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Abstract

Let p be a prime and q = pk. The polynomial gn,q ∈ Fp[x] defined by the

functional equation ∑
a ∈ Fq

(x + a)n = gn,q(x
q − x)

gives rise to many permutation polynomials over finite fields. We are interested in

triples (n, e; q) for which gn,q is a permutation polynomial of Fqe . In Chapters 2, 3,

and 4 of this dissertation, we present many new families of permutation polynomials

in the form of gn,q. The permutation behavior of gn,q is becoming increasingly more

interesting and challenging. As we further explore the permutation behavior of gn,q,

there is a clear indication that gn,q is a plenteous source of permutation polynomials.

We also describe a piecewise construction of permutation polynomials over a

finite field Fq which uses a subgroup of F∗q, a “selection” function, and several “case”

functions. Chapter 5 of this dissertation is devoted to this piecewise construction

which generalizes several recently discovered families of permutation polynomials.

iv



1 Introduction

Let p be a prime and q a power of p. Let Fq be the finite field with q elements.

A polynomial f ∈ Fq[x] is called a permutation polynomial of Fq if the mapping

x 7→ f(x) is a permutation of Fq. Every function from Fq to Fq can be represented by

a polynomial in Fq[x]. In fact, if φ : Fq → Fq is an arbitrary function form Fq to Fq,

then there exists a unique polynomial g ∈ Fq[x] with deg(g)≤ q − 1 representing φ,

that is g(c) = φ(c) for all c ∈ Fq. The polynomial g can be found by the Lagrange’s

interpolation method for the function φ. If φ is already given as a polynomial function,

say φ : c 7→ f(c) where f ∈ Fq[x], then g can be obtained from f by reduction

modulo xq − x. We call permutation polynomials of Fq PPs over Fq. Search for PPs

with nice algebraic structures is an important topic in the study of finite fields since

they play a central role in both arithmetic and combinatorial aspects of finite fields.

PPs have important applications in Coding Theory, Cryptography, Finite Geometry,

Combinatorics and Computer Science, among other fields.

In history, the general study of PPs started with Hermite who considered PPs

over finite prime fields. L.E. Dickson was the first person to study PPs of arbitrary

finite fields; see [9].

Let n ≥ 0 be an integer. Since the elementary symmetric polynomials x1 +

x2 and x1x2 generate the ring of symmetric polynomials in Z[x, y], there exists a

polynomial Dn(x, y) ∈ Z[x, y] such that

xn1 + xn2 = Dn(x1 + x2, x1x2);

see [31]. The explicit form of Dn(x, y) is given by Waring’s formula [30, Theorem

1



1.76]

Dn(x, y) =

bn
2
c∑

i=0

n

n− i

(
n− i
i

)
(−y)ixn−2i.

For fixed a ∈ Fq, Dn(x, a) ∈ Fq[x] is the Dickson polynomial of degree n and parameter

a. Dickson polynomials are closely related to the well-known Chebyshev polynomials

Tn(x) over the complex numbers by

Dn(2xa, a2) = 2anTn(x).

The permutation property of the Dickson polynomial is completely known.

When a = 0, Dn(x, a) = xn, which is a PP over Fq if and only if (n, q− 1) = 1. When

0 6= a ∈ Fq, Dn(x, a) is a PP over Fq if and only if (n, q2 − 1) = 1; see [30, Theorem

7.16] or [29, Theorem 3.2].

The concept of the reversed Dickson polynomial Dn(a, x) was first introduced

by Hou, Mullen, Sellers and Yucas in [24] by reversing the roles of the variable and

the parameter in the Dickson polynomial Dn(x, a). When a = 0, Dn(0, x) is a PP

over Fq if and only if n = 2k with (k, q − 1) = 1. When a 6= 0,

Dn(a, x) = anDn(1,
x

a2
).

Hence Dn(a, x) is a PP on Fq if and only if Dn(1, x) is a PP on Fq. The nth reversed

Dickson polynomial Dn(1, x) ∈ Z[x] is defined by

Dn(1, x(1− x)) = xn + (1− x)n.

There is a connection between reversed Dickson polynomials and almost perfect non-

linear (APN) functions which have very important applications in Cryptography [34].

Please refer [24] for more background of the reversed Dickson polynomial.

X. Hou showed in [21] that for each integer n ≥ 0, there exists a unique

2



polynomial gn,q ∈ Fp[x] such that

∑
a ∈ Fq

(x + a)n = gn,q(x
q − x). (1.0.1)

The explicit form of gn,q is given by Waring’s formula

gn,q(x) =
∑

n
q
≤l≤ n

q−1

n

l

(
l

n− l(q − 1)

)
xn−l(q−1). (1.0.2)

The polynomial gn,q was introduced in [21] as a q-ary version of the reversed Dickson

polynomial. We describe the context which led to the formation of the polynomial

gn,q in Section 1.1. When q = 2, gn,2 is the nth reversed Dickson polynomial over F2

since in characteristic 2

gn,2(x
2 − x) = xn + (x+ 1)n = xn + (1− x)n = Dn(1, x(1− x)) = Dn(1, x2 − x).

Permutation properties of the polynomial gn,q were first studied by X. Hou

in [22]. The results of this study indicated that the polynomial gn,q opens the door

to many new classes of PPs in a new approach. In [22], several families of PPs were

found, but there were still many instances in which there was no theoretic explanation.

Chapters 2, 3, and 4 of this dissertation are an attempt to answer those unexplained

cases that also deal with questions about gn,q that were not touched in [22].

Constructing PPs of finite fields piecewise has been in discussion in numerous

recent articles on permutation polynomials. We also construct several families of PPs

in this dissertation that generalize some existing results.

Hence this dissertation focuses on the following:

(i) When is gn,q a permutation polynomial of Fqe?

(ii) A piecewise construction of permutation polynomials over finite fields.

The main question concerning permutation polynomials is how to recognize

them. The following two criteria for this purpose have been useful in our study.

3



(1) (Hermite’s Criterion). Let Fq be of characteristic p. Then f ∈ Fq[x] is a permu-

tation polynomial of Fq if and only if the following two conditions hold:

(i) f q−1 (mod xq − x) has degree q − 1;

(ii) for each integer s with 1 ≤ s ≤ q − 2, f s ≡ fs (mod xq − x) for some

fs ∈ Fq[x] with deg fs ≤ q − 2.

(2) f is a permutation polynomial of Fpn if and only if
∑
x∈Fpn

ζ
Trpn/p(cf(x))
p = 0 for all

0 6= c ∈ Fpn , where ζp = e2πi/p and Trpn/p(x) = x+xp+ · · ·+xpn−1
is the absolute

trace function from Fpn to Fp.

Definition 1.0.1 (Desirable triple). If gn,q is a PP of Fqe , we say that the triple

(n, e; q) is desirable.

A desirable triple is considered categorized if an infinite class containing it has been

found. Here is an overview of the dissertation.

In Chapter 2, we discuss the polynomial gn,q when q = 2 and list some known

families of PPs of F2e . The case e = 1 is completely explained in Chapter 2. Table

2.1, generated by a computer search contains all desirable triples (n, e; 3) with e ≤ 6.

We also explain two desirable families of the table. The desirable triple (407, 3; 3) is

explained in Chapter 2 as a sporadic case.

Chapter 3 discusses the permutation behavior of the polynomial gn,q where

n is of the form n = qa − qb − 1. Our computer results showed that this type of

desirable triples seems to occur more frequently. The case e = 2 is of more interest

since all known desirable triples when e > 2 are explained by Corollary 3.1.2 and

Theorem 3.1.3, and Conjecture 3.1.4 states that there are no other cases. A table

(Table 3.2), generated by a computer search, which contains desirable triples (qa −

qb−1, 2; q) for q ≤ 97, is also presented. Some of the results listed in table are explained

by several new classes discovered in this dissertation, but a theoretical explanation

has not been found for many of them.
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Chapter 4 primarily deals with desirable triples with even q. Numerous classes

of desirable triples with q = 4 and e ≤ 6 (see Table 4.1) are explained. Most of the

results are also generalized for an even q.

Chapter 5 describes a piecewise construction of permutation polynomials over

a finite field Fq. Permutation polynomials obtained by this construction unify and

generalize several recently discovered families of permutation polynomials.

There are two appendices. Appendix A contains some useful Mathematica

codes written to identify the permutation behavior of the polynomial gn,q. Appendix

B contains computational results used in the proof of Theorem 2.4.1.

In our notation, letters in typewriter typeface, x, y, t, are reserved for indeter-

minates. The trace function Trqe/q and the norm function Nqe/q from Fqe to Fq are also

treated as polynomials, that is, Trqe/q(x) = x+xq+· · ·+xq
e−1

, Nqe/q(x) = x1+q+···+q
e−1

.

When q is given, we define Sa = x + xq + · · · + xq
a−1

for every integer a ≥ 0. Note

that Trqe/q = Se.

1.1 The Polynomial gn,q

In this section, we derive the formula (1.0.1) and recall some basic properties of gn,q

that will be used in later chapters. We refer the reader to [22] for proofs and further

details of properties of gn,q.

Let p be a prime and q a power of p.

In Fq[x] we have xq−x =
∏

a∈Fq
(x+a). Let t be another indeterminate and substitute

t + x for x. Then we have

tq−t+xq−x = (t+x)q−(t+x) =
∏
a∈Fq

(t+x+a) =

q∑
k=0

σk((x+a)a∈Fq)t
q−k, (1.1.3)

where σk is the kth elementary symmetric polynomial in q variables. A comparison

5



of the coefficients of t on both sides of (1.1.3) tells that

σk((x + a)a∈Fq) =



1 if k = 0,

−1 if k = q − 1,

xq − x if k = q,

0 otherwise.

(1.1.4)

Let n ≥ 0 be an integer. By Waring’s formula [30, Theorem 1.76] and (1.1.4), we have

∑
a ∈ Fq

(x + a)n =
∑

α(q−1)+βq=n

(−1)α
(α + β − 1)!n

α!β!
(−1)α(xq − x)β

=
∑

n
q
≤l≤ n

q−1

(l − 1)!n

(lq − n)!(n− l(q − 1))!
(xq − x)n−l(q−1) (l = α + β)

=
∑

n
q
≤l≤ n

q−1

n

l

(
l

n− l(q − 1)

)
(xq − x)n−l(q−1).

Set

gn,q(x) =
∑

n
q
≤l≤ n

q−1

n

l

(
l

n− l(q − 1)

)
xn−l(q−1) ∈ Z[x].

(Note that the coefficients of gn,q(x) are integers since the coefficients in Waring’s

formula are integers.) Then in Fq[x] we have

∑
a ∈ Fq

(x + a)n = gn,q(x
q − x).

Proposition 1.1.1 ([22]). The polynomial gn,q satisfies the recurrence relation


g0,q = · · · = gq−2,q = 0,

gq−1,q = −1,

gn,q = xgn−q,q + gn−q+1,q, n ≥ q.

(1.1.5)

6



Using the above recurrence relation, gn,q can be defined for n < 0:

gn,q =
1

x
(gn+q,q − gn+1,q).

For n < 0, gn,q belongs to Fp[x, x−1], the ring of Laurent polynomials in x over Fp.

Hence the functional equation (1.0.1) holds for all n ∈ Z.

By (1.1.5) we have the generating function of {gn,q}n≥0:

∑
n≥0

gn,qt
n =

−tq−1

1− tq−1 − xtq
. (1.1.6)

Proposition 1.1.2 (i) We have gpn,q = gpn,q.

(ii) If n1, n2 > 0 are integers such that n1 ≡ n2 (mod qpe − 1), then gn1,q ≡ gn2,q

(mod xq
e − x).

Proof.

(i) We have

gpn,q(x
q − x) =

∑
a ∈ Fq

(x + a)pn =
( ∑
a ∈ Fq

(x + a)n
)p

= [gn,q(x
q − x)]p.

(ii) For all x ∈ Fqpe , we have

gn1,q(x
q − x) =

∑
a ∈ Fq

(x+ a)n1 =
∑
a ∈ Fq

(x+ a)n2 = gn2,q(x
q − x).

In particular, gn1,q(x) = gn2,q(x) for all x ∈ Fqe , i.e., gn1,q ≡ gn2,q (mod xq
e − x).

If two integers m,n > 0 belong to the same p-cyclotomic coset modulo qpe−1, the two

triples (m, e; q) and (n, e; q) are called equivalent, and we write (m, e; q) ∼ (n, e; q) or

7



m ∼(e,q) n. It follows from Proposition 1.1.2 that desirability of triples is preserved

under the ∼ equivalence.

Given integers d > 1 and a = a0d
0 + · · · + atd

t, 0 ≤ ai ≤ d − 1, the base d

weight of a is wd(a) = a0 + · · ·+ at.

Let n ≥ 0 be any integer and wq(n) denote the base q weight of n.

Lemma 1.1.3 ([22]). Let n = α0q
0 + · · · + αtq

t , 0 ≤ αi ≤ q − 1 and wq(n) be the

base q weight of n,

gn,q =


0 if wq(n) < q − 1,

−1 if wq(n) = q − 1,

α0x
q0 + (α0 + α1)x

q1 + · · ·+ (α0 + · · ·+ αt−1)x
qt−1

+ δ if wq(n) = q,

(1.1.7)

where

δ =

 1 if q = 2,

0 if q > 2.

Definition 1.1.4 An Fq-linearized polynomial (or a q-polynomial) over Fqe is a poly-

nomial of the form

L(x) =
k∑
i=0

aix
qi ∈ Fqe [x].

It is well known that L is a PP of Fqe if and only if L(x) only has the root 0 in Fqe .

i.e., L is a PP of Fqe if and only if gcd(L(x), xq
e − x) = 1.

Definition 1.1.5 The polynomials

l(x) =
k∑
i=0

aix
i and L(x) =

k∑
i=0

aix
qi

8



over Fqe are called q-associates of each other. More precisely, l(x) is the conventional

q-associate of L(x) and L(x) is the linearized q-associate of l(x).

Now by [30, Theorem 3.62], the above condition for L to be a PP of Fqe can be

restated as follows. L is a PP of Fqe if and only if gcd(l(x), xe − 1) = 1.

So by (1.1.7) and the above fact, we have the following proposition when

wq(n) = q.

Proposition 1.1.6 ([22]). Let n = α0q
0+· · ·+αtqt , 0 ≤ αi ≤ q−1, with wq(n) = q.

Then (n, e; q) is desirable if and only if

gcd(α0 + (α0 + α1)x + · · ·+ (α0 + · · ·+ αt−1)x
t−1, xe − 1) = 1.

Next lemma considers triples (n, e; p) where n is of the form n = α(p0e + p1e +

· · ·+ p(p−1)e) + β, where α, β ∈ Z.

Lemma 1.1.7 ([22]). Let n = α(p0e + p1e + · · ·+ p(p−1)e) + β, where α, β ∈ Z. Then

for x ∈ Fpe,

gn,p(x) =

gαp+β,p(x) if Trpe/p(x) = 0,

xαgβ,p(x) if Trpe/p(x) 6= 0.
(1.1.8)

Proposition 1.1.8 ([22]). In the previous lemma, (n, e; p) is desirable if the following

two conditions are satisfied.

(i) Both gαp+β,p + δ and xαgβ,p are Fp- linear on Fpe and are 1− 1 on Tr−1Fpe/Fp
(0) =

{x ∈ Fpe : TrFpe/Fp(x) = 0}.

(ii) gβ,p(1) 6= eδ.

Proposition 1.1.9 ([22]). Assume that both gαp+β,p + δ and xαgβ,p are Fp- linear on

9



Tr−1Fpe/Fp
(0) and write

gαp+β,p(x
p − x) + δ ≡

e−1∑
i=0

aix
pi (mod xq

e − x),

(xp − x)αgβ,p(x
p − x) ≡

e−1∑
i=0

bix
pi (mod xq

e − x).

Then gαp+β,p is 1-1 on Tr−1Fpe/Fp
(0) if and only if

gcd
( e−1∑
i=0

aix
i, xe − 1

)
= x− 1;

xαgβ,p is 1-1 on Tr−1Fpe/Fp
(0) if and only if

gcd
( e−1∑
i=0

bix
i, xe − 1

)
= x− 1.

Lemma 1.1.10 ([22]). Let l and i > 0 be integers. Then

gl+qi,q = gl+1,q + Si · gl,q, (1.1.9)

where Si = x + xq + · · ·+ xq
i−1

.

From (1.1.9), we have

(Sa − Sb)gn,q = gn+qa,q − gn+qb,q, (1.1.10)

where a, b > 0 are integers. Also note that

Sa − Sb ≡ Sa−b (mod xq
e − x) if b ≡ 0 or a (mod e).

If a < 0, we define Sa = Spe+a.

10



2 Special Families of Desirable Triples and a Sporadic Case∗

In this chapter, we consider some special cases of the polynomial gn,q. This chapter

is organized as follows: Section 2.1 discusses the polynomial gn,q when q = 2. Section

2.2 explains the case e = 1 completely. In Section 2.3, we explain two families of

desirable triples when p = 3. The desirable triple (407, 3; 3) is explained in Section

2.4 as a sporadic case. Table 2.1 contains all desirable triples (n, e; 3) with e ≤ 6.

2.1 The Polynomial gn,2

When q = 2, gn,2 is the nth reversed Dickson polynomial Dn(1, x) over F2. Unlike

its twin, Dickon polynomial Dn(x, a), reversed Dickon polynomial Dn(a, x) is difficult

to describe. Reversed Dickson permutation polynomials (RDPPs) are connected to

almost perfect nonlinear (APN) functions, a well-studied class of functions in cryp-

tography [34].

A function f : Fq → Fq is called almost perfect nonlinear (APN) if for each

a ∈ F∗q and b ∈ Fq, the equation f(x+ a)− f(x) = b has at most two solutions in Fq.

APN functions were introduced by Nyberg [34].

Because of the connection between RDPPs and APN functions, some classes of

reversed Dickon permutation polynomials were obtained from known APN functions.

However, not all reversed Dickson permutation polynomials are obtainable from APN

functions (see [24, Prop. 5.4]).

∗Sections 2.2 and 2.4 of this chapter are taken from [14] which has been published in the journal “Finite
Fields and Their Applications”.

11



All known desirable triples (n, e; 2) are covered by four classes listed below and

an implicit conjecture states that there are no other classes.

(i) n = 2k + 1, (k, 2e) = 1.

(ii) n = 22k − 2k + 1, (k, 2e) = 1.

(iii) n = 2e + 2k + 1, k > 0, e is even, (k − 1, e) = 1.

(iv) n = 28k + 26k + 24k + 22k − 1, e = 5k.

Classes (i), (ii), and (iv) were obtained from known APN functions. Classes (i) and

(ii) were due to Gold [15] and Kasami [26] respectively. Class (iii) appeared in [24]

and it was shown that class (iii) is not obtainable from an APN function. In [12],

Dobbertin proved that there is a sequence of APN functions when e is a multiple of

5. Class (iv) was obtained from that APN function. Even though Dobbertin’s class

is known, it is still not well understood. We refer the reader to [24] for a connection

between reversed Dickson permutation polynomials and APN functions.

2.2 The Case e = 1

In this section, we determine all desirable triples (n, 1; q).

Theorem 2.2.1 We have

∑
n≥0

gn,q(x)tn ≡ −(xt)q−1

1− (xt)q−1 − (xt)q
+ (1− xq−1)

−tq−1

1− tq−1
(mod xq − x). (2.2.1)

Namely, modulo xq − x,

gn,q(x) ≡ anx
n +

xq−1 − 1 if n > 0, n ≡ 0 (mod q − 1),

0 otherwise,
(2.2.2)

where ∑
n≥0

ant
n =

−tq−1

1− tq−1 − tq
. (2.2.3)

12



Proof. From (1.1.6), ∑
n≥0

gn,qt
n =

−tq−1

1− tq−1 − xtq
.

Clearly,

−tq−1

1− tq−1 − xtq
≡ −(xt)q−1

1− (xt)q−1 − (xt)q
+ (1− xq−1)

−tq−1

1− tq−1
(mod xq−1 − 1),

and

−tq−1

1− tq−1 − xtq
≡ −(xt)q−1

1− (xt)q−1 − (xt)q
+ (1− xq−1)

−tq−1

1− tq−1
(mod x).

Thus (2.2.1) is proved.

Corollary 2.2.2 (i) Assume q > 2. Then (n, 1; q) is desirable if and only if

gcd(n, q − 1) = 1 and an 6= 0 (in Fp).

(ii) Assume q = 2. Then (n, 1; 2) is desirable if and only if an = 0 (in F2).

Proof. (i) By (2.2.2), gn,q(x) = anx
n for all x ∈ F∗q. If gn,q is a PP of Fq, then an 6= 0

and gcd(n, q − 1) = 1. On the other hand, assume an 6= 0 and gcd(n, q − 1) = 1. By

(5.2.6), we have gn,q ≡ anx
n (mod xq − x), which is a PP of Fq.

(ii) By (2.2.2), gn,2 ≡ anx + x − 1 (mod x2 − x). If an = 0, then gn,2 = x − 1

which is clearly a PP of F2. Now assume gn,2 is a PP of F2. Then gn,2(0) = 1 and

gn,2(1) = an. Since gn,2 is a PP of F2, an = 0.

From (2.2.3) one can easily derive an explicit expression for an. But that expression

does not give any simple pattern of those n with an 6= 0 (in Fp).

2.3 Two Families of Desirable Triples when p = 3

Theorem 2.3.1 Let n = 26(30 + 3e + 32e) + 7. Then (n, e; 3) is desirable if and only

if gcd(1 + x+ x4, xe − 1) = x− 1.
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Proof. Since 26 · 3 + 7 = 85 = 1 · 30 + 1 · 31 + 1 · 34, by Lemma 1.1.3 we have

g26·3+7(x) = g85,3(x) = x3
0 − x31 − x32 − x33 .

Also, g7,3(x) = x, so x26g7,3(x) = x27. Both g26.3+7 and x26g7,3 are F3-linear on F3e .

Moreover, x26g7,3 is 1-1 on Tr−1F3e/F3
(0) and g7,3(1) = 1 6= 0. So by Proposition 1.1.8,

gn,3 is a PP of F3e if and only if g85,3 is 1-1 on Tr−1F3e/F3
(0).

We have, by [22, Eq. 3.4], −g85,3(x3 − x) = x3
0

+ x3
1

+ x3
4
. So by Proposition 1.1.9,

g85,3 is 1-1 on Tr−1F3e/F3
(0) if and only if gcd(1 + x+ x4, xe − 1) = x− 1.

Theorem 2.3.2 Let n = 163(30 + 3e + 32e) − 162. Then (n, e; 3) is desirable if and

only if gcd(x+ x4 + x5, xe − 1) = x− 1.

Proof. Since 163 · 3− 162 = 327 = 0.30 + 1.31 + 0.32 + 0.33 + 1.34 + 1.35,

by Lemma 1.1.3 we have

g327,3 = x3
1

+ x3
2

+ x3
3 − x34 .

Also, g−162,3(x) = 1
x162

, so x163g−162,3(x) = x. Both g163.3−162 and x163g−162,3 are

F3-linear on F3e . Moreover, x163g−162,3 is 1-1 on Tr−1F3e/F3
(0) and g−162,3(1) = 1 6= 0.

So by Proposition 1.1.8, gn,3 is a PP of F3e if and only if g327,3 is 1-1 on Tr−1F3e/F3
(0).

We have, by [22, Eq. 3.4], −g327,3(x3 − x) = x3
1

+ x3
4

+ x3
5
. So by Proposition 1.1.9,

g327,3 is 1-1 on Tr−1F3e/F3
(0) if and only if gcd(x+ x4 + x5, xe − 1) = x− 1.

2.4 A Sporadic Case

The second unexplained case of desirable triple in Table 3 of [22] is (407, 3; 3), where

407 = 2 · 30 + 2 · 34 + 35. Theorem 2.4.1 suggests that this might be a sporadic case.

14



By (1.1.9) and Lemma 1.1.3, we have

g407,3(x)

= g2·30+2·34+35, 3

= g3+2·34, 3 + S5 · g2+2·34, 3

= g3+2·34, 3 + S5 · (g3+34, 3 + S4 · g2+34, 3)

= x3 + x3
2

+ x3
3

+ S5 · (−1 + S4 · (−x− x3 − x3
2 − x3

3

))

≡Tr33/3(x)− S5(1 + S2
4) (mod x3

3 − x)

≡Tr33/3(x) + S32

4 (1 + S2
4) (mod x3

3 − x) (S5 ≡ −S32

4 (mod x3
3 − x))

≡Tr33/3(y) + y3
2

(1 + y2) (mod x3
3 − x),

where y = S4(x), which is a PP of F33 . We can further write

g407,3(x) ≡ Tr33/3(y) + y8
(
Tr33/3(y)− y3

2)
(mod x3

3 − x)

= (1 + y8)Tr33/3(y)− y17.

For x′ ∈ F∗33 , y = S4(x
′), we have

g407,3(x
′) = (1 + y8)Tr33/3(y)− y17 = (1 + x2)Tr33/3

(1

x

)
− x,

where x = y−9 = S4(x
′)−9. So the fact that g407,3 is a PP of F33 is equivalent to the

fact that the function

h(x) = (1 + x2)Tr33/3(
1

x
)− x (2.4.4)

is a permutation of F∗33 . In the next theorem (and its proof), we investigate some

peculiar properties of h in (2.4.4) as a function defined on F∗q3 .

Theorem 2.4.1 Let h be as in (2.4.4). h is a permutation of F∗q3 if and only if q = 3.

Proof.
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(⇐) We will show that for every z ∈ F∗33 , there exists an x ∈ F∗33 such that

(1 + x2)Tr33/3

(1

x

)
− x = z. (2.4.5)

If Tr33/3(
1
z
) = 0, x = −z is the solution. If Tr33/3(

1
z
) 6= 0, we may assume

Tr33/3(
1
z
) = 1. Then

z − 1 = az2(z + b), (a, b) = (1, 0), (1, 1), (−1, 1). (2.4.6)

We show that one of the following systems has a solution x ∈ F∗33 :x
2 − x+ 1− z = 0,

Tr33/3

(1

x

)
= 1;

(2.4.7)

x
2 + x+ 1 + z = 0,

Tr33/3

(1

x

)
= −1.

(2.4.8)

The solutions of the quadratic equation in (2.4.7) are x = −1 +w, where w2 = z; the

solutions of the quadratic equation in (2.4.8) are x = 1 + u, where u2 = −z.

Case 1. Assume (a, b) = (1, 0). Then z − 1 = z3, from which we have

−z = ( z−1
z+1

)2. Let u = z−1
z+1

. Then x = 1 + u = − z
z+1

is a solution of the quadratic

equation in (2.4.8), and Tr33/3(
1
x
) = Tr33/3(−1− 1

z
) = −1.

Case 2. Assume (a, b) = (1, 1). Then z − 1 = z2(z + 1), from which we have

(−z)3 = (z + 1)2. Let u3 = −(z + 1). Then x = 1 + u is a solution of the quadratic

equation in (2.4.8), and

Tr33/3

(1

x

)
= Tr33/3

( 1

x3

)
= Tr33/3

( 1

1− u3
)

= Tr33/3

(
−1

z

)
= −1.

Case 3. Assume (a, b) = (−1, 1). Then z − 1 = −z2(z + 1), from which we

have z = ( 1
z−1)2. Let w = − 1

z−1 . Then x = −1+w = −z
z−1 is a solution of the quadratic
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equation in (2.4.7), and Tr33/3(
1
x
) = Tr33/3(−1 + 1

z
) = 1.

(⇒) We show that if q 6= 3, then h is a not a permutation of F∗q3 .

In general,

h(x) = (1 + x2)(x−1 + x−q + x−q
2

)− x,

= x−1 + x−q + x−q
2

+ x2−q + x2−q
2

= y + yq + yq
2

+ yq−2 + yq
2−2

= g(y),

(2.4.9)

where y = x−1 ∈ F∗q3 , and g(y) = y + yq + yq
2

+ yq−2 + yq
2−2.

First assume q = 2. We have

g(y) = y4 + y + 1, y ∈ F∗23 .

It is obvious that g is not 1-1 on F∗23 .

Now Assume q > 3. We show that g is not a PP of Fq3 . (Since g(0) = 0, it

follows from (2.4.9) that h is not a permutation of F∗q3 .)

Case 1. Assume q > 3 is odd. We have

g(y)2q
2+2 ≡ 8yq

3−1 + terms of lower degree (mod yq
3 − y).

(The complete expression of g2q
2+2 (mod yq

3 − y) is given in Appendix B.) By Her-

mite’s criterion, g is not a PP of Fq3 .

Case 2. Assume q > 3 is even. We have

g(y)2q
2+q+3 ≡ yq

3−1 + terms of lower degree (mod yq
3 − y).

(The complete expression of g2q
2+q+3 (mod yq

3 − y) is given in Appendix B.) By

Hermite’s criterion, g is not a PP of Fq3 .
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Table 2.1: Desirable triples (n, e; 3), e ≤ 6, w3(n) > 3

e n 3-adic digits of n reference

1 17 2 2 1 [22] Prop 3.1

2 71 2 2 1 2 [22] Prop 3.2 (i)

2 95 2 1 1 0 1 [22] Table 2 No.2

2 101 2 0 2 0 1 [22] Table 2 No.2

2 103 1 1 2 0 1 [22] Table 2 No.2

2 119 2 0 1 1 1 [22] Table 2 No.2

2 151 1 2 1 2 1 [22] Table 2 No.5

2 197 2 2 0 1 2 [22] Prop 3.2 (ii)

2 485 2 2 2 2 2 1 [22] Prop 3.1

3 101 2 0 2 0 1 [14] Thm 4.1

3 407 2 0 0 0 2 1 Thm 2.4.1

3 475 1 2 1 2 2 1

3 605 2 0 1 1 1 2

3 619 1 2 2 1 1 2

3 671 2 1 2 0 2 2

3 701 2 2 2 1 2 2 [22] Prop 3.2 (i)

3 761 2 1 0 1 0 0 1 [22] Table 2 No.2

3 769 1 1 1 1 0 0 1 [22] Table 2 No.2

3 775 1 0 2 1 0 0 1 [22] Table 2 No.2

3 779 2 1 2 1 0 0 1

3 785 2 0 0 2 0 0 1 [22] Table 2 No.2

3 787 1 1 0 2 0 0 1 [22] Table 2 No.2

3 827 2 2 1 0 1 0 1

3 839 2 0 0 1 1 0 1 [22] Table 2 No.2

3 847 1 0 1 1 1 0 1 [22] Table 2 No.2

3 925 1 2 0 1 2 0 1 [22] Table 2 No.5

3 1003 1 1 0 1 0 1 1 [22] Table 2 No.2

3 1007 2 2 0 1 0 1 1 [22] Thm 3.10

3 1009 1 0 1 1 0 1 1 [22] Table 2 No.2

3 1097 2 2 1 1 1 1 1

3 1175 2 1 1 1 2 1 1

3 1247 2 1 0 1 0 2 1

3 1423 1 0 2 1 2 2 1

3 1519 1 2 0 2 0 0 2 [22] Table 2 No.4

3 1739 2 0 1 1 0 1 2

3 1753 1 2 2 1 0 1 2

3 1915 1 2 2 1 2 1 2

3 2021 2 1 2 2 0 2 2 [22] Thm 3.9

3 2117 2 0 1 0 2 2 2

3 2131 1 2 2 0 2 2 2 [22] Prop 3.2 (ii)
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Table 2.1 (Continued)

e n 3-adic digits of n reference

3 2537 2 2 2 0 1 1 0 1

3 2723 2 1 2 1 0 2 0 1

3 2819 2 0 1 2 1 2 0 1

3 2897 2 2 0 2 2 2 0 1

3 3137 2 1 0 2 2 0 1 1

3 3317 2 1 2 2 1 1 1 1

3 3361 1 1 1 1 2 1 1 1

3 3517 1 2 0 1 1 2 1 1

3 3551 2 1 1 2 1 2 1 1

3 3559 1 1 2 2 1 2 1 1

3 3833 2 2 2 0 2 0 2 1

3 4019 2 1 2 1 1 1 2 1

3 4253 2 1 1 1 1 2 2 1

3 4261 1 1 2 1 1 2 2 1

3 5093 2 2 1 2 2 2 0 2

3 5507 2 2 2 2 1 1 1 2

3 5557 1 1 2 1 2 1 1 2

3 5665 1 1 2 2 0 2 1 2

3 5719 1 1 2 1 1 2 1 2

3 13121 2 2 2 2 2 2 2 2 1 [22] Prop 3.1

4 173 2 0 1 0 2 [22] Table 2 No.3

4 1477 1 0 2 0 0 0 2 [22] Table 2 No.3

4 6479 2 2 2 2 1 2 2 2 [22] Prop 3.2 (i)

4 6647 2 1 0 0 1 0 0 0 1 [22] Table 2 No.2

4 6653 2 0 1 0 1 0 0 0 1 [22] Table 2 No.2

4 6655 1 1 1 0 1 0 0 0 1 [22] Table 2 No.2

4 6661 1 0 2 0 1 0 0 0 1 [22] Table 2 No.2

4 6671 2 0 0 1 1 0 0 0 1 [22] Table 2 No.2

4 6679 1 0 1 1 1 0 0 0 1 [22] Table 2 No.2

4 6725 2 0 0 0 2 0 0 0 1 [22] Table 2 No.2

4 6727 1 1 0 0 2 0 0 0 1 [22] Table 2 No.2

4 6733 1 0 1 0 2 0 0 0 1 [22] Table 2 No.2

4 6751 1 0 0 1 2 0 0 0 1 [22] Table 2 No.2

4 6887 2 0 0 0 1 1 0 0 1 [22] Table 2 No.2

4 6895 1 0 1 0 1 1 0 0 1 [22] Table 2 No.2

4 7135 1 2 0 0 1 2 0 0 1 [22] Table 2 No.5

4 7373 2 0 0 0 1 0 1 0 1 [22] Table 2 No.2

4 7375 1 1 0 0 1 0 1 0 1 [22] Table 2 No.2

4 7381 1 0 1 0 1 0 1 0 1 [22] Table 2 No.2

4 7399 1 0 0 1 1 0 1 0 1 [22] Table 2 No.2

4 8119 1 0 2 0 1 0 2 0 1 [22] Table 2 No.5

4 8831 2 0 0 0 1 0 0 1 1 [22] Table 2 No.2
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Table 2.1 (Continued)

e n 3-adic digits of n reference

4 8839 1 0 1 0 1 0 0 1 1 [22] Table 2 No.2

4 8855 2 2 2 0 1 0 0 1 1 [22] Thm 3.10

4 11071 1 0 0 2 1 0 0 2 1 [22] Table 2 No.5

4 17717 2 1 0 2 2 0 0 2 2 [22] Thm 3.9

4 19519 1 2 2 2 0 2 2 2 2 [22] Prop 3.2 (ii)

4 26725 1 1 2 2 2 1 0 0 1 1

4 28669 1 1 2 2 2 0 0 1 1 1

4 29525 2 1 1 1 1 1 1 1 1 1 [14] Thm 3.2

4 36997 1 2 0 2 0 2 2 1 2 1

4 43933 1 1 0 1 2 0 0 2 0 2

4 53149 1 1 1 0 2 2 0 0 2 2 [14] Thm 3.2

4 57575 2 0 1 2 2 2 0 2 2 2 Thm 2.2.1

4 84965 2 1 2 2 1 1 2 2 0 1 1 [14] Thm 3.6

4 88655 2 1 1 1 2 1 1 1 1 1 1 [14] Thm 3.5

4 90815 2 1 1 0 2 1 1 2 1 1 1 [14] Thm 3.1

4 91525 1 1 2 2 1 1 2 2 1 1 1 [14] 4.3

4 107765 2 2 0 1 1 2 0 1 1 2 1 [14] Thm 3.8

4 133079 2 1 2 2 1 1 2 0 2 0 2

4 148415 2 1 2 0 2 1 2 1 1 1 2 [14] Rmk 3.3

4 167173 1 2 1 2 2 0 1 1 1 2 2

4 265805 2 2 1 1 2 1 1 1 1 1 1 1 [14] Thm 3.5

4 267935 2 1 1 2 1 1 1 2 1 1 1 1 [14] Thm 3.1

4 272375 2 2 2 1 2 1 1 1 2 1 1 1 [14] Thm 3.1

4 272615 2 1 2 1 2 2 1 1 2 1 1 1 [14] Thm 3.1

4 273095 2 2 1 1 2 1 2 1 2 1 1 1 [14] Thm 3.1

4 354293 2 2 2 2 2 2 2 2 2 2 2 1 [22] Prop 3.1

5 515 2,0,0,1,0,2 [22] Table 2 No.3

5 569 2,0,0,0,1,2 [22] Table 2 No.3

5 2675 2,0,0,0,0,2,0,1 [22] Table 2 No.3

5 4393 1,0,2,0,0,0,0,2 [22] Table 2 No.3

5 13177 1,0,0,2,0,0,0,0,2 [22] Table 2 No.3

5 20171 2,0,0,0,0,2,0,0,0,1 [22] Table 2 No.3

5 58805 2,2,2,2,2,1,2,2,2,2 [22] Prop 3.2 (i)

5 59297 2,1,0,0,0,1,0,0,0,0,1 [14] Thm 3.1

5 59303 2,0,1,0,0,1,0,0,0,0,1 [14] Thm 3.1

5 59305 1,1,1,0,0,1,0,0,0,0,1 [14] Thm 3.1

5 59311 1,0,2,0,0,1,0,0,0,0,1 [14] Thm 3.1

5 59321 2,0,0,1,0,1,0,0,0,0,1 [14] Thm 3.1

5 59323 1,1,0,1,0,1,0,0,0,0,1 [14] Thm 3.1

5 59329 1,0,1,1,0,1,0,0,0,0,1 [14] Thm 3.1

5 59347 1,0,0,2,0,1,0,0,0,0,1 [14] Thm 3.1

5 59375 2,0,0,0,1,1,0,0,0,0,1 [14] Thm 3.1
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Table 2.1 (Continued)

e n 3-adic digits of n reference

5 59377 1,1,0,0,1,1,0,0,0,0,1 [14] Thm 3.1

5 59383 1,0,1,0,1,1,0,0,0,0,1 [14] Thm 3.1

5 59401 1,0,0,1,1,1,0,0,0,0,1 [14] Thm 3.1

5 59455 1,0,0,0,2,1,0,0,0,0,1 [14] Thm 3.1

5 59537 2,0,0,0,0,2,0,0,0,0,1 [14] Thm 3.1

5 59539 1,1,0,0,0,2,0,0,0,0,1 [14] Thm 3.1

5 59545 1,0,1,0,0,2,0,0,0,0,1 [14] Thm 3.1

5 59563 1,0,0,1,0,2,0,0,0,0,1 [14] Thm 3.1

5 59617 1,0,0,0,1,2,0,0,0,0,1 [14] Thm 3.1

5 60023 2,0,0,0,0,1,1,0,0,0,1 [14] Thm 3.1

5 60031 1,0,1,0,0,1,1,0,0,0,1 [14] Thm 3.1

5 60049 1,0,0,1,0,1,1,0,0,0,1 [14] Thm 3.1

5 60103 1,0,0,0,1,1,1,0,0,0,1 [14] Thm 3.1

5 60757 1,2,0,0,0,1,2,0,0,0,1 [22] Table 2 No.5

5 61481 2,0,0,0,0,1,0,1,0,0,1 [14] Thm 3.1

5 61483 1,1,0,0,0,1,0,1,0,0,1 [14] Thm 3.1

5 61489 1,0,1,0,0,1,0,1,0,0,1 [14] Thm 3.1

5 61507 1,0,0,1,0,1,0,1,0,0,1 [14] Thm 3.1

5 61561 1,0,0,0,1,1,0,1,0,0,1 [14] Thm 3.1

5 63685 1,0,2,0,0,1,0,2,0,0,1 [22] Table 2 No.5

5 65855 2,0,0,0,0,1,0,0,1,0,1 [14] Thm 3.1

5 65857 1,1,0,0,0,1,0,0,1,0,1 [14] Thm 3.1

5 65863 1,0,1,0,0,1,0,0,1,0,1 [14] Thm 3.1

5 65881 1,0,0,1,0,1,0,0,1,0,1 [14] Thm 3.1

5 65935 1,0,0,0,1,1,0,0,1,0,1 [14] Thm 3.1

5 72469 1,0,0,2,0,1,0,0,2,0,1 [22] Table 2 No.5

5 78977 2,0,0,0,0,1,0,0,0,1,1 [14] Thm 3.1

5 78979 1,1,0,0,0,1,0,0,0,1,1 [14] Thm 3.1

5 78985 1,0,1,0,0,1,0,0,0,1,1 [14] Thm 3.1

5 79003 1,0,0,1,0,1,0,0,0,1,1 [14] Thm 3.1

5 79055 2,2,2,2,0,1,0,0,0,1,1 [22] Thm 3.10

5 79057 1,0,0,0,1,1,0,0,0,1,1 [14] Thm 3.1

5 98821 1,0,0,0,2,1,0,0,0,2,1 Thm 2.2.2

5 118591 1,2,0,0,0,2,0,0,0,0,2 [22] Table 2 No.4

5 158117 2,1,0,0,2,2,0,0,0,2,2 [14] Thm 3.2

5 176659 1,2,2,2,2,0,2,2,2,2,2 [22] Prop 3.2 (ii)

5 474349 1,1,1,0,0,2,2,0,0,0,2,2 [14] Thm 3.2

5 513875 2,0,1,0,2,2,2,0,0,2,2,2 Thm 2.2.1

5 766661 2,1,2,2,2,1,1,2,2,2,0,1,1 [14] Thm 3.6

5 1121443 1,2,2,2,2,0,2,2,2,2,0,0,2 [14] Thm 3.2

5 1541623 1,1,0,1,0,2,2,2,0,0,2,2,2 [14] Thm 3.2

5 9565937 2,2,2,2,2,2,2,2,2,2,2,2,2,2,1 [22] Prop 3.1
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Table 2.1 (Continued)

e n 3-adic digits of n reference

6 530711 2,2,2,2,2,2,1,2,2,2,2,2 [22] Prop 3.2 (i)

6 532175 2,1,0,0,0,0,1,0,0,0,0,0,1 [14] Thm 3.1

6 532183 1,1,1,0,0,0,1,0,0,0,0,0,1 [14] Thm 3.1

6 532189 1,0,2,0,0,0,1,0,0,0,0,0,1 [14] Thm 3.1

6 532199 2,0,0,1,0,0,1,0,0,0,0,0,1 [14] Thm 3.1

6 532253 2,0,0,0,1,0,1,0,0,0,0,0,1 [14] Thm 3.1

6 532261 1,0,1,0,1,0,1,0,0,0,0,0,1 [14] Thm 3.1

6 532279 1,0,0,1,1,0,1,0,0,0,0,0,1 [14] Thm 3.1

6 532423 1,0,1,0,0,1,1,0,0,0,0,0,1 [14] Thm 3.1

6 532495 1,0,0,0,1,1,1,0,0,0,0,0,1 [14] Thm 3.1

6 532901 2,0,0,0,0,0,2,0,0,0,0,0,1 [14] Thm 3.1

6 532903 1,1,0,0,0,0,2,0,0,0,0,0,1 [14] Thm 3.1

6 532927 1,0,0,1,0,0,2,0,0,0,0,0,1 [14] Thm 3.1

6 532981 1,0,0,0,1,0,2,0,0,0,0,0,1 [14] Thm 3.1

6 534359 2,0,0,0,0,0,1,1,0,0,0,0,1 [14] Thm 3.1

6 534367 1,0,1,0,0,0,1,1,0,0,0,0,1 [14] Thm 3.1

6 536551 1,2,0,0,0,0,1,2,0,0,0,0,1 [22] Table 2 No.5

6 538735 1,1,0,0,0,0,1,0,1,0,0,0,1 [14] Thm 3.1

6 538741 1,0,1,0,0,0,1,0,1,0,0,0,1 [14] Thm 3.1

6 538813 1,0,0,0,1,0,1,0,1,0,0,0,1 [14] Thm 3.1

6 538975 1,0,0,0,0,1,1,0,1,0,0,0,1 [14] Thm 3.1

6 551855 2,0,0,0,0,0,1,0,0,1,0,0,1 [14] Thm 3.1

6 551935 1,0,0,0,1,0,1,0,0,1,0,0,1 [14] Thm 3.1

6 571591 1,0,0,2,0,0,1,0,0,2,0,0,1 [22] Table 2 No.5

6 591221 2,0,0,0,0,0,1,0,0,0,1,0,1 [14] Thm 3.1

6 591229 1,0,1,0,0,0,1,0,0,0,1,0,1 [14] Thm 3.1

6 591247 1,0,0,1,0,0,1,0,0,0,1,0,1 [14] Thm 3.1

6 591463 1,0,0,0,0,1,1,0,0,0,1,0,1 [14] Thm 3.1

6 650431 1,0,0,0,2,0,1,0,0,0,2,0,1 Thm 2.2.2

6 709327 1,0,1,0,0,0,1,0,0,0,0,1,1 [14] Thm 3.1

6 709399 1,0,0,0,1,0,1,0,0,0,0,1,1 [14] Thm 3.1

6 709559 2,2,2,2,2,0,1,0,0,0,0,1,1 [22] Thm 3.10

6 1419125 2,1,0,0,0,2,2,0,0,0,0,2,2 [14] Thm 3.2

6 1592863 1,2,2,2,2,2,0,2,2,2,2,2,2 [22] Prop 3.2 (ii)

6 4612151 2,0,1,0,0,2,2,2,0,0,0,2,2,2 Thm 2.2.1

6 6905813 2,1,2,2,2,2,1,1,2,2,2,2,0,1,1 [14] Thm 3.6

6 10095919 1,2,2,2,2,2,0,2,2,2,2,2,0,0,2 [14] Thm 3.2

6 19657477 1,0,2,2,2,2,0,0,2,2,2,2,0,0,1,1 [14] Thm 3.2

6 258280325 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1 [22] Prop 3.1
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3 Desirable Triples of the Form (qa − qb − 1, e; q)†

In this chapter, we study desirable triples (n, e; q), where n is of the form qa− qb− 1.

From our initial computer search we noticed that gn,q is always a PP of Fq2 when

base q digits of n are (q − 1, q − 1, q − 2, q − 1). These observations motivated us to

discover all desirable triples (n, 2; 5) where the base 5 digits of n are all 4 except only

one being 3. Table 3.1 contains all such desirable triples when q = 5 and e = 2 with

their corresponding a and b values.

Table 3.1: Desirable triples (5a − 5b − 1, 2; q), a, b ≥ 0

n base 5 digits of n a b

599 4 4 3 4 4 2

14999 4 4 4 4 3 4 6 4

15599 4 4 3 4 4 4 6 2

15619 4 3 4 4 4 4 6 1

74999 4 4 4 4 4 3 4 7 5

374999 4 4 4 4 4 4 3 4 8 6

389999 4 4 4 4 3 4 4 4 8 4

390599 4 4 3 4 4 4 4 4 8 2

390619 4 3 4 4 4 4 4 4 8 1

1949999 4 4 4 4 4 3 4 4 4 9 5

7812499 4 4 4 4 4 4 4 4 4 3 10 9

These results clearly indicated that the form n = qa − qb − 1 is special. As

a result, a seperate computer search was conducted for this type of desirable triples

only.

†Portions of this chapter are taken from [14] which has been published in the journal “Finite Fields and
Their Applications”.
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This chapter is organized as follows: In Section 3.1, we discuss the case b = 0

and present results that explain desirable triples when e > 2. Section 3.2 focuses on

desirable triples (qa − qb − 1, 2; q). All desirable triples (qa − qb − 1, 2; q), q ≤ 97, 0 <

b < a < 2p, that are not covered by Corollary 3.1.2 and Theorems 3.1.3, 3.2.1, 3.2.2

are included in Table 3.2 that can be found at the end of this chapter. Theorem 3.2.7

explains some desirable triples in Table 3.2. But in many other cases, no theoretic

explanation of the computer results in known.

Three conjectures are stated in this chapter. Conjecture 3.1.1 is related to

Payne’s Theorem when q is even. Conjecture 3.1.4 states that there are no other

cases when e > 2 except the cases explained by Corollary 3.1.2 and Theorem 3.1.3.

Conjecture 3.2.6 predicts several classes of permutation binomials of Fq2 .

Recall that Sa = x + xq + · · ·+ xq
a−1

for every integer a ≥ 0.

3.1 The Polynomial gqa−qb−1,q

Assume n > 0 and n ≡ qa − qb − 1 (mod qpe − 1) for some integers a, b ≥ 0. If a = 0

or b, then n ∼(e,q) q
pe − 2, where (qpe−2, e; q) is desirable if and only if q > 2 [22,

Proposition 3.2 (i)]. If b = 0 and a > 0, we have n ≡ qa − 2 (mod qpe − 1). By

Proposition 1.1.1 and Lemma 1.1.3,

gqa−2,q =
1

x
(gqa+q−2,q − gqa−1,q)

=
1

x

[
−1− 1

x
(gqa+q−1,q − gqa,q)

]
=

1

x

(
−1 +

Sa
x

)
=
Sqa−1
x2

= xq−2 + xq
2−2 + · · ·+ xq

a−1−2.

(3.1.1)

For which a, e and q is gqa−2,q a PP of Fqe? The complete answer is not known. We

have the following conjecture.
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Conjecture 3.1.1 Let e ≥ 2 and 2 ≤ a < pe. Then (qa − 2, e; q) is desirable if and

only if

(i) a = 3 and q = 2, or

(ii) a = 2 and gcd(q − 2, qe − 1) = 1.

Note. When q is even,

gqa−2,q =
(x 1

2
q1 + x

1
2
q2 + · · ·+ x

1
2
qa−1

x

)2
,

and the claim of the conjecture follows from Payne’s Theorem which says that the

linearized polynomials f(x) ∈ F2n [x] such that f(x) and f(x)/x are permutations

of F2n and F∗2n respectively, are exactly of the form f(x) = ax2
k

with a ∈ F∗2n and

gcd(k, n) = 1 [19, §8.5], [20, 35, 36].

For a general q, the “if” part is obvious. So for the conjecture, one only has to prove

that if q is odd, e ≥ 2, and a > 2, then (qa − 2, e; q) is not desirable.

Now assume n > 0 and n ≡ qa− qb− 1 (mod qpe− 1), where 0 < a, b < pe and

a 6= b. If a < b, we have

n ∼(e,q) q
pe−bn ≡ qpe−b(qa − qb − 1) ≡ qpe+a−b − qpe−b − 1 (mod qpe − 1),

where 0 < pe− b < pe+ a− b < pe. Therefore we may assume 0 < b < a < pe.

By (1.1.9), we have

Sbgqa−qb−1,q = gqa−1,q − gqa−qb,q

= gqa−1,q − (gqa−b−1,q)
qb

= −Sa
x

+
(Sa−b

x

)qb
= −

Sa − Sq
b

a−b

x
+
( 1

xq
b −

1

x

)
Sq

b

a−b

= −Sb
x
− Sqb − Sb

xq
b+1

Sq
b

a−b.
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So

gqa−qb−1,q = −1

x
−

(Sq−1b − 1)Sq
b

a−b

xq
b+1

. (3.1.2)

(Note that (3.1.2) also holds for b = 0; see (3.1.1).) Assume e ≥ 2. Write

a− b = a0 + a1e, b = b0 + b1e,

where a0, a1, b0, b1 ∈ Z and 0 ≤ a0, b0 < e. Then from (3.1.2) we have

gqa−qb−1,q ≡ −xq
e−2 − xq

e−qb0−2(a1Se + Sq
b0

a0
)
(
(b1Se + Sb0)

q−1 − 1
)

(mod xq
e − x).

(3.1.3)

Corollary 3.1.2 We have

gq2−q−1,q = −xq−2.

In particular, (q2−q−1, e; q) is desirable if and only if q > 2 and gcd(q−2, qe−1) = 1.

Proof. It follows from (3.1.2).

The following theorem is a generalization of [22, Proposition 3.2 (i)].

Theorem 3.1.3 Assume e ≥ 2. Let 0 < b < a < pe. Then

gqa−qb−1,q ≡ −xq
e−2 (mod xq

e − x) (3.1.4)

if and only if a ≡ b ≡ 0 (mod e). In particular, if 0 < b < a < pe, and a ≡ b ≡ 0

(mod e), then (qa − qb − 1, e; q) is a desirable triple.

Proof. (⇐) In the notation of (3.1.3), we have a0 = b0 = 0 and 0 < b1 < p. So

gqa−qb−1,q ≡ −xq
e−2 − xq

e−3a1Se
(
(b1Se)

q−1 − 1
)

(mod xq
e − x)

= −xqe−2 − xq
e−3a1Se(S

q−1
e − 1)

= −xqe−2 − xq
e−3a1(S

q
e − Se)

≡ −xqe−2 (mod xq
e − x).

(3.1.5)
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(⇒) Assume (3.1.4) holds. Then by (3.1.2),

(xq
b − x)Sq

b

a−b = (Sqb − Sb)S
qb

a−b ≡ 0 (mod xq
e − x).

For f ∈ Fq[x], denote {x ∈ Fq : f(x) = 0} by V (f), where Fq is the algebraic closure of

Fq. Then V (xq
e − x) ⊂ V (xq

b − x)∪V (Sa−b), i.e., Fqe ⊂ Fqb ∪V (Sa−b). Since V (Sa−b)

is a vector space over Fq, we must have Fqe ⊂ Fqb or Fqe ⊂ V (Sa−b). However, since

0 < a < pe,

Sa−b = Sa1e+a0 ≡ a1Se + Sa0 6≡ 0 (mod xq
e − x).

So we must have Fqe ⊂ Fqb . Hence b ≡ 0 (mod e). Now by (3.1.3) and the calculation

in (3.1.5), we have

Sa0(S
q−1
e − 1) ≡ 0 (mod xq

e − x). (3.1.6)

If a0 > 0, then

degSa0(S
q−1
e − 1) = (q − 1)qe−1 + qa0−1 = qe − qe−1 + qa0−1 < qe,

which is a contradiction to (3.1.6). So we must have a0 = 0, i.e., a ≡ 0 (mod e).

Remark. If (qa − qb − 1, 2; q) is desirable, where 0 < b < a < 2p and b ≡ 0 (mod 2),

then we must have a ≡ 0 (mod 2). Otherwise, with e = 2, a0 = 1, b0 = 0 in (3.1.3),

we have

gqa−qb−1,q ≡ −xq
2−2 − xq

2−3(a1S2 + x)
(
(b1S2)

q−1 − 1
)

(mod xq
2 − x).

Then gqa−qb−1,q(x) = 0 for every x ∈ Fq2 with Trq2/q(x) = 0, which is a contradiction.

The results of our computer search suggest that when e ≥ 3, the only desirable

triples (qa − qb − 1, e; q), 0 < b < a < pe, are those given by Corollary 3.1.2 and

Theorem 3.1.3.

Conjecture 3.1.4 Let e ≥ 3 and n = qa − qb − 1, 0 < b < a < pe. Then (n, e; q) is
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desirable if and only if

(i) a = 2, b = 1, and gcd(q − 2, qe − 1) = 1, or

(ii) a ≡ b ≡ 0 (mod e).

3.2 Desirable Triples of the Form (qa − qb − 1, 2; q)

While Corollary 3.1.2 and Theorem 3.1.3 cover all known desirable triples (qa − qb −

1, e; q) when e ≥ 3, Conjecture 3.1.4 states that there are no other cases. In contrast

the case e = 2 seems to be chaotic, and of course very interesting too; see Table 3.2.

For the rest of this chapter, we will focus on desirable triples of the form (qa − qb −

1, 2; q), 0 < b < a < 2p.

3.2.1 The Case b = p

Theorem 3.2.1 Let p be an odd prime and q a power of p.

(i) Fq2 \ Fq consists of the roots of (x− xq)q−1 + 1.

(ii) Let 0 < i ≤ 1
2
(p− 1) and n = qp+2i − qp − 1. Then

gn,q(x) =


(2i− 1)xq−2 if x ∈ Fq,

2i− 1

x
+

2i

xq
if x ∈ Fq2 \ Fq.

(iii) For the n in (ii), (n, 2; q) is desirable if and only if 4i 6≡ 1 (mod p).

Proof. (i) We have

(xq − x)
[
(x− xq)q−1 + 1

]
= −(x− xq)q + xq − x = xq

2 − x.

Hence the claim.
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(ii) Let e = 2, a = p + 2i, b = p. In the notation of (3.1.3), a0 = 0, a1 = i,

b0 = 1, b1 = p−1
2

. Thus

gn,q ≡ −xq
2−2 − ixq2−q−2S2

[(
−1

2
S2 + x

)q−1
− 1
]

(mod xq
2 − x)

= −xq2−2 − ixq2−q−2(x + xq)
[
(x− xq)q−1 − 1

]
.

When x ∈ Fq, x− xq = 0, so

gn,q(x) = −xq2−2 + ixq
2−q−2(x+ xq) = (2i− 1)xq−2.

When x ∈ Fq2 \ Fq, by (i), (x− xq)q−1 = −1. Thus

gn,q(x) = −x−1 + 2ixq
2−q−2(x+ xq)

= −x−1 + 2ixq
2−q−1 + 2ixq

2−2

= (2i− 1)x−1 + 2ix−q.

(iii) Since 0 < 2i − 1 < p, (2i − 1)xq−2 permutes Fq. We claim that (2i −

1)x−1 + 2ix−q maps Fq2 \ Fq to itself. In fact, for x ∈ Fq2 \ Fq,[2i− 1

x
+

2i

xq
−
(2i− 1

x
+

2i

xq

)q]q−1
=
(
−1

x
+

1

xq

)q−1
=
(x− xq
xq+1

)q−1
= −1

since (x− xq)q−1 = −1.

Therefore, gn,q is a PP of Fq2 if and only if (2i−1)x−1 +2ix−q is 1-1 on Fq2 \Fq,

i.e., if and only if (2i − 1)x + 2ixq is 1-1 on Fq2 \ Fq. So, it remains to show that

(2i− 1)x + 2ixq is 1-1 on Fq2 \ Fq if and only if 4i 6≡ 1 (mod p).

(⇐) Assume 4i 6≡ 1 (mod p). We claim that (2i − 1)x + 2ixq is a PP of Fq2 .

Otherwise, there exists 0 6= x ∈ Fq2 such that (2i−1)x+2ixq = 0. Then xq−1 = −2i−1
2i

.

Hence

1 = (xq−1)q+1 =
(
−2i− 1

2i

)q+1

=
(2i− 1

2i

)2
.

So (2i− 1)2 ≡ (2i)2 (mod p), i.e., 4i− 1 ≡ 0 (mod p), which is a contradiction.
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(⇒) Assume 4i ≡ 1 (mod p). Then (2i − 1)x + 2ixq = 2i(xq − x), which is

clearly not 1-1 on Fq2 \ Fq.

Theorem 3.2.2 Let p be an odd prime and q a power of p.

(i) Let 0 < i ≤ 1
2
(p− 1) and n = qp+2i−1 − qp − 1. Then

gn,q(x) =


2(i− 1)xq−2 if x ∈ Fq,

2i− 1

x
+

2i− 2

xq
if x ∈ Fq2 \ Fq.

(ii) For the n in (i), (n, 2; q) is desirable if and only if i > 1 and 4i 6≡ 3 (mod p).

Proof. (i) Let e = 2, a = p + 2i − 1, b = p. In the notation of (3.1.3), a0 = 1,

a1 = i− 1, b0 = 1, b1 = p−1
2

. Thus

gn,q ≡ −xq
2−2 − xq

2−q−2((i− 1)S2 + xq)
[(
−1

2
S2 + x

)q−1
− 1
]

(mod xq
2 − x)

= −xq2−2 − xq
2−q−2(i(x + xq)− x)

[
(x− xq)q−1 − 1

]
.

When x ∈ Fq, x− xq = 0, so

gn,q(x) = −xq2−2 + xq
2−q−1(2i− 1) = 2(i− 1)xq−2.

When x ∈ Fq2 \ Fq, by (i), (x− xq)q−1 = −1. Thus

gn,q(x) = −x−1 + 2xq
2−q−2((i− 1)x+ ixq)

= −x−1 + 2(i− 1)xq
2−q−1 + 2ixq

2−2

= (2i− 1)x−1 + (2i− 2)x−q.

(ii) Since 0 < 2i−2 < p, 2(i−1)xq−2 permutes Fq. We claim that (2i−1)x−1 +

(2i− 2)x−q maps Fq2 \ Fq to itself. In fact, for x ∈ Fq2 \ Fq,[2i− 1

x
+

2i− 2

xq
−
(2i− 1

x
+

2i− 2

xq

)q]q−1
=
(1

x
− 1

xq

)q−1
=
(x− xq
xq+1

)q−1
= −1
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since (x− xq)q−1 = −1.

Therefore, gn,q is a PP of Fq2 if and only if (2i− 1)x−1 + (2i− 2)x−q is 1-1 on

Fq2 \ Fq, i.e., if and only if (2i− 1)x + (2i− 2)xq is 1-1 on Fq2 \ Fq. So, it remains to

show that (2i− 1)x + (2i− 2)xq is 1-1 on Fq2 \ Fq if and only if 4i 6≡ 3 (mod p).

(⇐) Assume 4i 6≡ 3 (mod p). We claim that (2i− 1)x + (2i− 2)xq is a PP of

Fq2 . Otherwise, there exists 0 6= x ∈ Fq2 such that (2i − 1)x + (2i − 2)xq = 0. Then

xq−1 = −2i−1
2i−2 . Hence

1 = (xq−1)q+1 =
(
−2i− 1

2i− 2

)q+1

=
(2i− 1

2i− 2

)2
.

So (2i− 1)2 ≡ (2i− 2)2 (mod p), i.e., 4i− 3 ≡ 0 (mod p), which is a contradiction.

(⇒) Assume 4i ≡ 3 (mod p). Then (2i− 1)x + (2i− 2)xq = (2i− 2)(xq − x),

which is clearly not 1-1 on Fq2 \ Fq.

Proposition 3.2.3 Let p be an odd prime and q = pk. Let i > 0. If i is even,

gqp+i−qp−1,q ≡ −xq
2−2 − ixq−2

q−2∑
j=0

x(q−1)j (mod xq
2 − x).

If i is odd,

gqp+i−qp−1,q ≡ −xq
2−q−1 − ixq−2

q−2∑
j=0

x(q−1)j (mod xq
2 − x).

Proof. Let n = qp+i− qp− 1. Throughout the proof, “≡” means “≡ (mod xq
2 −x)”.
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Case 1. Assume that i is even. Let e = 2, a = p + i, b = p. In the notation

of (3.1.3), a0 = 0, a1 = i
2
, b0 = 1, b1 = p−1

2
. By (3.1.3), we have

gn,q ≡ −xq
2−2 − xq

2−q−2 i

2
S2 ·

[(
−1

2
S2 + S1

)q−1
− 1
]

= −xq2−2 − i

2
xq

2−q−2(x + xq)
(
(x− xq)q−1 − 1

)
= −xq2−2 − i

2
xq

2−q−1(1 + xq−1)
(
xq−1(1− xq−1)q−1 − 1

)
.

Note that

(1− xq−1)q−1 =
1− x(q−1)q

1− xq−1
=

q−1∑
j=0

x(q−1)j.

So

gn,q ≡ −xq
2−2 − i

2
xq

2−q−1(1 + xq−1)
[
xq−1

q−1∑
j=0

x(q−1)j − 1
]

= −xq2−2 − i

2
xq

2−q−1
[ q∑
j=1

x(q−1)j +

q+1∑
j=2

x(q−1)j − 1− xq−1
]

= −xq2−2 − i

2
xq

2−q−1 · 2
q∑
j=2

x(q−1)j

= −xq2−2 − ixq−2
q−2∑
j=0

x(q−1)j.

Case 2. Assume that i is odd. In the notation of (3.1.3), a0 = 1, a1 = i−1
2

,

b0 = 1, b1 = p−1
2

. By (3.1.3),

gn,q ≡ − xq
2−2 − xq

2−q−2
(i− 1

2
S2 + Sq1

)[(
−1

2
S2 + S1

)q−1
− 1
]

= − xq
2−2 − xq

2−q−2
(
−1

2
S2 + Sq1

)[(
−1

2
S2 + S1

)q−1
− 1
]

− i

2
xq

2−q−2S2 ·
[(
−1

2
S2 + S1

)q−1
− 1
]
.
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In the above,

− xq
2−2 − xq

2−q−2
(
−1

2
S2 + Sq1

)[(
−1

2
S2 + S1

)q−1
− 1
]

= − xq
2−2 − xq

2−q−2 1

2
(xq − x)

(
(x− xq)q−1 − 1

)
= − xq

2−2 − 1

2
xq

2−q−2((xq − x)q − (xq − x)
)

≡ − xq
2−2 − 1

2
xq

2−q−2 · 2(x− xq)

= − xq
2−q−1,

and, by the calculation in Case 1,

− i
2
xq

2−q−2S2 ·
[(
−1

2
S2 + S1

)q−1
− 1
]
≡ −ixq−2

q−2∑
j=0

x(q−1)j.

So

gn,q ≡ −xq
2−q−1 − ixq−2

q−2∑
j=0

x(q−1)j.

3.2.2 The Case b = 1

Theorem 3.2.4 Let q = 2s, n = q3 − q − 1.

(i) For x ∈ Fq2,

gn,q(x) =

0 if x = 0,

xq−2 + Trq2/q(x
−1) if x 6= 0.

(ii) gn,q is a PP of Fq2 if and only if s is even.
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Proof. (i) It is obvious that g(0) = 0. Let 0 6= x ∈ Fq2 . By (3.1.3) (with a0 = 0,

a1 = 1, b0 = 1, b1 = 0),

gn,q(x) = x−1 + x−q−1S2(x)(xq−1 + 1)

= x−1 + x−q−1(x+ xq)(xq−1 + 1)

= x−1 + xq−2 + x−q

= xq−2 + Trq2/q(x
−1).

(ii) 1◦ We show that for every c ∈ F∗q2 , the equation

xq−2 + x−1 + x−q = c (3.2.7)

has at most one solution x ∈ F∗q2 .

Assume that x ∈ F∗q2 is a solution of (3.2.7). Then

cx−q = x−2 + x−q−1 + x−2q = Nq2/q(x
−1) + Trq2/q(x

−2) ∈ Fq.

Let t = c−qx = (cx−q)−q ∈ F∗q. Then x = tcq. Making this substitution in (3.2.7), we

have
1

t

(
cq(q−2) + c−q + c−1

)
= c.

So

t = c−2 + c−2q + c−q−1.

Hence x is unique.

2◦ Assume s is even. We show that

xq−2 + Trq2/q(x
−1) = 0 (3.2.8)

has no solution in F∗q2 . Assume to the contrary that x ∈ F∗q2 is a solution of (3.2.8).

Then xq−2 ∈ Fq. Since s is even, we have gcd(q − 2, q2 − 1) = 1. So x ∈ Fq. Then

Trq2/q(x
−1) = 0, and xq−2 = 0, which is a contradiction.
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3◦ Assume s is odd. We show that (3.2.8) has a solution in F∗q2 . Let x ∈ F22\F2.

Then x2 + x+ 1 = 0 and x3 = 1. So

xq−2 + Trq2/q(x
−1) = xq−2 + x−1 + x−q

= 1 + x2 + x (since q ≡ 2 (mod 3))

= 0.

Theorem 3.2.5 (i) Assume q > 2. We have

gq2i−q−1,q ≡ (i− 1)xq
2−q−1 − ixq−2 (mod xq

2 − x).

(ii) Assume that q is odd. Then xq
2−q−1 + xq−2 is a PP of Fq2 if and only if q ≡ 1

(mod 4).

(iii) Assume that q is odd. Then (qp+1 − q − 1, 2; q) is desirable if and only if q ≡ 1

(mod 4).

Proof. In the notation of (3.1.3), we have e = 2, a = 2i, b = 1, a0 = 1, a1 = i − 1,

b0 = 1, b1 = 0. Thus

gq2i−q−1,q ≡ −xq
2−2 − xq

2−q−2((i− 1)S2 + xq
)
(xq−1 − 1) (mod xq

2 − x)

= −xq2−2 − xq
2−q−2((i− 1)x + ixq

)
(xq−1 − 1)

= −xq2−2 − xq
2−q−2(−xq − (i− 1)x + ix2q−1

)
≡ (i− 1)xq

2−q−1 − ixq−2 (mod xq
2 − x).

(ii) (⇐) Let f = xq
2−q−1 + xq−2. Then

f(x) =

0 if x = 0,

x−q + xq−2 if x ∈ F∗q2 .
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1◦ We show that for every c ∈ F∗q2 , the equation

x−q + xq−2 = c (3.2.9)

has at most one solution x ∈ F∗q2 .

Assume x ∈ F∗q2 is a solution of (3.2.9). Then

cx−q = x−2q + x−2 = Trq2/q(x
−2) ∈ Fq.

Let t = c−qx = (cx−q)−q ∈ F∗q. Then x = tcq. So (3.2.9) becomes

1

t

(
c−1 + cq(q−2)

)
= c.

Thus t = c−2 + c−2q. Hence x is unique.

2◦ We show that x−q + xq−2 = 0 has no solution x ∈ F∗q2 .

Assume that x ∈ F∗q2 is a solution. Then x2q−2 = −1. Since 1
2
(q + 1) is odd,

we have −1 = (x2q−2)
1
2
(q+1) = xq

2−1 = 1, which is a contradiction.

(⇒) Assume to the contrary that q ≡ −1 (mod 4). We show that x−q+xq−2 =

0 has a solution x ∈ F∗q2 . Since 4(q−1) | q2−1, there exists x ∈ F∗q2 with o(x) = 4(q−1).

Then x2(q−1) = −1, i.e., x−q + xq−2 = 0.

(iii) It follows from (i) and (ii).

We conclude this section with a conjecture that grew out of Theorem 3.2.5.

Conjecture 3.2.6 Let f = xq−2 + txq
2−q−1, t ∈ F∗q. Then f is a PP of Fq2 if and

only if one of the following occurs:

(i) t = 1, q ≡ 1 (mod 4);

(ii) t = −3, q ≡ ±1 (mod 12);

(iii) t = 3, q ≡ −1 (mod 6).
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3.2.3 The Case a = p+ i+ 1 and b = 2i+ 1

Theorem 3.2.7 Let p be an odd prime and q a power of p. Let 0 ≤ i ≤ p − 2 and

n = qp+i+1 − q2i+1 − 1. If

(
2i+ 1

q

)
=

1 if i is odd,

(−1)
q−1
2 if i is even,

(3.2.10)

where

(
a

b

)
is the Jacobi symbol, then (qp+i+1 − q2i+1 − 1, 2; q) is desirable.

Proof. Throughout the proof, “≡” means “≡ (mod xq
2 − x)”.

Let e = 2, a = p+ i+ 1, b = 2i+ 1.

Case 1: i is odd.

In the notation of (3.1.3), a0 = 0, a1 = p−i
2
, b0 = 1, b1 = i.

Write g = gqp+i+1−q2i+1−1,q.

g ≡ −xq2−2 − xq2−q−2(p− i
2

S2)((iS2 + S1)
q−1 − 1) (mod xq

2 − x)

= −xq2−2 +
i

2
xq

2−q−2(x+ xq)[((i+ 1)x+ ixq)q−1 − 1].

Clearly, g(0) = 0. When x ∈ F∗q2 ,

g(x) = −x−1 +
i

2
x−q−1(x+ xq)

((i+ 1)x+ ixq)q − ((i+ 1)x+ ixq)

(i+ 1)x+ ixq
.

Note that (i+ 1)x+ ixq 6= 0.

g(x) = −x−1 +
i

2
(x−q + x−1)

xq − x
(i+ 1)x+ ixq

= −x−1 +
i

2
(x−q + x−1)

x−1 − x−q

(i+ 1)x−q + ix−1

= y +
i

2
(yq + y)

yq − y
(i+ 1)yq + iy

(y = −x−1)

=
iy2q + 2(i+ 1)yq+1 + iy2

2(i+ 1)yq + 2iy
.
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Let w = 2(i+ 1)yq + 2iy. Then y =
1

2(2i+ 1)
((i+ 1)wq − iw). (Here 2(i+ 1)xq + 2ix

is a PP of Fq2 , and
1

2(2i+ 1)
((i+ 1)xq − ix) is its inverse PP.) So

g(x) =
1

(4i+ 2)2
iu2q + 2(i+ 1)uq+1 + iu2

w
,

where u = (i+ 1)wq − iw.

The proof will be complete if we can show that for c ∈ Fq2 ,

iu2q + 2(i+ 1)uq+1 + iu2

w
= c, (3.2.11)

i.e.,

i((i+ 1)wq − iw)2q + 2(i+ 1)((i+ 1)wq − iw)q+1 + i((i+ 1)wq − iw)2

w
= c (3.2.12)

has at most one solution w ∈ F∗q2 if c 6= 0 and has no solution w ∈ F∗q2 if c = 0.

First assume c 6= 0. Let t = wc. By (3.2.12), t ∈ Fq. Then (3.2.12) becomes

it2v2q + 2t2(i+ 1)vq+1 + it2v2

tc−1
= c,

where v = (i+ 1)c−q − ic−1. So

t =
1

iv2q + 2(i+ 1)vq+1 + iv2
,

which is unique. Hence w is unique.

Now assume c = 0.

Assume to the contrary that (3.2.12) has a solution w ∈ F∗q2 . Then

i((i+ 1)wq − iw)2q−2 + 2(i+ 1)((i+ 1)wq − iw)q−1 + i = 0.
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Let z = ((i+ 1)wq − iw)q−1 ∈ F∗q2 . Then

iz2 + 2(i+ 1)z + i = 0. (3.2.13)

Since i is odd 2i+ 1 is a square in Fq. So (3.2.13) implies that z ∈ Fq. Then we have

z2 = zq+1 = ((i+ 1)wq − iw)q
2−1 = 1. So z = ±1, which contradicts (3.2.13).

Case 2: i is even.

In the notation of (3.1.3), a0 = 1, a1 = p−i−1
2

, b0 = 1, b1 = i.

g ≡ −xq2−2 − xq2−q−2(p− i− 1

2
S2 + Sq1)((iS2 + x)q−1 − 1)

= −xq2−2 +
1

2
xq

2−q−2((i+ 1)x+ (i− 1)xq)[((i+ 1)x+ ixq)q−1 − 1].

Clearly, g(0) = 0. When x ∈ F∗q2 ,

g(x) = −x−1 +
1

2
x−q−1((i+ 1)x+ (i− 1)xq)

((i+ 1)x+ ixq)q − ((i+ 1)x+ ixq)

(i+ 1)x+ ixq
.

Note that (i+ 1)x+ ixq 6= 0.

g(x) = −x−1 +
1

2
((i+ 1)x−q + (i− 1)x−1)

xq − x
(i+ 1)x+ ixq

= −x−1 +
1

2
((i+ 1)x−q + (i− 1)x−1)

x−1 − x−q

(i+ 1)x−q + ix−1

= y +
1

2
((i+ 1)yq + (i− 1)y)

yq − y
(i+ 1)yq + iy

(y = −x−1)

=
(i+ 1)y2q + 2iyq+1 + (i+ 1)y2

2(i+ 1)yq + 2iy
.

Let w = 2(i+ 1)yq + 2iy. Then y =
1

2(2i+ 1)
((i+ 1)wq − iw). (Here 2(i+ 1)xq + 2ix

is a PP of Fq2 , and
1

2(2i+ 1)
((i+ 1)xq − ix) is its inverse PP.) So

g(x) =
1

(4i+ 2)2
(i+ 1)u2q + 2iuq+1 + (i+ 1)u2

w
,

where u = (i+ 1)wq − iw.
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The proof will be complete if we can show that for c ∈ Fq2 ,

(i+ 1)u2q + 2iuq+1 + (i+ 1)u2

w
= c, (3.2.14)

i.e.,

(i+ 1)((i+ 1)wq − iw)2q + 2i((i+ 1)wq − iw)q+1 + (i+ 1)((i+ 1)wq − iw)2

w
= c

(3.2.15)

has at most one solution w ∈ F∗q2 if c 6= 0 and has no solution w ∈ F∗q2 if c = 0.

Assume c 6= 0. Let t′ = wc. By (3.2.15), t′ ∈ Fq. Then (3.2.15) becomes

(i+ 1)t′2v2q + 2it′2vq+1 + (i+ 1)t′2v2

t′c−1
= c,

where v = (i+ 1)c−q − ic−1. So

t′ =
1

(i+ 1)v2q + 2ivq+1 + (i+ 1)v2
,

which is unique. Hence w is unique.

Now assume c = 0. Assume to the contrary that (3.2.15) has a solution w ∈ F∗q2 .

Then

(i+ 1)((i+ 1)wq − iw)2q−2 + 2i((i+ 1)wq − iw)q−1 + (i+ 1) = 0.

Let z = ((i+ 1)wq − iw)q−1 ∈ F∗q2 . Then

(i+ 1)z2 + 2iz + (i+ 1) = 0. (3.2.16)

Since i is even

(
2i+ 1

q

)
= (−1)

q−1
2 , i.e. −(2i + 1) is a square in Fq. So (3.2.16)

implies that z ∈ Fq. Then we have z2 = zq+1 = ((i+ 1)wq − iw)q
2−1 = 1. So z = ±1,

which contradicts (3.2.16).
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Table 3.2: Desirable triples (qa − qb − 1, 2; q), q ≤ 97, 0 < b < a < 2p, b odd, b 6= p,
(a, b) 6= (2, 1)

a b a b a b a b a b a b a b a b

q = 2 10 5 24 13 40 7 38 13 50 25 60 37 66 45
– – 13 11 25 1 40 33 40 7 51 27 61 39 67 47

25 15 41 35 40 17 52 37 62 1 71 35
q = 22 q = 72 26 1 42 37 40 31 54 33 63 43 73 59
3 1 6 1 27 19 43 39 41 3 57 7 64 11 74 27

8 1 28 21 45 13 41 19 58 41 64 45 74 61
q = 23 8 3 30 25 41 31 59 5 65 49 76 51
– – 9 3 33 5 q = 29 42 3 61 47 66 49 76 65

10 5 15 11 42 21 62 49 67 51 77 67
q = 24 12 5 q = 19 21 3 46 29 62 55 69 3 78 9
3 1 12 9 17 9 26 21 49 35 63 39 70 57 78 69

13 11 23 7 30 1 49 37 64 39 70 65 79 65
q = 25 25 11 31 19 49 43 64 53 71 59 80 47
– – q = 11 26 13 32 5 50 9 65 7 72 47 80 73

6 1 30 21 32 27 50 37 67 53 72 61 82 77
q = 26 10 1 30 23 33 7 51 39 69 63 77 33 83 79
3 1 13 3 31 17 34 5 55 41 70 65 78 73 85 19

17 13 31 23 34 9 55 47 71 67 80 5 85 59
q = 3 18 13 33 17 36 3 57 51 73 71 80 77 85 83
– – 19 15 34 29 36 13 58 53

20 5 35 9 41 23 59 13 q = 41 q = 43 q = 47
q = 32 20 17 36 5 42 25 60 5 12 7 20 11 18 3
3 1 36 33 44 1 60 57 31 1 21 11 20 9
4 1 q = 13 37 35 46 33 61 59 31 5 32 13 24 1
5 1 12 1 46 35 42 1 38 31 29 7

14 1 q = 23 47 35 q = 37 42 33 39 11 37 31
q = 33 15 3 10 7 52 19 19 15 44 5 46 5 44 21
– – 18 5 12 1 52 45 29 23 46 5 46 39 45 37

18 9 21 13 53 23 32 19 46 9 49 11 46 1
q = 5 19 5 22 1 54 49 34 21 49 29 51 15 49 3
6 1 22 17 25 3 55 51 36 1 52 21 55 23 50 5
8 1 25 23 26 5 56 5 38 1 53 1 58 29 50 29

27 21 56 53 38 15 53 23 58 41 51 7
q = 52 q = 17 32 17 57 15 39 3 54 25 59 31 54 13
4 1 11 1 34 21 41 7 55 33 60 33 54 51
6 1 15 7 35 31 q = 31 42 5 57 31 60 39 57 41
7 3 18 1 37 3 22 3 42 9 58 15 61 35 61 27
9 7 18 7 37 11 28 21 43 11 58 33 62 37 62 13

22 5 37 27 29 21 48 21 59 5 62 53 62 29
q = 7 22 9 39 31 35 7 48 45 60 27 65 61 64 33
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Table 3.1 (Continued)

a b a b a b a b a b a b a b a b

68 41 58 5 98 19 77 35 115 73 90 39 50 47 110 35
68 57 58 9 98 89 78 37 116 5 90 57 53 47 110 85
70 7 59 11 99 91 83 7 116 113 93 25 70 5 113 91
70 45 59 29 100 67 85 39 94 25 73 17 115 71
73 39 59 37 100 93 85 51 q = 61 94 65 74 13 116 29
73 51 60 13 101 95 87 35 38 33 97 73 74 57 116 97
75 55 61 15 102 97 90 61 52 39 98 51 75 15 117 23
76 33 62 17 103 37 90 81 59 51 98 73 77 19 118 23
76 57 63 57 103 55 91 63 60 1 99 75 79 23 118 101
77 59 66 25 103 99 92 65 62 1 100 67 85 35 119 23
77 65 67 43 105 11 94 69 62 49 100 77 85 47 119 61
77 67 68 29 94 71 63 3 101 91 85 69 119 103
79 63 71 11 q = 59 95 71 64 5 102 25 87 17 120 13
82 33 72 37 16 13 96 63 64 37 102 81 87 39 120 105
82 69 72 49 20 3 96 73 66 5 103 83 88 13 121 107
83 71 73 5 23 17 97 75 66 9 109 95 88 41 122 63
84 59 75 21 24 15 98 77 67 25 110 97 89 63 122 109
84 73 75 43 30 1 99 79 68 13 111 29 90 45 124 99
85 75 77 47 31 9 101 9 69 15 113 103 90 83 124 113
86 13 78 13 39 27 103 87 71 19 115 101 91 47 126 33
86 77 78 49 50 13 104 89 74 25 115 107 94 53 126 117
87 79 80 1 56 21 104 101 74 55 116 83 95 35 127 113
89 83 81 35 58 1 105 7 75 27 116 109 95 55 129 123
90 85 82 57 61 3 106 51 79 59 117 7 96 57 130 125
91 27 82 79 61 27 106 93 81 39 118 113 97 59 131 127

83 59 61 33 107 95 82 41 120 5 98 61 133 131
q = 53 85 63 63 7 108 83 84 45 120 117 98 77
27 23 88 13 66 13 108 97 84 79 121 119 99 77 q = 71
32 3 88 69 66 19 109 31 85 47 101 97 36 1
50 21 91 29 67 15 110 25 86 17 q = 67 102 31 70 1
51 43 92 23 69 19 110 101 86 49 40 17 102 69 23 3
54 1 92 77 73 27 113 107 87 39 43 11 103 71 53 3
57 7 94 81 76 33 114 109 89 35 48 31 109 83 73 3
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Table 3.1 (Continued)

a b a b a b a b a b a b a b

140 5 111 79 75 3 106 65 108 7 114 69 157 155
131 7 104 81 105 3 107 67 68 9 135 71
103 11 113 83 119 3 108 69 52 11 95 73 q = 34

78 13 113 85 69 5 109 71 85 11 118 77
95 13 114 85 78 5 92 75 125 11 146 81 3 1
47 15 115 87 98 7 111 75 129 11 121 83 4 1
79 15 120 87 78 9 112 77 43 13 100 85 5 1
80 17 117 91 128 15 113 79 135 13 122 85
81 19 118 93 137 15 114 81 121 15 123 87 q = 83
121 19 119 95 108 17 116 85 88 17 126 93 42 1
82 21 120 97 123 17 94 87 89 19 126 95 82 1
101 21 131 97 83 19 118 89 55 23 127 95 68 3
41 23 107 103 85 23 119 91 59 23 129 99 85 3
30 27 119 103 86 25 112 97 91 23 136 103 86 5
85 27 123 103 87 27 122 97 121 27 134 109 87 7
88 33 124 105 103 29 137 99 70 29 135 111 127 7
99 35 113 107 104 29 114 103 94 29 136 113 133 7
98 37 119 107 67 31 126 105 95 31 119 115 29 9
97 39 125 107 91 35 135 107 96 33 133 115 151 9
67 41 114 111 46 37 128 109 98 37 134 115 89 11
92 41 127 111 92 37 129 111 100 41 137 115 146 11
93 43 128 113 99 39 126 113 137 41 139 119 90 13
78 47 130 117 81 41 133 119 83 45 152 119 149 15
88 47 131 119 94 41 134 121 110 45 141 123 28 17
62 51 137 131 127 41 135 123 143 45 148 123 69 17
75 51 138 133 118 43 139 125 95 49 153 129 123 17
106 51 139 135 59 49 137 127 137 49 145 131 40 19
98 53 140 137 98 49 142 137 105 51 146 133 43 19
102 61 69 51 145 143 106 53 148 137 136 19
104 65 q = 73 101 55 107 55 151 137 80 21
106 69 102 57 q = 79 129 55 151 143 95 23
118 69 13 1 113 57 108 57 152 145 34 25
130 69 72 1 119 57 156 5 110 61 154 149 97 27
128 73 74 1 104 61 27 7 113 67 155 151 99 31
109 75 135 1 97 63 54 7 77 69 156 153 72 35
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Table 3.1 (Continued)

a b a b a b a b a b a b

112 35 142 117 71 17 152 83 174 169 58 45
95 37 128 119 98 17 132 85 176 173 121 47
127 37 143 119 133 17 151 85 122 49
109 39 132 121 155 19 155 85 q = 97 152 49
150 39 145 123 77 21 133 87 81 1 164 49
106 45 146 125 100 21 135 91 96 1 124 53
158 49 147 127 133 21 136 93 98 1 140 53
109 51 163 127 102 25 138 97 115 1 178 53
75 53 148 129 77 27 139 99 99 3 147 55
110 53 149 131 35 29 121 101 102 5 60 57
133 55 156 131 163 33 124 103 167 5 76 61
112 57 150 133 109 39 142 105 89 7 128 61
113 59 152 137 46 41 142 107 154 7 130 65
152 59 154 141 141 43 143 107 102 9 150 67
115 63 156 145 112 45 144 109 148 9 117 69
115 69 157 147 113 47 145 111 18 11 122 69
155 69 158 149 165 47 173 111 103 11 77 71
148 71 159 151 173 47 150 121 182 11 134 73
81 73 162 157 114 49 151 123 161 17 135 75
120 73 100 51 156 123 110 25 170 77
121 75 q = 89 92 53 159 123 50 27 137 79
95 77 41 1 116 53 149 125 111 27 138 81
126 85 90 1 117 55 152 125 158 27 105 83
127 87 134 1 139 55 132 127 53 29 140 85
154 87 139 1 170 55 154 129 113 31 133 87
110 89 92 5 118 57 155 131 114 33 142 89
128 89 94 5 102 61 156 133 74 35 143 91
131 95 176 5 123 67 154 137 115 35 144 93
149 95 151 7 150 67 159 139 138 35 145 95
132 97 166 7 124 69 169 141 130 37
133 99 94 9 125 71 168 143 98 39
134 101 95 11 161 71 166 153 123 39
115 105 44 13 126 73 168 157 183 41
136 105 127 13 129 79 170 161 81 43
139 111 49 15 130 81 173 167 119 43
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4 The Polynomial gn,q when q is Even†

This chapter is organized as follows: Section 4.1 mostly discusses the case when

the base q weight of n is q + 1. We recall that for given integers d > 1 and a =

a0d
0 + · · · + atd

t, 0 ≤ ai ≤ d − 1, the base d weight of a is wd(a) = a0 + · · · + at. In

Section 4.2, we further study the permutation behavior of gn,q in even characteristic

when the base q weight of n is arbitrary. Examples are given in each section that

explain many desirable triples in Table 4.1 that can be found at the end of this

chapter which contains all desirable triples (n, e; 4) with e ≤ 6 and w4(n) > 4.

Even though this chapter primarily deals with the case of even characteristic

we point out to the reader that in Lemmas 4.2.1, 4.2.5, 4.2.17 and Theorem 4.2.6,

4.2.11, 4.2.12, 4.2.19 the characteristic is assumed to be arbitrary.

4.1 Families of Desirable Triples with wq(n) = q + 1

Theorem 4.1.1 Let q ≥ 4 be even, and let

n = 1 + qa1 + qb1 + · · ·+ qaq/2 + qbq/2 ,

where ai, bi ≥ 0 are integers. Then

gn,q =
∑
i

SaiSbi +
∑
i<j

(Sai + Sbi)(Saj + Sbj).

†Portions of this chapter are taken from [14] which has been published in the journal “Finite Fields and
Their Applications”.
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Proof. We write gn for gn,q. By (1.1.10) we have

gn = g
1+2qa1+qa2+qb2+···+qaq/2+qbq/2 + (Sb1 − Sa1)g1+qa1+qa2+qb2+···+qaq/2+qbq/2

= g
1+2qa1+qa2+qb2+···+qaq/2+qbq/2

+ (Sa1 + Sb1)(Sa1 + Sa2 + Sb2 + · · ·+ Saq/2 + Sbq/2)

= · · · · · ·

= g1+2qa1+···+2q
aq/2 +

q/2∑
i=1

(Sai + Sbi)
(
Sai +

q/2∑
j=i+1

(Saj + Sbj)
)

=S2
a1

+ · · ·+ S2
aq/2

+

q/2∑
i=1

(Sai + Sbi)
(
Sai +

q/2∑
j=i+1

(Saj + Sbj)
)

=
∑
i

SaiSbi +
∑
i<j

(Sai + Sbi)(Saj + Sbj).

Corollary 4.1.2 Let q ≥ 4 be even, and let

n = t0 + 2t1q
a1 + · · ·+ 2tkq

ak ,

where t0, . . . , tk and a1, . . . , ak are nonnegative integers with t0+2t1+ · · ·+2tk = q+1.

Then

gn,q = (t1Sa1 + · · ·+ tkSak)2.

In particular, gn,q is a PP of Fqe if and only if

gcd
( k∑
i=1

ti(1 + x + · · ·+ xai−1), xe − 1
)

= 1.

Proof. By Theorem 4.1.1,

gn,q = t1S
2
a1

+ · · ·+ tkS
2
ak

= (t1Sa1 + · · ·+ tkSak)2.
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The rest is obvious.

In Theorem 4.1.1, the mapping gn,q : Fqe → Fqe is quadratic in the multivariate

sense, i.e., with the identification Fqe ∼= Feq. In general, it is difficult to tell whether a

quadratic mapping is bijective. However, in some cases, such as Corollary 4.1.2, gn,q

can be reduced to a suitable form which allows a quick determination whether it is a

PP. Here are some additional examples of Theorem 4.1.1:

Example 4.1.3 Let q = 2s, s > 1, e > 1 odd, n = q0 + (q − 1)q1 + q2. Then

gn,q = S2
1 + S1S2 = xq+1,

which is a PP of Fqe .

Example 4.1.4 Let q = 4, e > 1, n = q0 + q1 + qe + qe+1 + qa, a ≥ 0. Then

gn,q = S1Sa + SeSe+1 + (S1 + Sa)(Se + Se+1)

≡ S1Sa + SeSe+1 + (S1 + Sa)S1 (mod xq
e − x)

= S2
1 + SeSe+1

= x2 + xTrqe/q(x) + Trqe/q(x)2.

We claim that when e is odd, gn,q is a PP of Fqe .

Assume to the contrary that there exist x, y ∈ Fqe , x 6= y, such that gn,q(x) =

gn,q(y). From Trqe/q(gn,q(x)) = Trqe/q(gn,q(y)), we derive that Trqe/q(x) = Trqe/q(y)

= c. Then the equation gn,q(x) = gn,q(y) becomes

(x+ y + c)(x+ y) = 0.

So x+ y + c = 0. Thus c = Trqe/q(c) = Trqe/q(x+ y) = 0. Hence (x+ y)2 = 0, which

is a contradiction.
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Example 4.1.5 Let q = 4 , e > 1, n = q0 + 2q1 + qe + qe+1. Then by Theorem 4.1.1,

gq0+2·q1+qe+qe+1 = S1S1 + SeSe+1

≡ x2 + xTrqe/q(x) + Trqe/q(x)2 (mod xq
e − x).

We claim that when e is odd, gn,q is a PP of Fqe .

Assume that there exist x, a ∈ Fqe such that g(x) = g(x+ a). Then

x2 +xTrqe/q(x) + Trqe/q(x)2 = (x+a)2 + (x+a)Trqe/q(x+a) + Trqe/q(x+a)2. (4.1.1)

It leads to

a2 + xTrqe/q(a) + aTrqe/q(x) + aTrqe/q(a) + Trqe/q(a)2 = 0. (4.1.2)

By taking traces on both sides of (4.1.2) we get Trqe/q(a) = 0.

By (4.1.2), a(a+ Trqe/q(x)) = 0.

If Trqe/q(x) = a, taking traces on both sides gives eTrqe/q(x) = Trqe/q(a) = 0. Since e

is odd Trqe/q(x) = 0, which is a contradiction. Therefore a = 0.

Example 4.1.6 Let q = 4 , e > 1, n = q0 + q1 + 2qe−1 + qe. Then by Theorem 4.1.1,

gq0+q1+2qe−1+qe = S1Se + Se−1Se−1

= xTrqe/q(x) + Trqe/q(x)2 + x2q
e−1

.

We claim that when e is odd, gn,q is a PP of Fqe .

Assume that there exist x, a ∈ Fqe such that g(x) = g(x+ a). Then

xTrqe/q(x) + Trqe/q(x)2 + x2q
e−1

= (x+ a)Trqe/q(x+ a) + Trqe/q(x+ a)2 + (x+ a)2q
e−1

.

(4.1.3)

It leads to

xTrqe/q(a) + aTrqe/q(x) + aTrqe/q(a) + Trqe/q(a)2 + a2q
e−1

= 0. (4.1.4)
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By taking traces on both sides we get Trqe/q(a) = 0. By (4.1.4),

aTrqe/q(x) + a2q
e−1

= 0. (4.1.5)

If Trqe/q(x) = 0, a = 0.

If Trqe/q(x) = 1, a+ a2q
e−1

= 0. Squaring both sides gives a(a+ 1) = 0. If a = 1, then

since e is odd, it contradicts the fact that Trqe/q(a) = 0. Therefore a = 0.

If Trqe/q(x) 6= 0, 1, squaring both sides of (4.1.5) gives a(aTrqe/q(x)2 + 1) = 0. If

aTrqe/q(x)2 + 1 = 0, taking traces on both sides gives e = 0. It contradicts the fact

that e is odd. Therefore a = 0.

Example 4.1.7 Let q = 4, e > 2, n = q0 + 2qe−2 + 2qe−1. Then by Theorem 4.1.1,

gq0+2qe−2+2qe−1 = S2
e−2 + S2

e−1 = x2q
e−2

.

Since gcd(2qe−2, qe − 1) = 1 , gn,q is a PP of Fqe .

Example 4.1.8 Let q = 4, e > 2, n = q0 + 2q1 + 2q2. Then by Theorem 4.1.1,

gq0+2q1+2q2 = S2
1 + S2

2 = x2q.

Since gcd(2q, qe − 1) = 1, gn,q is a PP of Fqe .

Example 4.1.9 Let q = 4, e ≥ 2, n = 3q0 + 2q1. Then by Theorem 4.1.1,

g3q0+2q1 = S2
0 + S2

1 = x2.

Since gcd(2, qe − 1) = 1, gn,q is a PP of Fqe .

Example 4.1.10 Let q = 2s, s > 1, e > 1, n = (q − 1)q0 + 2qe−1. Then by

Theorem 4.1.1,

g(q−1)q0+2qe−1 = S2
0 + S2

e−1

= S2
e + x2q

e−1

.
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We claim that when e is even, gn,q is a PP of Fqe .

Assume that there exist x, a ∈ Fqe such that g(x) = g(x+ a). Then we have

Trqe/q(x)2 + x2q
e−1

= Trqe/q(x+ a)2 + (x+ a)2q
e−1

. (4.1.6)

It leads to

Trqe/q(a)2 + a2q
e−1

= 0. (4.1.7)

If we raise both sides to the (q/2)th power, we get Tr(a) + aq
e

= 0. By taking traces

on both sides we get (e+ 1)Trqe/q(a) = 0. Since e is even Trqe/q(a) = 0.

By (4.1.7), a = 0.

Example 4.1.11 Let q = 2s, s > 1, e > 1, n = (q − 1)q0 + 2qe−2. Then by

Theorem 4.1.1,

g(q−1)q0+2qe−2 = S2
0 + S2

e−2

= S2
e + x2q

e−2

+ x2q
e−1

.

We claim that when e is odd, gn,q is a PP of Fqe .

Assume that there exist x, a ∈ Fqe such that g(x) = g(x+ a). Then we have

Trqe/q(x)2 + x2q
e−2

+ x2q
e−1

= Trqe/q(x+ a)2 + (x+ a)2q
e−2

+ (x+ a)2q
e−1

. (4.1.8)

It leads to

Trqe/q(a)2 + a2q
e−2

+ a2q
e−1

= 0. (4.1.9)

By taking traces on both sides we get Trqe/q(a) = 0.

By (4.1.9), a2·q
e−2

+ a2·q
e−1

= 0.

Raising both sides to the (q/2)th power gives a(aq
e−2

+ 1) = 0.

If aq
e−2

+ 1 = 0, Trqe/q(a) = 1 , since e is odd, which is a contradiction.

So a = 0.
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Example 4.1.12 Let q = 4, e > 2, n = q0 + 2q1 + 2qe. Then by Theorem 4.1.1,

gq0+2q1+2qe = S2
1 + S2

e

= x2 + S2
e .

We claim that when e is even, gn,q is a PP of Fqe .

Assume that there exist x, a ∈ Fqe such that g(x) = g(x+ a). Then we have

x2 + Trqe/q(x)2 = (x+ a)2 + Trqe/q(x+ a)2. (4.1.10)

It leads to

Trqe/q(a)2 + a2 = 0. (4.1.11)

Since e is even, by taking traces on both sides we get Trqe/q(a) = 0.

Then by (4.1.11), a = 0.

4.2 More Families of Desirable Triples with Even q

Lemma 4.2.1 Let n = (q − 1)qa + (q − 1)qb, where a, b ≥ 0. Then

gn,q = −1− (Sb − Sa)q−1.

Proof. If a = b, then n = (q − 2)qa + qa+1. By Lemma 1.1.3, gn,q = −1.

Now assume a < b. We have

(Sb − Sa)gn,q = g(q−1)qa+qb+1,q − gqa+1+(q−1)qb,q

= −(xq
a

+ · · ·+ xq
b

)− (xq
a+1

+ · · ·+ xq
b−1

)

= −(xq
a

+ · · ·+ xq
b−1

)− (xq
a

+ · · ·+ xq
b−1

)q

= −(Sb − Sa)− (Sb − Sa)q.

Thus gn,q = −1− (Sb − Sa)q−1.
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Theorem 4.2.2 Let q = 2s, s > 1, e > 0, and n = (q− 1)q0 + (q− 1)qe + 2qa, a ≥ 0.

Then

gn,q ≡ xTrqe/q(x) + Trqe/q(x)2 + S2
a ·
(
1 + Trqe/q(x)q−1

)
(mod xq

e − x),

Assume that e is even and gcd(a, e) = 1. Then gn,q is a PP of Fqe.

Proof. Write gn = gn,q. We have

gn = gq+qa+(q−1)qe + Sa · g(q−1)q0+qa+(q−1)qe

= gq+qe+1 + (Sa − Se)gq+(q−1)qe + Sa · (gq+(q−1)qe + Sa · g(q−1)q0+(q−1)qe)

≡Se(Se + S1) + S2
a(1 + Sq−1e ) (mod xq

e − x) (Lemma 4.2.1)

= xTrqe/q(x) + Trqe/q(x)2 + S2
a ·
(
1 + Trqe/q(x)q−1

)
.

To prove that gn is a PP of Fqe , we assume that gn(x) = gn(y), x, y ∈ Fqe , and

try to show that x = y. From Trqe/q(gn(x)) = Trqe/q(gn(y)), we derive that Trqe/q(x) =

Trqe/q(y) = c. If c = 0, the equation gn(x) = gn(y) becomes Sa(x)2 = Sa(y)2, i.e.,

Sa(x+ y) = 0. Since gcd(1 + x + · · ·+ xa−1, xe + 1) = 1, we have x = y. If c 6= 0, the

equation gn(x) = gn(y) becomes c(x+ y) = 0, which also gives x = y.

Example 4.2.3 Let q = 2s, s > 1, e > 1, n = (q − 1)q0 + 2qe−1 + (q − 1)qe. Then

g(q−1)q0+2qe−1+(q−1)qe = gq+qe−1+(q−1)qe + Se−1g(q−1)q0+qe−1+(q−1)qe

= gq+qe+1 + (Se+1 − Se)gq+(q−1)qe + Se−1gq+(q−1)qe + Se−1g(q−1)q0+(q−1)qe

= Se(Se − x) + S2
e−1g(q−1)q0+(q−1)qe

Note that

Seg(q−1)q0+(q−1)qe = g(q−1)q0+qe+1 − gq+(q−1)qe

= Se + xq
e − (Se − x)

= xq
e − x = Sqe − Se,
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i.e.,

g(q−1)q0+(q−1)qe = Sq−1e − 1. (4.2.12)

So

g(q−1)q0+2qe−1+(q−1)qe = S2
e − xSe + S2

e−1(S
q−1
e − 1)

= S2
e − xSe + (S2

e + x2q
e−1

)(Sq−1e − 1)

= xTrqe/q(x) + Trqe/q(x)2 + x2q
e−1

+ Trqe/q(x)q−1x2q
e−1

.

Thus modulo xq
e − x we have

gn,q(x) ≡

x
2qe−1

if Trqe/q(x) = 0,

xTrqe/q(x) + Trqe/q(x)2 if Trqe/q(x) 6= 0.

We claim that when e is even, gn,q is a PP of Fqe .

Clearly x2q
e−1

and xTrqe/q(x) + Trqe/q(x)2 map two sets {x ∈ Fqe ; Trqe/q(x) = 0} and

{x ∈ Fqe ; Trqe/q(x) 6= 0} to themselves respectively.

Case 1. Let x, y ∈ {x ∈ Fqe ; Trqe/q(x) = 0}.

g(x) = g(y) ⇒ x2·q
e−1

= y2·q
e−1

. Raising both sides to the (q/2)th power gives x = y.

Case 2. Let x, y ∈ {x ∈ Fqe ; Trqe/q(x) 6= 0} s.t. x 6= y and g(x) = g(y). Then

xTrqe/q(x) + Trqe/q(x)2 = yTrqe/q(y) + Trqe/q(y)2. (4.2.13)

Since e is even, taking traces on both sides gives Trqe/q(x) = Trqe/q(y).

By (4.2.14), (x− y)Trqe/q(x) = 0. Since x 6= y, Trqe/q(x) = 0, a contradiction.

Example 4.2.4 Let q = 2s, s > 1, e > 1, n = (q − 1)q0 + 2q1 + (q − 1)qe. Then
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g(q−1)q0+2q1+(q−1)qe = g2q1+(q−1)qe + S1g(q−1)q0+q1+(q−1)qe

= g2q1+(q−1)qe + S1{gq1+(q−1)qe + S1g(q−1)q0+(q−1)qe}

= g2q1+(q−1)qe + S1(Se + x) + S2
1(Sq−1e − 1) (4.2.12)

= gq0+q1+(q−1)qe + S1gq1+(q−1)qe + xSe + x2Sq−1e

= g2q0+(q−1)qe + S1gq0+(q−1)qe + S1(Se + x) + xSe + x2Sq−1e

= g2q0+(q−1)qe + x2 + xSe + x2Sq−1e

= Trqe/q(x)2 + x2 + xTrqe/q(x) + x2Trqe/q(x)q−1.

Thus modulo xq
e − x we have

gn,q(x) ≡

x
2 if Trqe/q(x) = 0,

xTrqe/q(x) + Trqe/q(x)2 if Trqe/q(x) 6= 0.

We claim that when e is even, gn,q is a PP of Fqe .

Clearly x2 and xTrqe/q(x) + Trqe/q(x)2 map two sets {x ∈ Fqe ; Trqe/q(x) = 0} and

{x ∈ Fqe ; Trqe/q(x) 6= 0} to themselves respectively.

Case 1. Let x, y ∈ {x ∈ Fqe ; Trqe/q(x) = 0}. Then

g(x) = g(y) ⇒ x2 = y2 ⇒ x = y.

Case 2. Let x, y ∈ {x ∈ Fqe ; Trqe/q(x) 6= 0} s.t. g(x) = g(y). Then

xTrqe/q(x) + Trqe/q(x)2 = yTrqe/q(y) + Trqe/q(y)2. (4.2.14)

Since e is even, taking traces on both sides gives Trqe/q(x) = Trqe/q(y). Then by

(4.2.14), x = y.

Lemma 4.2.5 Let a1, . . . , aq ≥ 0, and n = (q − 1) + qa1 + · · ·+ qaq . Then

gn,q = −S1 − Sa1 − · · · − Saq − Sa1 · · ·Saq .
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Proof. Write gn = gn,q. We have

gn = gq+qa2+···+qaq + Sa1 · g(q−1)+qa2+···+qaq

= gq+qa2+···+qaq + Sa1 · (gq+qa3+···+qaq + Sa2 · g(q−1)+qa3+···+qaq )

= gq+qa2+···+qaq − Sa1 + Sa1Sa2 · g(q−1)+qq3+···+qaq

= · · · · · ·

= gq+qa2+···+qaq − Sa1 + Sa1 · · ·Saq · gq−1

= −S1 − Sa2 − · · · − Saq − Sa1 − Sa1 · · ·Saq .

Theorem 4.2.6 Let q = ps, e > 0, a > 0, and n = (q − 1)q0 + (q − 1)qe + qa. Then

gn,q = −x− Sa + Trqe/q(x)− SaTrqe/q(x)q−1. (4.2.15)

Assume that

(i) −2a− 1 + e 6≡ 0 (mod p);

(ii) gcd(xa + x− 2, xe − 1) = x− 1;

(iii) gcd(2xa + x− 3, xe − 1) = x− 1.

Then gn,q is a PP of Fqe.

Proof. Eq. (4.2.15) follows from Lemma 4.2.5. To prove that gn,q is a PP of Fqe under

the given conditions, we assume that gn,q(x) = gn,q(y), x, y ∈ Fqe , and try to show

that x = y. From Trqe/q(gn,q(x)) = Trqe/q(gn,q(y)), we derive that

(−2a− 1 + e)
(
Trqe/q(x)− Trqe/q(y)

)
= 0.

Since −2a− 1 + e 6≡ 0 (mod p), we have Trqe/q(x) = Trqe/q(y) = c.
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If c = 0, the equation gn,q(x) = gn,q(y) becomes

2(x− y) + (x− y)q + · · ·+ (x− y)q
a−1

= 0.

Since

gcd(2 + x + · · ·+ xa−1, 1 + x + · · ·+ xe−1) =
1

x− 1
gcd(xa + x− 2, xe − 1) = 1,

we must have x− y = 0.

If c 6= 0, the equation gn,q(x) = gn,q(y) becomes

3(x− y) + 2(x− y)q + · · ·+ 2(x− y)q
a−1

= 0.

Since

gcd(3 + 2x + · · ·+ 2xa−1, 1 + x + · · ·+ xe−1) =
1

x− 1
gcd(2xa + x− 3, xe − 1) = 1,

we also have x− y = 0.

Example 4.2.7 Let q = 2s, s > 1, e > 1, n = (q − 1)q0 + q2 + (q − 1)qe. Then

g(q−1)q0+q2+(q−1)qe = gq+(q−1)qe + S2g(q−1)q0+(q−1)qe

= x+ Tr(x) + (x+ xq)g(q−1)q0+(q−1)qe

= x+ Tr(x) + (x+ xq)(Trqe/q(x)q−1 − 1)(4.2.12)

= xq + Trqe/q(x) + xqTrqe/q(x)q−1 + xTrqe/q(x)q−1.

Thus modulo xq
e − x we have

gn,q(x) ≡

x
q if Trqe/q(x) = 0,

x+ Trqe/q(x) if Trqe/q(x) 6= 0.

We claim that when e is even, gn,q is a PP of Fqe .
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Clearly xq and x + Trqe/q(x) map two sets {x ∈ Fqe ; Trqe/q(x) = 0} and {x ∈

Fqe ; Trqe/q(x) 6= 0} to themselves respectively.

Case 1. Let x, y ∈ {x ∈ Fqe ; Trqe/q(x) = 0}. Then

g(x) = g(y) ⇒ xq = yq ⇒ x = y.

Case 2. Let x, y ∈ {x ∈ Fqe ; Trqe/q(x) 6= 0} s.t. g(x) = g(y). Then

x+ Trqe/q(x) = y + Trqe/q(y). (4.2.16)

Since e is even, taking traces on both sides gives Trqe/q(x) = Trqe/q(y). Then by

(4.2.16), x = y.

Theorem 4.2.8 Let q = 2s, s > 1, e > 0, and let n = (q − 1)q0 + q
2
qe−1 + q

2
qe. We

have

gn,q = x + Trqe/q(x) + x
1
2
qeTrqe/q(x)

1
2
q.

When e is odd, gn,q is a PP of Fqe.

Proof. By Lemma 4.2.5,

gn,q = S1 + S
q
2
e−1S

q
2
e

= x + (S
1
2
q

e + x
1
2
qe)S

1
2
q

e

= x + Trqe/q(x) + x
1
2
qeTrqe/q(x)

1
2
q.

Assume that e is odd. To prove that gn,q is a PP of Fqe , assume to the contrary

that there exist x, y ∈ Fqe , x 6= y, such that gn,q(x) = gn,q(y). From Trqe/q(gn,q(x)) =

Trqe/q(gn,q(y)), we derive that Trqe/q(x) = Trqe/q(y) = a. If a = 0, the equation

gn,q(x) = gn,q(y) becomes x = y, which is a contradiction. If a 6= 0, the equation

gn,q(x) = gn,q(y) becomes

(x+ y)
1
2
qea

1
2
q = x+ y,

57



i.e.,

(x+ y)q
e−2 = a−1.

So x+ y = a. Then a = Trqe/q(a) = Trqe/q(x+ y) = 0, which is a contradiction.

Example 4.2.9 Let q = 4 , e > 1 and Let n = 3q0 + 2qe−1 + 2qe. Then

g3·q0+2qe−1+2qe = gq+2qe−1+qe + Seg3q0+2qe−1+qe

= x+ Trqe/q(x) + Seg3q0+2qe−1+qe

= x+ Trqe/q(x) + Se(1 + Seg3q0+2qe−1)

= x+ Trqe/q(x) + Se + S2
eg3q0+2qe−1

= x+ Trqe/q(x) + Se + S2
eS

2
e−1

= x+ S2
eS

2
e−1

= x+ Trqe/q(x)2(Trqe/q(x) + xq
e−1

)2

= x+ Trqe/q(x) + x2q
e−1

Trqe/q(x)2.

We claim that when e is odd, gn,q is a PP of Fqe . Assume that there exist x, a ∈ Fqe

such that g(x) = g(x+ a). Then we have

x+ Trqe/q(x) + x2q
e−1

Trqe/q(x)2 = (x+ a) + Trqe/q(x+ a) + (x+ a)2q
e−1

Trqe/q(x+ a)2.

It leads to

a+ Trqe/q(a) + Trqe/q(x)2a2q
e−1

+ Trqe/q(a)2x2q
e−1

+ Trqe/q(a)2a2q
e−1

= 0. (4.2.17)

By taking traces on both sides we get Trqe/q(a) = 0.

By (4.2.17),

a+ Trqe/q(x)2a2q
e−1

= 0. (4.2.18)

If Trqe/q(x) = 0 , then (4.2.18) gives a = 0.

If Trqe/q(x) = 1 , then (4.2.18) gives a + a2q
e−1

= 0. Squaring both sides of gives

a(a + 1) = 0. If a = 1, since e is odd that contradicts the fact that Trqe/q(a) = 0.

Therefore a = 0.
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If Trqe/q(x) 6= 0, 1 , squaring both sides of (4.2.18) gives a(a + Trqe/q(x)) = 0. If

Trqe/q(x) = a, taking traces on both sides gives eTrqe/q(x) = Trqe/q(a) = 0. Since e is

odd Trqe/q(x) = 0, which is a contradiction. Therefore a = 0.

Theorem 4.2.10 Let q = 4, e > 2, and n = 3q0 + 2qe−2 + 2qe. We have

gn,q = x + Trqe/q(x) + (xq
e−2

+ xq
e−1

)2Trqe/q(x)2.

Assume that e > 2 is even and gcd(1 + x2 + xe−3, xe + 1) = 1. Then gn,q is a PP of

Fqe.

Proof. Let q = 4, e > 2, n = 3q0 + 2qe−2 + 2qe. Then,

gn,q = x + Trqe/q(x) + (xq
e−2

+ xq
e−1

)2Trqe/q(x)2 (mod xq
e − x).

Assume that e is even and gcd(1 + x2 + xe−3, xe + 1) = 1.

To prove that gn,q is a PP of Fqe , we assume that gn,q(x) = gn,q(y), x, y ∈ Fqe ,

and try to show that x = y. From Trqe/q(gn,q(x)) = Trqe/q(gn,q(y)) we derive that

Trqe/q(x) = Trqe/q(y). Let Trqe/q(x) = Trqe/q(y) = a ∈ Fq. If a = 0, then x = y.

If a 6= 0, then gn,q(x) = gn,q(y) becomes

z = a2(z2q
e−2

+ z2q
e−1

), (4.2.19)

where z = x + y. Substitute (4.2.19) into itself to find zq
3

= z + zq
2
. Since e is even

and gcd(1 + x2 + xe−3, xe + 1) = 1, we have z = 0.

Theorem 4.2.11 Let n = 1 + qa1 + · · ·+ qaq+t, where −1 ≤ t ≤ q − 4. Then

gn,q = −
∑

1≤i1<···<it+2≤q+t

Sai1 · · ·Sait+2
. (4.2.20)
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Proof. Use induction on t. When t = −1, n is a sum of q powers of q, in which case

the conclusion is already known. Let 0 ≤ t ≤ q − 4. We have

gn = g2+qa2+···+qaq+t + Sa1 · g1+qa2+···+qaq+t

= g2+qa2+···+qaq+t − Sa1
∑

2≤i2<···<it+2≤q+t

Sai2 · · ·Sait+2
(induction hypothesis)

= g3+qa3+···+qaq+t + Sa2 · g2+qa3+···+qaq+t − Sa1
∑

2≤i2<···<it+2≤q+t

Sai2 · · ·Sait+2

= g3+qa3+···+qaq+t − Sa2
∑

3≤i3<···<it+2≤q+t

Sai3 · · ·Sait+2

− Sa1
∑

2≤i2<···<it+2≤q+t

Sai2 · · ·Sait+2
(induction hypothesis)

= · · · · · ·

= gq+t+1 −
∑

1≤i1<···<it+2≤q+t

Sai1 · · ·Sait+2
.

Since wq(q + t+ 1)) = t+ 2 < q − 1, we have gq+t+1 = 0, which gives (4.2.20).

Let q be even and t = 0 in (4.2.20). Then

gn,q =
∑

1≤i1<i2≤q

Sai1Sai2 =
∑
i

SbiSci +
∑
i<j

(Sbi + Sci)(Sbj + Scj),

where (a1, . . . , aq) = (b1, . . . , bq/2, c1, . . . , cq/2). This is Theorem 4.1.1. In fact, Theo-

rem 4.2.11 is a generalized version of Theorem 4.1.1.

The next theorem is a generalization of [14, Theorem 6.12].

Theorem 4.2.12 Let q = p2, e > 0, and n = (p2 − p − 1)q0 + (p − 1)qe + pqa + qb,

a, b ≥ 0. Then

gn,q = −Spa − SbSp−1e . (4.2.21)
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Assume that a+ b 6≡ 0 (mod p) and

gcd
(
x(xa − 1)2 − ε(xb − 1)2, (x− 1)(xe − 1)

)
= (x− 1)2,

for ε = 0, 1. Then gn,q is a PP of Fqe.

Proof. Equation (4.2.21) follows from Theorem 4.2.11.

To prove that gn,q is a PP of Fqe under the given conditions, we assume that

gn,q(x) = gn,q(y), x, y ∈ Fqe , and try to show that x = y. From Se(gn,q(x)) =

Se(gn,q(y)) we derive that

(a+ b)
(
Se(x)− Se(y)

)p
= 0.

Since a + b 6≡ 0 (mod p), we have Se(x) = Se(y) = c ∈ Fq. Now the equation

gn,q(x) = gn,q(y) becomes

Sa(z)p = −cp−1Sb(z),

where z = x− y. Thus

Sa(z) =
(
−cp−1Sb(z)

)pqe−1

= −cq−pSb(zpq
e−1

). (4.2.22)

We iterate both sides of (4.2.22) to get

(Sa ◦ Sa)(z) = −cq−pSb
((
−cq−pSb(zpq

e−1

)
)pqe−1

)
= cq−1(Sb ◦ Sb)(zq

e−1

),

i.e., [
(Sa ◦ Sa)(z)

]q
= cq−1(Sb ◦ Sb)(z). (4.2.23)

Let ε = cq−1, which is 0 or 1. The conventional associates of the q-polynomials

(Sa ◦ Sa)q and Sb ◦ Sb are x(1 + x+ · · ·+ xa−1)2 and (1 + x+ · · ·+ xb−1)2, respectively
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[30, §3.4]. Since

gcd
(
x(1 + x + · · ·+ xa−1)2 − ε(1 + x + · · ·+ xb−1)2, 1 + x + · · ·+ xe−1

)
=

1

(x− 1)2
gcd
(
x(xa − 1)2 − ε(xb − 1)2, (x− 1)(xe − 1)

)
= 1,

it follows from (4.2.23) that z = 0, i.e., x = y.

Example 4.2.13 Let q = 4, e > 3, n = q0 + 2q1 + q2 + qe. Then by Theorem 4.1.1,

gn,q ≡ x2 + xTrqe/q(x) + xqTrqe/q(x) (mod xq
e − x).

We claim that when gcd(1 + x + x2, xe + 1) = 1, gn,q is a PP of Fqe .

To prove that gn,q is a PP of Fqe , we assume that gn,q(x) = gn,q(y), x, y ∈ Fqe ,

and try to show that x = y. From Trqe/q(gn,q(x)) = Trqe/q(gn,q(y)) we derive that

Trqe/q(x) = Trqe/q(y). Let Trqe/q(x) = Trqe/q(y) = a ∈ Fq.

If a = 0, then x = y.

If a 6= 0, then gn,q(x) = gn,q(y) becomes

z2 = a(z + zq), (4.2.24)

where z = x + y. Substitute (4.2.24) into itself to find (z2)q = (z2) + (z2)q
2
. Since

gcd(1 + x + x2, xe + 1) = 1, we have z = 0.

Example 4.2.14 Let q = 4, e > 4, n = q0 + 2q1 + qe−2 + qe. Then by Theorem 4.1.1,

gn,q ≡ x2 + Trqe/q(x)2 + xq
e−2

Trqe/q(x) + xq
e−1

Trqe/q(x) (mod xq
e − x).

We claim that when gcd(1 + x2 + x5, xe + 1) = 1 and e is even, gn,q is a PP of Fqe .

To prove that gn,q is a PP of Fqe , we assume that gn,q(x) = gn,q(y), x, y ∈ Fqe ,
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and try to show that x = y. From Trqe/q(gn,q(x)) = Trqe/q(gn,q(y)) we derive that

Trqe/q(x) = Trqe/q(y). Let Trqe/q(x) = Trqe/q(y) = a ∈ Fq.

If a = 0 then x = y. If a 6= 0, then gn,q(x) = gn,q(y) becomes

z2 = a(zq
e−2

+ zq
e−1

), (4.2.25)

where z = x + y. Substitute (4.2.25) into itself to find (z2)q
5

= (z2) + (z2)q
2
. Since

gcd(1 + x2 + x5, xe + 1) = 1, we have z = 0.

Example 4.2.15 Let q = 4, e > 3, n = q0+qe−2+2qe−1+qe. Then by Theorem 4.1.1,

gn,q ≡ x2q
e−1

+ xq
e−2

Trqe/q(x) + xq
e−1

Trqe/q(x) (mod xq
e − x).

We claim that when gcd(1 + x2 + x3, xe + 1) = 1, gn,q is a PP of Fqe .

To prove that gn,q is a PP of Fqe , we assume that gn,q(x) = gn,q(y), x, y ∈ Fqe ,

and try to show that x = y. From Trqe/q(gn,q(x)) = Trqe/q(gn,q(y)) we derive that

Trqe/q(x) = Trqe/q(y). Let Trqe/q(x) = Trqe/q(y) = a ∈ Fq.

If a = 0 then x = y. If a 6= 0, then gn,q(x) = gn,q(y) becomes

z = a2(z2q
e−2

+ z2q
e−1

), (4.2.26)

where z = x + y. Substitute (4.2.26) into itself to find zq
3

= z + zq
2
. Since gcd(1 +

x2 + x3, xe + 1) = 1, we have z = 0.

Example 4.2.16 Let q = 4, e > 3, n = q0+qe−2+qe+2qe+1. Then by Theorem 4.1.1,

gn,q ≡ x2 + xq
e−2

Trqe/q(x) + xq
e−1

Trqe/q(x) (mod xq
e − x).

We claim that when gcd(1 + x2 + x5, xe + 1) = 1, gn,q is a PP of Fqe .

To prove that gn,q is a PP of Fqe , we assume that gn,q(x) = gn,q(y), x, y ∈ Fqe ,

and try to show that x = y. From Trqe/q(gn,q(x)) = Trqe/q(gn,q(y)) we derive that

Trqe/q(x) = Trqe/q(y). Let Trqe/q(x) = Trqe/q(y) = a ∈ Fq.
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If a = 0 then x = y. If a 6= 0, then gn,q(x) = gn,q(y) becomes

z2 = a(zq
e−2

+ zq
e−1

), (4.2.27)

where z = x + y. Substitute (4.2.27) into itself to find zq
5

= z + zq
2
. Since gcd(1 +

x2 + x5, xe + 1) = 1, we have z = 0.

Lemma 4.2.17 Let f : Fnp → Fp be a function, and assume that there exists y ∈ Fnp
such that f(x+ y)− f(x) is a nonzero constant for all x ∈ Fnp . Then

∑
x∈Fn

p

ζf(x)p = 0 (ζp = e2πi/p).

Proof. Assume f(x+ y)− f(x) = c ∈ F∗p. We have

∑
x∈Fn

p

ζf(x)p =
∑
x∈Fn

p

ζf(x+y)p =
∑
x∈Fn

p

ζf(x)+cp = ζc
∑
x∈Fn

p

ζf(x)p .

Since ζc 6= 1, we have
∑

x∈Fn
p
ζ
f(x)
p = 0.

Remark 4.2.18 If f : Fnp → Fp is quadratic, then
∑

x∈Fn
p
ζ
f(x)
p = 0 if and only if there

exists y ∈ Fnp such that f(x+ y)− f(x) is a nonzero constant for all x ∈ Fnp . See [10,

Ch. VII, VIII], [19, §5.1], [30, §6.2].

Let f =
∑e−1

i=0 aix
pi ∈ Fpe [x] be a p-linearized polynomial considered as a Fp-

linear map from Fpe to Fpe . The adjoint of f is the Fp-linear map f ∗ such that

Trpe/p(xf(y)) = Trpe/p(f
∗(x)y) for all x, y ∈ Fpe .

We have f ∗ =
∑e−1

i=0 a
pi

e−ix
pi , where the subscript is taken modulo e. For 0 ≤

k ≤ e, we have

(fp
k

)∗(x) ≡ f ∗(xp
e−k

) (mod xp
e − x).
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(Here fp
k

means product, not composition.) In fact, since fp
k

=
∑

i a
pk

i xp
i+k

=∑
i a

pk

i−kx
pi , we have

(fp
k

)∗ =
∑
i

(ap
k

e−i−k)
pixp

i

=
∑
i

ap
k+i

e−(k+i)x
pi =

∑
i

ap
i

e−ix
pi−k ≡ f ∗(xp

e−k

) (mod xp
e−x).

The following theorem is a generalization of [14, Theorem 6.15].

Theorem 4.2.19 Let p be a prime and k, n positive integers. Let A,B ∈ Fpkn [x]

satisfying the following conditions.

(i) A is a p-linearized polynomial that permutes Fpk .

(ii) B(x+ y) = B(x) for all x ∈ Fpkn and y ∈ Fpk .

(iii) Bpk − B is a p-linearized polynomial, and all zeros of (Ap
k − A)∗ + (Bpk − B)∗

in Fpkn are contained in Fpk .

Then A+B is a PP of Fpkn.

Proof. By [30, Theorem 7.7], it suffices to show that for all 0 6= a ∈ Fpkn ,

∑
x∈F

pkn

ζTr(a·(A+B)(x))
p = 0,

where ζp = e2πi/p and Tr = Trpkn/p.

Case 1. Assume Trpkn/pk(a) 6= 0. By Lemma 4.2.17, It suffices to show that

there exists a y ∈ Fpkn such that Tr
[
a · (A+B)(x+ y)− a · (A+B)(x)

]
is a nonzero

constant for all x ∈ Fpkn .

Since Trpkn/pk(a) 6= 0 and A permutes Fpk , there exists a y ∈ Fpk such that
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Trpk/p
[
A(y)Trpkn/pk(a)

]
6= 0. For all x ∈ Fpkn we have

Tr
[
a · (A+B)(x+ y)− a · (A+B)(x)

]
= Tr

[
a
(
A(x+ y) +B(x+ y)− A(x)−B(x)

)]
= Tr

(
aA(y)

)
(B(x+ y) = B(x))

= Trpk/p
[
Trpkn/pk

(
aA(y)

)]
= Trpk/p

[
A(y)Trpkn/pk(a)

]
,

which is a nonzero constant.

Case 2. Assume Trpkn/pk(a) = 0. Then a = bp
(n−1)k− b for some b ∈ Fpkn \Fpk .

For x ∈ Fpkn we have

Tr
[
a · (A+B)(x)

]
= Tr

[
(bp

(n−1)k − b) · (A+B)(x)
]

= Tr
[
b
(
(A+B)p

k

(x)− (A+B)(x)
)]

= Tr
[
b
(
(Ap

k − A)(x) + (Bpk −B)(x)
)]

= Tr
[
x
(
(Ap

k − A)∗(b) + (Bpk −B)∗(b)
)]
.

Condition (iii) implies that for z ∈ Fpkn ,

(Ap
k − A)∗(z) + (Bpk −B)∗(z) = 0⇔ z ∈ Fpk .

Since b /∈ Fpk , we have (Ap
k − A)∗(b) + (Bpk −B)∗(b) 6= 0. Therefore

∑
x∈F

pkn

ζTr[a·(A+B)(x)]
p =

∑
x∈F

pkn

ζTr[x((A
pk−A)∗(b)+(Bpk−B)∗(b))]

p = 0.

Corollary 4.2.20 Let e = 3k, k ≥ 1, q = 2s, s ≥ 2, and n = (q−3)q0+2q1+q2k+q4k.

Then

gn,q ≡ x2 + S2kS4k (mod xq
e − x),
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and gn,q is a PP of Fqe.

Proof. We write gn for gn,q. We have

gn = g(q−2)q0+2q1+q2k + S4k · g(q−3)q0+2q1+q2k

= g(q−1)q0+2q1 + S2k · g(q−2)q0+2q1 + S4kS2k

= g2q1 + S1 · g(q−1)q0+q1 + S4kS2k

= x2 + S4kS2k.

It follows from Theorem 4.2.19 that gn is a PP of Fqe .

Conjecture 4.2.21 Let q = 4, e = 3k, k ≥ 1, and n = 3q0 + 3q2k + q4k. It is easy to

see that

gn,q ≡ x + S2k + S4k + S4kS
3
2k ≡ x + Sq

2k

2k + Sq
k+3

2k (mod xq
e − x).

We conjecture that gn,q is a PP of Fqe.

The conjecture has been verified for e ≤ 12.
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Table 4.1: Desirable triples (n, e; 4), e ≤ 6, w4(n) > 4

e n base 4 digits of n reference

2 59 3,2,3 Thm 3.2.4 (ii)

2 127 3,3,3,1 [22] Prop 3.1

3 29 1,3,1 Exmp 4.1.3

3 101 1,1,2,1 Thm 4.2.12

3 149 1,1,1,2

3 163 3,0,2,2 [14] Thm 6.10

3 281 1,2,1,0,1 Cor 4.2.20

3 307 3,0,3,0,1

3 329 1,2,0,1,1 Exmp 4.1.4

3 341 1,1,1,1,1 Exmp 4.1.4

3 2047 3,3,3,3,3,1 [22] Prop 3.1

4 281 1,2,1,0,1 Thm 4.2.12

4 307 3,0,3,0,1

4 401 1,0,1,2,1 Thm 4.2.12

4 547 3,0,2,0,2 [14] Thm 6.10

4 779 3,2,0,0,3 Thm 4.2.2

4 787 3,0,1,0,3 Thm 4.2.6

4 817 1,0,3,0,3

4 899 3,0,0,2,3 Thm 4.2.2

4 1469 1,3,3,2,1,1

4 2201 1,2,1,2,0,2

4 2317 1,3,0,0,1,2

4 2321 1,0,1,0,1,2 Thm 4.2.12

4 2377 1,2,0,1,1,2

4 2441 1,2,0,2,1,2

4 4387 3,0,2,0,1,0,1

4 32767 3,3,3,3,3,3,3,1 [22] Prop 3.1

5 29 1,3,1 Exmp 4.1.3

5 1049 1,2,1,0,0,1 Thm 4.2.12

5 1061 1,1,2,0,0,1 Thm 4.2.12

5 1169 1,0,1,2,0,1 Thm 4.2.12

5 1289 1,2,0,0,1,1 Thm 4.2.12

5 1409 1,0,0,2,1,1 Thm 4.2.12

5 1541 1,1,0,0,2,1 Thm 4.2.12

5 1601 1,0,0,1,2,1 Thm 4.2.12

5 2083 3,0,2,0,0,2 [14] Thm 6.10

5 2563 3,0,0,0,2,2 Thm 4.2.8
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Table 4.1 (Continued)

e n base 4 digits of n reference

5 4229 1,1,0,2,0,0,1 Thm 4.2.12

5 4289 1,0,0,3,0,0,1

5 4387 3,0,2,0,1,0,1

5 5129 1,2,0,0,0,1,1 Exmp 4.1.4

5 5141 1,1,1,0,0,1,1 Exmp 4.1.4

5 5189 1,1,0,1,0,1,1 Exmp 4.1.4

5 5249 1,0,0,2,0,1,1 Thm 4.2.12

5 5381 1,1,0,0,1,1,1 Exmp 4.1.4

5 8713 1,2,0,0,2,0,2

5 9281 1,0,0,1,0,1,2 Thm 4.2.12

5 17429 1,1,1,0,0,1,0,1

5 17441 1,0,2,0,0,1,0,1 Thm 4.2.12

5 17489 1,0,1,1,0,1,0,1

5 17681 1,0,1,0,1,1,0,1

5 524287 3,3,3,3,3,3,3,3,3,1 [22] Prop 3.1

6 4361 1,2,0,0,1,0,1 Thm 4.2.12

6 6161 1,0,1,0,0,2,1 Thm 4.2.12

6 6401 1,0,0,0,1,2,1 Thm 4.2.12

6 8227 3,0,2,0,0,0,2 [14] Thm 6.10

6 8707 3,0,0,0,2,0,2 Thm 4.2.10

6 12299 3,2,0,0,0,0,3 Thm 4.2.2

6 12307 3,0,1,0,0,0,3 Thm 4.2.6

6 14339 3,0,0,0,0,2,3 Thm 4.2.2

6 37121 1,0,0,0,1,0,1,2 Thm 4.2.12

6 65801 1,2,0,0,1,0,0,0,1 Cor 4.2.20

6 65921 1,0,0,2,1,0,0,0,1

6 66307 3,0,0,0,3,0,0,0,1

6 135209 1,2,2,0,0,0,1,0,2

6 135217 1,0,3,0,0,0,1,0,2

6 135457 1,0,2,0,1,0,1,0,2

6 137249 1,0,2,0,0,2,1,0,2

6 8388607 3,3,3,3,3,3,3,3,3,3,3,1 [22] Prop 3.1
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5 A Piecewise Construction of Permutation Polynomials over

Finite Fields‡

5.1 Introduction

Let p be a prime and q = pn, where n is a positive integer. Let k | q − 1 and

let ω ∈ F∗q be an element of order k. We shall define ω∞ = 0 and 00 = 0. Let

f∞, f0, . . . , fk−1 ∈ Fq[x] and let θ : Fq → {ωi : i =∞, 0, . . . , k − 1}. Define

F (x) = f∞(x)
(
1− θ(x)q−1

)
+

1

k

k−1∑
i=0

[
ω−0if0(x) + · · ·+ω−(k−1)ifk−1(x)

]
θ(x)i, x ∈ Fq.

(5.1.1)

Note that

F (x) = fi(x) if θ(x) = ωi, i ∈ {∞, 0, . . . , k − 1}. (5.1.2)

We shall call the functions fi, i = ∞, 0, . . . , k − 1, the case functions of F and the

function θ the selection function of F . We have

Proposition 5.1.1 The function in (5.1.1) is a permutation of Fq if and only if

(i) fi is 1-1 on θ−1(ωi) for each i ∈ {∞, 0, . . . , k − 1}, and

(ii) fi(θ
−1(ωi)) ∩ fj(θ−1(ωj)) = ∅ for all i, j ∈ {∞, 0, . . . , k − 1}, i 6= j.

The idea of constructing permutation polynomials (PPs) of finite fields piece-

wise is not new; it has appeared in literature, at least implicitly. PPs of the form

‡This chapter consists of the paper [13] which has been published in the journal “Finite Fields and Their
Applications”.
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xm+1 + ax, where m | q − 1, were considered in [4, 5, 6, 28, 33]. (In the notation of

(5.1.1), one has k = q−1
m

, θ(x) = xm, f∞(x) = 0, fi(x) = (a + ωi)x, 0 ≤ i ≤ k − 1.)

PPs of the forms xp−1−s + ax(p−1−2s)/2 and xp−s + ax(p−s+1)/2 + bx were studied in

[2, 3, 16, 17]. (In the notation of (5.1.1), q = p, k = 2 and θ(x) = x
p−1
2 .)

Several recent articles on permutation polynomials suggest that the piecewise

approach has more to offer. In [21], it was shown that the reversed Dickson polynomial

D3n+5(1, x) = (1 − y − y2)y 3n+1
2 − 1 − y + y2, where y = 1 − x, is a PP over F3n for

even n. This particular PP was generalized by Zha and Hu in [39] in a formulation

similar to (5.1.1). Also presented in [39] were several families of PPs of the form

(xp
l − x+ δ)s + L(x), where L is a linearized polynomial; PPs of this form had been

explored by different authors in several previous papers [18, 37, 40]. In [1, 38], new

PPs were constructed through certain commutative diagrams. Such PPs can also be

viewed as piecewise functions (see [1, Lemma 1.1] or [38, Lemma 2.4]) although they

are not necessarily of the form (5.1.1).

Returning to Proposition 5.1.1, the challenge is to choose simple functions θ

and fi (i = ∞, 0, . . . , k − 1) such that conditions (i) and (ii) are satisfied. The next

proposition provides a way to check condition (ii) when θ is related to fi.

Proposition 5.1.2 Let i, j ∈ {∞, 0, . . . , k − 1}, i 6= j. Assume that there exist

functions hi and hj from Fq to Fq such that the following two conditions hold.

(i) [(hi ◦ fi)(x)]
1
k
(q−1) = θ(x) if θ(x) = ωi; [(hj ◦ fj)(x)]

1
k
(q−1) = θ(x) if θ(x) = ωj.

(ii) If b ∈ fi(θ−1(ωi)) ∩ fj(θ−1(ωj)), then
(
hi(b)

1
k
(q−1), hj(b)

1
k
(q−1)) 6= (ωi, ωj).

Then fi(θ
−1(ωi)) ∩ fj(θ−1(ωj)) = ∅.

Proof. Assume to the contrary that there exists b ∈ fi(θ−1(ωi)) ∩ fj(θ−1(ωj)). Then

b = fi(x) = fj(y) for some x ∈ θ−1(ωi) and y ∈ θ−1(ωj). By (i), hi(b)
1
k
(q−1) =

[(hi◦fi)(x)]
1
k
(q−1) = ωi. In the same way, hj(b)

1
k
(q−1) = ωj. So we have a contradiction.
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We will construct several families of PPs of the form (5.1.1) by choosing the

selection function θ to be θ(x) =
(
L(x) + δ

) 1
k
(q−1)

, where L(x) is a linearized polyno-

mial, or θ(x) = x
1
k
(q−1). The PPs obtained in this paper unify and generalize several

existing results, mostly from [39].

5.2 PPs with θ(x) =
(
L(x) + δ

) 1
k
(q−1)

Theorem 5.2.1 Let k | q − 1 and let ω ∈ F∗q be an element of order k. Let Fr ⊂ Fq
and σ0, . . . , σk−1 ∈ Aut(Fq/Fr) such that σi(ω

i), 0 ≤ i ≤ k− 1, are all distinct. Let L

and g be r-linearized polynomials over Fr with L(1) = 0, g(1) = 1 and g a PP of Fq.

Let δ∞, δ0, . . . , δk−1, δ ∈ Fr. Then

F (x) =
(
g(x) + δ∞

)[
1− (L(x) + δ)q−1

]
+

1

k

k−1∑
i=0

[
ω−0i

(
σ0(x) + δ0) + · · ·+ ω−(k−1)i

(
σk−1(x) + δk−1

)](
L(x) + δ

) i
k
(q−1)

.

is a PP of Fq.

Proof. Let θ(x) = (L(x) + δ)
1
k
(q−1), f∞(x) = g(x) + δ∞, fi(x) = σi(x) + δi, 0 ≤ i ≤

k − 1. We use Proposition 5.1.2 to show that fi(θ
−1(ωi)) ∩ fj(θ−1(ωj)) = ∅ for all

i, j ∈ {∞, 0, . . . , k− 1}, i 6= j. Let h∞(x) = g−1(L(x)) + δ and hi(x) = σ−1i (L(x)) + δ,

x ∈ Fq. Then

(h∞ ◦ f∞)(x) = g−1
(
L(g(x) + δ∞)

)
+ δ = L(x) + δ.

(Note that L(δ∞) = 0 and L ◦ g = g ◦ L.) In the same way, (hi ◦ fi)(x) = L(x) + δ,

0 ≤ i ≤ k − 1. Thus

[
(hi ◦ fi)(x)

] 1
k
(q−1)

=
(
L(x) + δ

) 1
k
(q−1)

= θ(x), i ∈ {∞, 0, . . . , k − 1}.
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Let b ∈ Fq. For 0 ≤ i ≤ k − 1 we have

hi(b)
1
k
(q−1) =

[
σ−1i (L(b)) + δ

] 1
k
(q−1)

=
[
σ−1i
(
L(b) + δ

)] 1
k
(q−1)

= σ−1i
(
(L(b) + δ)

1
k
(q−1)) = σ−1i (θ(b)).

(Note that σ−1i (δ) = δ.) Since g−1(δ) = δ, we also have

h∞(b) = g−1(L(b)) + δ = g−1(L(b) + δ).

Now for i, j ∈ {0, . . . , k − 1}, i 6= j, we have

(
hi(b)

1
k
(q−1), hj(b)

1
k
(q−1)

)
=
(
σ−1i (θ(b)), σ−1j (θ(b))

)
6= (ωi, ωj)

since σi(ω
i) 6= σj(ω

j). Also,

(
h∞(b)

1
k
(q−1), hi(b)

1
k
(q−1)

)
=
((
g−1(L(b) + δ)

) 1
k
(q−1)

, σ−1i (θ(b))
)
6= (0, ωi)

since g−1(L(b) + δ) = 0 implies L(b) + δ = 0, which implies θ(b) = 0. By Propo-

sition 5.1.2, we have fi(θ
−1(ωi)) ∩ fj(θ−1(ωj)) = ∅ for all i, j ∈ {∞, 0, . . . , k − 1},

i 6= j.

Remark 5.2.2 In Theorem 5.2.1, δ ∈ Fr can be replaced with an arbitrary function

from Fq to Fr. Also, each σi can be replaced with σi + βi, where βi : Fq → ker FqL is

any function such that σi + βi is a PP of Fq.

Remark 5.2.3 In Theorem 5.2.1, if we drop the assumption that σi(ω
i), 0 ≤ i ≤

k − 1, are all distinct, and maintain others, then we can describe a necessary and

sufficient condition on σ0, . . . , σk−1 for F to be a PP of Fq. It is clear that F is a PP

of Fq if and only if fi(θ
−1(ωi)) ∩ fj(θ−1(ωj)) = ∅ for all i, j ∈ {∞, 0, . . . , k − 1} with

i 6= j. From the proof of Theorem 5.2.1, we always have f∞(θ−1(0))∩ fj(θ−1(ωj)) = ∅

for j ∈ {0, . . . , k − 1}. For 0 ≤ i < j ≤ k − 1, fi(θ
−1(ωi)) ∩ fj(θ−1(ωj)) 6= ∅ if and
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only if the following system has a solution (x, y) ∈ Fq × Fq:
(
L(x) + δ

) 1
k
(q−1)

= ωi,(
L(y) + δ

) 1
k
(q−1)

= ωj,

σi(x) + δi = σj(y) + δj.

(5.2.3)

Apply σi to the first equation of (5.2.3) and σj to the second. We see that (5.2.3) is

equivalent to 
(
L(u) + δ

) 1
k
(q−1)

= σi(ω
i),(

L(v) + δ
) 1

k
(q−1)

= σj(ω
j),

u+ δi = v + δj,

(5.2.4)

where u = σi(x), v = σj(y). The third equation of (5.2.4) implies that L(u) = L(v).

Therefore, (5.2.4) has a solution (u, v) ∈ Fq × Fq if and only if σi(ω
i) = σj(ω

j) and(
L(Fq) + δ

)
∩
(
σi(γ

i) · 〈γk〉
)
6= ∅, where γ is a primitive element of Fq such that

ω = γ
1
k
(q−1). We conclude that F is a PP of Fq if and only if for each pair of distinct

integers i, j ∈ {0, . . . , k−1}, either σi(ω
i) 6= σj(ω

j) or
(
L(Fq)+δ

)
∩
(
σi(γ

i) ·〈γk〉
)

= ∅.

The construction in Theorem 5.2.1 calls for a sequence σ0, .., σk−1 ∈ Aut(Fq/Fr)

such that σi(ω
i), 0 ≤ i ≤ k−1, are all distinct. All such sequences can be determined

by the following method: Write q = rm, and let σ ∈ Aut(Fq/Fr) be given by σ(x) = xr.

1. Partition {0, 1, . . . , k − 1} into r-cyclotomic classes modulo k.

2. For each r-cyclotomic class [i] = {ir0, ir1, . . . , irs−1}, choose any permutation β

of {0, 1, . . . , s − 1}, choose ej ∈ Zm, 0 ≤ j ≤ s − 1, such that ej ≡ β(j) − j

(mod s), and choose

σirj = σej , 0 ≤ j ≤ s− 1.

Note that σirj(ω
irj) = ωir

j ·rej = ωir
j+ej

, where j + ej, 0 ≤ j ≤ s− 1, is a permutation

of 0, 1, . . . , s− 1.

Theorem 5.2.1 allows several variations.
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Theorem 5.2.4 Let k | q − 1 and let ω ∈ F∗q be an element of order k. Let Fr ⊂ Fq,

σ0, . . . , σk−1 ∈ Aut(Fq/Fr), L an r-linearized polynomial over Fr, and

F (x) =
1

k

k−1∑
i=0

[
ω−0iσ0(x) + · · ·+ ω−(k−1)iσk−1(x)

]
L(x)

i
k
(q−1).

Then F is a PP of Fq if and only if L is a PP of Fq and σi(ω
i), 0 ≤ i ≤ k − 1, are

all distinct.

Proof. (⇐) Let θ(x) = L(x)
1
k
(q−1), f∞(x) = 0 and fi(x) = σi(x), 0 ≤ i ≤ k − 1.

Note that θ−1(0) = 0. One only has to verify fi(θ
−1(ωi)) ∩ fj(θ−1(ωj)) = ∅ for

0 ≤ i < j ≤ k − 1, which follows from the proof of Theorem 5.2.1.

(⇒) Since F has only one root in Fq, L must be a PP of Fq. Assume to the

contrary that σi(ω
i) = σj(ω

j) for some 0 ≤ i < j ≤ k − 1. Let γ be a primitive

element of Fq such that ω = γ
1
k
(q−1). Then

( σi(γi)
σj(γj)

) q−1
k

=
σi(ω

i)

σj(ωj)
= 1.

Hence we can write σi(γ
i)

σj(γj)
= σi(γ

l)k for some l ∈ Z. Thus σi(γ
i−lk) = σj(γ

j). Let

x = L−1(γi−lk) and y = L−1(γj). Then θ(x) = L
(
L−1(γi−lk)

) 1
k
(q−1)

= ωi and θ(y) =

L
(
L−1(γj)

) 1
k
(q−1)

= ωj. We have

F (x) = σi(x) = L−1(σi(γ
i−lk)

)
= L−1(σj(γ

j)
)

= σj(y) = F (y),

which is a contradiction.

Theorem 5.2.5 Let k | q − 1 and let ω ∈ F∗q be an element of order k. Let Fr ⊂ Fq
and σ0, . . . , σk−1 ∈ Aut(Fq/Fr) such that σi(ω

i), 0 ≤ i ≤ k − 1, are all distinct. Let

L be an r-linearized polynomial over Fr and let δ0, . . . , δk−1 ∈ Fq and δ ∈ Fq \ L(Fq)
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such that L(δi)− σi(δ), 0 ≤ i ≤ k − 1, are all equal. Then

F (x) =
1

k

k−1∑
i=0

[
ω−0i

(
σ0(x) + δ0

)
+ · · ·+ ω−(k−1)i

(
σk−1(x) + δk−1

)](
L(x) + δ

) i
k
(q−1)

is a PP of Fq.

Proof. Let θ(x) =
(
L(x) + δ

) 1
k
(q−1)

and fi(x) = σi(x) + δi, 0 ≤ i ≤ k − 1. It suffices

to show that fi(θ
−1(ωi)) ∩ fj(θ−1(ωj)) = ∅ for 0 ≤ i < j ≤ k − 1.

Let hi(x) = σ−1i
(
L(x− δi)

)
+ δ, 0 ≤ i ≤ k − 1. Then

[
(hi ◦ fi)(x)

] 1
k
(q−1)

=
[
(σ−1i ◦ L ◦ σi)(x) + δ

] 1
k
(q−1)

=
[
L(x) + δ

] 1
k
(q−1)

= θ(x).

For each b ∈ Fq we have

hi(b) = σ−1i
(
L(b− δi)

)
+ δ = σ−1i

(
L(b)− L(δi) + σi(δ)

)
= σ−1i (c),

where c = L(b)− L(δi) + σi(δ) is independent of i. So for 0 ≤ i < j ≤ k − 1,

(
hi(b)

1
k
(q−1), hj(b)

1
k
(q−1)

)
=
(
σ−1i
(
c

1
k
(q−1)), σ−1j (c 1

k
(q−1))) 6= (ωi, ωj)

since σi(ω
i) 6= σj(ω

j). By Proposition 5.1.2, fi(θ
−1(ωi)) ∩ fj(θ−1(ωj)) = ∅.

Given σ0, . . . , σk−1 ∈ Aut(Fq/Fr) and an r-linearized polynomial L over Fr, the

construction in Theorem 5.2.5 calls for solutions (δ0, . . . , δk−1, δ) ∈ Fkq × (Fq \ L(Fq))

of the system

L(δi)− σi(δ) = L(δ0)− σ0(δ), 1 ≤ i ≤ k − 1. (5.2.5)

Let xi = δi − δ0, 1 ≤ i ≤ k − 1, and xk = σ0(δ). Then (5.2.5) becomes

L(xi) = σiσ
−1
0 (xk)− xk, 1 ≤ i ≤ k − 1, (5.2.6)
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and we seek its solutions (x1, . . . , xk−1, xk) ∈ Fk−1q × (Fq \ L(Fq)). Write q = rm, and

let σ ∈ Aut(Fq/Fr) be given by σ(x) = xr. Write σiσ
−1
0 = σei , 1 ≤ i ≤ k − 1, and

L = f(σ), where f = a0 + · · ·+ am−1x
m−1 ∈ Fr[x]. Then (5.2.6) becomes

f(σ)(xi) = (σei − σ0)(xk), 1 ≤ i ≤ k − 1. (5.2.7)

All solutions (x1, . . . , xk−1, xk) ∈ Fk−1q × (Fq \ L(Fq)) of (5.2.7) can be generated by

the following method: Let ε ∈ Fq such that σ0(ε), . . . , σm−1(ε) is a normal basis of Fq
over Fr.

1. Choose g ∈ Fr[x] such that deg g ≤ m − 1, gcd(f, xm − 1) - g, and gcd(f,

xm − 1) | (xei − 1)g for all 1 ≤ i ≤ k − 1. (If such g does not exist, (5.2.7) has

no solution (x1, . . . , xk−1, xk) ∈ Fk−1q × (Fq \ L(Fq)).) Set

xk = g(σ)(ε).

2. Write gcd(f, xm − 1) ≡ uf (mod xm − 1), u ∈ Fr[x], and let

hi = u · (xei − 1)g

(f, xm − 1)
, 1 ≤ i ≤ k − 1.

Set

xi = hi(ε), 1 ≤ i ≤ k − 1.

Remark.

(i) In Theorem 5.2.5, let q be odd, k = 2, σ a generator of Aut(Fq/Fr), L(x) =

σ(x) − x, δ ∈ Fq with TrFq/Fr(δ) 6= 0, σ0 = σ, δ0 = δ
2
, σ1 = id, δ1 = − δ

2
. Then

F (x) = 1
2

[
(σ(x)− x+ δ)

1
2
(q+1) + σ(x) + x

]
, which is the PP in [39, Theorem 1].

(ii) In Theorem 5.2.1 and Remark 5.2.2, let q = 33l, r = 3l, k = 2, σ a generator

of Aut(Fq/Fr), L = σ − id, δ ∈ Fr, g = id, δ∞ = 0, σ0 = σ, β0(x) = 0, δ0 = δ,

σ1 = σ2, β1(x) = −TrFq/Fr(x), δ1 = −δ. (Note that σ1 + β1 = σ2 − TrFq/Fr is a
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PP of Fq and L ◦ β1 = 0 on Fq.) Then F (x) =
(
σ(x)− x+ δ

) 1
2
(q+1)

+ x is a PP

of Fq.

Let g = σ, δ∞ = 0, σ0 = σ2, β0(x) = −TrFq/Fr(x), δ0 = δ, σ1 = id, β1(x) = 0,

δ1 = −δ. Then F (x) =
(
σ(x)− x+ δ

) 1
2
(q+1)

+ σ(x) is a PP of Fq.

Let g = σ2, δ∞ = 0, σ0 = id, β0(x) = TrFq/Fr(x), δ0 = δ, σ1 = σ, β1(x) =

TrFq/Fr(x), δ1 = −δ. Then F (x) =
(
σ(x)− x+ δ

) 1
2
(q+1)

+ σ2(x) is a PP of Fq.

These are the PPs in [39, Theorem 2].

5.3 PPs with θ(x) = x
1
k
(q−1)

Theorem 5.3.1 Let k | q − 1 and let ω ∈ F∗q be an element of order k. Let

F (x) =
1

k

k−1∑
i=0

[
ω−0ixa0 + · · ·+ ω−(k−1)ixak−1

]
x

i
k
(q−1), (5.3.8)

where a0, . . . , ak−1 ∈ Zq−1. Then F is a PP of Fq if and only if gcd
(
ai,

1
k
(q − 1)

)
= 1

for all 0 ≤ i ≤ k − 1 and iai, 0 ≤ i ≤ k − 1, are all distinct in Zk.

Proof. (⇐) Let θ(x) = x
1
k
(q−1), f∞ = 0, and fi(x) = xai , 0 ≤ i ≤ k − 1.

First we show that fi is 1-1 on θ−1(ωi). Let x1, x2 ∈ θ−1(ωi) such that fi(x1) =

fi(x2). Then (x1
x2

)ai = 1. Also,

(x1
x2

) 1
k
(q−1)

=
x

1
k
(q−1)

1

x
1
k
(q−1)

2

=
ωi

ωi
= 1.

Since gcd
(
ai,

1
k
(q − 1)

)
= 1, we have x1

x2
= 1.

Now we show that fi(θ
−1(ωi))∩fj(θ−1(ωj)) = ∅ for 0 ≤ i < j ≤ k−1. Assume

to the contrary that there exists b ∈ fi(θ−1(ωi))∩fj(θ−1(ωj)). Then b = fi(x) = fj(y)

for some x ∈ θ−1(ωi) and y ∈ θ−1(ωj). We have

b
q−1
k =

(
xai
) q−1

k =
(
x

q−1
k

)ai = ωiai .
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In the same way b
q−1
k = ωjaj . Thus iai = jaj in Zk, which is a contradiction.

(⇒) First assume that gcd
(
ai,

1
k
(q − 1)

)
= l > 1 for some 0 ≤ i ≤ k − 1. Let

ε ∈ F∗q such that o(ε) = l. Then for any x ∈ θ−1(ωi), we have εx ∈ θ−1(ωi) and

(εx)ai = xai . Thus F (x) = F (εx), where x 6= εx, which is a contradiction.

Next assume that iai = jaj in Zk for some 0 ≤ i < j ≤ k − 1. Let γ be a

primitive element of Fq such that ω = γ
1
k
(q−1). Then γi ∈ θ−1(ωi), γj ∈ θ−1(ωj), and

(γi)ai = (γj)aj . Hence F (γi) = F (γj), which is a contradiction.

For k | q− 1, let Aq,k denote the set of all sequences (a0, . . . , ak−1) ∈ Zkq−1 such

that gcd
(
ai,

1
k
(q− 1)

)
= 1 for all 0 ≤ i ≤ k− 1, and iai, 0 ≤ i ≤ k− 1, are all distinct

in Zk. For each d | k, let πd : Zq−1 → Zk/d be the canonical homomorphism. Each

element of Aq,k is generated exactly once through the following steps.

1. For each d | k, choose a permutation τd of Z∗k/d.

2. For each 0 ≤ i ≤ k − 1, let

αi =
( i

(i, k)

)−1
τ(i,k)

( i

(i, k)

)
∈ Z∗k/(i,k).

(Note that in Zk, iαi = (i, k)τ(i,k)(
i

(i,k)
), 0 ≤ i ≤ k − 1, which are all distinct.)

3. For each 0 ≤ i ≤ k − 1, choose ai ∈ π−1(i,k)(αi) such that gcd(ai,
q−1
k

) = 1.

The number of choices in Step 1 is
∏

d|k φ(k
d
)! =

∏
d|k φ(d)!. Counting the

number of choices in Step 3 requires some effort.

For positive integers m | n define

h(m,n) =
∣∣{x ∈ Z n

m
: gcd(1 +mx, n) = 1

}∣∣.
This function can be explicitly determined in terms of the prime factorizations of m

and n.
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Lemma 5.3.2 Let n = pe11 · · · pess , m = pf11 · · · pfss , where p1, . . . , ps are distinct primes

and ei > 0, 0 ≤ fi ≤ ei. Without loss of generality, assume f1 = · · · = ft = 0,

ft+1, . . . , fs > 0. Then

h(m,n) =
n

m

(
1− 1

p1

)
· · ·
(

1− 1

pt

)
.

Proof. For 1 ≤ i1 < · · · < il ≤ t, we have

∣∣{x ∈ Z n
m

: 1 +mx ≡ 0 (mod pi1 · · · pil)
}∣∣ =

n

m
· 1

pi1 · · · pil
.

By the inclusion-exclusion formula,

h(m,n) =
n

m

t∑
l=0

(−1)l
∑

1≤i1<···<il≤t

1

pi1 · · · pil
=

n

m

(
1− 1

p1

)
· · ·
(

1− 1

pt

)
.

It is quite clear that for any two positive integers m and n and α ∈ Z∗n,

∣∣{x ∈ Z n
(m,n)

: gcd(α +mx, n) = 1
}∣∣ = h

(
(m,n), n

)
.

Using this notation, we see that in the above Step 3, for each 0 ≤ i ≤ k − 1, the

number of choices for ai is∣∣∣{x ∈ Z 1
k
(q−1)(i,k) : gcd

(
αi +

k

(i, k)
x,

q − 1

k

)
= 1
}∣∣∣

=
∣∣∣{x ∈ Z q−1

k
/( k

(i,k)
, q−1

k
) : gcd

(
αi +

k

(i, k)
x,

q − 1

k

)
= 1
}∣∣∣(i, k)

( k

(i, k)
,
q − 1

k

)
=
(
k,

q − 1

k
(i, k)

)
h
(( k

(i, k)
,
q − 1

k

)
,
q − 1

k

)
.
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Therefore the total number of choices in Step 3 is

∏
0≤i≤k−1

(
k,

q − 1

k
(i, k)

)
h
(( k

(i, k)
,
q − 1

k

)
,
q − 1

k

)
=
∏
d|k

[(
k,

q − 1

k
d
)
h
((k

d
,
q − 1

k

)
,
q − 1

k

)]φ( k
d
)

=
∏
d|k

[(
k,

q − 1

d

)
h
((
d,
q − 1

k

)
,
q − 1

k

)]φ(d)
.

Thus

|Aq,k| =
∏
d|k

[(
k,

q − 1

d

)
h
((
d,
q − 1

k

)
,
q − 1

k

)]φ(d)
φ(d)!.

Denote the function in (5.3.8) by Ff , where f : Zk → Zq−1, f(i) = ai. Let

F = {f : Zk → Zq−1 : (f(0), . . . , f(k − 1)) ∈ Aq,k}. Then G := {Ff : f ∈ F} is a

subgroup of the symmetric group Sym(Fq). The composition in G is given by

Fg ◦ Ff = Fh,

where

h(i) = f(i)g
(
i f(i)

)
, i ∈ Zk,

and f(i) is the image of f(i) in Zk.

Now we determine the order of G. Note that θ−1(ωj) = {x ∈ Fq : x
1
k
(q−1) =

ωj} = {αj+kl : 0 ≤ l < 1
k
(q − 1)}, where α is a primitive element of Fq such that

ω = α
1
k
(q−1). For a, a′ ∈ Zq−1, we have

xa = xa
′

for all x ∈ θ−1(ωj)

⇔ (a− a′)(j + kl) ≡ 0 (mod q − 1) for all 0 ≤ l <
1

k
(q − 1)

⇔ (a− a′)j ≡ (a− a′)k ≡ 0 (mod q − 1)

⇔ (a− a′)(j, k) ≡ 0 (mod q − 1)

⇔ a− a′ ≡ 0
(

mod
q − 1

(j, k)

)
.
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It is clear that the mapping

F −→ G

f 7−→ Ff

is
∏k−1

j=0(j, k) to 1. Thus

|G| =
|F|∏k−1

j=0(j, k)
=

|Aq,k|∏
d|k d

φ(k/d)
=

|Aq,k|∏
d|k(

k
d
)φ(d)

=
∏
d|k

[(
d,
q − 1

k

)
h
((
d,
q − 1

k

)
,
q − 1

k

)]φ(d)
φ(d)!.

In Theorem 5.3.1, one can replace each xai with cix
ai , where ci ∈ F∗q is a kth

power. The following theorem offers a more substantial extension of Theorem 5.3.1.

Theorem 5.3.3 Let q, k, ω, a0, . . . , ak−1 be as in Theorem 5.3.1. For each 0 ≤ i ≤

k− 1, let ri be a power of p such that k | ri− 1 and bi ∈ F∗q such that (−bi)
q−1
k 6= ωiai.

Then

F (x) =
1

k

k−1∑
i=0

[
ω−0ixa0(xa0 + b0)

r0−1 + · · ·+ ω−(k−1)ixak−1(xak−1 + bk−1)
rk−1−1

]
x

i
k
(q−1)

(5.3.9)

is a PP of Fq.

Proof. Let θ(x) = x
1
k
(q−1), fi(x) = xai(xai + bi)

ri−1, 0 ≤ i ≤ k − 1. By the proof

of Theorem 5.3.1, we have fi(θ
−1(ωi)) ∩ fj(θ−1(ωj)) = ∅ for 0 ≤ i < j ≤ k − 1. It

remains to show that fi is 1-1 on θ−1(ωi). Assume to the contrary that there exist

x, y ∈ θ−1(ωi), x 6= y, such that

xai(xai + bi)
ri−1 = yai(yai + bi)

ri−1.

Write r = ri, u = xai
bi

, v = yai

bi
. Then we have

u(u+ 1)r−1 = v(v + 1)r−1.
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Thus

(v + 1)u(u+ 1)r − (u+ 1)v(v + 1)r = 0.

The left side of the above equation equals

(u− v)(v + 1)
[
u(u− v)r−1 + (v + 1)r−1

]
.

Note that v + 1 6= 0 since otherwise, yai

bi
= v = −1, which implies that (−bi)

q−1
k =

(yai)
q−1
k = (y

q−1
k )ai = ωiai , which is a contradiction. (This is perhaps an overkill.

Since u 6= v, we may assume that one of u and v, say v, is not −1.) Now we have

u(u− v)r−1 + (v + 1)r−1 = 0,

i.e.,

−u =
(v + 1

u− v

)r−1
.

It follows that (
−x

ai

bi

) q−1
k

= (−u)
q−1
k =

(v + 1

u− v

)(r−1) q−1
k

= 1.

Thus (−bi)
q−1
k = (x

q−1
k )ai = ωiai , which is a contradiction.

Remark.

(i) In Theorem 5.3.1, let q be odd, k = 2, a0 = t+ l, a1 = l, where gcd(l, q− 1) = 1

and gcd
(
t+ l, 1

2
(q − 1)

)
= 1. The result is [39, Theorem 8].

(ii) In Theorem 5.3.1, let q be a power of a prime p with 3 | q−1. Let k = 3, a0 = 1,

a1 = 3 + 2
3
(q − 1), a2 = p+ 1

3
(q − 1), and assume that p ≡ 1 (mod 3) and q ≡ 4

(mod 9), or p ≡ 2 (mod 3) and q ≡ 7 (mod 9). The result is [39, Theorem 9].

(iii) In Theorem 5.3.1 let q be a power of a prime p such that q ≡ 1 (mod 9). Let

k = 3, a0 = 1, a1 = pi + 2
3
(q − 1), a2 = p + 1

3
(q − 1), and assume pi−1 ≡ 1

(mod 3). The result is [39, Theorem 10].
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(iv) In Theorem 5.3.1, let q be a power of a prime p with p ≡ 1 (mod k), q ≡ 1

(mod k2), and let ai = pi − q−1
k

, 0 ≤ i ≤ k − 1. The result is [39, Theorem 11].

(v) In Theorem 5.3.3, let q = 3n, n even, k = 2, a0 = 3, r0 = 1, a1 = 1, r1 = 3,

b1 = 1. The result is [21, Theorem 2.1].

(vi) In Theorem 5.3.3, let q = 3n, k = 2, a0 = t, where gcd
(
t, 1

2
(q − 1)

)
= 1, r0 = 1,

a1 = 1, r1 = 3, b1 = −ε, where ε is a square of F∗q. The result is [39, Proposition

1].
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6 Conclusion

One of the goals of this dissertation was to explore the permutation behavior of the

polynomial gn,q further and answer many questions about gn,q that were not discussed

in [22]. Many articles on permutation polynomials introduce necessary and sufficient

conditions to construct permutation polynomials. In Chapters 2, 3 and 4, we explained

the naturally existing families of permutation polynomials in the form of gn,q.

In Chapter 2, we explained the case e = 1 and several unexplained desirable

triples in [22]. There are still many uncategorized cases in Table 2.1 and most of them

occur when e = 3 and a few with e = 4. All desirable triples are categorized when

e = 5, 6. Perhaps this is an indication that permutation property of gn,q is easier to

understand when e is large. However, we still do not know if the triple (407, 3; 3)

belongs to a family. For the time being, we believe that it is a sporadic case.

In Chapter 3, we were in new fronts and answered many questions about gn,q

where n is of the form n = qa−qb−1. There are still many desirable triples in Table 3.2

for which no theoretic explanation has been found. Conjecture 3.1.1, and 3.1.4 are of

more interest in future research in the polynomial gn,q. Conjecture 3.2.6 has recently

been proved in [23] and its proof has led to the discovery of a hypergeometric identity.

In Chapter 4, we found many categorized cases that explained almost all de-

sirable triples in Table 4.1. Conjecture 4.2.21 is clearly an indication that the unex-

plained cases in even characteristic seem to be more interesting and challenging.

One of the challenges among the remaining problems of gn,q is to find a criterion

for gm,q and gn,q to represent the same function on Fqe , i.e., gm,q ≡ gn,q (mod xq
e−x).
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When q = 2, this problem has been answered in [24]. For the general case, there have

only been some partial results; see [22, §4].

Computer search results have been a major tool in our effort to find new fami-

lies of desirable triples of gn,q. For example, the conjectures stated in this dissertation

would not have been possible without computer search results.

Constructing permutation polynomials has been in literature for some time now

and the piecewise construction had been the main focus in several recently published

articles. The piecewise approach that we explained in Chapter 5 generalized several

recently discovered families of permutation polynomials.
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Appendix A - Mathematica Codes for gn,q

Here we present some useful Mathematica codes used to identify the permutation

behavior of the polynomial gn,q. Run the following command each time before you

execute each code.

Clear["Global‘*"]

Mathematica Code 1

The following program code, called the Fast Algorithm Code, generates the

polynomial gn,q for any given n, e, and q in a very short time.

q = ; (* input q *)

list = Flatten[FactorInteger[q]];

p = list[[1]];

e = ; (* input e*)

n = ; (* input n *)

list = {};

m = Length[IntegerDigits[n, q]];

a = IntegerDigits[n, q];

nk = a[[1]];

For[u = 0, u <= q - 1, u++,

If[u == q - 1, g[u] = -1, g[u] = 0];

];

For[t = q, t <= 2 q, t++,

g[t] =

PolynomialMod[x* g[t - q] + g[t - q + 1], x^q^e - x, Modulus -> p];

];

For[ k = 1, k <= m - 1, k++,

For[i = 0, i <= q - 1, i++,

g[q*nk + i*q] =
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Appendix A (Continued)

PolynomialMod[ g[nk + i]^q, x^q^e - x, Modulus -> p];

];

For[j = 1, j <= q - 1, j++,

For[l = 0, l <= q - 1 - j, l++,

g[q*nk + j + l*q] =

PolynomialMod[ (-x* g[q*nk + j - 1 + l*q]) +

g[q*nk + j - 1 + (l + 1)*q], x^q^e - x, Modulus -> p];

];

];

For[s = 2, s <= q, s++,

For[h = 1, h <= s - 1, h++,

g[q*nk + s*q - h] =

PolynomialMod[

x* g[q*nk + s*q - h - q] + g[q*nk + s*q - h - q + 1],

x^q^e - x, Modulus -> p];

];

];

nk = q*nk + a[[k + 1]];

];

Print["n = ", n];

Print[g[n]];
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Appendix A (Continued)

Mathematica Code 2

The following code was executed to generate the desirable triples (n, e; 3) in

Table 2.1 by changing the values of “e” and list “M” accordingly.

e = ; (* input e *)

q = 3^e;

f0 = 0;

f1 = 0;

f2 = 2;

M = {0, 1, 2};

n0 = 2; (* n0 = last n *)

For [n = 3, n < 3^(3e) - 1, n++,

(* Checking if n is the smallest in the cyclotomic class *)

m = Min[Mod[3^M*n, 3^(3 e) - 1]];

If [n != m, Continue[]];

For[k = n0 + 1, k <= n, k++,

f = x*f0 + f1;

f = PolynomialMod[f, x^q - x, Modulus -> 3];

f0 = f1;

f1 = f2;

f2 = f;

];

n0 = n;

(* Hermite’s criterion *)

IsPP = True;

h = 1;

For [i = 1, i < q - 1, i++,

h = PolynomialMod[h*f, x^q - x, Modulus -> 3];

If[Exponent[h, x] > q - 2, IsPP = False; Goto[step3]];
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Appendix A (Continued)

];

h = PolynomialMod[h*f, x^q - x, Modulus -> 3];

If[Exponent[h, x] != q - 1, IsPP = False];

Label[step3];

If[IsPP, Print [n, " ", IntegerDigits[n, 3]]; Print[f]];];

Mathematica Code 3

The following code was executed to generate the desirable triples (qa − qb −

1, 2; q), q ≤ 97, 0 < b < a < 2p, b odd, b 6= p.

list1 = {};

list2 = {};

list3 = {};

e = 2;

For[k = 1, k <= 15, k++,

(* Checking if k is prime *)

If[PrimeQ[k] || PrimePowerQ[k], q = k, Continue[]];

list1 = Flatten[FactorInteger[q]];

p = list1[[1]];

Print["q = ", q];

For[b = 1, b < p*e, b++,

If[! OddQ[b], Continue[]];

If[b == p, Continue[]]; (* avoid the case b = p *)

For[a = b + 1, a < p*e, a++,

(* finding coefficients a0,a1,b0 and b1*)

list2 = QuotientRemainder[b, e];

b0 = list2[[2]];

b1 = list2[[1]];

list3 = QuotientRemainder[a - b, e];
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Appendix A (Continued)

a0 = list3[[2]];

a1 = list3[[1]];

S = Sum[x^q^i, {i, 0, e - 1}];

S1 = Sum[x^q^i, {i, 0, a0 - 1}];

S2 = Sum[x^q^i, {i, 0, b0 - 1}];

g = -x^(q^e - 2) -

x^(q^e - q^b0 - 2)*(a1*S + S1^q^b0)*((b1*S + S2)^(q - 1) - 1);

(* Hermite’s criterion *)

IsPP = True;

f = PolynomialMod[g, x^q^e - x, Modulus -> p];

h = 1;

For [i = 1, i < q^e - 1, i++,

h = PolynomialMod[h*f, x^q^e - x, Modulus -> p];

If[Exponent[h, x] > q^e - 2, IsPP = False; Goto[step3]];

];

h = PolynomialMod[h*f, x^q^e - x, Modulus -> p];

If[Exponent[h, x] != q^e - 1 , IsPP = False];

Label[step3];

If[IsPP, Print["a = ", a , " ", "b = ", b]];

];

];

];
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Appendix B - Proof of Theorem 2.4.1

When q > 3 is odd,

g(y)2q
2+2 ≡

8y−1+q
3
+2y−3+q

3
+y3−4q

2+q3+2yq−4q
2+q3+4y2+q−4q

2+q3+y−3+2q−4q2+q3+6y−1+2q−4q2+q3+

5y1+2q−4q2+q3 +2y−4+3q−4q2+q3 +4y−2+3q−4q2+q3 +2y3q−4q
2+q3 +2y−3q

2+q3 +2y2−3q
2+q3 +

2y−3+q−3q
2+q3+8y−1+q−3q

2+q3+6y1+q−3q
2+q3+4y−4+2q−3q2+q3+8y−2+2q−3q2+q3+4y2q−3q

2+q3

+ y−3−2q
2+q3 + 2y−1−2q

2+q3 + y1−2q
2+q3 + 2y3−2q

2+q3 + 2y−4+q−2q
2+q3 + 4y−2+q−2q

2+q3 +

6yq−2q
2+q3+6y2+q−2q

2+q3+2y−3+2q−2q2+q3+8y−1+2q−2q2+q3+6y1+2q−2q2+q3+2y−4+3q−2q2+q3

+ 4y−2+3q−2q2+q3 + 2y3q−2q
2+q3 + 4y−q

2+q3 + 6y2−q
2+q3 + 4y−3+q−q

2+q3 + 16y−1+q−q
2+q3 +

12y1+q−q
2+q3 + 6y−4+2q−q2+q3 + 12y−2+2q−q2+q3 + 6y2q−q

2+q3 + y2+2q−4q2 + 2y−1+3q−4q2 +

2y1+3q−4q2 +y−4+4q−4q2 +2y−2+4q−4q2 +y4q−4q
2
+2y−1+2q−3q2 +2y1+2q−3q2 +2y−4+3q−3q2 +

4y−2+3q−3q2 + 2y3q−3q
2

+ 2y3+q−2q
2

+ y−4+2q−2q2 + 2y−2+2q−2q2 + 5y2q−2q
2

+ 6y2+2q−2q2 +

2y−3+3q−2q2 +8y−1+3q−2q2 +6y1+3q−2q2 +2y−4+4q−2q2 +4y−2+4q−2q2 +2y4q−2q
2
+4yq−q

2
+

6y2+q−q
2
+4y−3+2q−q2 +16y−1+2q−q2 +12y1+2q−q2 +6y−4+3q−q2 +12y−2+3q−q2 +6y3q−q

2
+

2y−3+q
2

+ 4y−1+q
2

+ 4y1+q
2

+ 4y3+q
2

+ 2y−4+q+q
2

+ 6y−2+q+q
2

+ 14yq+q
2

+ 12y2+q+q
2

+

6y−3+2q+q2 + 18y−1+2q+q2 + 12y1+2q+q2 + 4y−4+3q+q2 + 8y−2+3q+q2 + 4y3q+q
2

+ y−2+2q2 +

6y2+2q2 +6y−3+q+2q2 +18y−1+q+2q2 +12y1+q+2q2 +6y−4+2q+2q2 +12y−2+2q+2q2 +6y2q+2q2 +

2y−3+3q2 +6y−1+3q2 +4y1+3q2 +4y−4+q+3q2 +8y−2+q+3q2 +4yq+3q2 +y−4+4q2 +2y−2+4q2 +

8y−3+q + 20y−1+q + 12y2q + y4q + 6y2q
2

+ y4q
2

+ 14y1+q + 4y3+q + 6y−4+2q + 13y−2+2q +

6y2+2q + 2y−3+3q + 6y−1+3q + 4y1+3q + y−4+4q + 2y−2+4q + 6y2 + y4.
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Appendix B (Continued)

When q > 3 is even,

g(y)2q
2+q+3 ≡

yq
3−1 + yq

3−5 + yq
3−q+4 + yq

3−q+2 + yq
3−2q+5 + yq

3−2q+1 + yq
3−2q−1 + yq

3−2q−3

+yq
3−2q−5 + yq

3−q2+4q−2 + yq
3−q2+4q−6 + yq

3−q2+3q−1 + yq
3−q2+3q−3 + yq

3−q2+3q−5

+yq
3−q2+3q−7 + yq

3−q2+2q + yq
3−q2+2q−2 + yq

3−q2+2q−6 + yq
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