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Thus, the Bayes factor was approximated by equation 13. The Bayes factor was then used 

to calculate the posterior probability of each model given the available pool of models 

(Equation 15).  

   
  

∑    
  15.  

Bootstrap Results. The results of the bootstrap procedure are shown in Tables 2 

through 6. In the first simulation, either g, or a, or s was varied. Table 2 shows that the g 

parameter significantly increased from the object (M = .362, SD = .009) to the landscape 

condition (M = .409, SD = .008), t(49) = 98.52, p < .05. Thus, the model predictions were 

in accordance with intuition; the distinctiveness of the features decreased from the object 

to the landscape condition. Likewise, the s parameter increased from the object (M = 

.431, SD = .034) to the landscape condition (M = .495, SD = .018), t(49) = 11.94, p < .05. 

The a parameter decreased from the object (M = .777, SD = .009) to the landscape 

condition (M = .567, SD = .008), t(49) = -123.14, p < .05. Thus, the model suggests an 

increase in the number of trials that the carryover process occurred on, from the object to 

landscape condition. 

 In order to account for the possibility that a combination of varying parameter 

values would provide a better fit to the data, we considered the models in which the g and 

a parameters were allowed to simultaneously vary (Table 3). A distribution of parameter 

estimates from a bootstrap procedure was again generated. The g parameter was shown to 

significantly increase from the object (M = .421, SD = .004) to the landscape condition 

(M = .444, SD = .002), t(49) = 37.62, p < .05. The a parameter was shown to 

simultaneously decrease from the object (M = .889, SD = .012) to the landscape condition 

(M = .639, SD = .004), t(49) = -113.46, p < .05. Thus, similar model predictions were 
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observed in that the proportion of trials in which carryover occurred increased from the 

object to the landscape condition.  

 We also varied both the s and a parameters simultaneously and obtained the 

parameter estimates from the bootstrap procedure described above (Table 4). The s 

parameter significantly increased from the object (M = .285, SD = .070) to the landscape 

condition (M = .584, SD = .008), t(49) = 29.90, p < .05 and the a parameter significantly 

decreased from the object (M = .861, SD = .008) to the landscape condition, (M = .491, 

SD = .012), t(49) = -195.26, p < .05. Thus, the model predictions are in accordance with 

the results from the bootstrap procedure in which each parameter was varied 

independently. That is, the similarity of feature values increased from the object to the 

landscape condition, and the proportion of trials in which carry over occurred increased 

from the object to the landscape condition.  

 Table 5 shows the results of the bootstrap in which g and s were varied 

simultaneously. The bootstrap revealed that the g parameter increased from the object (M 

= .396, SD = .003) to the landscape condition (M = .442, SD = .005), t(49) = 61.41, p < 

.05, while the s parameter increased from the object (M = .546, SD = .014), to the 

landscape condition (M = .593, SD = .014), t(49) = 16.93, p < .05. Thus, while the 

distinctiveness of features decreased from the object to the landscape condition, the 

overall similarity of traces in memory increased.  

 Finally, we simultaneously varied all parameters of interest: s, g, and a. The 

results are shown in Table 6. This model showed a similar pattern in that the a parameter 

decreased from the object (M = .993, SD = .005) to the landscape condition (M = .609, 

.026), t(49) = 98.70, p < .05, and the s parameter increased from the object (M = .362, SD 
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= .051) to the landscape condition (M = .622, SD = .004), t(49) = 34.84, p < .05. 

However, the g parameter increased from the landscape (M = .433, SD = .005) to the 

object condition (M = .453, SD = .002), t(49) = 23.91, p < .05.  

The counterintuitive result from the final simulation is worth discussing at greater 

length. Note, that the simulation suggests that the landscapes were MORE distinctive 

than the objects when measured by g but less distinctive when measured by s. This result 

raises red flags. Moreover, when the simpler models were simulated, the results 

consistently suggested that the landscapes were LESS similar than the objects when 

measured by both g and s, which is what intuition tells us should be the case. Hence, our 

suspicion was that the complexity of the a, g, s model is unwarranted, and the 

counterintuitive parameter estimates that it produced were the result of over fitting (Pitt 

& Myung, 2002). If so, we suspected that despite the awkward parameterization of the a, 

g, s model, it would provide a superior quantitative fit of the data, which we explored 

next.  

Model Fits and Selection 

Overall quality of fits. The parameter estimates from the different simulations 

are listed in Tables 2 through 6. Quantitative fits were calculated as described above, and 

various statistics obtained from the ―best‖ fits of each model are shown in Table 7. The 

best fits of the data were obtained from the carryover models in which the amount of 

carryover was free to vary between conditions. According to these models, attention 

fluctuates at test, and when vigilance is reduced there is a carryover of a proportion of the 

features from the retrieval cue used to probe memory on trial n-1 to the retrieval cue used 

to probe memory on trial n.  The variability in the attention (a) parameter accounts for the 
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differences in the magnitude of the SDs observed between the stimulus conditions, and 

all the bootstrap simulations indicate that that less carryover occurred in the object 

condition than in the landscape condition. Thus, the most accurate models of recognition 

that we have considered take into account the sequential dependencies observed in JOF 

testing, and by taking into account these SDs, the models are better able to account for 

differences between the stimulus conditions. The result is not as trivial as may seem since 

the stimulus conditions were constructed in manner that a priori would have been thought 

to differ along the stimulus similarity dimensions (g and/or s dimensions), but the 

differences in the amount of carryover between stimulus conditions characterized all 

three of the best fitting models.  

Of the three carryover models, the a, g, s model and a, s model provided the best 

quantitative accounts, suggesting that there was differences in the nature of the stimuli 

themselves in addition to the differences in the amount of carryover between stimulus 

conditions. Since the two best fitting models differ in complexity, we inspected the 

Bayesian Information Criterion (BIC; also Table 7). The model in which a, g, and s were 

varied simultaneously obtained a slightly lower BIC value than the a, s model, indicating 

that even when the complexity of the models is taken into account, the a, g, s model is 

preferred. In addition, the posterior probability of 1.0, denoted by w in Table 7, indicates 

that the a, g, s model by far and away is the most likely model to have generated the data.  

All these statistics are informative, but it is critically important that the parameter 

estimates obtained from the simulations also make sense. Note, the parameters estimated 

obtained from the a, g, s model suggests that the landscapes are less distinctive than the 

objects. This is difficult to reconcile with a casual inspection of the stimuli (see Figure 2). 
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a, g, s model is compensating for the a, s model’s adequate fits of the low frequency data 

in the object condition by making all of the objects relatively less distinctive. Less 

distinctive stimuli lead to lower levels of familiarity, and hence items are more likely to 

be judged to have been studied a relatively few numbers of times. Therefore, it again 

appears that varying the g parameter in the a, g, s model is serving as a proxy for a 

change in decision bias between stimulus conditions. That is, variability in g is allowing 

the underlying distribution of familiarity values to shift between stimulus conditions in a 

manner that mimics a shift in response bias. This allows for a better account of the 

stimulus effect on the proportion correct (in Figure 6), albeit in an inappropriate manner, 

and therefore the apparent qualitative advantage for the a, g, s model is due to overfitting. 

This analysis suggests that the major source of the departure of the model from 

the accuracy data is in the model of the repetitions or frequency similarity, and not the 

model of sequential dependencies. Both the a, s and a, g, s models are underpredicting 

the ability of the subject to discriminate between items presented 4, 5, and 6 times 

because of the overly simplified model of encoding that we assumed. Accordingly, every 

time an item is repeated, features are accumulated in the trace stored when the item was 

first presented. Moreover, inaccurately encoded features are never corrected on later 

presentations. Relaxing either or both of these assumptions would allow the model to 

predict greater differences in the mean familiarity values of the items presented relatively 

frequently. We have addressed these possibilities in a formal manner elsewhere (Criss et 

al., 2011; Malmberg, et al., 2004). However, the price would be a more complex model 

of encoding, and since our primary concern is assessing the SDs in recognition testing, 

we chose not to introduce unnecessary complexities for the time being. 
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Sequential Dependencies. The carryover of features from one retrieval cue to the 

next on some trials is the source of positive SDs in the model. Since a robust pattern of 

SDs was found in both conditions, it seems almost trivially important that the carryover is 

important. What is critical to note is that in the present model fits, the predictions came 

from models in which a was free to vary between stimulus conditions. In those models in 

which a did not vary, it was set to a modest value (see Table 1) determined to provide a 

reasonable account of all of the data during a preliminary simulation. Thus, these fits are 

being used to determine whether variability in carryover between stimulus conditions 

provides a better account of the data than a model in which a constant amount of 

variability is assumed for both stimulus conditions.  

The top panels of the Figure 8 show both models yield similar qualitative 

predictions for assimilation towards the previous responses in the landscape condition. 

The a, s model does slightly worse in the object condition, as it overestimates the error 

for low repetition stimuli. However, for high repetition stimuli, both models make a 

similar underestimation. Quantitatively, the LRT revealed the a, s model and the a, g, s 

model both deviated significantly from the response assimilation data in the landscape 

condition, G
2
(34) = 162.08, p <.05, and G

2
(33) = 112.13, p <.05, respectively. The BIC 

and resultant posterior probability for the a, g, s model for the landscape response 

assimilation data was lower (BIC = 1926.14, w = 1.0) than for the a, s model (BIC = 

1918.80, w < .0005). Hence, the more complex a, g, s model provides a better account of 

the positive sequential dependencies observed in the landscape condition, and it is more 

likely to have generated the data than the a, s model. However, note that in order to 



 

29 
 

generate this superior fit, the a, g, s model must assume that landscapes are MORE 

distinctive than objects. 

The bottom panels of Figure 8 plot the fits of the models to the response 

assimilation data for objects, and the a, s model appears to fit the pattern of assimilation 

slightly better than the a, g, s model. However, both the a, s and a, g, s models failed to 

quantitatively fit the object response assimilation data, where, G
2
(34) = 221.08, p < .05, 

and G
2
(33) = 232.16, p < .05, respectively. The a, g, s model is having difficulty 

predicting response assimilation in the object condition because of the large proportion of 

trials in which the retrieval cue is ―refreshed‖ and no carry over occurs. This is due to the 

high value of a parameter estimate. Quantitatively, this is reflected in the lower posterior 

probability of the a, g, s model, (w = .001), while the posterior probability of the a, s 

model was .999. Hence, the simpler a, s model provides a better account of the positive 

sequential dependencies observed in the object condition, and it is more likely to have 

generated the data than the a, g, s model. 

The top panels of Figure 9 show the fits of the model to the error plotted as a 

function of the previous stimulus value for the landscape condition. The quantitative 

model fits significantly deviated from the saturated model for the a, g, s model G
2
(33) = 

163.03, p < .05, and a, s model G
2
(34) = 162.08. While both models show a reasonable 

qualitative fit for this subset of data, the a, s model qualitatively captures the overall error 

magnitudes for each stimulus value better than the a, g, s model. This fact is reflected in 

the BIC values. For this particular data subset, the a, s model had a BIC of 4698.57 while 

the a, g, s model had a BIC of 4774.80 which yielded a much higher posterior probability 

for the a, s model (w = 1.0). 
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The bottom panels of Figure 9 show the model fits to the mean error on trial n as a 

function of the previous stimulus value for the object condition. Both models 

qualitatively predict the absence of assimilation towards the previous stimulus value. 

However, both models were unable to quantitatively predict this subset of the data, (p < 

.05 for both models). The a, s model overestimates the error magnitude of low and high 

repetition stimuli more so than the a, g, s model. In addition, the a, g, s model was clearly 

the quantitative winner; it had a lower BIC than the a, s model (4201.70 vs. 4252.72) and 

a higher posterior probability (w = 1.0).  

In summary, the a, s model was more likely to have generated the landscape data, 

but the a, g, s model was more likely to have generated the object data. Again, it appears 

that a, g, s model is fitting the data better due to a variability in g serving as proxy for 

variability in decision bias between stimulus conditions. 

Similarity versus Distinctiveness. We have considered models in which 

variability in the overlap of features between stimulus conditions is modeled by changes 

in s, the similarity parameter, and g, the distinctiveness parameter in REM. The model 

allowing both s and g to vary between stimulus conditions provides superior fits of the 

data. According to the Bayesian analyses that we conducted, the a, g, s model almost 

certainly generated the data from our experiment given the models that we considered. 

However, the variability in g comes at the cost of counterintuitive parameter estimates 

that suggest that g is standing in place for changes in response bias. Here, we conducted a 

similar Bayesian analysis, but we did not include the a, g, s model in the competition.  

The question was, did one model provide a better account of the overlap in features 

between stimulus conditions? The results are presented in Table 8. The a, s model 
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provided the best quantitative account of the data as far as being more likely to have 

generated the data than the a, g model. 

General Discussion 

We described a model of positive sequential dependencies that assumes 

information from the retrieval cue may be carried over and combined to form the retrieval 

cue used to probe memory on next recognition trial. The model is an extension of a JOF 

model used to account for the interactions of normative word frequency, item similarity, 

and repetitions observed in recognition testing (Malmberg et al., 2004), which assumed 

that word-frequency was correlated with the distinctiveness of the features used to 

represent words (Malmberg, Steyvers, Stephens & Shiffrin, 2003; Shiffrin & Steyvers, 

1997), and that item similarity is varied by manipulating the proportion shared features 

among items constructed from a given base rate distribution of feature values.  

In the present experiment, we manipulated the nature of the stimuli used to test 

recognition memory in order to assess the ability of the model to account for positive SDs 

in JOFs. The stimulus manipulation is provocative within the framework of the carryover 

model. One question was whether the effect of the inter-item similarity manipulation 

could be captured simply by variability in the carryover of features used to probe memory 

at test, the same mechanism used to produce positive sequential dependencies. That is, 

could we capture the differences in the stimulus conditions by simply accounting for the 

differences in the SDs? On the other hand, it was unclear whether inter-item similarity 

should be modeled by varying the overlap of the features used to represent the items or 

whether the similarity of the items should be varied in terms of their distinctiveness. 

Therefore, we also used the model to determine whether our stimulus manipulation 
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would be best characterized by a change in item distinctiveness of item similarity and 

whether the nature of the stimuli affected the SDs that were observed. 

 According to all of the best fitting models, there was variability in the amount of 

the carryover between stimulus conditions such that more carryover occurred in the 

landscape condition than in the object condition. In addition, the simulations indicated 

that the best way to model the difference in the degree to which the objects and 

landscapes overlap in terms of their features was to generate items stochastically from a 

categorical prototype rather than by varying the base rate distribution from which the 

features were drawn. In fact, models in which the distinctiveness of the features was 

varied between stimulus conditions produced the worst fits and at times led to misleading 

interpretations of the data. 

 It is interesting to note that this may be the first finding to indicate that vigilance 

or attentional control during testing is influenced by the nature of the test stimuli. There 

are, of course, several models that assume that the nature of stimuli affect the allocation 

of attentional resources at study (DeCarlo, 2002, 2007; Estes & Maddox, 1997; Howard, 

Bessette-Symons, Zhang, Y William J. Hoyer, 2006; Malmberg & Murnane, 2002). For 

instance, several models assume that rare words attract more attention than common 

words when they are studied (Malmberg & Nelson, 2003 for a review). However, the 

pattern of SDs that we observed cannot be explained by fluctuations in the attention 

during study, since the order in which items were tested was determined randomly (also 

Malmberg & Annis, 2011). 

 Our simulations also identified several important issues. First, it appears that 

response bias varied between stimulus conditions. This could be better accounted for by 
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models in which the decision parameters were free to vary between stimulus conditions. 

However, it is important to note that the model does a reasonable job accounting for the 

positive sequential dependencies that we observed without appealing to criterion shifts 

either between trials or between stimulus conditions. The model could also be enhanced 

by a more sophisticated model of encoding. The present model was the simplest one 

possible. It assumed that each time an item is repeated, previously unstored features from 

the lexical/semantic trace representing the item are accumulated in the prior episodic 

trace. 

 Finally, in developing the model, we were confronted with the distinction 

between item similarity and frequency similarity. Test items vary in the extent to which 

they are perceptually or semantically similar and they vary to the extent that they were 

presented similar number of times during study. Both factors will influence the 

correlations among test trials. This aspect of recognition memory testing distinguishes it 

from perceptual testing using the absolute identification procedure where only the 

dimension on which the stimuli are judged at test distinguish the class of items tested. 

This difference between recognition testing and absolute identification may be a source 

of the differences in the patterns in sequential dependencies observed in memory and 

perception studies. 
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Table 1. Initial parameter estimates.   

Parameter  Value 

a 0.64 

b 0.72 

c 0.7 

g 0.39 

r 20.44 

s  0.52*  

t 18 

u 0.04 

w 50 

  

*Note: The s parameter was fixed at 0 when it was not varied. 
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Table 2. Bootstrap estimates for g a and s parameters. 

Free 

Parameter Condition Mean SD 

a    

 Objects 0.777 0.009 

 Landscapes 0.567 0.008 

g    

 Objects 0.362 0.003 

 Landscapes 0.409 0.003 

s    

 Objects 0.431 0.034 

  Landscapes 0.495 0.018 
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Table 3.Bootstrap estimates for the a and g parameters. 

Free 

Parameter Condition Value SD 

a    

 Objects 0.889 0.012 

 Landscapes 0.639 0.004 

g    

 Objects 0.421 0.004 

  Landscapes 0.444 0.002 
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Table 4.Bootstrap estimates for the a and s parameters. 

Free 

Parameter Condition Value SD 

a    

 Objects 0.861 0.008 

 Landscapes 0.491 0.012 

s    

 Objects 0.285 0.070 

  Landscapes 0.584 0.008 
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Table 5.Bootstrap estimates for the g and s parameters. 

Free 

Parameter Condition Value SD 

g    

 Objects 0.396 0.003 

 Landscapes 0.442 0.005 

s    

 Objects 0.546 0.014 

  Landscapes 0.593 0.014 
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Table 6.Bootstrap estimates for the a, g, and s parameters. 

Free 

Parameter Condition Value SD 

a    

 Objects 0.993 0.005 

 Landscapes 0.609 0.026 

g    

 Objects 0.453 0.002 

 Landscapes 0.433 0.005 

s    

 Objects 0.362 0.051 

  Landscapes 0.622 0.622 
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Table 7. The negation of the log-likelihood multiplied by 2, G
2
, degrees of freedom (df), Akaiki’s 

Information Criterion (AIC), the Bayesian Information Criterion (BIC), the change in BIC 

(ΔBIC) from the lowest BIC obtained, and the Bayes Factor (B) for each model. 

Free 

Parameters -2LL G
2
 df AIC BIC ΔBIC B w 

a, g, s 16509.34 762.71 163 16513.34 16527.21 0.00 1.00 1.00 

a, s 16540.07 793.44 164 16544.07 16551.98 24.78 0.00 0.00 

a 16726.680 980.05 165 16728.68 16732.64 205.43 0.00 0.00 

a, g 16759.776 1013.143 164 16763.776 16771.688 244.48 0.00 0.00 

g, s 16979.83 1233.19 164 16983.83 16991.74 464.53 0.00 0.00 

g 17042.069 1295.436 165 17044.069 17048.025 520.82 0.00 0.00 

s 17241.946 1495.31 165 17243.95 17247.90 720.69 0.00 0.00 
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Table 8. The the negation of the log-likelihood, G
2
, degrees of freedom (df), Akaiki’s 

Information Criterion (AIC), the Bayesian Information Criterion (BIC), the change in BIC 

(ΔBIC) from the lowest BIC obtained, and the Bayes Factor (B) for each model. This table 

excludes the  a, g, s model. 

Free 

Parameters -2LL G
2
 df AIC BIC ΔBIC B w 

a, s 16540.07 793.44 164 16544.07 16551.98 0.00 1.00 1.00 

a 16726.680 980.05 165 16728.68 16732.64 180.65 0.00 0.00 

a, g 16759.776 1013.143 164 16763.776 16771.688 219.70 0.00 0.00 

g, s 16979.83 1233.19 164 16983.83 16991.74 439.75 0.00 0.00 

g 17042.069 1295.436 165 17044.069 17048.025 17048.02 0.00 0.00 

s 17241.946 1495.31 165 17243.95 17247.90 17247.90 0.00 0.00 
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Figure 1. The probability of value j as a function of j and the geometric distribution 

parameter, g. As g decreases, the mean and variance of the density function increase. 

Thus, representations become less similar and more distinctive as g decreases. 
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Sample Landscape Items 

 

Sample Object Items 

 

 

Figure 2. Sample of items presented to participants in the landscape and object condition. 
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Figure 3. The left panel shows mean percent correct plotted as a function of the number 

of presentations. The middle panel shows the mean Judgment of Frequency as a function 

of the actual stimulus frequency. The right panel plots accuracy (d’i, i+1) as a function the 

number of presentations, i. 
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Figure 4. Mean error on trial n plotted as a function of the previous response and current 

stimulus.  
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Figure 5. Mean error on trial n plotted as a function the previous stimulus and current 

stimulus values.  
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Figure 6. Model fits of the proportion correct as a function of the number of 

presentations. 
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Figure 7. Model fits for accuracy (d’i, i+1 )as a function the number of presentations, i. 
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Figure 8. Model fits for error on current trial as a function of previous response. 
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Figure 9. Model fits for error on current trial as a function of the previous number of 

presentations. 
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