit +
T∑
t=1

w · ut +
T∑
t=1

b · rt (3.38)

subject to:

xt ≤ CAPt ∀t (3.39)

yit = 0, i = 1, 2,∀t (3.40)

yit = xtθit, i = 3, 4, ..., I,∀t (3.41)

zit ≥ z(i−1)t i = 3, 4, ..., I,∀t (3.42)

dt =
I∑

i=3

((v(i−1)(t−1) + yit)zit −mit) + rt ∀t (3.43)

(zit − z(i−1)t)(v(i−1)(t−1) + yit) ≥ mit i = 3, 4, ..., I,∀t (3.44)

z2t = 0 ∀t (3.45)

dt −
I∑

i=3

(v(i−1)(t−1) + yit) ≤ rt ∀t (3.46)

vit = (1− zit)(v(i−1)(t−1) + yit) + (zit − z(i−1)t)mit + βit i = 3, ..., I,∀t (3.47)

vit = βit i = I + 1, ..., I + CRP, ∀t (3.48)

v(2)t = 0 ∀t (3.49)
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vi(0) = 0 ∀i (3.50)

βit = b((v(i−CRP−1)(t−CRP−1) + y(i−CRP )(t−CRP )) · z(i−CRP )(t−CRP ) −m(i−CRP )(t−CRP ))

·(1− CT−1)c i = 3 + CRP, ..., I + CRP, t = CRP + 1, ..., T (3.51)

βit = 0 i = 3 + CRP, ..., I + CRP, t = 1, ..., CRP (3.52)

βit = 0 i = 1, ..., 3 + CRP − 1,∀t (3.53)

ut =
CRP∑
n=0

v(I+n)t ∀t (3.54)

xt ∈ Z+ ∀t (3.55)

rt, ut ∈ Z+ ∀t (3.56)

yit ∈ Z+ ∀i, t (3.57)

mit, vit, βit ∈ Z+ ∀i, t (3.58)

zit ∈ {0, 1} ∀i, t (3.59)
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The objective function (3.38) captures the deterministic version of the objective

function presented in (3.1). Similarly, it seeks to minimize the purchasing, inventory,

wastage and shortage costs during the planning horizon. Constraints (3.39)-(3.46)

and (3.49)-(3.50) are the deterministic formulations of Constraints (3.2)-(3.9) and

(3.11)-(3.12) respectively. Constraints (3.47) and (3.48) update end-period blood in-

ventory levels for each age-group. Furthermore, right hand-side of Constraint (3.48)

only indicates the variable associated with returned blood units from assigned in-

ventory since the hospital would not receive or keep blood units that are expired.

Constraints (3.51)-(3.53) are used to compute the number of blood units returned

back to unassigned inventory in each period. The number of returned units is com-

puted by multiplying the number of blood units in assigned inventory with the blood

return ratio derived from subtracting the inverse of hospital’s average C/T ratio from

one. For each age group it is assume that the same proportions of blood units in

assigned inventory are returned to unassigned inventory. Since it takes CRP time

periods for reserved blood units to be returned to the unassigned inventory, the value

of βit in Constraint (3.52) is set equal to zero for the first CRP periods. Similarly,

as the youngest blood units received by the hospital are three days old, the value

of βit is set equal to zero for blood units that are younger than 3 + CRP days old

in Constraint (3.53). Constraint (3.54) identifies the wastage levels of hospital at

the end of each period. Constraints (3.55)-(3.58) are the non-negativity constraints.

Finally, Constraint (3.59) forces zit to assume binary values.

Similar to the first two models, linearization techniques (Appendix A) are applied

to the non-linear terms impacting Constraints (3.43), (3.44), (3.47) and resulting on

modified Constraints (3.60)-(3.62). In addition, Constraints (A.1)-(A.26) are added

into the new formulation.

dt =
I∑

i=3

(γit + αit −mit) + rt ∀t (3.60)
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γit + αit − µ(i−1)t − ψit ≥ mit i = 3, 4, ..., I,∀t (3.61)

vit = v(i−1)(t−1) + yit − γit − αit + λit − δit + βit i = 3, 4, ..., I,∀t (3.62)

Finally, the floor function shown in Constraint (3.51) is modified using techniques

described in Appendix B and resulting in Constraints (3.63) and (3.64).

βit ≥ ((γ(i−CRP−1)(t−CRP−1) − α(i−CRP )(t−CRP ))−m(i−CRP )(t−CRP ))

·(1− CT−1)− 1 + TOL i = 3 + CRP, ..., I + CRP, t = CRP + 1, ..., T (3.63)

βit ≤ ((γ(i−CRP−1)(t−CRP−1) − α(i−CRP )(t−CRP ))−m(i−CRP )(t−CRP ))

·(1− CT−1) + TOL i = 3 + CRP, ..., I + CRP, t = CRP + 1, ..., T (3.64)

3.3. Computational Study

In this section, we present the data used in our analysis and discuss the numerical

results obtained from above models using IBM ILOG CPLEX 12.1 on Dell OPTI-

PLEX 755 with 2.20 GHz CPU and 2GB of RAM.

3.3.1. Data

Table 3.4 summarizes the values of cost parameters that are used in our models.

Most of the cost parameters are obtained from the literature as shown in [16], [9],

[4] and [10]. Inventory costs were obtained from real data from a Regional Medical

Center (RMC).
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Table 3.4: Cost Parameters

Parameters Value Units Reference

Purchase Cost (Platelet)-c 538 $/unit [16]

Purchase Cost (RBC)-c 180 $/unit [4]

Shortage Cost-b 1500 $/unit [10]

Wastage Cost-w 150 $/unit [9]

Holding Cost-h 1.25 $/unit*day RMC

Demand distributions from [9] were used for estimating daily demand values of

platelet units. Two studies [9] and [10] provide daily demand distribution of platelets

at a hospital blood bank. Two types of demand are considered in [9]. Only one type

of demand for weekly platelet production is considered in [10]. The mean values of

platelet demands obtained from Sanquin Blood Bank and used in both references are

24, 16, 32, 16, 24, 0, 8 for Monday through Sunday respectively. The demand data

are assumed to be purely random and distributed around the mean; thus, the authors

used a poisson distribution in [9] and gamma distribution in [10].

In [30], daily fluctuations of red blood cells in terms of percentages are provided for

the months between April 2003 and March 2004 at Southampton Center. They are:

100%, 93%, 56%, 59%, 44%, 18% and 17% for Monday through Sunday respectively

where 100% value relates to the day of the week with highest average number of units.

Mean demand values for each day were computed by multiplying percentages by 100.

Matlab 2010a was used to generate a total of 35 datasets for numerical study.

Three categories were selected to group them based on the purpose they serve.

1. To test the stochastic integer programming model 15 datasets of various sizes

were generated. For each of the demand scenarios in a given time period (t=30 days),

data are generated from a poisson distribution using the mean values of platelet
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discussed above. There are five datasets (F1-F5) with 4 scenarios, five datasets (E1-

E5) with 8 scenarios and five datasets (S1-S5) with 16 scenarios.

2. To analyze the extension of stochastic integer programming model that consid-

ers the blood demand for two types of patients, another 15 datasets of three groups

with same sizes were generated. For all groups in a given time period (t=30 days),

scenario data were generated from a poisson distribution for 8 scenarios. Five of

these datasets (SY1-SY5) were generated similar to the datasets in first category,

but 1/8 and 7/8 of the average daily demand was taken as the mean daily demand

of young and any platelet respectively. The remaining ten datasets (SY6-SY10 and

SY11-SY15) were generated taking 1/4 and 1/2 of average daily demand as the mean

daily demand of young platelet.

3. To evaluate the effect of C/T ratio and crossmatch release period 5 datasets

(D1-D5) were generated for each time period (t=10 days) from a poisson distribution

using the average demand values of red blood cells discussed above.

3.3.2. Numerical Results

The problem described by (3.1)-(3.18) was solved with datasets F1-F5, E1-E5,

and S1-S5 using CPLEX 12.1. Table 3.5 summarizes the solution times for solving

these 15 problems given daily blood center (platelet) capacity of 30 units and average

platelet age of 4 days old in blood shipments. Solution Time in Table 3.5 is the time

it takes CPLEX to solve the problem within an optimality gap which are selected as

1.5% in the stochastic formulation and 2.5% in its extension. In addition, the gap is

chosen as 3.0% in the deterministic formulation.

The average solution times of stochastic model by problem size are 14.600, 83.419

and 449.837 seconds for datasets with 4, 8 and 16 scenarios respectively. As the num-

ber of scenarios increases, the problem size grows and the solution time to reach the

solution increases.
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Table 3.5: Solution Times of Datasets for Stochastic Model

Number of Number of Number of Solution
Scenario Variables Constraints Dataset Time (s)

4 3720 2832 F1 12.016
F2 14.926
F3 13.808
F4 17.728
F5 14.523

8 7320 5364 E1 56.082
E2 92.215
E3 125.088
E4 70.516
E5 73.198

16 14520 10428 S1 415.641
S2 412.252
S3 413.073
S4 522.045
S5 486.178

Table 3.6 shows the solution times of the problem explained by (3.38)-(3.59) given

the average C/T ratio of 4/3 and the total blood center (RBC) capacity of 120-110-80-

80-60-40-40 units for Monday through Sunday (where the beginning of the analysis

period, t=1, starts with Monday). Length of CRP column refers to the length of

crossmatch release period (in days) for RBC units that is determined by hospital

policy. The average solution times of deterministic model by length of CRP are

265.651, 16.508 and 57.110 seconds. The longer the crossmatch release period, the

shorter the time required to solve the problem.

A variety of situations were considered to determine the sensitivity of outcomes to

the model parameters. We considered the effect of the average platelet age in blood

shipments and daily blood center capacity on the solution of the problem described

by (3.1)-(3.18). This was done through the use of datasets E1-E5. The results are

shown in Table 3.8-3.10. In addition, the abbreviations shown in Table 3.7 are used

in the rest of the paper for the daily platelet capacity of the blood center (Monday

through Sunday).
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Table 3.6: Solution Times of Datasets for Deterministic Model

Number of Number of Length of Solution
Variable Constraints CRP (days) Dataset Time (s)

1980 3400 1 D1 171.784
D2 418.684
D3 247.187
D4 350.872
D5 140.79

1980 3400 2 D1 58.132
D2 190.552
D3 94.447
D4 96.82
D5 42.411

1980 3400 3 D1 66.319
D2 35.099
D3 58.025
D4 70.725
D5 55.385

Capacity of the blood center allocated to the hospital has a noteworthy effect on

the solution values. As the capacity is increased to the CAP2 level, blood shortages

and total cost related to blood operations decrease significantly. However increasing

capacity beyond this level does not have a major impact on the outcomes as shown

in Table 3.8-3.10. It was noted that the average platelet age in blood shipments has

some effect on both total cost and wastage levels at the hospital. Receiving older

platelet units (average age of 4.5 days) causes higher levels of wastage and increases

total cost. Whereas raising age of platelet units in blood shipments from 3.0 to 3.5

does not have an apparent impact. In the latter case, the changes in wastage levels

show both downward and upward trend depending on the dataset used for testing.

However, when CAP1 or CAP2 capacity is selected, the total cost for the 3.5 average

age is higher than the 3.0 average age. For other capacity levels, raising age of platelet

units in blood shipments from 3.0 to 3.5 does not have any effect on the total cost.

Table 3.11 shows the sensitivity of outcomes with the changes in unit shortage

cost. The daily platelet capacity of blood center is assumed to be 25-15-35-15-25-10-
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Table 3.7: The Abbreviations of the Daily Capacity Levels of the Blood Center

Abbreviation Daily Capacity Levels (units)
CAP1 20-10-30-10-20-5-5
CAP2 25-15-35-15-25-10-10
CAP3 30-20-40-20-30-15-15
CAP4 35-25-45-25-35-20-20
CAP5 40-30-50-30-40-25-25

CAP.E1 2-1-3-1-2-1-1
CAP.E2 3-2-4-2-3-1-1
CAP.E3 5-4-6-4-5-3-3
CAP.E4 7-6-8-6-7-5-5
CAP.E5 9-8-10-8-9-7-7
CAP.E6 12-11-13-11-12-10-10
CAP.F1 4-2-6-2-4-1-1
CAP.F2 6-4-8-4-6-2-2
CAP.F3 8-6-10-6-8-4-4
CAP.F4 10-8-12-8-10-6-6
CAP.F5 13-11-15-11-13-9-9
CAP.F6 16-14-18-14-16-12-12
CAP.T1 9-5-13-5-9-1-1
CAP.T2 12-8-16-8-12-4-4
CAP.T3 15-11-19-11-15-7-7
CAP.T4 18-14-22-14-18-10-10
CAP.T5 21-17-25-17-21-13-13
CAP.T6 24-20-28-20-24-15-15

10 units for Monday through Sunday and the average age of platelet units in blood

shipments is 3.5 days old. As a result of penalizing the hospital with higher unit

shortage cost, more units are placed to blood center in order to avoid shortages.

Increasing number of blood units received in shipments reduces the shortages and

inversely increases the wastages. Thus, higher shortage cost and increasing inventory

levels causes increased cost in blood related operations at the hospital.

Datasets SY1-SY15 were used to examine the effects of blood center capacity

for young platelets on the solution of the problem discussed in Section 3.1.1. Table

3.12-3.14 show the results of these trials based on different demand values of young

platelet units. The total capacity of blood center is assumed to be 30-20-40-20-15-15
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Table 3.8: Effects of Blood Center Capacity on Outcomes Given θavg of 3

Total Expected Total Expected Total Expected
Capacity Dataset Shortage Wastage Cost

(units) (units) ($)
CAP1 E1 96.75 0.375 374991

E2 92 2.25 369221
E3 98.62 0 378811
E4 80.25 0 350173
E5 113.12 0 401087

CAP2 E1 12.62 10.375 304291
E2 19.62 14 312087
E3 14.5 11.5 310010
E4 7.5 11.125 289741
E5 17 7.5 315817

CAP3 E1 9.25 9.625 300728
E2 12.37 18.125 308359
E3 7.37 17.75 307273
E4 6.75 9.5 288325
E5 6.5 14.75 310373

CAP4 E1 9 10 300425
E2 12.5 18.375 308592
E3 11.62 12.375 307434
E4 6.5 9 287902
E5 10.37 10.875 310658

CAP5 E1 9.62 9.25 300747
E2 14.5 17 308640
E3 10.62 15.25 306922
E4 6.62 8.75 287569
E5 5.62 15 309110

units for Monday through Sunday. Column titled “Young Platelet Cap.” refers to the

maximum amount of blood units that the blood center has agreed to supply to the

hospital. “Total Exp. π − r” column shows the expected number of young platelet

units on inventory used to satisfy platelet demand.

As can be noted, young platelet capacity of blood center has a significant impact

on the solution of the problem. Increasing the capacity up to CAP.E3, CAP.F3

and CAP.T3 results in significant cost savings and reduction of shortage levels at the

hospital. Further increases from these capacity levels provide slight improvements on
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Table 3.9: Effects of Blood Center Capacity on Outcomes Given θavg of 3.5

Total Expected Total Expected Total Expected
Capacity Dataset Shortage Wastage Cost

(units) (units) ($)
CAP1 E1 104.875 1.5 383568

E2 101.25 0.75 376930
E3 107.625 0 387450
E4 85.875 0.625 356002
E5 121.125 0 408767

CAP2 E1 18.625 10.375 309663
E2 25.125 11.375 316502
E3 25.75 13.5 316418
E4 11.625 6.875 292398
E5 23.5 9.375 321876

CAP3 E1 7.5 12.25 300721
E2 12.5 20.5 309475
E3 9.75 17 308006
E4 6.625 9.875 288240
E5 8.25 11.875 310329

CAP4 E1 8.875 12.375 300607
E2 14.5 17.25 308752
E3 10.625 14.75 307896
E4 5.625 11.125 287988
E5 9.125 12 310587

CAP5 E1 8.125 12.875 300649
E2 13.5 18 308560
E3 12.125 13.5 307817
E4 5.625 11 288006
E5 9.625 11.5 310201

aforementioned outcomes. Nevertheless, average values of total expected wastages for

five datasets of given young platelet capacities are presented. As anticipated, these

values show, in general, a downward trend when increasing young platelet capacity.

When young platelet capacity is higher, as a result of increasing availabilities for

young platelet units, the number of young platelet units that are used to satisfy

any platelet demand increases. Moreover, due to higher purchase cost associated

with young platelet units, when more young platelet units are needed, the cost will

increase.
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Table 3.10: Effects of Blood Center Capacity on Outcomes Given θavg of 4.5

Total Expected Total Expected Total Expected
Capacity Dataset Shortage Wastage Cost

(units) (units) ($)
CAP1 E1 117.875 11.125 402335

E2 111.375 8.875 392243
E3 120.875 9.25 406545
E4 108.375 3.125 379329
E5 140.25 1.125 427909

CAP2 E1 28.875 24.75 326927
E2 40.5 18.75 332687
E3 39.75 16.875 335570
E4 24 15.75 308555
E5 44.375 12 343904

CAP3 E1 12.875 28.375 314278
E2 17.875 32.375 320223
E3 17.625 27 321173
E4 12.875 20.375 301204
E5 13.375 23.875 322939

CAP4 E1 12 29.75 314261
E2 17.625 32.125 319813
E3 14.75 30.125 320576
E4 10.625 22.125 300252
E5 13.5 24 323155

CAP5 E1 12.75 28.25 314063
E2 17.625 32.125 319810
E3 14.75 30.125 320567
E4 13.625 19.125 301063
E5 13 25.625 323735

The problem described by (38)-(59) was solved with datasets D1-D5 and the

results are displayed in Table 3.15 to show the effects of different C/T ratios and

crossmatch release periods on outcomes. The daily RBC capacity of blood center

is assumed to be 120-110-80-80-60-40-40 units for Monday through Sunday and the

average age of RBC units in blood shipments is 39.5 days old. Average C/T Ratio

column refers to the average value of C/T ratio in blood related procedures at the

hospital.
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Table 3.11: Effects of Unit Shortage Cost on Model Outcomes

Shortage Total Expected Total Expected Total Expected
Cost Dataset Shortage Wastage Cost

($/unit) (units) (units) ($)
1000 E1 31.25 4.5 300024

E2 43.125 7.25 304767
E3 39.25 3.625 305753
E4 22.5 5.25 288188
E5 38.75 2.625 312631

1250 E1 20.125 10.125 305603
E2 32.125 11 311009
E3 30.625 4.25 311331
E4 13.375 9.375 290615
E5 27.75 5.625 317662

1500 E1 18.625 11.375 309663
E2 25.125 13.5 316502
E3 25.75 6.875 316418
E4 11.625 9.375 292398
E5 23.5 8.25 321876

1750 E1 14.25 14.125 311401
E2 21.625 15.125 320147
E3 19.5 12.375 320360
E4 11.625 9.375 295304
E5 19.5 11.125 325507

2000 E1 13.875 15.125 315457
E2 21 17.5 325784
E3 17.875 13.375 323219
E4 9.875 11.125 297178
E5 20.125 10.875 330536
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Table 3.12: Effects of Blood Center Capacity for Young Platelet on Outcomes Given
Mean Demand Value of Young Platelet is 1/8 of Total Platelet Demand

Young Platelet Total Exp Total Exp Total Exp Total Exp
Cap. Dataset Short. (units) Wast. (units) π − r Cost ($)

CAP.E1 SY1 46.5 5.75 3.62 336954
SY2 54.37 3.75 2.87 355534
SY3 52.5 2.37 2.37 356203
SY4 48.37 5.5 3.5 339234
SY5 49.75 6 3.37 341434

avg.: 4.67
CAP.E2 SY1 35.12 4 9.75 324446

SY2 40.5 4.37 8.25 342881
SY3 42.5 3.75 6.12 342529
SY4 34.37 4.12 7 327706
SY5 33.37 5.5 8.37 328517

avg.: 4.34
CAP.E3 SY1 20.62 3.12 29.25 310395

SY2 21.75 4 32.37 327844
SY3 25.37 3 23.25 327024
SY4 18.62 1.75 31.12 313017
SY5 15.75 4.87 31.87 311385

avg.: 3.34
CAP.E4 SY1 16.62 2.25 58.25 305829

SY2 21.12 4.25 48.5 323156
SY3 18.75 0.87 51.5 319750
SY4 14.87 0.62 52.25 306359
SY5 16.5 3.5 46.5 307413

avg.: 2.87
CAP.E5 SY1 13.87 1.75 76.5 301444

SY2 14.12 1.25 83.75 316057
SY3 15.5 2.5 74.75 317589
SY4 13.12 3.75 73.12 305500
SY5 12.37 2.62 82.25 306444

avg.: 2.37
CAP.E6 SY1 12.37 4.25 95.12 301538

SY2 12.5 1.62 112.75 315113
SY3 11.37 0.75 106.12 314531
SY4 10.5 1.62 108.62 301359
SY5 9.12 2.12 117.87 303464

avg.: 2.07
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Table 3.13: Effects of Blood Center Capacity for Young Platelet on Outcomes Given
Mean Demand Value of Young Platelet is 1/4 of Total Platelet Demand

Young Platelet Total Exp. Total Exp. Total Exp. Total Exp.
Cap. Dataset Short. (units) Wast. (units) π − r Cost ($)

CAP.F1 SY6 73.87 9.25 3.37 364461
SY7 74.62 5.75 2.5 375845
SY8 71.12 5.87 2.62 359784
SY9 73.5 8.75 5.62 378926
SY10 74.5 8.5 3 379767

avg.: 7.62
CAP.F2 SY6 39.62 9.25 17.25 336917

SY7 43.75 5.62 15.12 347910
SY8 40.37 4.75 13.75 329701
SY9 42 7.25 16.25 348271
SY10 42.25 5.87 15.87 350527

avg.: 6.54
CAP.F3 SY6 28.5 6.37 38.37 322079

SY7 29 3.5 35.87 332712
SY8 21.37 5.12 38 311633
SY9 21.12 5.12 38.62 330798
SY10 26.5 5.62 39.5 333025

avg.: 5.14
CAP.F4 SY6 17.5 3.75 63.12 314322

SY7 20.62 3 64.5 325231
SY8 16.87 3.37 55.62 304437
SY9 14.37 5.87 60.75 325050
SY10 16.25 2.62 63.25 322780

avg.: 3.72
CAP.F5 SY6 16.125 3.25 101.75 310222

SY7 17.75 1.25 93 319065
SY8 10.87 0.62 90.5 297329
SY9 9.62 4.62 95.37 319504
SY10 16.25 2.62 93.5 322052

avg.: 2.47
CAP.F6 SY6 8 2 124 306131

SY7 15.125 3.5 123.12 318681
SY8 8.5 0.87 106.37 294536
SY9 10.37 3.12 128.37 318882
SY10 14.12 3.75 111 322037

avg.: 2.64
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Table 3.14: Effects of Blood Center Capacity for Young Platelet on Outcomes Given
Mean Demand Value of Young Platelet is 1/2 of Total Platelet Demand

Young Platelet Total Exp. Total Exp. Total Exp. Total Exp.
Cap. Dataset Short. (units) Wast. (units) π − r Cost ($)

CAP.T1 SY11 97 10.12 3.37 387631
SY12 111.75 9.25 3.5 415000
SY13 96.75 12 6.25 390201
SY14 92.25 7.75 3.62 386602
SY15 103.62 9.62 3.5 400722

avg.: 9.74
CAP.T2 SY11 42.62 9.12 21 338642

SY12 55.75 10.75 17.37 364312
SY13 45.75 7.62 24.75 341904
SY14 45.12 3.62 22.87 340368
SY15 48.37 9.25 18.25 348860

avg.: 8.07
CAP.T3 SY11 21.12 3.37 46.75 316838

SY12 27.12 5.37 44.87 334990
SY13 24 5.12 54.62 321349
SY14 26 4.75 55.75 321842
SY15 26.5 3.62 53.62 328436

avg.: 4.44
CAP.T4 SY11 11.62 0.75 83.5 306194

SY12 17.5 4.62 67.62 327556
SY13 14.62 2.25 78.5 315660
SY14 17.5 2.37 81.75 316398
SY15 14.25 2.62 78.37 316722

avg.: 2.52
CAP.T5 SY11 7.5 4.25 110.12 304274

SY12 15.75 3.25 88.75 324766
SY13 14.62 2.12 110.25 314279
SY14 14.75 0.5 104.25 311938
SY15 16.87 4.12 115.75 320107

avg.: 2.84
CAP.T6 SY11 8.62 1.87 116.87 304248

SY12 17.62 1.87 114.5 325589
SY13 15.62 1.25 124.75 316223
SY14 13.25 2.37 125.12 312996
SY15 22.12 0.25 124.12 321718

avg.: 1.52
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Table 3.15: Effects of C/T Ratio and Crossmatch Release Period on Outcomes

Avg. C/T Length Dataset Total Total Total
Ratio of CRP (Days) Short. (units) Wast. (units) Cost ($)
4/3 1 D1 0 12 103158

D2 0 11 101059
D3 0 16 107542
D4 0 15 97734
D5 0 14 107135

2 D1 0 23 110045
D2 0 20 107713
D3 0 19 113096
D4 0 18 103811
D5 0 24 113744

3 D1 0 25 112029
D2 0 24 110003
D3 0 21 115131
D4 0 21 106048
D5 1 28 117475

8/5 1 D1 0 18 96888
D2 0 20 93550
D3 0 20 99657
D4 0 19 89751
D5 0 29 100675

2 D1 0 30 107405
D2 0 31 103996
D3 0 32 109599
D4 0 29 100020
D5 0 38 110409

3 D1 0 40 110600
D2 0 35 108068
D3 0 37 113760
D4 0 47 104535
D5 0 42 114663

2/1 1 D1 0 27 89168
D2 0 28 87583
D3 0 27 92643
D4 1 29 83730
D5 1 32 93170

2 D1 0 53 103775
D2 0 50 101466
D3 0 49 106739
D4 0 48 97606
D5 0 57 107875

3 D1 0 59 110276
D2 0 61 106724
D3 0 61 112023
D4 1 55 103788
D5 0 62 112194
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Finally, the numerical study shows that the changes in C/T ratio and length of

CRP have significant effects on the solution values. Longer length of CRP may lead

a long stay of RBC units in reserved inventory without being transfused. As a result,

the lifetime of RBC units diminishes and increased RBC wastages cause higher cost

in blood related operations. In addition, higher C/T ratios increase the number of

RBC units returned to free inventory and, at the same time, cause higher levels of

wastages at the hospital. The increase on returning units decrease the amount of

RBC placed to blood center and thus results in reduced total cost.
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CHAPTER 4: CENTRALIZED HOSPITAL NETWORK CONSISTING

OF ONE BLOOD CENTER AND MULTIPLE HOSPITALS

We focus on a two-level supply chain of blood products consisting of one blood

center and multiple hospitals as shown with the bolded red line in Figure 4.1. The

blood center has access to the information related to blood inventory and the demand

levels at each hospital. It is responsible for making the decisions on behalf of the

system players to minimize the cost and shortage levels of the whole system.

Figure 4.1: Two Level Supply Chain with Multiple Hospitals and One Blood Center

In this research, the following assumptions have been made:

• The capacity of the blood center is limited.

• Lead times for blood supply are zero.

• Hospitals carry safety stock.
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• The number of blood units wasted are estimated and known for each hospital.

• A shortage cost is incurred if demand is not satisfied due to unavailability of

blood units on inventory.

4.1. Formulation of Centralized Hospital Network

A non-linear integer programming model is developed to improve the efficiency

of blood supply chain within the hospital network considering several distribution

policies of blood products.

The indices, the parameters and the variables that are used in the models are

summarized in Tables 4.1-4.3. It is valuable to note that core blood demand refer

to the summation of hospitals’ blood demands without considering their safety stock

levels.

Table 4.1: Model Indices

Index Description

k Hospital, k=1,2,...,K

t Time Period, t=1,2,...,T (days)

Using the indices, parameters and decision variables in Table 4.1-4.3, the integer

programming model is formulated as follows:

Minimize
K∑
k=1

T∑
t=1

(c · xkt + h · vkt + b · rkt) (4.1)

subject to:

rkt + vk(t−1) + xkt = dkt + vkt + ukt ∀k, t (4.2)

ukt = dθk · vk(t−1)e ∀k, t (4.3)
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Table 4.2: Parameters for Model (4.1)-(4.31)

Parameter Description
K Number of hospitals
T Length of planning horizon
b Unit shortage cost of blood at the hospital
c Unit purchasing cost of blood
h Unit holding cost of blood at the hospital
dkt Blood demand at hospital k in time t
CAPt Capacity of the blood center in time period t
SSk Safety stock level at hospital k
M Big M (Big Number)
θk Average proportion of blood at hospital k that is wasted in a period
α Fairness index
CT Average C/T ratio at the hospital
Lminkt Minimum for lower bound of EXCSkt + zt ∗ (vk(t−1) − ut) and SSk

U1kt Upper bound of EXCSkt + zt(vk(t−1) − ut)
U2k Upper bound of SSk

TOL: Small number

Table 4.3: Decision Variables of the Model

Decision Variable Description
rkt Number of blood shortage at the end of time t in hospital k
ukt Number of blood wastage at the beginning of time t

in hospital k
vkt Inventory level of blood at the end of time t in hospital k
xkt Number of blood ordered by the hospital k at the beginning

of time t
zt 1 if a shortage occurs at the blood center in time period t,

0 otherwise
πt Binary variable ro capture the relationship between r and z

1 if a shortage occurs at the blood center in time period t,
0 otherwise

EXCt Amount of blood inventory left at the blood center after
fulfilling hospitals’ core demands in time period t

EXCSkt Amount of available blood inventory at the blood center
(after fulfilling hospitals’ core demands) that can be sent
to hospital k in time period t

w1kt, w2kt Binary variables used in the linearization of min function
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K∑
k=1

xkt ≤ CAPt ∀t (4.4)

rkt/dkt ≤
K∑

m=1

rkt/

K∑
m=1

dkt + α ∀k, t (4.5)

K∑
k=1

rkt ≤M · πt ∀t (4.6)

zt ≤M · (1− πt) ∀t (4.7)

K∑
k=1

rkt + zt ≥ 1 ∀t (4.8)

vkt = min{EXCSkt + zt · (vk(t−1) − ut), SSk} ∀k, t (4.9)

vk0 = 0 ∀k (4.10)

EXCt = (CAPt −
T∑
t=1

dkt) · zt ∀t (4.11)

EXCt/K − 1 + TOL ≤ EXCSkt ∀k, t (4.12)

EXCSkt ≤ EXCt/K + 1− TOL ∀k, t (4.13)

πt, zt ∈ B{0,1} ∀t (4.14)

xkt, vkt, rkt ∈ Z+ ∀k, t (4.15)

EXCt ∈ Z ∀t (4.16)
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EXCSkt ∈ Z ∀k, t (4.17)

The objective function (4.1) seeks to minimize the total purchasing, inventory

and shortage cost during the planning horizon. Constraint (4.2) is an equilibrium

constraint which is illustrated with Figure 4.1 (the amount of blood units entered

into the system is equal to the amount of blood units exited from the system).

Figure 4.2: System Equilibrium

Constraint (4.3) identifies end-period wastage levels of each hospital. Constraint

(4.4) is the capacity constraint of the blood center. Constraint (4.5) ensures that

hospitals face roughly same amount of shortages if the blood center carries insufficient

number of blood units on its inventory. When a higher fairness index (α) is selected,

more shortage variations should be expected between hospitals. Constraints (4.6)-

(4.8) captures the relationships between r and z variables. One of these variables

takes a non-negative value. Thus, if the system face a shortage issue (r is positive),

z is forced to be zero which also makes the blood inventory levels equal to zero.

Otherwise (r is equal to zero), z takes a positive value and hospitals’ blood inventory

may increase up to the safety stock levels. Constraint (4.9) updates end-period blood
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inventory levels. The blood center replenishes up to safety stock levels of the hospitals

when there are adequate number of blood units. Constraint (4.10) states that there

is no inventory available at the beginning of the analysis period. Constraint (4.11)

identifies the number of units that are available at the blood center after hospitals’

core demands are satisfied. Constraints (4.12)-(4.13) allocates these units to each

hospital. Parameter TOL is a small number and its use is critical to obtain the

correct value of EXCS when the left hand-side value in Constraint (4.12) or the

right hand-side value in Constraint (4.13) is an integer value. These constraints fairly

distribute excessive units at the blood center to the hospitals. Constraint (4.14) shows

that πt and zt are binary variables. Constraint (4.15) states that xkt, vkt and rkt are

non-negative discrete variables. Finally, Constraint (4.16)-(4.17) shows that EXCkt

and EXCSkt are unrestricted variables.

The optimization problem includes non-linear terms in above formulation. First,

linearization technique in Appendix C is applied to Constraint (4.3) and modified

constraints are obtained as follows:

ukt ≥ θkvk(t−1) + TOL ∀k, t (4.18)

ukt ≤ θkvk(t−1) + 1 + TOL ∀k, t (4.19)

Second, Constraint (4.9) indicates two types of non-linear terms: one is related to

the minimum values of two terms and another one is related to the interaction of bi-

nary and discrete variables. After the fourth linearization technique is applied which

is detailed in Appendix D, Constraint (4.9) is replaced with Constraints (4.20)-(4.25).

vkt ≤ EXCSkt + zt(vk(t−1) − ut) ∀k, t (4.20)

vkt ≤ SSk ∀k, t (4.21)
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vkt ≥ EXCSkt + zt(vk(t−1) − ut)− (U1kt − Lminkt)(1− w1kt) ∀k, t (4.22)

vkt ≥ SSk − (U2kt − Lminkt)(1− w2kt) ∀k, t (4.23)

w1kt + w2kt = 1 ∀k, t (4.24)

w1kt, w2kt ∈ B0,1 ∀k, t (4.25)

Finally, linearization techniques (Appendix A) are applied once more to the non-

linear terms impacting Constraints (4.20) and (4.22) and resulting on modified Con-

straints (4.26) and (4.27). In addition, Constraints (A.19)-(A.21) and (A.22)-(A.27)

are added into the new formulation.

vkt ≤ EXCSkt + λkt − µt ∀k, t (4.26)

vkt ≥ EXCSkt + λkt − µt − (U1kt − Lminkt)(1− w1kt) ∀k, t (4.27)

In summary, constraints (4.1)-(4.2), (4.4)-(4.8), (4.10)-(4.17), (4.18)-(4.19), (4.21),

(4.23)-(4.25), (4.26), (4.27), (A.19)-(A.21) and (A.22)-(A.27) are present in the model

discussed in this section.

4.1.1. Model Extension: Formulating Inventory Distribution Policies

of Blood Center

The blood center experiences one of the three different cases when shipping blood

units to the hospitals. The following assumptions on inventory distribution policies

have been made to formulate our model. It is valuable to note that overall blood
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demand refers to the summation of hospitals’ blood demands considering their safety

stock levels.

1. Case 1 : When the blood center carries sufficient number of blood units to

satisfy overall blood demands,

CAPt ≥
∑K

k=1(dkt + SSk − vk(t−1) + ut),

it replenishes up to safety stock levels of the hospitals.

2. Case 2 : When the blood center carries excessive blood units after core blood

demands are met but the overall blood demands are not able to be satisfied due to

unavailability of blood units,∑K
k=1 dkt ≤ CAPt ≤

∑K
k=1(dkt + SSk − vk(t−1) + ut),

• (a) one policy is to distribute excessive units between hospitals roughly even

after core demand is met.

• (b) another policy is to distribute the excessive units based on the safety stock

levels of the hospitals after core demand is met.

3. Case 3 : When the blood center faces blood shortages,

CAPt ≤
∑K

k=1 dkt,

the available units:

• (a) are to be distributed among the hospitals based on hospitals’ core demands.

• (b) are to be distributed between hospitals roughly even.

The model discussed incorporates the assumptions made in Case 1, Case 2 (a)

and Case 3 (a). However, Case 2 (b) and Case 3 (b) can be incorporated replacing

Constraints (4.12)-(4.13) and (4.5) by Constraints (4.28)-(4.29) and (4.30)-(4.31) re-

spectively.
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EXCt(SSk/

K∑
k=1

SSk)− 1 + TOL ≤ EXCSkt ∀k, t (4.28)

EXCSkt ≤ EXCt(SSk/

K∑
k=1

SSk) + 1 + TOL ∀k, t (4.29)

rkt ≥
K∑

n=1

rnt/K − 1 ∀k, t (4.30)

rkt ≤
K∑

n=1

rnt/K + 1 ∀k, t (4.31)

4.2. Computational Study

The data used to test the models and numerical results are presented in this

section. One of the state-of-the-art solver, IBM ILOG CPLEX 12.1, in C++ platform

is used on Dell OPTIPLEX 755 computer running with 2.20 GHz CPU and 2GB of

RAM.

4.2.1. Data

The values of cost parameters summarized in Table 3.4 are used for the purchase

and inventory costs (c = $180 and h = $1.25). However, we decided to change the

shortage cost with a big number (b = $100000) in order to avoid shortage issues if

there are available units in blood center inventory. Depending on the hospital, safety

stock levels vary from 8 to 12 units. Furthermore, 0.1 is selected for the value of θ so

it is assummed that 10% of the hospitals’ inventory are expired and discarded at the

end of each time period.

Daily demand values are generated in Matlab 2010a using demand distributions

and mean values provided in [10] from Sanquin Blood Bank (Table 4.4). The demand

is assumed to be randomly distributed around the mean with gamma distribution.
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Table 4.4: Mean Demand Values at Sanquin Blood Bank ([10])

Mon Tue Wed Thu Fri Sat&Sun

24 16 32 16 24 8

Two groups of datasets were generated for numerical study and they are catego-

rized based on the purpose they serve.

1. To analyze the integer programming model four groups of datasets with varies

sizes were generated for a given time period (t = 7 days). There are three datasets

in each group with 10 hospitals (K1-K3), 20 hospitals (K4-K6), 30 hospitals (K7-K9)

and 40 hospitals (K10-K12) respectively.

2. To verify the model accuracy for different inventory distribution policies of

blood center only one dataset (D1) with 3 hospitals was generated for a given time

period (t = 7 days).

4.2.2. Numerical Results

The problem described by (4.1)-(4.17) was solved with datasets K1-K12. Given

the daily capacities of blood center and the number of hospitals in the centralized

hospital system, the time it takes CPLEX to solve 12 instances are summarized in

Table 4.5.

The average solution times for different sizes of the centralized system (10, 20, 30

and 40 hospitals) are 0.461, 0.675, 1.22 and 2.435 seconds respectively. As the number

of hospitals in the system increases, the problem size grows and it takes longer time

to reach the optimal solution.

Tables 4.6-4.9 show the effects of daily blood center capacity on total cost, total

shortage and the average daily blood inventory in overall system. Datasets that are

selected for given sizes of the centralized system (10 through 40 hospitals) are K1,

K4, K7 and K10 respectively.
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Table 4.5: Solution Times of Datasets for Integer Programming Model

Capacity of Number of Dataset Solution Time
Blood Center Hospitals (seconds)

170 10 K1 0.394
K2 0.602
K3 0.388

340 20 K4 0.74
K5 0.73
K6 0.556

510 30 K7 1.563
K8 1.2
K9 1.889

680 40 K10 2.64
K11 2.362
K12 2.305

Table 4.6: Effect of Daily Blood Center Capacity on Model Outcomes-10 Hospitals
in the System (K1)

Capacity of Total Cost Total Shortage Average Daily Blood
Blood Center ($) (Units) Inventory (Units/T )

0 124000000 1242 0
38 97639900 976 0
100 66404700 663 22.86
200 18481700 183 39.29
258 212960 0 68
300 218660 0 85.14
376 220900 0 100
400 220900 0 100
500 220900 0 100

Daily capacity of the blood center has a significant effect on the model outcomes

and three critical capacity levels are observed during our experiments as can be seen

in Tables 4.6-4.9. When the capacity is gradually increased up to these levels, similar

effects were observed in all four of these hospital networks which consist of 10, 20, 30

and 40 hospitals (Table 4.10).
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Table 4.7: Effect of Daily Blood Center Capacity on Model Outcomes-20 Hospitals
in the System (K4)

Capacity of Total Cost Total Shortage Average Daily Blood
Blood Center ($) (Units) Inventory (Units/T )

0 238000000 2384 0
80 182000000 1824 0
100 172000000 1723 5.57
200 123000000 1223 44.86
300 72587100 723 56.43
400 26663900 263 79.14
496 414720 0 136.71
500 415430 0 140.43
600 423010 0 173.71
699 426800 0 200
700 426800 0 200

Table 4.8: Effect of Daily Blood Center Capacity on Model Outcomes-30 Hospitals
in the System (K7)

Capacity of Total Cost Total Shortage Average Daily Blood
Blood Center ($) (Units) Inventory (Units/T )

0 351000000 3507 0
100 281000000 2807 0
115 271000000 2704 0
200 228000000 2277 32
300 178000000 1777 68.29
400 128000000 1277 82.57
500 82867500 824 9.43
600 46220500 457 102.43
700 7095570 65 183.14
751 616260 0 223.71
800 622420 0 245.29
900 624420 0 273.86
1000 626850 0 295.71
1078 629850 0 300
1100 629850 0 300
1200 629850 0 300
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Table 4.9: Effect of Daily Blood Center Capacity on Model Outcomes-40 Hospitals
in the System (K10)

Capacity of Total Cost Total Shortage Average Daily Blood
Blood Center ($) (Units) Inventory (Units/T )

0 483000000 4831 0
100 413000000 4131 0
150 358000000 3783 0
200 352000000 3519 12.57
300 302000000 3019 55
400 252000000 2519 89.86
500 202000000 2019 104.14
600 152000000 1519 112.71
700 109000000 1083 123.43
800 60625800 599 152
900 26686400 259 203.43
993 831890 0 254.86
1000 834510 0 260.14
1100 853080 0 326.14
1200 855240 0 357
1300 858360 0 384.43
1400 860410 0 396.57
1473 863050 0 400
1500 863050 0 400
1600 863050 0 400

Table 4.10: Critical Capacity Levels of Blood Center for Given Hospital Networks

Number of Capacity Level 1 Capacity Level 2 Capacity Level 3
Hospitals (Units) (Units) (Units)

10 38 258 376
20 80 496 699
30 115 751 1078
40 150 993 1473

When more hospitals exist in the system, as anticipated, the associated cost,

shortage and inventory levels are, in general, higher. By increasing the daily capacity

from Level 1, shortage levels continue to decrease and hospitals’ inventory start rising.

An increase between Level 1 and Level 2 results in continued decrease on shortage and

increased inventory levels, however, hospitals do not face any shortage issue beyond
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Level 2. As a result of increasing units in hospitals’ inventory, replenishing up to

Level 3 increases total cost of the system. Further increase from this level does not

have any effect on the system outcomes.

Finally, the model accuracy for different inventory distribution policies are tested

using the formulations discussed in Section 4.1.1. Table 4.11 displays the daily de-

mand levels of three hospitals (dataset D1) that are generated by Matlab 2010a.

Incorporating these policies into model formulations daily inventory and shortage

levels are listed for each hospital in Tables 4.12-4.15.

Table 4.11: Hospitals’ Daily Demand Levels (Units) (D1)

Hospital Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7
1 13 10 48 32 10 4 5
2 28 15 35 32 17 5 6
3 33 12 24 17 21 2 3

Table 4.12: Daily Inventory Levels of the Hospitals Given CAP of 89 Units and
Inventory Distribution Policy of Case 2 (a) (Units)

Hospital Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7
1 5 10 3 5 10 10 10
2 5 8 1 3 8 8 8
3 5 12 4 5 12 12 12

Table 4.13: Daily Inventory Levels of the Hospitals Given CAP of 89 Units and
Inventory Distribution Policy of Case 2 (b) (Units)

Hospital Safety Stock Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7
Levels

1 10 5 10 3 5 10 10 10
2 8 4 8 3 4 8 8 8
3 12 6 12 2 4 12 12 12
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Table 4.14: Daily Shortage Levels of the Hospitals Given CAP of 50 Units and
Inventory Distribution Policy of Case 3 (a) (Units)

Hospital Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7
1 4 0 22 13 0 0 0
2 9 0 14 13 0 0 0
3 11 0 11 6 0 0 0

Table 4.15: Daily Shortage Levels of the Hospitals Given CAP of 50 Units and
Inventory Distribution Policy of Case 3 (b) (Units)

Hospital Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7
1 9 0 16 11 0 0 0
2 7 0 15 10 0 0 0
3 8 0 17 10 0 0 0

As can be noted in Tables 4.12 and 4.14, excessive units at the blood center are

distributed roughly even or based on predetermined safety stock levels of the hospi-

tals. In addition, when the blood center faces shortage issue, the units are distributed

roughly even (Table 4.13) or based on demand levels of the hospitals (Table 4.15).
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CHAPTER 5: BLOOD COLLECTION AT REMOTE LOCATIONS

THROUGH BLOODMOBILES

Blood units are given to the blood center at either fixed or remote locations. Ac-

cording to quick facts related to blood donations that was published in Red Cross

website [32], approximately 80% of the blood units are collected at remote blood-

mobiles that are sent to community organizations, companies, high schools, colleges,

places of worship or military installations. Thus, our focus in this section relates to

the logistics associated to whole blood donations given at remote locations as shown

in Figure 5.1.

Figure 5.1: Blood Collection at Remote Locations through Bloodmobiles

The following assumptions have been made:

• The daily demand at the blood center is given.
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• Each blood unit is tested for HIV, hepatits, etc. A portion of them (which is

given) happen to carry at least one of these diseases and get thrown out after

collection.

• Shortages are not allowed so the blood center has to collect sufficient number

of blood units in order to satisfy the demand.

• Number of bloodmobiles serving to the blood center and their capacities are

given.

• Each bloodmobile visits at most two or three locations per day.

• If a remote location is visited today, it can not be visited within the next couple

of weeks.

5.1. Formulation of Bloodmobile Routing Problem

Every day, blood center sends bloodmobiles to remote locations (Figure 5.2) in

order to collect blood units from donors. The goal is to minimize the daily distance

travelled by bloodmobiles while satisfying the demand at the blood center. As in the

traditional vehicle routing formulation, the integer programming approach proposed

involves simultaneous decisions on the number of locations to be visited by each

bloodmobile (general assignment problem) and the design of these routes (traveling

salesman problem). However, unlike the traditional vehicle routing problem, it is not

necessary for bloodmobiles to visit all donation that are available for blood collection.

In addition, a bloodmobile can visit at most two or three different locations during

the same day.
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Figure 5.2: Blood Collection at Remote Locations

Let G = (N ,A) be a directed graph where N is a set of nodes covering initial

destination (0), donation locations (1, ...N) and final destination (N+1). Even though

initial and final destinations refer to the same location (blood center), for formulation

purpose, they are indexed using different numbers. Furthermore, A indicates all arc

pairs (i, j) representing the travel from all i’s to all j’s. Finally, index k refers to

bloodmobile.

The parameters that are used in our model are summarized in Tables 5.1.

Using the indices, parameters and decision variable outlined so far, the integer

programming model is formulated as follows:

Minimize
K∑
k=1

∑
(i,j)∈A

cij · xijk (5.1)

subject to:

K∑
k=1

N+1∑
j=1

xijk ≤ 1 i = 1, ..., N (5.2)
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Table 5.1: Parameters for Model (5.1)-(5.10)

Index Description
cij Distance from location i to location j (miles)
di The number of blood units that is collected at location i (units)
qk Capacity of bloodmobile k (units)
TD Blood demand at blood center (units)
π The number of blood units that need to be collected (units)
Inv The number of blood units on inventory (units)
β Percent of collected units that carry diseases and are thrown out
µ Maximum number of visits allowed per bloodmobile
M Big M (Big Number)

N∑
i=1

di

N+1∑
j=1

xijk ≤ qk ∀k (5.3)

N+1∑
j=1

x0jk = 1 ∀k (5.4)

N∑
i=0

xihk −
N+1∑
j=1

xhjk = 0 ∀k, h = 1, ..., N (5.5)

N∑
i=0

xi,N+1,k = 1 ∀k (5.6)

∑
(i,j)∈A

xijk ≤ µ ∀k (5.7)

K∑
k=1

N∑
i=1

∑
(i,j)∈A

dixijk ≥ π (5.8)

π = (TD − Inv) · (1 + β) (5.9)

xijk ∈ {0, 1} ∀k, (i, j) ∈ A (5.10)

The decision variable xijk = 1 if bloodmobile k travels from location i to loaction
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j and 0 otherwise. The objective function (5.1) is to minimize the daily distance

travelled by bloodmobiles. Constraint (5.2) ensures that each donation location is

visited at most once. Constraint (5.3) is the capacity constraint stating that the

number of blood units collected can not exceed the capacity of a bloodmobile. Con-

straints (5.4)-(5.6) are the arc flow constraints indicating that each bloodmobile must

leave from the blood center; after a bloodmobile visits a donation location it has to

leave for another destination; and finally, all vehicles must arrive at the blood center.

Constraint (5.7) states that each bloodmobile visits at most two or three donation

locations. Constraints (5.8)-(5.9) ensure that the number of blood units collected

satisfies the demand at the blood center. Constraint (5.10) shows that x is a binary

variable.

As can be noticed, the above formulation does not indicate any subtour elimination

constraints. We assume the parameters of our problem obey triangle inequality, i.e.

cii′ + ci′j > cij for all i, i′, j ∈ N .

5.2. Solution Method

We implement branch & bound and column generation algorithms to solve blood-

mobile routing problem and compare the quality of their solutions with the results

obtained by CPLEX solver. Modified formulations are presented and the main com-

ponents of these algorithms are described.

5.2.1. Branch and Bound Algorithm

Branch and bound algorithm is an approach to be used for many NP-hard prob-

lems including integer programming, traveling salesman and vehicle routing problems.

The algorithm decomposes the original problem (P) into subsets (P = P1 ∪ ...Pk) as

illustrated in Figure 5.3. Each node represents a subset of the original problem.

Lower bound associated with a node is obtained by solving its linear programming

(LP) relaxation. In addition, upper bound is obtained when the solution indicates
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all integer values. All candidate solutions are implicitly enumerated and the subsets

that are found to be fruitless are pruned using bounds. In this study, we apply three

pruning techniques that are shown in Figures 5.4-5.6. The upper and lower bounds

are placed at the top and bottom of each node respectively.

Figure 5.3: Enumeration Tree

Figure 5.4: Pruning by Optimality
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Figure 5.5: Pruning by Bound

Figure 5.6: Pruning by Infeasibility

After an LP relaxation is solved, the solution usually indicates many fractional

variables. One needs to decide which variable to branch on. Our algorithm branches

on the variable with the most fractional value. Thus, a variable with the fraction

closest to 1/2 is rounded up and down and then decomposed by adding cuts. For the

complete branch and bound algorithm, please refer to Table 5.2.
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Table 5.2: Branch and Bound Algorithm

Supply an initial feasible solution and update UB

DO{

Solve the relaxed (LP) problem associated with the best node

IF the solution is infeasible

Prune by infeasibility

IF the objective value is greater than UB

Prune by bound

IF there are fractional values in the solution

Find the most fractional variable

By rounding the fraction up and down, create two new branches (nodes)

ELSE

Prune by optimality

Update UB

Find the best node (with lowest LB)

}WHILE (There are nodes to branch)

5.2.2. Column Generation Algorithm

Column generation algorithm is one of the most widely used methods to solve

vehicle routing problems. The appealing idea here is to generate only the variables

which can improve the value of objective function. The original problem is split

into the restricted master problem (RMP) and subproblem. The restricted master

problem involves small subset of variables only. The subproblem is a new problem

that is created to identify the variable with the most negative reduced cost.

The algorithm starts with solving an initial RMP to obtain dual prices. Using

this information the subproblem is solved. If the objective function is negative, the

variable with the most negative reduced cost is found and then added into RMP.
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This process is repeated until the objective function value of the subproblem is non-

negative. When a non-negative value is identified, we can conclude that the solution

obtained from the last RMP is optimal.

The restricted master for bloodmobile routing problem is formulated in terms of

column variables representing the set of bloodmobile routes that satisfy the arc flow

and capacity constraints as well as the constraint related to the maximum number

of visit that a bloodmobile can make. Let p be the index for routes already been

generated by the subproblem and Ω be the set covering these routes. λpk is a deci-

sion variable and represents the route p for bloodmobile k. xpijk is a coefficient of λpk

and decodes the information for a given arc belonging to route p. Thus, the original

problem can be reformulated and the restricted master problem is obtained as follows:

Minimize
K∑
k=1

∑
(i,j)∈A

∑
p∈Ω

cijx
p
ijkλ

p
k (5.11)

subject to:

K∑
k=1

N+1∑
j=1

∑
p∈Ω

xpijkλ
p
k ≤ 1 i = 1, ..., N (5.12)

K∑
k=1

N∑
i=1

∑
(i,j)∈A

di
∑
p∈Ω

xpijkλ
p
k ≥ π (5.13)

π = (TD − Inv) · (1 + β) (5.14)

∑
p∈Ω

λpk = 1 ∀k (5.15)

λpk ≥ 0 ∀p ∈ Ω,∀k (5.16)

When the restricted master problem indicates all possible routes of the bloodmo-

biles and the integrality requirement of variable x is held, the objective function (5.11)

and Constraints (5.12)-(5.14) are the equivalent formulations of (5.1) and (5.2), (5.8)-
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(5.9) respectively. These constraints also link bloodmobiles together. In addition,

Constraint (5.15) guarantees the convexity of λ. Dropping the integrality constraint

and solving the linear programming relaxation of RMP, dual variables γi, η and αk

that are associated with Constraints (5.12)-(5.13) and Constraint (5.15) are obtained

respectively.

Minimize
K∑
k=1

(
∑

(i,j)∈A

cijxijk −
N∑
i=1

N+1∑
j=1

xijk · γi −
N∑
i=1

N+1∑
j=1

di · xijk · η − αk) (5.17)

subject to:

N∑
i=1

N+1∑
j=1

dixijk ≤ qk ∀k (5.18)

N+1∑
j=1

x0jk = 1 ∀k (5.19)

N∑
i=0

xihk −
N+1∑
j=1

xhjk = 0 ∀k, h (5.20)

N∑
i=0

xi,N+1,k = 1 ∀k (5.21)

∑
(i,j)∈A

xijk ≤ µ∀k (5.22)

xijk ∈ {0, 1} ∀k, (i, j) ∈ A, (5.23)

Constraints (5.18)-(5.22) and (5.23) serve for the same purpose as Constraints

(5.3)-(5.7) and (5.10) respectively. However, the objective function (5.17) is modified

in order to identify the routes (one for each bloodmobile) that has the most negative

reduced cost.

As the solution obtained by the linear programming relaxation indicates non-

integer variables, we apply column generation within a branch and bound framework.
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Thus, the following modifications need to be made after the problem is decomposed.

Assume that we branch on xabc and solve RMP with xabc = 0. Constraint (
∑

p∈Ω x
p
abc ·

λpc = 0) should be added into the restricted master problem with the corresponding

dual price Γabc. In addition, the subproblem should be modified by adding the term

(−Γabc ·xabc) in objective function and the Constraint (xabc = 0) in the constraint set.

For the embedded column generation within branch and bound algorithm, please

refer to Table 5.3.
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Table 5.3: Embedded Column Generation within Branch and Bound Algorithm

Supply an initial feasible solution and update UB

DO{

DO{

IF a new column is generated

Add the column into RMP

IF a new branching is done

Add the associated branch constraint into RMP

Solve RMP

Obtain dual prices

Modify the subproblem using dual prices & associated branch constraints

Solve subproblem

}WHILE(Objective function value of subproblem is negative)

IF the solution is infeasible

Prune by infeasibility

IF the objective value is greater than UB

Prune by bound

IF there are fractional values in the solution

Find the most fractional variable

By rounding the fraction up and down, create two new branches (nodes)

ELSE

Prune by optimality

Update UB

Find the best node (with lowest LB)

}WHILE (There are nodes to branch)
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5.3. Computational Study

The data and numerical results are presented in this section. All experiments are

carried out on Dell OPTIPLEX 755 with 2.20 GHz CPU and 2GB of RAM. The

solution time of the algorithms are reported using IBM ILOG CPLEX 12.1 solver on

a C++ platform.

5.3.1. Data

OneBlood, Inc. website ([33]) is used to identify the donation locations of blood-

mobiles from 05/06/2013 to 12/31/2013. 462 different locations are obtained in the

City of Tampa during the 8-month period. Using these locations distance matrix

indicating cij’s is computed by a macro created in Microsoft Excel. If a donation lo-

cation is visited today, same location can not be visited next couple of weeks. Thus,

each day, all these locations are not available for blood collection. Depending on the

locations visited previously, the blood center have a different set of locations every

day to consider for blood collection. We use Matlab 2010a to randomly generate

donation locations from 462 locations and obtain five groups (N=20, 30, 40, 50 and

60) with each one having three instances.

According to [34], 12.6 million units of whole blood are annually collected in U.S.

which consist of approximately 4% of the population. 80% of these donations are

through bloodmobiles at remote locations ([32]). Thus, it can be noted that 3.2% of

whole blood donations in U.S. are given at remote locations. In addition, OneBlood

is the major blood center in Florida and we assume that all units donated in Tampa

are collected by OneBlood. Using the U.S. census data in [35], the number of units

collected by bloodmobiles in each zipcode (UB) is estimated with multiplying zipcode

population by 3.2%. Furthermore, the number of visits made to each location during

8-month period by the bloodmobiles (VL) is identified in OneBlood website and UB

is divided by VL to determine the number of whole blood units to be collected in

each visit to a remote location (di).
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The data for bloodmobile capacity (qk = 50) and average thrown out rate of

collected units (β = 3%) are obtained from a local blood center. Finally, it is assumed

that the blood center does not carry any blood inventory (Inv = 0) at the beginning

of the collection period.

5.3.2. Numerical Results

Fifteen datasets generated by Matlab 2010a are used to test the model described

by (5.1)-(5.10). Table 5.4 summarizes the solution times of Branch & Bound (BB)

and Column Generation (CG) algorithms discussed in Tables 5.2-5.3 and compares

them with CPLEX solver. It is assumed that the blood center aims to satisfy the

daily blood demand of 100 units using three bloodmobiles with each one to visit at

most three donation locations in a day.

Table 5.4: Solution Times

N Instance CPLEX BB CG
Time (s) Time (s) Time (s)

20 1 0.116 1.134 2.363
2 0.315 2.341 2.652
3 0.266 4.476 213.976

30 1 0.275 2.583 146.01
2 0.267 3.244 202.897
3 0.432 39.309 929.745

40 1 0.413 5.804 130.665
2 0.337 1.893 148.885
3 1.24 25.562 329.69

50 1 2.642 74.808 127.963
2 0.443 1.665 8.696
3 0.833 69.581 23.21

60 1 1.105 2.291 543.307
2 1.274 5.757 181.046
3 2.329 1.782 77.95

As can be noted, the solution times are highly variable with the instances. In

addition, the number of donation locations (N) that are available for blood collection

does not have an apparent effect on the solution times. CPLEX solver reaches to
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the optimal solution quicker than any other methods and Branch & Bound algorithm

bids Column Generation algorithm in terms of solution time.

Tables 5.5-5.8 display the total distance travelled by bloodmobiles for given in-

stances. 60 donation locations are considered for blood collection. The blood center

aims to satisfy the whole blood demand ranging from 100 to 160 units. The results

show the effects of model parameters on outcomes.

Table 5.5: Total Distance Travelled by Bloodmobiles (miles) - TD = 100

k Instances Distance Travelled Distance Travelled
(µ = 2) (µ = 3)

3 1 Infeasible 18.9
2 Infeasible 32.4
3 Infeasible 33.2

4 1 68.8 21.7
2 100.9 40.2
3 56.4 40.4

5 1 58.6 25.5
2 85.5 49.4
3 64.1 49.2

6 1 51.7 30
2 86 58.8
3 69.3 59.3

7 1 53.1 34.5
2 72.7 68.4
3 78.3 69.4

Finally, the following observations are made based on the testing results obtained

from Tables 5.5-5.8.

• In order to satisfy increasing blood demand, bloodmobiles travel longer dis-

tances.

• When the demand rates increase, the blood center is not able to satisfy the

demand with a few number of bloodmobiles. Thus, more infeasible solutions

are observed.
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Table 5.6: Total Distance Travelled by Bloodmobiles (miles) - TD = 120

k Instances Distance Travelled Distance Travelled
(µ = 2) (µ = 3)

3 1 Infeasible 24.1
2 Infeasible 38.6
3 Infeasible 37.2

4 1 Infeasible 23.3
2 Infeasible 42.2
3 76 42.6

5 1 89.9 27
2 139.2 51.4
3 77 51.2

6 1 79.4 31.4
2 114.6 60.3
3 77.8 60.8

7 1 75.3 35.9
2 101.3 69.5
3 86.1 70.8

Table 5.7: Total Distance Travelled by Bloodmobiles (miles) - TD = 140

k Instances Distance Travelled Distance Travelled
(µ = 2) (µ = 3)

3 1 Infeasible 73
2 Infeasible 49.4
3 Infeasible 42.6

4 1 Infeasible 25
2 Infeasible 44.8
3 Infeasible 46.1

5 1 Infeasible 28.4
2 200.1 52.6
3 96.6 52.2

6 1 120.1 32.6
2 154.5 61.8
3 95.7 61.7

7 1 108.4 36.9
2 129.9 71.2
3 98.4 71.8
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Table 5.8: Total Distance Travelled by Bloodmobiles (miles) - TD = 160

k Instances Distance Travelled Distance Travelled
(µ = 2) (µ = 3)

3 1 Infeasible Infeasible
2 Infeasible Infeasible
3 Infeasible Infeasible

4 1 Infeasible 37
2 Infeasible 52.2
3 Infeasible 50.1

5 1 Infeasible 30.1
2 Infeasible 54.4
3 Infeasible 55.3

6 1 Infeasible 34
2 228.5 62.7
3 115.3 63.7

7 1 141.7 38.4
2 185.4 71.9
3 116.3 73

• It is always the efficient way for bloodmobiles to visit at most three locations

in a day. However, the optimal number of bloodmobiles needed by the blood

center change based on the daily demand rate as shown in Table 5.9.

Table 5.9: The Optimal Number of Bloodmobiles

Demand (units) 100 120 140 160

k (units) 3 (in general) 3 4 5
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CHAPTER 6: CONCLUDING REMARKS AND OPPORTUNITIES

FOR FUTURE WORK

In the first part of this study, we develop stochastic and deterministic integer pro-

gramming models to improve the efficiency of blood related operations at a hospital.

The focus of the study is on red blood cells and platelets as they have short lifetimes

and are the most scarce products among the whole blood components. The models

explicitly accounts for the age of blood units on inventory and considers the demand

for two types of patients, uncertain demand rates and crossmatch-to-transfusion ra-

tio. These models could be used to identify the optimal order levels that improve

the wastage levels at the hospital. For validation purpose, we crosschecked the first

model with real-world data in [3]. In that study, the wastage rate during January

through April 2006 at Stanford University Medical Center (SUMC) were given as

19.9% based on an age distribution of 22.5%, 30.1%, 28.3% and 19.1% for 2, 3, 4 and

5 days old platelet units respectively. Our model reflects a reduction in the wastage

rates. Specifically, average of wastage dropped from 19.9% to 2.57% as shown in

Table 6.1.

Table 6.1: Wastage Rates Using the Model Described by (3.1)-(3.18)

Expected
Average Wastage

Age Instance Rate (%)
3.5 E1 2.47

E2 3.46
E3 2.59
E4 2.11
E5 2.21

avg.: 2.57
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As most quantitative models addressing an applied problem, the models presented

in first part of this study have several opportunities for expansion. First, some hos-

pitals use double-crossmacthing policy where same unit of blood is crossmatched for

more than one patient. We only consider single crossmatching policy. It is antic-

ipated that incorporating a double crossmatch policy will further improve results;

that is, decrease wastage. Second, C/T ratio is incorporated into the model using

hospitals average value. It would be valuable to explore impact on the model when

C/T requirements for specific patient-groups (or procedures) are incorporated.

In the second part of this study, we analyze the centralized hospital network where

the blood center has access to the information related to hospitals’ blood inventory

and makes decision on behalf of the system to minimize the total system cost and to

reduce the total shortages. A non-linear integer programming model was developed

that considers different inventory distribution policies of the blood center. It was

noted that daily capacity of the blood center has significant effects on total cost

and total shortages. In addition, three critical capacity levels were observed. In

all testing results, model outcomes showed the same trends when the blood center

capacity approaches to these levels.

The models presented under centralized hospital network consider only one sup-

plier where there is no other option available to receive blood units from. The models

can be extended to incorporate an outsourcing option which can be used as a blood

source in case of a shortage issue faced by the hospital network. Also, in real-life

practices, transshipment alternative is sometimes used to ship blood units between

the hospitals if excessive units at a hospital are urgently needed by another hospi-

tal. Incorporating this fact will further close the gap between literature and real-life

practices.

The model presented in the last part of this study formulates the bloodmobile

routing problem. The focus is to minimize the total distance travelled by the blood-
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mobiles while satisfying the daily blood demand at the blood center. An integer

programming approach was used to model the problem and to perform sensitivity

analysis of the parameters on model outcomes. The time to reach the optimal so-

lution by CPLEX solver outperforms branch & and bound and column generation

algorithms. Given the daily demand rates ranging from 100 to 160 units, the optimal

number of bloodmobiles needed changes from 3 to 5.

In the formulation of bloodmobile routing problem, we consider only one type of

bloodmobiles. However, this study can be extended to employ multiple bloodmobile

types with different capacities. In addition, instead of a fixed number of blood units

to be collected at a remote location, it will be interesting to develop a model that

considers the variability in blood collection. Finally, incorporating the number of

units that is changing with the waiting time of bloodmobile at a donation location

will be interesting to explore.
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Appendix A First Linearization Technique: Interaction between Binary

and Continuous Variables

The first linearization technique is focused on the interactions between binary

and discrete variables and assigns new discrete variables to replace the products of

interacting variables.

As in [31], y is called the linearization variable and reflects the products of x and

d in the linearization process where x is a discrete variable and d is a binary variable.

Lower bound and upper bound of x are assumed to be known and take the values

of L and U respectively. Then, integer programming formulation after linearization

process is as follows:

Ld ≤ y ≤ Ud

L(1− d) ≤ (x− y) ≤ U(1− d)

To linearize our models, linearization technique mentioned above is applied to the

non-linear terms and the interactions between binary variable z and discrete variables

v, y, m and u in the original formulation are replaced with their products (called lin-

earization variables) as shown below. Furthermore, the following constraints (that

are numbered) are added into the new formulation.

z
(s)
it v

(s)
(i−1)(t−1) = γ

(s)
it i = 3, 4, ..., I,∀(s), t

γ
(s)
it ≤ z

(s)
it ·M i = 3, 4, ..., I,∀(s), t (A.1)

γ
(s)
it ≤ v

(s)
(i−1)(t−1) i = 3, 4, ..., I,∀(s), t (A.2)

γ
(s)
it ≥M · (z(s)

it − 1) + v
(s)
(i−1)(t−1) i = 3, 4, ..., I,∀(s), t (A.3)
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Appendix A (Continued)

z
(s)
it yit = α

(s)
it i = 3, 4, ..., I,∀(s), t

α
(s)
it ≤ z

(s)
it ·M i = 3, 4, ..., I,∀(s), t (A.4)

α
(s)
it ≤ yit i = 3, 4, ..., I,∀(s), t (A.5)

α
(s)
it ≥M · (z(s)

it − 1) + yit i = 3, 4, ..., I,∀(s), t (A.6)

z
(s)
it m

(s)
it = λ

(s)
it i = 3, 4, ..., I,∀(s), t

λ
(s)
it ≤ z

(s)
it ·M i = 3, 4, ..., I,∀(s), t (A.7)

λ
(s)
it ≤ m

(s)
it i = 3, 4, ..., I,∀(s), t (A.8)

λ
(s)
it ≥M · (z(s)

it − 1) +m
(s)
it i = 3, 4, ..., I,∀(s), t (A.9)

z
(s)
(i−1)tm

(s)
it = δ

(s)
it i = 3, 4, ..., I,∀(s), t

δ
(s)
it ≤ z

(s)
(i−1)t ·M i = 3, 4, ..., I,∀(s), t (A.10)

δ
(s)
it ≤ m

(s)
it i = 3, 4, ..., I,∀(s), t (A.11)

δ
(s)
it ≥M · (z(s)

(i−1)t − 1) +m
(s)
it i = 3, 4, ..., I,∀(s), t (A.12)
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Appendix A (Continued)

z
(s)
(i−1)tyit = ψ

(s)
it i = 3, 4, ..., I,∀(s), t

ψ
(s)
it ≤ z

(s)
(i−1)t ·M i = 3, 4, ..., I,∀(s), t (A.13)

ψ
(s)
it ≤ yit i = 3, 4, ..., I,∀(s), t (A.14)

ψ
(s)
it ≥M · (z(s)

(i−1)t − 1) + yit i = 3, 4, ..., I,∀(s), t (A.15)

z
(s)
(i−1)tv

(s)
(i−1)(t−1) = µ

(s)
(i−1)t i = 3, 4, ..., I,∀(s), t

µ
(s)
(i−1)t ≤ z

(s)
(i−1)t ·M i = 3, 4, ..., I,∀(s), t (A.16)

µ
(s)
(i−1)t ≤ v

(s)
(i−1)(t−1) i = 3, 4, ..., I,∀(s), t (A.17)

µs
(i−1)t ≥M · (zs(i−1)t − 1) + vs(i−1)(t−1) i = 3, 4, ..., I,∀(s), t (A.18)

vk(t−1)zt = λkt ∀k, t

λkt ≤ zt ·M ∀k, t (A.19)

λkt ≤ vk(t−1) ∀k, t (A.20)

λkt ≥M · (zt − 1) + vk(t−1) ∀k, t (A.21)
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Appendix A (Continued)

utzt = µkt ∀k, t

µkt ≤ zt ·M ∀k, t (A.22)

µkt ≤ ut ∀k, t (A.23)

µkt ≥M · (zt − 1) + ut ∀k, t (A.24)

γ
(s)
it , α

(s)
it , ψ

(s)
it , µ

(s)
(i−1)t ∈ Z+ i = 3, 4, ..., I,∀(s), t (A.25)

λ
(s)
it , δ

(s)
it ∈ Z+ i = 3, 4, ..., I,∀(s), t (A.26)

λkt, µkt ∈ Z+ ∀k, t (A.27)

As both stochastic and deterministic models indicate nonlinear terms with the

same interacting variables (for example, v and z), in order to save some space, we

show their linearization in one formulation and differentiate them using (s) at the top

corner of the variables.
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Appendix B Second Linearization Technique: Floor Function

The second linearization technique focuses on the floor function (x = byc) and

used to determine the number of blood units returned to unassigned inventory.

x ≥ y − 1 + TOL

x ≤ y + TOL

x ∈ Z+

y ≥ 0

When the second linearization technique is applied, the following set of constraints

are obtained and used to replace Constraint (3.51).

βit ≥ ((v(i−CRP−1)(t−CRP−1) − y(i−CRP )(t−CRP )) · z(i−CRP )(t−CRP ) −m(i−CRP )(t−CRP ))

·(1− CT−1)− 1 + TOL i = 3 + CRP, ..., I + CRP, t = CRP + 1, ..., T

βit ≤ ((v(i−CRP−1)(t−CRP−1) − y(i−CRP )(t−CRP )) · z(i−CRP )(t−CRP ) −m(i−CRP )(t−CRP ))

·(1− CT−1) + TOL i = 3 + CRP, ..., I + CRP, t = CRP + 1, ..., T
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Appendix B (Continued)

Parameter TOL is a small number and critical in the linearization process. With-

out indicating this parameter, β may take an incorrect value when the inner term

(inside the floor function) of the right hand-side value in in this constraint is an in-

teger value. Even after the second linearization technique is applied, the resulting

constraints still indicates non-linear terms due to the interactions between binary

and discrete variables. When the first linearization technique is applied, the following

constraints are obtained as replacement for Constraint (3.51).

βit ≥ ((v(i−CRP−1)(t−CRP−1) − y(i−CRP )(t−CRP )) · z(i−CRP )(t−CRP ) −m(i−CRP )(t−CRP ))·

(1− CT−1)− 1 + TOL i = 3 + CRP, ..., I + CRP, t = CRP + 1, ..., T

βit ≤ ((γ(i−CRP−1)(t−CRP−1) − α(i−CRP )(t−CRP ))−m(i−CRP )(t−CRP ))·

(1− CT−1) + TOL i = 3 + CRP, ..., I + CRP, t = CRP + 1, ..., T
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Appendix C Third Linearization Technique: Ceil Function

The third linearization technique focuses on the ceil function (x = dye) and used

to determine the number of blood units wasted.

x ≥ y + TOL

x ≤ y + 1 + TOL

x ∈ Z+

y ≥ 0

Applying this linearization technique, the following set of constraints are obtained

and used to replace Constraint (4.3).

ukt ≥ θkvk(t−1) + TOL ∀k, t

ukt ≤ θkvk(t−1) + 1 + TOL ∀k, t

Parameter TOL is a small number and critical in the linearization process. With-

out indicating this parameter, u may take an incorrect value when the right hand-side

value of this constraint is an integer value.
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Appendix D Fourth Linearization Technique: Minimum Value of Two

Variables

The fourth linearization technique is to identify the minimum values of two vari-

ables. As in [31], y is equal to min of x1 and x2 where both x1 and x2 are continuous

variables. Lower bounds and upper bounds of x1 and x2 are L1, U1 and L2, U2 re-

spectively. Introducing binary variables d1 and d2 where d1 is 1 if x1 is the minimum

value and d2 is 1 if x2 is the minimum value, linearization of min{x1, x2} is as follows:

y ≤ x1

y ≤ x2

y ≥ x1 − (U1 − Lmin)(1− d1)

y ≥ x2 − (U2 − Lmin)(1− d2)

d1 + d2 = 1

To linearize our model, linearization technique mentioned above is applied and

the following constraints replaces Constraint (4.9)

vkt ≤ EXCSkt + zt(vk(t−1) − ut) ∀k, t

vkt ≤ SSk ∀k, t

vkt ≥ EXCSkt + zt(vk(t−1) − ut)− (U1kt − Lminkt)(1− w1kt) ∀k, t
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Appendix D (Continued)

vkt ≥ SSk − (U2kt − Lminkt)(1− w2kt) ∀k, t

w1kt + w2kt = 1 ∀k, t

w1kt, w2kt ∈ B0,1 ∀k, t
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Appendix E Permission for Use of Figures 2.1-2.3
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