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This study is intended to provide researchers with empirically derived guidelines 

for conducting factor analytic studies in research contexts that include dichotomous and 

continuous levels of measurement.  This study is based on the hypotheses that ordinary 

least squares (OLS) factor analysis will yield more accurate parameter estimates than 

maximum likelihood (ML) and principal axis factor anlaysis (PAF); the level of 

improvement in estimates will be related to the proportion of observed variables that are 

dichotomized and the strength of communalities within the data sets.   

To achieve this study’s objective, maximum likelihood, ordinary least squares, 

and principal axis factor extraction models were subjected to various research contexts.  

A Monte Carlo method was used to simulate data under 540 different conditions; 

specifically, this study is a four (sample size) by three (number of variables) by three 

(initial communality levels) by three (number of common factors) by five (ratios of 

categorical to continuous variables) design.   Factor loading matrices derived through the 

tested factor extraction methods were evaluated through four measures of factor pattern 

agreement and three measures of congruence. 



 

xv 
 

 

To varying degrees, all of the design factors, as main effects, yielded significant 

differences in measures of factor loading sensitivity, agreement between sample and 

population, and congruence.  However, in all cases, the main effects were components of 

interactions that yielded differences in values of these measures that were at least 

medium in effect size.  The number of factors imbedded in the population was a 

component in six interactions that resulted in medium effect size differences in measures 

of agreement between population and sample factor loading matrices. of factor loading 

sensitivity, general pattern agreement, per element agreement, congruence, factor score 

correlations, and factor loading bias; in terms of the number of interactions that yielded at 

least medium effect size differences in measures of sensitivity, agreement, and 

congruence. The number of factors design factor exerted a larger influence than any of 

the other design factors.  The level of communality interacted with the number of factors, 

number of observed variables, and sample size main effects to yield at least medium 

effect size differences in factor loading sensitivity, general pattern agreement, per 

element agreement, congruence, factor score correlations, factor loading bias, and RMSE; 

in terms of the number of factors that included communality as a component, this design 

factor exerted the second largest amount of influence on the measures of sensitivity, 

agreement, and congruence.  The level of dichotomization, sample size, and number of 

observed variables were included in smaller numbers of interactions; however, these 

interactions yielded differences in all of the outcome variables that were at least medium 

in effect size. 
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Across the majority of interactions among the manipulated research contexts, the 

ordinary least squares factor extraction method yielded factor loading matrices that were 

in better agreement with the population than either the maximum likelihood or the 

principal axis methods.  In three of the four measures of congruence, the ordinary least 

squares method yielded factor loading matrices that exhibited less bias and error than the 

other two tested factor extraction methods.   In general, the ordinary least squares method 

yielded factor loading matrices that correlated more strongly with the population than 

either of the other two tested methods. 

The suggested use of ordinary least squares factor analytic techniques represents 

the major, empirically derived recommendation derived from the results of this study.  In 

all tested conditions, the ordinary least squares factor extraction method identified 

common factors with a high degree of efficacy.   Suggested studies for future would 

incorporate the limiting constraints associated with this dissertation into methodological 

studies to extend the generalizability of conclusions and recommendations into areas that 

are beyond the scope of this dissertation. 
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Introduction 

The existence of internal attributes, or factors, is the central assertion in factor 

analytic theory (Tucker & MacCallum, 1997).  While these factors are not directly 

observable, much of the variation in the phenomena that researchers witness and measure 

is attributable to these underlying traits (Bartholomew, 1984; Cureton & D’Agostino, 

1983; Stevens, 2002; Tucker & MacCallum, 1997).  Moreover, factor analytic theory 

asserts that these hypothetical, internal attributes are more “fundamental” than the surface 

attributes which we observe (Tucker & MacCallum, 1997, p. 2). 

In the most basic sense, factor analysis is a set of procedures that researchers 

employ to analyze relationships among variables (Cureton & D’Agostino, 1983).  The 

objective of this set of procedures is to account for complex patterns of covariation 

among observed random variables with a set of common factors.  The central goals of 

exploratory factor analysis include the identification of theoretical constructs that 

underlie a set of observations and the quantification of the extent to which these 

constructs “represent the original variables” (Henson & Roberts, 2006, p. 396).   

The method through which factors are extracted from data represents one of the 

central procedures associated with exploratory factor analysis (Cureton & D’Agostino, 

1983; Stevens, 2002; Tucker & MacCallum, 1997).  The goal of this study is to provide 

researchers with empirical data regarding the most common methods of factor extraction; 
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the result of this study will be a performance assessment of specific factor extraction 

techniques applied to a variety of research conditions.  To simulate many samples within 

a large spectrum of research contexts, this study will employ a Monte Carlo simulation 

(Metropolis & Ulam, 1949). 

Statement of Problem 

Although exploratory factor analysis is useful in “both measurement and 

substantive research contexts” (Henson & Roberts, 2006, p. 396), it has been subjected to 

persistent criticism.  Many of these objections are based on the subjectivity of the 

decisions that researchers must make when conducting their factor analyses (Henson & 

Roberts, 2006).  Another important source of criticism is related to the “indeterminacy of 

factor solutions” (Harman, 1976, p. 27) which implies that, for a given matrix of 

correlations, an infinite number of uncorrelated factors can be selected.   

Attempts to incorporate non-normal data types into factor analyses represent 

another potential area of criticism (Yuan, Marshall, & Bentler, 2002).  Guiding principles 

are well established for contexts that include continuous variables that exhibit 

multivariate normality. However, “no firm guidelines have as yet emerged concerning 

situations in qualitative and quantitative variables are mixed together” (Krzanowski, 

1983, p. 235). 

The lack of guidelines associated with incorporating non-normal data sets into 

factor analytic studies represents the problem to be addressed by this dissertation.  The 

absence of these guidelines becomes especially salient as researchers attempt to 

incorporate mixtures of continuous and categorical data into factor analytic studies.  

Without empirically derived guidelines for conducting factor analytic studies with these 
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types of complex data sets, factor analytic design choices can be criticized as subjective 

which yield results that can be considered problematic. 

Theoretical Framework 

While the work of Pearson represents the mathematical foundation for classical 

factor analysis, Spearman provided the initial description of statistical treatments 

associated with principal axis analyses (Harman, 1976).  Spearman’s (1904) work in 

identifying the strength and direction of relationships among intellectual abilities 

describes a method for extracting “something of substance” (Spearman, 1904, p. 258) 

from correlations.  This study of intelligence and its advocacy for the use correlation 

studies in the field of psychology serve as the theoretical basis for this dissertation. 

 In a series of four experiments, Spearman collected demographic and 

performance data from 123 students.  These subjects were sampled from both a set of 

village schools and a preparatory academy.  In terms of chronological age, students from 

the preparatory academy were drawn from the highest class.  Students from the village 

schools were selected based on their relative position with respect to age; these students 

were the oldest children in their families (Spearman, 1904). 

 After gathering information regarding height, weight, and age, Spearman 

subjected the students to a variety of perceptual acuity, or discernment, tests.  Spearman 

also assessed the students’ performance in a variety of academic skills which included 

Latin, Mathematics, French, English, Music, and Greek.  To examine each student’s 

outward expression of common sense and general intelligence, Spearman included 

interviews of the test subjects’ classmates, siblings, and teachers. 
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 Spearman’s initial discussion regarding the experimental results focused on 

defining the method through which true correlations could be derived from observed 

correlations (Spearman, 1904).   The development of this true correlation required the 

following four steps:  

1. Determine the strength of the observed correlations. 

2. Estimate the amount of errors included in correlations between two sets of 

variables. 

3. Identify any spurious correlations or “any factors irrelevantly admitted” 

(Spearman, 1904, p. 257). 

4. Critically examine the experimental design and theory supporting the design to 

identify any disturbing factors. 

Based on the observed correlations, Spearman attempted to measure the extent to which 

two series of observations had something of substance in common.  The existence of this 

common substance is asserted when the observed correlation is at least four to five times 

greater than the amount of error associated with the estimate (Spearman, 1904). 

 The study yielded a hierarchy of intelligences that Spearman summarized through 

a table of correlations among observed variables.  This matrix contained corrected 

correlations which represent estimates of association after observational errors were 

eliminated (Spearman, 1904); the main diagonal of this matrix contained values less than 

one.   This hierarchy of intelligences is presented through a table containing correlations 

between sensory discernment and school subject performance observations, a factor of 

general intelligence, and a column presenting ratios of the common factor to specific 

factors (Spearman, 1904). 
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 Spearman concluded that all branches of intellectual capacity had in common 

“one fundamental function” (Spearman, 1904, p. 284).  The remaining elements of 

intellectual activity are unique for each observation.  Spearman’s description of 

observations in terms of common and specific factors represents a fundamental premise 

in common or classic factor analytic theory. 

 The common factor to which Spearman referred is an unobservable, internal 

attribute that influences the value of observed variables (Tucker & MacCallum, 1997).  

These hypothetical constructs, in conjunction with researchers’ theories, can be used to 

explain “the variation and covariation across a wide range of surface attributes” (Tucker 

& MacCallum, 1997, pp. 2-3).   Factor analytic theory includes two types of internal 

attributes; these are common factors and specific factors. 

Formally, a common factor is “an internal attribute which affects more than one 

of the surface attributes in the selected set, or battery” (Tucker & MacCallum, 1997, pp. 

2-3).  While still being an internal attribute, a specific factor influences only one variable 

in a given data set.  A third type of influence includes measurement error; this influence 

is neither internal nor systematic (Tucker & MacCallum, 1997). 

The “traditional” or “classical” factor analysis model is defined by the following 

equation: 

ܼ ൌ ܽଵܨଵ  ܽଶܨଶ  ⋯ ܽܨ  ݑ ܻ		ሺ݆ ൌ 1, 2,⋯ , ݊ሻ 

In this model, a variable ܼ is described by a linear combination of common factors 

	ሺܨଵ, ⋯,ଶܨ , ݑ ሻ, and a unique factorܨ ܻ.  The a’s represent coefficients or loadings for 

the common factors; the number of common factors (m) is normally smaller than the 
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number of observed variables, n (Harman, 1976).  When considering the value of a 

specific variable, j, for a given individual, i, the factor model can be written as:  

ܼ ൌ  ܽ ݂  ݑ ܻ



ୀଵ

 

Where ݂ is the common factor p for individual i; ܽܨ represents the contribution of 

the factor on the linear composite. The residual error is given by ݑ ܻ (Harman, 1976). 

 The factor analytic model provides estimates for the values of loadings on 

common factors (Harman, 1976).  Classical factor analysis includes many strategies for 

extracting these factor loadings from data.  The manner in which researchers select 

specific methods for factor extraction represents the focus of this study. 

Recent developments in structural equation modeling define formative factors as a 

category of latent variables that are neither common nor unique.  As opposed to factor 

analytic theory, in which observed variables are attributable to factors, formative factors 

are generated by observed variables (Bollen & Lennox, 1991; Kim, Shin, & Grover, 

2010; Treiblmaier, Bentler, & Mair, 2011).  In formative measurement models, indicators 

cause latent variables in the following manner (Bollen & Lennox, 1991): 

ଵߟ ൌ ଵଵ߯ଵߛ	 		ߛଵଶ߯ଶ 		⋯ ଵ߯ߛ   ଵߦ

In this expression, γ’s are coefficients, χ’s are “explanatory or observed variables” 

(Bollen & Lennox, 1991, p. 306), and the dependent variable is the latent construct, ߟଵ.  

 In the field of information sciences, recent reviews of literature highlight the 

increased importance of structural equation modeling and the use of formative 

measurement models (Kim, Shin, and Grover, 2010).  For example, searches of MIS 

Quarterly and Information Systems Research, yielded 24 articles published since 2001 
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that focused on formative latent variables.  In addition to noting the prevalence of 

formative constructs in the published literature, Kim, Shin, and Grover (2010) examined 

the differing perspectives regarding the utility of formative latent variables, design issues 

associated formative measurement models, and the impact of these models on the 

“quality of IS research . . .” (Kim, Shin, & Grover, 2010, p. 363).   They identified 

“interpretational confounding” and “external consistency” as central issues in the 

controversy among information scientists over the “viability of formative indicators” 

(Kim, Shin, & Grover, 2010, p. 347).  

 Interpretational confounding occurs when empirical meaning is assigned to an 

unobserved variable in a manner that does not agree with the a priori meaning given to 

the variable by the researcher (Kim, Shin, & Grover, 2010).  Researchers who oppose the 

use of formative constructs cite the requirement of additional endogenous variables to 

estimate “formative indicator weights” (Kim, Shin, & Grover, 2010, p. 347) as a major 

factor contributing the prevalence of interpretational confounding in formative 

measurement models.  Moreover, the few solutions to these identification problems 

include the expansion of formative measurement models to include reflective indicators 

(Kim, Shin, & Grover, 2010; Treiblmaier, Bentler, & Mair, 2011).  

External consistency is achieved “when the measures of a construct correlate with 

the measures of other constructs” (Kim, Shin, & Grover, 2010, p. 347).  Unlike reflective 

measurement models, the constructs associated with formative models do not maintain 

linkages with “antecedents and consequences of a construct” (Kim, Shin, & Grover, 

2010, p. 347).  Proponents of formative measurement models assert that external 
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consistency and interpretational confounding are not salient issues when models are 

correctly specified (Kim, Shin, & Grover, 2010). 

 To examine the relative strengths of these competing perspectives concerning 

formative measurement models and their associated constructs, Kim, Shin, and Grover 

(2010) studied an existing dataset derived from an information technology survey.  The 

survey included 243 respondents and two exogenous variables.  These two variables 

include: “IT infrastructure flexibility as formatively theorized construct”  and “relational 

knowledge as a reflectively theorized construct” (Kim, Shin, & Grover, 2010, p. 350).  

The constructs were measured via index and conventional scale development procedures 

(Kim, Shin, & Grover, 2010).  The endogenous variables included financial performance, 

information technology performance, business process performance, effectiveness in 

information technology planning, and effectiveness in information technology 

coordination.  The variables were analyzed through both correctly and incorrectly 

specified models (Kim, Shin, & Grover, 2010). 

 The researchers’ results indicated that formative measurement models posed 

“fundamental problems” in estimating weights (Kim, Shin, & Grover, 2010, p. 359).  

They found substantial interpretational confounding; moreover, the lack of external 

consistency leads to “unpredictability of model fit . . ..” (Kim, Shin, & Grover, 2010, p. 

363).  Ultimately the researchers concluded that the use of formative measure models has 

substantial and negative impact on the quality of information systems research (Kim, 

Shin, & Grover, 2010). 

  Researchers concede that, under limited conditions, a formative construct may 

be scientifically meaningful. However, these same researchers assert that a thoughtfully 
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developed  reflective measurement approach is the most practical (Treiblmaier, Bentler, 

& Mair, 2011).   The reflective (common factor) approach to construct development is 

the focus of this dissertation. 

Purpose of the Study 

Objective.  This study is intended to provide researchers with empirically derived 

guidelines for conducting factor analytic studies in complex research contexts.  

Specifically, the scope of this study includes the evaluation of factor extraction methods 

when applied to data sets that contain mixtures of categorical and continuous variables.  

To enhance the potential utility of this study, the research focused on factor extraction 

methods commonly employed by social scientists; these methods include principal axis 

factor analysis, ordinary least squares factoring, and standard maximum likelihood 

method. 

To meet the goal of this study, factor extraction models were subjected to several 

research conditions.  These contexts differed in sample sizes, number of variables, 

communalities, number of common factors, and ratios of categorical to continuous 

variables.  Data were simulated under 540 different conditions; specifically, this study 

employed a four (sample size) by three (number of variables) by three (initial 

communality levels) by three (number of common factors) by five (ratios of categorical 

to continuous variables) design. 

Rationale.  One measure of the prevalence of factor analytic research designs in 

contemporary literature can be found in a recent analysis of literature published in 

PsycInfo over a two-year period.  By focusing on this published research, the survey 

yielded more than 1700 articles that involved exploratory factor analytic research 
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(Costello & Osborne, 2005).  The variety of purposes to which these factor analyses are 

applied also highlights the importance of this statistical tool.  As Conway and Huffcutt 

noted (2003), social scientists employ exploratory factor analysis to refine measurement 

tools, establish construct validity, and test hypotheses.  The proliferation of exploratory 

factor analysis in social science research has served as justification for a number of 

studies that either attempt to establish research design guidelines or contrast typical 

practices with ideal reporting procedures (Costello & Osborne, 2005; Henson & Roberts, 

2006; Krzanowski, 1983).   

Although exploratory factor analysis is useful in “both measurement and 

substantive research contexts (Henson & Roberts, 2006, p. 396),” it has been the focus of 

methodological criticism.  According to Henson and Roberts (2006), many of the 

objections to the use of exploratory factor analysis are based on the “inherent subjectivity 

of the decisions” ( p. 396) that researchers must make when conducting their analyses.  

For example, without referring to criterion variables, researchers select matrices of 

association, factor extraction methods, criteria for retaining factors, factor rotation 

strategies, and coefficients for interpretation (Henson & Roberts, 2006). 

As social scientists attempt to incorporate data sets that contain diverse 

preference, socio-economic, and quality of life measures into their multivariate analyses, 

they cannot rely on empirically developed guidelines.  While these types of guidelines are 

well established for contexts that include continuous variables that exhibit multivariate 

normality, they are not as useful when applied to contexts that include mixtures of 

qualitative and quantitative data (Krzanowski, 1983).  This difficulty in applying 

exploratory factor analysis becomes especially pronounced when the research context 
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includes categorical variables (Krzanowski, 1983).  The lack of methodological 

guidelines contributes to the rationale for this study. 

Supporting Examples.   

First supporting example.  To identify the factor structure of risky sexual 

behavior and substance use, the Vanzile-Tamsen, Testa, Harlow, and Livingston (2006) 

recruited 1,014 college women to participate in a study of sexual risk taking behavior.  

The levels and types of risk taking behavior, alcohol use, and drug use were assessed via 

a “computer assisted self interview” (VanZile-Tamsen et al. 2006, p. 250).   As part of 

the study’s design, the researchers included observed variables from two domains: Sexual 

risk taking and Substance Use (VanZile-Tamsen et al., 2006).   

The sexual risk taking behaviors include eight variables measured at a variety of 

levels. The authors assessed age at first sexual encounter as a ratio level measure.  A 

subject’s number of life time partners was measured at an interval level; this included 

seven levels that ranged from 0 to 10 or more (VanZile-Tamsen et al., 2006).  The time 

between meeting a new partner and having sex with him is measured through a six-level, 

Likert-type scale; a score of one indicates the first day that a subject meets a new partner, 

and a score of six means a year or more after meeting a new partner. 

Also as part of the sexual risk taking domain, the researchers developed a 

complex indicator of alcohol use associated with sexual encounters; this continuous 

indicator represents composite of two, Likert-type variables.  The first part of the index 

measured the number of times that alcohol use occurred prior to or during intercourse; 

this measure had five levels ranging from 1 (once in a while) to 5 (all the time).  The 

second part of this index measured the level of intoxication during sex; this Likert-type 



 
 

12 
 

response scale ranged from 1 (not at all intoxicated) to 7 (very intoxicated).   Neither 

portion of this composite variable defined the distances between the levels as equivalent. 

Without this information, the variables could (at most) be considered ordinal.  

The last set of variables associated with sexual risk taking involved the perception 

of sexually transmitted infection (STI) risk of each partner.  This variable is an index 

based on the subject’s estimate of life-time sexual partners that a new partner had and the 

subject’s belief that a new partner has had sex with men, ever had or transmitted an STI, 

and ever injected drugs (Vanzile-Tamsen et al., 2006). 

Substance use was measured via four variables.  The number of drinks during a 

typical drinking occasion is measured at the ratio level.  Frequency of binge drinking was 

measured on a 6 point Likert-type scale.  Frequency of drinking occasions contains a 

Likert-type response set with eight levels.  A drug use index was derived from the 

number of illicit drugs used, the frequency of drug use (a Likert-type response scale), and 

the results of a drug abuse screening test. 

Impulsivity, sensation seeking, and anxiety were measured through 38 yes/no 

items.  These dichotomously scored items were all highly correlated and used to construct 

three latent variables that would be included in a more general model.  Negative affect 

consisted of counts of 10 depressive symptoms and 21 trauma symptoms from the DSM 

IV.    

 The researchers employed a maximum likelihood confirmatory factor analysis to 

compare three models of risk behavior.  The comparisons were based on three fit indices, 

root mean squared error of approximation (RMSEA), and a “chi-squared difference test” 

(Vanzile-Tamsen et al., 2006, p. 250).   Based on the results of these comparisons, the 
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authors proposed a four latent factor model to account for their observations; this model 

contained two higher order factors (Vanzile-Tamsen et al., 2006).   

The researchers highlighted several limitations associated with their study.  For 

example, the model includes direct influences from personality factors to risk-taking 

behaviors; however, these influences “represent partial correlations . . .” (Vanzile-

Tamsen et al., 2006, p. 253).  Due to the researchers’ efforts to identify a model that best 

fit their data, “no conclusions should be made with regards to the model’s usefulness 

outside of community samples” (Vanzile-Tamsen et al., 2006, p. 2006).  The researchers 

attributed the complexity of their accepted factor model to the use of multiple indicators 

for each domain. 

Second supporting example.  To improve the quality of evaluative research in 

civics education, Finkel and Ernst (2005) presented the findings of a study conducted in 

1998.  This study examined the “impact of civic education” (Finkel & Ernst, 2005, p. 

335) on South African high school students.  The sample included 600 students; 385 of 

these students were exposed to formal civics education, and 261 of whom participated in 

this education through the U.S. Agency for International Development (USAID) 

“Democracy for All” (Finkel & Ernst, 2005, p. 335) program.  The remaining 215 

students did not receive formal civics education. 

The researchers used a battery of items to determine students’ “political 

knowledge, civic duty, tolerance, institutional trust, civic skills, and approval of legal 

forms of political participation” (Finkel & Ernst, 2005, p. 335).  Binary response and 

correct/incorrect items were used to assess knowledge.  Items measured on a Likert-type 

scale were used to assess indices of civic duty, political tolerance, trust in political 
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institutions, and approval of political participation, and interval level measures were used 

to assess students’ perceptions of their own civic skills (Finkel & Ernst, 2005).  

Civic education was assessed through measures of “students perceptions of 

teacher quality” (Finkel & Ernst, 2005, p. 347), frequency of exposure to civic education, 

and teaching methods.  Frequency of education was measured through a single Likert-

type item, ratio scale index scores were used to measure perceptions of teacher quality.  

Binary items were used to obtain information concerning active teaching methods (Finkel 

& Ernst, 2005). 

In total, this study included 53 observed variables.  Of these, 25 items were 

measured on a binary scale (either yes/no or correct/incorrect); four items were measured 

on an ordinal scale, and 24 items were measured at the interval level. The items measured 

at the interval level included 19 variables which yielded Likert-type observations.  The 

researchers presented their results through a table containing two sets of factor loading 

coefficients; one set of coefficients were associated with students who received civics 

education, and another set was associated with students who received no civics education.  

Through comparing the strengths of loading coefficients, the researchers highlighted 

slight differences in loadings between the groups.  The results of this study did not yield a 

comprehensive model of political engagement that could be subjected to a confirmatory 

analysis. 

Through empirically derived guidelines for incorporating differing scales of 

measurement into a single exploratory factor analysis, the authors would have been in a 

better position to incorporate all of their observations into a single, parsimonious factor 

model.  This model would have demonstrated the manner in which demographic 
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variables and instructional characteristics interact with behavioral outcomes to yield a 

comprehensive model of political engagement.  Such an analysis would be more 

amenable to replication and more easily subjected to confirmatory analysis.   

Research Questions 

 The agreement between factor pattern matrices in a simulated population and 

matrices developed through selected exploratory factor analytic techniques is the primary 

comparison associated with this study.  This agreement was assessed through the 

proportion of variables that load on the same factors, total factor loading agreement, and 

factor loading congruence coefficients (MacCallum et al., 1999).  Measures of 

agreement, correlations between population and sample factor score matrices, root mean 

square error, statistical bias, and solution variability were considered as measures of 

factor pattern agreement. 

 The measures of congruence and agreement among population and sample 

matrices were used to answer the following research questions: 

1. How do varying ratios of categorical to continuous variables influence the 

agreement between factor pattern matrices extracted through the examined factor 

analysis strategies and factor pattern matrices simulated in the population? 

2. How does the number of variables in a correlation matrix influence the agreement 

between factor pattern matrices extracted through the examined factor analysis 

strategies and factor pattern matrices simulated in the population? 

3. How does sample size influence the agreement between factor pattern matrices 

extracted through the examined factor analysis strategies and factor pattern 

matrices simulated in the population? 



 
 

16 
 

4. How does communality influence the agreement between factor pattern matrices 

extracted through the examined factor analysis strategies and factor pattern 

matrices simulated in the population? 

5. How does the number of common factors influence the agreement between factor 

pattern matrices extracted through the examined factor analysis strategies and 

factor pattern matrices simulated in the population? 

6. How do all of the independent variables interact to influence the agreement 

between factor pattern matrices extracted through the examined factor analysis 

strategies and factor pattern matrices simulated in the population? 

Hypotheses 

This study focused on comparisons among three factor extraction methods; these 

methods include principal axis factor analysis, ordinary least squares factor analysis, and 

maximum likelihood factor analysis.  Each factor extraction method was subjected to the 

same variety of research conditions.  The hypotheses associated with this study were 

evaluated through the measures defined in the research questions. 

First hypothesis.  The first hypothesis asserted that ordinary least squares (OLS) 

factor analysis will perform better than maximum likelihood factor analysis as the 

number of dichotomously scored variables increases.  Research into factor analytic 

techniques indicate that iterative, principal axis factor extraction methods perform better 

than maximum likelihood methods when the assumption of multivariate normality is not 

met (Bartholomew, 1980).  Based on the findings of earlier research, this study also 

asserts that, when the research context includes dichotomously scored variables, 
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maximum likelihood factor analysis will yield factor structures that are less like those 

simulated in the population than principal axis factor analysis. 

Second hypothesis.  The second hypothesis asserted that, when the factor structure in 

the population is not strongly defined, ordinary least squares (OLS) factor analysis will 

identify common factors that maximum likelihood factor analytic methods fail to 

identify.   According to this hypothesis, OLS’s relative advantage in identifying common 

factors will be negatively related to communality and positively related to the number of 

dichotomous variables.  This hypothesis is based on two complimentary studies that 

highlight OLS’s insensitivity to error and maximum likelihood’s reliance on the 

assumption of multivariate normality (Briggs & MacCallum, 2003; Mislevy, 1986).  

Significance of the Study 

 As a tool for generating theory, exploratory factor analysis can play a vital role in 

developing a knowledge base for social scientists (Stevens, 2002).  However, the quality 

of this knowledge base will be directly related to the quality of the decisions that 

researchers make as they implement their factor analysis procedures (Bartholomew, 

1984; Henson & Roberts, 2006; Tucker & MacCallum, 1997).  As one of the primary 

decisions that a researcher must make, the selection of a factor extraction strategy has a 

tremendous impact on the quality of conclusions derived from an exploratory factor 

analytic design.  This study can provide researchers with useful guidance in this selection 

process. 

Several recent studies have proposed a variety of Bayesian latent trait models to 

be employed by researchers when they encounter discrete and mixed data research 

contexts (Merkle, 2005; Sammel, Ryan, & Legler, 1997; Song & Lee, 2001).  However, 
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these types of exploratory factor analysis strategies are not often used by social science 

researchers (Henson & Roberts, 2006).  Because this study included principal axis, 

maximum likelihood, and ordinary least squares factor extraction techniques, the results 

can provide researchers with empirical information concerning the factor extraction 

methods that they are likely to use.   

Definition of Terms 

 Categorical Level of Data--or nominal data is the result of assigning 

numbers to categories; this is the “most rudimentary” level of measurement in which all 

individuals assigned to a given group are the same in terms of a characteristic or set of 

characteristic (Glass & Hopkins, 1996, p. 7). 

Congruence - among factor pattern matrices simulated in the population and the 

sample pattern matrices is measured through a congruence coefficient.  As defined by 

MaCallum (et al., 1999), the phi coefficient is the cosine of the angle between the sample 

and population factor solutions “when plotted on the same space” (p. 93).  To assess the 

congruence across all factor loading matrices, an average of the phi coefficient was 

calculated for each factor extraction method. 

Continuous Level Data--consist of measures that can be any value within a 

specified range (Glass & Hopkins, 1996). 

Factor Loadings--are the coefficients of the factors in the basic factor model.  The 

ambiguous use of the term is problematic when the factors are correlated.  To interpret 

the resulting factor solutions, correlated factor solutions undergo oblique rotations and 

yield two distinct factor matrices: factor pattern and factor structure (Harman, 1976). 
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Factor Loading Bias – is one measure of a factor extraction methods performance; 

it is a number of observed variables by number of factors matrix which is populated by 

estimates of statistical bias for each factor loading; in this study these bias estimates were 

averaged across all samples (Hogarty et al., 2005). 

Factor Loading Root Mean Squared Error – is an indicator of congruence between 

sample and population factor loading matrices.  This outcome variable is a number of 

observed variables by number of factors matrix containing root mean squared error 

(RMSE) estimates for each factor loading  To provide an overall index for each factor 

solution, the RMSE estimates are averaged across all samples in each research context 

(Hogarty et al., 2005).   

Factor Loading Sensitivity- is one of the measures of agreement between sample 

and population factor loading matrices.  This is the count of variables that meet a .30 

factor loading threshold for at least one factor in both the sample and the population 

divided by the count of variables that meet the .30 loading threshold in the population 

(Hogarty et al., 2005). 

Factor Score Correlations - is a number of factors  by 1 column vector of 

correlations between factor scores derived from the sample and those derived from the 

population.  These score estimates will be linear combinations of variables; however, as 

opposed to using factor score coefficients, these estimates will be computed via the 

following process: A positive one scoring coefficient is assigned when the observed 

structure coefficient is  .30; a negative one scoring coefficient is assigned when the 

observed structure coefficient is  െ.30; a scoring coefficient of zero is assigned when 

the structure coefficient is between .30 and -.30. Once factor scores estimates are 
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computed for both the population and sample matrices, a correlation among the scores 

will be used to measure how closely factor scores derived from each of the factor 

extraction strategies approximates that factor score pattern that is imbedded in the 

population (Hogarty et al., 2005). 

General Pattern Agreement-- is one of the measures of agreement between sample 

and population factor loading matrices.  This variable is based on the proportion of 

variables that load on both the sample and population factors in a similar fashion at least 

once.  This variable is a number of observed variables by one column vector.  When the 

absolute value of the variable loading on the same factor in boht the sample and the 

population is greater than or equal to .30, then a one is assigned to the row associated 

with the variable.  For this measure a variable can meet this threshold for multiple factors 

and still contribute to general pattern agreement (Hogarty et al., 2005). 

Monte Carlo Experiments--refer to a class of experiments in which researchers 

employ computer programs to generate “vectors of random variates” that are analogous 

to samples of data (Robey, 1990, p. 278).  These samples are derived from a population 

model containing characteristics of interest to the researcher.  Monte Carlo simulations 

can be used to demonstrate the influence that a variety of research contexts can have on 

an experiment (Robey, 1990). 

Per Element Agreement – is based on a number of observed variables by number 

of factors matrix.  Elements of each matrix contain ones, indicating agreement, where the 

corresponding factor loading has an absolute value of .30 or greater in both the sample 

and population factor pattern matrices; elements of the matrix also contained ones when 

the absolute value of the loading for a variable was less than.30 in both the sample and 
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the population.  When these criteria are not met, the element is assigned a zero.  The 

resulting outcome measure is the proportion of samples in which the agreement criteria 

were met for each observed variable by factor combination (Hogarty et al., 2005). 

Total Pattern Agreement - is measured through a scalar.  This scalar is populated 

with a one when the mean of the per element agreement matrix is one.  If any element of 

the per element agreement matrix is less than one, then the mean of that matrix will be 

less than one, and the total pattern agreement scalar associated with that matrix is set to 

zero.  This scalar represents the proportion of sample matrices in which all factor 

loadings are in agreement with the population in terms of the absolute value of .30 

loading criterion (Hogarty et al., 2005).  

Delimitations 

The objective of this study was to provide researchers with empirically derived 

guidelines for conducting factor analytic studies in complex research contexts.  

Specifically, the scope of this study included the evaluation of factor extraction methods 

when applied to data sets containing mixtures of categorical and continuous variables.  

The extent to which the results of this study can be generalized is limited by certain 

characteristics associated with the simulation of sample data and the selection of factor 

analytic studies that are the focus of this dissertation.  

The correlation matrices through which data were simulated were be based on 

factor models in which the influences of minor factors are constrained to zero.  These 

factor models were included uncorrelated factors exclusively.  When extracting factors 

from sample data, the number of factors to be retained was equal to the number of factors 

simulated in the population.   In addition to these research design decisions, the selection 



 
 

22 
 

of only three commonly employed factor analytic strategies imposed a limit to which the 

potential guidelines derived from this study can be generalized. 

Organization of Remaining Chapters 

The next chapters include a review of literature and a description of the methods 

through which the research questions were addressed.  Chapter two contains a general 

review of methodological research associated with exploratory factor analytic techniques 

and a more focused analysis of the three factor extraction methods that represent the 

primary focus of this study.  Chapter three describes the manner in which correlation 

matrices were generated, the method for simulating specific research conditions, 

measures employed to compare sample and population factor patterns, and measures by 

which factor extraction strategies were evaluated. 

Chapters four and five present the results of the study and a discussion of the 

results.  Chapter four provides results divided into specific sections associated with each 

outcome variable; the chapter includes a summary of results, and responses to each of the 

research questions.  Chapter five begins with a restatement of the study’s purpose, its 

research questions, and a summary of the research methods.  In addition to a general 

discussion of results, chapter five includes a discussion of the results in terms of each 

hypothesis and its applications to follow-up studies. 
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Literature Review 

The sequence of decisions that researchers make when designing and 

implementing an exploratory factor analytic study provides this dissertation with a three-

part structure around which the literature review was organized.  The first section of this 

literature review extends the theoretical framework to include a general examination of 

the design choices associated with factor analytic research.  This overview includes 

model selection, samples of subjects, samples of variables, multivariate normality, data 

types, matrices of association, factor retention, and rotation strategies.  The second 

section of this review focuses on descriptive literature regarding principal axis factoring, 

ordinary least squares factor extraction, and maximum likelihood factor analysis; 

technical descriptions of these factor analytic methods are provided in Appendix A.  The 

last section of this literature review summarizes several simulation studies conducted on 

various aspects of factor analysis. 

Exploratory Factor Analysis Design Considerations 

 Model selection.  In general, social science researchers employ factor analysis to 

pursue three objectives: data reduction, identification of influences on overt behavior, and 

confirmation of hypotheses regarding influences on behavior (Cureton & D’Agostino, 

1983; Merrifield, 1974; Stevens, 2002).  When the researcher’s intent is data reduction 

only, then exploratory or common factor analysis is not the appropriate design; in this 
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case, the researcher should conduct a principal component analysis (Conway & Huffcutt, 

2003; Fabrigar, MacCallum, Wegener, & Strahan, 1999, p. 273; Henson & Roberts, 

2006; Merrifield, 1974; Stevens, 2002).  When a researcher is confirming an existing or 

well understood structural or measurement model, then confirmatory factor analysis 

would be a more appropriate design than exploratory factor analysis.  If a researcher 

believes that the relationships among observations can be accounted for by underlying 

characteristics but is unsure of the number or the organization of these characteristics, 

then the decision to conduct an exploratory factor analysis (EFA) is justifiable (Cureton 

& D’Agostino, 1983; Harman, 1976; Stevens, 2002).   

The interactions among researchers’ intentions and the state of knowledge in 

given fields represent critical considerations in the design of an exploratory factor 

analysis (Raykov & Marcoulides, 2006; Stevens, 2002).  Exploratory factor analysis 

provides researchers with information concerning the number of common factors and 

matrices of factor loadings (Harman, 1976).  In this context, exploratory factor analysis is 

a useful set of tools for generating new theories or modifying existing ones (Cureton & 

D’Agostino, 1983; Harman, 1976; Stevens, 2002).  

Conway and Huffcutt (2003) examined the quality of factor analytic research 

published between 1985 and 1999.  Their study indicated that preliminary evaluations of 

ad-hoc instruments represented the most prevalent purpose behind factor analytic 

research; assessing the performance of existing measures represented the next most 

commonly reported purpose.  Testing unidimensionality represented one of the least 

reported purposes (Conway & Huffcutt, 2003).  
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According to the Conway and Huffcutt (2003) study, principal components 

analysis (PCA) was the most frequently cited method for analyzing data.  When factor 

analysis represented the “important goal” of the study, common factor analysis was more 

frequently cited than PCA (Conway & Huffcutt, 2003, p. 160).  However, in 28% of the 

articles, researchers failed to describe either their intention behind their analyses or 

methods for extracting factors (Conway & Huffcutt, 2003). 

 Henson and Roberts (2006) examined the information reported in 60 exploratory 

factor analyses published before 1999.  The authors focused on studies that employed at 

least one exploratory factor analysis strategy.  Although Henson and Roberts noted that 

most of the articles reported researcher objectives that warranted an EFA design, nearly 

57% of the researchers engaged in principal components analysis.  As a suggested 

rationale for this problematic model selection, the authors noted that principal 

components analysis was the “default option for most statistical software packages” 

(Henson & Roberts, 2006, p. 403). 

Samples of subjects.  In exploratory factor analysis, common prescriptions 

regarding specific subject per measured variable ratios are simplistic and problematic 

(Fabrigar et al., 1999).  These types of guidelines fail to account for levels of over-

determination and communalities among measured variables.  Moreover, if the sample is 

more homogeneous on the common factors than the population, high sample to measured 

variable ratios will not ameliorate the restriction of range in observations and the 

resulting attenuation in the correlations among variables (Fabrigar et al., 1999). 

 When each factor is represented by three to four measured variables and the 

communalities exceed .70, relatively small sample sizes will allow researchers to make 
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accurate estimates about population parameters (Fabrigar et al., 1999).  If researchers 

believe that a sample of convenience may be inappropriate, methodological studies 

highlight a number of sampling strategies that can be employed.  For example, to avoid 

distortions derived from sample characteristics, researchers can select a sample that 

maximizes variance on measured variables that are not relevant to the construct of 

interest (Fabrigar et al., 1999). 

 Recent assessments of published factor analyses indicate that many researchers 

either do not have sample sizes large enough to support their study designs or do not 

provide sufficient information concerning sampling strategies.  In Conway and Huffcutt’s 

(2003) assessment of 371 articles published between 1985 and 1999, nearly half the 

studies included sample sizes of 200 or less, and 40% of the studies had sample to 

variable ratios of 10:1 or less (Conway & Huffcutt, 2003).  In a similar study completed 

in 2006, Henson and Roberts found that the median sample to variable ratio was 11:1; 

they concluded that “most samples sizes were marginal to sufficient, depending on 

component saturation” (Henson & Roberts, 2006, p. 402). 

Samples of variables.  The selection of variables represents another important 

element in the set of decisions that comprise a factor analytic research design.  When 

researchers include too few variables, they may not have a sufficient sample of variables 

from the domain to identify important common factors; however, by including many 

irrelevant measured variables, researchers may include “spurious common factors” that 

obscure the “true” factors (Fabrigar et al., 1999, p. 273).  Although prescriptions 

regarding the total number of variables required to conduct factor analysis are not 

prevalent in the literature, methodological research highlights the positive relationship 
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between overdetermination and factor accuracy (Fabrigar et al., 1999; Guadagnoli & 

Velicer, 1988; Hogarty et al., 2005).  Moreover, methodological research suggests that as 

the number of factors increases with respect to the number of measured variables, the 

accuracy and reliability of factor solutions decreases (Guadagnoli & Velicer, 1988). 

Because communality and over-determination exert a strong influence on the 

quality of factor solutions, these facets of factor analytic research warrant reporting.  

However, assessments of common research practices indicate that researchers fail to 

describe their measured variables comprehensively (Conway & Huffcutt, 2003; Henson 

& Roberts, 2006).  For example, in their 2006 survey of factor analytic research, Henson 

and Roberts found that fewer than 17% of the articles that they examined reported 

communalities among measured variables.     

Scale coarseness and dichotomization.  A response scale is considered course 

when a continuous trait is measured in such a way that a variety of “true scores are 

collapsed into the same category” (Aguinis, Pierce, & Culpepper, 2009, p. 625).   In 

exploratory factor analysis, continuous constructs observed through Likert type responses 

represent commonly encountered occurrences of scale coarseness (Aguinis, Pierce, & 

Culpepper, 2009).  Research into the effects of scale coarseness indicates that, in many 

research contexts, scale coarseness leads to downward bias in correlations (Aguinis, 

Pierce, & Culpepper, 2009). 

Scale coarseness is an artifact of a study’s design; it is the result of the 

measurement instrument (Aguinis, Pierce, & Culpepper, 2009).  Because dichotomization 

introduces error after data are collected, it does not contribute to scale coarseness 

(Aguinis, Pierce, & Culpepper, 2009; Cohen, 1983).  However, the downward bias that it 
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causes in correlation is “centrally a measurement issue;” because the loss of information 

is systematic, the “dichotomization drop will occur for both true and observed scores” 

(Cohen, 1983, p. 252). 

Cohen identifies four common rationales used by researchers as they dichotomize 

their data.  First, they employ dichotomization to use loglinear models; this practice is 

similar to dichotomizing on a control variable in analyses of variance designs (Cohen, 

1983).  Second, researchers will dichotomize a set of scaled items in preparation for a 

factor analysis.  This rationale for dichotomization is problematic for a number of 

reasons; for example, the resulting phi coefficients and factor loadings are only two-

thirds as large as the product-moment correlations on the original data (Cohen, 1983).  

Moreover, regardless of estimation method, the “communalities were less than half as 

large” (Cohen, 1983, p. 253).  As an example of a third rationale for dichotomization, 

market researchers will often dichotomize attitude scales; specifically, a top box is 

segregated from the remaining response categories.  A fourth rationale includes 

dichotomization in psychiatric research in which a behavioral scale is dichotomized to 

ensure that a symptom is clear cut (Cohen, 1983). 

Recent methodological research highlights the importance of binary data in the 

social sciences, medical research, ecology, and engineering (Lin & Clayton, 2005; 

Mislevy, 1986; Osh & Lee, 2001; Sammel, Ryan, & Legler, 1997).  For example, by 

including dichotomous data sets into exploratory factor analyses, researchers reduce large 

contingency tables into more interpretable tables of fewer dimensions (Bartholomew, 

1980).  In their efforts to develop new instruments and validate existing tests, researchers 

also incorporate dichotomous data in exploratory factor analyses and meta-analyses 
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(Aguinis, Pierce, & Culpepper, 2009; Cohen, 1983; Crocker & Algina, 1986; Mislevy, 

1986).  

However, when “testing and estimating the reliability of a measured trait,” 

dichotomously measured variables provide researchers with a variety of difficulties 

(Donner & Eliasziew, 1994, p. 550).  Specifically, when researchers attempt to determine 

the sample size required to achieve a specified reliability coefficient, contexts that 

include “truly dichotomous outcome variables and continuous constructs that have been 

dichotomized both have less power than contexts that contain continuous outcome 

variables” (Donner & Eliasziew, 1994, p. 552).  This loss in power was especially 

pronounced when inherently continuous traits were dichotomized (Donner & Eliasziew, 

1994).    

Non-normal models.  In addition to the assumption that the variation in observed 

variables can be explained by a set of common factors, several models of exploratory 

factor analysis also require that the distribution of observed variables exhibits 

multivariate normality (Yalcin & Amemiya, 2001).  To meet this assumption, all the 

constituent variables in a multivariate analysis must be normally distributed.   

Additionally, any linear combination of the variables must also have distributions that are 

normal, and any bivariate subset of the constituent variables must be “bivariate normal” 

(Stevens, 2002, p. 262).   

The assumption of multivariate normality cannot be maintained when studies rely 

on dichotomous data (Krzanowski, 1980; Mislevy, 1986).  As part of an effort to 

incorporate categorical data into exploratory factor analyses, several researchers have 

introduced strategies for contending with data sets that are more complicated than those 
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containing dichotomous data exclusively (Mislevy, 1986; Song & Lee, 2001; Yalcin & 

Amemiya, 2001).  For example, Mislevy (1986) examined the comparative advantages of 

unweighted least squares, generalized least squares, and maximum likelihood factor 

analysis in contending with nonlinear factor models.  While all three methods provided 

consistent estimates of factor loading matrices and residuals (Mislevy, 1986), the results 

highlighted the comparative strength of maximum likelihood factor analysis when 

researchers are working with many measured variables and anticipate extracting 

relatively few factors.  Generalized least squares becomes the preferred method with 

fewer variables and more common factors (Mislevy, 1986).  To facilitate the analysis of 

mixed polytomous and continuous data, Song and Lee (2001) introduced a Bayesian 

method for conducting factor analytic studies.  Their research focused on the 

development of computation procedures that would yield “Bayesian estimates of 

thresholds, latent factor scores and structural parameters” (Song & Lee, 2001, p. 256).   

In response to a perceived need for factor analytic methods that are appropriate 

for categorical variables, Bartholomew (1980) focused on conditional probability 

functions as applied to contingency tables.  The relationship between observed variables 

and latent factors is stochastic and expressed as a conditional probability function.  This 

function includes a probability density when the observed variables are continuous and a 

probability mass when observed variables are categorical (Bartholomew, 1980).  

Specifically, this research demonstrated the manner in which a probit function leads 

directly to the minimal residual (MINRES), or ordinary least squares, factor analysis 

method.  The MINRES factor analysis model is based on a solution that minimizes the 

following: 
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The cij’s are covariances, and the α’s are factor loadings (Bartholomew, 1980).   

According to Bartholomew’s conclusions, researchers can treat the indicators 

associated with a 2p table, where p is the number of manifest variables, as if they were 

derived from data that were normally distributed; and they can perform “a factor analysis 

on the estimated covariance matrix” (Bartholomew, 1980, p. 310). 

Matrices of association.  In their review of common practices in exploratory 

factor analysis, Henson and Roberts (2006) highlighted the need for researchers to report 

the matrices of association included in their studies more frequently.  When conducting 

factor analytic studies, researchers can select from a variety of correlation measures; 

these include Pearson Product Moment correlation coefficients, matrices of Spearman 

rank order coefficients, phi-coefficients, tetrachoric correlations,  point-biserial 

coefficients, polychoric correlations, polyserial correlations, and polychoric-polyserial 

correlations (Corten et al., 2002; Edwards & Allenby, 2003; Folwer, 1987; Gilbert & 

Hilton, 1992; Greer, Dunlap, & Beatty, 2003;  Harman, 1976; Song & Lee, 2003).  The 

relative advantages associated with these matrices are based on the distributional 

characteristics of data being studied.  

Because the majority of measurements in social science research are in arbitrary 

units, the Pearson product moment correlation represents a better choice than covariance 

in the general description of the relationship between two variables (Glass & Hopkins, 

1996).  When researchers report the matrix of association that they analyze, they report 

using correlation matrices nearly twice as often as covariance matrices (Henson & 
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Roberts, 2006).  In terms of parameters, the formula for Pearson Product Moment 

Correlation Coefficient is described in Appendix A. 

According to Glass and Hopkins (1996), the “Spearman rank correlation is . . . 

tailor-made to fit situation in which both variables are expressed as ranks” (Glass & 

Hopkins, 1996, p.129).  To employ ݎ௦ , data must be in the form of ranks; however, 

the number of ranks will not impact the calculation of the correlation.  When two sets of 

ranks being correlated contain no ties, the Spearman Rank and Pearson Product Moment 

coefficients are equivalent (Glass & Hopkins, 1996).  A mathematical description of the 

Spearman rank correlation is provided in Appendix A. 

When encountering data sets that contain dichotomous variables exclusively, 

social science researchers often employ phi-coefficients to quantify the relationship 

among variables (Merrifield, 1974).  Researchers interpret a positive phi-coefficient as 

indicating that 1’s on a variable X will imply a higher likelihood of having 1’s on a 

related variable Y.   Just as Pearson product moment correlation coefficients, a matrix of 

phi coefficients will have ones on the main diagonals and measures of bivariate 

association on the off-diagonal elements (Harman, 1976). The formula for the phi-

coefficient is described in Appendix A.   

 When researchers dichotomize variables that have normal distributions, they can 

select the tetrachoric coefficient as an estimate of correlation (Glass & Hopkins, 1996; 

Harman, 1976; Merrifield, 1974).  Tetrachoric correlations are interpreted as estimates of 

product moment correlations if the variables were measured more accurately, normally 

distributed, and linearly related (Glass & Hopkins, 1996; Greer, Dunlap, & Beatty, 2003).  

In spite of their apparent utility, when variables exhibit bivariate normality, tetrachoric 
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correlations can appear to provide more expalantory information than is possible 

(Nunnally, 1978).  In Appendix A, the mathematical description of the tetrachoric 

correlation coefficient is presented.  

 When researchers correlate a dichotomous variable with a continuous variable, 

they can employ a point-biserial coefficient (Glass & Hopkins, 1996).  Test developers 

employ this correlation coefficient when they estimate the relationship between 

performance on a dichotomously scored item and performance on the total test score 

(Crocker  & Algina, 1986).  The formula for the point-biserial correlation is included in 

Appendix A.  

 When contending with attitude items and performance ratings, social scientists 

increasingly encounter opportunities to correlate interval level observations with 

polytomous item responses (Lee, Poon, & Bentler, 1994).  By extending the polyserial 

correlation model to incorporate polytomous, as well as bivariate, data,  Lee, Poon, and 

Bentler (1994) developed and tested a partition maximum likelihood process for 

estimating correlation coefficients (Lee, Poon, & Bentler, 1994; Song & Lee 2003).  A 

technical description of the partition maximum likelihood model for estimating polyserial 

correlation coefficients is included in Appendix A.       

 The computational difficulty associated with direct minimization of the likelihood 

function led Lee, Poon, and Bentler to develop a two-stage process for modeling 

covariance structure.  The first stage of this process includes a more simple process for 

obtaining polyserial and polychoric associations among variables (Lee, Poon, Bentler, 

1994). These correlations comprise the elements of Σ; the polyserial correlations between 

X and Ya are identified by ρa, and polychoric correlations between Ya and Yb are 
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identified by ρab (Lee, Poon, & Bentler, 1994).  In Appendix A, a description of the 

algorithms associated with these correlation estimates is presented.  

 Fowler (1987) compared the relative performance of Pearson product moment 

correlation coefficients, Spearman rank order coefficients, point-biserial coefficients, and 

phi-coefficients under a variety of research conditions.  These research conditions 

included sample sizes that ranged from 10 to 100 observations that were drawn from 

distributions of differing shapes.  Type I, Type II, and Type III error rates represent the 

basis of for comparisons (Fowler, 1987); type III error is the condition in which the 

researcher rejects a false null hypothesis but draws false conclusions regarding the 

ranking of parameters. 

 According to Fowler’s results, phi coefficients had the least amount of power 

across all data conditions.  Although point-biserial coefficients maintained good relative 

power when sample sizes were large and when one variable was dichotomized at the 

median, this measure of association experienced substantial loss of power when sample 

sizes were small (Fowler, 1987).  Spearman rank order coefficients maintain a high 

degree of power in most data conditions, and, when Kurtosis is greater than three, 

Spearman coefficients are more powerful than Pearson product moment coefficients.  

However, in conditions containing small sample sizes, Pearson product moment 

correlations are more powerful than rank order coefficients regardless of distribution 

shapes (Fowler, 1987). 

 Under most research conditions, simulation studies indicate that use of the phi 

coefficient is not justified (Fowler, 1987).  When contending with distributions that are 

highly skewed or leptokurtic, point-biserial correlation coefficients offer some 
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advantages over Pearson product moment correlations; however, this advantage is only 

present when one of the variables is dichotomized at the median (Fowler, 1987). While 

the Spearman rank-order correlation can be an alternative to the Pearson product moment 

correlation when the data conform to bivariate normality and sample sizes are small, the 

complications associated with ties and computational difficulty seem to highlight the 

comparative strength of Pearson product moment correlations under most research 

conditions (Fowler, 1987).  Ultimately, Fowler’s study indicates that the “Pearson 

product moment correlation is remarkably robust . . . under even extreme violations of 

distributional assumptions” (Fowler, 1987, p. 427).   

 Greer, Dunlap, and Beatty (2003) examined tetrachoric correlations under a 

variety of research conditions.  The results of their Monte Carlo study indicated that, 

when scores are dichotomized at the median, tetrachoric coefficients yield estimates that 

are close to the population correlations; significant skewness does not substantially alter 

the quality of these estimates.  The bias associated with tetrachoric correlations decreases 

as sample size increases; this bias increases as the strength of the correlation in the 

population increases (Greer, Dunlap, & Beatty, 2003).  From their results, Greer, Dunlap, 

and Beatty concluded that, due to insensitivity to the shape of marginal distributions, 

tetrachoric correlation coefficients approximate Pearson correlations if the “distributions 

were transformed to normality” (Greer, Dunlap & Beatt, 2003, p. 948). 

 In exploring multitrait-multimethod models, Corten, Saris, Coenders, van der 

Veld, Aalberts, and Kornelis (2002) conducted a study that highlighted the relative 

strengths and weaknesses of Pearson product moment coefficients and Polyserial-

polychoric associations.  This study examined matrices of association in a confirmatory 
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factor analysis research context.  The authors incorporated 87 data sets from previously 

conducted studies; these data sets included categorical and continuous variables.  The 

data were derived from personal interviews, mail questionnaires, and computer assisted 

interviews (Corten et al., 2002).  

The authors compared correlation matrices in terms of percentage of confirmatory 

factor models that failed to converge, the models that yielded improper solutions, and 

standardized root mean squared residuals (RMSR) (Corten et al., 2002).  The Pearson 

correlations yielded the smallest percentage of nonconvergence and improper solutions.  

The polyserial-polychoric correlations yielded substantially smaller RMSR’s.  In spite of 

the greater precision associated with models that include polyserial-polychoric 

correlations, the increased likelihood of nonconvergance and number of improper 

solutions rendered these matrices less useful than Pearson correlations (Corten et al., 

2002).      

Number of factors retained.  In selecting the number of factors to be retained, 

researchers balance the desire for parsimony against the need for plausibility (Fabrigar et 

al., 1999).  To achieve this balance, researchers can select from a number of techniques 

and rules of thumb.   Recommendations based on reviews of factor analytic studies 

include the use of multiple, simultaneous considerations when selecting factors to be 

retained; these include fit indices derived from maximum likelihood strategies, scree 

plots, eigenvalues greater than one, and parallel analysis (Fabrigar et al., 1999).  

According to the Kaiser criterion, all factors with eigenvalues greater than one 

should be retained in a study.  In reviews of factor analytic literature, the Kaiser rule is 

the most commonly employed criteria for selecting factors (Conway & Huffcutt, 2003; 



 
 

37 
 

Costello & Osborne, 2005; Henson & Roberts, 2006).  However, methodological 

literature suggests that the eigenvalues greater than one rule is among the least accurate 

methods for retaining factors (Conway & Huffcutt, 2003; Costello & Osborne, 2005). 

In exploratory factor analysis, the Kaiser rule is “often misapplied” by referring to 

the eigenvalues of a reduced correlation matrix (Fabrigar et al., 1999, p. 278).  To apply 

the rule correctly, researchers compute the eigenvalues for a correlation matrix to 

determine how many exceed one; this number represents the number of components to be 

retained in an analysis.  This process is appropriately applied to correlation matrices with 

ones on the main diagonal; in other words, this process is appropriately applied when 

researchers are conducting principal component analyses as opposed to factor analyses 

(Fabrigar et al., 1999).  Applying the Kaiser rule to correlation matrices with 

communality estimates that are less than one on the main diagonal is an “erroneous 

procedure” (Fabrigar et al., 1999, p. 278).     

A second rule uses a scree plot; according to this method, factors are retained 

until the diminishing eigenvalues stop declining (Cureton & D’Agostino, 1983; Harman, 

1976).  Parallel analysis represents a third type of guideline for factor selection; when 

employing parallel analysis, researchers compare eigenvalues from sample data to 

eigenvalues that one would expect to obtain from completely random data.   The resulting 

factor model is based on the number of eigenvalues that are larger than their 

corresponding eigenvalues from the random data (Fabrigar et al., 1999). 

The goal for factor retention guidelines is to identify the necessary number of 

factors to account for the correlations among measured variables.  Empirical research 

suggests that under-factoring, retaining too few factors, is more problematic than over-
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factoring (Fabrigar et al., 1999).  However, over-factoring is not ideal; for example, when 

over-factoring, researchers may postulate the existence of factors with no theoretical 

basis which can “accentuate poor decision made at other steps in factor analysis” 

(Fabrigar et al., 1999, p. 278). 

Rotation.  Factor solutions are considered to have simple structure when 

observed variables load, primarily, on one factor (Stevens, 2002).  Simple structure will 

yield factors that are easily interpretable, psychologically meaningful, and replicable 

(Fabrigar et al., 1999).  A system of factors is considered parsimonious when factors in a 

system are distinct from one another and all factors are required to explain a phenomenon 

of interest (Merrifield, 1974).    

The parsimony associated with a factor solution is directly related to the “linear 

independence” among the factors (Merrifield, 1974, p. 397).   The degree to which linear 

independence is achieved is measured by correlation coefficients.  Factors that are 

linearly dependent suggest the existence of higher order factors (Merrifield, 1974).  The 

extreme case of “linear independence is called orthogonality” (Merrifield, 1974, p. 397).  

The most appropriate rotation strategy for this type of factor matrix would be orthogonal. 

Orthogonal rotation algorithms yield uncorrelated factors (Fabrigar et al., 1999; 

Harman, 1976; Stevens, 2002).  The most commonly employed type of orthogonal 

rotation is varimax (Fabrigar et al., 1999; Merrifield, 1974).  Although orthogonal 

rotation yields simple structure, the use of orthogonal rotation when the factors are 

correlated in the population results in the loss of important data (Costello & Osborne, 

2005). 
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When researchers have reason to suspect the existence of second-order factors or 

that their factors should be correlated, they can employ oblique rotation methods 

(Costello & Osborne, 2005; Cureton & D’Agostino, 1983; Harman, 1976; Merrifield, 

1974).  Oblique rotation strategies provide researchers with more information regarding 

the interpretation of factors; for example, these rotation strategies yield correlation 

coefficients among the factors.  Common oblique rotation procedures include: direct 

quartimin rotation, promax, and Harris Kaiser.  Unlike orthogonal rotation, no one 

method of oblique rotation is dominant in the literature (Costello & Osborne, 2005; 

Fabrigar et al., 1999).  

Procrustean rotation is a less commonly cited rotation strategy.  Procrustean 

rotation can be based, in part, on substantive considerations as opposed to the exclusive 

concern for simple structure.  Moreover, methodological evidence suggests that 

Procrustean rotation yields rotated factor patterns that are very similar to their target 

matrices (Raykov & Little, 1999). 

In published literature, orthogonal strategies appear to be the most commonly 

cited rotation procedure.  According to Conway and Huffcutt’s (2003) findings, 

researchers reported using an orthogonal rotation strategy most frequently (40%); in only 

18% of the studies, researchers reported the use of an oblique rotation strategy.  More 

recently, in their study of common practices in factor analytic research, Henson and 

Roberts (2006) found that 55% of the articles included orthogonal rotation strategies; 

researchers reported the use of oblique rotation strategies in 38.3% of the articles, and, in 

1.7% of the articles, researchers failed to report any factor rotation method. 
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The “conventional wisdom advises researchers to use orthogonal rotation because 

it produces more easily interpretable results . . .” (Costello & Osborne, 2005, p. 3). 

However, this argument is flawed in two areas.  Firstly, social science researchers 

“generally expect some correlation among factors” (Costello & Osborne, 2005, p. 3); 

therefore, the use of orthogonal rotation results in the loss of information concerning the 

correlations among factors.  Secondly, output associated with oblique rotation is “only 

slightly more complex” than orthogonal rotation output and yield substantive 

interpretations that “are essentially the same” (Costello & Osborne, 2005, p. 3). 

 Reviews of published factor analytic studies indicate that researchers are not 

employing ideal practices as they report the choices that define their analyses. Many 

studies did not provide information concerning the psychometric properties associated 

with measured variables.  One author found the frequent use of the “largely discredited” 

eigenvalue greater than one rule to be discouraging (Fabrigar et al., 1999, p. 292).  These 

reviews indicated that researchers were not likely to report their matrices of association 

and the amount of variance accounted for by their retained factors (Conway & Huffcutt, 

2003).  In some cases, the reviewers highlighted the lack of researcher training in 

exploratory factor analysis as a reason for the problematic designs and reporting practices 

(Conway & Huffcutt, 2003). 

Factor Extraction Methods 

According to Merrifield (1974), dimensional options include the methods that 

social science researchers employ to extract factors from “person by task matrices” 

(Merrifield, 1974, p. 395).   The most commonly used methods include maximum 

likelihood, principal axis factors with prior estimates of communalities, and “iterative 
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principal factors” (Fabrigar et al., 1999, p. 277).  The relative utility of each method is 

dependent on the researchers’ intentions and the distributions of observed data (Fabrigar 

et al., 1999). 

Maximum likelihood factoring allows the researcher to test for statistical 

significance in terms of correlation among factors and the factor loadings, but this 

method for estimating factor models can yield distorted results when observed data are 

not multivariate normal (Costello & Osborne, 2005; Fabrigar et al., 1999).  Principal axis 

factoring does not rely on distributional assumptions and is more likely than maximum 

likelihood to converge on a solution.  However, principal axis factoring does not provide 

the variety of fit indices associated with maximum likelihood methods, and this method 

does not lend itself to the computation of confidence intervals and tests of significance 

(Fabrigar et al., 1999). 

In addition to measurement error, the covariation among surface attributes is 

influenced by two types of factors: common and specific (Cureton & D’Agostino, 1983; 

Spearman, 1904; Stevens, 2002; Tucker & MacCallum, 1997).  Common factors are 

internal attributes that influence more than one of the observed attributes in a test, battery 

of tests, or a survey.  Specific, or unique, factors affect the observed values of only one 

variable in a matrix. 

In general, the covariance among observed variables can be expressed in the 

following relationship among common and unique factors (Mislevy, 1986):  

Σ ൌ ΛΦΛᇱ  	Ψ 

Where,  is the covariance matrix of manifest variables (y);  is a matrix of factor 

loadings;  is the covariance matrix of the elements in ; the elements of   comprise an 
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“m-dimensional” latent variable, and represents the covariance matrix of the residuals, 

e; the diagonal elements of this matrix are referred to as the unique variances of the y’s 

(Mislevy, 1986, p. 5). 

Principal axis factor analysis.  Principal axis factor analysis and principal 

components analysis are computationally similar (Stevens, 2002).   In the case of 

principal components analysis (PCA), the linear combination of variables results in 

components that account for all of the variance in the original data.  Principal axis factor 

analysis yields factors that account for the common variance in the original data (Cureton 

& D’Agostino, 1983; Harman, 1976; Stevens, 2002). 

Principal components analysis employs a correlation matrix as the matrix of 

association. When conducting a principal axis factor analysis, researchers focus on a 

reduced correlation matrix as the matrix of association.  This reduced correlation matrix 

contains communality estimates on the main diagonal as opposed to ones (Cureton & 

D’Agostino, 1983; Harman, 1976; Stevens, 2002).  A frequently used prior communality 

estimate of a variable, ݖ௧, is its squared multiple correlation with all of the other variables 

in an instrument (Cureton & D’Agostino, 1983; Harman, 1976): 

௧ܥܯܵ ൌ 1 െ
1
௧௧ݎ

 

Where ݎ௧௧ is the diagonal element of an inverse correlation matrix that corresponds to the 

variable ݖ௧ (Harman, 1976). 

When the number of observed variables is at least moderately large and arranged 

“so that every rotated common factor has at least four or five substantial loadings” 

(Cureton & D’Agostino, 1983, p. 138), the squared multiple correlation approximates the 

lower bounds of the communality.  When factors are underspecified, squared multiple 
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correlations may underestimate the item’s communality (Cureton & D’Agostino, 1983; 

Harman, 1976). 

When the influence of unique factors is omitted, the relationship between 

common factors and the predicted value of an observed variable is summarized in the 

following expression:  

ఫܼ෩ ൌ ܽଵܨଵ  ܽଶܨଶ  ⋯ ܽܨ		ሺ݆ ൌ 1, 2,⋯ , ݊ሻ 

The sum of squared factor coefficients gives the communality of a particular variable; as 

highlighted by the expression above, ܽଵ
ଶ  quantifies the first factor’s contribution to the 

communality of variable ܼ (Harman, 1976).  The coefficients for the first factor are 

selected to maximize the factor’s contribution to the total communality, V1; this sum is 

given by (Harman, 1976): 

ଵܸ 	ൌ 	 ܽଵଵ
ଶ  ܽଶଵ

ଶ  ⋯ ܽଵ
ଶ  

Lagrange multipliers are used to develop a system of “characteristic equations” (Harman, 

1976, p. 137).  The roots of a characteristic equation are eigenvalues, and the largest root 

is the maximum value of the first factors contribution to the total communality (Cureton 

& D’Agostino, 1983; Harman, 1976).   

 The next step in the principal axis factor method includes determining the 

coefficients for the second factor.  These coefficients are selected to maximize the 

factor’s contribution to the remaining, or residual, communality.  In a fashion similar to 

finding the coefficients for the first factor, the second largest root is equivalent to the 

root, or eigenvalue, of the first factor’s residual communality matrix.  This root of this 

residual matrix is equivalent to the second largest eigenvalues of the original, reduced 
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correlation matrix (Cureton & D’Agostino, 1983; Harman, 1976).  This procedure 

proceeds until the entire matrix of factor coefficients is developed. 

 Appendix A contains a technical description of the Principal Axis Factor Analysis 

method.  This description includes sections that focus on the relationship between 

eigenvalues and reduced correlation matrices, the relationship between reduced 

correlation matrices and matrices of factor loadings, and the relationship between 

matrices of factor loadings and eigenvalues.   

Ordinary least squares.  The primary goal of ordinary least squares (OLS), alos 

known as the Unweighted Least Squares or MINRES (Obenchain, 1975), method for 

obtaining factor solutions is to minimize the sum of squared differences between the 

observed and implied covariance matrices (Briggs & MacCallum, 2003).  The OLS 

method for extracting factors assigns weights to residuals of large and small factors 

equally; unlike maximum likelihood methods for extracting factors, OLS does not rely on 

assumptions about the distribution of observed variables (Briggs & MacCallum, 2003).   

OLS solutions are derived through an iterative principal axis computational method 

(Briggs & MacCallum, 2003; Cureton & D’Agostino, 1983; Harman, 1976).  

 The ordinary least squares procedure begins with a matrix of factor coefficients 

that, when multiplied by its transpose, yields a matrix of reproduced correlations with 

communalities on the principal diagonal (Cureton & D’Agostino, 1983; Harman, 1976).  

The next phase in the procedures involves fitting the reproduced correlation matrix to the 

matrix of observed correlations.  This is achieved through minimizing an objective 

function that is based on the sum of squares of the off-diagonal residuals between the 

observed and reproduced correlation matrices (Harman, 1976). 
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Through an iterative process of adding “displacements” to each element of the 

original factor loading matrix, a new factor matrix is developed (Harman, 1976, p. 177).  

The values of these displacements are selected so that the resulting matrix minimizes the 

objective function. Appendix A provides a comprehensive description of the method 

through which these “displacements” are calculated (Harman, 1976, p. 179).  Appendix A 

also describes the constraint employed to ensure that the OLS procedure yields factor 

models that imply communalities that are less than or equal to one (Harman, 1976). 

Maximum Likelihood.  Based on the assumption that a specified number of 

factors exists in a population, maximum likelihood factor analysis yields estimates of 

factor loadings for a given sample size and number of observed variables (Harman, 

1976).  When the observed variables exhibit multivariate normality and the sample size is 

large, maximum likelihood strategies facilitate the calculation of confidence intervals for 

the estimated loadings (Chen, 2003). 

The basic factor model defined in the theoretical framework can be restated as 

	ݔ ൌ 	ߤ	  	Λ݂	   ߝ	

As defined above, x is a column of observed variables, ߤ is the mean vector of observed 

variables, f is a column vector of common factors, Λ is a matrix of factor loadings, and ߝ 

is a vector of unique factors (Chen, 2003).    The population covariance matrix, Σ, is 

given by the following expression: 

Σ	 ൌ 	ΛΛ′	  	Ψ 

Where Ψ is a diagonal matrix of unique variances (Chen, 2003).  Because the observed 

covariance matrix, S, can be calculated from the sample and is “an unbiased estimate of 

Σ,” the factor loadings and unique variances are all that must be estimated from the 
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sample (Chen, 2003, p. 310).  If the observed variables exhibit multivariate normality, 

maximum likelihood strategies can yield estimators that utilize all the information from 

the sample and contain small limiting variances (Chen, 2003; Harman, 1976).  Moreover, 

as sample sizes increase, “the estimators will converge (in a probabilistic sense) to the 

true parameters” (Harman, 1976, p. 198). 

From a maximum likelihood perspective, the parameters are estimated by 

maximizing a likelihood function or minimizing a corresponding function (Chen, 2003; 

Cureton & D’Agostino, 1983; Harman, 1976).   These expressions are functions of the 

elements of Λ and Ψ matrices (Chen, 2003; Harman, 1976). Appendix A contains a 

comprehensive description of the maximum likelihood algorithms through which factors 

parameters estimated. 

Maximum likelihood strategies are scale-invariant; both covariance matrices and 

their corresponding correlation matrices will yield the same factor patterns (Cureton & 

D’Agostino, 1983).  Maximum likelihood strategies are dependent on the assumptions 

that, in addition to the observed variables, the common factors exhibit multivariate 

normality.  Maximum likelihood techniques provide researchers with both parameter 

estimates and statistical indicators of model adequacy (Conway & Huffcutt, 2003; 

Harman, 1976; Mislevy, 1986). 

Simulation Studies in Exploratory Factor Analysis 

 Briggs and MacCallum (2003) compared maximum likelihood (ML) and ordinary 

least squares (OLS) factor analysis methods in their capacities to recover “relatively weak 

common factors” (p. 26).  To make this comparison, the researchers simulated two types 

of data sets.  The first data set contained 12 measured variables and three major domain 
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factors; the second data set contained 16 measured variables and four major domain 

factors.  Factors with loadings of .45 or lower were defined as weak.  The three factor 

model contained one weak factor, and the four factor model contained two weak factors; 

the researchers embedded multiple levels of measurement and sample error in their 

simulations (Briggs & MacCallum, 2003).  For each research condition, the researchers 

generated 1,000 correlation matrices. 

 To assess the accuracy of estimates derived by the tested factor analysis methods, 

the researchers employed a coefficient of congruence between the population and sample 

factor loadings for weak factors and a root mean square deviation calculated for weak 

factors only (Briggs & MacCallum, 2003).  The results of their study indicated that, 

under a majority of conditions, OLS outperformed ML factor analysis in recovering weak 

factors.  The advantage of OLS over ML became especially pronounced in the two-weak 

factor design; in these conditions, ML did not recover the fourth factor at all (Briggs & 

MacCallum, 2003). 

 The interpretation of factor loading matrices and the scores derived from them 

depend on a variety of sampling consideration (Velicer & Fava, 1998).  Velicer and Fava 

(1998) examined the impact of subject and variable sampling on the quality of factor 

analysis solutions. The researchers’ stated intent is “to determine the conditions that are 

likely to produce patterns that closely approximate the population patterns” (Verlicer & 

Fava, 1998, p. 233).  To achieve this aim, the researchers produced an extensive review 

of existing literature and conducted two simulation studies. 

 In the first simulation study, the researchers generated population correlation 

matrices that contained varying levels of factor pattern complexity.  Simplicity implied 
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equal loadings, and increased complexity involved unequal loadings. The researchers also 

manipulated the variable to factor ratios and sample sizes. The analytical methods 

included in this study were principal components analysis, image component analysis, 

and maximum likelihood factor analysis (Velicer & Fava, 1998). 

 The comparisons between sample and population factor loading matrices were 

evaluated through a root mean squared error (g).  The mean values of g and the standard 

deviations of g were subjected to an analysis of variance (ANOVA); this analysis had six 

levels of subject sample size, three levels of loadings, five levels of sample correlation 

matrices, three levels of number of variables, and three levels of factor analytic methods 

(Velicer & Fava, 1998).  The factor loading main effect had the greatest impact on the 

ANOVA’s associated with the mean g; the higher loading values had significantly 

smaller mean root mean squared errors than the lower loading values.  As demonstrated 

by the ANOVA’s, sample size and the number of values also had substantial impact on 

the mean values of g.  However, the main effects and interaction effects associated with 

method of analysis did not have a significant impact on the mean value of the root mean 

squared error (Velicer & Fava, 1998).   When the ANOVA’s were conducted on the 

standard deviations of g, the results also indicated that the main effects and interaction 

effects associated with method of analysis “produced a small effect” (Velicer & Fava, 

1998, p. 239). 

 Because the authors understood that constraining the loadings to be equal on all 

salient variables was “highly artificial” (Velicer & Fava, 1998, p. 241), they conducted a 

second study in which the loadings varied in the population.  The methods, analyses, and 

comparison criteria for the second study were nearly identical as those associated with 
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the first study included in the article.  The primary change included the number of 

variables per factor and the manner in which the variables loaded on each factor (Velicer 

& Fava, 1998). 

 In the second study, eight variables loaded on each factor.  The levels of loading 

included .40, .40, .40, .60, .60, .80, .80 and .80; the average loading was .60 which 

allowed the authors to compare the results of the second study with those of the first.  

When the ANOVA’s were conducted with the mean value of g, the method of analysis, 

subject sample size, and variable sample size yielded results that were large enough to 

warrant interpretation (Velicer & Fava, 1998).  This pattern of interpretability was 

replicated when the ANOVA’s were conducted on the standard deviations of g.   

In terms of the size of subject samples, the authors confirmed the results of early 

studies: “the most critical conditions for determining the degree of similarity between a 

sample pattern and the corresponding population pattern are the square root of the sample 

size and the average loading” (Velicer & Fava, 1998, p. 243).  The results indicated that 

ICA “was clearly inferior to both MLFA and PCA” (Velicer & Fava, 1998, p. 245), and, 

when samples were either very large or very small, PCA was superior to MLFA. 

Ogasawara (2000) explored methods for evaluating the variability in parameter 

estimates derived from factor analysis and component analysis.  This exploration 

included “asymptotic correlations” between parameter estimates in factor analysis and 

principal component analysis, correlations for standardized variables, and “mean squared 

canonical correlation between factors and components. . .” (Ogasawara, 2000, p. 168); 

the author also included asymptotic standard errors for the estimates of the correlations 
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between factors and principal components.  Through a Monte Carlo simulation study and 

the use of existing data sets, the author tested the accuracy of these measures. 

The simulation consisted of eight manifest variables and one factor; the sample 

size was 300; the simulation procedure was repeated 1000 times.   The previously 

developed data set consisted of a correlation matrix of for six variables with a sample size 

of 220 (Ogasawara, 2000).  The results from the simulation study and the study 

conducted on the existing data yielded large asymptotic correlations between estimates 

for factor analysis and the corresponding components analysis; the results yielded small 

standard errors associated with the canonical correlations.  When the variances of the 

unique factors approach sphericity, “the two sets of results give similar interpretations for 

factors and components” (Ogasawara, 2000, p. 182). 

 In their investigation of the relationship between sample size and the accuracy of 

factor analytic solutions, Hogarty, Hines, Kromrey, Ferron, and Mumford (2005) 

conducted a Monte Carlo study to evaluate the minimum sample size requirements 

suggested in the methodological literature.  The researchers compared factor pattern 

matrices extracted through principal axis factor analysis from generated correlation 

matrices with known factor pattern loadings.  The researchers manipulated levels of 

communality, number of variables, number of common factors, and sample size; the 

researchers also examined the interactions among all independent variables.  The factor 

solutions were evaluated in terms of “factor loading sensitivity,” “pattern accuracy” 

(general pattern accuracy, total pattern accuracy, and per element pattern accuracy), 

congruence coefficients, “factor score estimate accuracy,” and Root Mean Squared Error 

(RMSE) (Hogarty et al., 2005, p. 206).    
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The researchers found that, under nearly all research conditions, factor solution 

sensitivity was excellent.  In terms of general pattern accuracy, the conditions associated 

with high communality yielded the best solutions.  Although the researchers found low 

total pattern accuracy in nearly all research conditions, their results indicated that this 

accuracy increased as sample size and communality increased (Hogarty et al., 2005).  

Their results indicated that per element accuracy was positively correlated with sample 

size, communality, and variable to factor ratio (Hogarty et al., 2005).  The results also 

highlighted a negative correlation between sample size and RMSE (Hogarty et al., 2005).  

The researchers concluded that no minimum sample size or subject to variable ratio 

ensured “good factor recovery;” moreover, their results indicated that the quality of factor 

solutions was more strongly related with communality than sample size (Hogarty et al., 

2005, p. 223).   

 Factor scores provide researchers with information concerning a subject’s 

“relative spacing” on the latent variable (Grice, 2001, p. 67).  In their attempts to use 

factor scores in regression analyses or ANOVA’s, researchers must contend with factor 

score indeterminacy and the selection of units for factor score coefficients (Grice, 2001).  

Through a Monte Carlo simulation study, Grice (2001) examined six methods for 

computing factor scores.  These methods included exact regression (Fexact), unit 

regression (F1/3), unit pattern (P.30), unit-structure (S.30), unique pattern (Punique), and 

unique-unit-structure (Sunique) (Grice, 2001). 

 Grice developed two populations of z scores; each population contained identical 

factor structure.  Factor scores were created, and 35 samples were randomly selected 

from the first population; these samples ranged in size from 100 to 700.  Factors were 
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extracted through an iterated principal axis analysis procedure.  The factor scoring 

methods that represented the focus of this article “were then derived, evaluated, and 

applied to random samples of equal size drawn from the second population” (Grice, 

2000, p. 70).  These factor score estimation methods were evaluated, primarily, through 

correlations among the six factor score estimates and the known factor scores.  Estimates 

of statistical bias in these correlations and variability in the correlation matrices were also 

calculated (Grice, 2000). 

   The results indicated that the unit-regression scores were “generally superior” 

(Grice, 2000, p. 77) to the other methods of factor score estimation.  These results also 

demonstrated that the pair-wise comparisons between the unit-regression estimates and 

the other methods were moderated by sample size.  In most cases, the unit-regression 

estimates were more valid than the other methods under consideration; however, in the 

larger sample size conditions, the exact regression estimation procedure proved to be 

more valid than the unit-regression scores (Grice, 2000).  

To explore methods for identifying the dimension of item pools, Knol and Berger 

(1991) compared full-information models with models that included pairwise information 

exclusively.  To accomplish this comparison, they generated data matrices that contained 

known item discrimination and item difficulty parameters.  The researchers drew 

multidimensional ability, θ, from a multivariate normal distribution; for the binary 

response items, zeros are assigned when the value of the characteristic function, ሺߠ௩ሻ, 

is less than a value “randomly drawn from the uniform [0, 1] and a one when it is greater 

than or equal to the value” (Knol & Berger, 1991, p. 462).  The researchers included three 
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levels of sample size in their study.  For each combination of study conditions, the 

researchers generated 10 replications (Knol & Berger, 1991). 

 All models included in the comparisons were assessed in terms of both IRT and 

factor analytic parameters.  The evaluation criteria included mean squared differences 

between known and estimated parameters.  The IRT models included in this study were 

TESTFACT, NOHARM, and MAXLOG; the factor analytic models include ordinary 

least squares (MINRES), unweighted least squares (ULS), generalized least squares 

(GLS), maximum likelihood (ML), alpha factor analysis (ALPHA), and iterated principal 

factor analysis (IPFA) (Knol & Berger, 1991).  

 The researchers’ “most striking” (Knol & Berger, 1991, p. 471) result highlighted 

the advantageous nature of the factor analytic models and the NOHARM item response 

theory model when compared to TESTFACT and MAXLOG.  For multidimensional 

datasets, the results of the Knol and Berger study indicate that the factor analysis methods 

performed slightly better  than TESTFACT in terms of IRT criteria.  The researchers also 

found that IPFA, ULS, and MINRES outperformed ML and GLS factor analytic models 

in nearly all research conditions (Knol & Berger, 1991).  

Summary 

This review of literature outlines common practices and problems with the 

manner in which social scientists conduct factor analyses and report their results.  The 

review of literature presents the results of methodological research in factor extraction 

strategies, selection of matrices of association, sample size requirements, and the impact 

of violations of the assumption of multivariate normality. For researchers who intend to 

work with mixtures of polytomous and continuous level data, several methodological 
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studies propose probabilistic and Bayesian factor analytic strategies; however, these 

proposed strategies rarely appear in factor analytic literature.  By exploring the manner in 

which complex data contexts and commonly employed factor analytic strategies interact, 

the results of this study provide social scientists with information concerning research 

methods that they will frequently use.  The results of this study will extend the scope of 

the methodological research associated with exploratory factor analysis. 
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Methods  

Purpose of  Study 

The intention underlying this study is to provide researchers with empirically 

derived information concerning the interaction of factor extraction methods and types of 

data.  The scope of this study includes the evaluation of factor extraction methods when 

applied to data sets that contain a mixture of categorical and continuous variables. To 

enhance the potential usefulness of this study’s results, this research focused on methods 

commonly employed by social scientists; these include principal axis factor analysis, 

ordinary least squares factoring, and standard maximum likelihood method. 

Research Questions 

 The agreement between factor pattern matrices in a simulated population and 

matrices developed through selected exploratory factor analytic techniques is the primary 

comparison employed in this study.  This agreement was assessed through the proportion 

of variables that load on the same factors, total factor loading agreement, and factor 

loading congruence coefficients (MacCallum et al., 1999).  Measures of agreement, 

correlations between population and sample factor score matrices, root mean square 

error, statistical bias, and solution variability were considered as measures of factor 

pattern agreement. 

 The measures of congruence and agreement among population and sample 

matrices will be used to answer the following research questions: 
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1. How do varying ratios of categorical to continuous variables influence the 

agreement between factor pattern matrices extracted through the examined factor 

analysis strategies and factor pattern matrices simulated in the population? 

2. How does the number of variables in a correlation matrix influence the agreement 

between factor pattern matrices extracted through the examined factor analysis 

strategies and factor pattern matrices simulated in the population? 

3. How does sample size influence the agreement between factor pattern matrices 

extracted through the examined factor analysis strategies and factor pattern 

matrices simulated in the population? 

4. How does communality influence the agreement between factor pattern matrices 

extracted through the examined factor analysis strategies and factor pattern 

matrices simulated in the population? 

5. How does the number of common factors influence the agreement between factor 

pattern matrices extracted through the examined factor analysis strategies and 

factor pattern matrices simulated in the population? 

6. How do all of the independent variables interact to influence the agreement 

between factor pattern matrices extracted through the examined factor analysis 

strategies and factor pattern matrices simulated in the population? 

Introduction to Methods 

The research methods and Monte Carlo design included in this study are based on 

previous methodological research in the field of common factor analysis.  The strategies 

used to generate correlation matrices in this study are derived from Tucker, Koopman, 
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and Linn’s (1969) examination of factor analytic methods.  The sampling methods are 

based on the strategies employed by Hogarty, et al. (2005). 

To address the research questions, this study incorporated samples simulated 

through a variety of research contexts.  These contexts differed in number of variables, 

the number of common factors, communalities, sample sizes, and ratios of categorical to 

continuous variables. Data were generated under 540 different conditions; specifically, 

this study was a three (number of variables) by three (number of common factors) by 

three (communality levels) by four (sample size) by five (ratios of categorical to 

continuous variables) design. 

In the simulation procedure, ten correlation matrices were generated for each 

combination of data conditions.  For each correlation matrix, 1000 samples were 

generated.  These samples varied in the combinations of sample size and ratio of 

categorical to continuous variables.  In total, this simulation process yielded 5,400,000 

samples; each combination of data conditions accounted for 10,000 samples.    

Procedures 

Figure 1 provides a graphical presentation of the procedures used in this study; 

each facet of the manipulated conditions is addressed specifically in separate sections of 

this chapter.  The procedures employed in this study can be summarized as follows: 

1. Develop one population factor loading matrix for each of the 27 possible 

combinations of the levels of observed variables, common factors, and 

communalities. 
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Figure 1. Flowchart summarizing the generation of population and sample matrices 
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2. Generate 10 correlation matrices for each combination of sample size, level of 

dichotomization, and factor loading matrix; this results in 5,400 correlation 

matrices; the number of correlation matrices per design condition facilitate 

“major comparisons between cells by reduction of between cell variation due to 

random effects” (Tucker, Kiipman, & Linn, 1969, p. 435). 

3. Employ Monte Carlo design to simulate 1,000 samples for each combination of 

correlation matrix, level of dichotomization, and level of sample size; this results 

in 1,000 samples for each combination of manipulated variables (5,400,000 

samples). 

4. Extract factor loadings from the simulated data via principal axis, ordinary least 

squares, and maximum likelihood methods. 

5. Through indicators of agreement between population and sample factor pattern 

matrices, compare the factor patterns derived from each factor extraction method 

to known population characteristics. 

Generation of Population Matrices 

 This study employed a method for generating population correlation matrices that 

is described in Tucker, Koopman, and Linn’s (1969) study of factor analytic methods.  

The simulation process includes a “mathematical, probabilistic model” and presumes the 

existence of major, minor, and unique factors.  The major factors represent the 

“influences on observed scores of individuals for the phenomena which the experimenter 

wishes to study” (Tucker, Koopman, & Linn, 1969, p. 424); minor factors exert 

systematic influence on the value of observations but are not within the experimenters’ 

control, and unique factors represent error. Major factors are identified by a subscript 
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value of one; minor factors are given a subscript value of two, and a subscript of three 

indicates a unique factor.  The number of each type of factor is designated by ܯ௦ 

(Tucker, Koopman, & Linn, 1969). 

 The generation of correlation matrices begins with a matrix ܣ௦of “actual input 

factor loadings” (Tucker, Koopman, & Linn, 1969, p. 425).  Through a three-step 

process, these actual input loadings are derived from a matrix of conceptual input 

loadings, ܣሚ.  Conceptual input factor loadings represent the researcher’s expectations 

concerning the “factorial composition of the variables” (Tucker, Koopman, & Linn, 

1969, p. 426).   

The first step in the development of conceptual input loadings involved the 

creation of “relative conceptual input loadings” for each variable.  For a three-factor 

domain, the loadings conform to the following guidelines: 

1. A zero, one, or two is chosen at random and is assigned to the first factor. 

2. The sum of the loadings for any one variable is limited to two; this limit implies 

that if the first loading is two, then other two must be zero; if the first loading is 

one, then the other two have an equal probability of being a zero or a one. 

3. The loading of the third factor is chosen so that the sum of all three will be two 

(Tucker, Koopman, & Linn, 1969). 

Translating conceptual input factor loading matrices into matrices of actual input 

factor loadings is accomplished through a three-step process.  Through the first step, the 

conceptual input factor loadings are combined with “random normal deviates;” these 

deviates represent the natural “discrepancies” that occur in the construction of 
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instruments (Tucker, Koopman, & Linn, 1969, p. 428).  The output of this step, ሺݕଵሻభ
, 

is defined by: 

ሺݕଵሻభ
	ൌ 	 ሺ ܽଵሻభ

ܿଵ 		݀ଵݔଵభ
ሺ1 െ ܿଵ

ଶ ሻଵ ଶൗ 	 

Where: 

1. ሺ ܽଵሻభ
is the entry in row j and column m1 of matrix ܣሚଵ 

భݔ .2
 is a random, normal deviate ሺߤ ൌ 0, ߪ ൌ 1ሻ 

3. ܿభ
 is a constant for each factor m1; the possible values range from zero to 

one; the constants represent the “general control an experimenter has on the 

loading of actual variables on the factors” (Tucker, Koopman, & Linn, 1969, 

p. 429) 

4. ݀ଵ is a constant for each variable j; this constant normalizes each row of 

ଵభݔ
to a unit length vector; it is defined as: ݀ଵ ൌ ൫∑ భݔ

ଶ
భ

൯
ିଵ

ଶൗ (Tucker, 

Koopman, & Linn, 1969, p. 429) 

The second step in this translation process includes a skewing function that 

reduces negativity in factor loadings.  This function yields coefficients, ሺݖଵሻభ
, 

according to the following equality: 

ሺݖଵሻభ
ൌ 	
ሺ1  ݇ሻ
ሺ2  ݇ሻ

	
ሺݕଵሻభ

ൣሺݕଵሻభ
	 หሺݕଵሻభ

ห  	݇൧

ൣหሺݕଵሻభ
ห  	݇൧

 

In this expression, k is a parameter that can range from zero to infinity. Each vector of 

ሺݖଵሻభ
coefficients is reduced to unit length by the following: 

ሺܽଵ
∗ሻభ

ൌ ଵ݃ሺݖଵሻభ
 

 where ଵ݃ ൌ 	 ൣ∑ ሺݖଵሻభ
ଶ

భ
൧
ିଵ ଶൗ  
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The third step in this process includes scaling the matrix “to ensure desired levels of 

communality” (Hogarty et al., 2005, p. 207). 

The matrix of actual input factor loadings, ܣ௦ is a ܬ	 ൈ  ௦ matrix that contains aܯ	

row for each variable J and a column for each major, minor, and unique factor (Tucker, 

Koopman, & Linn, 1969, p. 425).  For each matrix ܣ௦, a matrix ܣ௦∗ can be defined by 

adjusting the rows of ܣ௦ to unit length vectors.  P is a square, symmetric matrix of order 

J; P is positive and semi-definite; it is defined by: 

௦ܲ ൌ ∗௦ܣ∗௦ܣ	
ᇲ
 

ሺ݃ܽ݅ܦ ௦ܲሻ ൌ  .ܫ

The simulated correlation matrix is given by: 

ܴ ൌ ଵܤ	 ଵܲܤଵ  ଶܤ ଶܲܤଶ  ଷܤ ଷܲܤଷ 

 ,௦ are diagonal matrices that include ܾଵ, ܾଶ, and ܾଷas entries.  These entries are realܤ

positive numbers that have the following property: 

ܾଵ
ଶ 	ܾଶ

ଶ 	ܾଷ
ଶ ൌ 1 

These considerations imply the following equalities: 

ݎ ൌ 1	 

ሺܴሻ	݃ܽ݅ܦ ൌ  ܫ

Matrix ܣ௦is now defined as: 

௦ܣ 	ൌ  ∗௦ܣ௦ܤ	

The correlation matrix is given by: 

ܴ ൌ ଵܣଵܣ	
ᇱ  ଶܣଶܣ

ᇱ  ଷܣଷܣ
ᇱ 	ൌ ሺܣଵ, ,ଶܣ ,ଵܣଷሻሺܣ ,ଶܣ  ′ଷሻܣ

The supermatrix (A1, A2, A3) contains the matrices A1, A2, and A3 as horizontal sections 

(Tucker, Koopman, & Linn. 1969). 
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 The coefficients in the Bs matrices “regulate” the amount of variability in the 

variables that is related to the major, minor, and unique factors.  The ܤଵ
ଶ matrix contains 

communalities, and the ܤଷ
ଶcontain values for uniqueness.  When B2 matrix is zero, the 

“simulation model” equals the “formal model” (Tucker, Koopman, & Linn, 1969, p. 

426). 

 This study included the formal model as the simulation model.  The B2 matrix is 

set to zero, and by implication, the input factor loadings for minor factors were zero.  

This forced the “data generation model” to match “a factor analytic model” with the 

number of common factors equal to the levels specified for each combination of research 

contexts that was examined in this study.  This study included two, four, and eight 

common factors. 

Illustrative Example for Generating a Correlation Matrix 

This illustration of the process for generating population correlation matrices 

includes nine variables and three common factors.  In this simulated factor model, the 

communalities range from 0.6 to 0.8.  Table 1 presents the matrix of conceptual factor 

input loadings, ܣሚ, that is employed in this illustration.  Note that the first conceptual 

factor loading for each observed variable was assigned randomly; the sum of the 

conceptual loadings for each variable is two.   

As described in the previous section, translating this matrix of conceptual factor 

input loadings into a matrix of actual input loadings requires the incorporation of 

variation and discrepancies that mimic realistic instruments and studies.  This process 

includes random normal deviates, constants for each factor, and a constant for each 
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variable.  Tables 2, 3, 4, and 5 illustrate the components associated with the second step 

in developing the matrix of actual input loadings.   

 

Table 1 
Matrix of Relative Conceptual Factor Input Loadings, ܣሚ 
Variable Factor 1 Factor 2 Factor 3 

1 0 1 1 

2 2 0 0 

3 0 2 0 

4 2 0 0 

5 0 0 2 

6 0 1 1 

7 2 0 0 

8 1 0 1 

9 2 0 0 

 
   

 

Table 2 contains a matrix of random normal deviates, ݔభ
.  When combined with 

the vector of normalizing constants for each factor, ݀ଵ, the 9 x 3 matrix of random 

normal deviates is reduced to a unit length vector.  

The normalizing coefficients, ݀ଵ, for the random deviates included in this 

illustration are given in Table 3. Tucker, Koopman, and Linn’s (1969) procedure for 

simulating natural variation includes a matrix of constants, ܿభ
, for each major factor; 

this formula for ሺݕଵሻభ
 also includes the squared values of these constants. 
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Table 2 

Matrix of Random Normal Deviates ݔభ
 

Variable Factor 1 Factor 2 Factor 3 

1 0.699 1.078 0.043 

2 1.056 0.950 1.669 

3 0.385 0.151 -0.971 

4 -0.687 -0.590 -1.156 

5 0.040 1.016 -1.560 

6 -1.133 1.162 1.269 

7 1.208 1.356 -0.129 

8 1.266 -0.932 -0.201 

9 1.603 0.088 04.435 

 
 

 

Table 3 
Values for the ݀ଵCoefficients 
Variable Value 

1 0.778 

2 0.456 

3 0.947 

4 0.681 

5 0.537 

6 0.485 

7 0.549 

8 0.631 

9 0.601 
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Table 4 highlights the distribution of  ܿభ
 values among the three common 

factors.   The step in the process for incorporating naturally occurring discrepancies into 

the matrix of actual input factor loadings results in a ሺݕଵሻభ
value for each variable of 

each of the three factors.  Table 5 represents this matrix. 

 

Table 4 
Matrix of Constants ܿభ

 
Variable Factor 1 Factor 2 Factor 3 

1 0.8 0.7 0.8 

2 0.8 0.7 0.8 

3 0.8 0.7 0.8 

4 0.8 0.7 0.8 

5 0.8 0.7 0.8 

6 0.8 0.7 0.8 

7 0.8 0.7 0.8 

8 0.8 0.7 0.8 

9 0.8 0.7 0.8 

  
 

The second step in the process of translating the conceptual input factor loadings 

into a matrix of actual input loadings involves a skewing function which reduces 

negativity in the resulting factor loadings.  Table 6 contains a matrix of values, ሺݖଵሻభ
, 

associated with this step.  Through the equation for  ଵ݃ given in the previous section, 

this matrix is reduced to unit length to yield the matrix ሺܽଵ
∗ሻభ

 which is illustrated in 

Table 7. 

 



 
 

67 
 

 

Table 5 
Matrix of Values for ሺݕଵሻభ

  
Variable Factor 1 Factor 2 Factor 3 

1 0.326 1.299 0.820 

2 1.889 0.309 0.457 

3 0.218 1.502 -0.552 

4 1.319 -0.287 -0.472 

5 0.013 0.390 1.097 

6 -0.330 1.103 1.169 

7 1.998 0.532 -0.042 

8 1.280 -0.420 0.724 

9 2.178 0.038 0.157 

  
 

 
 
Table 6 
Matrix of Values for ሺݖଵሻభ

 
Variable Factor 1 Factor 2 Factor 3 

1 0.288 1.322 0.807 

2 1.962 0.271 0.422 

3 0.182 1.542 -0.080 

4 1.344 -0.064 -0.077 

5 0.008 0.353 1.105 

6 -0.068 1.11 1.183 

7 2.081 0.501 -0.019 

8 1.301 -0.074 0.704 

9 2.276 0.239 0.123 
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Table 7 
Matrix of Values for ሺܽଵ

∗ሻభ
 

Variable Factor 1 Factor 2 Factor 3 

1 0.183 0.839 0.512 

2 0.987 0.134 0.209 

3 0.117 0.992 -0.051 

4 0.997 -0.048 -0.568 

5 0.006 0.304 0.952 

6 -0.042 0.684 0.728 

7 0.972 0.234 -0.009 

8 0.878 -0.050 0.475 

9 0.998 0.011 0.054 

 

 

The third (and final) step in the process for transforming conceptual input factor 

loadings into actual input factor loadings involves ܾ௦ଶmatrices which regulate the amount 

of variability in the variables that is driven by the major and unique factors.  The vector 

ܾଵ
ଶ contains communalities, and the vector ܾଷ

ଶ is associated with the unique factors. 

Table 8 provides the values for these vectors; the vector of zeros associated with 

ܾଶ
ଶ highlights this studies focus on the influence of major factors. The product of 

ሺܽଵ
∗ሻభ

and ܾଵ
ଶ yields a matrix of actual input factor loadings for the major domain. Table 

9 provides these loadings for each variable and factor.  Table 10 illustrates the manner in 

which the unique factors influence the variability in the nine variables. 
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Table 8 
Values of b2 Coefficients, ܾ௦ଶ 

Variable ܾଵ
ଶ ܾଶ

ଶ ܾଷ
ଶ 

1 0.7 0.0 0.3 

2 0.6 0.0 0.4 

3 0.7 0.0 0.3 

4 0.7 0.0 0.3 

5 0.8 0.0 0.2 

6 0.8 0.0 0.2 

7 0.8 0.0 0.2 

8 0.6 0.0 0.4 

9 0.6 0.0 0.4 

 
 

 

Table 9 
Matrix of Actual Factor Input Loadings for the Major Domain, A1

Variable Factor 1 Factor 2 Factor 3 

1 0.153 0.702 0.428 

2 0.750 0.104 0.162 

3 0.098 0.830 -0.043 

4 0.834 -0.040 -0.047 

5 0.005 0.272 0.852 

6 -0.037 0.612 0.651 

7 0.869 0.209 -0.008 

8 0.680 -0.039 0.368 

9 0.773 0.008 0.042 
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Table 10 
Values for Factor Input Loadings for the Unique Factors, A3 
Variable Value 

1 0.548 

2 0.632 

3 0.548 

4 0.548 

5 0.447 

6 0.447 

7 0.447 

8 0.632 

9 0.632 

 
 

 

Table 11 presents the correlation matrix that is a result of the sum of products of the A1 

matrix with its inverse and the A3 with its inverse.  

 

Table 11 
Simulated Correlations 
Variable 1 2 3 4 5 6 7 8 9 

1  .257 .579 .080 .557 .703 .277 .235 .142 

2   .152 .614 .170 .141 .673 .566 .588 

3    .500 .190 .476 .259 .186 .080 

4     -.465 -.087 .717 .552 .643 

5      .721 .055 .307 .191 

6       .090 .191 .003 

7        .581 .674 

8         .541 

9          
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This simulation was developed in SAS 9.2.  The IML code was adapted from a 

study conducted by Hogarty, Hines, Kromrey, Ferron, and Mumford (2005).  The 

program associated with this design example can be found in Appendix B.  

Monte Carlo Simulation Design 

 With few modifications, the simulation strategy included in this study is derived 

from Hogarty, Hines, Kromrey, Ferron, & Mumford’s (2005) investigation of the 

relationship between sample size and factor solutions.  The primary modification includes 

the addition of various proportions of categorical variables to the simulated data sets.  

This study also controlled for the number of variables, communality levels, and sample 

size. 

Proportion of categorical variables. The ratios of categorical to continuous 

variables are selected to provide insight into a variety of research contexts.  The samples 

developed through the simulated correlation matrices included distributions that 

contained the following percentages of categorical variables: 5%, 25%, 50%, 75%, and 

95%.  While simulating a broad range of data contexts, these percentages resulted in 

whole numbers of variables in data sets that contain 20, 40, and 60 observed variables. 

During the data generation phase of this design, differing percentages of each 

sample of observed variables were dichotomized to yield the appropriate number of 

categorical observations.  When data were intended to represent categorical variables, the 

resulting, simulated value was dichotomized at 0.5.  When the value was less than 0.5, 

the value of the categorical variable was set to zero; when the value was greater than or 

equal to 0.5, the value of the categorical value was set to one.   
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Number of variables. To enhance this project’s generalizability, this study 

included simulations of results from data sets of varying size.  When considered in 

concert with the differing sample sizes, this study incorporated participant (N) to variable 

(p) ratios that range from “insufficient to those considered more than acceptable” 

(MacCallum, Widaman, Zhang, & Hong, 1999, p. 92).  This study simulated data sets 

containing 20, 40, and 60 variables.  The simulated combinations of sample sizes and 

numbers of observed variables yileded N: p ratios that range from 1.67:1 to 30:1. 

Number of common factors. This study simulated research contexts that involve 

varying ratios of observed variables to common factors.  The number of factors condition 

consisted of three levels: two, four, and eight common factors.  Because factors defined 

by fewer than two variables would “contradict the basic idea of a factor as a latent 

construct” (Henson & Roberts, p. 408), the upper limit on the number of common factors 

simulated in this study was constrained by the simulated context which includes 20 

observed variables.  In this study, the ratio of observed variables to common factors 

ranged from 2.5:1, or insufficient (Fabrigar et al., 1999), to 30:1.  

Communality levels. The simulated levels of communality included in this study 

are also derived from existing methodological research in factor analysis.  This study 

simulated three community levels: high, wide, and low communality (h2) (Hogarty et al., 

2005; MacCallum, Widaman, Zhang, & Hong, 1999).  These communality levels 

correspond to the following: 

1. High--h2 for each variable are randomly drawn from values of .6, .7, and .8 

2. Wide--h2 for each variable are randomly drawn from values of .2, .3, .4, .5, .6, .7, 

and .8 
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3. Low--h2 for each variable are randomly drawn from values of .2, .3, and .4 

Sample size. The four sample size (N) conditions included in this study were 100, 

200, 300, and 1000 simulated subjects.  Although many studies provide suggested 

minimum values for the ratio of participants to variables when employing factor analytic 

techniques (Stevens, 2002), recent simulation studies do not find a minimum sample size 

to variable ratio that can be associated with good factor recovery (Hogarty et al., 2005; 

MacCallum, Widaman, Zhang, & Hong, 1999).  Therefore, the sample size levels 

included in this study are based on ranges of sample sizes that are commonly found in 

recent factor analytic research in organizational management and social science research 

(Conway & Huffcutt, 2003). 

Rotation.  The initial factor solutions from each model in each condition was 

subjected to an orthogonal rotation strategy.  Specifically, this study employed a varimax 

rotation in all simulated contexts.  Because the intent of this study is to address 

methodological issues that are frequently encountered in social science literature, 

varimax rotation was considered to be a more appropriate choice than the 

methodologically sound procustrean rotation (Fabrigar et al., 1999; Merrifield, 1974; 

Raykov & Little, 1999).  The parsimony associated with uncorrelated factors represents 

one of the strongest rationales for employing orthogonal rotation strategies (Fabrigar et 

al., 1999; Raykov & Little, 1999). 

Evaluation of Factor Extraction Methods 

Principal axis, ordinary least squares, and maximum likelihood factor extraction 

methods were evaluated in terms of five general sets of criteria.  These criteria include: 

population and sample factor pattern agreement, congruence, and correlations between 



 
 

74 
 

population and sample factor score matrices. (Hogarty et al., 2005; MacCallum, 

Widaman, Zhang, & Hong, 1999).  The following sections address each of these 

evaluation criteria. 

Population and sample factor pattern agreement.  This study includes 

assessments of agreement between the population, or true, factor characteristics and those 

characteristics implied by the factor analytic techniques under investigation, the sample.  

These measures were also described by Hogarty, Hines, Kromrey, Ferron, and Mumford 

(2005), and they include:  

1. Loading sensitivity or agreement between sample and population in terms of the 

proportion of variables that have factor pattern coefficients that are greater than or 

equal to .30 on at least one factor; this indicator measures the level of agreement 

between sample and population matrices in terms of variables that load on at least 

one factor (Hogarty et al., 2005).  

2. General pattern agreement as measured by the proportion of samples in which all 

of the variables loaded on the same factors in both the sample and the population.  

This measure does not take into account the magnitude of variable loadings on 

other factors in the sample matrices. “This index represents the extent of 

agreement for all variables that load on at least on factor” (Hogarty et al., 2005, p. 

209). 

3. Total agreement between sample and population is expressed in terms of the 

proportion of samples in which all variables loaded on sample and a population 

factors to the same extent.  Factor loadings will be assessed as agreeing if both 
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sample and population loadings are greater than or equal to .30 or less than .30 

(Hogarty et al., 2005). 

4. “Per element accuracy” (Hogarty et al., 2005, p. 209) is reflected in the proportion 

of variables that load correctly in each sample; these proportions will be averaged 

across all samples.  

Congruence.  In addition to the above criteria, the capacity for each of the 

examined factor analytic approaches to extract the appropriate pattern of loadings for 

each factor will be measured by a congruence coefficient as described by MacCallum et 

al. (1999).  This coefficient k is defined as (MacCallum et al., 1999): 
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Where  tjkf is the true population factor loading for variable j on factor k (in the 

population), and  sjkf is the sample population factor loading for variable j on factor k.   

To provide a summary of each method’s effectiveness across all factors, an 

average of this congruence coefficient was computed.  This summary statistic is denoted 

by K and is defined as (MacCallum et al., 1999): 

r
K

r

k
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 A second indicator of congruence included in this study is a measure of statistical 

bias.  This estimate for the jth coefficient of the kth factor is given by: 

መ൯ߣ൫ݏܽ݅ܤ ൌ
1
ܯ
൫ߣመ െ ൯ߣ
ெ
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Where ߣመ is the coefficient obtained via the mth sample, ߣis the population 

coefficient, and M is the number of samples included in the study.  The absolute values of 

bias will be used in the computation of an average across the M samples (Hogarty et al., 

2005). 

 The third indicator of congruence included in this study was the root mean square 

error (RMSE).  The estimate of RMSE is given by: 

መ൯ߣ൫ܧܵܯܴ ൌ ඨ
1
ܯ
൫ߣመ െ ൯ߣ

ଶ

ெ

 

The elements included in the estimate of RMSE are identical to those used to estimate a 

value for bias. 

Correlations between population and sample factor score matrices.  The first 

step in developing this evaluation measure includes the development of factor score 

estimates. These score estimates are linear combinations of variables; however, as 

opposed to using factor score coefficients, these estimates were computed using the 

following process: 

1. A positive one scoring coefficient is assigned when the observed structure 

coefficient is  .30; 

2. A negative one scoring coefficient is assigned when the observed structure 

coefficient is  െ.30; 

3. A scoring coefficient of zero is assigned when the structure coefficient is between 

.30 and -.30. 

Ater factor scores estimates werere computed for both the population and sample 

matrices, a correlation among the scores was used to measure how closely factor scores 
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derived from each of the factor extraction strategies approximates that factor score 

pattern that is imbedded in the population (Hogarty et al., 2005). 

Analysis of Results 

 The results of this study were examined through a repeated measures analysis of 

variance with a five-between and one-within group design (Stevens, 2007).  The between 

groups factors are the manipulated variables that comprise the set of simulated research 

contexts; these variables include ratio of categorical to continuous variables, sample size, 

number of observed variables, communality level, and  number of common factors.   The 

within groups portion of the analysis includes the three factor extraction methods under 

consideration in this study. 

One repeated measures analysis of variance will be conducted for each of eight 

dependent variables included in this study.  These dependent variables are the four 

measures of agreement among population and sample pattern matrices, a coefficient for 

congruence, factor score correlations, factor loading bias, and root mean squared error 

(RMSE). 

To identify “practical differences” when statistical differences are found, effect 

sizes were examined (Stevens, 2007, p. 127).  Specifically, this study employed a 

generalized eta-squared; this effect size parameter is defined by (Bakeman, 2005, p. 380) 

ீߟ
ଶ ൌ 	

௧ߪ
ଶ

	ߜ ൈ	ߪ௧
ଶ 	ߪ௦௨ௗ

ଶ  

where: 

௧ߪ .1
ଶ  is variance due to “manipulated factors,” or between group variance 

(Bakeman, 2005, p. 380); 
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 is equal to one if the effect includes only factors that are manipulated by the ߜ .2

investigator; 

௦௨ௗߪ .3
ଶ  includes variance due to individual differences (Bakeman, 2005); 

In addition to the summary tables associated with balanced, between groups, 

factorial analyses of variance, results of this study are presented graphically.  When 

statistically significant differences among factor extraction methods were identified, the 

Tukey procedure was employed to identify the sources of these significant differences. 
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Results 

The intent of this study is to explore the extent to which characteristics of factor 

models derived through the tested factor analytic methods agree with the true 

characteristics simulated in the population.  Because of the explorative nature of this 

study, it will include both multivariate and univariate approaches to the repeated 

measures analysis; this approach can identify sets of significant treatment effects that 

neither approach may resolve on its own (Stevens, 2002, 2007).  To accommodate for 

increased experiment-wise, type I error rates, tests of significance are based on .025 alpha 

level 

Table 12 provides means and standard deviations of all performance measures by 

factor extraction method; these measures include factor loading sensitivity, general 

pattern agreement, per element agreement, total pattern agreement of agreement, 

congruence, factor score correlations, bias, and root mean squared error (RMSE).  As the 

table indicates, mean values of total agreement are near zero for all tested factor 

extraction methods.  In the two factor by 60 observed variable condition, principal axis 

and maximum likelihood factor extraction methods yielded factor score estimates of zero; 

therefore factor score correlations for these conditions could not be calculated 
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Table 12 
Means and Standard Deviations of all Performance Measures by Factor Extraction 
Method 
 

 

 

Principal Axis 

Ordinary  

Least Squares 

Maximum 

Likelihood 

Performance Measure M SD M SD M SD 

Factor Loading Sensitivity .414 0.326 .993 0.008 .391 0.300 

General Pattern Agreement .222 0.168 .826 0.167 .238 0.173 

Per Element Agreement .593 0.180 .750 0.078 .605 0.185 

Total Pattern Agreement .000 0.000 <.001 0.001 <.001 <0.001 

Congruence .454 0.240 .496 0.215 .556 0.236 

Factor Score Correlations* .326 0.196 .511 0.208 .382 0.213 

Factor Loading Bias -.121 0.064 .028 0.022 -.122 0.063 

RMSE .113 0.053 .092 0.046 .105 0.052 

N = 540 
* For principal axis and maximum likelihood methods, factor score correlations N = 480 
 
 
 
 
 Table 13 provides Pearson product moment correlation coefficients for all 

performance measures associated with factor loading matrices derived through the 

principal axis factor extraction method.  As the table demonstrates, factor loading 

sensitivity, general pattern agreement, and per element agreement are significantly and 

positively related.  These three performance measures have significantly negative 

relationship with RMSE.  In the case of principal axis factor extraction, all total pattern 
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agreement values were zero; therefore, pairwise correlations with other performance 

measures were not estimated. 

 

 
Table 13 
Pearson Product Moment Correlations among Outcome Variables for Principal Axis 
Factor Analysis 
 1 2 3 4 5 6 7 8 

Factor Loading Sensitivity (1)  .720* .616* - -.693* .002 .524* -.276* 

General Pattern Agreement (2)   .400* - -.123* .657* .268* -.276* 

Per Element Agreement (3)    - -.707* .036 .923* -.814* 

Total Agreement (4)     - - - - 

Congruence (5)      .559* -.663* .431* 

Factor Score Correlations (6)       -.105* .011 

Factor Loading Bias (7)        -.924* 

RMSE (8)         

N = 480 
* Significant at the alpha = .05 Level 
 

 

Table 14 provides Pearson product moment correlation coefficients for all 

performance measures associated with factor loading matrices derived through the 

ordinary least squares factor extraction method.  As the table demonstrates, factor loading 

sensitivity and general pattern agreement are positively and significantly related.  

However, unlike the correlations found in outcome measures associated with principal 

axis factor extraction, neither of these measures are significantly related to per element 

agreement.   
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Table 14 
Pearson Product Moment Correlations Among Outcome Variables for Ordinary Least 
Squares Factor Analysis 
 1 2 3 4 5 6 7 8 

Factor Loading Sensitivity (1)  .667* -.049 .172* .281* .231* .350* .305* 

General Pattern Agreement (2)   -.074 .213* .723* .710* .757* .283* 

Per Element Agreement (3)    -.129* -.419* -.396* -.007 -.832* 

Total Agreement (4)     .361* .337* -.068 .183* 

Congruence (5)      .989* .630* .358* 

Factor Score Correlations (6)       .642* .329* 

Factor Loading Bias (7)        .128* 

RMSE (8)         

N = 540 
* Significant at the alpha = .05 Level 
 

 

Table 15 provides Pearson product moment correlation coefficients for all 

performance measures associated with factor loading matrices derived through the 

maximum likelihood factor extraction method.  As Table 15 demonstrates, factor loading 

sensitivity, general pattern agreement, and per element agreement are significantly and 

positively related.  These three performance measures have significantly negative 

relationship with RMSE.   

For each outcome variable, these analyses include information concerning the 

assumptions associated with repeated measures analysis.  Specifically, the results include 
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tests of multivariate normality and sphericity (Stevens, 2002, 2007).  When the 

assumptions cannot be maintained, repeated measures analyses of variance tests of 

significance are based on the Greenhouse-Geisser adjustment to degrees of freedom 

(Stevens, 2002, 2007). 

 
 
 
 

Table 15 
Pearson Product Moment Correlations Among Outcome Variables for Maximum 
Likelihood Factor Analysis 
 1 2 3 4 5 6 7 8 

Factor Loading Sensitivity (1)  .756* .639* .052 -.696* .006 .517* -.257* 

General Pattern Agreement (2)   .455* .058 -.170* .623* .308* -.166* 

Per Element Agreement (3)    .028 -.675* .076 .927* -.787* 

Total Agreement (4)     -.004 .022 .045 -.031 

Congruence (5)      .542* -.586* .313* 

Factor Score Correlations (6)       -.039 -.078 

Factor Loading Bias (7)        -.915* 

RMSE (8)         

N = 480 
* Significant at the alpha = .05 Level 

 
 
 

In addition to tests of statistical significance, the repeated measures analyses of 

variance include generalized eta-squared, ீߟ
ଶ , effect size estimates (Bakeman, 2005).  

When statistical significance is accompanied by a medium effect size, an  ீߟ
ଶ  value of 

.0588, or greater, the means of the outcome measure for each factor extraction method 

are compared (Cohen, 1988).  However, if any interactions among main effects exhibit 
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the same pattern of statistical significance and effect size, then only the interaction are 

interpreted.  Comparisons among means are considered through tables, graphs of means, 

and box and whisker plots. 

 
Factor Loading Sensitivity 
 

Factor loading sensitivity is expressed in terms of agreement between sample and 

population in terms of the proportion of variables that have factor pattern coefficients that 

are greater than or equal to .30 on at least one factor.  This is the count of variables that 

meet a .30 factor loading threshold for at least one factor in both the sample and the 

population divided by the count of variables that meet the .30 loading threshold in the 

population.  Table 16 presents descriptive statistics concerning the univariate distribution 

of this loading sensitivity measure by each of the tested factor extraction methods. 

 

 
Table 16 
Descriptive Statistics for Distribution of  Factor Loading Sensitivity Values 
Factor Extraction Method N M SD Skewness Kurtosis

Principal Axis 540 0.414 0.326 0.305 -1.130

Ordinary Least Squares 540 0.993 0.008 -1.122 0.158

Maximum Likelihood 540 0.391 0.300 0.254 -1.120

 
 

 

When combined with the observed levels of skewness and Kurtosis, the Shapiro-

Wilk tests of normality provide evidence of significant non-normality in the univariate 
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distributions of factor loading sensitivity measures for all three factor extraction methods.  

Moreover, Mauchly’s test of transformed variables, ߯ଶ (2) = 337.428, p < .0001, indicate 

that the data do not conform to the sphericity assumption associated with repeated 

measures ANOVA.  To account for these violations of the assumptions associated with 

the univariate, repeated measures analysis of variance, the Greenhouse-Geisser 

adjustment to degrees of freedom was used to develop p values for the within subjects 

tests of significance.  

The multivariate analysis of variance indicate that factor loading sensitivity 

differed significantly by factor extraction method, Λ = .0001, F (2, 495) = 342901, p < 

.0001.  In addition to the factor extraction method main effect, all interaction among 

factor extraction method and manipulated research characteristics yielded significant 

differences in factor loading sensitivity.  Eight of the 10 first order interactions among 

main effects are also significant at the alpha = 0.025 level.  The results of these analyses 

can be found in see Table C1 (see appendix C).  

  Results of the repeated analysis of variance yield a similar pattern of significance 

as those associated with the multivariate analysis.  For example, the within-subjects 

portion of the ANOVA indicate that mean values of factor loading sensitivity differ 

significantly by factor extraction method, F (2, 920) = 600815, p < .0001, ீߟ
ଶ  = .999.   

The model including main effects and first-order interactions accounted for 99.9% of the 

variability associated with factor loading sensitivity.    

In addition to the method effect, the between subjects analysis yielded evidence 

that the sensitivity measure differed significantly for all of the main effects: Number of 

factors (K), number of observed variables (P), sample size (N), communality range (H), 
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and dichotomization (D).  The results also indicate that mean values of this measure were 

significantly related to five interactions among these main effects; these interactions 

include number of factors by number of observed variables (K × P), number of factors by 

communality range (K × H), number of factors by level of dichotomization (K × D), 

number of observed variables by communality range (P × H), and communality range by 

level of dichotomization (H × D).  The results of the univariate, repeated measures 

ANOVA can be found in C2 (see appendix C). 

Agreement between the multivariate and univariate approaches was not universal.  

The multivariate approach yielded evidence that factor loading sensitivity is significantly 

related to interactions between number of observed variables by sample size (P × N) and 

number of observed variables by level of dichotomization (P × D) (see Table C1 in 

appendix C).  However, the univariate, repeated measures analysis failed to yield 

evidence of significant differences in mean levels of factor loading sensitivity associated 

with these interactions.   

Because the generalized eta-squared values for the P × N and P × D interactions 

indicated that their effect sizes were less than medium (Cohen, 1988), comparisons 

among the mean values for factor loading sensitivity based on these interactions were not 

analyzed.  Although each main effect is also included in a first-order interaction that 

yielded a medium or greater effect size, this study includes interpretations of the 

interaction effects only.  The two  interactions with factor extraction methods that met 

both the statistical significance and the effect size requirements for further analyses 

include number of factors by number of observed variables, F (8, 920) = 1086.34, p < 

ீߟ ,0001.
ଶ  = .862, and number of observed variables by communality range, F (8, 920) = 
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20.47, p < .0001, ீߟ
ଶ  = .059.  The between subjects analyses indicate that number of 

factors by communality range, F (4, 460) = 11.81, p < .0001, ீߟ
ଶ  = .062, and the number 

of factors by level of dichotomization, F (8, 460) = 5.43, p < .0001, ீߟ
ଶ  = .574, also 

warrant follow-up comparisons.  Tables 17 through 20 provide means and standard 

deviations for factor loading sensitivity measures for all four of these interactions.  

 

 

Table 17 
Means and Standard Deviations of Factor Loading Sensitivity by Factor Extraction 
Method and Number of Factors by Observed Variables Interaction (K x P) 
  

Principal Axis 

Ordinary  

Least Squares 

Maximum 

Likelihood 

Interaction (K x P) M SD M SD M SD 

2 × 20 .478 0.030 .995 0.007 .475 0.031 

2 × 40 .012 0.012 .995 0.006 .140 0.013 

2 × 60 .000 0.000 .995 0.006 .000 0.00 

4 × 20 .794 0.025 .991 0.009 .753 0.036 

4 × 40 .317 0.016 .992 0.008 .316 0.016 

4 × 60 .138 0.018 .992 0.008 .141 0.015 

8 × 20 .980 0.004 .993 0.009 .900 0.016 

8 × 40 .659 0.027 .993 0.008 .583 0.037 

8 × 60 .345 0.034 .993 0.007 .334 0.037 

N  = 540  
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At all levels of the interaction between number of factors and number of observed 

variables, the ordinary least squares factor extraction method yields the highest mean 

proportions of variables that load on at least one factor in both the population and the 

sample; this mean proportion exceeds .99.  For the principal axis and maximum 

likelihood strategies, factor loading sensitivity appears to be positively related to the 

number of factors and negatively related to the number of observed variables.     

As the graph of means in Figure 2 highlights, the differences in factor loading 

sensitivity values among the three factor extraction methods are the smallest when the  

 

 

 

Figure 2. Mean values of factor loading sensitivity by interactions between number of 
factors and observed variables. 
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observed variable to factor ratio is the smallest.  Box and whisker plots of these mean 

proportions indicate that factor loading sensitivity values associated with the least squares 

have smaller ranges and semi-interquartile ranges than the distributions associated with 

maximum likelihood and principal axis factor extraction methods (see Figure D1 in 

appendix D).  For the ordinary least squares factor extraction method, measures of both 

central tendency and dispersion in the distributions of factor loading sensitivity values 

appear to be independent of observed variable to number of factor ratios. 

Table 18 provides means and standard deviations of factor loading sensitivity 

values based on the number of factors by communality range interaction.  The ordinary 

least squares factor extraction method yields the highest mean proportions of variables 

that load on at least one factor in both the population and the sample. For the principal 

axis and maximum likelihood strategies, the measure of factor loading sensitivity is 

positively related to both the number of factors and community level.  Mean values of 

factor loading sensitivity associated with the Ordinary Least Squares factor extraction 

method appeared to be independent of a K × H interaction effect values. As the graph of 

means in Figure 3 indicates, the differences in factor loading sensitivity decrease as 

number of factors and communality range increase. 

Box and whisker plots indicate that factor loading sensitivity values associated 

with the least squares have smaller ranges and semi-interquartile ranges than the 

distributions associated with maximum likelihood and principal axis factor extraction 

methods (see Figure D2 in appendix D).    For the ordinary least squares factor extraction 

method, measures of both central tendency and dispersion in the distributions of factor 
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loading sensitivity values appear to be independent of levels of the number of factors by 

communality interaction. 

 

 

Table 18 
Means and Standard Deviations of Factor Loading Sensitivity by Factor Extraction 
Method and Number of Factors by Communality Range Interaction (K x H) 
  

Principal Axis 

Ordinary  

Least Squares 

Maximum 

Likelihood 

Interaction (K x H) M SD M SD M SD 

2 × Low .155 0.214 .999 0.007 .154 0.212 

2 × Wide .165 0.217 .996 0.003 .165 0.214 

2 × High .170 0.243 1.000 0.000 .170 0.242 

4 × Low .409 0.289 .982 0.006 .390 0.259 

4 × Wide .412 0.266 .993 0.002 .398 0.246 

4 × High .429 0.284 .999 0.000 .422 0.276 

8 × Low .651 0.273 .982 0.005 .584 0.242 

8 × Wide .655 0.264 .996 0.002 .600 0.233 

8 × High .678 0.250 .999 0.000 .635 0.231 

N  = 540 
Note:  

 

Table 19 presents means and standard deviations of factor loading sensitivity 

values based on the number of factors by level of dichotomization interaction (K × D).  
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Across all levels of the interaction, factor loading sensitivity is highest for the Ordinary 

Least Squares factor extraction method.   

 

 

  
Figure 3. Mean values of factor loading sensitivity by interactions between number of 
factors and communality. 
 
 

 
 

For the principal axis and maximum likelihood strategies, values of the factor loading 

sensitivity measure are positively related to the number of factors.  For each number of 

factors level, the mean values for factor loading sensitivity increase in value between the 
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mean factor loading sensitivity value decreases between the .75 and .95 dichotomization 

levels.   
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Table 19 
Means and Standard Deviations of Factor Loading Sensitivity by Factor Extraction 
Method and Number of Factors by Level of Dichotomization Interaction (K x D)  
  

Principal Axis 

Ordinary  

Least Squares 

Maximum 

Likelihood 

Interaction (K x D) M SD M SD M SD 

2 × .05 .155 0.213 .994 0.007 .155 0.211 

2 × .25 .160 0.223 .995 0.006 .160 0.222 

2 × .50 .165 0.228 .995 0.006 .165 0.226 

2 × .75 .170 0.237 .995 0.006 .170 0.235 

2 × .95 .167 0.230 .996 0.006 .167 0.229 

4 × .05 .413 0.288 .992 0.008 .398 0.266 

4 × .25 .418 0.285 .991 0.009 .405 0.267 

4 × .50 .423 0.287 .992 0.007 .412 0.271 

4 × .75 .414 0.274 .992 0.008 .402 0.254 

4 × .95 .413 0.274 .991 0.009 .399 0.253 

8 × .05 .646 0.271 .993 0.008 .584 0.247 

8 × .25 .656 00267 .993 0.007 .597 0.240 

8 × .50 .666 0.263 .992 0.008 .613 0.238 

8 × .75 .673 0.260 .992 0.009 .621 0.230 

8 × .95 .667 0.259 .993 0.008 .616 0.231 

N  = 540 
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Box and whisker plots indicate that factor loading sensitivity values associated 

with the least squares methods have smaller ranges and semi-interquartile ranges than the 

distributions associated with maximum likelihood and principal axis factor extraction 

methods (see Figure D3 in appendix D).  For ordinary least squares samples, measures of 

both central tendency and dispersion in the distributions of factor loading sensitivity 

values appear to be independent of levels of the number of factors by dichotomization 

interaction. 

As the graphed means in Figure 4 indicates, the differences among mean factor 

loading sensitivity levels diminish (generally) as the number of factors increases.   

 

 

 

Figure 4. Mean values of factor loading sensitivity by interactions between number of 
factors and level of dichotomization. 
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The number of factors by level of dichotomization interaction effect does not appear to 

have a substantial impact on the mean values of factor loading sensitivity associated with 

the Ordinary Least Squares factor extraction method. 

Mean values for factor loading sensitivity associated with the interaction among 

numbers of observed variables and communality (P × H) are presented in Table 20.   

 

 

Table 20 
Means and Standard Deviations of Factor Loading Sensitivity by Factor Extraction 
Method and Number of Observed Variables by Communality Range Interaction (P x H) 
  

Principal Axis 

Ordinary  

Least Squares 

Maximum 

Likelihood 

Interaction (P x H) M SD M SD M SD 

20 × Low .745 0.220 .983 0.008 .693 0.184 

20 × Wide .739 0.211 .995 0.002 .696 0.179 

20 × High .767 0.198 .999 0.001 .741 0.175 

40 × Low .322 0.266 .985 0.007 .292 0.226 

40 × Wide .329 0.256 .995 0.003 .307 0.225 

40 × High .336 0.78 .999 0.000 .315 0.255 

60 × Low .147 0.133 .986 0.006 .144 0.126 

60 × Wide .162 0.140 .995 0.003 .160 0.138 

60 × High .173 0.158 1.000 0.000 .170 0.155 

n  = 540 
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As was the case for all significant interactions, ordinary least squares yields the highest 

mean proportion of variables that load on  at least one factor in both the sample and the 

population.  For principal axis and maximum likelihood factor extraction strategies, the 

mean values for the factor loading sensitivity measure are negatively related to the 

number of observed variables.  

As the graph in Figure 5 demonstrates, differences in mean factor loading 

sensitivity values increase as the communality range increase.   

 

 

  
Figure 5. Mean values of factor loading sensitivity by interactions between number of 
observed variables and communality. 
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Box and whisker plots indicate that factor loading sensitivity values associated 

with ordinary least squares have smaller ranges and semi-interquartile ranges than the 

distributions associated with maximum likelihood and principal axis factor extraction 

methods (see Figure D4 in appendix D).  For ordinary least squares samples, measures of 

both central tendency and dispersion in the distributions of factor loading sensitivity 

values appear to be independent of levels of the number of observed variables by 

communality interaction. 

Across all significant interactions among the manipulated research characteristics, 

the ordinary least squares factor extraction method exhibited greater mean levels of factor 

loading sensitivity than the principal axis and the maximum likelihood factor extraction 

methods.  Ordinary least squares factor extraction also resulted in distributions of factor 

loading sensitivity that were less variable than the distributions associated with principal 

axis and maximum likelihood.  In interactions that included the number of factors main 

effect, the differences in factor loading sensitivity between ordinary least squares and the 

other two factor extraction methods were moderated by the number of factors; these 

differences decreased as the number of factors increased. 

 
 General Pattern Agreement  
 

General Pattern Agreement is based on the proportion of variables that load on 

both the sample and population factors in a similar fashion at least once.  This variable is 

a P × 1 column vector.  When the absolute value of a variable loading on the same factor 

in both the sample and the population is greater than or equal to .30 at least once; then a 

one is assigned to the row associated with the variable.   
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The proportion of variables that meet .30 loading criterion contributes to the 

general pattern agreement.  For this measure the variable can load on multiple factors and 

still contribute to the pattern of agreement.  Table 21 presents descriptive statistics 

concerning the univariate distribution of the general pattern agreement measure by each 

of the tested factor extraction methods. 

 

 

Table 21 
Descriptive Statistics for Distribution of General Pattern Agreement 
Factor Extraction Method N M SD Skewness Kurtosis

Principal Axis 540 .222 0.168 0.561 -0.443

Ordinary Least Squares 540 .826 0.167 -1.389 1.211

Maximum Likelihood 540 .238 0.173 0.470 -0.533

 

 

 

For all tested factor extraction methods, Shapiro Wilks’ tests of normality yield 

evidence that the univariate distributions of general pattern accuracy values are not 

normally distributed.  Mauchly’s test of transformed variables, ߯ଶ(2) = 600.964; p < 

.0001, indicate that the data do not conform to the sphericity assumption associated with 

repeated measures ANOVA.  To address the potential for increased Type I error rate, 

tests of significance associated with the repeated measures analysis of variance will be 

based on the Greenhouse-Geisser adjustment to degrees of freedom (Stevens, 2002). 
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The results of the multivariate analyses of variance indicate that factor extraction 

method is a significant source of variation in general pattern agreement, Λ		ൌ	.002,	F	ሺ2, 

460) = 109246, p <.0001.   In addition to the method main effect, all interactions between 

manipulated research characteristics and factor extraction methods accounted for 

significant variability in mean values of general pattern agreement.  General pattern 

agreement differed significantly by seven of the ten first order interactions. The results of 

these analyses are presented in Table C3 (see appendix C).  

The univariate, repeated measures analysis of variance also indicate that values of 

general pattern agreement differ significantly by factor extraction method, F (2, 920) = 

192576, p < .0001, ீߟ
ଶ  = .991. The model including main effects and first-order 

interactions accounted for 99.4% of the variability associated with values of general 

pattern agreement.  The summary table for these analyses is provided in Table C4 (see 

appendix C). 

In nearly all cases, the multivariate and univariate approaches agreed in their 

identifications of four main effects and seven interaction effects that yielded significant 

differences in mean values for general pattern agreement.  Specifically, these analyses 

identified number of factors by observed variables (K × P), number of factors by sample 

size (K × N), number of factors by communality range (K × H), number of factors by 

dichotomization level (K × D), observed variables by samples size (P × N), observed 

variables by communality range (P ×H), and sample size by communality range (N × H) 

as sources of significant differences among mean general pattern agreement values.  The 

between subjects portion of the univariate, repeated measures analysis of variance 
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identified dichotomization level as a significant main effect; however, the effect size for 

this effect was less than medium (Cohen, 1988). 

To qualify for further interpretation, interactions among main effects had to be 

statistically significant and have effect sizes of medium or greater.  Based on the within 

subjects analysis, the following interactions with factor extraction method met these 

criteria:   

1. Number of factors by number of observed variables, F (8, 920) = 284.98, p < 

ீߟ ,0001.
ଶ  = .422, 

2. Number of factors by communality range, F (8, 920) = 189.60, p < .0001, ீߟ
ଶ  

= .327, and 

3. Sample size by communality range, F (12, 920) = 57.33, p < .0001, ீߟ
ଶ  = .180. 

Because the number of observed variables by communality range, F (4, 460) = 91.50, p < 

ீߟ ,0001.
ଶ  = .359, met the criteria when considered from a between subjects perspective, 

mean values for general pattern agreement based on this interaction were also compared. 

 Table 22 provides means and standard deviations for general pattern agreement 

for each of the factor extraction methods by each level of the number of factors by 

observed variable interaction.  As Table 22 highlights, the mean values for general 

pattern agreement were highest for Ordinary Least Squares factor analysis in all levels of 

the K × P interaction.  Within each level of the interaction, the differences in mean values 

of general pattern agreement between Ordinary Least Squares and the other two factor 

extraction methods appear to be the smallest in the levels that include 20 observed 

variables.   
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Table 22 
Means and Standard Deviations of General Pattern Agreement  by Factor Extraction 
Method and Number of Factors by Observed Variables Interaction (K x P)  
  

Principal Axis 

Ordinary  

Least Squares 

Maximum 

Likelihood 

Interaction (K x P) M SD M SD M SD 

2 × 20 .450 0.038 .921 0.062 .467 0.031 

2 × 40 .021 0.018 .914 0.065 .023 0.020 

2 × 60 .009 0.011 .913 0.064 .009 0.011 

4 × 20 .497 0.105 .793 0.160 .533 0.085 

4 × 40 .249 0.038 .877 0.095 .280 0.023 

4 × 60 .132 0.014 .906 0.073 .146 0.011 

8 × 20 .285 0.049 .597 0.187 .294 0.042 

8 × 40 .214 0.053 .710 0.196 .225 0.038 

8 × 60 .143 0.033 .807 0.161 .164 0.023 

n  = 540 

 

 

Figure 6 demonstrates the relationship among factor extraction methods and the K 

× P interaction graphically. Box and whisker plots indicate that factor loading sensitivity 

values associated with the least squares have larger ranges and semi-interquartile ranges 

than the distributions associated with maximum likelihood and principal axis factor 

extraction methods (see Figure D5 in appendix D).  For the ordinary least squares factor 

extraction method, ranges and semi-interquartile ranges of general pattern agreement 
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values appear to be positively related to the number of factors and negatively related to 

the number observed variables.  For maximum likelihood and principal axis factor 

extraction methods, the levels of dispersion are negatively related to both the number of 

factors and the number of observed variables. 

 

 

 

Figure 6. Mean values for general pattern agreement by levels of interaction between 
number of factors and number of observed variables. 
 
 
 
 
 Table 23 provides means and standard deviations for the values of the general 

pattern accuracy measure by levels of the number of factors by communality range (K × 

H) interaction.   
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Table 23 
Means and Standard Deviations of General Pattern Agreement for Factor Extraction 
Method and Number of Factors by Communality Range Interaction (K x H) 
  

Principal Axis 

Ordinary  

Least Squares 

Maximum 

Likelihood 

Interaction (K x H) M SD M SD M SD 

2 × Low .153 0.186 .848 0.050 .166 0.201 

2 × Wide .163 0.203 .922 0.030 .166 0.205 

2 × High .164 0.233 .977 0.018 .167 0.239 

4 × Low .242 0.118 .737 0.122 .288 0.126 

4 × Wide .292 0.147 .868 0.062 .312 0.152 

4 × High .344 0.206 .971 0.022 .359 0.210 

8 × Low .170 0.048 .493 0.149 .195 0.045 

8 × Wide .213 0.067 .727 0112 .223 0.054 

8 × High .260 0.075 .894 0.068 .261 0.073 

N  = 540 

 

 

Mean values for the general pattern accuracy are highest for ordinary least squares 

across all levels of the interaction effect.  In the case of ordinary least squares, the mean 

values for the general pattern accuracy measure appear to be positively related to the 

level of communality and negatively related to the number of factors; this general trend is 

not apparent in mean values of general pattern agreement for principal axis and 

maximum likelihood factor extraction methods.  As the graphed means in Figure 7 
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indicate, the differences in mean levels of general pattern agreement are the smallest at 

the four factors by high communality condition.  

 

 

 

Figure 7.  Mean values of general pattern agreement for levels of interaction between 
number of factors and communality. 
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positively related to the number of factors and negatively related to the level of 

communality.  For maximum likelihood and principal axis factor extraction methods, the 

levels of dispersion are negatively related to the number of factors and positively related 

to the level of communality.  

Table 24 provides means and standard deviations for the values of the general 

pattern agreement measure by number of observed variables and communality range (P × 

H) interaction.   The mean values for the general pattern agreement are highest for 

Ordinary Least Squares across all levels of the interaction effect.  In the case of ordinary 

least squares, the mean values for the general pattern agreement appear to be positively 

related to both number of observed variables and the level of communality. Principal 

Axis Factor and Maximum Likelihood factor extractions yield similar mean values for 

general pattern agreement across all levels of the P × H interaction.  As the number of 

observed variables increases, the mean values of general pattern agreement associated 

with Ordinary Least Squares improves to a greater extent over the other two factor 

extraction methods.   These relationships are summarized graphically in Figure 8. 

Box and whisker plots of general pattern agreement by levels of the P × H 

interaction highlight several relationships among communality range, factor extraction 

method, and level of interaction.  In conditions that include 60 observed variables, several 

outliers are present in distributions associated with the ordinary least squares factor 

extraction method.  In these distributions of general pattern agreement, ranges and semi-

interquartile ranges are negatively related to both number of observed variables and level 

of communality. 
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Table 24 
Means and Standard Deviations of General Pattern Agreement  for Factor Extraction 
Method and Number of Observed Variables and Communality Range  Interaction (P x H) 
  

Principal Axis 

Ordinary  

Least Squares 

Maximum 

Likelihood 

Interaction (P x H) M SD M SD M SD 

20 × Low .343 0.343 .614 0.214 .383 0.097 

20 × Wide .408 0.408 .780 0.143 .417 0.097 

20 × High .481 0.481 .916 0.076 .493 0.125 

40 × Low .134 0.134 .696 0.178 .162 0.099 

40 × Wide .166 0.166 .850 0.091 .177 0.103 

40 × High .185 0.184 .953 0.042 .189 0.138 

60 × Low .088 0.088 .768 0.132 .107 0.063 

60 × Wide .090 0.094 .885 0.056 .106 0.071 

60 × High .100 0.101 .972 0.025 .106 0.080 

N  = 540 

 

   

In distributions associated with maximum likelihood and principal axis factor 

extraction methods, measures of dispersion are positively related to communality and 

negatively related to the number of observed variables. 
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Figure 8. Mean values of general pattern agreement for levels of interaction between 
number of observed variables and communality. 
 

 

Table 25 provides means and standard deviations for the values of the general 
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interaction.   The mean values for the general pattern accuracy measure are highest for 
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least squares, the mean values for the general pattern accuracy measure appear to be 
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distributions associated with ordinary least squares (see Figure D8 in appendix D).  In 

distributions associated with maximum likelihood and principal axis factor extraction 

methods, these communality range appear to be positively related to communality. 

 

 

Table 25 
Means and Standard Deviations of General Pattern Agreement for Factor Extraction 
Method and Sample Size by Communality Range Interaction (N x H) 
  

Principal Axis 

Ordinary  

Least Squares 

Maximum 

Likelihood 

Interaction (N x H) M SD M SD M SD 

100 × Low .178 0.116 .598 0.183 .224 0.140 

100 × Wide .211 0.152 .789 0.114 .229 0.157 

100 × High .233 0.188 .918 0.058 .245 0.196 

200 × Low .183 0.130 .672 0.186 .218 0.147 

200 × Wide .220 0.158 .833 0.110 .233 0.162 

200 × High .252 0.198 .945 0.055 .260 0.203 

300 × Low .188 0.138 .714 0.176 .2145 0.150 

300 × Wide .225 0.161 .851 0.107 .234 0.164 

300 × High .261 0.202 .955 0.054 .267 0.206 

1000 × Low .204 .0157 .787 0.159 .213 0.160 

1000 × Wide .235 0.168 .882 0.098 .238 0.169 

1000 × High .276 0.210 .971 0.048 .278 0.212 

N  = 540 
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The relationships among mean values of the general pattern agreement measure, 

factor extraction method, and the N × H interaction are presented graphically in Figure 9.   

 

 

 

Figure 9. Mean values of general pattern agreement for levels of interaction between 
sample size and communality. 
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closely related to the values of the interaction effects than was the case with factor 

loading sensitivity. 

Per Element Pattern Agreement 

The measure for per element pattern agreement is based on a P × K matrix.  

Elements of each matrix contained ones, indicating agreement, where the corresponding 

factor loading had an absolute value of .30 or greater in both the sample and population 

factor pattern matrices; elements of the matrix also contained ones when the variable had 

loadings of less than the absolute value of .30 on the corresponding factor in both the 

sample and population.  When these criteria are not met, the element had a value of zero.   

The resulting measure of per element pattern agreement is the proportion of samples in 

which the agreement criteria were met for each observed variable by factor combination.   

Table 26 presents descriptive statistics concerning the distribution of the per element 

pattern agreement measure by each of the tested factor extraction methods. 

Shapiro-Wilks’ tests of normality for per element pattern agreement measures 

associated with all three factor extraction methods yield evidence that the three 

distributions do not conform to assumptions regarding univariate normality.   Mauchly’s 

test of transformed variables, ߯ଶ(2) = 494.79, p < .0001, indicate that the data do not 

conform to the sphericity assumption associated with repeated measures ANOVA.  To 

address the potential for increased Type I error rate, tests of significance associated with 

the repeated measures analysis of variance will be based on the Greenhouse-Geisser 

adjustment to degrees of freedom (Stevens, 2002). 
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Table 26 
Descriptive Statistics for Distribution of Per Element Pattern Agreement Values 
Factor Extraction Method N M SD Skewness Kurtosis

Principal Axis 540 .593 0.180 -0.842 -0.465

Ordinary Least Squares 540 .750 0.750 0.005 -0.819

Maximum Likelihood 540 .605 0.185 -0.892 -0.445

 

 

The results of the multivariate analyses of variance indicate that per element 

agreement differed significantly by factor extraction method, Λ		ൌ	.008,	F	ሺ2, 459) = 

26828.4, p <.0001.   In addition to the method main effect, per element agreement values 

differed significantly by all main effects.  The multivariate analysis of variance indicated 

that per element agreement differed significantly across eight of the first-order 

interactions. The results of this analysis are presented in Table C4 (see Appendix C). 

 The univariate, repeated measures analysis of variance also indicated that per 

element pattern agreement differed significantly based on factor extraction method, F(2, 

920) = 45801.9, p< .0001, ீߟ
ଶ  = .934.  Results of the between subject portion of the 

analysis indicated that all manipulated research characteristics, main effects, were 

associated with significant differences in per element pattern agreement.  Moreover, per 

element pattern agreement differed significantly by all interactions between factor 

extraction method and main effects.   The model that included main effects and first-

order interactions among main effects accounted for 98.7% of the variability in the 

observed data (see Table C6 in appendix C). 
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 The between and within sections of the univariate, repeated measures analysis 

identified number of factors by observed variables (K × P), number of factors by sample 

size (K × N), number of factors by level of communality (K × H), number of factors by 

level of dichotomization (K × D), number of observed variables by level of communality 

(P × H),  number of observed variables by level of dichotomization (P × D), sample size 

by communality (N × H),  and level of communality by level of dichotomization (H × D) 

as sources of significant differences in per element pattern agreement.  In the between 

groups analysis, per element agreement differed significantly by levels of the interaction 

between number of variables and sample size (P × N), F (6, 460) = 4.16, p = .0004, ீߟ
ଶ  = 

.044; however, when factor extraction method is included, the within groups analysis, this 

significant effect is not present.  From both perspectives, the sources of variation that 

included the P × N interaction failed to yield a medium effect size (Cohen, 1988).   

According to the results of within subjects analyses, the number of factors by 

observed variables, F (8, 920) = 724.05, p < .0001, ீߟ
ଶ  = .474, and the samples size by 

communality range, F (12, 920) = 44.65, p < .0001 , ீߟ
ଶ  = .077, were both statistically 

significant and yielded effect sizes that were medium or greater.  The betweens subjects 

analysis indicated that the following interactions met the criteria for continued analyses: 

1. Number of factors by sample size, F (6, 460) = 18.540, p< .0001, ீߟ
ଶ  = .172 

2. Number of factors by communality range, F (4, 460) = 96.70, p < .0001, ீߟ
ଶ  = 

.419 

3. Number of observed variables by communality range, F (4, 460) = 25.54, p < 

ீߟ ,0001.
ଶ  = .155. 
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Table 27 contains means and standard deviations for the per element pattern 

agreement measure associated with the number of factors by observed variable 

interaction.  

 

 

Table 27 
Means and Standard Deviations of Per Element Pattern Agreement for Factor Extraction 
Methods by the Number of Factors and Number of Observed Variables Interaction (K x 
P)  
  

Principal Axis 

Ordinary  

Least Squares 

Maximum 

Likelihood 

Interaction (K x P) M SD M SD M SD 

2 × 20 .521 0.052 .704 0.053 .539 0.057 

2 × 40 .302 0.075 .666 0.040 .303 0.076 

2 × 60 .296 0.071 .659 0.041 .296 0.071 

4 × 20 .660 0.035 .718 0.057 .686 0.034 

4 × 40 .628 0.046 .771 0.040 .673 0.049 

4 × 60 .646 0.057 .789 0.043 .652 0.060 

8 × 20 .724 0.021 .766 0.032 .719 0.025 

8 × 40 .776 0.026 .821 0.050 .775 0.028 

8 × 60 .796 0.025 .855 0.044 .801 0.026 

N  = 540 
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In all levels of the interaction, the Ordinary Least Squares factor extraction 

strategy yielded the highest mean levels of per element pattern agreement.  For all factor 

extraction methods, mean values of the per element agreement measure are positively 

related to the number of factors.  As Figure 10 highlights, the differences among the three 

factor extraction methods, in terms of per element agreement, decreases as the number of 

factors increases.  For maximum likelihood and principal axis factor extraction methods, 

box and whisker plots for the distributions of per element agreement indicate that 

communality range are negatively related to the number of factors imbedded in the 

population (see Figure D9 in appendix D).   

 

 

 

Figure 10.  Mean values of per element agreement by interactions between the number of 
factors by number of observed variables. 
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 Table 28 presents means and standard deviations in per element accuracy for 

levels of the number of factors by sample size interaction.     

 

 

 Table 28 
Means and Standard Deviations of Per Element Agreement  by Factor Extraction 
Method and Number of Factors by Sample Size Interaction (K x N) 
  

Principal Axis 

Ordinary  

Least Squares 

Maximum 

Likelihood 

Interaction (K x N) M SD M SD M SD 

2 × 100 .375 0.112 .654 0.037 .388 0.128 

2 × 200 .373 0.123 .675 0.044 .380 0.132 

2 × 300 .372 0.128 .683 0.048 .377 0.134 

2 × 1000 .371 0.137 .694 0.057 .372 0.138 

4 × 100 .631 0.038 .712 0.052 .654 0.042 

4 × 200 .652 0.042 .756 0.046 .669 0.048 

4 × 300 .660 0.045 .772 0.043 .675 0.051 

4 × 1000 .675 0.052 .798 0.045 .683 0.056 

8 × 100 .731 0.041 .760 0.043 .743 0.039 

8 × 200 .750 0.047 .808 0.044 .763 0.042 

8 × 300 .758 0.048 .829 0.043 .770 0.043 

8 × 1000 .770 0.047 .860 0.042 .782 0.041 

N  = 540 
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Ordinary Least Squares yields the highest mean values of the per element pattern 

agreement measure across all levels of the K × N interaction.  For all three factor 

extraction methods the mean values of the per element pattern agreement measure is 

positively related to both the number of factors and the sample size levels; differences in 

this measure among the three tested factor extraction strategies diminishes as the number 

of factors increases. As the graph of means in Figure 11 and the box and whisker plots 

indicate (see Figure D10 in appendix D), mean and median values of per element factor 

agreement appear to converge at the interaction level that includes eight factors and a 

sample size of 100. 

 

 

 

Figure 11. Mean values of per element agreement by interactions between the number of 
factors and sample size. 
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Table 29 provides means and standard deviations for these values of per element 

agreement for the number factors by level of communality (K × H) interaction.  The 

mean per element pattern agreement is highest for Ordinary Least Squares in all levels of 

the interaction.  The mean values for per element pattern agreement are positively related 

to the number of factors and negatively related to the communality range.   

 

 

Table 29 
Means and Standard Deviations of Per Element Pattern Agreement for Factor Extraction 
Method and Number of Factors by Communality Range Interaction (K x H) 
  

Principal Axis 

Ordinary  

Least Squares 

Maximum 

Likelihood 

Interaction (K x H) M SD M SD M SD 

2 × Low .444 0.092 .690 0.053 .456 0.107 

2 × Wide .379 0.108 .690 0.047 .382 0.111 

2 × High .296 0.125 .648 0.033 .300 0.130 

4 × Low .697 0.032 .775 0.075 .721 0.021 

4 × Wide .654 0.022 .758 0.047 .667 0.021 

4 × High .612 0.040 .745 0.033 .622 0.042 

8 × Low .775 0.047 .797 0.065 .792 0.038 

8 × Wide .750 0.043 .815 0.054 .761 0.038 

8 × High .732 0.044 .830 0.043 .741 0.038 

N  = 540 
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As the graph of means in Figure 12 and box an whisker plots (See Figure D11 in 

appendix D) demonstrate, the relationship between per element pattern agreement and the 

K × H interaction appears to be more pronounced in the principal axis and the maximum 

likelihood factor extraction methods than in the ordinary least squares method. 

Differences in mean per element agreement diminishes as the number of factors 

increases; however, because of the negative relationship between levels communality and 

per element agreement that is present in the principal axis and maximum likelihood factor 

extraction methods, the smallest difference among the three factor extraction methods 

occurs at the eights factors by low communality condition.  

 

 

 

Figure 12. Mean values of per element agreement by interactions between the number of 
factors and communality. 
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Table 30 presents means and standard deviations for the per element pattern 

agreement measures associated with the number of observed variables by level of 

communality (P × H) interaction.   

 

 

Table 30 
Means and Standard Deviations of Per Element Agreement for Factor Extraction 
Methods and Number of Observed Variables by Community Range Interaction (P x H)  
  

Principal Axis 

Ordinary  

Least Squares 

Maximum 

Likelihood 

Interaction (P x H) M SD M SD M SD 

20 × Low .654 0.070 .728 0.062 .688 0.065 

20 × Wide .625 0.077 .733 0.049 .642 0.082 

20 × High .599 0.096 .727 0.055 .614 0.099 

40 × Low .624 0.176 .752 0.075 .638 0.184 

40 × Wide .581 0.193 .763 0.067 .588 0.196 

40 × High .520 0.232 .744 0.090 .525 0.235 

60 × Low .638 0.191 .782 0.091 .644 0.194 

60 × Wide .577 0.212 .768 0.087 .580 0.214 

60 × High .521 0.234 .753 0.096 .524 0.236 

n  = 540 

 

 

In all levels of the interaction, ordinary least squares factor extraction method has 

the highest mean value for the per element agreement measure.  For the principal axis and 
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the maximum likelihood factor extraction methods, the relationship between per element 

agreement and level of communality is negative.  As the Figure 13 highlights, a negative 

relationship between per element agreement and the number of observed variables also 

exists for the principal axis and maximum likelihood factor extraction methods.  The 

negative relationship between the manipulated research conditions and per element 

agreement is not associated with the ordinary least squares method. 

 

 

 

Figure 13. Mean values of per element agreement by interactions between the number of 
observed variables and communality. 
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nearly identical (see Figure D12 in appendix D).  While the generally negative 

relationship between median and mean values of per element agreement and the level of 

communality is present in all factor extraction methods, the pattern is not as strongly 

expressed in distributions associated with ordinary least squares.  In all conditions, 

ordinary least squares factor extraction method yields distributions that have smaller 

ranges and semi-interquartile ranges. 

 The mean values of per element pattern agreement associated with the sample size 

by communality interaction (N × H) are presented in Table 31. For all levels of the 

interaction, ordinary least squares yields the highest values of the per element factor 

agreement measure.  For all factor extraction methods, the relationship between sample 

size and per element agreement is positive.  For maximum likelihood and principal axis 

factor extraction methods, the relationship between per element agreement and 

communality is negative.   

Figure 14 highlights the relationship among mean values of per element pattern 

agreement measures, factor extraction methods, and levels of the N × H interaction. For 

maximum likelihood and principal axis factor extraction methods, box and whisker plots 

in Figure D13 (see appendix D) indicate that major changes in median, mean and semi-

interquartile range occur within the sample size conditions as opposed to across them; the 

ranges in per element agreement increase as communality ranges from low through wide 

to high.  These patterns are not apparent in distributions associated with the ordinary least 

squares factor extraction method. 
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Table 31 
Means and Standard Deviations of Per Element Agreement for Factor Extraction Method 
and Sample Size by Communality Range Interaction (N x H) 
  

Principal Axis 

Ordinary  

Least Squares 

Maximum 

Likelihood 

Interaction (N x H) M SD M SD M SD 

100 × Low .619 0.140 .687 0.054 .644 0.144 

100 × Wide .581 0.160 .717 0.057 .594 0.164 

100 × High .537 0.189 .722 0.069 .547 0.192 

200 × Low .636 0.153 .745 0.066 .656 0.159 

200 × Wide .593 0.171 .752 0.066 .603 0.176 

200 × High .546 0.201 .741 0.081 .554 0.204 

300 × Low .643 0.159 .772 0.069 .660 0.164 

300 × Wide .598 0.176 .766 0.070 .606 0.180 

300 × High .549 0.205 .747 0.086 .556 0.209 

1000 × Low .657 0.169 .812 0.074 .664 0.173. 

1000 × Wide .605 0.184 .784 0.076 .611 0.187 

1000 × High .554 0.213 .755 0.093 .559 0.216 

N  = 540 
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Figure 14. Mean values of per element agreement by interactions between sample size 
and communality. 
 

 Across all interactions among main effects, mean per element agreement values 

for the ordinary least squares factor extraction exceeded the mean values associated with 

principal axis and maximum likelihood methods.  For interactions that included the 

number of factors imbedded in the population main effect, the differences among the 

three factor extraction methods, in terms of mean per element agreement, diminished as 

the number of factors increased.   In all interactions that included communality, the 

relationship between mean per element agreement values and communality was negative; 

this relationship was apparent for all factor extraction methods. 
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the per element agreement matrix is less than one, then the mean of that matrix will be 

less than one, and the total pattern agreement scalar associated with that matrix is set to 

zero.  This scalar represents the proportion of sample matrices in which all factor 

loadings are in agreement with the population in terms of the absolute value of .30 

loading criterion. 

Table 32 provides descriptive statistics concerning the univariate distribution of 

total pattern agreement (perfect accuracy) values.  For principal axis factor analysis, the 

minimum and maximum value for the total pattern agreement is zero.  In this case, testing 

distributional assumptions regarding skewness and Kurtosis was not possible.  For both 

the ordinary least squares and the maximum likelihood factor extraction methods, 

Shapiro Wilk’s tests for normality yielded significant evidence that, in a univariate sense, 

the perfect accuracy values were not normally distributed. 

 

 

Table 32 
Descriptive Statistics for Distribution of  Total Pattern Agreement Values 
Factor Extraction Method N M SD Skewness Kurtosis

Principal Axis 540 0 0 - -

Ordinary Least Squares 540 .0003 0.0012 4.500 23.201

Maximum Likelihood 540 <.0001 <0.0001 23.238 540.000

 

 

In addition to the univariate, non-normality, Mauchly’s test of transformed 

variables, ߯ଶ(2) = 3922.4504, p < .0001, indicate that the data do not conform to the 
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sphericity assumption associated with repeated measures ANOVA.  The results of the 

multivariate analyses of variance indicate that total pattern agreement differs significantly 

by factor extraction method, Λ		ൌ	.7920,	F	ሺ2, 459) = 85.36, p <.0001.   In addition to the 

method main effect, total pattern accuracy differed significantly by interactions between 

factor extraction method and the number of factors, observed variables, sample size, and 

level of dichotomization.  However, the mean values of total pattern agreement were not 

substantially greater than zero in any of the studied conditions.  While statistically 

significant differences among means were found, comparisons among zero values were 

not informative and are not included in this study. 

Congruence  

The congruence among factor pattern matrices simulated in the population and the 

sample pattern matrices is measured through a congruence coefficient.  As defined by 

MaCallum (et al., 1999), the phi coefficient is the cosine of the angle between the sample 

and population factor solutions “when plotted on the same space” (p. 93).  To assess the 

congruence across all factor loading matrices, an average of the phi coefficient was 

calculated for each factor extraction method.  Table 33 provides descriptive statistics 

concerning the univariate distribution of the mean phi coefficients (Congruence) for each 

of the tested factor extraction methods.  

Shapiro-Wilks’ tests of normality for mean congruence associated with all three 

factor extraction methods yield evidence that the three distributions do not conform to the 

assumptions of univariate normality.   Mauchly’s test of transformed variables ߯ଶ (2) = 

989.341, p < .0001, indicate that the data do not conform to the sphericity assumption 

associated with repeated measures ANOVA.  To address the potential for increased Type 
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I error rate, tests of significance associated with the repeated measures analysis of 

variance will be based on the Greenhouse-Geisser adjustment to degrees of freedom 

(Stevens, 2002). 

 

Table 33 
Descriptive Statistics for Distribution of Congruence 
Factor Extraction Method N M SD Skewness Kurtosis

Principal Axis 540 .454 0.240 -0.230 -1.312

Ordinary Least Squares 540 .496 0.215 -0.219 -1.274

Maximum Likelihood 540 0.556 0.236 -0.487 -1.166

 

 

Results of the multivariate analysis of variance indicate that the factor extraction 

method yield significant differences in mean values of congruence,  Λ = .0262, F (2, 459) 

= 8533.92, p < .0001.  In addition to the method main effect, all of the manipulated 

research characteristics yielded significantly different congruence levels (see Table C9 in 

appendix C).  The univariate, repeated measures analysis of variance also indicates that 

level of congruence between sample and population loading matrices differ significantly 

by factor extraction method, F(2, 920) = 7026.19, p < .0001, ீߟ
ଶ  = .966 (see Table C 10 in 

appendix C).  The model including main effects and first-order interactions accounted for 

97.1% of the variability associated with the measure of congruence between population 

and sample factor pattern matrices. 

As results of the between subjects analyses indicate, all main effects and six of the 

ten first-order interaction effects are associated with significant differences among 
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congruence values; the significant interaction effects include number of factors by 

observed variables (K × P), number of factors by sample size (K × N), number of factors 

by communality range (K × H), number of factors by dichotomization level (K × D), 

sample size by level of communality (N × H), and level of communality by level of 

dichotomization (H × D) .  Results of the within subjects analysis indicate that the 

interactions of factor extraction methods with the number of factors, number of observed 

variables, sample size, and level of communality are associated with significant 

differences in congruence between sample and population factor loading matrices.  The 

level of dichotomization does not yield significant results.  

 In addition to yielding statistically significant differences in average congruence 

between population and sample factor pattern matrices, the between subjects analyses 

yielded at least medium effect sizes for the following interactions: 

1. Number of factors by observed variables, F(4, 460) = 85.49, p < .0001, ீߟ
ଶ  = 

.405 

2. Number of factors by sample size, F(6, 460) = 10.89, pr < .0001, ீߟ
ଶ  = .115 

3. Number of factors by level of dichotomization, F(8, 460) = 5.94, p < .0001, 

ீߟ
ଶ  = .086 

4. Sample size by level of communality, F(6, 460) = 7.46, p < .0001, ீߟ
ଶ  = .067 

5. Level of communality by dichotomization, F(8, 460) = 5.17, p < .0001, ீߟ
ଶ  = 

.076 

Comparisons among means were conducted for these interactions only.   

Table 34 presents means and standard deviations for the mean congruence 

measure associated with the number of factors by observed variable interaction.   
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Table 34 
Means and Standard Deviations of Congruence Values for Factor Extraction Method 
and Number of Factors by Observed Variables Interaction (K x P) 
  

Principal Axis 

Ordinary  

Least Squares 

Maximum 

Likelihood 

Interaction (K x P) M SD M SD M SD 

2 × 20 .712 0.093 .728 0.082 .789 0.079 

2 × 40 .690 0.073 .710 0.069 .784 0.040 

2 × 60 .692 0.076 .711 0.072 .784 0.045 

4 × 20 .409 0.119 .460 0.104 .522 0.094 

4 × 40 .513 0.092 .540 0.081 .638 0.050 

4 × 60 .573 0.084 .596 0.075 .690 0.049 

8 × 20 .088 0.022 .171 0.033 .179 0.054 

8 × 40 .172 0.067 .249 0.064 .264 0.095 

8 × 60 .242 0.090 .303 0.083 .351 0.104 

N  = 540  

 

Across all interactions between the number of factors and observed variables, 

maximum likelihood factor extraction yielded higher mean levels of congruence between 

sample and population factor pattern matrices.  The smallest, mean congruence values are 

associated with principal axis factor analysis.  The graph of means in Figure 15 highlights 

the negative relationship among mean phi values and the number of factors. 

As box and whisker plots indicate, ranges and semi-interquartile ranges for values 

of congruence decrease as the number of factors increase (see Figure D17 in appendix 
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D).  However, in the eight factor conditions for all three factor extraction methods, these 

semi-interquartile ranges increase in value as the number of observed variables increase.  

In the two and four factor conditions, the semi-interquartile range decreases as the 

number of observed variables increase. 

 

 

 

Figure 15.  Mean values of congruence by interactions between the number of factors 
and number observed variables. 
 

 

 Means and standard deviations for congruence by interactions among the number 

of factors and sample size are presented in Table 35.   
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Table 35 
Means and Standard Deviations of Congruence Values for Factor Extraction Method 
and Number of Factors by Sample Size Interaction (K x N) 
  

Principal Axis 

Ordinary  

Least Squares 

Maximum 

Likelihood 

Interaction (K x N) M SD M SD M SD 

2 × 100 .636 0.068 .659 0.063 .783 0.050 

2 × 200 .689 0.070 .708 0.064 .786 0.056 

2 × 300 .712 0.070 .729 0.064 .787 0.058 

2 × 1000 .755 0.071 .768 .065 .788 0.065 

4 × 100 .392 0.099 .439 0.086 .557 0.110 

4 × 200 .477 0.098 .514 0.083 .612 0.090 

4 × 300 .519 0.094 .550 0.080 .632 0.082 

4 × 1000 .605 0.081 .625 0.067 .664 0.073 

8× 100 .113 0.046 .187 0.049 .165 0.052 

8 × 200 .150 0.069 .225 0.063 .241 0.078 

8 × 300 .172 0.081 .247 0.072 .281 0.090 

8 × 1000 .234 0.110 .305 0.097 .370 0.106 

N  = 540 

 

 

The values indicate that the mean congruence values decreases as the number of 

factors increase.  In general, the level of congruence increases as the sample size 

increases for all three factor extraction methods.  With the exception of the eight-factor 
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by sample size of 100 level of the interaction, the maximum likelihood factor extraction 

method yields the highest mean values of congruence. In this exceptional case, the 

ordinary least squares factor extraction method yields a mean congruence value that is 

higher than mean congruence values associated maximum likelihood and principal axis 

factor extraction methods.  As the graphed means in Figure 16 and the box and whisker 

plots (see Figure D18 in appendix D) indicate, values of central tendency and dispersion 

measures are positively associated with sample sizes. 

Means and standard deviations of congruence by levels of interaction between the 

number of factors and level of dichotomization are presented in Table 36. 

   

 

 

Figure 16. Mean values of congruence by interactions between the number of factors and 
sample size. 
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Table 36 
Means and Standard Deviations of Congruence Values by Factor Extraction Method and 
Number of Factors by Level of Dichotomization Interaction (K x D) 
  

Principal Axis 

Ordinary  

Least Squares 

Maximum 

Likelihood 

Interaction (K x D) M SD M SD M SD 

2 × .05 .712 0.089 .730 0.081 .792 0.060 

2 × .25 .731 0.065 .746 0.059 .806 0.044 

2 × .50 .709 0.064 .723 0.060 .798 0.042 

2 × .75 .691 0.092 .707 0.087 .791 0.043 

2 × .95 .646 0.070 .673 0.065 .742 0.069 

4 × .05 .490 0.130 .523 0.109 .606 0.108 

4 × .25 .500 0.122 .533 0.107 .613 0.099 

4 × .50 .496 0.109 .529 0.095 .613 0.091 

4 × .75 .517 0.119 .548 0.103 .636 0.091 

4 × .95 .488 0.123 .526 0.108 .613 0.098 

8 × .05 .159 0.075 .231 0.068 .263 0.103 

8 × .25 .168 0.094 .240 0.085 .271 0.115 

8 × .50 .171 0.097 .246 0.089 .267 0.118 

8 × .75 .171 0.094 .246 0.087 .264 0.113 

8 × .95 .168 0.097 .242 0.090 .257 0.115 

N = 540 

 

 



 
 

132 
 

As with the other interactions that included the number of factors main effect, the 

mean congruence values diminish as the number of factors increase.  In all interactions, 

maximum likelihood factor extraction yielded highest levels of congruence and principal 

axis yielded the lowest. 

The relationships among mean values of congruence and the number of factors by 

level of dichotomization interaction are highlighted by the graphed means in Figure 17 

and the box and whisker plots in Figure D19 (see appendix D). 

 

 

 

Figure 17.  Mean values of congruence by interactions between the number of factors 
and level of dichotomization interaction. 
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Table 37 
Means and Standard Deviations of Congruence Values by Factor Extraction Method and 
Sample Size by Communality Range Interaction (N x H) 
  

Principal Axis 

Ordinary  

Least Squares 

Maximum 

Likelihood 

Interaction (N x H) M SD M SD M SD 

100 × Low .332 0.226 .378 0.206 .503 0.291 

100 × Wide .396 0.235 .444 0.213 .487 0.262 

100 × High .414 0.216 .463 0.190 .515 0.251 

200 × Low .400 0.245 .445 .0218 .566 0.255 

200 × Wide .446 0.245 .490 0.220 .520 0.244 

200 × High .470 0.218 .512 .192 .555 0.223 

300 × Low .436 0.251 .479 0.223 .594 0.234 

300 × Wide .469 0.246 .510 0.222 .534 0.234 

300 × High .498 0.217 .537 0.190 .572 0.209 

1000 × Low .520 0.257 .554 .228 .652 .187 

1000×  Wide .514 0.243 .550 0.220 .564 0.208 

1000 × High .559 0.209 .594 0.178 .606 0.182 

N = 540 

 

 

Across all levels of the interaction, maximum likelihood factor analysis yields the 

greatest congruence values, and principal axis factor analysis maintains the lowest levels 
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of congruence.  Congruence values for all three factor extraction methods increase as 

both samples size and levels of communality increase.  The graphed means in Figure 18 

and box and whisker plots (see Figure D20 in appendix D) highlight a pattern in which 

mean values of congruence for the three factor extraction methods appear to converge as 

sample size increases. 

Table 38 provides means and standard deviations for congruence levels as they 

are associated with interactions between levels of communality and dichotomization. 

 

 

 

Figure 18.  Mean values of congruence by interactions between Sample Size and 
Communality. 
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Table 38 
Means and Standard Deviations of Congruence Values by Factor Extraction Method and 
Communality Range by Level of Dichotomization Interaction 
  

Principal Axis 

Ordinary  

Least Squares 

Maximum 

Likelihood 

Interaction (H x D) M SD M SD M SD 

Low × .05 .427 0.262 0.466 0.234 .579 0.253 

Low × .25 .425 0.256 0.468 0.230 .583 0.252 

Low × .50 .428 0.260 0.470 0.232 .584 0.256 

Low × .75 .407 0.234 0.449 0.207 .575 0.245 

Low × .95 .423 0.262 0.467 0.239 .571 0.251 

Wide × .05 .459 0.265 0.500 0.240 .530 0.246 

Wide × .25 .459 0.247 0.499 0.225 .528 0.238 

Wide × .50 .462 0.244 0.505 0.218 .534 0.244 

Wide × .75 .486 0.266 0.526 0.240 .552 0.257 

Wide × .95 .415 0.201 0.463 0.181 .488 0.209 

High × .05 .475 0.223 0.518 0.194 .552 0.220 

High × .25 .515 0.248 0.553 0.218 .578 0.233 

High × .50 .486 0.218 0.524 0.191 .561 0.216 

High × .75 .486 0.213 0.525 0.185 .565 0.217 

High × .95 .465 0.202 0.511 0.177 .554 0.216 

N = 540 
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As with all previous interactions, maximum likelihood yields the highest levels of 

congruence and principal axis yielded the lowest.  However, as the level of communality 

increase, the differences in congruence between maximum likelihood and principal axis 

diminish.  The graphed means in Figure 19 and box and whisker plots (see Figure D21 in 

appendix D) highlight the relationship between levels of the interaction and mean 

congruence values.   

 

 

 

Figure 19. Mean values of congruence by interactions between communality and level of 
dichotomization interaction. 
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Factor Score Correlations 
 

This measure of agreement is a k by 1 column vector of correlations between 

factor scores derived from the sample and those derived from the population.  These 

score estimates will be linear combinations of variables; however, as opposed to using 

factor score coefficients, these estimates will be computed via the following process: 

1. A positive one scoring coefficient is assigned when the observed structure 

coefficient is  .30; 

2. A negative one scoring coefficient is assigned when the observed structure 

coefficient is  െ.30; 

3. A scoring coefficient of zero is assigned when the structure coefficient is between 

.30 and -.30. 

Once factor scores estimates are computed for both the population and sample matrices, a 

correlation among the scores will be used to measure how closely factor scores derived 

from each of the factor extraction strategies approximates that factor score pattern that is 

imbedded in the population (Hogarty et al., 2005). 

 Table 39 provides descriptive statistics concerning the distribution of these 

correlations.  As the table highlights, correlations could not be estimated for the principal 

axis and maximum likelihood factor extraction methods in all samples. In the two factor, 

60 observed variable condition, principal axis and maximum likelihood factor extraction 

strategies yielded factor score estimates of zero; therefore, correlations for these 

conditions could not be calculated.  
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Table 39 
Descriptive Statistics for Distributions of Factor Score Correlations 
Factor Extraction Method N M SD Skewness Kurtosis

Principal Axis 480 .326 0.196 0.449 -0.619

Ordinary Least Squares 540 .511 0.208 -0.336 -1.256

Maximum Likelihood 480 .382 0.213 0.208 -0.962

 

 

Shapiro-Wilks’ tests of normality of the distribution of factor score correlations 

associated with all three factor extraction methods yield evidence of significant non-

normality. Mauchly’s test of transformed variables ߯ଶ (2) = 348.154, p < .0001, indicate 

that the data do not conform to the sphericity assumption associated with repeated 

measures ANOVA.  To address the potential for increased Type I error rate, tests of 

significance associated with the repeated measures analysis of variance will be based on 

the Greenhouse-Geisser adjustment to degrees of freedom (Stevens, 2002). 

Results of the multivariate analysis of variance indicate that factor score 

correlations differ significantly by factor extraction method,  Λ = .0218, F (2, 459) = 

8978.7, p < .0001.  In addition to factor extraction method, the number of factors, number 

of observed variables, sample size, and communality range are associated with significant 

differences in factor score correlations.  Results from these analyses are presented in 

Table C11 (see appendix C). 

The univariate, repeated measures analysis of variance also indicate that factor 

score correlations differ significantly by factor extraction method, F (2, 802) = 7246.31, p 

ீߟ ,0001. >
ଶ  = .783. The model including main effects and first-order interactions 
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accounted for 96.8% of the variability associated with values of general pattern 

agreement.  The summary table for these analyses is provided in Table C12 (see appendix 

C). 

According to the between subjects portion of the repeated measures analysis of 

variance, factor score correlations differed significantly across levels of the number of 

factors by observed variables (K × P), number of factors by sample size (K × N), number 

of factors by communality range (K × H), number of factors by dichotomization level (K 

× D), observed variables by communality range (P ×H), sample size by communality 

range (N × H), and communality range by  level of dichotomization (H × D) interactions. 

The within subjects analysis, highlighted the number of factors by number of 

observed variables interaction, F (6, 802) = 1147.13, p < .0001, ீߟ
ଶ  = .632, as yielding an 

effect size that was at least medium.  The between subjects highlighted the following 

interactions among manipulated research characteristics as yielding effect sizes that 

warranted further analyses (Cohen, 1988): 

1. Number of factors by samples size, F (6, 401) = 8.78, p < .0001, ீߟ
ଶ  = .095 

2. Number of factors by communality range, F (4, 401) = 60.09, p < .0001, ீߟ
ଶ  = 

.324, 

3. Number of observed variables by communality range, F (4, 401) = 21.99, p < 

ீߟ ,0001.
ଶ  = .149. 

Although the main effects that contribute to these interactions also result in medium (or 

larger) effect sizes, only means based on the interactions will be compared. 

 Table 40 provides means and standard deviations of correlations between sample 

and population factor scores for interactions between the number of factors and the 
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number of observed variables.  The only interaction level in which ordinary least squares 

does not yield the highest levels of correlation is the level that includes four factors and 

20 observed variables; in this case, maximum likelihood yields a higher correlation.  The 

strongest correlation is associated with ordinary least squares in the two-factor by 20 

observed variable condition.  

 

 

Table 40 
Means and Standard Deviations of Factor Score Correlations for Factor Extraction 
Methods and the Number of Factors by Observed Variables Interaction (K x P) 
  

Principal Axis 

Ordinary  

Least Squares 

Maximum 

Likelihood 

Interaction (K x P) M SD M SD M SD 

2 × 20 .661 0.080 .726 0.070 .725 0.066 

2 × 40 .091 0.083 .706 0.053 .112 0.096 

2 × 60 - - .705 0.059 - - 

4 × 20 .435 0.106 .473 0.094 .505 0.088 

4 × 40 .417 0.075 .578 0.072 .516 0.047 

4 × 60 .416 0.124 .641 0.073 .515 0.108 

8 × 20 .137 0.040 .178 0.042 .163 0.027 

8 × 40 .216 0.064 .265 0.050 .239 0.060 

8 × 60 .234 0.074 .321 0.058 .278 0.064 

N  = 480 
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 As the graph of means in Figure 20 highlights, the factor score correlations 

associated with the three tested factor extraction methods are the most similar in 

interaction levels that include 20 observed variables.  Where the observed variable to 

number of factor ratios are the highest, the differences in factor score correlations among 

the three factor extraction methods are the greatest; this is especially true in the two 

factor condition in which the principal axis and maximum likelihood methods failed to 

yield non-zero factor score estimates.   

 

  

 

Figure 20. Mean values of factor score correlations by interactions between the number 
of factors and number of observed variables. 
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 The negative relationship between factor score correlation and the number of 

factors is the only relationship that is common to all three factor extraction methods at all 

levels of the interaction.  Within the eight factor conditions of the interaction, both the 

graphed means and the box plots (see Figure D22 in appendix D) indicate that the mean 

and median factor score correlations increase as the number of observed variables 

increase. 

Table 41 provides means and standard deviations for factor score correlations by 

factor extraction method and levels of the number of factors by sample size interaction.  

In all levels of this interaction effect, ordinary least squares yielded the highest levels of 

correlation between the sample and population in terms of factor scores.  The strongest 

correlation between sample and population is associated with the two factor condition in 

which sample size equals 1000. 

Across all factor extraction methods and levels of the interaction, box and whisker 

plots (see Figure D23 in appendix D) indicate the median factor score correlations are 

positively related to sample size within each number of factors condition and, for the 

ordinary least square condition, negatively related to the number of factors.   

Except for the conditions that include two factors, this negative relationship is also 

apparent in the maximum likelihood and the principal axis factor extraction methods.  In 

maximum likelihood and principal axis factor extraction methods, the ranges and 

interquartile ranges shrink substantially between the two and four factor conditions of the 

interaction; this effect may be related to the diminished sample sizes in the two factor 

conditions associated with both maximum likelihood and principal axis factor extraction 

methods. 
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Figure 21 demonstrates that the differences among the three factor extraction 

methods in terms of factor correlations diminish as the number of factors increases.  The 

largest difference among the factor analytic strategies is associated with the K = 2, N = 

100 condition.  

 

  

Table 41 
Means and Standard Deviations of Factor Score Correlations for Factor Extraction 
Method and Number of Factors by Sample Size Interaction (K x N) 
  

Principal Axis 

Ordinary  

Least Squares 

Maximum 

Likelihood 

Interaction (K x N) M SD M SD M SD 

2 × 100 .347 0.276 .680 0.053 .420 0.309 

2 × 200 .371 0.296 .711 0.056 .417 0.322 

2 × 300 .382 0.305 .725 0.058 .417 0.326 

2 × 1000 .404 0.323 .751 0.063 .419 0.332 

4 × 100 .337 0.094 .483 0.089 .461 0.087 

4 × 200 .405 0.082 .548 0.091 .509 0.076 

4 × 300 .440 0.080 .581 0.090 .525 0.073 

4 × 1000 .510 0.076 .644 0.087 .553 0.077 

8 × 100 .149 0.049 .218 0.061 .175 0.048 

8 × 200 .184 0.063 .246 0.069 .220 0.061 

8 × 300 .203 0.069 .261 0.074 .238 0.066 

8 × 1000 .247 0.078 .296 0.086 .274 0.071 

N  = 480 



 
 

144 
 

 

 

 

Figure 21. Mean values of factor score correlations by interactions between number of 
factors and sample size. 
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interaction. The graphed means and box and whisker plots (see Figure D24 in appendix 

D) indicate that, mean and median factor score correlations for the ordinary least squares 

factor extraction method are positively related to communality range and negatively 

related to the number of factors; with the exception of the conditions containing two 

factors, this relationship is also apparent in distributions of correlations yielded by 

maximum likelihood and principal axis factor extraction methods. 

 

Table 42 
Means and Standard Deviations of Factor Score Correlations for Factor Extraction 
Method and Number of Factors by Communality Range Interaction (K x H)  
  

Principal Axis 

Ordinary  

Least Squares 

Maximum 

Likelihood 

Interaction (K x H) M SD M SD M SD 

2 × Low .367 0.300 .720 0.062 .437 0.336 

2 × Wide .443 0.443 .746 0.059 .474 0.263 

2 × High .318 0.318 .683 0.051 .344 0.343 

4 × Low .358 0.358 .539 0.140 .491 0.070 

4 × Wide .419 0.419 .564 0.088 .478 0.059 

4 × High .492 0.492 .589 0.074 .569 0.092 

8 × Low .146 0.146 .212 0.080 .194 0.064 

8 × Wide .192 0.192 .253 0.056 .220 0.052 

8 × High .250 0.249 .299 0.071 .267 0.076 

N  = 480 
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Figure 22.  Mean values of factor score correlations by interactions between number of 
factors and communality. 
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Table 43 
Means and Standard Deviations of Factor Score Correlations for Factor Extraction 
Method and Number of Observed Variables by Communality Range Interaction (P x H)  
  

Principal Axis 

Ordinary  

Least Squares 

Maximum 

Likelihood 

Interaction Levels M SD M SD M SD 

20 × Low .368 0.243 .422 0.257 .458 0.263 

20 × Wide .421 0.234 .470 0.240 .454 0.237 

20 × High .444 0.206 .485 0.207 .481 0.224 

40 × Low .206 0.141 .493 0.216 .281 0.193 

40 × Wide .290 0.134 .530 0.200 .330 0.151 

40 × High .228 0.172 .527 0.166 .257 0.197 

60 × Low .262 0.108 .473 0.205 .355 0.126 

60 × Wide .293 0.099 .473 0.173 .345 0.094 

60 × High .421 0.144 .498 0.138 .491 0.169 

N  = 480 

 

 

 As the graphed means in Figure 23 and the box and whisker plots (see Figure D24 

in appendix D) demonstrate, the mean and median correlations associated with the 

ordinary least squares factor extraction method are negatively associated with the number 

of factors; with the exception of the two factor conditions, this relationships is also 

apparent in distributions associated with maximum likelihood and principal axis factor 

extraction methods.  Distributions of correlations associated with maximum likelihood 
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and principal axis factor extraction methods exhibited sharp declines in range and semi-

interquartile range between the two and four-factor conditions. 

 

 

 

Figure 23. Mean values of factor score correlations by interactions between number of 
observed variables and communality. 
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Shapiro-Wilks’ tests of normality yielded evidence of non-normality in the 

distributions of bias for all factor extraction methods.   Mauchly’s test of transformed 

variables ߯ଶ (2) = 1544.3812, p < .0001, indicate that the data do not conform to the 

sphericity assumption associated with repeated measures ANOVA.  To address the 

potential for increased Type I error rate, tests of significance associated with the repeated 

measures analysis of variance will be based on the Greenhouse-Geisser adjustment to 

degrees of freedom (Stevens, 2002). 

 

Table 44 
Descriptive Statistics for Distribution of Loading Bias Estimates 
Factor Extraction Method N M SD Skewness Kurtosis

Principal Axis 540 -0.121 0.064 -1.016 -0.084

Ordinary Least Squares 540 0.027 0.022 -0.191 -0.439

Maximum Likelihood 540 -0.122 0.063 -1.023 -0.069

 

 

Results of the multivariate analysis of variance indicate that levels of factor 

loading bias differed significantly across the tested factor extraction methods, ,  Λ = 

.0018, F (2, 459) = 127099, p < .0001 (see Table C13 in appendix C); the multivariate 

analyses highlighted significant differences in mean bias by number of factors, number of 

observed variables, communality range, and level of dichotomization.  The univariate, 

repeated measures analysis of variance also indicates that factor loading bias differ 

significantly by factor extraction method, F(2, 920) = 25232, p < .0001, ீߟ
ଶ  = .992 (see 

Table C14 in appendix C).  The model including main effects and first-order interactions 
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accounted for 99.49% of the variability associated with statistical bias in factor pattern 

matrices. 

In addition to the method main effects, the multivariate and repeated measures 

analyses of variance identified significant differences in bias associated with six of the 

ten first-order interactions.  However, only four of these interactions yielded effect sizes 

that were medium or greater.  These interactions included 

1. Number of factors by observed variables, F(4, 460) = 244.87, p < .0001, ீߟ
ଶ  = 

.621 

2. Number of factors by sample size, F(6, 460) = 15.62, p < .0001, ீߟ
ଶ  = .136 

3. Number of factors by level of communality, F(4, 460) = 454.50, p < .0001, ீߟ
ଶ  = 

.753 

4. Number of factors by level of dichotomization, F(8, 460) = 4.91, p < .0001, ீߟ
ଶ  = 

.062 

Comparisons among means were conducted for these interactions only. 

 Table 45 presents mean factor loading biases by for each factor extraction method 

by each level of the interaction between number of factors and number of observed 

variables.   For each level of the interaction, the comparisons indicate that mean bias 

values for ordinary least squares are closer to zero than they are for either the maximum 

likelihood or the principal axis methods.  Biases for principal axis and maximum 

likelihood are negative.  As both Table 42 and Figure 24 highlight, bias levels decrease as 

the number of factors increase.  This relationship is more strongly expressed in the 

distributions associated with principal axis and maximum likelihood factor extraction 

methods than it is in distributions associated with ordinary least squares. 
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Table 45 
Means and Standard Deviations of Factor Loading Bias for Factor Extraction Method 
and Number of Factors by Number of Observed Variables Interaction (K x P) 
  

Principal Axis 

Ordinary  

Least Squares 

Maximum 

Likelihood 

Interaction (K x P) M SD M SD M SD 

2 × 20 -.170 0.052 .022 0.010 -.171 0.053 

2 × 40 -.200 0.050 .035 0.013 -.200 0.051 

2 × 60 -.213 0.048 .037 0.011 -.213 0.048 

4 × 20 -.089 0.023 .022 0.024 -.090 0.023 

4 × 40 -.093 0.025 .046 0.015 -.094 0.025 

4 × 60 -.102 0.025 .053 0.011 -.101 0.026 

8 × 20 -.085 0.017 -.007 0.009 -.085 0.017 

8 × 40 -.073 0.017 .011 0.014 -.074 0.017 

8 × 60 -.065 0.015 .026 0.013 -.067 0.015 

n  = 540 

 

 

The ranges and semi-interquartile ranges in distributions associated with 

maximum likelihood and principal axis diminish as the number of factors increase.  For 

these two factor extraction methods, the communality range are not strongly related to the 

number of observed variables within the number of factor conditions (See Figure D25 in 
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appendix D).  In distributions of bias associated with the ordinary least squares factor 

extraction method, the mean and median levels of bias are positively related to the ratio 

of observed variables to factors across all levels of the interaction.   

 

 

 

Figure 24.  Mean value of factor loading bias by interactions between number of factors 
by number of observed variables. 
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squares yields a mean bias of -.002; this is the smallest average amount of bias across all 

factor methods and all interactions between number of factors and sample size.   

 

 

Table 46 
Means and Standard Deviations of Factor Loading Bias by Factor Extraction Method 
and Number of Factors by Sample Size Interaction (K x N) 
  

Principal Axis 

Ordinary  

Least Squares 

Maximum 

Likelihood 

Interaction (K x N) M SD M SD M SD 

2 × 100 -.198 0.054 .030 0.011 -.200 0.064 

2 × 200 -.195 0.054 .032 0.013 -.200 0.054 

2 × 300 -.194 0.054 .032 0.013 -.194 0.054 

2 × 1000 -.192 0.054 .033 0.016 -.193 0.054 

4 × 100 -.103 0.022 .029 0.024 -.103 0.022 

4 × 200 -.095 0.024 .040 0.021 -.095 0.024 

4 × 300 -.093 0.025 .043 0.020 -.092 0.025 

4 × 1000 -.088 0.028 .048 0.018 -.089 0.027 

8 × 100 -.085 0.016 -.002 0.015 -.085 0.015 

8 × 200 -.076 0.016 .008 0.017 -.077 0.016 

8 × 300 -.072 0.017 .013 0.017 -.073 0.017 

8 × 1000 -.065 0.017 .020 0.017 -.066 0.017 

N  = 540 
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As the graphed mean bias levels in Figure 25 demonstrate, maximum likelihood 

and principal axis factor extraction methods yield factor pattern matrices that exhibit 

similar patterns of negative bias.  In distributions associated with maximum likelihood 

and principal axis factor extraction methods, the mean and median levels of bias decrease 

(in absolute value) as the number of factors and the sample sizes increase; ranges and 

semi-interquartile ranges, for these distributions, are also negatively related to both 

number of factors and sample size (see Figure D26 in appendix D). 

 

 

 

Figure 25.  Mean value of factor loading bias by interactions between number of factors 
and sample size. 
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 Table 47 provides means and standard deviations of loading bias estimates for the 

three factor extraction methods by all levels of the number of factors by communality 

range interaction.  For maximum likelihood and principal axis factor extraction methods, 

all mean levels of factor loading bias are negative.  Ordinary least squares yields factor 

loading bias estimates that are closer to zero than the other two factor extraction methods.  

The smallest mean level of factor loading bias is associated with the eight-factor by low 

communality condition (<.001 and  > 0).   

 

 

Table 47 
Means and Standard Deviations of Factor Loading Bias for Factor Extraction Method 
and Number of Factors by Communality Range Interaction (K x H) 
  

Principal Axis 

Ordinary  

Least Squares 

Maximum 

Likelihood 

Interaction (K x H) M SD M SD M SD 

2 × Low -.132 0.021 .027 0.010 -.132 0.022 

2 × Wide -.200 0.018 .030 0.010 -.200 0.018 

2 × High -.253 0.019 .037 0.017 -.253 0.019 

4 × Low -.065 0.009 .025 0.020 -.066 0.009 

4 × Wide -.097 0.009 .039 0.019 -.098 0.009 

4 × High -.121 0.011 .056 0.014 -.121 0.011 

8 × Low -.058 0.011 <.001 0.017 -.058 0.011 

8 × Wide -.073 0.010 .011 0.015 -.075 0.009 

8 × High -.092 0.013 .019 0.018 -.092 0.013 

N  = 540 
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In the distributions of bias associated with maximum likelihood and principal axis 

factor extraction methods, the graphed means in Figure 26 and box and whisker plots (see 

Figure D27 in appendix D) indicate that the absolute values of bias are positively related 

to communality and negatively related to the number of factors imbedded in the 

population.  This pattern is not expressed in the distribution of bias values for ordinary 

least squares. 

 

 

 

Figure 26.  Mean value of factor loading bias by interactions between number of factors 
and communality. 
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In the distributions of bias associated with maximum likelihood and principal axis 

factor extraction methods, the graphed means in Figure 26 and box and whisker plots (see 

Figure D27 in appendix D) indicate that the absolute values of bias are positively related 

to communality and negatively related to the number of factors imbedded in the 

population.  This pattern is not expressed in the distribution of bias values for ordinary 

least squares. 

Table 48 includes means and standard deviations of factor loading bias values for 

each level of the interaction between number of factors and level of dichotomization 

interaction.   The mean biase values for principal axis and maximum likelihood factor 

extraction methods are negative for each level of the interaction.  Across all levels of the 

interaction, ordinary least squares resulted in the smallest mean amount of factor loading 

bias. 

The graphed means in Figure 27 and box and whisker plots (see Figure D28 in 

appendix D) indicate that the absolute values of means and median levels of statistical 

bias in the factor loading matrices diminish as the number of factors increase.  For 

maximum likelihood and principal axis factor extraction methods, the ranges and semi-

interquartile ranges also diminish as the number of factors increase.  These patterns in 

measures of central tendency and dispersion are not apparent in the distributions of 

loading bias associated with the ordinary least squares factor extraction method. 

Across all significant interactions, ordinary least squares factor extraction method 

yielded factor loading matrices that exhibited smaller mean values of statistical bias than 

matrices derived from the principal axis and the maximum likelihood methods.   
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Table 48 
Means and Standard Deviations of Factor Loading Bias for Factor Extraction Method 
and Number of Factors by Level of Dichotomization Interaction (K x D) 
  

Principal Axis 

Ordinary  

Least Squares 

Maximum 

Likelihood 

Interaction (K x D) M SD M SD M SD 

2 × .05 -.194 0.059 .033 0.012 -.194 0.059 

2 × .25 -.194 0.055 .031 0.014 -.194 0.055 

2 × .50 -.190 0.050 .038 0.014 -.190 0.050 

2 × .75 -.197 0.053 .024 0.013 -.197 0.052 

2 × .95 -.200 0.053 .031 0.011 -.200 0.053 

4 × .05 -.096 0.025 .040 0.022 -.096 0.025 

4 × .25 -.092 0.025 .043 0.022 -.093 0.025 

4 × .50 -.093 0.025 .041 0.023 -.094 0.025 

4 × .75 -.094 0.025 .040 0.020 -.095 0.025 

4 × .95 -.097 0.026 .038 0.023 -.098 0.026 

8 × .05 -.073 0.017 .011 0.017 -.074 0.017 

8 × .25 -.073 0.018 .012 0.019 -.073 0.018 

8 × .50 -.074 0.018 .010 0.019 -.075 0.018 

8 × .75 -.075 0.018 .009 0.017 -.075 0.018 

8 × .95 -.078 0.019 .007 0.020 -.079 0.018 

N  = 540 
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Figure 27.  Mean value of factor loading bias estimates for factor extraction methods and 
number of factors by level of dichotomization. 

 

 

All of the interactions that yielded effect sizes that warranted interpretation 

included the number of factors main effect; as the number of factors increased, the mean 

values of statistical bias (in terms of their absolute values) decreased; this trend was 

apparent in mean values of statistical bias for all factor extraction methods.  As the box 

and whisker plots highlight, all bias values associated with principal axis and maximum 

likelihood methods were negative. 

 
Root Mean Squared Error 
 
 Root mean squared error (RMSE) for each factor loading represents the last 

indicator of congruence.  To provide an overall index for each factor solution, the RMSE 

‐0.5

‐0.4

‐0.3

‐0.2

‐0.1

0

0.1

0.2

0.3

0.4

0.5

0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95

2 2 2 2 2 4 4 4 4 4 8 8 8 8 8

M
e
an

 F
ac
to
r 
Lo
ad

in
gs
 B
ia
s

Number of Factors by  Level of Dichotomization

PAF

OLS

MAX



 
 

160 
 

estimates are averaged across all samples in each research context.  This congruence 

measure is expressed in a P × K matrix.  Table 49 provides means and standard 

deviations of RMSE for all samples in the study. 

 

Table 49 
Descriptive Statistics for Distribution of Factor Loading RMSE 
Factor Extraction Method N M SD Skewness Kurtosis

Principal Axis 540 .113 0.053 1.224 0.907

Ordinary Least Squares 540 .091 0.046 1.344 1.802

Maximum Likelihood 540 .105 0.052 1.174 0.773

 

 

Shapiro-Wilks’ tests of normality yielded evidence of non-normality in 

distributions of RMSE for all factor extraction methods.  Mauchly’s test of transformed 

variables ߯ଶ (2) = 1081.891, p < .0001, indicate that the data do not conform to the 

sphericity assumption associated with repeated measures ANOVA.  To address the 

potential for increased Type I error rate, tests of significance associated with the repeated 

measures analysis of variance will be based on the Greenhouse-Geisser adjustment to 

degrees of freedom (Stevens, 2002). 

Results of the multivariate analysis of variance indicate that RMSE differed 

significantly across the tested factor extraction methods,  Λ = .0269, F (2, 459) = 

8274.65, p < .0001 (see Table C15 in appendix C).  Results of the multivariate analyses 

also indicated the RMSE differed significantly by all main effects.  According to the 

results of the univariate, repeated measures analysis of variance, mean values of RMSE 
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differed significantly by factor extraction method, F(2, 920) = 1559.4, p < .0001, ீߟ
ଶ  = 

.458 (see Table C16 in appendix C).  The model including main effects and first-order 

interactions accounted for 96.26% of the variability associated with statistical bias in 

factor pattern matrices. 

In addition to the method effect, the multivariate and repeated measures analyses 

of variance identified significant differences in RMSE associated with seven of the ten 

first-order interactions.  However, according to the within subjects and the between 

subjects portions of the repeated measures analysis of variance, only four of these 

interactions yield effect sizes that were medium or greater.  These interaction include 

1. Number of factors by number of observed variables, F(4, 460) = 209.92, p < 

ீߟ ,0001.
ଶ  = .578 

2. Number of factors by level of communality, F(4, 460) = 548.08, p < .0001, ீߟ
ଶ  

= .781 

3. Number of factors by level of dichotomization,  F(8, 460) = 9.99, p < .0001, 

ீߟ
ଶ  = .115 

4. Level of communality by level of dichotomization, F(8, 460) = 6.73, p < 

ீߟ ,0001.
ଶ  = .081 

In addition to these interactions, the sample size main effect yielded an effect size of at 

least medium strength, F(3, 460) = 172.94, p < .0001, ீߟ
ଶ  = .458.  Because sample size is 

not included in interactions that met the effect size criteria for further analyses, it will 

also be included in the comparisons among means. 

 Table 47 presents means and standard deviations of RMSE for each factor 

extraction method by each level of sample size.   
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Table 50 
Means and Standard Deviations of Factor Loading RMSE for Factor Extraction Method 
by Sample Size 
  

Principal Axis 

Ordinary  

Least Squares 

Maximum 

Likelihood 

Effect Levels M SD M SD M SD 

100 .124 0.052 .114 0.046 .112 0.049 

200 .115 0.053 .094 0.044 .105 0.052 

300 .111 0.053 .085 0.043 .103 0.052 

1000 .104 0.053 .071 0.041 .099 0.054 

N = 540 

 

 

As the table highlights, RMSE is negatively related to sample size.  Results of the 

comparison indicate that principal axis factor analysis yields the highest values of RMSE.  

Moreover, except for the N = 100 condition, ordinary least squares yields the lowest 

levels of RMSE. 

The relationship among sample size, factor extraction method, and mean RMSE is 

demonstrated graphically in Figure 28.  As this graph highlights, the negative relationship 

between sample size and RMSE is slightly more apparent in the trend associated with the 

ordinary least squares factor extraction method. 
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Figure 28.  Mean value of RMSE by sample size main effect. 

 

 Table 51 presents means and standard deviation of mean RMSE values for each 

factor extraction method by levels of the number of factors and observed variables 

interaction.  The mean RMSE values do not have a simple relationship with either effect 

included in the interaction.  However, the ordinary least squares factor extraction method 

yields slightly smaller values of RMSE than either principal axis or maximum likelihood 

factor extraction methods. 

As the trend lines in Figure 29 highlight, the differences among factor extraction 

methods in mean values of RMSE do not appear to vary substantially as either the 

number of factors or the number of observed variables increases.   
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Table 51 
Means and Standard Deviations of Factor Loading RMSE for Factor Extraction Method 
and Number of Factors by Observed Variables (K x P)  
  

Principal Axis 

Ordinary  

Least Squares 

Maximum 

Likelihood 

Interaction (K x P) M SD M SD M SD 

2 × 20 .142 0.058 .124 0.056 .127 0.059 

2 × 40 .164 0.061 .132 0.054 .150 0.061 

2 × 60 .174 0.063 .133 0.052 .164 0.063 

4 × 20 .109 0.023 .095 0.026 .098 0.024 

4 × 40 .092 0.027 .079 0.022 .083 0.028 

4 × 60 .090 0.030 .070 0.023 .083 0.030 

8 × 20 .110 0.012 .079 0.014 .104 0.014 

8 × 40 .075 0.013 .059 0.016 .072 0.015 

8 × 60 .064 0.013 .048 0.015 .061 0.014 

N  = 540 

 

 

For all factor extraction methods, box and whisker plots of RMSE values 

highlight a general decline in ranges and semi-interquartile ranges as the number of 

factors increases (See Figure D29 in appendix D).  Within the four and eight-factor 

conditions, mean and median RMSE values decline as the ratio of observed variables to 

factors increases. 
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Figure 29.  Mean value of factor loading RMSE by interactions between number of 
factors and number of observed variables. 
 

 

 Table 52 provides means and standard deviations of RMSE for factor extraction 
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For the ordinary least squares factor extraction method, the mean RMSE values are 
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Figure 30 and in the box and whisker plots (see Figure D30 in appendix D). 

 

 

0

0.05

0.1

0.15

0.2

0.25

20 40 60 20 40 60 20 40 60

2 2 2 4 4 4 8 8 8

M
e
an

 F
ac
to
r 
Lo
ad

in
g 
R
M
SE

Number of Factors by Observed Variable Interaction

PAF

OLS

MAX



 
 

166 
 

 

 

 

Table 52 
Means and Standard Deviations of Factor Loading RMSE  for Factor Extraction Method 
and Number of Factors by Communality Range Interaction (K x H) 
  

Principal Axis 

Ordinary  

Least Squares 

Maximum 

Likelihood 

Interaction (K x H) M SD M SD M SD 

2 × Low .090 0.015 .084 0.022 .074 0.014 

2 × Wide .155 0.022 .121 0.038 .147 0.020 

2 × High .233 0.022 .184 0.041 .221 0.021 

4 × Low .067 0.018 .061 0.023 .055 0.015 

4 × Wide .098 0.013 .085 0.020 .091 0.011 

4 × High .126 0.010 .098 0.019 .118 0.007 

8 × Low .070 0.022 .058 0.021 .063 0.020 

8 × Wide .082 0.020 .063 0.019 .080 0.019 

8 × High .097 0.020 .064 0.019 .094 0.019 

N  = 540 
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Figure 30.  Mean value of factor loading by interactions between number of factors and 
communality. 
 

 

 As Table 53 presents highlights, the ordinary least squares method yielded the 

lowest mean RMSE’s for all levels of the number of factors by dichotomization 

interaction.  Moreover, for all factor extraction methods, RMSE is negatively related to 

the number of factors simulated in the population.  In addition to mean values of RMSE, 

box and whisker plots indicate that ranges and semi-interquartile ranges, for all 

distributions, decrease as the number of factors increases (see Figure D31 in appendix D). 

Figure 31 demonstrates the relationships summarized in Table 50 graphically. 
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Table 53 
Means and Standard Deviations of Factor Loading RMSE for Factor Extraction Method 
and Number of Factors by Level of Dichotomization Interaction (K x D) 
  

Principal Axis 

Ordinary  

Least Squares 

Maximum 

Likelihood 

Interaction (K x D) M SD M SD M SD 

2 × .05 .158 0.069 .124 0.058 .147 0.068 

2 × .25 .156 0.057 .114 0.034 .145 0.061 

2 × .50 .156 0.061 .125 0.047 .143 0.062 

2 × .75 .160 0.060 .133 0.057 .145 0.060 

2 × .95 .169 0.064 .153 0.063 .155 0.060 

4 × .05 .099 0.029 .087 0.026 .091 0.030 

4 × .25 .097 0.028 .082 0.027 .089 0.030 

4 × .50 .096 0.028 .078 0.026 .088 0.029 

4 × .75 .095 0.027 .080 0.026 .086 0.028 

4 × .95 .097 0.027 .081 0.024 .087 0.027 

8 × .05 .084 0.023 .064 0.019 .080 0.023 

8 × .25 .083 0.024 .062 0.020 .079 0.023 

8 × .50 .083 0.024 .062 0.022 .079 0.024 

8 × .75 .082 0.023 .061 0.020 .078 0.023 

8 × .95 .083 0.024 .061 0.020 .080 0.024 

N  = 540 
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Figure 31.  Mean value of factor loading RMSE by interactions between number of 
factors and level of dichotomization. 
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Table 54 
Means and Standard Deviations of Factor Loading RMSE by Factor Extraction Method 
and Communality Range by Level of Dichotomization Interaction (H x D) 
  

Principal Axis 

Ordinary  

Least Squares 

Maximum 

Likelihood 

Interaction (H x D) M SD M SD M SD 

Low × .05 .075 0.021 .067 0.023 .063 0.019 

Low × .25 .075 0.020 .067 0.022 .063 0.017 

Low × .50 .075 0.022 .067 0.026 .063 0.019 

Low × .75 .078 0.023 .072 0.030 .064 0.018 

Low × .95 .077 0.021 .067 0.024 .065 0.018 

Wide × .05 .110 0.035 .087 0.036 .105 0.032 

Wide × .25 .113 0.038 .091 0.035 .108 0.035 

Wide × .50 .110 0.035 .086 0.030 .103 0.032 

Wide × .75 .108 0.032 .082 0.025 .103 0.031 

Wide × .95 .118 0.043 .104 0.048 .112 0.039 

High × .05 .157 0.064 .120 0.055 .149 0.060 

High × .25 .148 0.056 .102 0.036 .142 0.055 

High × .50 .151 0.059 .113 0.054 .142 0.056 

High × .75 .151 0.064 .119 0.066 .142 0.059 

High × .95 .154 0.066 .125 0.072 .145 0.061 

N = 540 
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Figure 32.  Mean value of factor loading RMSE by interactions between communality 
and level of dichotomization. 
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The interaction between factor extraction method and the ratio of categorical 

(dichotomous) variables to the total number of observed variables accounted for 

statistically significant differences in only three measures of agreement between the 

sample and the population. In the cases where statistical differences were observed, the 

effect sizes were small (Cohen, 1988); these measures included factor loading sensitivity 

ீߟ)
ଶ  = .049), per element agreement (ீߟ

ଶ  = .003), and total pattern agreement (ீߟ
ଶ  = .025).  

However, as part of a between subjects, first-order interaction with the number of factors 

imbedded in the population, the level of dichotomization accounted for more than 57% 

ீߟ)
ଶ  = .574) of the variance in factor loading sensitivity.  The comparison of means by 

factor extraction method indicated that, for every level of this interaction, ordinary least 

squares yielded higher mean values of factor loading sensitivity. 

Interactions between the number of observed variables and factor extraction 

method accounted for statistically and practically significant differences in all measures 

of agreement between sample and population factor loading matrices. Within subjects 

analyses indicated that the ratio of observed variables to number of factors imbedded in 

the population yielded large effect sizes in loading sensitivity (ீߟ
ଶ  = .770), general pattern 

agreement (ீߟ
ଶ  = .442), per element agreement (ீߟ

ଶ  = .474), and total pattern agreement 

ீߟ)
ଶ  = .436).  These same analyses indicated that the number of observed variables 

interacted with communality to yield at least a medium effect size in factor loading 

sensitivity (ீߟ
ଶ  = .059).  The between subject analysis indicated that the number of 

variables interacted with communality to yield at least medium effect sizes in general 

pattern agreement (ீߟ
ଶ  = .359) and per element agreement (ீߟ

ଶ  = .155).  For all levels of 

interactions among these main effects, ordinary least squares yielded significantly higher 
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mean values in all measures of agreement than either maximum likelihood or principal 

axis factor extraction methods. 

Sample size interacted with factor extraction method to yield significant 

differences in mean values for all measures of agreement between sample and population 

factor loading matrices.  Between subjects analyses indicated that sample size interacted 

with the number of factors imbedded in the population to yield a medium effect size in 

per element agreement (ீߟ
ଶ  = .172); a within subjects analysis indicated that this first 

order interaction yielded a medium effect size in total pattern agreement (ீߟ
ଶ  = .094).  The 

within subjects analysis also indicated that sample size and communality interacted to 

yield medium effect sizes in general pattern agreement (ீߟ
ଶ  = .180) and per element 

agreement (ீߟ
ଶ  = .077).  For all levels of interactions among these main effects, ordinary 

least squares yielded significantly higher mean values in all measures of agreement than 

either maximum likelihood or principal axis factor extraction methods. 

The levels of communality interacted with factor extraction method to yield 

statistically significant differences in factor loading sensitivity, general pattern 

agreement, and per element agreement.  Between subjects analyses indicated that 

interactions between level of communality and the number of factors imbedded in the 

population yielded at least medium effects in factor loading sensitivity (ீߟ
ଶ  = .062), 

general pattern agreement (ீߟ
ଶ  = .458), and per element agreement (ீߟ

ଶ  = .077).  For all of 

these measures, ordinary least squares yielded the highest mean values across all levels of 

the interaction.  

Factor extraction method accounted for statistically significant differences in all 

measures of congruence.  As indicated by the generalized eta-squared values, factor 
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extraction method accounted for more than 50% of the variability in three of the four 

measures associated with sample and population congruence; these included mean phi 

coefficient (ீߟ
ଶ  = .521), factor score correlations (ீߟ

ଶ  = .783), and factor loading bias (ீߟ
ଶ  

= .992).  Although values of factor loading RMSE differed significantly by factor 

extraction method, the method effect accounted for less than 50% of the variance in this 

measure (ீߟ
ଶ  = .458). 

As a main effect, the ratio of categorical variables to the total number of observed 

variables accounted for statistically significant differences in factor loading bias and 

RMSE.  Between subjects analyses indicated that interactions between level of 

dichotomization and the number of factors imbedded in the population yielded at least 

medium effect sizes in the mean values of the phi coefficient (ீߟ
ଶ  = .086), factor loading 

bias (ீߟ
ଶ  = .458), and RMSE (ீߟ

ଶ  = .115).  Between subjects analyses also indicated that 

dichotomization interacted with communality to yield at least medium effect sizes in 

mean phi coefficients (ீߟ
ଶ  = .076) and RMSE (ீߟ

ଶ  = .081).  In general, maximum 

likelihood yielded higher mean phi coefficients than either ordinary least squares or 

maximum likelihood factor extraction methods.  Across the majority of levels of the first-

order interactions, ordinary least yielded values of bias and RMSE that were closer to 

zero than either maximum likelihood or principal axis factor extraction methods; 

however, differences among the three factor extraction methods were small.  

The number of observed variables main effect for statistically significant 

differences in all of the congruence measures. Between subjects analyses indicated that 

ratios of observed variables to factor yielded at least medium effect sizes in mean phi 

coefficients (ீߟ
ଶ  = .405), factor score correlations (ீߟ

ଶ  = .804), factor loading bias (ீߟ
ଶ  = 
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.621), and RMSE (ீߟ
ଶ  = .578).  These same analyses indicated that the interaction 

between communality and the number of observed variables yielded an effect size that 

was at least medium in factor score correlations (ீߟ
ଶ  = .149).  Maximum likelihood 

yielded higher mean phi coefficients across all ratios of observed variables to number of 

factors than ordinary least squares or principal axis factor extraction methods.  In the 

majority of the levels of this interaction, ordinary least squares factor extraction method 

resulted in stronger correlations between sample and population factor scores; in the four-

factor by 20 variable condition, maximum likelihood yielded a slightly higher correlation.  

In the interaction between the number of observed variables and the level of 

communality, ordinary least squares also yielded higher factor correlations in nearly all 

levels of the interaction.   

The sample size main effect yielded significant differences in mean values for 

three measures of congruence among sample and population factor loading matrices; 

these include mean phi coefficients, factor score correlations, RMSE.  Between subjects 

analyses indicated that the sample size interacted with the number of factors in the 

population to yield at least medium effect sizes in mean phi coefficients (ீߟ
ଶ  = .115), 

factor score correlations (ீߟ
ଶ  = .095), and factor loading bias (ீߟ

ଶ  = .136).  Sample size 

interacted with communality to yield an at least medium effect size in mean phi 

coefficients (ீߟ
ଶ  = .067).  Across all ratios of sample size to number of factors, maximum 

likelihood yielded higher mean phi coefficients than ordinary least squares and principal 

axis factor extraction methods.  For nearly all levels of the sample size by number of 

factors and sample size by communality interactions, ordinary least squares yielded 

stronger correlations among sample and population factor score correlations.  In nearly 
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all levels of sample size by number of factors interaction, ordinary least squares yielded 

factor loading bias values that were closer to zero than either maximum likelihood or 

principal axis factor extraction methods. 

The communality main effect yielded statistically significant differences in all 

congruence measures.  Between subjects analyses indicated that interactions between 

level of communality and the number of factors imbedded in the population yielded at 

least medium effects in factor score correlations (ீߟ
ଶ  = .324), factor loading bias (ீߟ

ଶ  = 

.753), and RMSE (ீߟ
ଶ  = .781).  In all levels of the interaction, ordinary least squares 

yielded stronger factor score correlations, factor score bias levels closer to zero, and 

smaller values of RMSE.  

Research Questions 

 How do varying ratios of categorical to continuous variables influence the 

agreement between factor pattern matrices extracted through the examined factor 

anlaysis strategies and factor pattern matrices simulated in the population?  Level of 

dichotomization resulted in significant differences in values of factor loading sensitivity, 

per element factor pattern agreement, total pattern agreement, congruence, factor score 

correlation, bias, and RMSE.  As estimated by generalized eta squared, levels of 

dichotomization accounted for medium effect size differences in values of factor loading 

sensitivity and factor loading bias. However, in both cases, levels of dichotomization 

were components of interactions that also resulted in effect sizes that were at least 

medium.  Therefore, the effects of dichotomization could only be interpreted as part of 

first order interactions. 
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Dichotomization interacted with the number of factors to result in statistically and 

practically significant differences factor loading sensitivity, congruence coefficients, 

factor loading bias, and RMSE.  In general, comparisons among means of these variables 

based on the first order interactions indicated that the level of dichotomization did not 

influence the impact that the number of factors had an on agreement and congruence 

measures.  However, within the two factor condition, mean values of the congruence 

coefficient did exhibit a slight negative relationship to the level of dichotomization.  

Levels of dichotomization and communality interacted to yield statistically and 

practically significant differences in congruence coefficients and RMSE; comparisons 

among means indicated that, in neither case, did the level of dichotomization exert 

influence on the impact associated with communality. 

How does the number of variables in a correlation matrix influence the agreement 

between factor pattern matrices extracted through the examined factor analysis strategies 

and factor pattern matrices simulated in the population?  The number of observed 

variables resulted in significant differences in values of factor loading sensitivity, general 

pattern agreement, per element pattern agreement, total pattern agreement, congruence, 

factor score correlation, bias, and RMSE.  As estimated by generalized eta squared, the 

observed variable main effect accounted for medium effect size differences in values of 

factor loading sensitivity, general pattern agreement, per element pattern agreement, total 

pattern agreement, congruence, factor score correlations, bias, and RMSE. However, in 

all cases, the numbers of observed variables were components of interactions that also 

resulted in effect sizes that were at least medium.  Therefore, the impact of observed 

variables could only be interpreted as part of first order interactions. 
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The number of observed variables interacted with the number of factors imbedded 

in the population to yield differences in all measures of agreement and congruence that 

reached effect sizes that warranted interpretation.  For maximum likelihood and principal 

axis factor extraction methods, values of factor loading sensitivity and general pattern 

agreement were negatively related to the number of variables within each level of the 

number of factors condition; for factor loading matrices associated with ordinary least 

squares, these values were not influenced by the number of observed variables.  The 

direction of the relationship between the number of observed variables and values of per 

element agreement changed with each level of the number of factors imbedded in the 

population.  Within each level of the number of common factors, values of congruence 

were positively associated with the number of observed variables.  In the eight factor 

condition, this positive relationship with the number of observed variables is also present 

in the correlations between factor scores in the sample and factor scores in the 

population.  However, in the two factor condition, the relationship between factor score 

correlations and number of observed variables is negative for all factor extraction 

methods.  For both bias and RMSE, the relationship with number of observed variables 

changed direction (positive versus negative) for each level of the number of factors 

effect.   

The number of observed variables interacted with the level of communality to 

yield differences in all factor loading sensitivity, general pattern agreement, per element 

agreement, and factor score correlation that were at least medium in effect sizes.  While 

values of factor loading sensitivity associated with the ordinary least squares method  

were not influenced by the interaction between number of observed variables and 
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communality; the values of these measures were negatively related to the number of 

variables for both maximum likelihood and principal axis factor extraction methods.  For 

the 40 and 60 observed variable conditions, factor score correlation appears to be 

positively related to the number of observed variables within each level of communality; 

however, this relationship is only apparent in maximum likelihood and principal axis 

factor extraction methods. 

How does sample size influence the agreement between factor pattern matrices 

extracted through the examined factor analysis strategies and factor pattern matrices 

simulated in the population? Sample size resulted in significant differences in values of 

factor loading sensitivity, general pattern agreement, per element factor pattern 

agreement, total pattern agreement, congruence, factor score correlation, and RMSE.  As 

estimated by generalized eta squared, the between subjects analysis indicated that sample 

size accounted for medium effect size differences in values of  general pattern agreement, 

per element agreement, congruence coefficients, sample and population factor score 

correlations, and RMSE.  In the case of RMSE, the sample size main effect yielded an 

effect size that was at least moderate without being a component of a substantial 

interaction; for all three factor extraction methods, RMSE diminished as sample size 

increased.  In all other measures of agreement and congruence, sample size was a part of 

interactions that met the effect size threshold for interpretation. 

Sample size interacted with the number of factors imbedded in the population to yield 

statistically and practically significant differences in per element agreement, total 

agreement, congruence, correlations between sample and population factor scores, and 

bias.  In all measures of agreement between sample and population, the levels of 
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agreement were positively associated with sample size within each number of factors 

condition. Because maximum likelihood and principal axis factor extraction methods 

failed to yield non-zero factor scores in all conditions, a universally applicable trend is 

difficult to identify; however, when the two factor conditions are ignored, correlations 

among sample and population factor scores are positively related to sample size.  Within 

each number of factors condition, the amount of negative bias in solutions associated 

with maximum likelihood and principal axis methods diminishes as the smaple size 

increases; the amount of bias associated with the ordinary least squares method is not 

influenced by sample size.  

Differences in mean values for general pattern agreement, per element agreement, 

and congruence of at least medium effect are associated with interactions between sample 

size and communality.  For all three methods, values of general pattern agreement and 

congruence were positively related to sample size.  Values of per element agreement 

were positively associated with sample size in pattern matrices derived from the ordinary 

least squares factor extraction method; this relationship was not apparent in maximum 

likelihood or principal axis methods.      

How does communality influence the agreement between factor pattern matrices 

extracted through the examined factor analysis strategies and factor pattern matrices 

simulated in the population?  The level of communality (low, wide, and high) resulted in 

significant differences in values of factor loading sensitivity, general pattern agreement, 

per element pattern agreement, congruence, factor score correlation, bias, and RMSE.  As 

estimated by generalized eta squared, the communality main effect accounted for medium 

effect size differences in values of factor loading sensitivity, general pattern agreement, 
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per element pattern agreement, congruence, factor score correlations, bias, and RMSE. 

However, in all cases, the levels of communality were components of interactions that 

also resulted in effect sizes that were at least medium.  Therefore, the impact of 

communality could only be interpreted as part of first order interactions. 

The number of factors imbedded in the population interacts with communality to 

yield differences in factor loading sensitivity, general pattern agreement, per element 

agreement, factor score correlations, bias, and RMSE that are at least medium in effect 

size.  For maximum likelihood and principal axis factor extraction methods, values of 

factor loading sensitivity are positively related to the level of communality within each 

level of the interaction; values of factor loading sensitivity associated with ordinary least 

squares are not influenced by communality within its interaction with the number of 

factors.  Within all levels of the interaction, values of general pattern agreement are 

positively related to level of communality; this is true across all factor extraction 

methods.  In nearly all levels of the interaction, values of per element agreement are 

negatively related to level of communality; however, for the ordinary least squares factor 

extraction method, this relationship is slightly positive in the eight factor condition.  In 

the four and eight factor conditions, factor score correlations exhibit a generally positive 

relationship with level of communality; however, this trend is not universal and not 

apparent in the two factor conditions.  For all three factor extraction methods, absolute 

values of bias and RMSE are positively related to the level of communality within each 

level of the number of factors condition. 

The number of observed variables interacted with level of communality to yield 

substantial differences in factor loading sensitivity, general pattern agreement and factor 
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score correlation.  For maximum likelihood and principal axis factor extraction methods, 

factor loading sensitivity is positively associated with the level of communality in all 

levels of the interaction.  However, this relationship is not apparent in loading sensitivity 

values associated with ordinary least squares.  In most levels of the interaction, values of 

general pattern agreement are positively related to level of communality; however, for the 

maximum likelihood factor extraction method, a slightly negative relationship between 

general agreement and communality is apparent in the 60 observed variable condition.  

The direction of the relationships among factor score correlations and communality levels 

appears to vary by factor extraction method and level of the observed variables effect. 

The sample size effect interacts with communality to yield differences in general 

pattern agreement, per element agreement, and congruence. Within all levels of the 

interaction and for all factor extraction methods, values of general pattern agreement are 

positively related to level of communality.  For the maximum likelihood and principal 

axis factor extraction methods, values of per element agreement are negatively related to 

communality; for the ordinary least squares factor extraction method, this relationship 

holds in the 300 and 1000 sample size conditions only. With the exception of matrices 

associated with the ordinary least squares factor extraction method, congruence values 

are positively related to the level of communality in all sample size conditions.  For 

ordinary least squares, the highest values of congruence are associated with the low 

communality conditions and the lowest values are associated with the wide conditions. 

The communality main effect interacted with dichotomization to yield differences in 

congruence and RMSE that were at least medium in effect size.  With the exception of 

the wide communality condition in which 95% of the variables were dichotomous, values 
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of congruence associated with maximum likelihood and principal axis factor extraction 

methods were positively related to level of communality; values of congruence associated 

with ordinary least squares factor extraction appear not to be influenced by level of 

communality in this interaction.  Within each level of the interaction, RMSE is positively 

related to the level of communality 

How does the number of common factors influence the agreement between factor 

pattern matrices extracted through the examined factor analysis strategies and factor 

pattern matrices simulated in the population? The number of factors main effect is 

associated with statistically significant differences in all measures of agreement and 

congruence.  As estimated by generalized eta squared, differing numbers of factors 

imbedded in the population accounted for medium effect size differences in values of 

factor loading sensitivity, general pattern agreement, per element pattern agreement, total 

pattern agreement, congruence, factor score correlations, bias, and RMSE. However, in 

all cases, the number of factors main effect is a component of interactions that also 

resulted in effect sizes that were at least medium.  Therefore, the impact of this effect 

could only be interpreted as part of first order interactions. 

The number of factors imbedded in the population interacted with the number of 

observed variables, level of communality, and level of dichotomization to yield 

differences in factor loading sensitivity that were at least medium in effect size.  Across 

all of these interactions, factor loading sensitivity values associated with maximum 

likelihood and principal axis factor extraction methods were positively related to the 

number of factors.  However, in all cases, factor loading sensitivity values associated 
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with the ordinary least squares factor extraction method were not influenced by the 

number of factors imbedded in the population. 

The number of factors imbedded in the population interacted with the number of 

observed variables and level of communality to yield differences in general factor 

agreement that were at least medium in effect size. In both interactions, general pattern 

agreement was negatively related to the number of factors for matrices associated with 

ordinary least squares.  For maximum likelihood and principal axis factor extraction 

methods, this negative trend was not apparent. 

The number of factors imbedded in the population interacted with the number of 

observed variables, sample size, and level of communality to yield differences in per 

element agreement that were at least medium in effect size.  In each interaction, values of 

per element agreement were positively related to the number of factors.   This 

relationship was apparent in matrices associated with all factor extraction methods. 

The number of factors imbedded in the population interacted with the number of 

observed variables, sample size, and level of dichotomization to yield differences in 

values of congruence that were at least medium in effect size.  For all levels of these 

interactions, congruence values were negatively related to the number of factors.  This 

relationship was apparent in the three tested factor extraction methods. 

The number of factors imbedded in the population interacted with the number of 

observed variables, sample size, and communality to yield differences in correlations 

among factor scores derived from the sample and those derived from the population that 

met the effect size requirement for follow up analyses.  In each of the cases, factor score 

correlations were negatively related to the number of factors.  While this relationship 
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could be found in correlations associated with all three factor extraction methods, the 

relationship was complicated by the zero factor scores (and the subsequent missing factor 

score correlations) for the maximum likelihood and principal axis factor extraction 

method in several of the two factor conditions. 

The number of factors interacted with the number of observed variables, sample size, 

level of communality, and level of dichotomization to yield differences in factor loading 

bias that were at least medium in effect size. Across all levels of these interactions, the 

absolute values of bias were negatively related to the number of factors.   The number of 

factors interacted with the number of observed variables, level of communality, and level 

of dichotomization to yield differences in RMSE that met the effect size requirement for 

follow-up analyses. As was the case in the bias comparisons, values of RMSE were 

negatively related to the number of factors in all levels of the interactions. 
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Discussion 

The intention underlying this study was to provide researchers with empirically 

derived guidelines concerning the interaction among factor extraction methods and types 

of data.  The scope of this study included the evaluation of factor extraction methods 

when applied to data sets that contained a mixture of categorical and continuous 

variables. To enhance the potential usefulness of this study’s results, this research 

focused on methods commonly employed by social scientists; these included principal 

axis factor analysis, ordinary least squares factoring, and standard maximum likelihood 

method. 

Research Questions 

 The agreement between factor pattern matrices in a simulated population and 

matrices developed through selected exploratory factor analytic techniques is the primary 

comparison associated with this study.  This agreement was assessed through the 

proportion of variables that loaded on the same factors, total factor loading agreement, 

and factor loading congruence coefficients (MacCallum et al., 1999).  Measures of 

agreement, correlations between population and sample factor score matrices, root mean 

square error, statistical bias, and solution variability were considered as measures of 

factor pattern agreement.
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The measures of congruence and agreement among population and sample matrices 

addressed the following research questions: 

1. How do varying ratios of categorical to continuous variables influence the 

agreement between factor pattern matrices extracted through the examined factor 

analysis strategies and factor pattern matrices simulated in the population? 

2. How does the number of variables in a correlation matrix influence the agreement 

between factor pattern matrices extracted through the examined factor analysis 

strategies and factor pattern matrices simulated in the population? 

3. How does sample size influence the agreement between factor pattern matrices 

extracted through the examined factor analysis strategies and factor pattern 

matrices simulated in the population? 

4. How does communality influence the agreement between factor pattern matrices 

extracted through the examined factor analysis strategies and factor pattern 

matrices simulated in the population? 

5. How does the number of common factors influence the agreement between factor 

pattern matrices extracted through the examined factor analysis strategies and 

factor pattern matrices simulated in the population? 

6. How do all of the independent variables interact to influence the agreement 

between factor pattern matrices extracted through the examined factor analysis 

strategies and factor pattern matrices simulated in the population? 
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Summary of Methods 

The research methods and Monte Carlo design included in this study were based 

on previous methodological research in the field of common factor analysis.  The 

strategies used to generate correlation matrices in this study were derived from Tucker, 

Koopman, and Linn’s (1969) examination of factor analytic methods.  The sampling 

methods were based on the strategies employed by Hogarty et al. (2005). 

To address the research questions, this study incorporated samples simulated 

through a variety of research contexts.  These contexts differed in number of variables, 

the number of common factors, communalities, sample sizes, and ratios of categorical to 

continuous variables. Data were generated under 540 different conditions; specifically, 

this study was a three (number of variables) by three (number of common factors) by 

three (communality levels) by four (sample size) by five (ratios of categorical to 

continuous variables) design. 

In the simulation procedure, ten correlation matrices were generated for each 

combination of data conditions.  For each correlation matrix, 1000 samples were 

generated.  These samples varied in the combinations of sample size and ratio of 

categorical to continuous variables.  In total, this simulation process yielded 5,400,000 

samples; each combination of data conditions accounted for 10,000 samples. 

Conclusions 

Across the majority of interactions among the manipulated research contexts that 

accounted for statistically significant differences and moderate effect sizes, the ordinary 

least squares factor extraction method yielded factor loading matrices that were in better 

agreement with the population than either the maximum likelihood or the principal axis 
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methods. The ordinary least squares method yielded factor loading matrices that 

exhibited less bias and error than the other two tested factor extraction methods.  In 

general, ordinary least squares loading matrices resulted in factor scores that correlated 

more strongly with population factor scores than the other tested methods.   

In only one set of comparisons, those associated with mean phi coefficients, the 

maximum likelihood method resulted in factor loading matrices that exhibited slightly 

greater congruence than ordinary least squares across several interactions.  This measure 

of congruence represents the only measure that excludes the influence of the .30 factor 

loading threshold.  One influence of this threshold effect can be seen in the factor loading 

bias analyses.  In each case, principal axis and maximum likelihood yielded factor 

loading matrices that exhibited negative bias; the impact of this bias can be found in the 

depressed the factor loading sensitivity measures for both principal axis and maximum 

likelihood.  Without the impact of this threshold requirement, the congruence values for 

all three factor extraction methods were very similar. 

The first hypothesis included in this study asserted that ordinary least squares 

factor analysis will perform better than maximum likelihood factor analysis as the 

number of dichotomously scored variables increase.  This assertion was derived from 

research into factor analytic techniques that indicated that iterative, principal axis factor 

extraction methods perform better than maximum likelihood methods when the 

assumption of multivariate normality is not met (Bartholomew, 1980).  In interactions 

that included the level of dichotomization main effect, ordinary least squares yielded 

factor loading matrices that were in better agreement (and more congruent) with 

population matrices; however, the differences among the three factor extraction methods 
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tended to be unaffected by the level of dichotomization.  Therefore, this hypothesis is not 

supported by the findings in this study. 

The second hypothesis asserts that, when the factor structure in the population is 

not strongly defined, ordinary least squares (OLS) factor analysis will identify common 

factors that maximum likelihood factor analytic methods fail to identify.   According to 

this hypothesis, OLS’s relative advantage in identifying common factors will be 

negatively related to communality and positively related to the number of dichotomous 

variables.  This hypothesis is based on two complimentary studies that highlight OLS’s 

insensitivity to error and maximum likelihood’s reliance on the assumption of 

multivariate normality (Briggs & MacCallum, 2003; Mislevy, 1986).   Factor loading 

sensitivity, or the proportion of variables that have factor pattern coefficients that are 

greater than or equal to .30 on at least one factor, is the primary measures associated with 

this hypothesis. 

In so far that the ordinary least squares method resulted in higher levels of factor 

loading sensitivity than the other tested factor extraction methods, the results of this study 

are supportive of the second hypothesis.  However, in the only interaction that included 

communality and resulted in a medium effect size associated with differences in factor 

loading sensitivity, the interaction between number of factors and communality level, the 

differences among the three factor extraction methods were not influenced by the level of 

communality.  Therefore, the results of this study only partially support the assertions 

made in the second hypothesis. 

This study included samples that were simulated under 540 different research 

contexts.  The factor loading matrices were assessed through eight measures of sample-
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population agreement and congruence.  The analyses focused on all first-order 

interactions among five manipulated research characteristic.  Results of analyses led to 

several conclusions that were not directly related to the two hypotheses; these include 

1. As the number of factors in the population increases, the factor loading values 

become more representative of the population parameters.  This conclusion is well 

supported by the measures of factor loading sensitivity, general pattern 

agreement, loading bias, and root mean squared error.  However, this effect is not 

universal; increased numbers of factors is negatively associated with values of per 

element pattern agreement, average congruence (phi) coefficients, and 

correlations between sample and population factor scores. 

2. Increased ratios of observed variables to factors are not necessarily associated 

with improved agreement between sample and the population factor loading 

matrices; moreover, increases in these ratios do not appear to positively influence 

measures of congruence.  This conclusion appears to contradict previous 

methodological research associated with over-determination (Fabrigar et al., 

1999; Guadagnoli & Velicer, 1988; Hogarty et al., 2005).  However, the results of 

this study may merely identify an upper limit to existing rules of thumb.  Mean 

values of agreement and congruence diminish as the ratios exceeded 15:1; 

however, in interactions that included ratios of 15:1 and less (with the exception 

of factor loading sensitivity), increased levels of over-determination had either 

little effect on the agreement and congruence measures or, where the effect was 

present, it was positive. 



 
 

192 
 

3. In terms of sample agreement with the population, the results associated with 

interactions that include communality are contradictory.  For all factor extraction 

methods included in this study, factor loading sensitivity and levels of general 

pattern agreement tend to improve as the level of communality increases.  

However, per element agreement diminishes as the level of communality 

increases; moreover, the amount of bias in factor loadings appears to be positively 

associated with the level of communality. 

4. The proportion of variables that were dichotomous interacted with the number of 

observed variables and the level of communality to yield significant differences in 

two measures of congruence and one measure of agreement.  The level of 

dichotomization did not exert a generally positive or negative influence on any of 

the relevant outcome measures. 

Recommendations for Research Practices 

The suggested use of ordinary least squares factor analytic techniques represents 

the major, empirically derived recommendation derived from the results of this study.  In 

all tested conditions, the ordinary least squares factor extraction method identified 

common factors with a high degree of efficacy.  This capacity to identify common factors 

is independent of over-determination, ratio of sample size to observed variables, 

communality, and the ratio of dichotomous variables to the total number of observed 

variables in a data set.   

Results of this study also highlight a positive relationship between sample-

population agreement and sample size; this relationship is apparent in all measures of 

factor loading sensitivity and agreement; in the factor loading matrices derived through 
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principal axis and maximum likelihood methods, the amount of bias tended to diminish 

as sample size increases.   Therefore, results of this study support a secondary 

recommendation for researchers to increase sample sizes as they attempt to improve 

estimates of factor loading parameters in the population.  However, this recommendation 

is not applicable when ordinary leas squares methods are employed. 

The generalizability of this study’s results and recommendations derived from 

them are limited by constraints imbedded in the research design.  These constraints 

include 

1. The consideration of uncorrelated factors. 

2. Equating the number of factors in the sample to the number of factors in the 

population. 

3. Selection of Pearson product moment correlation coefficients for the matrix of 

association. 

4. The limitation of measurement levels to include continuous and dichotomous 

levels only. 

5. The exclusive use of the varimax rotation strategy 

6. The application of a .30 loading threshold to be met before an observed variable is 

assigned to a factor.   

Recommendations for Future Research 

Researchers can incorporate the limiting constraints associated with this 

dissertation into methodological studies that extend the generalizability of conclusions 

and recommendations into areas that are beyond the scope of this study.  For example:   
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1. Through incorporating varying levels of correlation among the factors as a 

manipulated research context, researchers can explore the impact that varying 

strengths of relationships among factors have on the relative advantages of tested 

factor extraction methods; this type of study would also yield results and 

recommendations that are applicable when oblique rotation methods are 

employed. 

2. By not forcing the number of factors in the sample to be equal to the number of 

factors in the population, researchers can explore the influence that interactions 

among factor retention and factor extraction methods have on the quality of factor 

loading, parameter estimates. 

3. As opposed to assigning variables to factors based on a .30 factor loading 

threshold, researchers can explore the impact that different thresholds and 

strategies have on the accuracy of factor loading parameter estimates. 

4. Although the use of Pearson Product Moment Correlation Coefficients (PPMCC) 

as a matrix of association in exploratory factor analysis is well supported by 

empirical research (Fowler, 1987), tetrachoric correlations can be applicable when 

sample sizes are small (Greer, Dunlap, & Beatty, 2003).  In data contexts that 

include mixtures of polytomous response items and continuous level variables, 

polyserial correlations may be more appropriate than PPMCC’s (Lee, Poon, & 

Bentler, 1994).  Through incorporating these and other matrices of association 

into simulation studies, researchers can explore the impact that interactions 

among tested factor extraction methods and matrices of association have on the 

quality of parameter estimates. 
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5. By dichotomizing variables in locations other than the mid-point of possible 

ranges, means, or medians, researchers can explore the manner in which differing 

types of dichotomies influence the quality of parameter estimates derived through 

tested factor extraction methods. 

While maintaining many design characteristics of this dissertation, these example follow-

up studies can provide a more comprehensive picture of exploratory factor analysis 

through which guidelines and recommendations can be derived that are applicable to a 

broader range of research context
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Technical Descriptions 

Pearson Product Moment Correlation Coefficient 

The Pearson product moment correlation is given by (Glass & Hopkins, 1996): 

ߩ ൌ
௫௬ߪ

௬ൗߪ௫ߪ       (1) 

Where: 

a) ߪ௫௬ is the covariance between variables x and y; 

b)  ߪ௫ is the variance associated with x; 

c)  ߪ௬ is the variance of y. 

Spearman Rank Correlation Coefficient 

Spearman rank correlation is calculated through the following equation: 

௦ݎ ൌ 1 െ
 

మ



ሺమିଵሻ
       (2) 

Where n is the number of pairs, and Di is the difference between two ranks for the ith 

case (Glass & Hopkins, 1996).  

Phi Coefficent 

In the simplest form, a phi coefficient for a two by two contingency table is given 

by (Glass & Hopkins, 1996; Greer, Dunlap, & Beatty, 2003): 

݄݅ ൌ 	
ିௗ

ඥሺାሻሺାௗሻሺାሻሺାௗሻ
      (3) 

Where a, b, c, and d are cell counts in the contingency table. 
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Tetrachoric Correlation Coefficient 

The tetrachoric coefficient, rtet,  is defined by the following (Glass & Hopkins, 

1996; Greer, Dunlap, & Beatty, 2003): 

௧௧ݎ ൌ 	
ିௗ

௨ೣ௨∙మ
       (4) 

Where: 

a) a, b, c, and d are cell frequencies; 

b) he terms ux and uy are “ordinates of the unit normal distribution at px and py” 

(Glass & Hopkins, 1996, p. 136); 

c) the p terms represent the proportion of X and Y observations that become ones 

after dichotomization; 

d)  n. is the total number of observations (Glass & Hopkins, 1996; Greer, Dunlap, & 

Beatty, 2003).  

Point-Biserial Coefficient 

The point-biserial correlation coefficient is given by the following formula (Glass 

& Hopkins, 1996):  

ݎ ൌ 	
భതതതିబതതത

ௌ
	ට

భబ
∙ሺ∙ିଵሻ

       (5) 

Where: 

a) ଵܻഥ is the mean score on the continuous variable, X, for those subjects that score a 1 

on the dichotomously scored variable; 
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b) തܻ	is the mean value on the X variable for those who score 0 on the dichotomous 

variable; 

c) SY is the standard deviation of all Y scores; 

d) The terms ݊ଵ and  ݊ are the number of subjects that scored one and the number 

of subjects that scored zero (respectively) on the dichotomously measured 

variable; 

e) ݊∙ is the sum of  ݊  and  ݊ଵ  

Partition Maximum Likelihood Model for Estimating Polyserial Correlation 

Coefficient 

Let the following considerations be given: 

a) Σxx, Σyy, and Σyx are functions of θ corresponding to correlation matrices of (X, Y) 

and (Y, X) respectively; 

b) X is a r x 1 vector and Y is an s x 1 vector; 

c) Each vector is continuous and random with a joint distribution of N[0,Σ0]; 

d) Y is not observable; instead, values of Y are given by a random, polytomous 

vector, Z; the ath element of Z is equal to k(a); 

e) Pr(k) is the probability of the cell k.  

This probability is given by (Lee, Poon , & Bentler, 1994): 

Prሺ݇ሻ ൌ ሺെ1ሻ௦  ⋯

ଵ

ሺଵሻୀ

 ሺെ1ሻ∑ ሺ௨ሻᇲ
ೠసభ

ଵ

ሺ௦ሻୀ

Φୱ൫αଵ,୴ሺଵሻ,⋯ , αୱ,୴ሺୱሻ, Σ୷୷൯																		ሺ6ሻ 
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  “The maximium likelihood estimate of θ can be obtained by minimizing the 

following negative logarithm of the likelihood function of θ (Lee, Poon, & Bentler, 

1994): 

െ  ⋯  ൛logൣଵ൫ݔ,ଵ൯൧  logൣ௫൫݇หݔ,ଵห൯൧ൟ

ೖ

ୀଵ

ሺ௦ሻ

ሺ௦ሻୀଵ

ሺଵሻ

ሺଵሻୀଵ

																																	ሺ7ሻ 

Where: 

a) m(a) is the number of categories associated with the ath variable; 

b)  ߙ,ሺሻ is the threshold parameter for ߙ,ଵ and ߙ,ሺሻାଵ;   

c) ଵ൫ݔ,ଵ൯ is the r-dimensional multivariate normal density function. 

The multivariate normal density function is defined as: 

,ଵ൯ݔଵ൫ ൌ 	 ሺ2ߨሻ
ି

ଶൗ |Σ௫௫|
ିଵ

ଶൗ exp൛െݔ′,ଵΣ௫௫ିଵݔ,ଵ/2ൟ    (8) 

The conditional density function of Z given ݔ,ଵ is ଶ൫݇|ݔ,ଵ൯; this function is given by: 

,ଵ൯ݔ|ଶ൫݇ ൌ ሺെ1ሻ௦  ⋯  ሺെ1ሻ∑ ሺ௨ሻೞ
ೠసభ Φ௦ሺߙଵ

,∗௦ߙ⋯,∗ ܴ∗ሻ
ଵ

ሺ௦ሻୀ

ଵ

ሺଵሻୀ

																															ሺ9ሻ 

 Where R* is the correlation matrix of Y|X, and ߙ∗  is given by (Lee, Poon, & Bentler, 

1994): 

∗ߙ ൌ ൫ߙ,௩ሺሻ െ ଶߪ,ଵ൯ሺݔᇱΣ௫௫ିଵߪ െ  ሻିଵ/ଶ     (10)ߪᇱΣ௫௫ିଵߪ

Two Stage Estimation of Polyserial and  Polychoric Correlation 

The polyserial correlation is based on a random sample ሺܺ′, ܼሻ with only one 

polytomous variable Za,  In this procedure, the following equalities are assumed (Lee, 

Poon, & Bentler, 1994): 

a) ߙ ൌ 	 ൫ߙ,ଶ,⋯ ,  ;′,ሺሻ൯ߙ
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b) the number of observations are ݊ሺሻ,ሺሻ 	⋯݊.;   

c) The numbers of observations correspond to ܼ ൌ ݇ሺܽሻ, ܼ ൌ ݇ሺܾሻ, ܼ ൌ ݇;   

d) s = 1. 

Given the above, the negative log likelihood function is given by (Lee, Poon, & Bentler, 

1994, p. 352): 

 

,௫ߩሺܮ ,ߙ ሻߩ

ൌ
ܶݎ
2
logሺ2ߨሻ 	

ܶ
2
|Σ௫௫|݈݃


1
2

  ᇱሺሻ,ݔ

ೖሺೌሻ

ୀଵ

Σ௫௫ିଵݔሺሻ,

ሺሻ

ሺሻୀଵ

െ	   ݈݃ ቊΦቆ
,ሺሻାଵߙ െ ሺሻ,ݔΣ௫௫ିଵߩ

ሺ1 െ ሻߩΣ௫௫ିଵ′ߩ
ଵ
ଶൗ

ቇ

ೖሺೌሻ

ୀଵ

ሺሻ

ሺሻୀଵ

െ Φቆ
,ሺሻߙ െ ሺሻ,ݔΣ௫௫ିଵߩ

ሺ1 െ ሻߩΣ௫௫ିଵ′ߩ
ଵ
ଶൗ
ቇቋ																																																																															ሺ11ሻ 

 

 
 ௫ is column vector from r(r-1)/2 non-duplicated lower triangle of elements Σ௫௫ߩ“

sequentially row by row, and Ф is the standard univariate normal distribution function” 

(Lee, Poon, & Bentler, p. 352). 

 The polychoric correlation, ߩ , of the “bivariate submodel corresponding to Ya 

and Yb can be determined through minimizing the following “negative logarithm 

likelihood function:” 
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,ߙሺܨ ,ߙ ሻߩ

ൌ 	െ	   ݊ሺሻ,ሺሻ݈݃ሼܲݎሺܼ ൌ ݇ሺܽሻ, ܼ

ሺሻ

ሺሻୀଵ

ሺଵሻ

ሺଵሻୀଵ

ൌ ݇ሺܾሻሻሽ																																																																																											ሺ12ሻ 

 Where “. . . {k(a), k(b)} are respectively the ath and bth element of an observation zk in 

the s dimensional sample space” (Lee, Poon, & Bentler, 1994, p. 353). 

 Because each random observation in the bivariate submodel corresponds to an 

observation in the multivariate model, the negative logarithm likelihood function can be 

simplified to: 

,ߙሺܨ ,ߙ ሻߩ

ൌ 	െ	   ݈݊݃ሼܲݎሺܼ ൌ ݇ሺܽሻ, ܼ ൌ ݇ሺܾሻሻሽ

ሺሻ

ሺሻୀଵ

ሺଵሻ

ሺଵሻୀଵ

																										ሺ13ሻ 

  

In this maximum likelihood model, ሺߙ, ,ߙ  ሻ′ is the vector that minimizesߩ

,ߙሺܨ ,ߙ  .ሻ (Poon, Lee, & Bentler, 1994)ߩ

Principal Axis Factor Analysis 

If R is a correlation matrix with either communality estimates or ones on the main 

diagonal, the following relationship can be defined (Cureton & D’Agostino, 1983): 

ᇱܧܦܧ ൌ ܴ       (14) 

Where: 

a) The matrix E satisfies the condition that ܧᇱܧ ൌ  ;ܫ

b) the columns of E are eigenvectors for R;  
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c) D is a diagonal matrix; the elements of the main diagonal of D are eigenvalues of 

R  

Because the above relationship holds “under permutations of the diagonal elements of D, 

with corresponding permutations of the columns of E and the rows of E’,” the elements 

of D are arranged in descending order (Cureton & D’Agostino, 1983, p. 143).  

  If R is of rank m < n, then D is a diagonal matrix containing zeroes in the last n - 

m elements; the last n – m rows of E also consists of zeroes (Cureton & D’Agostino, 

1983).  The symmetric, matrix D can be written as: 

ቀܦ
ଵ
ଶൗ ቁ ቀܦ

ଵ
ଶൗ ቁ ൌ  (15)      ܦ

Because D1/2  contains diagonal elements ඥ ݀
 , R can be written as (Cureton & 

D’Agostino, 1983; Harman, 1976): 

ቀܦܧ
ଵ
ଶൗ ቁ ቀܦܧ

ଵ
ଶൗ ቁ

ᇱ
ൌ ܴ     (16) 

A Gramian matrix is symmetric and includes only real numbers among its 

elements. A Gramian (B) matrix must also have another real matrix (A) that when 

multiplied by its transpose yields the original matrix.  Formally, this relationship is 

defined as (Cureton & D’Agostino, 1983; Harman, 1976):  

ᇱܣܣ ൌ    (17)      ܤ	

When R is a Grammian, correlation matrix with communality estimates in the main 

diagonal, then the trace of the matrix is equal to the sum of its eigenvalues.  The 

relationship between the principal-axes of factor loadings (F) and the reduced correlation 

matrix is defined as (Cureton & D’Agostino, 1983): 

ᇱܨܨ ൌ 	ܴ      (18) 
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From the above consideration, then the matrix F can be defined as (Cureton & 

D’Agostino, 1983):    

ܨ ൌ ܦܧ
ଵ
ଶൗ       (19) 

 The trace of R is equal to the sum of its eigenvalues.  The sum of the squared 

elements of F is equal to the eigenvalues for that column.  The relationship between the 

matrix of factor loadings and eigenvalues can be written as (Cureton & D’Agostino, 

1983): 

ܨᇱܨ ൌ ܦ	
ଵ
ଶൗ ܦܧᇱܧ

ଵ
ଶൗ ൌ ܦ

ଵ
ଶൗ ܦܫ

ଵ
ଶൗ ൌ  (20)    ܦ

According to the basic factor analysis model, the predicted value of a given 

variable, in standardized form, can be given by (Cureton & D’Agostino, 1983; Harman, 

1976): 

ݖ ൌ 	 ܽଵܨଵ 	… ܽܨ 	…	 ܽܨ			݆ ൌ ሺ1, 2, … ݊ሻ   (21) 

Where the observed variables, j, are described in terms of m common factors, F.  The 

value of a given variable ݆ for an individual ݅ is given by (Cureton & D’Agostino, 1983; 

Harman, 1976): 

ݖ ൌ  ܽܨ 	ݑݕ



ୀଵ

		ሺ݅ ൌ 1, 2, …ܰ; ݆ ൌ 1, 2	 …݊ሻ																												ሺ22ሻ 

In this equation, 

a) ܨ is the value of the common factor  for individual ݅; 

b) ݑݕ represents the residual error; 

c) ܽܨ represents the contribution of a specific factor, , to the value of ݖ 

(Harman, 1976, p. 15).  
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The first step in principle axis factor analysis involves the selection of a set of 

factor coefficients, ܽଵ, so that the sum of the squares of these coefficients maximizes the 

contribution of the factor to the communality among the original variables.  This 

relationship is given by (Harman, 1976): 

ଵܸ ൌ 	 ܽଵଵ
ଶ 	ܽଶଵ

ଶ 	…	ܽଵ
ଶ       (23) 

Where the coefficients ܽ are chosen to maximize the value of ଵܸunder the following 

conditions (Harman, 1975, p. 136): 

ݎ ൌ  ܽܽ



ୀଵ

		ሺ݆, ݇ ൌ 1, 2, … ݊ሻ																																																				ሺ24ሻ 

ݎ ൌ 	         (25)ݎ

ݎ ൌ ݄
ଶ	       (26) 

In this model, ݄
ଶ is the communality estimate for the variable ݆ (Cureton & D’Agostino, 

1983; Harman, 1976). 

 Under the conditions described above, Lagrange multipliers can be used to 

maximize the value of ଵܸ. The following relationship highlights the manner in which 

these multipliers are employed (Harman, 1976): 

2ܶ ൌ ଵܸ െ  ݎݑ ൌ ଵܸ െ  ݑ ܽܽ



ୀଵ



,ୀଵ



,ୀଵ

																																	ሺ27ሻ 

In the above relationship, ݑ are the Lagrange multipliers (Harman, 1976). 

 By setting the partial derivative of the function T to zero for any variable ܽଵ and 

for the coefficients	 ܽ	ሺ	 ് 1ሻ, then the following equation is obtained: 
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߲ܶ
߲ ܽ

ൌ ଵߜ	 ܽଵ െ	ݑܽ



ୀଵ

ൌ 0																																																								ሺ28ሻ 

Where ߜଵ ൌ 1 if  ൌ 1 and 	ߜଵ ൌ 0 if  ് 1 (Harman, 1976, p. 136). 

 When the above equation is multiplied by ܽଵ and summed over j, the following 

relationship results (Harman, 1976): 

ଵߜ ܽଵ
ଶ െ	ݑ ܽଵܽ



ୀଵ

ൌ 0



ୀଵ



ୀଵ

																																																					ሺ29ሻ 

According to the above relationship: 

ݑ ܽଵ ൌ 	ܽଵ



ୀଵ

																																																																									ሺ30ሻ 

Therefore, by setting 

 ܽଵ
ଶ ൌ ଵߣ



ୀଵ

																																																																															ሺ31ሻ 

the above equation becomes 

ଵߣଵߜ െܽଵܽ



ୀଵ

ൌ 0																																																																ሺ32ሻ 

Under the condition that 	

ݎ ൌ  ܽܽ



ୀଵ

		ሺ݆, ݇ ൌ 1, 2, … ݊ሻ																																																									ሺ33ሻ 

the last equation becomes (Harman, 1976): 

ݎܽଵ െ ଵߣ ܽଵ ൌ 0																																																																			ሺ34ሻ



ୀଵ

 



Appendix A (Continued) 
 

211 
 

The above relationship leads to a set of equations for each value of ݆; this system of 

equations can be written as (Harman, 1976): 

				

ሺ݄ଵ
ଶ െ ሻܽଵଵߣ 																					 ଵଶܽଶଵݎ  ଵଷܽଷଵݎ										  ⋯ ଵܽଵݎ											 ൌ 0

ଶଵܽଵଵݎ											 										 ሺ݄ଶ
ଶ െ ሻܽଶଵߣ  ଶଷܽଷଵݎ										  ⋯ ଶܽଵݎ											 ൌ 0

ଷଵܽଵଵݎ											 																				 ଷଶܽଶଵݎ  ሺ݄ଷ
ଶ െ ሻܽଷଵߣ  ⋯ ଷܽଵݎ											 ൌ 0

.		.		.						.		.		.			.		.		. .		.		.				.		.		.				.		.		. .		.		.					.		.		.			.		.		.
ଵܽଵଵݎ												  ଶܽଶଵݎ																				  ଷܽଷଵݎ										  ⋯ ሺ݄ଶ െ ሻܽଵߣ ൌ 0

 

 (35) 

The maximization of ܸ “ . . . leads to the system of equations for the solution of the ݊ 

unknowns ܽଵ.”  For this system of equations to have a “non-trivial solution,” the 

determinant of the coefficients of the ܽଵ must vanish (Harman, 1976, p. 137). The 

following relationship illustrates this condition: 

ተ
ተ

ሺ݄ଵ
ଶ െ ሻߣ ଵଶݎ ଵଷݎ ⋯ ଵݎ
ଶଵݎ ሺ݄ଶ

ଶ െ ሻߣ ଶଷݎ ⋯ ଶݎ
ଷଵݎ ଷଶݎ ሺ݄ଷ

ଶ െ ሻߣ ⋯ ଷݎ
⋯ ⋯ ⋯ ⋯ ⋯
ଵݎ ଶݎ ଷݎ ⋯ ሺ݄ଶ െ ሻߣ

ተ
ተ
ൌ 0   (36) 

 

The above equation, in “determinantal form,” is a characteristic equation.  The roots of 

this equation are real, and, when substituted for ߣ, these roots reduce the rank of the 

determinant to ሺ݊ െ  :ሻ.  From these considerations, the value of V can be defined asݍ

ଵܸ ൌ  ܽଵ
ଶ



ୀଵ

ൌ  ሺ37ሻ																																																											ଵߣ

Therefore, ߣଵ is the largest root of the characteristic equation (Cureton & D’Agostino, 

1983; Harman, 1976).  The characteristic root ߣଵ is also referred to as an eigenvalue, and 

this allows for the identification of coefficients of the first factor that account for the 
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largest amount of the total communality possible (Cureton & D’Agostino, 1983; Harman, 

1976). 

 The pattern of factor coefficients for the first factor is determined by: 

ܽଵ ൌ
ଵߣ√ଵߙ

ඥሺߙଵଵ
ଶ  ଶଵߙ

ଶ  ⋯ ଵߙ
ଶ ሻ

൘ 		ሺ݆ ൌ 1, 2, … , ݊ሻ    (38) 

The set ݏ′ߙ are solutions to the equations for values of ݆.  This vector is called an 

eigenvector (Cureton & D’Agostino, 1983; Harman, 1976). 

 Once the set of factor coefficients for the first factor ܨଵ are determined, finding a 

factor that accounts for the maximum amount of residual communality becomes the next 

step in the factor analytic process (Cureton & D’Agostino, 1983; Harman, 1976).  The 

matrix of first factor residuals is defined as: 

ܴଵ ൌ ܴ െ ܴଵ        (39) 

Where 

ܴଵ ൌ ܽଵܽଵ
ᇱ         (40) 

This is an ݊	 ൈ ݊ matrix of the products of the first factor coefficients (Harman, 1976).  

By maximizing the value of ଶܸ, the the coefficients for the second factor, ܨଶ, are 

determined.  This value is given by: 

ଶܸ ൌ ܽଵଶ
ଶ  ܽଶଶ

ଶ  ⋯ ܽଶ
ଶ        (41) 

The maximum value of the root of the first factor residuals is the second largest root of 

the original correlation matrix (Cureton & D’Agostino, 1983; Harman, 1976).  By this 

process, the eigenvalues and associated eigenvectors are derived from the original 
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correlation matrix until ݉ factors are extracted (Cureton & D’Agostino, 1983; Harman, 

1976). 

Ordinary Least Squares Factor Analysis 

In Ordinary Least Squares factor analysis, the relationship between factor pattern 

matrices, A, and implied correlation matrices, ܴ, is given by (Cureton & D’Agostino, 

1983; Harman, 1976): 

ܴ ൌ  ᇱ       (42)ܣܣ

 The least squares solution can be found by “fitting ሺܴ െ ሻby ൫ܫ ܴ െ  ”ଶ൯ܪ

(Harman, 1976, p. 176). 

Where 

ଶܪ ൌ ܫ െ ܷଶ ൌ ݀݅ܽ݃ሺܣܣᇱሻ      (43)  

The diagonal matrix described in equation 43 contains communalities.  Minimizing the 

off-diagonal residuals results in the ordinary least squares method for developing factor 

solutions (Cureton & D’Agostino, 1983; Harman, 1976).  This minimization is given by 

the following expression (Harman, 1976): 

minۤሾܴ െ ሿܫ െ ሾܣܣᇱ െ ݀݅ܽ݃ሺܣܣᇱሻሿ(44)    ۥ 

The function to be minimized can be written algebraically as: 

݂ሺܣሻ ൌ  ቌݎ െ ܽܽ



ୀଵ

ቍ

ଶ
ିଵ

ୀଵ



ୀାଵ

																																						ሺ45ሻ 

Through varying the values of factor loadings, the objective is to minimize this function 

for a specified number of factors, m (Harman, 1976).  To develop a function that is 
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independent of the number of variables in the sample correlation matrix, Harman (1976) 

suggests the minimization of the root-mean-square deviation (rms); this is given by: 

ݏ݉ݎ ൌ 	ඨ
2݂ሺܽሻ

݊ሺ݊ െ 1ሻ൘ 																																																									ሺ46ሻ 

In addition to ensuring that the fitting function is independent of the order of the 

correlation matrix, the ordinary least squares method requires communality estimates to 

be less than or equal to one; communality estimates are restricted to values between zero 

and one via the following condition (Harman, 1976): 

݄
ଶ ൌ  ܽ

ଶ  1



ୀଵ

																																																																				ሺ47ሻ 

The iterative process through which ݂ሺܣሻ is minimized involves small changes in 

the variables, and the resulting variables replace the original ones (Harman, 1976).  

Specifically, “for any row j in A an increment ߳ሺ ൌ 1, 2,⋯ ,݉ሻis added to each 

element:  

ܽଵ  ߳ଵ,  ܽଶ  ߳ଶ,⋯ , ܽ  ߳,⋯ , ܽ  ߳ ” (Harman, 1976, pp. 177-178).  The new 

factor loadings are described in the following form: 

ܾ ൌ ܽ  ߳										ሺ݆ ൌ 1, 2,⋯ ,݉ሻ     (48) 

The reproduced correlation matrix of a given variable j with any other variable k 

is given by (Harman, 1976): 

ݎ̂ ൌ ܽ ܾ



ୀଵ

																																																																									ሺ49ሻ 

The sum of squared residuals correlations is (Harman, 1976): 
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݂ ൌ ቌݎ െܽ ܾ



ୀଵ

ቍ

ଶ


ୀଵ
ஷ

																																																				ሺ50ሻ 

When the original factor loading is “separated from the incremental change,” the above 

equation becomes (Harman, 1976, p. 178): 

݂ ൌ ቌݎ
∗ െܽ߳



ୀଵ

ቍ

ଶ


ୀଵ
ஷ

																																																		ሺ51ሻ 

With the incremental changes in factor loadings removed, the original residual 

correlations, ݎ
∗ , of variables k with a fixed j are given by (Harman, 1976): 

ݎ
∗ ൌ ݎ െܽ ܽ		ሺ݇ ൌ 1, 2,⋯ , ݊; ݇ ് ݆ሻ



ୀଵ

																																		ሺ52ሻ 

The first step in determining the values of ߳ that minimize the function ݂ involves taking 

the partial derivatives of the sum of squared residual correlations with the original factor 

loadings separated from the incremental changes; this expression becomes: 

 

߲ ݂

߲߳
ൌ 2ቌݎ

∗ െܽ߳



ୀଵ

ቍ ൫െܽ൯	ሺݍ ൌ 1, 2,⋯ ,݉ሻ


ୀଵ
ஷ

																			ሺ53ሻ 

In the second step, these equations are set to zero; this leads to the following “implicit 

equations” (Harman, 1976, p. 178): 

൮ܽܽ



ୀଵ
ஷ

൲



ୀଵ

߳ ൌ ݎ
∗ ܽ



ୀଵ
ஷ

		ሺݍ ൌ 1, 2,⋯ ,݉ሻ																																	ሺ54ሻ 
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߳ܣሻሺ
ᇱ ሻሺܣ ൌ ݎ

ܣ			൫ ߳ ൌ ߳ଵ, ߳ଶ,⋯ , ߳൯    (55) 

In this expression,  

a) ߳ is a row vector of incremental changes of the factor loadings for variable ݆; 

b)  ܣሻሺ is the factor loading matrix with the elements in row ݆ replaced with zeros; 

c)  ݎ
is the row vector of residual correlations of ݆ with all other variables.   

The solution for the values of ߳ that minimize the function ݂ is given by (Harman, 

1976): 

߳ ൌ ݎ
ܣ൫ܣሻሺ

ᇱ ሻሺ൯ܣ
ିଵ

     (56) 

In ordinary least squares, Heywood cases, or factor solutions that imply 

communalities greater than one, are not considered proper solutions.  Therefore, when 

solutions that minimize the function ݂ result in communalities that are greater than one, 

the following constraint is applied (Harman, 1976): 

 ܾ
ଶ



ୀଵ

 1																																																																						ሺ57ሻ 

This constraint ensures that minimum values of the fitting function yield proper factor 

solutions. 

Maximum Likelihood Factor Analysis 

Before using a maximum likelihood strategy to develop estimates of common 

factor loadings, a researcher must first use sample data to create a distribution of the 

elements of a covariance matrix.  When samples of observations are drawn from 

multivariate normal distributions, the distribution function of the elements of the 

covariance matrix can be defined as (Harman, 1976): 
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ܨ݀ ൌ ି|Σ|ܭ
ଵ
ଶሺேିଵሻ|ܵ|

ଵ
ଶሺேିିଶሻ݁ݔ െ

ܰ െ 1
2

 ݏߪ



,ୀଵ

ෑ ݏ݀



ழୀଵ

																									ሺ58ሻ 

 

 In this expression, 

a) K is a constant involving only ܰ and ݊; 

b)  is the population covariance matrix; 

c) S is the sample covariance matrix; 

d) the elements of the inverse matrix Σିଵ are represented by ߪ(Harman, 1976). 

 The ߪ in the above equation serves as the likelihood function, ܮ, for the sample. 

Given this relationship, the  next portion of the process involves estimating values for ܣመ 

and ܷଶ that satisfy the following relationship (Harman, 1976): 

Σ ൌ ଵܣܣ  ܷଶ      (59) 

The objective is to maximize the value of ܮ. Where ܣ	is the matrix of common factor 

coefficients, and ܷଶ is a diagonal matrix of “uniqueness” (Harman, 1976, p. 201). 

 This distribution function serves as a basis for a likelihood function (L); this 

function is given by (Harman, 1976, p. 201): 

log ܮ ൌ െ
ܰ െ 1
2

ሺ݈݃|Σ|ሻ   ߪ ܵ  Σ	݂	ݐ݊݁݀݊݁݁݀݊݅	݊݅ݐܿ݊ݑ݂	



,ୀଵ

															ሺ60ሻ 

The maximization of L implies the minimization of the following expression (Harman, 

1976): 

െ
2

	ܰ െ 1
log ܮ ൌ |Σ|݈݃   ߪ ܵ  Σ	݂	ݐ݊݁݀݊݁݁݀݊݅	݊݅ݐܿ݊ݑ݂	



,ୀଵ

																ሺ61ሻ 
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 The next step in the maximum likelihood estimation process involves finding the 

partial derivatives with respect to ܽ and ݑ and equating these expressions to zero; these 

calculations include “݊݉  ݊ variables in all.” Because the “estimated factor loadings for 

each variable are proportional the standard deviation of that variable,” the estimation 

equations are scale independent (Harman, 1976, p. 201).  The following equations present 

the results of the estimation procedures in matrix form (Harman, 1976): 

Ρ ൌ መᇱܣመܣ  ܷଶ      (62) 

መܣ ൌ Ρܴିଵܣመ       (63) 

ܷଶ ൌ ܫ െ  መᇱ      (64)ܣመܣ݃ܽ݅݀

መܣመᇱܴିଵܣ ൌ  (65)     ݔ݅ݎݐܽ݉	݈ܽ݊݃ܽ݅݀	ܽ

Where Ρ is the population correlation matrix, Ρ is an estimator of the population 

correlation matrix, and R is the sample correlation matrix with ones on the main diagonal 

(Harman, 1976).  

 Although the process described above will provide a basis for developing 

maximum likelihood estimates of factor loadings, Harman (1976) suggests assuming an 

equivalency between the sample correlation matrix and the estimator of the population 

correlation matrix.  This assumption yields a simpler process for obtaining factor loading 

estimates.  The expression for ܲ can be rewritten as (Harman, 1976):   

ᇱܣܣ  ܷଶ ൌ ܴ      (66) 

The following expression results from premultiplying both sides of the equation by 

 :ᇱܷିଶܣ

ሺܣᇱܷିଶܣ  ᇱܣሻܫ ൌ  ᇱܷିଶܴ      (67)ܣ
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We define a matrix ܬas: 

ܬ ൌ  (68)       ܣᇱܷିଶܣ

With this definition, the following equation can be formed: 

ሺܫ  ᇱܣሻܬ ൌ  ᇱܷିଶܴ       (69)ܣ

By simplifying the above equation, Harman (1976) describes the following expression as 

“amenable to an iterative method of solution” (p. 203): 

ᇱܣܬ ൌ ଶܴିܷܣ െ  ᇱ      (70)ܣ

  

 The vector of factor loadings is given by: 

ܣ ൌ ሺܽଵ	ܽଶ 	⋯ܽሻ      (71) 

Where each column vector, m, can be defined as: 

ܽ ൌ 	 ൫ܽଵ	ܽଶ 	⋯ܽ൯		ሺ ൌ 1, 2,⋯ ,݉	ሻ     (72) 

The iterative process for determining the matrix of factor loadings begins with trial 

values of ܽ.  As described by Harman (1976), the products of this process are termed ܾ; 

B represents the complete pattern matrix, and ܸଶis the resultant matrix of residuals.  The 

following are the iteration equations that yield trial values of ܽ: 

 

ܾଵ ൌ
ሺܴܷିଶܽଵ െ ܽଵሻ

ඥܽଵ
ᇱܷିଶሺܴܷିଶܽଵ െ ܽଵሻ

൘ 	    (73) 

ܾଶ ൌ
ሺܴܷିଶܽଶ െ ܽଶ െ ܾଵܾଵ

ᇱܷିଶܽଶሻ
ඥܽଶ

ᇱ ܷିଶሺܴܷିଶܽଶ െ ܽଶ െ ܾଵܾଵ
ᇱܷିଶܽଶሻ

൘   (74) 

ܾଷ ൌ
ሺܴܷିଶܽଷ െ ܽଷ െ ܾଵܾଵ

ᇱܷିଶܽଷ െ ܾଶܾଶ
ᇱܷିଶܽଷሻ

ඥܽଷ
ᇱ ܷିଶሺܴܷିଶܽଷ െ ܽଷ െ ܾଵܾଵ

ᇱܷିଶܽଷ െ ܾଶܾଶ
ᇱܷିଶܽଷሻ

																									ሺ75ሻ 
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ܸଶ ൌ ܫ െ  ᇱ       (76)ܤܤ݃ܽ݅݀

 While the above equations illustrate a three factor pattern, the process can be 

generalized to any number of factors (Harman, 1976).  This process is repeated until the 

algorithm converges on a solution, a matrix that fulfills a prescribed degree of closeness.  

The resulting matrix, A, contains maximum likelihood estimates of factor loadings 

(Harman, 1976). 
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SAS IML Code for Illustrative Example 
 
proc iml; 
 
nvar = 9; 
nfact = nvar - 6; 
step1_A_tilde =j(nvar,nfact,0); 
step2_A_tilde = round((uniform(step1_A_tilde)*(nfact-.00000001))-.5); 
 
see_step2 = round((uniform(step1_A_tilde)*(nfact-.00000001))-.5); 
 
test0 = round((uniform(step1_A_tilde)*(nfact-.00000001))-.5); 
test1 = (uniform(step1_A_tilde)*(nfact-.00000001))-.5; 
test2 = ((step1_A_tilde)*(nfact-.00000001))-.5; 
test3 = round((step1_A_tilde)*(nfact-.00000001))-.5; 
 
 
A1tilde=step2_A_tilde; 
do j=2 to nfact; 
 do i=1 to nvar; 
  if j<nfact then do; 
  A1tilde[i,j]=round(((nfact-.00000001-sum(A1tilde[i,1:j-1])) 
                     *uniform(0))-.5); 
  end; 
  if j=nfact then do; 
  A1tilde[i,nfact]=nfact-sum(A1tilde[i,1:nfact-1])-1; 
  end; 
 end; 
end; 
 
x=normal(A1tilde); 
x2=x##2; 
d=j(nvar,nfact,0); 
do j=1 to nfact; 
 do i=1 to nvar; 
  d[i,j]=(sum(x2[i,1:nfact]))##-.5; 
 end; 
end; 
 
cvec=j(1,nfact,0); 
do j=1 to nfact; 
 cvec[1,j]=round((uniform(0)*.2999999)+.65,.1); 
end; 
c=j(nvar,1,1)*cvec; 
c2=c##2; 
 
bp1=j(nvar,nvar,0); 
bp2=uniform(bp1); 
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bp3=(bp2*.2999999)+.55; 
b1square=round(diag(bp3),.1); 
B1=b1square##.5; 
b3square=I(nvar)-b1square; 
B3=b3square##.5; 
 
ones=j(nvar,nfact,1); 
y=A1tilde#c + d#x#((ones-c2)##.5); 
 
k=.2; 
z=j(nvar,nfact,0); 
do j=1 to nfact; 
 do i=1 to nvar; 
  z[i,j]=((1+k)*y[i,j]*(y[i,j]+abs(y[i,j])+k))/((2+k)*(abs(y[i,j])+k)); 
 end; 
end; 
 
z2=z##2; 
g=j(nvar,nfact,0); 
do j=1 to nfact; 
 do i=1 to nvar; 
  g[i,j]=(sum(z2[i,1:nfact]))##-.5; 
 end; 
end; 
 
A1star=g#z; 
 
A1=B1*A1star; 
 
A3star=I(nvar); 
A3=B3*A3star; 
 
R=A1*A1`+A3*A3`; 
 
print nvar; 
print nfact; 
print step1_A_tilde; 
print test0; 
print test1; 
print test2; 
print test3; 
print see_step2; 
print A1tilde; 
print x; 
print x2; 
print bp1; 
print B1; 
print b1square; 
print bp3; 
print B3; 
print b3square; 
print d; 
print c; 
print c2; 
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print y; 
print z; 
print A1star; 
print A1; 
print A3star; 
print A3; 
print R; 
 
quit; 
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Multivariate Analyses of Variance Summary Tables 
Table C1 

Multivariate Analysis of Variance for Factor Loading Sensitivity 

 df ߉ f P > f 

Factor Extraction Method (M) 2 (459) .0001 342901* <.0001

M × No. of Factors (K) 4 (918) .0026 4277.32* <.0001

M × No. Observed Variables (P) 4 (918) .0024 4454.70* <.0001

M × Sample Size (N) 6 (918) .8863 9.51* <.0001

M × Communality Level (H) 4 (918) .5980 67.26* <.0001

M × Dichotomization (D) 8 (918) .8226 11.77* <.0001

M × K × P 8 (918) .0270 582.84* <.0001

M × K × N 12 (918) .8134 8.32* <.0001

M × K × H 8 (918) .6907 22.32* <.0001

M × K × D 16 (918) .8521 4.78* <.0001

M × P × N 12 (918) .8775 5.16* <.0001

M × P × H 8 (918) .6109 32.06* <.0001

M × P × D 16 (918) .9381 1.86* .0204

M × N × H 12 (918) .9735 1.04 .4134

M × N × D 24 (918) .9856 0.28 .9998

M × H × D 16 (918) .9134 2.66* .0004

* Significant at alpha = .025 level
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Table C2 

Repeated Measures Analysis of Variance for Factor Loading Sensitivity  

Source df SS MS F P ீߟ
ଶ  

Between Subjects 

Number of Factors (K) 2 26.477 13.239 34780.8* <.0001 .999

Number of Variables (P) 2 41.680 20.840 54751.0* <.0001 .993

Sample Size (N) 3 0.012 0.004 10.96* <.0001 .044

Communality (H) 2 0.142 0.071 186.45* <.0001 .343

Dichotomization (D) 4 0.027 0.007 17.86* <.0001 .091

K × P 4 1.693 0.423 1111.93* <.0001 .862

K × N 6 0.003 0.0005 1.42 .205 .011

K × H 4 0.018 0.004 11.81* <.0001 .062

K × D 8 0.016 0.002 5.43* <.0001 .574

P × N 6 0.003 0.0006 1.51 .174 .012

P × H 4 0.216 0.005 14.21* <.0001 .074

P × D 8 0.004 0.0005 1.38 .204 .015

N × H 6 0.001 0.0002 0.55 .770 .004

N × D 12 0.002 0.0001 0.38 .969 .006

H × D 8 0.10 0.001 3.41* .001 .037

Error 460 0.175 0.0003  
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Table C2 

Repeated Measures Analysis of Variance for Factor Loading Sensitivity (Continued) 

Source df SS MS F P ீߟ
ଶ  

Within Subjects (with Greenhouse-Geisser asjusted Pr > F) 

Factor Extraction Method (M) 2 125.806 62.903 600815* <.0001 .998

M × K 4 13.599 3.400 32474.6* <.0001 .980

M × P 4 20.986 5.246 50111.1* <.0001 .987

M × N 6 0.003 0.0005 4.42* .0019 .010

M × H 4 0.018 0.005 44.39* <.0001 .064

M × D 8 0.014 0.0018 16.81* <.0001 .049

M × K × P 8 0.910 0.114 1086.34* <.0001 .770

M × K × N 12 0.009 0.0008 7.48* <.0001 .033

M × K × H 8 0.011 0.0014 13.09* <.0001 .038

M × K × D 16 0.010 0.0006 5.75* <.0001 .034

M × P × N 12 0.003 0.0002 2.21 .0269 .010

M × P × H 8 0.0171 0.0020 20.47* <.0001 .059

M × P × D 16 0.003 0.0002 1.74 .0663 .011

M × N × H 12 0.001 0.0001 1.16 .325 .005
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Table C3 

Multivariate Analysis of Variance for General Pattern Agreement  Values 

 df ߉ f P > f 

Factor Extraction Method (M) 2 (459) .0020 109246* <.0001

M × No. of Factors (K) 4 (918) .0349 997.42* <.0001

M × No. Observed Variables (P) 4 (918) .0235 1267.08* <.0001

M × Sample Size (N) 6 (918) .3531 104.48* <.0001

M × Communality Level (H) 4 (918) .0962 540.34* <.0001

M × Dichotomization (D) 8 (918) .9779 1.29 .2451

M × K × P 8 (918) .2009 141.24* <.0001

M × K × N 12 (918) .7233 13.45* <.0001

M × K × H 8 (918) .3087 91.78* <.0001

M × K × D 16 (918) .9242 2.31* .0025

M × P × N 12 (918) .9455 2.17* .0113

M × P × H 8 (918) .7637 16.56* <.0001

M × P × D 16 (918) .9718 0.15 .6554

M × N × H 12 (918) .5289 28.99* <.0001

M × N × D 24 (918) .9920 0.15 1.0000

M × H × D 16 (918) .9819 0.53 .9343

* Significant at alpha = .025 level 
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Table C4 

Repeated Measures Analysis of Variance for General Pattern Agreement 

Source Df SS MS F P ீߟ
ଶ  

Between Subjects 

Number of Factors (K) 2 3.356 1.678 1053.97* <.0001 .764

Number of Variables (P) 2 9.830 4.915 3087.36* <.0001 .904

Sample Size (N) 3 0.547 0.182 114.48* <.0001 .345

Communality (H) 2 4.040 2.020 1268.82* <.0001 .795

Dichotomization (D) 4 0.018 0.005 2.98* .0191 .018

K × P 4 5.067 1.267 795.69* <.0001 .830

K × N 6 0.100 0.0167 10.51* <.0001 .088

K × H 4 0.877 0.219 137.80* <.0001 .458

K × D 8 .034 0.004 2.67* .0072 .032

P × N 6 0.006 0.001 0.66 .6793 .006

P × H 4 0.583 0.146 91.50* <.0001 .359

P × D 8 0.018 0.002 1.43 .1799 .017

N × H 6 0.033 0.005 3.51* .0021 .031

N × D 12 0.002 0.000 0.09 1.00 .001

H × D 8 0.004 0.005 0.33 .9549 .004

Error 460 0.732 0.001  
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Table C4 

Repeated Measures Analysis of Variance for General Pattern Agreement (Continued) 

Source Df SS MS F P ீߟ
ଶ  

Within Subjects (with Greenhouse-Geisser asjusted Pr > F) 

Factor Extraction Method (M) 2 128.078 64.039 192576* <.0001 .991

M × K 4 4.695 1.174 3529.54* <.0001 .819

M × P 4 11.741 2.935 8826.69* <.0001 .919

M × N 6 0.403 0.067 201.90* <.0001 .280

M × H 4 2.414 0.603 1814.89* <.0001 .699

M × D 8 0.003 0.000 0.99 .4209 .002

M × K × P 8 0.758 0.095 284.98* <.0001 .422

M × K × N 12 0.026 0.002 6.50* <.0001 .024

M × K × H 8 0.504 0.063 189.60* <.0001 .327

M × K × D 16 0.184 0.001 3.47* .0003 .017

M × P × N 12 0.011 0.001 2.80* .0078 .011

M × P × H 8 0.022 0.003 8.49* <.0001 .021

M × P × D 16 0.007 0.000 1.38 .1950 .007

M × N × H 12 0.229 0.019 57.33* <.0001 .180

M × N × D 24 0.001 0.000 0.10 1.000 .001

M × H × D 16 0.004 0.000 0.71 .6973 .003

Error (Method) 920 0.306 0.000  

* Significant at the alpha = .025 level 
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Table C5 

Multivariate Analysis of Variance for Per Element Pattern Agreement  

 df Λ f P > f 

Factor Extraction Method (M) 2 (459) .0085 26828.4* <.0001

M × No. of Factors (K) 4 (918) .0157 1599.46* <.0001

M × No. Observed Variables (P) 4 (918) .0888 540.51* <.0001

M × Sample Size (N) 6 (918) .3154 119.42* <.0001

M × Communality Level (H) 4 (918) .1318 402.65* <.0001

M × Dichotomization (D) 8 (918) .9611 2.30* .0192

M × K × P 8 (918) .1220 213.70* <.0001

M × K × N 12 (918) .7942 9.34* <.0001

M × K × H 8 (918) .6730 25.12* <.0001

M × K × D 16 (918) .8355 5.39* <.0001

M × P × N 12 (918) .8618 5.91* <.0001

M × P × H 8 (918) .6102 32.14* <.0001

M × P × D 16 (918) .9431 1.71 .0403

M × N × H 12 (918) .5823 23.75* <.0001

M × N × D 24 (918) .9940 0.12 1.0000

M × H × D 16 (918) 0.9336 2.00* .0107

* Significant at alpha = .025 level 
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Table C6 

Repeated Measures Analysis of Variance for Per Element Pattern Agreement 

Source Df SS MS F P ீߟ
ଶ  

Between Subjects 

Number of Factors (K) 2 26.148 13.074 12137.8* <.0001 .978

Number of Variables (P) 2 0.285 0.142 132.18* <.0001 .330

Sample Size (N) 3 0.338 0.113 104.67* <.0001 .370

Communality (H) 2 1.293 0.646 600.08* <.0001 .691

Dichotomization (D) 4 0.017 0.004 4.01* .0033 .029

K × P 4 3.874 0.968 899.10* <.0001 .870

K × N 6 0.120 0.020 18.540* <.0001 .172

K × H 4 0.417 0.104 96.70* <.0001 .419

K × D 8 0.035 0.004 4.07* .0001 .057

P × N 6 0.027 0.004 4.16* .0004 .044

P × H 4 0.106 0.026 25.54* <.0001 .155

P × D 8 0.030 0.004 3.43* .0007 .049

N × H 6 0.059 0.010 9.10* <.0001 .092

N × D 12 0.001 0.000 0.05 1.000 .001

H × D 8 0.020 0.002 2.33* 0.019 .033

Error 460 0.495 0.001  
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Table C6 

Repeated Measures Analysis of Variance for Per Element Pattern Agreement (Continued)

Source Df SS MS F P ீߟ
ଶ  

Within Subjects (with Greenhouse-Geisser asjusted Pr > F) 

Factor Extraction Method (M) 2 8.235 4.118 45801.9* <.0001 .934

M × K 4 4.122 1.030 11461.9* <.0001 .877

M × P 4 0.641 0.160 1781.58* <.0001 .526

M × N 6 0.140 0.233 259.35* <.0001 .195

M × H 4 0.438 0.109 1219.6* <.0001 .431

M × D 8 0.002 0.000 2.86* .0178 .003

M × K × P 8 0.521 0.065 724.05* <.0001 .474

M × K × N 12 0.003 0.000 2.67* .0100 .004

M × K × H 8 0.028 0.003 38.25* <.0001 .045

M × K × D 16 0.121 0.001 8.43* <.0001 .020

M × P × N 12 0.002 0.000 1.96 .0622 .004

M × P × H 8 0.018 0.002 24.36* <.0001 .029

M × P × D 16 0.003 0.000 2.14* .0226 .005

M × N × H 12 0.048 0.004 44.65* <.0001 .077

M × N × D 24 0.000 0.000 0.09 1.0000 .000

M × H × D 16 0.004 0.000 3.13* .0009 .007

Error (Method) 920 0.083 0.000  

* Significant at the alpha = .025 level 
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Table C7 

Multivariate Analysis of Variance Summary for Total Pattern Agreement  

 Df ߉ f P > f 

Factor Extraction Method (M) 2 (459) .7290 85.36* <.0001

M × No. of Factors (K) 4 (918) .5764 72.79* <.0001

M × No. Observed Variables (P) 4 (918) .6269 60.35* <.0001

M × Sample Size (N) 6 (918) .9184 6.65* <.0001

M × Communality Level (H) 4 (918) .9806 2.26 .0609

M × Dichotomization (D) 8 (918) .9541 2.73* .0057

M × K × P 8 (918) .4592 54.59* <.0001

M × K × N 12 (918) .8543 6.27* <.0001

M × K × H 8 (918) .9592 2.41 .0141

M × K × D 16 (918) .9094 2.79* .0002

M × P × N 12 (918) .8778 5.15* <.0001

M × P × H 8 (918) .9683 1.86 .0626

M × P × D 16 (918) .9250 2.28* .0028

M × N × H 12 (918) .9856 0.56 .8782

M × N × D 24 (918) .9679 0.63 .9165

M × H × D 16 (918) .9455 1.63 .0552

* Significant at alpha = .025 level 
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Table C8 

Repeated Measures Analysis of Variance for Total Pattern Agreement 

Source Df SS MS F P ீߟ
ଶ  

Between Subjects 

Number of Factors (K) 2 <.0001 <.0001 167.05* <.0001 .195

Number of Variables (P) 2 <.0001 <.0001 136.36* <.0001 .165

Sample Size (N) 3 <.0001 <.0001 12.55* <.0001 .026

Communality (H) 2 <.0001 <.0001 3.12 .0321 .005

Dichotomization (D) 4 <.0001 <.0001 4.49* .0015 .013

K × P 4 <.0001 <.0001 133.20* <.0001 .278

K × N 6 <.0001 <.0001 11.90* <.0001 .049

K × H 4 <.0001 <.0001 3.90* .0040 .011

K × D 8 <.0001 <.0001 4.64* <.0001 .026

P × N 6 <.0001 <.0001 9.56* <.0001 .040

P × H 4 <.0001 <.0001 2.68 .0311 .008

P × D 8 <.0001 <.0001 3.59* .0005 .020

N × H 6 <.0001 <.0001 0.12 .9943 .000

N × D 12 <.0001 <.0001 0.25 .9945 .002

H × D 8 <.0001 <.0001 2.27* .0220 .013

Error 460 <.0001 <.0001  
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Table C8 

Repeated Measures Analysis of Variance for Total Pattern Agreement (Continued) 

Source Df SS MS F P ீߟ
ଶ  

Within Subjects (with Greenhouse-Geisser asjusted Pr > F) 

Factor Extraction Method (M) 2 <.0001 <.0001 170.43* <.0001 .198

M × K 4 <.0001 <.0001 167.25* <.0001 .326

M × P 4 <.0001 <.0001 136.17* <.0001 .283

M × N 6 <.0001 <.0001 12.55* <.0001 .052

M × H 4 <.0001 <.0001 3.50 .0310 .010

M × D 8 <.0001 <.0001 4.49* .0014 .025

M × K × P 8 <.0001 <.0001 133.37* <.0001 .436

M × K × N 12 <.0001 <.0001 11.91* <.0001 .094

M × K × H 8 <.0001 <.0001 3.89* .0041 .022

M × K × D 16 <.0001 <.0001 4.64* <.0001 .051

M × P × N 12 <.0001 <.0001 9.56* <.0001 .077

M × P × H 8 <.0001 <.0001 2.71 .0295 .015

M × P × D 16 <.0001 <.0001 3.60* .0005 .040

M × N × H 12 <.0001 <.0001 0.12 .9944 .001

M × N × D 24 <.0001 <.0001 0.26 .9944 .004

M × H × D 16 <.0001 <.0001 2.27* .0217 .025

Error (Method) 920 .0001 <.0001  

* Significant at the alpha = .025 level 
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Table C9 

Multivariate Analysis of Variance for Congruence  

 df ߉ f P > f 

Factor Extraction Method (M) 2 (459) 0.0262 8533.92* <.0001

M × No. of Factors (K) 4 (918) 0.0818 572.86* <.0001

M × No. Observed Variables (P) 4 (918) 0.5824 71.24* <.0001

M × Sample Size (N) 6 (918) 0.5961 45.17* <.0001

M × Communality Level (H) 4 (918) 0.2569 223.29* <.0001

M × Dichotomization (D) 8 (918) 0.9199 4.89* <.0001

M × K × P 8 (918) 0.6105 32.11* <.0001

M × K × N 12 (918) 0.3077 61.40* <.0001

M × K × H 8 (918) 0.8003 13.52* <.0001

M × K × D 16 (918) 0.8792 3.81* <.0001

M × P × N 12 (918) 0.8819 4.96* <.0001

M × P × H 8 (918) 0.9306 4.20* <.0001

M × P × D 16 (918) 0.9180 2.51* .0009

M × N × H 12 (918) 0.9592 1.61 .0835

M × N × D 24 (918) 0.9954 0.09 1.0000

M × H × D 16 (918) 0.9171 2.54* .0008

* Significant at alpha = .025 level 
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Table C10 

Repeated Measures Analysis of Variance for Congruence 

Source df SS MS F P ீߟ
ଶ  

 

Between Subjects 

Number of Factors (K) 2 71.713 35.856 7026.19* <.0001 .966

Number of Variables (P) 2 2.618 1.309 256.53* <.0001 .506

Sample Size (N) 3 3.626 1.209 236.82* <.0001 .586

Communality (H) 2 0.417 0.208 40.83* <.0001 .140

Dichotomization (D) 4 0.152 0.038 7.46* <.0001 .056

K × P 4 1.745 0.436 85.49* <.0001 .405

K × N 6 0.333 0.055 10.89* <.0001 .115

K × H 4 0.563 0.141 27.60* <.0001 .180

K × D 8 0.242 0.030 5.94* <.0001 .086

P × N 6 0.012 0.002 0.40 .8799 .005

P × H 4 0.419 0.010 2.05 .0859 .016

P × D 8 0.077 0.009 1.89 .0594 .029

N × H 6 0.185 0.030 7.46* <.0001 .067

N × D 12 0.006 0.000 0.10 1.0000 .002

H × D 8 0.211 0.026 5.17* <.0001 .076

Error 460 2.347 0.005  
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Table C10 

Repeated Measures Analysis of Variance for Congruence (Continued) 

Source df SS MS F P ீߟ
ଶ  

Within Subjects (with Greenhouse-Geisser asjusted Pr > F) 

Factor Extraction Method (M) 2 2.788 1.393 6061.00* <.0001 .521

M × K 4 0.247 0.062 268.64* <.0001 .088

M × P 4 0.034 0.009 37.61* <.0001 .013

M × N 6 0.076 0.013 55.10* <.0001 .029

M × H 4 0.557 0.139 605.91* <.0001 .179

M × D 8 0.003 0.000 1.71 .1352 .001

M × K × P 8 0.021 0.003 11.66* <.0001 .008

M × K × N 12 0.368 0.031 133.46* <.0001 .126

M × K × H 8 0.015 0.002 8.28* <.0001 .006

M × K × D 16 0.014 0.001 3.86* <.0001 .005

M × P × N 12 0.018 0.001 6.47* <.0001 .007

M × P × H 8 0.006 0.001 3.19* .0088 .002

M × P × D 16 0.006 0.000 1.76 .0694 .002

M × N × H 12 0.004 0.000 1.38 .2097 .001

M × N × D 24 0.001 0.00 0.13 1.0000 .000

M × H × D 16 0.010 0.001 2.85* .0023 .004

Error (Method) 920 0.212 0.000  

* Significant at the alpha = .025 level 
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Table C11 

Multivariate Analysis of Variance for Factor Score Correlations 

 df ߉ F P > f 

Factor Extraction Method (M) 2 (400) .0218 8978.7* <.0001

M × No. of Factors (K) 4 (800) .0226 1129.49* <.0001

M × No. Observed Variables (P) 4 (800) .0698 556.90* <.0001

M × Sample Size (N) 6 (800) .5146 52.54* <.0001

M × Communality Level (H) 4 (800) .3978 117.08* <.0001

M × Dichotomization (D) 8 (800) .9486 2.67* .0067

M × K × P 6 (800) .0712 366.49* <.0001

M × K × N 12 (800) .6312 17.24* <.0001

M × K × H 8 (800) .6205 26.95* <.0001

M × K × D 16 (800) .9029 2.62* .0005

M × P × N 12 (800) .8982 3.67* <.0001

M × P × H 8 (800) .5600 33.63* <.0001

M × P × D 16 (800) .9544 1.18 .2777

M × N × H 12 (800) .9209 2.80* .0009

M × N × D 24 (800) .9917 0.14 1.0000

M × H × D 16 (800) .9704 0.76 .7346

* Significant at alpha = .025 level 
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Table C12 

Repeated Measures Analysis of Variance for Factor Score Correlations  

Source df SS MS F P ீߟ
ଶ  

Between Subjects 

Number of Factors (K) 2 25.397 19.198 3046.54* <.0001 .924

Number of Variables (P) 2 3.278 1.639 378.36* <.0001 .601

Sample Size (N) 3 1.498 0.499 115.29* <.0001 .408

Communality (H) 2 0.414 0.207 47.75* <.0001 .160

Dichotomization (D) 4 0.019 0.005 1.08 .3666 .008

K × P 3 12.752 4.251 981.17* <.0001 .854

K × N 6 0.228 0.038 8.78* <.0001 .095

K × H 4 1.041 0.260 60.09* <.0001 .324

K × D 8 0.090 0.113 2.60* .0088 .040

P × N 6 0.019 0.003 0.74 .6208 .009

P × H 4 0.381 0.095 21.99* <.0001 .149

P × D 8 0.082 0.010 2.38* .0162 .037

N × H 6 0.113 0.019 4.34* .0003 .049

N × D 12 0.003 0.000 0.06 1.0000 .001

H × D 8 0.120 0.015 3.48* .0007 .053

Error 401 1.737 0.004  
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Table C12 

Repeated Measures Analysis of Variance for Factor Score Correlations (Continued) 

Source df SS MS F P ீߟ
ଶ  

Within Subjects (with Greenhouse-Geisser asjusted Pr > F) 

Factor Extraction Method (M) 2 7.841 3.921 7246.31* <.0001 .783

M × K 4 4.341 1.085 2005.77* <.0001 .666

M × P 4 3.493 0.873 1613.95* <.0001 .617

M × N 6 0.085 0.014 26.17* <.0001 .038

M × H 4 0.110 0.027 50.68* <.0001 .048

M × D 8 0.010 0.001 2.45 .0291 .005

M × K × P 6 3.724 0.621 1147.13* <.0001 .632

M × K × N 12 0.077 0.006 11.83* <.0001 .034

M × K × H 8 0.089 0.011 20.57* <.0001 .039

M × K × D 16 0.021 0.001 2.40* .0069 .009

M × P × N 12 0.013 0.001 2.01 .0425 .006

M × P × H 8 0.275 0.034 63.62* <.0001 .112

M × P × D 16 0.006 0.000 0.72 1.0000 .002

M × N × H 12 0.023 0.002 3.61* .0004 .011

M × N × D 24 0.001 0.000 0.08 1.0000 .000

M × H × D 16 0.006 0.00 0.76 .6801 .003

Error (Method) 802 0.434 0.001  

* Significant at the alpha = .025 level 
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Table C13 

Multivariate Analysis of Variance for Estimates of Loading Bias 

 df Λ F P > f 

Factor Extraction Method (M) 2 (459) .0018 127099* <.0001

M × No. of Factors (K) 4 (918) .0114 1923.23* <.0001

M × No. Observed Variables (P) 4 (918) .1339 397.61* <.0001

M × Sample Size (N) 6 (918) .9765 1.83 .0900

M × Communality Level (H) 4 (918) .0182 1469.72* <.0001

M × Dichotomization (D) 8 (918) .9366 3.82* .0002

M × K × P 8 (918) .3271 85.88* <.0001

M × K × N 12 (918) .9207 3.22* .0001

M × K × H 8 (918) .1148 223.97* <.0001

M × K × D 16 (918) .9424 1.73 .0369

M × P × N 12 (918) .9775 0.88 .5709

M × P × H 8 (918) .8786 7.67* <.0001

M × P × D 16 (918) .9147 2.67* .0005

M × N × H 12 (918) .9888 0.43 .9516

M × N × D 24 (918) .9786 0.42 .9944

M × H × D 16 (918) .9116 2.72* .0003

* Significant at alpha = .025 level 
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Table C14 

Repeated Measures Analysis of Variance for Estimates of Loading Bias 

Source df SS MS F P ீߟ
ଶ  

Between Subjects 

Number of Factors (K) 2 1.826 0.913 8596.94* <.0001 .966

Number of Variables (P) 2 < 0.001 < 0.001 1.48 .2290 .005

Sample Size (N) 3 0.039 0.013 122.94* <.0001 .382

Communality (H) 2 0.441 0.220 2076.21* <.0001 .874

Dichotomization (D) 4 0.006 0.002 15.63* <.0001 .095

K × P 4 0.104 0.026 244.87* <.0001 .621

K × N 6 0.010 0.002 15.62* <.0001 .136

K × H 4 0.193 0.048 454.50* <.0001 .753

K × D 8 0.004 < 0.001 4.91* <.0001 .062

P × N 6 < 0.001 < 0.001 0.85 .5323 .008

P × H 4 < 0.001 < 0.001 0.61 .6567 .004

P × D 8 0.002 < 0.001 2.03 .0410 .026

N × H 6 0.001 < 0.001 1.74 .1098 .017

N × D 12 < 0.001 < 0.001 0.09 1.000 .002

H × D 8 0.003 < 0.001 3.58* .0005 .046

Error 460 0.049 < 0.001  
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Table C14 

Repeated Measures Analysis of Variance for Estimates of Loading Bias (Continued) 

Source df SS MS F P ீߟ
ଶ  

Within Subjects (with Greenhouse-Geisser asjusted Pr > F) 

Factor Extraction Method (M) 2 7.964 3.982 252532* <.0001 .992

M × K 4 1.237 0.309 19610.8* <.0001 .951

M × P 4 .0925 0.231 1466.67* <.0001 .594

M × N 6 .0001 < 0.001 1.64 .1778 .002

M × H 4 0.492 0.123 7807.54* <.0001 .886

M × D 8 < 0.001 < 0.001 4.61* .0011 .009

M × K × P 8 0.022 0.003 176.98* <.0001 .261

M × K × N 12 < 0.001 < 0.001 1.98 .0666 .006

M × K × H 8 0.063 0.008 501.09* <.0001 .499

M × K × D 16 0.001 < 0.001 2.38* .0157 .009

M × P × N 12 < 0.001 < 0.001 0.36 .9033 .001

M × P × H 8 <0.001 <0.001 4.01* .0032 .008

M × P × D 16 0.001 < 0.001 3.40* .0008 .013

M × N × H 12 < 0.001 < 0.001 0.42 .8693 .001

M × N × D 24 < 0.001 < 0.001 0.17 .9994 .001

M × H × D 16 < 0.001 < 0.001 1.85 .0644 .007

Error (Method) 920 0.014 < 0.001  

* Significant at the alpha = .025 level 
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Table C15 

Multivariate Analysis of Variance for Factor Loading RMSE 

 df ߉ F P > f 

Factor Extraction Method (M) 2 (459) .0269 8274.65* <.0001

M × No. of Factors (K) 4 (918) .1677 330.94* <.0001

M × No. Observed Variables (P) 4 (918) .6742 50.01* <.0001

M × Sample Size (N) 6 (918) .3964 90.00* <.0001

M × Communality Level (H) 4 (918) .2156 264.72* <.0001

M × Dichotomization (D) 8 (918) .9128 5.35* <.0001

M × K × P 8 (918) .6137 31.73* <.0001

M × K × N 12 (918) .3581 51.33* <.0001

M × K × H 8 (918) .6972 22.68* <.0001

M × K × D 16 (918) .7844 7.41* <.0001

M × P × N 12 (918) .9955 0.17 .9993

M × P × H 8 (918) .7143 21.02* <.0001

M × P × D 16 (918) .8908 3.42* <.0001

M × N × H 12 (918) .9641 1.41 .1543

M × N × D 24 (918) .9932 0.13 1.0000

M × H × D 16 (918) .8451 5.04* <.0001

* Significant at alpha = .025 level 
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Table C16 

Repeated Measures Analysis of Variance for Factor Loading RMSE 

Source df SS MS F P ீߟ
ଶ  

Between Subjects 

Number of Factors (K) 2 1.521 0.760 2932.62* <.0001 .905

Number of Variables (P) 2 0.037 0.019 71.76* <.0001 .190

Sample Size (N) 3 0.134 0.045 172.94* <.0001 .458

Communality (H) 2 1.256 0.628 2422.57* <.0001 .888

Dichotomization (D) 4 0.009 0.002 9.05* <.0001 .056

K × P 4 0.218 0.054 209.92* <.0001 .578

K × N 6 < 0.001 < 0.001 0.13 .9929 .001

K × H 4 0.568 0.142 548.08* <.0001 .781

K × D 8 0.021 0.002 9.99* <.0001 .115

P × N 6 0.003 < 0.001 1.88 .0824 .018

P × H 4 0.007 0.002 6.69* <.0001 .042

P × D 8 0.005 < 0.001 2.51 .0112 .032

N × H 6 0.003 < 0.001 1.95 .0713 .019

N × D 12 < 0.001 < 0.001 0.06 1.0000 .001

H × D 8 0.014 0.002 6.73* <.0001 .081

Error 460 0.119 < 0.001  
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Table C16 

Repeated Measures Analysis of Variance for Factor Loading RMSE (Continued) 

Source df SS MS F P ீߟ
ଶ  

Within Subjects (with Greenhouse-Geisser asjusted Pr > F) 

Factor Extraction Method (M) 2 0.134 0.067 1559.4* <.0001 .458

M × K 4 0.013 0.003 76.32* <.0001 .076

M × P 4 0.004 0.001 25.47* <.0001 .027

M × N 6 0.035 0.006 137.08* <.0001 .182

M × H 4 0.058 0.014 335.37* <.0001 .267

M × D 8 0.003 < 0.001 8.49* <.0001 .018

M × K × P 8 0.016 0.002 46.71* <.0001 .092

M × K × N 12 0.005 < 0.001 8.90* <.0001 .028

M × K × H 8 0.009 0.001 25.08* <.0001 .052

M × K × D 16 0.008 <0.001 12.00* <.0001 .049

M × P × N 12 < 0.001 < 0.001 0.13 .9939 <.001

M × P × H 8 0.003 < 0.001 8.41* <.0001 .018

M × P × D 16 0.003 < 0.001 4.13* <.0001 .018

M × N × H 12 < 0.001 < 0.001 0.52 .8004 .002

M × N × D 24 < 0.001 < 0.001 0.07 1.0000 <.001

M × H × D 16 0.005 < 0.001 7.27* <.0001 .031

Error (Method) 920 0.040 < 0.001  

* Significant at the alpha = .025 level 
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Box and Whisker Plots 

 
Figure D1.  Factor loading sensitivity by the interaction between the number of factors and number of observed variables 
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Figure D2.  Factor loading sensitivity by the interaction between the number of factors and communality level 
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Figure D3.  Factor loading sensitivity by the interaction between the number of factors and dichotomization 
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Figure D4.  Factor loading sensitivity by the interaction between the number of observed variables by communality level 
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Figure D5.  General factor pattern agreement by the interaction between the number of factors and observed variables  
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Figure D6.  General factor pattern agreement by the interaction between the number of factors and communality level 

2
-
1

2
-
2

2
-
3

4
-
1

4
-
2

4
-
3

8
-
1

8
-
2

8
-
3

2
-
1

2
-
2

2
-
3

4
-
1

4
-
2

4
-
3

8
-
1

8
-
2

8
-
3

2
-
1

2
-
2

2
-
3

4
-
1

4
-
2

4
-
3

8
-
1

8
-
2

8
-
3

0

0.25

0.50

0.75

1.00

G
en

er
al

 P
at

te
rn

 A
gr

ee
m

en
t

Number of Factors by Communality Level (Low=1, Wide=2, High=3) Interaction

MAX OLS PAF

Factor Extraction Method



Appendix D (Continued) 
 

254 
 

  
Figure D7.  General factor pattern agreement by the interaction between the number of observed variables and communality level 

2
0
-
1

2
0
-
2

2
0
-
3

4
0
-
1

4
0
-
2

4
0
-
3

6
0
-
1

6
0
-
2

6
0
-
3

2
0
-
1

2
0
-
2

2
0
-
3

4
0
-
1

4
0
-
2

4
0
-
3

6
0
-
1

6
0
-
2

6
0
-
3

2
0
-
1

2
0
-
2

2
0
-
3

4
0
-
1

4
0
-
2

4
0
-
3

6
0
-
1

6
0
-
2

6
0
-
3

0

0.25

0.50

0.75

1.00

G
en

er
al

 P
at

te
rn

 A
gr

ee
m

en
t

Number of Observed Variables by Communality Level (Low=1, Wide=2, High=3) Interaction

MAX OLS PAF

Factor Extraction Method



Appendix D (Continued) 
 

255 
 

 
Figure D8.  General factor pattern agreement by the interaction between sample size and communality level 
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Figure D9.  Per element factor pattern agreement by the interaction between number of factors and number of observed variables 
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Figure D10.  Per element factor pattern agreement by the interaction between number of factors and sample size 
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Figure D11.  Per element factor pattern agreement by the interaction between number of factors and level of communality 
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Figure D12.  Per element factor pattern agreement by the interaction between number of observed variables and level of communality 
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Figure D13.  Per element factor pattern agreement by the interaction between sample size and level of communality 
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Figure D14.  Total factor pattern agreement by the interaction between the number of factors and number of observed variables 
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Figure D15.  Total factor pattern agreement by the interaction between the number of factors and sample size 
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Figure D16.  Total factor pattern agreement by the interaction between the number of observed variables and sample size 
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Figure D17.  Mean Phi Values by the interaction between the number of factors and number of observed variables 

2
-
2
0

2
-
4
0

2
-
6
0

4
-
2
0

4
-
4
0

4
-
6
0

8
-
2
0

8
-
4
0

8
-
6
0

2
-
2
0

2
-
4
0

2
-
6
0

4
-
2
0

4
-
4
0

4
-
6
0

8
-
2
0

8
-
4
0

8
-
6
0

2
-
2
0

2
-
4
0

2
-
6
0

4
-
2
0

4
-
4
0

4
-
6
0

8
-
2
0

8
-
4
0

8
-
6
0

0

0.2

0.4

0.6

0.8

1.0

M
ea

n 
P

hi
 V

al
ue

s

Number of Factors by Number of Observed Variables Interaction

MAX OLS PAF

Factor Extraction Method



Appendix D (Continued) 
 

265 
 

 
Figure D18.  Mean Phi Values by the interaction between the number of factors and sample size 
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Figure D19.  Mean Phi Values by the interaction between the number of factors and level of dichotomization 
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Figure D20.  Mean Phi Values by the interaction between sample size and communality level 
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Figure D21.  Mean Phi Values by the interaction between levels of communality and dichotomization 
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Figure D22. Factor score correlations by the interaction between number of factors and number of observed variables 
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Figure D23. Factor score correlations by the interaction between number of factors and sample size 
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Figure D24. Factor score correlations by the interaction between number of factors and communality level 
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Figure D25. Factor loading bias by the interaction between the number of factors and number of observed variables 
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Figure D26. Factor loading bias by the interaction between the number of factors and sample size 
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Figure D27. Factor loading bias by the interaction between the number of factors and communality 
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Figure D28. Factor loading bias by the interaction between the number of factors and level of dichotomization 
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Figure D29. RMSE by the interaction between number of factors and number of observed variables 
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Figure D30. RMSE by the interaction between number of factors and communality level 
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Figure D31. RMSE by the interaction between number of factors and level of dichotomization 
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Figure D32. RMSE by the interaction between level of communality and dichotomization 
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Simulation Program: SAS, IML© 
 
 
option ls = 256 ps = max nonumber nodate nocenter; 
proc printto print='c:\EFA_full.lst'; 
proc iml; 
 
**********************************************************************; 
*************** Begin Specification of Data Conditions ***************; 
**********************************************************************; 
 
p = 60; *20;   *40;   *60; 
k =  2;   *2;    *4;    *8; 
d_frac = .50; *.05; *.25; *.50; *.75; *.95; 
Commun_type = 1; 
  *  commun_type =1, low communalities, elements = .2, .3 or .4; 
  *  commun_type =2, wide communalities, elements = .2, .3, .4 ,.5, .6, .7 or .8; 
  *  commun_type =3, high communalities, elements = .6, .7 or .8; 
 
 
N_pops = 10; * N of populations to generate; 
replicat=1000;  * N of samples from each population; 
*replicat=10;  * N of samples from each population for testing; 
 
 
/*Inputs for Gendata2 A and B modules*/ 
nn1 = 100000; 
means=j(1,p,0);  
variance = j(1,p,1); 
 
********************************************************************; 
*************** End Specification of Data Conditions ***************; 
 
 
*************** Begin Subroutines for the Program ******************; 
********************************************************************; 
 
start Make_PopR(nvars,nfactors,commun_type,A1,R); 
 
* program to generate the population covariance matrices 
  based on Tucker, Koopman, & Linn, 1969, Psychometrica; 
 
* Inputs are nvars = number of variables in the matrix 
             nfactors = number of factors 
             commun = Type of communality 
 
  Output is R = population correlation matrix; 
 
* construct B1square such that  
  commun=1, low communalities, elements = .2, .3 or .4 
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  commun=2, wide communalities, elements = .2, .3, .4 ,.5, .6, .7 or .8 
  commun=3, high communalities, elements = .6, .7 or .8; 
 
 
bp1=j(nvars,nvars,0); 
bp2=uniform(bp1); 
if commun_type=3 then do; 
 bp3=(bp2*.2999999)+.55; 
 b1square=round(diag(bp3),.1); 
end; 
if commun_type=1 then do; 
 bp3=(bp2*.2999999)+.15; 
 b1square=round(diag(bp3),.1); 
end; 
if commun_type=2 then do; 
 bp3=(bp2*.6999999)+.15; 
 b1square=round(diag(bp3),.1); 
end; 
 
B1=b1square##.5; 
 
b3square=I(nvars)‐b1square; 
B3=b3square##.5; 
 
* construct A1tilde the matrix of conceptual input factor loadings 
  so that each element is a whole number between 0 and nfactor and 
  so the sum of each row equals nfactor‐1; 
 
A1tilde1=j(nvars,nfactors,0); 
A1tilde2=round((uniform(A1tilde1)*(nfactors‐.00000001))‐.5); 
A1tilde=A1tilde2; 
do j=2 to nfactors; 
 do i=1 to nvars; 
  if j<nfactors then do; 
  A1tilde[i,j]=round(((nfactors‐.00000001‐sum(A1tilde[i,1:j‐1])) 
                     *uniform(0))‐.5); 
  end; 
  if j=nfactors then do; 
  A1tilde[i,nfactors]=nfactors‐sum(A1tilde[i,1:nfactors‐1])‐1; 
  end; 
 end; 
end; 
 
* construct A1 the matrix of actual input factor loadings from A1tilde; 
 
x=normal(A1tilde); 
x2=x##2; 
d=j(nvars,nfactors,0); 
do j=1 to nfactors; 
 do i=1 to nvars; 
  d[i,j]=(sum(x2[i,1:nfactors]))##‐.5; 
 end; 
end; 
 
cvec=j(1,nfactors,0); 
do j=1 to nfactors; 
 cvec[1,j]=round((uniform(0)*.2999999)+.65,.1); 
end; 
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c=j(nvars,1,1)*cvec; 
c2=c##2; 
 
ones=j(nvars,nfactors,1); 
y=A1tilde#c + d#x#((ones‐c2)##.5); 
 
k=.2; 
z=j(nvars,nfactors,0); 
do j=1 to nfactors; 
 do i=1 to nvars; 
  z[i,j]=((1+k)*y[i,j]*(y[i,j]+abs(y[i,j])+k))/((2+k)*(abs(y[i,j])+k)); 
 end; 
end; 
 
z2=z##2; 
g=j(nvars,nfactors,0); 
do j=1 to nfactors; 
 do i=1 to nvars; 
  g[i,j]=(sum(z2[i,1:nfactors]))##‐.5; 
 end; 
end; 
 
A1star=g#z; 
 
A1=B1*A1star; 
 
A3star=I(nvars); 
A3=B3*A3star; 
 
R=A1*A1`+A3*A3`; 
 
Finish; 
 
start gendata2a(NN1,seed1,variance,bb,cc,dd,mu,r_matrix,YY,p,d_frac); 
  L = eigval(r_matrix); 
  neg_eigval = 0; 
  do r = 1 to nrow(L); 
    if L[r,1] < 0 then neg_eigval = 1; 
  end; 
 
  if neg_eigval = 0 then do; * matrix is positive definite, so use the Cholesky root approach; 
    COLS = NCOL(r_matrix); 
    G = ROOT(r_matrix); 
    YY=rannor(repeat(seed1,nn1,COLS)); 
    YY = YY*G; 
    do r = 1 to NN1; 
      do c = 1 to COLS; 
         YY[r,c] = (‐1*cc) + (bb*YY[r,c]) + (cc*YY[r,c]##2) + (dd*YY[r,c]##3); 
         YY[r,c] = (YY[r,c] * SQRT(variance[1,c])) + mu[1,c]; 
      end; 
    end; 
  end; 
 
  if neg_eigval = 1 then do; * matrix is not positive definite, so use the PCA approach; 
  COLS = NCOL(r_matrix); 
    V = eigvec(r_matrix); 
    do i = 1 to nrow(L); 
      do j = 1 to ncol(V); 
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        if L[i,1] > 0 then V[j,i] = V[j,i] # sqrt(L[i,1]); 
        if L[i,1] <= 0 then V[j,i] = V[j,i] # sqrt(.000000001); 
    end; 
    end; 
    YY=rannor(repeat(seed1,nn1,COLS)); 
    YY = V*YY`; 
    YY = YY`; 
    do r = 1 to NN1; 
      do c = 1 to COLS; 
         YY[r,c] = (‐1*cc) + (bb*YY[r,c]) + (cc*YY[r,c]##2) + (dd*YY[r,c]##3); 
         YY[r,c] = (YY[r,c] * SQRT(variance[1,c])) + mu[1,c]; 
      end; 
    end; 
  end; 
    do r = 1 to nn1; 
    do c = 1 to (p*d_frac); 
    if yy[r,c] < 0 then yy[r,c] = 0; 
    else if yy[r,c] = 0 then yy[r,c] = 1; 
    else if yy[r,c] > 0 then yy[r,c] = 1; 
    end; 
  end; 
 
finish; 
 
start gendata2b(NN2,seed1,variance,bb,cc,dd,mu,r_matrix,YY,p,d_frac); 
  L = eigval(r_matrix); 
  neg_eigval = 0; 
  do r = 1 to nrow(L); 
    if L[r,1] < 0 then neg_eigval = 1; 
  end; 
 
  if neg_eigval = 0 then do; * matrix is positive definite, so use the Cholesky root approach; 
    COLS = NCOL(r_matrix); 
    G = ROOT(r_matrix); 
    YY=rannor(repeat(seed1,nn2,COLS)); 
    YY = YY*G; 
    do r = 1 to NN2; 
      do c = 1 to COLS; 
         YY[r,c] = (‐1*cc) + (bb*YY[r,c]) + (cc*YY[r,c]##2) + (dd*YY[r,c]##3); 
         YY[r,c] = (YY[r,c] * SQRT(variance[1,c])) + mu[1,c]; 
      end; 
    end; 
  end; 
 
  if neg_eigval = 1 then do; * matrix is not positive definite, so use the PCA approach; 
  COLS = NCOL(r_matrix); 
    V = eigvec(r_matrix); 
    do i = 1 to nrow(L); 
      do j = 1 to ncol(V); 
        if L[i,1] > 0 then V[j,i] = V[j,i] # sqrt(L[i,1]); 
        if L[i,1] <= 0 then V[j,i] = V[j,i] # sqrt(.000000001); 
    end; 
    end; 
    YY=rannor(repeat(seed1,nn2,COLS)); 
    YY = V*YY`; 
    YY = YY`; 
    do r = 1 to NN2; 
      do c = 1 to COLS; 
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         YY[r,c] = (‐1*cc) + (bb*YY[r,c]) + (cc*YY[r,c]##2) + (dd*YY[r,c]##3); 
         YY[r,c] = (YY[r,c] * SQRT(variance[1,c])) + mu[1,c]; 
      end; 
    end; 
  end; 
    do r = 1 to nn2; 
    do c = 1 to (p*d_frac); 
    if yy[r,c] < 0 then yy[r,c] = 0; 
    else if yy[r,c] = 0 then yy[r,c] = 1; 
    else if yy[r,c] > 0 then yy[r,c] = 1; 
    end; 
  end; 
finish; 
 
start VMAX(e_vec,n,evec_new); 
   evec_tmp = e_vec; 
   u_vec = J(n,1,0); 
   v_vec = J(n,1,0); 
   c_vec = J(n,1,0); 
   d_vec = J(n,1,0); 
   do i = 1 to n; 
     u_vec[i] = evec_tmp[i,1]##2 ‐ evec_tmp[i,2]##2; 
     v_vec[i] = 2#evec_tmp[i,1] # evec_tmp[i,2]; 
     c_vec[i] = u_vec[i]##2 ‐ v_vec[i]##2; 
     d_vec[i] = u_vec[i] * v_vec[i]; 
   end; 
 
   I = J(1,n,1); 
   A = I * u_vec; 
   B = I * v_vec; 
   C = I * c_vec; 
   D= 2 * (I * d_vec); 
   E = D ‐ ((2*A*B)/n); 
   F = C ‐ ((A**2 ‐ B**2)/n); 
   G = sqrt(E**2 + F**2); 
 
 *+ ______________________________+ 
 
     IF G=0 no rotation required 
  +_______________________________+; 
   if G ^= 0 then do; 
     cos4 = F/G; 
     cos2 = sqrt((1 + cos4)/2); 
     cos=sqrt((1 + cos2)/2); 
     sin=sqrt((1‐cos2)/2); 
 
  *+ ____________________________________+ 
 
       IF E < O then change sign of sin 
    +____________________________________+; 
 
    if e<0 then sin = ‐1#sin; 
    rotation=J(2,2); 
    rotation[1,1]=cos; 
    rotation[1,2]=(‐1*sin); 
    rotation[2,1]=sin; 
    rotation[2,2]=cos; 
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    evec_new = evec_tmp * rotation; 
  if G = 0 then evec_new = evec_tmp; 
   end; 
finish; 
 
start ROTATE(e_vec,h_vec); 
 
   n=nrow(e_vec); 
   n_fact = ncol(e_vec); 
 
   * +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+ 
      Normalize the loadings 
     +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+; 
   h_vec = J(n,1,0); 
 
   do i = 1 to n; 
    do j = 1 to n_fact; 
         h_vec[i] = h_vec[i] + e_vec[i,j]##2; 
    end; 
    h_vec[i] = sqrt(h_vec[i]); 
    do j = 1 to n_fact; 
      e_vec[i,j] = e_vec[i,j] / h_vec[i]; 
    end; 
   end; 
 
   * +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+ 
      Compute the variance of the factor loadings 
     +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+; 
   sum1 = 0; 
   sum2 = 0; 
   do i = 1 to n_fact; 
     sum2a = 0; 
     do j = 1 to n; 
       sum1 = sum1 + e_vec[j,i]##4; 
       sum2a = sum2a + e_vec[j,i]##2; 
     end; 
     sum2 = sum2+sum2a##2; 
   end; 
   V_old = (n#sum1) ‐ sum2; 
 
   Change = 1; 
   do until (Change < .000001); 
     do i = 1 to n_fact ‐ 1; 
       do j = i + 1 to n_fact; 
          evec_tmp = e_vec[,i] || e_vec[,j]; 
          run VMAX(evec_tmp,n,evec_new); 
          e_vec[,i] = evec_new[,1]; 
          e_vec[,j] = evec_new[,2]; 
       end; 
     end; 
 
     sum1 = 0; 
     sum2 = 0; 
     do i = 1 to n_fact; 
       sum2a = 0; 
       do j = 1 to n; 
         sum1 = sum1 + e_vec[j,i]##4; 
         sum2a = sum2a + e_vec[j,i]##2; 
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       end; 
       sum2 = sum2+sum2a##2; 
     end; 
     V = (n#sum1) ‐ sum2; 
     Change = ABS(V_old ‐ V); 
   *  print V_old V Change; 
     V_old = V; 
   end; 
 
   do i = 1 to n; 
    do j = 1 to n_fact; 
       e_vec[i,j] = e_vec[i,j] # h_vec[i]; 
    end; 
   end; 
* +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+ 
   Compute final communalities 
  +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+; 
   h_vec = J(n,1,0); 
   do i = 1 to n; 
    do j = 1 to n_fact; 
         h_vec[i] = h_vec[i] + e_vec[i,j]##2; 
    end; 
   end; 
finish; 
 
* +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+ 
   Subroutine computes bias, MSE and accuracy of factor loadings 
 
   Inputs: L = matrix of sample pattern coefficients 
           Lambda = matrix of population pattern coefficients 
 
* +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+; 
START ACCURACY(L,Lambda,OK_Load,OK_NoLoad,bias_loadings,MSE_loadings, 
               pattern_accuracy,perfect_accuracy, 
               pattern_accuracy30,perfect_accuracy30); 
 
   p = nrow(L); 
   k = ncol(L); 
 
* +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+ 
   Determine if each variable loads on at least  
   one factor using the simple .30 rule of thumb 
* +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+; 
   pop_loaded = J(p,1,0); 
 
   do variable = 1 to p; 
      do factor = 1 to k; 
        if abs(Lambda[variable,factor]) >= .30 then pop_loaded[variable,1] = 1; 
      end; 
   end; 
 
* +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+ 
   Determine if each variable loads on at least  
   one factor using the simple .30 rule of thumb 
* +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+; 
 
   sample_loaded = J(p,1,0); 
   do variable = 1 to p; 
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      do factor = 1 to k; 
        if abs(L[variable,factor]) >= .30 then sample_loaded[variable,1] = 1; 
      end; 
   end; 
 
* +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+ 
   Count number of variables that load "somewhere" 
   in both population and sample, and number that 
   do not load "anywhere" in population and sample 
* +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+; 
   OK_Load = 0; 
   OK_NoLoad = 0; 
   do variable = 1 to p; 
      if sample_loaded[variable,1] = 1 & pop_loaded[variable,1] = 1 then  
         OK_Load = OK_Load + 1; 
      if sample_loaded[variable,1] = 0 & pop_loaded[variable,1] = 0 then  
         OK_NoLoad = OK_NoLoad + 1; 
   end; 
   OK_Load = OK_Load / sum(pop_loaded); * proportion of variables with loading agreement; 
 
* +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+ 
   Only compute OK_NoLoad if some variables do not 
   load in the population 
* +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+; 
    * +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+ 
       25 Sept: Jeff changed these two statements, using p instead  
                of k 
    * +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+; 
   if sum(pop_loaded) = p then OK_NoLoad = .; 
   if sum(pop_loaded) < p then OK_NoLoad = OK_NoLoad/(p‐sum(pop_loaded)); 
 
* +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+ 
   Compute bias and MS Error in the factor loadings 
* +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+; 
   bias_loadings=j(p,k,0); 
   MSE_loadings=j(p,k,0); 
   do row =1 to p; 
      bias_loadings[row,]=L[row,]‐lambda[row,]; 
      MSE_loadings[row,]=(L[row,]‐lambda[row,])##2; 
   end; 
 
* +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+ 
   Compute pattern accuracy using the .30 thumb 
* +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+; 
 
pattern_accuracy = j(p,k,0); 
perfect_accuracy = 0; 
pattern_accuracy30 = j(p,1,0); 
perfect_accuracy30 = 0; 
 
    * +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+ 
       25 Sept: Jeff changed this loop to include the counter NoLoad 
                If a variable does not load (abs>.30) on any factor 
                in both population and sample, 'credit' is given for 
                pattern accuracy 
    * +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+; 
   do variable = 1 to p; 
      NoLoad = 0; 
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      do factor = 1 to k; 
        if (abs(Lambda[variable,factor]) >= .30 &  
           abs(L[variable,factor]) >= .30)  
           then do; 
             pattern_accuracy[variable,factor] = 1; 
             pattern_accuracy30[variable,1] = 1; 
           end; 
        if (abs(Lambda[variable,factor]) < .30 &  
           abs(L[variable,factor]) < .30) then do; 
              pattern_accuracy[variable,factor] = 1; 
              NoLoad = NoLoad + 1; 
        end; 
      end; 
      if NoLoad = k then pattern_accuracy30[variable,1] = 1; 
   end; 
   if mean(pattern_accuracy) = 1 then perfect_accuracy = 1; 
   if mean(pattern_accuracy30) = 1 then perfect_accuracy30 = 1; 
 
finish; 
 
*+_________________________________________________________________+ 
 
   Subroutine to calculate coefficient of congruence ‐ mean phi 
   
   Inputs: pop  = population factor loadings 
           samp = sample factor loadings 
 
   Output:  Meanphi 
 +_________________________________________________________________+; 
 
 
 start get_phi(pop,samp,meanphi); 
  k = ncol(pop); 
  num = vecdiag(pop`*samp); 
  den1 = vecdiag(pop`*pop); 
  den2 = vecdiag(samp`*samp); 
  phi_k = J(k,1,0); 
  meanphi = 0; 
  n_terms = 0; 
  do m = 1 to k; 
    if (den1[m,1]>0 & den2[m,1]>0) then do; 
       phi_k[m,1] = num[m,1] / sqrt(den1[m,1]#den2[m,1]); 
       meanphi = meanphi + phi_k[m,1]; 
       n_terms = n_terms + 1; 
  end; 
  if (den1[m,1] = 0 | den2[m,1] = 0) then do; 
       phi_k[m,1] = 999; 
  end; 
  end; 
  meanphi = meanphi / n_terms; 
finish; 
 
start factor_scores(Lambda,L,sampdat,R_fscores,Non_zero); 
*+________________________________________________________________________+ 
 
  Compute Factor Score Estimates 
 
  Create a matrix of scoring coefficients for the sample (SC) [p X k] 
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  Create a matrix of scoring coefficents for the population (SCP)[p X k] 
  Retrieve original sample data [n x p] 
  Compute Factor Score estimates (FSE) using SC [p X k][n x p] = [p x p] 
  Compute Factor Score estimates (FS) using SCP [p X k][n x p] = [p x p] 
  Correlation between factor score estimates for population and sample 
  Extract diagonal elements in lower left quadrant 
 
  Output:  a vector of k correlations 
           a vector of k flags to indicate if scores were possible for 
             each factor (population) using the .30 criterion 
 
  +_______________________________________________________________________+; 
 
 
  p = nrow(L); 
  k = ncol(L); 
  SC =J(p,k,0); 
  SCP =J(p,k,0);   
  Non_zero = J(k,1,0); 
 
  do j = 1 to p; 
   do kk = 1 to k; 
    if L [j,kk] >=  .3 then SC[j,kk]=1; 
    if L [j,kk] <= ‐.3 then SC[j,kk]=‐1; 
 
    if Lambda [j,kk] >=  .3 then do; 
         SCP[j,kk]=1; 
         Non_zero[kk,1] = 1; 
    end; 
    if Lambda [j,kk] <= ‐.3 then do; 
         SCP[j,kk]=‐1; 
         Non_zero[kk,1] = 1; 
    end; 
   end; 
  end; 
 
  FSE = sampdat*SC; 
  FS =  sampdat*SCP; 
  FS_FSE = FSE||FS; 
  R_matrix = corr(FS_FSE); 
  R_matrix2 = R_matrix[k+1:2#k,1:k]; 
  R_fscores = vecdiag(R_matrix2); 
finish; 
 
 
start PAF_extract (R_samp, k, L, Lambda, pop, samp, sampdat, e_vec, e_val, h_vec, 
OK_Load,OK_NoLoad,bias_loadings,MSE_loadings,pattern_accuracy, 
perfect_accuracy, pattern_accuracy30, perfect_accuracy30, meanphi, R_fscores, Non_zero, 
ext_type); 
 
ext_type = 1; 
 
R = R_samp; 
n_vars = nrow(R); 
ones_mtx = j(n_vars,n_vars,1); 
diag_ones = diag(ones_mtx); 
smc_mtx = ones_mtx ‐ (1/(inv(R))); 
h2a = diag(smc_mtx); 
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h_vec = vecdiag(h2a);; 
R_star = R‐diag_ones + h2a; 
all_e_val = eigval(R_star); 
e_val = all_e_val[1:k,]; 
abs_e_val = abs(e_val); 
sqrt_e_val = sqrt(abs_e_val`);  
diag_e_val = diag(sqrt_e_val); 
all_e_vec = eigvec(R_star); 
e_vec = all_e_vec[,1:k];     
Fpaf = e_vec*diag_e_val; 
Fvar_mtx = Fpaf`*Fpaf; 
Fpaf_var = vecdiag(Fvar_mtx); 
 
run ROTATE(e_vec,h_vec); 
L = e_vec; 
 
run ACCURACY(L,Lambda,OK_Load,OK_NoLoad,bias_loadings,MSE_loadings, 
               pattern_accuracy,perfect_accuracy, 
               pattern_accuracy30,perfect_accuracy30); 
 
pop = Lambda; 
samp = L; 
 
run get_phi(pop,samp,meanphi); 
 
run factor_scores(Lambda,L,sampdat,R_fscores,Non_zero); 
 
Finish; 
 
 
start OLS_extract (R_samp,k, L, Lambda, pop,samp,sampdat, e_vec 
,e_val,h_vec,OK_Load,OK_NoLoad,bias_loadings,MSE_loadings,pattern_accuracy, 
perfect_accuracy, pattern_accuracy30, perfect_accuracy30, meanphi, R_fscores, 
Non_zero,ext_type); 
* +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+ 
   Subroutine to extract common factors from a correlation matrix 
   using SMCs on the diagonal. 
 
   INPUTS: R_mtx   ‐‐ sample correlation matrix 
           n_fact  ‐‐ number of factors to retain 
 
   OUTPUTS: e_Val  ‐‐ vector of eigenvalues 
            e_Vec ‐‐ matrix of eigenvectors 
 
   Note: Jeff modified this subroutine on 26 October 2000 to 
   produce iterated principal factors (closer to ML results 
   to check with Kano tables). 
 
<See pages 175‐179 in Harman, 1976> 
 
* +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+; 
 
ext_type = 2; 
 
R = R_samp; 
n_fact = k; 
n_vars = nrow(R); 
inv_r = inv(R); 
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h2a = J(n_vars,1,0); 
do i = 1 to n_vars; 
  h2a[i,1] = 1‐1/inv_r[i,i]; 
  r[i,i] = h2a[i,1]; 
end; 
oldcomm = h2a; 
change = 1; 
do until (change< .0001); 
    e_val = eigval(R); 
    e_val = e_val[1:n_fact,]; 
    eVec_orig = eigvec(R); 
    eVec_orig = eVec_orig[,1:n_fact]; 
 
    e_Vec = J(n_Vars,n_fact,0); 
    do i = 1 to n_Vars; 
      do j = 1 to n_fact; 
       if (e_val[j,1]< 0) then e_val[j,1] = 0; 
         e_vec[i,j] = eVec_orig[i,j]#sqrt(e_val[j,1]); 
      end; 
    end; 
  change = 0; 
  h_vec = h2a; 
end; 
 
run ROTATE(e_vec,h_vec); 
L = e_vec; 
 
run ACCURACY(L,Lambda,OK_Load,OK_NoLoad,bias_loadings,MSE_loadings, 
               pattern_accuracy,perfect_accuracy, 
               pattern_accuracy30,perfect_accuracy30); 
 
pop = Lambda; 
samp = L; 
 
run get_phi(pop,samp,meanphi); 
 
run factor_scores(Lambda,L,sampdat,R_fscores,Non_zero); 
 
finish; 
 
 
/*Maximum Likelihood method adapted from Chen, R. (2003)*/ 
start mlfa; 
 
ext_type = 3; 
s = r_samp; 
 
/*    objective function module          */ 
 
start objfun (x) global(s, k, p, xpsy, sigma, lambda, omega, f); 
    xpsy = diag(1/sqrt(x)); 
  A = xpsy*s*xpsy; 
  Omega = (eigvec(A)) [,1:k]; 
  theta = (eigval(A)) [1:k]; 
  lambda = diag(sqrt(x))*omega*diag(sqrt(abs(theta‐1))); 
  sigma = lambda*t(lambda)+diag(x); 
  f = log(det(sigma))+trace(s*inv(sigma))‐log(det(s))‐p; 
  return(f); 
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finish; 
 
/*    Gradient function module          */ 
 
start gradfun(x) global(s, sigma); 
  invpsy = inv(diag(x)); 
  g = (vecdiag(invpsy*(sigma‐s)*invpsy))`; 
  return(g); 
finish; 
 
/*    starting values for iteration          */ 
p = ncol(s); 
x = (1‐k/(2#p))#(1/vecdiag(inv(s))); 
 
/*    Set up Options and Constraints         */ 
option = {0 0 . 4}; 
con = j(1,p, 0.00001)//j(1,p,.); 
 
call nlpqn(rc, xr, "objfun", x, option, con) grd = "gradfun"; 
 
r_star = lambda*lambda`; 
h_vec = vecdiag(r_star); 
all_e_vec = eigvec(R_star); 
e_vec = all_e_vec[,1:k];     
finish; 
 
start mlfa_extract; 
 
run mlfa; 
 
if rc < 0 then m_rc0 = 1; else m_rc0 = 0; 
if rc = 3 then m_rc3 = 1; else m_rc3 = 0; 
if rc = 6 then m_rc6 = 1; else m_rc6 = 0; 
 
 
run ROTATE(e_vec,h_vec); 
L = e_vec; 
 
run ACCURACY(L,Lambda,OK_Load,OK_NoLoad,bias_loadings,MSE_loadings, 
               pattern_accuracy,perfect_accuracy, 
               pattern_accuracy30,perfect_accuracy30); 
 
pop = Lambda; 
samp = L; 
 
run get_phi(pop,samp,meanphi); 
 
run factor_scores(Lambda,L,sampdat,R_fscores,Non_zero); 
 
finish; 
 
 
Do pop_num = 1 to N_pops;    * Loop for 10 populations; 
 
run Make_PopR(p,k,commun_type,A1,R_pop); 
Lambda = A1; 
 
numr = r_pop[+,+] ‐ p; 
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deno = r_pop[+,+];  
ratio = numr/deno; 
f2_pop = (p/(p‐1))*ratio; 
r2_pop = f2_pop/(1+f2_pop); 
corr = r_pop; 
seed1=round(1000000*rannor(0)); 
*nn = 100000; 
chg = 1; 
cycle = 0; 
corr_tmp = corr; 
do until (chg = 0); 
  run gendata2a(NN1,seed1,variance,1,0,0,means,corr_tmp,sim_data,p,d_frac); 
  sim_corr = corr(sim_data); 
  resid_m = sim_corr ‐ corr; 
  tot_res = sum(abs(resid_m)); 
  if cycle = 0 then do; 
    best_corr = corr_tmp; 
    best_res = tot_res; 
  end; 
  if cycle > 0 then do; 
    if tot_res < best_res then do; 
      best_corr = corr_tmp; 
      best_res = tot_res; 
    end; 
  end; 
  if tot_res < (.005#(((p‐1)#p)/2)) then CHG = 0; * Convergence!; 
  if cycle > 30 then do; 
      if tot_res < (.01#(((p‐1)#p)/2)) then CHG = 0; * Convergence!; 
    end; 
  if cycle > 200 then CHG = 0; 
    if CHG = 1 then corr_tmp = corr_tmp ‐ resid_m;  * adjust template and simulate another 
large sample; 
        cycle = cycle + 1; 
  if CHG = 0 then do; 
  end; 
  end; 
 
 
Do S_Size = 1 to 4;      * Loop for sample sizes; 
 
 if S_Size = 1 then Sampsize2=100; 
 if S_Size = 2 then Sampsize2=200; 
 if S_Size = 3 then Sampsize2=300; 
 if S_Size = 4 then Sampsize2=1000; 
 
 
Do rep=1 to replicat;    * Loop for 1000 Samples; 
 
**********************************************************: 
*    Begin data generation                               *; 
**********************************************************; 
 
seed1=round(1000000*ranuni(0)); 
nn2 = sampsize2; 
corr_tmp = best_corr; 
 
r_sing = 0; 
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do until (det(r_samp) > 0); 
  run gendata2b(NN2,seed1,variance,1,0,0,means,corr_tmp,sim_data,p,d_frac); 
  sampdat = sim_data; 
  r_samp=corr(sampdat);    
  if det(r_samp)<=0 then do; 
  r_sing = r_sing +1; 
  end;  
end; 
 
if rep = 1 then _r_sing = r_sing; 
if rep > 1 then _r_sing = _r_sing + r_sing; 
 
 
 
run PAF_extract (R_samp, k, L, Lambda, pop, samp, sampdat, e_vec, e_val, h_vec, 
OK_Load,OK_NoLoad,bias_loadings,MSE_loadings,pattern_accuracy, 
perfect_accuracy, pattern_accuracy30, perfect_accuracy30, meanphi, R_fscores, Non_zero, 
ext_type); 
 
ext_type_p = ext_type; 
 
    if rep = 1 then do; 
       _ok_load_p = ok_load; 
       _ok_Noload_p = ok_Noload; 
       _Bias_Loadings_p = Bias_Loadings; 
       _MSE_Loadings_p = MSE_Loadings; 
       _Pattern_Accuracy_p = Pattern_Accuracy; 
       _Perfect_Accuracy_p = Perfect_Accuracy; 
     _Pattern_Accuracy30_p = Pattern_Accuracy30; 
       _Perfect_Accuracy30_p = Perfect_Accuracy30; 
     _meanphi_p = meanphi; 
       _R_Fscores_p = R_Fscores; 
     _Non_zero_p = Non_zero; 
     end; 
 
     if rep > 1 then do; 
       _ok_load_p = _ok_load_p + ok_load; 
       _ok_Noload_p = _ok_Noload_p + ok_Noload; 
      _Bias_Loadings_p = _Bias_Loadings_p + Bias_Loadings; 
       _MSE_Loadings_p = _MSE_Loadings_p + MSE_Loadings; 
       _Pattern_Accuracy_p = _Pattern_Accuracy_p + Pattern_Accuracy; 
       _Perfect_Accuracy_p = _Perfect_Accuracy_p + Perfect_Accuracy; 
     _Pattern_Accuracy30_p = _Pattern_Accuracy30_p + Pattern_Accuracy30; 
       _Perfect_Accuracy30_p = _Perfect_Accuracy30_p + Perfect_Accuracy30; 
       _meanphi_p = _meanphi_p + meanphi; 
       _R_Fscores_p = _R_Fscores_p + R_Fscores; 
     _Non_zero_p = _Non_zero_p + Non_zero; 
     end; 
 
 
 
run OLS_extract (R_samp,k, L, Lambda, pop,samp,sampdat, e_vec 
,e_val,h_vec,OK_Load,OK_NoLoad,bias_loadings,MSE_loadings,pattern_accuracy, 
perfect_accuracy, pattern_accuracy30, perfect_accuracy30, meanphi, R_fscores, 
Non_zero,ext_type); 
 
ext_type_o = ext_type; 
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    if rep = 1 then do; 
       _ok_load_o = ok_load; 
       _ok_Noload_o = ok_Noload; 
       _Bias_Loadings_o = Bias_Loadings; 
       _MSE_Loadings_o = MSE_Loadings; 
       _Pattern_Accuracy_o = Pattern_Accuracy; 
       _Perfect_Accuracy_o = Perfect_Accuracy; 
     _Pattern_Accuracy30_o = Pattern_Accuracy30; 
       _Perfect_Accuracy30_o = Perfect_Accuracy30; 
     _meanphi_o = meanphi; 
       _R_Fscores_o = R_Fscores; 
     _Non_zero_o = Non_zero; 
     end; 
 
     if rep > 1 then do; 
       _ok_load_o = _ok_load_o + ok_load; 
       _ok_Noload_o = _ok_Noload_o + ok_Noload; 
      _Bias_Loadings_o = _Bias_Loadings_o + Bias_Loadings; 
       _MSE_Loadings_o = _MSE_Loadings_o + MSE_Loadings; 
       _Pattern_Accuracy_o = _Pattern_Accuracy_o + Pattern_Accuracy; 
       _Perfect_Accuracy_o = _Perfect_Accuracy_o + Perfect_Accuracy; 
     _Pattern_Accuracy30_o = _Pattern_Accuracy30_o + Pattern_Accuracy30; 
       _Perfect_Accuracy30_o = _Perfect_Accuracy30_o + Perfect_Accuracy30; 
       _meanphi_o = _meanphi_o + meanphi; 
       _R_Fscores_o = _R_Fscores_o + R_Fscores; 
     _Non_zero_o = _Non_zero_o + Non_zero; 
     end; 
 
 
run mlfa_extract; 
 
ext_type_m = ext_type; 
 
    if rep = 1 then do; 
     _m_rc0 = m_rc0; 
     _m_rc3 = m_rc3; 
     _m_rc6 = m_rc6; 
       _ok_load_m = ok_load; 
       _ok_Noload_m = ok_Noload; 
       _Bias_Loadings_m = Bias_Loadings; 
       _MSE_Loadings_m = MSE_Loadings; 
       _Pattern_Accuracy_m = Pattern_Accuracy; 
       _Perfect_Accuracy_m = Perfect_Accuracy; 
     _Pattern_Accuracy30_m = Pattern_Accuracy30; 
       _Perfect_Accuracy30_m = Perfect_Accuracy30; 
     _meanphi_m = meanphi; 
       _R_Fscores_m = R_Fscores; 
     _Non_zero_m = Non_zero; 
     end; 
 
     if rep > 1 then do; 
     _m_rc0 = _m_rc0 + m_rc0; 
     _m_rc3 = _m_rc3 + m_rc3; 
     _m_rc6 = _m_rc6 + m_rc6; 
       _ok_load_m = _ok_load_m + ok_load; 
       _ok_Noload_m = _ok_Noload_m + ok_Noload; 
      _Bias_Loadings_m = _Bias_Loadings_m + Bias_Loadings; 
       _MSE_Loadings_m = _MSE_Loadings_m + MSE_Loadings; 
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       _Pattern_Accuracy_m = _Pattern_Accuracy_m + Pattern_Accuracy; 
       _Perfect_Accuracy_m = _Perfect_Accuracy_m + Perfect_Accuracy; 
     _Pattern_Accuracy30_m = _Pattern_Accuracy30_m + Pattern_Accuracy30; 
       _Perfect_Accuracy30_m = _Perfect_Accuracy30_m + Perfect_Accuracy30; 
       _meanphi_m = _meanphi_m + meanphi; 
       _R_Fscores_m = _R_Fscores_m + R_Fscores; 
     _Non_zero_m = _Non_zero_m + Non_zero; 
     end; 
 
if rep = 1 then nsamples = 1; 
if rep > 1 then nsamples = nsamples +1; 
 
end; *End Replications Loop*; 
 
_ok_load_p = _ok_load_p/NSamples; 
_ok_Noload_p = _ok_Noload_p/NSamples; 
_Bias_Loadings_p = _BIas_Loadings_p/NSamples; 
_MSE_Loadings_p = _MSE_Loadings_p/NSamples; 
_Pattern_Accuracy_p = _Pattern_Accuracy_p/NSamples; 
_Perfect_Accuracy_p = _Perfect_Accuracy_p/NSamples; 
_Pattern_Accuracy30_p = _Pattern_Accuracy30_p/NSamples; 
_Perfect_Accuracy30_p = _Perfect_Accuracy30_p/NSamples; 
_meanphi_p = _meanphi_p/NSamples; 
_R_Fscores_p = _R_Fscores_p/NSamples; 
_Non_zero_p = _Non_zero_p/NSamples; 
 
_ok_load_o = _ok_load_o/NSamples; 
_ok_Noload_o = _ok_Noload_o/NSamples; 
_Bias_Loadings_o = _BIas_Loadings_o/NSamples; 
_MSE_Loadings_o = _MSE_Loadings_o/NSamples; 
_Pattern_Accuracy_o = _Pattern_Accuracy_o/NSamples; 
_Pefect_Accuracy_o = _Perfect_Accuracy_o/NSamples; 
_Pattern_Accuracy30_o = _Pattern_Accuracy30_o/NSamples; 
_Perfect_Accuracy30_o = _Perfect_Accuracy30_o/NSamples; 
_meanphi_o = _meanphi_o/NSamples; 
_R_Fscores_o = _R_Fscores_o/NSamples; 
_Non_zero_o = _Non_zero_o/NSamples; 
 
_m_rc0 = _m_rc0; 
_m_rc3 = _m_rc3; 
_m_rc6 = _m_rc6; 
_ok_load_m = _ok_load_m/NSamples; 
_ok_Noload_m = _ok_Noload_m/NSamples; 
_Bias_Loadings_m = _BIas_Loadings_m/NSamples; 
_MSE_Loadings_m = _MSE_Loadings_m/NSamples; 
_Pattern_Accuracy_m = _Pattern_Accuracy_m/NSamples; 
_Perfect_Accuracy_m = _Perfect_Accuracy_m/NSamples; 
_Pattern_Accuracy30_m = _Pattern_Accuracy30_m/NSamples; 
_Perfect_Accuracy30_m = _Perfect_Accuracy30_m/NSamples; 
_meanphi_m = _meanphi_m/NSamples; 
_R_Fscores_m = _R_Fscores_m/NSamples; 
_Non_zero_m = _Non_zero_m/NSamples; 
 
_r_sing = _r_sing; 
 
print  Sampsize2 commun_type d_frac k p; 
print ' '; 



Appendix E (Continued) 
 

297 
 

print _OK_Load_p _OK_Load_o  _OK_Load_m _OK_NoLoad_p  _OK_NoLoad_o _OK_NoLoad_m 
_Perfect_Accuracy30_p _Perfect_Accuracy30_o _Perfect_Accuracy30_m  
_Perfect_Accuracy_p  _Perfect_Accuracy_o  _Perfect_Accuracy_m   _Meanphi_p  _Meanphi_o 
_Meanphi_m;  
print  ' '; 
print _Pattern_Accuracy30_p _Pattern_Accuracy30_o _Pattern_Accuracy30_m _R_Fscores_p 
_R_Fscores_o _R_Fscores_m _Non_zero_p _Non_zero_o _Non_zero_m; 
print  ' '; 
print _Bias_Loadings_p _Bias_Loadings_o _Bias_Loadings_m; 
print ' '; 
print _MSE_Loadings_p _MSE_Loadings_o _MSE_Loadings_m; 
print ' '; 
print _Pattern_Accuracy_p _Pattern_Accuracy_o _Pattern_Accuracy_m; 
print ' '; 
print _m_rc0 _m_rc3 _m_rc6 _r_sing; 
 
 

end; *End Sample Size Loop*; 
end; *End loop for 10 populations*; 
 
 
quit; 
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Analysis Program: SAS, IML© 

 
data a; 
infile 'C:\kcoughlin document\dissertation\data files\refined merged data 07242012.lst' lrecl 
= 256 missover pad; 
 
input test_var $ 1 ‐ 256 @; 
rec_num = _n_; 
file = 'kcoughlin'; 
 
if index(test_var, 'SAMPSIZE2') ^=0 OR index(test_var, 'Sampsize2') ^=0 then record_type = 
'Record 10'; 
if index(test_var, '_OK_LOAD_P') ^=0 OR index(test_var, '_ok_load_p')^=0 then record_type = 
'Record 20'; 
if index(test_var, '_PATTERN_ACCURACY30_P') ^=0 OR index(test_var, '_Pattern_Accuracy30_p')^=0 
then record_type = 'Record 30'; 
if index(test_var, '_BIAS_LOADINGS_P') ^=0 OR index(test_var, '_Bias_Loadings_p') ^=0 then 
record_type = 'Record 40'; 
if index(test_var, '_BIAS_LOADINGS_M') ^=0 OR index(test_var, '_Bias_Loadings_m') ^=0 then 
record_type = 'Record 42'; 
if index(test_var, '_MSE_LOADINGS_P') ^=0 OR index(test_var, '_MSE_Loadings_p') ^=0 then 
record_type = 'Record 50'; 
if index(test_var, '_MSE_LOADINGS_M') ^=0 OR index(test_var, '_MSE_Loadings_m') ^=0 then 
record_type = 'Record 52'; 
if index(test_var, '_PATTERN_ACCURACY_P') ^=0 OR index(test_var, '_Pattern_Accuracy_p') ^=0 
then record_type = 'Record 60'; 
if index(test_var, '_PATTERN_ACCURACY_M') ^=0 OR index(test_var, '_Pattern_Accuracy_m') ^=0 
then record_type = 'Record 62'; 
if index(test_var, '_M_RC0') ^=0 OR index(test_var, '_m_rc0') ^=0 then record_type = 'Record 
70'; 
 
if record_type = 'Record 10' then do; 
  input @1 dummy 1. Sampsize2 Commun_type2 d_frac2 k2 p2; 
       if D_FRAC2 ne . then do; 
            P = P2; 
            K = K2; 
            COMMUN_TYPE = COMMUN_TYPE2; 
            D_FRAC = D_FRAC2; 
            SAMPSIZE = SAMPSIZE2; 
     end; 
 end; 
 
*  retain Sampsize2 Commun_type d_frac k p; 
 
 if record_type = 'Record 20' then do; 
  input @1 dummy 1. _ok_load_p _ok_load_o _ok_load_m _ok_Noload_p _ok_Noload_o 
_ok_Noload_m _Perfect_Accuracy30_p _Perfect_Accuracy30_o _Perfect_Accuracy30_m  
_Perfect_Accuracy_p _Perfect_Accuracy_o _Perfect_Accuracy_m _meanphi_p _meanphi_o _meanphi_m;  
end; 
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if record_type = 'Record 30' then do; 
  input @1 dummy 1. _Pattern_Accuracy30_p _Pattern_Accuracy30_o _Pattern_Accuracy30_m 
_R_Fscores_p _R_Fscores_o _R_Fscores_m _Non_zero_p _Non_zero_o _Non_zero_m; 
 end; 
 
if record_type = 'Record 40' and k = 8 then do;  
  input @1 dummy 1. 
_Bias_Loadings_p1 _Bias_Loadings_p2 _Bias_Loadings_p3 _Bias_Loadings_p4 _Bias_Loadings_p5 
_Bias_Loadings_p6 _Bias_Loadings_p7 _Bias_Loadings_p8 
_Bias_Loadings_o1 _Bias_Loadings_o2 _Bias_Loadings_o3 _Bias_Loadings_o4;   
end; 
 
if record_type = 'Record 42' and k = 2 then do;  
  input @1 dummy 1. 
_Bias_Loadings_p1 _Bias_Loadings_p2  
_Bias_Loadings_o1 _Bias_Loadings_o2 
_Bias_Loadings_m1 _Bias_Loadings_m2; 
end; 
 
if record_type = 'Record 42' and k = 4 then do;  
  input @1 dummy 1. 
_Bias_Loadings_p1 _Bias_Loadings_p2 _Bias_Loadings_p3 _Bias_Loadings_p4 
_Bias_Loadings_o1 _Bias_Loadings_o2 _Bias_Loadings_o3 _Bias_Loadings_o4 
_Bias_Loadings_m1 _Bias_Loadings_m2 _Bias_Loadings_m3 _Bias_Loadings_m4; 
end; 
 
if record_type = 'Record 42' and k = 8 then do;  
  input @1 dummy 1. 
_Bias_Loadings_o5 _Bias_Loadings_o6 _Bias_Loadings_o7 _Bias_Loadings_o8  
_Bias_Loadings_m1 _Bias_Loadings_m2 _Bias_Loadings_m3 _Bias_Loadings_m4 _Bias_Loadings_m5 
_Bias_Loadings_m6 _Bias_Loadings_m7 _Bias_Loadings_m8;   
end; 
 
if record_type = 'Record 50' and k = 8 then do; 
  input @1 dummy 1. 
_MSE_Loadings_p1 _MSE_Loadings_p2 _MSE_Loadings_p3 _MSE_Loadings_p4 _MSE_Loadings_p5 
_MSE_Loadings_p6 _MSE_Loadings_p7 _MSE_Loadings_p8 
_MSE_Loadings_o1 _MSE_Loadings_o2 _MSE_Loadings_o3 _MSE_Loadings_o4; 
end; 
 
 
if record_type = 'Record 52' and k = 2 then do; 
  input @1 dummy 1. 
_MSE_Loadings_p1 _MSE_Loadings_p2  
_MSE_Loadings_o1 _MSE_Loadings_o2 
_MSE_Loadings_m1 _MSE_Loadings_m2; 
end; 
 
if record_type = 'Record 52' and k = 4 then do; 
  input @1 dummy 1. 
_MSE_Loadings_p1 _MSE_Loadings_p2 _MSE_Loadings_p3 _MSE_Loadings_p4 
_MSE_Loadings_o1 _MSE_Loadings_o2 _MSE_Loadings_o3 _MSE_Loadings_o4 
_MSE_Loadings_m1 _MSE_Loadings_m2 _MSE_Loadings_m3 _MSE_Loadings_m4; 
end; 
 
if record_type = 'Record 52' and k = 8 then do; 
  input @1 dummy 1. 
_MSE_Loadings_o5 _MSE_Loadings_o6 _MSE_Loadings_o7 _MSE_Loadings_o8  
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_MSE_Loadings_m1 _MSE_Loadings_m2 _MSE_Loadings_m3 _MSE_Loadings_m4 _MSE_Loadings_m5 
_MSE_Loadings_m6 _MSE_Loadings_m7 _MSE_Loadings_m8; 
end; 
 
if record_type = 'Record 60' and k = 8 then do; 
  input @1 dummy 1. 
_Pattern_Accuracy_p1 _Pattern_Accuracy_p2 _Pattern_Accuracy_p3 _Pattern_Accuracy_p4 
_Pattern_Accuracy_p5 _Pattern_Accuracy_p6 _Pattern_Accuracy_p7 _Pattern_Accuracy_p8 
_Pattern_Accuracy_o1 _Pattern_Accuracy_o2 _Pattern_Accuracy_o3 _Pattern_Accuracy_o4; 
 end; 
 
if record_type = 'Record 62' and k = 2 then do; 
  input @1 dummy 1. 
_Pattern_Accuracy_p1 _Pattern_Accuracy_p2  
_Pattern_Accuracy_o1 _Pattern_Accuracy_o2 
_Pattern_Accuracy_m1 _Pattern_Accuracy_m2; 
 end; 
 
if record_type = 'Record 62' and k = 4 then do; 
  input @1 dummy 1. 
_Pattern_Accuracy_p1 _Pattern_Accuracy_p2 _Pattern_Accuracy_p3 _Pattern_Accuracy_p4 
_Pattern_Accuracy_o1 _Pattern_Accuracy_o2 _Pattern_Accuracy_o3 _Pattern_Accuracy_o4 
_Pattern_Accuracy_m1 _Pattern_Accuracy_m2 _Pattern_Accuracy_m3 _Pattern_Accuracy_m4; 
 end; 
 
 if record_type = 'Record 62' and k = 8 then do; 
  input @1 dummy 1. 
_Pattern_Accuracy_o5 _Pattern_Accuracy_o6 _Pattern_Accuracy_o7 _Pattern_Accuracy_o8 
_Pattern_Accuracy_m1 _Pattern_Accuracy_m2 _Pattern_Accuracy_m3 _Pattern_Accuracy_m4 
_Pattern_Accuracy_m5 _Pattern_Accuracy_m6 _Pattern_Accuracy_m7 _Pattern_Accuracy_m8; 
 end; 
 
if record_type = 'Record 70' then do; 
  input @1 dummy 1. _m_rc0 _m_rc3 _m_rc6; 
end; 
 
 
retain record_type Sampsize Commun_type d_frac k p; 
drop test_var; 
 
if Sampsize = . and _ok_load_p =. and _Pattern_Accuracy30_p = . and  _Bias_Loadings_p1 = . and 
_MSE_Loadings_p1 = . and _Pattern_Accuracy_p1 = . and _m_rc0 = . then delete; 
 
data  a1; 
set a; 
_perfect_accuracy_o = _perfect_accuracy_o/10000; 
 
 
proc sort data = a1; 
 by Sampsize Commun_type d_frac k p; 
proc means noprint data = a1; 
 by Sampsize Commun_type d_frac k p; 
 var _ok_load_p _ok_load_o _ok_load_m _ok_Noload_p _ok_Noload_o _ok_Noload_m 
_Perfect_Accuracy30_p _Perfect_Accuracy30_o _Perfect_Accuracy30_m  
_Perfect_Accuracy_p _Perfect_Accuracy_o _Perfect_Accuracy_m _meanphi_p _meanphi_o _meanphi_m 
_Pattern_Accuracy30_p _Pattern_Accuracy30_o  
_Pattern_Accuracy30_m _R_Fscores_p _R_Fscores_o _R_Fscores_m _Non_zero_p _Non_zero_o 
_Non_zero_m 
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_Bias_Loadings_p1 _Bias_Loadings_p2 _Bias_Loadings_p3 _Bias_Loadings_p4 _Bias_Loadings_p5 
_Bias_Loadings_p6 _Bias_Loadings_p7 _Bias_Loadings_p8 
_Bias_Loadings_o1 _Bias_Loadings_o2 _Bias_Loadings_o3 _Bias_Loadings_o4 _Bias_Loadings_o5 
_Bias_Loadings_o6 _Bias_Loadings_o7 _Bias_Loadings_o8 
_Bias_Loadings_m1 _Bias_Loadings_m2 _Bias_Loadings_m3 _Bias_Loadings_m4 _Bias_Loadings_m5 
_Bias_Loadings_m6 _Bias_Loadings_m7 _Bias_Loadings_m8  
_MSE_Loadings_p1 _MSE_Loadings_p2 _MSE_Loadings_p3 _MSE_Loadings_p4 _MSE_Loadings_p5 
_MSE_Loadings_p6 _MSE_Loadings_p7 _MSE_Loadings_p8 
_MSE_Loadings_o1 _MSE_Loadings_o2 _MSE_Loadings_o3 _MSE_Loadings_o4 _MSE_Loadings_o5 
_MSE_Loadings_o6 _MSE_Loadings_o7 _MSE_Loadings_o8 
_MSE_Loadings_m1 _MSE_Loadings_m2 _MSE_Loadings_m3 _MSE_Loadings_m4  _MSE_Loadings_m5 
_MSE_Loadings_m6 _MSE_Loadings_m7 _MSE_Loadings_m8 
_Pattern_Accuracy_p1 _Pattern_Accuracy_p2 _Pattern_Accuracy_p3 _Pattern_Accuracy_p4 
_Pattern_Accuracy_p5 _Pattern_Accuracy_p6 _Pattern_Accuracy_p7 _Pattern_Accuracy_p8 
_Pattern_Accuracy_o1 _Pattern_Accuracy_o2 _Pattern_Accuracy_o3 _Pattern_Accuracy_o4 
_Pattern_Accuracy_o5 _Pattern_Accuracy_o6 _Pattern_Accuracy_o7 _Pattern_Accuracy_o8 
_Pattern_Accuracy_m1 _Pattern_Accuracy_m2 _Pattern_Accuracy_m3 _Pattern_Accuracy_m4 
_Pattern_Accuracy_m5 _Pattern_Accuracy_m6 _Pattern_Accuracy_m7 _Pattern_Accuracy_m8 
_m_rc0 _m_rc3 _m_rc6; 
output out = b mean = ; 
 
/*descriptive statistics*/ 
 
data c; 
set b; 
 
_bias_loadings_p = mean (of _Bias_Loadings_p1 ‐ _Bias_Loadings_p8); 
_bias_loadings_o = mean (of _Bias_Loadings_o1 ‐ _Bias_Loadings_o8); 
_bias_loadings_m = mean (of _Bias_Loadings_m1 ‐ _Bias_Loadings_m8); 
_mse_leadings_p = mean (of _MSE_Loadings_p1 ‐ _MSE_Loadings_p8); 
_mse_leadings_o = mean (of _MSE_Loadings_o1 ‐ _MSE_Loadings_o8); 
_mse_leadings_m = mean (of _MSE_Loadings_m1 ‐ _MSE_Loadings_m8); 
_pattern_accuracy_p = mean (of _Pattern_Accuracy_p1 ‐ _Pattern_Accuracy_p8); 
_pattern_accuracy_o = mean (of _Pattern_Accuracy_o1 ‐ _Pattern_Accuracy_o8); 
_pattern_accuracy_m = mean (of _Pattern_Accuracy_m1 ‐ _Pattern_Accuracy_m8); 
 
proc means data = c; 
var _ok_load_p _ok_load_o _ok_load_m _Perfect_Accuracy30_p _Perfect_Accuracy30_o 
_Perfect_Accuracy30_m  
_Perfect_Accuracy_p _Perfect_Accuracy_o _Perfect_Accuracy_m _meanphi_p _meanphi_o _meanphi_m 
_Pattern_Accuracy30_p _Pattern_Accuracy30_o  
_Pattern_Accuracy30_m _R_Fscores_p _R_Fscores_o _R_Fscores_m _Non_zero_p _Non_zero_o 
_Non_zero_m 
_bias_loadings_p _bias_loadings_o _bias_loadings_m 
_mse_leadings_p _mse_leadings_o _mse_leadings_m 
_pattern_accuracy_p _pattern_accuracy_o _pattern_accuracy_m 
_m_rc0 _m_rc3 _m_rc6; 
 
proc univariate normal data = c; 
var _ok_load_p _ok_load_o _ok_load_m _Perfect_Accuracy30_p _Perfect_Accuracy30_o 
_Perfect_Accuracy30_m  
_Perfect_Accuracy_p _Perfect_Accuracy_o _Perfect_Accuracy_m _meanphi_p _meanphi_o _meanphi_m 
_Pattern_Accuracy30_p _Pattern_Accuracy30_o  
_Pattern_Accuracy30_m _R_Fscores_p _R_Fscores_o _R_Fscores_m _Non_zero_p _Non_zero_o 
_Non_zero_m 
_bias_loadings_p _bias_loadings_o _bias_loadings_m 
_mse_leadings_p _mse_leadings_o _mse_leadings_m 
_pattern_accuracy_p _pattern_accuracy_o _pattern_accuracy_m 
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_m_rc0 _m_rc3 _m_rc6; 
 
 
/*repeated measures analyses*/ 
 
proc glm data = c; 
class k p Sampsize commun_type d_frac; 
model _ok_load_p _ok_load_o _ok_load_m = k | p | Sampsize | commun_type | d_frac @2; 
repeated method 3/printe; 
ods output ModelANOVA = c1; 
means k*p p*commun_type k*d_frac k*commun_type; 
  
 
proc iml; 
use c1; 
 
read all var {SS} where (Source = 'K' & DEPENDENT = 'BetweenSubjects') into SS_K; 
read all var {SS} where (Source = 'P' & DEPENDENT = 'BetweenSubjects') into SS_P; 
read all var {SS} where (Source = 'SAMPSIZE' & DEPENDENT = 'BetweenSubjects') into SS_SAMP; 
read all var {SS} where (Source = 'COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into SS_COMM; 
read all var {SS} where (Source = 'D_FRAC' & DEPENDENT = 'BetweenSubjects') into SS_DFRAC; 
read all var {SS} where (Source = 'K*P' & DEPENDENT = 'BetweenSubjects') into SS_K_P; 
read all var {SS} where (Source = 'K*SAMPSIZE' & DEPENDENT = 'BetweenSubjects') into 
SS_K_SAMP; 
read all var {SS} where (Source = 'K*COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into 
SS_K_COMM; 
read all var {SS} where (Source = 'K*D_FRAC' & DEPENDENT = 'BetweenSubjects') into SS_K_DFRAC; 
read all var {SS} where (Source = 'P*SAMPSIZE' & DEPENDENT = 'BetweenSubjects') into 
SS_P_SAMP; 
read all var {SS} where (Source = 'P*COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into 
SS_P_COMM; 
read all var {SS} where (Source = 'P*D_FRAC' & DEPENDENT = 'BetweenSubjects') into SS_P_DFRAC; 
read all var {SS} where (Source = 'SAMPSIZE*COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into 
SS_SAMP_COMM; 
read all var {SS} where (Source = 'SAMPSIZE*D_FRAC' & DEPENDENT = 'BetweenSubjects') into 
SS_SAMP_DFRAC; 
read all var {SS} where (Source = 'COMMUN_TYPE*D_FRAC' & DEPENDENT = 'BetweenSubjects') into 
SS_COMM_DFRAC; 
read all var {SS} where (Source = 'Error' & DEPENDENT = 'BetweenSubjects') into SS_Error_Btwn; 
read all var {SS} where (Source = 'method' & DEPENDENT = 'WithinSubject') into SS_Method; 
read all var {SS} where (Source = 'method*K' & DEPENDENT = 'WithinSubject') into SS_Method_K; 
read all var {SS} where (Source = 'method*P' & DEPENDENT = 'WithinSubject') into SS_Method_P; 
read all var {SS} where (Source = 'method*SAMPSIZE' & DEPENDENT = 'WithinSubject') into 
SS_Method_SAMP; 
read all var {SS} where (Source = 'method*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') into 
SS_Method_COMM; 
read all var {SS} where (Source = 'method*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_DFRAC; 
read all var {SS} where (Source = 'method*K*P' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_P; 
read all var {SS} where (Source = 'method*K*SAMPSIZE' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_SAMP; 
read all var {SS} where (Source = 'method*K*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_COMM; 
read all var {SS} where (Source = 'method*K*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_DFRAC; 
read all var {SS} where (Source = 'method*P*SAMPSIZE' & DEPENDENT = 'WithinSubject') into 
SS_Method_P_SAMP; 
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read all var {SS} where (Source = 'method*P*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') into 
SS_Method_P_COMM; 
read all var {SS} where (Source = 'method*P*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_P_DFRAC; 
read all var {SS} where (Source = 'method*SAMPSIZE*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') 
into SS_Method_SAMP_COMM; 
read all var {SS} where (Source = 'method*SAMPSIZE*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_SAMP_DFRAC; 
read all var {SS} where (Source = 'method*COMMUN_TYPE*D_FRAC' & DEPENDENT = 'WithinSubject') 
into SS_Method_COMM_DFRAC; 
read all var {SS} where (Source = 'Error(method)' & DEPENDENT = 'WithinSubject') into 
SS_Error_Wthn; 
 
total_ss = SS_K + SS_P + SS_SAMP + SS_COMM + SS_DFRAC + SS_K_P + SS_K_SAMP + SS_K_COMM + 
SS_K_DFRAC + SS_P_SAMP + SS_P_COMM + SS_P_DFRAC + 
SS_SAMP_COMM + SS_SAMP_DFRAC + SS_COMM_DFRAC + SS_Error_Btwn + SS_Method + SS_Method_K + 
SS_Method_P + SS_Method_SAMP + SS_Method_COMM +  
SS_Method_DFRAC + SS_Method_K_P + SS_Method_K_SAMP + SS_Method_K_COMM + SS_Method_K_DFRAC + 
SS_Method_P_SAMP + SS_Method_P_COMM + SS_Method_P_DFRAC + 
SS_Method_SAMP_COMM + SS_Method_SAMP_DFRAC + SS_Method_COMM_DFRAC + SS_Error_Wthn; 
model_ss = total_ss ‐ (SS_Error_Btwn + SS_Error_Wthn); 
prprtn_var_expl = model_ss/total_ss; 
eta_sqr_g_method = SS_Method/(SS_Method + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k = SS_K/(SS_K + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p = SS_P/(SS_P + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_samp = SS_SAMP/(SS_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_comm = SS_COMM/(SS_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_dfrac = SS_DFRAC/(SS_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k_p = SS_K_P/(SS_K_P +  SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k_samp = SS_K_SAMP/(SS_K_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k_comm = SS_K_COMM/(SS_K_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k_dfrac = SS_K_DFRAC/(SS_K_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p_samp = SS_P_SAMP/(SS_P_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p_comm = SS_P_COMM/(SS_P_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p_dfrac = SS_P_DFRAC/(SS_P_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_samp_comm = SS_SAMP_COMM/(SS_SAMP_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_samp_dfrac = SS_SAMP_DFRAC/(SS_SAMP_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_comm_dfrac = SS_COMM_DFRAC/(SS_COMM_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k = SS_Method_K/(SS_Method_K + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_p = SS_Method_P/(SS_Method_P + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_samp = SS_Method_Samp/(SS_Method_Samp + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_comm = SS_Method_Comm/(SS_Method_Comm + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_dfrac = SS_Method_Dfrac/(SS_Method_Dfrac + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k_p = SS_Method_K_P/(SS_Method_K_P + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k_samp = SS_Method_K_SAMP/(SS_Method_K_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k_comm = SS_Method_K_COMM/(SS_Method_K_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k_dfrac = SS_Method_K_DFRAC/(SS_Method_K_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
eta_sqr_g_method_p_samp = SS_Method_P_SAMP/(SS_Method_P_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_p_comm = SS_Method_P_COMM/(SS_Method_P_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_p_dfrac = SS_Method_P_DFRAC/(SS_Method_P_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
eta_sqr_g_method_samp_comm = SS_Method_SAMP_COMM/(SS_Method_SAMP_COMM + SS_Error_Btwn + 
SS_Error_Wthn); 
eta_sqr_g_method_samp_dfrac = SS_Method_SAMP_DFRAC/(SS_Method_SAMP_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
eta_sqr_g_method_comm_dfrac = SS_Method_COMM_DFRAC/(SS_Method_COMM_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
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print eta_sqr_g_k; 
print eta_sqr_g_p; 
print eta_sqr_g_samp; 
print eta_sqr_g_comm; 
print eta_sqr_g_dfrac; 
print eta_sqr_g_k_p; 
print eta_sqr_g_k_samp; 
print eta_sqr_g_k_comm; 
print eta_sqr_g_k_dfrac; 
print eta_sqr_g_p_samp; 
print eta_sqr_g_p_comm; 
print eta_sqr_g_p_dfrac; 
print eta_sqr_g_samp_comm; 
print eta_sqr_g_samp_dfrac; 
print eta_sqr_g_comm_dfrac; 
print eta_sqr_g_method; 
print eta_sqr_g_method_k; 
print eta_sqr_g_method_p; 
print eta_sqr_g_method_samp; 
print eta_sqr_g_method_comm; 
print eta_sqr_g_method_dfrac; 
print eta_sqr_g_method_k; 
print eta_sqr_g_method_p; 
print eta_sqr_g_method_samp; 
print eta_sqr_g_method_comm; 
print eta_sqr_g_method_dfrac; 
print eta_sqr_g_method_k_p; 
print eta_sqr_g_method_k_samp; 
print eta_sqr_g_method_k_comm; 
print eta_sqr_g_method_k_dfrac; 
print eta_sqr_g_method_p_samp; 
print eta_sqr_g_method_p_comm; 
print eta_sqr_g_method_p_dfrac; 
print eta_sqr_g_method_samp_comm; 
print eta_sqr_g_method_samp_dfrac; 
print eta_sqr_g_method_comm_dfrac; 
print prprtn_var_expl; 
quit; 
 
 
proc glm data = c; 
class k p Sampsize commun_type d_frac; 
model _Perfect_Accuracy30_p _Perfect_Accuracy30_o _Perfect_Accuracy30_m = k | p | Sampsize | 
commun_type | d_frac @2; 
repeated method 3/printe; 
ods output ModelANOVA = c2; 
means k*p  k*commun_type Sampsize*commun_type p*commun_type; 
 
proc iml; 
use c2; 
 
read all var {SS} where (Source = 'K' & DEPENDENT = 'BetweenSubjects') into SS_K; 
read all var {SS} where (Source = 'P' & DEPENDENT = 'BetweenSubjects') into SS_P; 
read all var {SS} where (Source = 'SAMPSIZE' & DEPENDENT = 'BetweenSubjects') into SS_SAMP; 
read all var {SS} where (Source = 'COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into SS_COMM; 
read all var {SS} where (Source = 'D_FRAC' & DEPENDENT = 'BetweenSubjects') into SS_DFRAC; 
read all var {SS} where (Source = 'K*P' & DEPENDENT = 'BetweenSubjects') into SS_K_P; 
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read all var {SS} where (Source = 'K*SAMPSIZE' & DEPENDENT = 'BetweenSubjects') into 
SS_K_SAMP; 
read all var {SS} where (Source = 'K*COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into 
SS_K_COMM; 
read all var {SS} where (Source = 'K*D_FRAC' & DEPENDENT = 'BetweenSubjects') into SS_K_DFRAC; 
read all var {SS} where (Source = 'P*SAMPSIZE' & DEPENDENT = 'BetweenSubjects') into 
SS_P_SAMP; 
read all var {SS} where (Source = 'P*COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into 
SS_P_COMM; 
read all var {SS} where (Source = 'P*D_FRAC' & DEPENDENT = 'BetweenSubjects') into SS_P_DFRAC; 
read all var {SS} where (Source = 'SAMPSIZE*COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into 
SS_SAMP_COMM; 
read all var {SS} where (Source = 'SAMPSIZE*D_FRAC' & DEPENDENT = 'BetweenSubjects') into 
SS_SAMP_DFRAC; 
read all var {SS} where (Source = 'COMMUN_TYPE*D_FRAC' & DEPENDENT = 'BetweenSubjects') into 
SS_COMM_DFRAC; 
read all var {SS} where (Source = 'Error' & DEPENDENT = 'BetweenSubjects') into SS_Error_Btwn; 
read all var {SS} where (Source = 'method' & DEPENDENT = 'WithinSubject') into SS_Method; 
read all var {SS} where (Source = 'method*K' & DEPENDENT = 'WithinSubject') into SS_Method_K; 
read all var {SS} where (Source = 'method*P' & DEPENDENT = 'WithinSubject') into SS_Method_P; 
read all var {SS} where (Source = 'method*SAMPSIZE' & DEPENDENT = 'WithinSubject') into 
SS_Method_SAMP; 
read all var {SS} where (Source = 'method*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') into 
SS_Method_COMM; 
read all var {SS} where (Source = 'method*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_DFRAC; 
read all var {SS} where (Source = 'method*K*P' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_P; 
read all var {SS} where (Source = 'method*K*SAMPSIZE' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_SAMP; 
read all var {SS} where (Source = 'method*K*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_COMM; 
read all var {SS} where (Source = 'method*K*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_DFRAC; 
read all var {SS} where (Source = 'method*P*SAMPSIZE' & DEPENDENT = 'WithinSubject') into 
SS_Method_P_SAMP; 
read all var {SS} where (Source = 'method*P*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') into 
SS_Method_P_COMM; 
read all var {SS} where (Source = 'method*P*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_P_DFRAC; 
read all var {SS} where (Source = 'method*SAMPSIZE*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') 
into SS_Method_SAMP_COMM; 
read all var {SS} where (Source = 'method*SAMPSIZE*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_SAMP_DFRAC; 
read all var {SS} where (Source = 'method*COMMUN_TYPE*D_FRAC' & DEPENDENT = 'WithinSubject') 
into SS_Method_COMM_DFRAC; 
read all var {SS} where (Source = 'Error(method)' & DEPENDENT = 'WithinSubject') into 
SS_Error_Wthn; 
 
total_ss = SS_K + SS_P + SS_SAMP + SS_COMM + SS_DFRAC + SS_K_P + SS_K_SAMP + SS_K_COMM + 
SS_K_DFRAC + SS_P_SAMP + SS_P_COMM + SS_P_DFRAC + 
SS_SAMP_COMM + SS_SAMP_DFRAC + SS_COMM_DFRAC + SS_Error_Btwn + SS_Method + SS_Method_K + 
SS_Method_P + SS_Method_SAMP + SS_Method_COMM +  
SS_Method_DFRAC + SS_Method_K_P + SS_Method_K_SAMP + SS_Method_K_COMM + SS_Method_K_DFRAC + 
SS_Method_P_SAMP + SS_Method_P_COMM + SS_Method_P_DFRAC + 
SS_Method_SAMP_COMM + SS_Method_SAMP_DFRAC + SS_Method_COMM_DFRAC + SS_Error_Wthn; 
model_ss = total_ss ‐ (SS_Error_Btwn + SS_Error_Wthn); 
prprtn_var_expl = model_ss/total_ss; 
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eta_sqr_g_method = SS_Method/(SS_Method + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k = SS_K/(SS_K + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p = SS_P/(SS_P + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_samp = SS_SAMP/(SS_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_comm = SS_COMM/(SS_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_dfrac = SS_DFRAC/(SS_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k_p = SS_K_P/(SS_K_P +  SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k_samp = SS_K_SAMP/(SS_K_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k_comm = SS_K_COMM/(SS_K_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k_dfrac = SS_K_DFRAC/(SS_K_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p_samp = SS_P_SAMP/(SS_P_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p_comm = SS_P_COMM/(SS_P_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p_dfrac = SS_P_DFRAC/(SS_P_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_samp_comm = SS_SAMP_COMM/(SS_SAMP_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_samp_dfrac = SS_SAMP_DFRAC/(SS_SAMP_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_comm_dfrac = SS_COMM_DFRAC/(SS_COMM_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k = SS_Method_K/(SS_Method_K + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_p = SS_Method_P/(SS_Method_P + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_samp = SS_Method_Samp/(SS_Method_Samp + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_comm = SS_Method_Comm/(SS_Method_Comm + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_dfrac = SS_Method_Dfrac/(SS_Method_Dfrac + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k_p = SS_Method_K_P/(SS_Method_K_P + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k_samp = SS_Method_K_SAMP/(SS_Method_K_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k_comm = SS_Method_K_COMM/(SS_Method_K_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k_dfrac = SS_Method_K_DFRAC/(SS_Method_K_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
eta_sqr_g_method_p_samp = SS_Method_P_SAMP/(SS_Method_P_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_p_comm = SS_Method_P_COMM/(SS_Method_P_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_p_dfrac = SS_Method_P_DFRAC/(SS_Method_P_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
eta_sqr_g_method_samp_comm = SS_Method_SAMP_COMM/(SS_Method_SAMP_COMM + SS_Error_Btwn + 
SS_Error_Wthn); 
eta_sqr_g_method_samp_dfrac = SS_Method_SAMP_DFRAC/(SS_Method_SAMP_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
eta_sqr_g_method_comm_dfrac = SS_Method_COMM_DFRAC/(SS_Method_COMM_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
 
print eta_sqr_g_k; 
print eta_sqr_g_p; 
print eta_sqr_g_samp; 
print eta_sqr_g_comm; 
print eta_sqr_g_dfrac; 
print eta_sqr_g_k_p; 
print eta_sqr_g_k_samp; 
print eta_sqr_g_k_comm; 
print eta_sqr_g_k_dfrac; 
print eta_sqr_g_p_samp; 
print eta_sqr_g_p_comm; 
print eta_sqr_g_p_dfrac; 
print eta_sqr_g_samp_comm; 
print eta_sqr_g_samp_dfrac; 
print eta_sqr_g_comm_dfrac; 
print eta_sqr_g_method; 
print eta_sqr_g_method_k; 
print eta_sqr_g_method_p; 
print eta_sqr_g_method_samp; 
print eta_sqr_g_method_comm; 
print eta_sqr_g_method_dfrac; 
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print eta_sqr_g_method_k; 
print eta_sqr_g_method_p; 
print eta_sqr_g_method_samp; 
print eta_sqr_g_method_comm; 
print eta_sqr_g_method_dfrac; 
print eta_sqr_g_method_k_p; 
print eta_sqr_g_method_k_samp; 
print eta_sqr_g_method_k_comm; 
print eta_sqr_g_method_k_dfrac; 
print eta_sqr_g_method_p_samp; 
print eta_sqr_g_method_p_comm; 
print eta_sqr_g_method_p_dfrac; 
print eta_sqr_g_method_samp_comm; 
print eta_sqr_g_method_samp_dfrac; 
print eta_sqr_g_method_comm_dfrac; 
print prprtn_var_expl; 
quit; 
 
 
proc glm data = c; 
class k p Sampsize commun_type d_frac; 
model _Perfect_Accuracy_p _Perfect_Accuracy_o _Perfect_Accuracy_m = k | p | Sampsize | 
commun_type | d_frac @2; 
repeated method 3/printe; 
ods output ModelANOVA = c3; 
means k*p k*sampsize p*sampsize; 
 
proc iml; 
use c3; 
 
read all var {SS} where (Source = 'K' & DEPENDENT = 'BetweenSubjects') into SS_K; 
read all var {SS} where (Source = 'P' & DEPENDENT = 'BetweenSubjects') into SS_P; 
read all var {SS} where (Source = 'SAMPSIZE' & DEPENDENT = 'BetweenSubjects') into SS_SAMP; 
read all var {SS} where (Source = 'COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into SS_COMM; 
read all var {SS} where (Source = 'D_FRAC' & DEPENDENT = 'BetweenSubjects') into SS_DFRAC; 
read all var {SS} where (Source = 'K*P' & DEPENDENT = 'BetweenSubjects') into SS_K_P; 
read all var {SS} where (Source = 'K*SAMPSIZE' & DEPENDENT = 'BetweenSubjects') into 
SS_K_SAMP; 
read all var {SS} where (Source = 'K*COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into 
SS_K_COMM; 
read all var {SS} where (Source = 'K*D_FRAC' & DEPENDENT = 'BetweenSubjects') into SS_K_DFRAC; 
read all var {SS} where (Source = 'P*SAMPSIZE' & DEPENDENT = 'BetweenSubjects') into 
SS_P_SAMP; 
read all var {SS} where (Source = 'P*COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into 
SS_P_COMM; 
read all var {SS} where (Source = 'P*D_FRAC' & DEPENDENT = 'BetweenSubjects') into SS_P_DFRAC; 
read all var {SS} where (Source = 'SAMPSIZE*COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into 
SS_SAMP_COMM; 
read all var {SS} where (Source = 'SAMPSIZE*D_FRAC' & DEPENDENT = 'BetweenSubjects') into 
SS_SAMP_DFRAC; 
read all var {SS} where (Source = 'COMMUN_TYPE*D_FRAC' & DEPENDENT = 'BetweenSubjects') into 
SS_COMM_DFRAC; 
read all var {SS} where (Source = 'Error' & DEPENDENT = 'BetweenSubjects') into SS_Error_Btwn; 
read all var {SS} where (Source = 'method' & DEPENDENT = 'WithinSubject') into SS_Method; 
read all var {SS} where (Source = 'method*K' & DEPENDENT = 'WithinSubject') into SS_Method_K; 
read all var {SS} where (Source = 'method*P' & DEPENDENT = 'WithinSubject') into SS_Method_P; 
read all var {SS} where (Source = 'method*SAMPSIZE' & DEPENDENT = 'WithinSubject') into 
SS_Method_SAMP; 
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read all var {SS} where (Source = 'method*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') into 
SS_Method_COMM; 
read all var {SS} where (Source = 'method*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_DFRAC; 
read all var {SS} where (Source = 'method*K*P' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_P; 
read all var {SS} where (Source = 'method*K*SAMPSIZE' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_SAMP; 
read all var {SS} where (Source = 'method*K*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_COMM; 
read all var {SS} where (Source = 'method*K*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_DFRAC; 
read all var {SS} where (Source = 'method*P*SAMPSIZE' & DEPENDENT = 'WithinSubject') into 
SS_Method_P_SAMP; 
read all var {SS} where (Source = 'method*P*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') into 
SS_Method_P_COMM; 
read all var {SS} where (Source = 'method*P*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_P_DFRAC; 
read all var {SS} where (Source = 'method*SAMPSIZE*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') 
into SS_Method_SAMP_COMM; 
read all var {SS} where (Source = 'method*SAMPSIZE*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_SAMP_DFRAC; 
read all var {SS} where (Source = 'method*COMMUN_TYPE*D_FRAC' & DEPENDENT = 'WithinSubject') 
into SS_Method_COMM_DFRAC; 
read all var {SS} where (Source = 'Error(method)' & DEPENDENT = 'WithinSubject') into 
SS_Error_Wthn; 
 
total_ss = SS_K + SS_P + SS_SAMP + SS_COMM + SS_DFRAC + SS_K_P + SS_K_SAMP + SS_K_COMM + 
SS_K_DFRAC + SS_P_SAMP + SS_P_COMM + SS_P_DFRAC + 
SS_SAMP_COMM + SS_SAMP_DFRAC + SS_COMM_DFRAC + SS_Error_Btwn + SS_Method + SS_Method_K + 
SS_Method_P + SS_Method_SAMP + SS_Method_COMM +  
SS_Method_DFRAC + SS_Method_K_P + SS_Method_K_SAMP + SS_Method_K_COMM + SS_Method_K_DFRAC + 
SS_Method_P_SAMP + SS_Method_P_COMM + SS_Method_P_DFRAC + 
SS_Method_SAMP_COMM + SS_Method_SAMP_DFRAC + SS_Method_COMM_DFRAC + SS_Error_Wthn; 
model_ss = total_ss ‐ (SS_Error_Btwn + SS_Error_Wthn); 
prprtn_var_expl = model_ss/total_ss; 
eta_sqr_g_method = SS_Method/(SS_Method + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k = SS_K/(SS_K + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p = SS_P/(SS_P + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_samp = SS_SAMP/(SS_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_comm = SS_COMM/(SS_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_dfrac = SS_DFRAC/(SS_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k_p = SS_K_P/(SS_K_P +  SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k_samp = SS_K_SAMP/(SS_K_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k_comm = SS_K_COMM/(SS_K_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k_dfrac = SS_K_DFRAC/(SS_K_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p_samp = SS_P_SAMP/(SS_P_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p_comm = SS_P_COMM/(SS_P_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p_dfrac = SS_P_DFRAC/(SS_P_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_samp_comm = SS_SAMP_COMM/(SS_SAMP_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_samp_dfrac = SS_SAMP_DFRAC/(SS_SAMP_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_comm_dfrac = SS_COMM_DFRAC/(SS_COMM_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k = SS_Method_K/(SS_Method_K + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_p = SS_Method_P/(SS_Method_P + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_samp = SS_Method_Samp/(SS_Method_Samp + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_comm = SS_Method_Comm/(SS_Method_Comm + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_dfrac = SS_Method_Dfrac/(SS_Method_Dfrac + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k_p = SS_Method_K_P/(SS_Method_K_P + SS_Error_Btwn + SS_Error_Wthn); 
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eta_sqr_g_method_k_samp = SS_Method_K_SAMP/(SS_Method_K_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k_comm = SS_Method_K_COMM/(SS_Method_K_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k_dfrac = SS_Method_K_DFRAC/(SS_Method_K_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
eta_sqr_g_method_p_samp = SS_Method_P_SAMP/(SS_Method_P_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_p_comm = SS_Method_P_COMM/(SS_Method_P_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_p_dfrac = SS_Method_P_DFRAC/(SS_Method_P_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
eta_sqr_g_method_samp_comm = SS_Method_SAMP_COMM/(SS_Method_SAMP_COMM + SS_Error_Btwn + 
SS_Error_Wthn); 
eta_sqr_g_method_samp_dfrac = SS_Method_SAMP_DFRAC/(SS_Method_SAMP_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
eta_sqr_g_method_comm_dfrac = SS_Method_COMM_DFRAC/(SS_Method_COMM_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
 
print eta_sqr_g_k; 
print eta_sqr_g_p; 
print eta_sqr_g_samp; 
print eta_sqr_g_comm; 
print eta_sqr_g_dfrac; 
print eta_sqr_g_k_p; 
print eta_sqr_g_k_samp; 
print eta_sqr_g_k_comm; 
print eta_sqr_g_k_dfrac; 
print eta_sqr_g_p_samp; 
print eta_sqr_g_p_comm; 
print eta_sqr_g_p_dfrac; 
print eta_sqr_g_samp_comm; 
print eta_sqr_g_samp_dfrac; 
print eta_sqr_g_comm_dfrac; 
print eta_sqr_g_method; 
print eta_sqr_g_method_k; 
print eta_sqr_g_method_p; 
print eta_sqr_g_method_samp; 
print eta_sqr_g_method_comm; 
print eta_sqr_g_method_dfrac; 
print eta_sqr_g_method_k; 
print eta_sqr_g_method_p; 
print eta_sqr_g_method_samp; 
print eta_sqr_g_method_comm; 
print eta_sqr_g_method_dfrac; 
print eta_sqr_g_method_k_p; 
print eta_sqr_g_method_k_samp; 
print eta_sqr_g_method_k_comm; 
print eta_sqr_g_method_k_dfrac; 
print eta_sqr_g_method_p_samp; 
print eta_sqr_g_method_p_comm; 
print eta_sqr_g_method_p_dfrac; 
print eta_sqr_g_method_samp_comm; 
print eta_sqr_g_method_samp_dfrac; 
print eta_sqr_g_method_comm_dfrac; 
print prprtn_var_expl; 
quit; 
 
 
proc glm data = c; 
class k p Sampsize commun_type d_frac; 
model _meanphi_p _meanphi_o _meanphi_m = k | p | Sampsize | commun_type | d_frac @2; 
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repeated method 3/printe; 
ods output ModelANOVA = c4; 
means k*p k*Sampsize k*d_frac commun_type*d_frac Sampsize*commun_type ; 
 
proc iml; 
use c4; 
 
read all var {SS} where (Source = 'K' & DEPENDENT = 'BetweenSubjects') into SS_K; 
read all var {SS} where (Source = 'P' & DEPENDENT = 'BetweenSubjects') into SS_P; 
read all var {SS} where (Source = 'SAMPSIZE' & DEPENDENT = 'BetweenSubjects') into SS_SAMP; 
read all var {SS} where (Source = 'COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into SS_COMM; 
read all var {SS} where (Source = 'D_FRAC' & DEPENDENT = 'BetweenSubjects') into SS_DFRAC; 
read all var {SS} where (Source = 'K*P' & DEPENDENT = 'BetweenSubjects') into SS_K_P; 
read all var {SS} where (Source = 'K*SAMPSIZE' & DEPENDENT = 'BetweenSubjects') into 
SS_K_SAMP; 
read all var {SS} where (Source = 'K*COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into 
SS_K_COMM; 
read all var {SS} where (Source = 'K*D_FRAC' & DEPENDENT = 'BetweenSubjects') into SS_K_DFRAC; 
read all var {SS} where (Source = 'P*SAMPSIZE' & DEPENDENT = 'BetweenSubjects') into 
SS_P_SAMP; 
read all var {SS} where (Source = 'P*COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into 
SS_P_COMM; 
read all var {SS} where (Source = 'P*D_FRAC' & DEPENDENT = 'BetweenSubjects') into SS_P_DFRAC; 
read all var {SS} where (Source = 'SAMPSIZE*COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into 
SS_SAMP_COMM; 
read all var {SS} where (Source = 'SAMPSIZE*D_FRAC' & DEPENDENT = 'BetweenSubjects') into 
SS_SAMP_DFRAC; 
read all var {SS} where (Source = 'COMMUN_TYPE*D_FRAC' & DEPENDENT = 'BetweenSubjects') into 
SS_COMM_DFRAC; 
read all var {SS} where (Source = 'Error' & DEPENDENT = 'BetweenSubjects') into SS_Error_Btwn; 
read all var {SS} where (Source = 'method' & DEPENDENT = 'WithinSubject') into SS_Method; 
read all var {SS} where (Source = 'method*K' & DEPENDENT = 'WithinSubject') into SS_Method_K; 
read all var {SS} where (Source = 'method*P' & DEPENDENT = 'WithinSubject') into SS_Method_P; 
read all var {SS} where (Source = 'method*SAMPSIZE' & DEPENDENT = 'WithinSubject') into 
SS_Method_SAMP; 
read all var {SS} where (Source = 'method*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') into 
SS_Method_COMM; 
read all var {SS} where (Source = 'method*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_DFRAC; 
read all var {SS} where (Source = 'method*K*P' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_P; 
read all var {SS} where (Source = 'method*K*SAMPSIZE' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_SAMP; 
read all var {SS} where (Source = 'method*K*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_COMM; 
read all var {SS} where (Source = 'method*K*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_DFRAC; 
read all var {SS} where (Source = 'method*P*SAMPSIZE' & DEPENDENT = 'WithinSubject') into 
SS_Method_P_SAMP; 
read all var {SS} where (Source = 'method*P*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') into 
SS_Method_P_COMM; 
read all var {SS} where (Source = 'method*P*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_P_DFRAC; 
read all var {SS} where (Source = 'method*SAMPSIZE*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') 
into SS_Method_SAMP_COMM; 
read all var {SS} where (Source = 'method*SAMPSIZE*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_SAMP_DFRAC; 
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read all var {SS} where (Source = 'method*COMMUN_TYPE*D_FRAC' & DEPENDENT = 'WithinSubject') 
into SS_Method_COMM_DFRAC; 
read all var {SS} where (Source = 'Error(method)' & DEPENDENT = 'WithinSubject') into 
SS_Error_Wthn; 
 
total_ss = SS_K + SS_P + SS_SAMP + SS_COMM + SS_DFRAC + SS_K_P + SS_K_SAMP + SS_K_COMM + 
SS_K_DFRAC + SS_P_SAMP + SS_P_COMM + SS_P_DFRAC + 
SS_SAMP_COMM + SS_SAMP_DFRAC + SS_COMM_DFRAC + SS_Error_Btwn + SS_Method + SS_Method_K + 
SS_Method_P + SS_Method_SAMP + SS_Method_COMM +  
SS_Method_DFRAC + SS_Method_K_P + SS_Method_K_SAMP + SS_Method_K_COMM + SS_Method_K_DFRAC + 
SS_Method_P_SAMP + SS_Method_P_COMM + SS_Method_P_DFRAC + 
SS_Method_SAMP_COMM + SS_Method_SAMP_DFRAC + SS_Method_COMM_DFRAC + SS_Error_Wthn; 
model_ss = total_ss ‐ (SS_Error_Btwn + SS_Error_Wthn); 
prprtn_var_expl = model_ss/total_ss; 
eta_sqr_g_method = SS_Method/(SS_Method + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k = SS_K/(SS_K + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p = SS_P/(SS_P + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_samp = SS_SAMP/(SS_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_comm = SS_COMM/(SS_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_dfrac = SS_DFRAC/(SS_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k_p = SS_K_P/(SS_K_P +  SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k_samp = SS_K_SAMP/(SS_K_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k_comm = SS_K_COMM/(SS_K_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k_dfrac = SS_K_DFRAC/(SS_K_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p_samp = SS_P_SAMP/(SS_P_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p_comm = SS_P_COMM/(SS_P_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p_dfrac = SS_P_DFRAC/(SS_P_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_samp_comm = SS_SAMP_COMM/(SS_SAMP_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_samp_dfrac = SS_SAMP_DFRAC/(SS_SAMP_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_comm_dfrac = SS_COMM_DFRAC/(SS_COMM_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k = SS_Method_K/(SS_Method_K + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_p = SS_Method_P/(SS_Method_P + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_samp = SS_Method_Samp/(SS_Method_Samp + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_comm = SS_Method_Comm/(SS_Method_Comm + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_dfrac = SS_Method_Dfrac/(SS_Method_Dfrac + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k_p = SS_Method_K_P/(SS_Method_K_P + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k_samp = SS_Method_K_SAMP/(SS_Method_K_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k_comm = SS_Method_K_COMM/(SS_Method_K_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k_dfrac = SS_Method_K_DFRAC/(SS_Method_K_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
eta_sqr_g_method_p_samp = SS_Method_P_SAMP/(SS_Method_P_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_p_comm = SS_Method_P_COMM/(SS_Method_P_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_p_dfrac = SS_Method_P_DFRAC/(SS_Method_P_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
eta_sqr_g_method_samp_comm = SS_Method_SAMP_COMM/(SS_Method_SAMP_COMM + SS_Error_Btwn + 
SS_Error_Wthn); 
eta_sqr_g_method_samp_dfrac = SS_Method_SAMP_DFRAC/(SS_Method_SAMP_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
eta_sqr_g_method_comm_dfrac = SS_Method_COMM_DFRAC/(SS_Method_COMM_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
 
print eta_sqr_g_k; 
print eta_sqr_g_p; 
print eta_sqr_g_samp; 
print eta_sqr_g_comm; 
print eta_sqr_g_dfrac; 
print eta_sqr_g_k_p; 
print eta_sqr_g_k_samp; 
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print eta_sqr_g_k_comm; 
print eta_sqr_g_k_dfrac; 
print eta_sqr_g_p_samp; 
print eta_sqr_g_p_comm; 
print eta_sqr_g_p_dfrac; 
print eta_sqr_g_samp_comm; 
print eta_sqr_g_samp_dfrac; 
print eta_sqr_g_comm_dfrac; 
print eta_sqr_g_method; 
print eta_sqr_g_method_k; 
print eta_sqr_g_method_p; 
print eta_sqr_g_method_samp; 
print eta_sqr_g_method_comm; 
print eta_sqr_g_method_dfrac; 
print eta_sqr_g_method_k; 
print eta_sqr_g_method_p; 
print eta_sqr_g_method_samp; 
print eta_sqr_g_method_comm; 
print eta_sqr_g_method_dfrac; 
print eta_sqr_g_method_k_p; 
print eta_sqr_g_method_k_samp; 
print eta_sqr_g_method_k_comm; 
print eta_sqr_g_method_k_dfrac; 
print eta_sqr_g_method_p_samp; 
print eta_sqr_g_method_p_comm; 
print eta_sqr_g_method_p_dfrac; 
print eta_sqr_g_method_samp_comm; 
print eta_sqr_g_method_samp_dfrac; 
print eta_sqr_g_method_comm_dfrac; 
print prprtn_var_expl; 
quit; 
 
 
proc glm data = c; 
class k p Sampsize commun_type d_frac; 
model _Pattern_Accuracy30_p _Pattern_Accuracy30_o _Pattern_Accuracy30_m =  k | p | Sampsize | 
commun_type | d_frac @2; 
repeated method 3/printe; 
ods output ModelANOVA = c5; 
means k*p k*commun_type sampsize*commun_type p*commun_type; 
 
proc iml; 
use c5; 
 
read all var {SS} where (Source = 'K' & DEPENDENT = 'BetweenSubjects') into SS_K; 
read all var {SS} where (Source = 'P' & DEPENDENT = 'BetweenSubjects') into SS_P; 
read all var {SS} where (Source = 'SAMPSIZE' & DEPENDENT = 'BetweenSubjects') into SS_SAMP; 
read all var {SS} where (Source = 'COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into SS_COMM; 
read all var {SS} where (Source = 'D_FRAC' & DEPENDENT = 'BetweenSubjects') into SS_DFRAC; 
read all var {SS} where (Source = 'K*P' & DEPENDENT = 'BetweenSubjects') into SS_K_P; 
read all var {SS} where (Source = 'K*SAMPSIZE' & DEPENDENT = 'BetweenSubjects') into 
SS_K_SAMP; 
read all var {SS} where (Source = 'K*COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into 
SS_K_COMM; 
read all var {SS} where (Source = 'K*D_FRAC' & DEPENDENT = 'BetweenSubjects') into SS_K_DFRAC; 
read all var {SS} where (Source = 'P*SAMPSIZE' & DEPENDENT = 'BetweenSubjects') into 
SS_P_SAMP; 
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read all var {SS} where (Source = 'P*COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into 
SS_P_COMM; 
read all var {SS} where (Source = 'P*D_FRAC' & DEPENDENT = 'BetweenSubjects') into SS_P_DFRAC; 
read all var {SS} where (Source = 'SAMPSIZE*COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into 
SS_SAMP_COMM; 
read all var {SS} where (Source = 'SAMPSIZE*D_FRAC' & DEPENDENT = 'BetweenSubjects') into 
SS_SAMP_DFRAC; 
read all var {SS} where (Source = 'COMMUN_TYPE*D_FRAC' & DEPENDENT = 'BetweenSubjects') into 
SS_COMM_DFRAC; 
read all var {SS} where (Source = 'Error' & DEPENDENT = 'BetweenSubjects') into SS_Error_Btwn; 
read all var {SS} where (Source = 'method' & DEPENDENT = 'WithinSubject') into SS_Method; 
read all var {SS} where (Source = 'method*K' & DEPENDENT = 'WithinSubject') into SS_Method_K; 
read all var {SS} where (Source = 'method*P' & DEPENDENT = 'WithinSubject') into SS_Method_P; 
read all var {SS} where (Source = 'method*SAMPSIZE' & DEPENDENT = 'WithinSubject') into 
SS_Method_SAMP; 
read all var {SS} where (Source = 'method*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') into 
SS_Method_COMM; 
read all var {SS} where (Source = 'method*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_DFRAC; 
read all var {SS} where (Source = 'method*K*P' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_P; 
read all var {SS} where (Source = 'method*K*SAMPSIZE' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_SAMP; 
read all var {SS} where (Source = 'method*K*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_COMM; 
read all var {SS} where (Source = 'method*K*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_DFRAC; 
read all var {SS} where (Source = 'method*P*SAMPSIZE' & DEPENDENT = 'WithinSubject') into 
SS_Method_P_SAMP; 
read all var {SS} where (Source = 'method*P*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') into 
SS_Method_P_COMM; 
read all var {SS} where (Source = 'method*P*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_P_DFRAC; 
read all var {SS} where (Source = 'method*SAMPSIZE*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') 
into SS_Method_SAMP_COMM; 
read all var {SS} where (Source = 'method*SAMPSIZE*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_SAMP_DFRAC; 
read all var {SS} where (Source = 'method*COMMUN_TYPE*D_FRAC' & DEPENDENT = 'WithinSubject') 
into SS_Method_COMM_DFRAC; 
read all var {SS} where (Source = 'Error(method)' & DEPENDENT = 'WithinSubject') into 
SS_Error_Wthn; 
 
total_ss = SS_K + SS_P + SS_SAMP + SS_COMM + SS_DFRAC + SS_K_P + SS_K_SAMP + SS_K_COMM + 
SS_K_DFRAC + SS_P_SAMP + SS_P_COMM + SS_P_DFRAC + 
SS_SAMP_COMM + SS_SAMP_DFRAC + SS_COMM_DFRAC + SS_Error_Btwn + SS_Method + SS_Method_K + 
SS_Method_P + SS_Method_SAMP + SS_Method_COMM +  
SS_Method_DFRAC + SS_Method_K_P + SS_Method_K_SAMP + SS_Method_K_COMM + SS_Method_K_DFRAC + 
SS_Method_P_SAMP + SS_Method_P_COMM + SS_Method_P_DFRAC + 
SS_Method_SAMP_COMM + SS_Method_SAMP_DFRAC + SS_Method_COMM_DFRAC + SS_Error_Wthn; 
model_ss = total_ss ‐ (SS_Error_Btwn + SS_Error_Wthn); 
prprtn_var_expl = model_ss/total_ss; 
eta_sqr_g_method = SS_Method/(SS_Method + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k = SS_K/(SS_K + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p = SS_P/(SS_P + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_samp = SS_SAMP/(SS_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_comm = SS_COMM/(SS_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_dfrac = SS_DFRAC/(SS_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k_p = SS_K_P/(SS_K_P +  SS_Error_Btwn + SS_Error_Wthn); 
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eta_sqr_g_k_samp = SS_K_SAMP/(SS_K_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k_comm = SS_K_COMM/(SS_K_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k_dfrac = SS_K_DFRAC/(SS_K_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p_samp = SS_P_SAMP/(SS_P_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p_comm = SS_P_COMM/(SS_P_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p_dfrac = SS_P_DFRAC/(SS_P_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_samp_comm = SS_SAMP_COMM/(SS_SAMP_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_samp_dfrac = SS_SAMP_DFRAC/(SS_SAMP_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_comm_dfrac = SS_COMM_DFRAC/(SS_COMM_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k = SS_Method_K/(SS_Method_K + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_p = SS_Method_P/(SS_Method_P + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_samp = SS_Method_Samp/(SS_Method_Samp + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_comm = SS_Method_Comm/(SS_Method_Comm + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_dfrac = SS_Method_Dfrac/(SS_Method_Dfrac + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k_p = SS_Method_K_P/(SS_Method_K_P + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k_samp = SS_Method_K_SAMP/(SS_Method_K_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k_comm = SS_Method_K_COMM/(SS_Method_K_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k_dfrac = SS_Method_K_DFRAC/(SS_Method_K_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
eta_sqr_g_method_p_samp = SS_Method_P_SAMP/(SS_Method_P_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_p_comm = SS_Method_P_COMM/(SS_Method_P_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_p_dfrac = SS_Method_P_DFRAC/(SS_Method_P_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
eta_sqr_g_method_samp_comm = SS_Method_SAMP_COMM/(SS_Method_SAMP_COMM + SS_Error_Btwn + 
SS_Error_Wthn); 
eta_sqr_g_method_samp_dfrac = SS_Method_SAMP_DFRAC/(SS_Method_SAMP_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
eta_sqr_g_method_comm_dfrac = SS_Method_COMM_DFRAC/(SS_Method_COMM_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
 
print eta_sqr_g_k; 
print eta_sqr_g_p; 
print eta_sqr_g_samp; 
print eta_sqr_g_comm; 
print eta_sqr_g_dfrac; 
print eta_sqr_g_k_p; 
print eta_sqr_g_k_samp; 
print eta_sqr_g_k_comm; 
print eta_sqr_g_k_dfrac; 
print eta_sqr_g_p_samp; 
print eta_sqr_g_p_comm; 
print eta_sqr_g_p_dfrac; 
print eta_sqr_g_samp_comm; 
print eta_sqr_g_samp_dfrac; 
print eta_sqr_g_comm_dfrac; 
print eta_sqr_g_method; 
print eta_sqr_g_method_k; 
print eta_sqr_g_method_p; 
print eta_sqr_g_method_samp; 
print eta_sqr_g_method_comm; 
print eta_sqr_g_method_dfrac; 
print eta_sqr_g_method_k; 
print eta_sqr_g_method_p; 
print eta_sqr_g_method_samp; 
print eta_sqr_g_method_comm; 
print eta_sqr_g_method_dfrac; 
print eta_sqr_g_method_k_p; 
print eta_sqr_g_method_k_samp; 
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print eta_sqr_g_method_k_comm; 
print eta_sqr_g_method_k_dfrac; 
print eta_sqr_g_method_p_samp; 
print eta_sqr_g_method_p_comm; 
print eta_sqr_g_method_p_dfrac; 
print eta_sqr_g_method_samp_comm; 
print eta_sqr_g_method_samp_dfrac; 
print eta_sqr_g_method_comm_dfrac; 
print prprtn_var_expl; 
quit; 
 
 
proc glm data = c; 
class k p Sampsize commun_type d_frac; 
model _R_Fscores_p _R_Fscores_o _R_Fscores_m =  k | p | Sampsize | commun_type | d_frac @2; 
repeated method 3/printe; 
ods output ModelANOVA = c6; 
means k*p p*commun_type k*sampsize k*commun_type; 
 
proc iml; 
use c6; 
 
read all var {SS} where (Source = 'K' & DEPENDENT = 'BetweenSubjects') into SS_K; 
read all var {SS} where (Source = 'P' & DEPENDENT = 'BetweenSubjects') into SS_P; 
read all var {SS} where (Source = 'SAMPSIZE' & DEPENDENT = 'BetweenSubjects') into SS_SAMP; 
read all var {SS} where (Source = 'COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into SS_COMM; 
read all var {SS} where (Source = 'D_FRAC' & DEPENDENT = 'BetweenSubjects') into SS_DFRAC; 
read all var {SS} where (Source = 'K*P' & DEPENDENT = 'BetweenSubjects') into SS_K_P; 
read all var {SS} where (Source = 'K*SAMPSIZE' & DEPENDENT = 'BetweenSubjects') into 
SS_K_SAMP; 
read all var {SS} where (Source = 'K*COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into 
SS_K_COMM; 
read all var {SS} where (Source = 'K*D_FRAC' & DEPENDENT = 'BetweenSubjects') into SS_K_DFRAC; 
read all var {SS} where (Source = 'P*SAMPSIZE' & DEPENDENT = 'BetweenSubjects') into 
SS_P_SAMP; 
read all var {SS} where (Source = 'P*COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into 
SS_P_COMM; 
read all var {SS} where (Source = 'P*D_FRAC' & DEPENDENT = 'BetweenSubjects') into SS_P_DFRAC; 
read all var {SS} where (Source = 'SAMPSIZE*COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into 
SS_SAMP_COMM; 
read all var {SS} where (Source = 'SAMPSIZE*D_FRAC' & DEPENDENT = 'BetweenSubjects') into 
SS_SAMP_DFRAC; 
read all var {SS} where (Source = 'COMMUN_TYPE*D_FRAC' & DEPENDENT = 'BetweenSubjects') into 
SS_COMM_DFRAC; 
read all var {SS} where (Source = 'Error' & DEPENDENT = 'BetweenSubjects') into SS_Error_Btwn; 
read all var {SS} where (Source = 'method' & DEPENDENT = 'WithinSubject') into SS_Method; 
read all var {SS} where (Source = 'method*K' & DEPENDENT = 'WithinSubject') into SS_Method_K; 
read all var {SS} where (Source = 'method*P' & DEPENDENT = 'WithinSubject') into SS_Method_P; 
read all var {SS} where (Source = 'method*SAMPSIZE' & DEPENDENT = 'WithinSubject') into 
SS_Method_SAMP; 
read all var {SS} where (Source = 'method*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') into 
SS_Method_COMM; 
read all var {SS} where (Source = 'method*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_DFRAC; 
read all var {SS} where (Source = 'method*K*P' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_P; 
read all var {SS} where (Source = 'method*K*SAMPSIZE' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_SAMP; 
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read all var {SS} where (Source = 'method*K*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_COMM; 
read all var {SS} where (Source = 'method*K*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_DFRAC; 
read all var {SS} where (Source = 'method*P*SAMPSIZE' & DEPENDENT = 'WithinSubject') into 
SS_Method_P_SAMP; 
read all var {SS} where (Source = 'method*P*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') into 
SS_Method_P_COMM; 
read all var {SS} where (Source = 'method*P*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_P_DFRAC; 
read all var {SS} where (Source = 'method*SAMPSIZE*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') 
into SS_Method_SAMP_COMM; 
read all var {SS} where (Source = 'method*SAMPSIZE*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_SAMP_DFRAC; 
read all var {SS} where (Source = 'method*COMMUN_TYPE*D_FRAC' & DEPENDENT = 'WithinSubject') 
into SS_Method_COMM_DFRAC; 
read all var {SS} where (Source = 'Error(method)' & DEPENDENT = 'WithinSubject') into 
SS_Error_Wthn; 
 
total_ss = SS_K + SS_P + SS_SAMP + SS_COMM + SS_DFRAC + SS_K_P + SS_K_SAMP + SS_K_COMM + 
SS_K_DFRAC + SS_P_SAMP + SS_P_COMM + SS_P_DFRAC + 
SS_SAMP_COMM + SS_SAMP_DFRAC + SS_COMM_DFRAC + SS_Error_Btwn + SS_Method + SS_Method_K + 
SS_Method_P + SS_Method_SAMP + SS_Method_COMM +  
SS_Method_DFRAC + SS_Method_K_P + SS_Method_K_SAMP + SS_Method_K_COMM + SS_Method_K_DFRAC + 
SS_Method_P_SAMP + SS_Method_P_COMM + SS_Method_P_DFRAC + 
SS_Method_SAMP_COMM + SS_Method_SAMP_DFRAC + SS_Method_COMM_DFRAC + SS_Error_Wthn; 
model_ss = total_ss ‐ (SS_Error_Btwn + SS_Error_Wthn); 
prprtn_var_expl = model_ss/total_ss; 
eta_sqr_g_method = SS_Method/(SS_Method + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k = SS_K/(SS_K + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p = SS_P/(SS_P + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_samp = SS_SAMP/(SS_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_comm = SS_COMM/(SS_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_dfrac = SS_DFRAC/(SS_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k_p = SS_K_P/(SS_K_P +  SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k_samp = SS_K_SAMP/(SS_K_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k_comm = SS_K_COMM/(SS_K_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k_dfrac = SS_K_DFRAC/(SS_K_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p_samp = SS_P_SAMP/(SS_P_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p_comm = SS_P_COMM/(SS_P_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p_dfrac = SS_P_DFRAC/(SS_P_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_samp_comm = SS_SAMP_COMM/(SS_SAMP_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_samp_dfrac = SS_SAMP_DFRAC/(SS_SAMP_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_comm_dfrac = SS_COMM_DFRAC/(SS_COMM_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k = SS_Method_K/(SS_Method_K + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_p = SS_Method_P/(SS_Method_P + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_samp = SS_Method_Samp/(SS_Method_Samp + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_comm = SS_Method_Comm/(SS_Method_Comm + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_dfrac = SS_Method_Dfrac/(SS_Method_Dfrac + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k_p = SS_Method_K_P/(SS_Method_K_P + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k_samp = SS_Method_K_SAMP/(SS_Method_K_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k_comm = SS_Method_K_COMM/(SS_Method_K_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k_dfrac = SS_Method_K_DFRAC/(SS_Method_K_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
eta_sqr_g_method_p_samp = SS_Method_P_SAMP/(SS_Method_P_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_p_comm = SS_Method_P_COMM/(SS_Method_P_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_p_dfrac = SS_Method_P_DFRAC/(SS_Method_P_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
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eta_sqr_g_method_samp_comm = SS_Method_SAMP_COMM/(SS_Method_SAMP_COMM + SS_Error_Btwn + 
SS_Error_Wthn); 
eta_sqr_g_method_samp_dfrac = SS_Method_SAMP_DFRAC/(SS_Method_SAMP_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
eta_sqr_g_method_comm_dfrac = SS_Method_COMM_DFRAC/(SS_Method_COMM_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
 
print eta_sqr_g_k; 
print eta_sqr_g_p; 
print eta_sqr_g_samp; 
print eta_sqr_g_comm; 
print eta_sqr_g_dfrac; 
print eta_sqr_g_k_p; 
print eta_sqr_g_k_samp; 
print eta_sqr_g_k_comm; 
print eta_sqr_g_k_dfrac; 
print eta_sqr_g_p_samp; 
print eta_sqr_g_p_comm; 
print eta_sqr_g_p_dfrac; 
print eta_sqr_g_samp_comm; 
print eta_sqr_g_samp_dfrac; 
print eta_sqr_g_comm_dfrac; 
print eta_sqr_g_method; 
print eta_sqr_g_method_k; 
print eta_sqr_g_method_p; 
print eta_sqr_g_method_samp; 
print eta_sqr_g_method_comm; 
print eta_sqr_g_method_dfrac; 
print eta_sqr_g_method_k; 
print eta_sqr_g_method_p; 
print eta_sqr_g_method_samp; 
print eta_sqr_g_method_comm; 
print eta_sqr_g_method_dfrac; 
print eta_sqr_g_method_k_p; 
print eta_sqr_g_method_k_samp; 
print eta_sqr_g_method_k_comm; 
print eta_sqr_g_method_k_dfrac; 
print eta_sqr_g_method_p_samp; 
print eta_sqr_g_method_p_comm; 
print eta_sqr_g_method_p_dfrac; 
print eta_sqr_g_method_samp_comm; 
print eta_sqr_g_method_samp_dfrac; 
print eta_sqr_g_method_comm_dfrac; 
print prprtn_var_expl; 
quit; 
 
 
proc glm data = c; 
class k p Sampsize commun_type d_frac; 
model _Non_zero_p _Non_zero_o _Non_zero_m =  k | p | Sampsize | commun_type | d_frac @2; 
repeated method 3/printe; 
ods output ModelANOVA = c7; 
lsmeans k p Sampsize commun_type d_frac; 
 
proc iml; 
use c7; 
 
read all var {SS} where (Source = 'K' & DEPENDENT = 'BetweenSubjects') into SS_K; 
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read all var {SS} where (Source = 'P' & DEPENDENT = 'BetweenSubjects') into SS_P; 
read all var {SS} where (Source = 'SAMPSIZE' & DEPENDENT = 'BetweenSubjects') into SS_SAMP; 
read all var {SS} where (Source = 'COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into SS_COMM; 
read all var {SS} where (Source = 'D_FRAC' & DEPENDENT = 'BetweenSubjects') into SS_DFRAC; 
read all var {SS} where (Source = 'K*P' & DEPENDENT = 'BetweenSubjects') into SS_K_P; 
read all var {SS} where (Source = 'K*SAMPSIZE' & DEPENDENT = 'BetweenSubjects') into 
SS_K_SAMP; 
read all var {SS} where (Source = 'K*COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into 
SS_K_COMM; 
read all var {SS} where (Source = 'K*D_FRAC' & DEPENDENT = 'BetweenSubjects') into SS_K_DFRAC; 
read all var {SS} where (Source = 'P*SAMPSIZE' & DEPENDENT = 'BetweenSubjects') into 
SS_P_SAMP; 
read all var {SS} where (Source = 'P*COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into 
SS_P_COMM; 
read all var {SS} where (Source = 'P*D_FRAC' & DEPENDENT = 'BetweenSubjects') into SS_P_DFRAC; 
read all var {SS} where (Source = 'SAMPSIZE*COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into 
SS_SAMP_COMM; 
read all var {SS} where (Source = 'SAMPSIZE*D_FRAC' & DEPENDENT = 'BetweenSubjects') into 
SS_SAMP_DFRAC; 
read all var {SS} where (Source = 'COMMUN_TYPE*D_FRAC' & DEPENDENT = 'BetweenSubjects') into 
SS_COMM_DFRAC; 
read all var {SS} where (Source = 'Error' & DEPENDENT = 'BetweenSubjects') into SS_Error_Btwn; 
read all var {SS} where (Source = 'method' & DEPENDENT = 'WithinSubject') into SS_Method; 
read all var {SS} where (Source = 'method*K' & DEPENDENT = 'WithinSubject') into SS_Method_K; 
read all var {SS} where (Source = 'method*P' & DEPENDENT = 'WithinSubject') into SS_Method_P; 
read all var {SS} where (Source = 'method*SAMPSIZE' & DEPENDENT = 'WithinSubject') into 
SS_Method_SAMP; 
read all var {SS} where (Source = 'method*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') into 
SS_Method_COMM; 
read all var {SS} where (Source = 'method*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_DFRAC; 
read all var {SS} where (Source = 'method*K*P' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_P; 
read all var {SS} where (Source = 'method*K*SAMPSIZE' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_SAMP; 
read all var {SS} where (Source = 'method*K*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_COMM; 
read all var {SS} where (Source = 'method*K*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_DFRAC; 
read all var {SS} where (Source = 'method*P*SAMPSIZE' & DEPENDENT = 'WithinSubject') into 
SS_Method_P_SAMP; 
read all var {SS} where (Source = 'method*P*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') into 
SS_Method_P_COMM; 
read all var {SS} where (Source = 'method*P*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_P_DFRAC; 
read all var {SS} where (Source = 'method*SAMPSIZE*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') 
into SS_Method_SAMP_COMM; 
read all var {SS} where (Source = 'method*SAMPSIZE*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_SAMP_DFRAC; 
read all var {SS} where (Source = 'method*COMMUN_TYPE*D_FRAC' & DEPENDENT = 'WithinSubject') 
into SS_Method_COMM_DFRAC; 
read all var {SS} where (Source = 'Error(method)' & DEPENDENT = 'WithinSubject') into 
SS_Error_Wthn; 
 
total_ss = SS_K + SS_P + SS_SAMP + SS_COMM + SS_DFRAC + SS_K_P + SS_K_SAMP + SS_K_COMM + 
SS_K_DFRAC + SS_P_SAMP + SS_P_COMM + SS_P_DFRAC + 
SS_SAMP_COMM + SS_SAMP_DFRAC + SS_COMM_DFRAC + SS_Error_Btwn + SS_Method + SS_Method_K + 
SS_Method_P + SS_Method_SAMP + SS_Method_COMM +  



Appendix F (Continued) 
 

319 
 

SS_Method_DFRAC + SS_Method_K_P + SS_Method_K_SAMP + SS_Method_K_COMM + SS_Method_K_DFRAC + 
SS_Method_P_SAMP + SS_Method_P_COMM + SS_Method_P_DFRAC + 
SS_Method_SAMP_COMM + SS_Method_SAMP_DFRAC + SS_Method_COMM_DFRAC + SS_Error_Wthn; 
model_ss = total_ss ‐ (SS_Error_Btwn + SS_Error_Wthn); 
prprtn_var_expl = model_ss/total_ss; 
eta_sqr_g_method = SS_Method/(SS_Method + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k = SS_K/(SS_K + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p = SS_P/(SS_P + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_samp = SS_SAMP/(SS_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_comm = SS_COMM/(SS_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_dfrac = SS_DFRAC/(SS_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k_p = SS_K_P/(SS_K_P +  SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k_samp = SS_K_SAMP/(SS_K_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k_comm = SS_K_COMM/(SS_K_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k_dfrac = SS_K_DFRAC/(SS_K_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p_samp = SS_P_SAMP/(SS_P_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p_comm = SS_P_COMM/(SS_P_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p_dfrac = SS_P_DFRAC/(SS_P_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_samp_comm = SS_SAMP_COMM/(SS_SAMP_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_samp_dfrac = SS_SAMP_DFRAC/(SS_SAMP_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_comm_dfrac = SS_COMM_DFRAC/(SS_COMM_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k = SS_Method_K/(SS_Method_K + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_p = SS_Method_P/(SS_Method_P + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_samp = SS_Method_Samp/(SS_Method_Samp + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_comm = SS_Method_Comm/(SS_Method_Comm + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_dfrac = SS_Method_Dfrac/(SS_Method_Dfrac + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k_p = SS_Method_K_P/(SS_Method_K_P + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k_samp = SS_Method_K_SAMP/(SS_Method_K_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k_comm = SS_Method_K_COMM/(SS_Method_K_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k_dfrac = SS_Method_K_DFRAC/(SS_Method_K_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
eta_sqr_g_method_p_samp = SS_Method_P_SAMP/(SS_Method_P_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_p_comm = SS_Method_P_COMM/(SS_Method_P_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_p_dfrac = SS_Method_P_DFRAC/(SS_Method_P_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
eta_sqr_g_method_samp_comm = SS_Method_SAMP_COMM/(SS_Method_SAMP_COMM + SS_Error_Btwn + 
SS_Error_Wthn); 
eta_sqr_g_method_samp_dfrac = SS_Method_SAMP_DFRAC/(SS_Method_SAMP_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
eta_sqr_g_method_comm_dfrac = SS_Method_COMM_DFRAC/(SS_Method_COMM_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
 
print eta_sqr_g_k; 
print eta_sqr_g_p; 
print eta_sqr_g_samp; 
print eta_sqr_g_comm; 
print eta_sqr_g_dfrac; 
print eta_sqr_g_k_p; 
print eta_sqr_g_k_samp; 
print eta_sqr_g_k_comm; 
print eta_sqr_g_k_dfrac; 
print eta_sqr_g_p_samp; 
print eta_sqr_g_p_comm; 
print eta_sqr_g_p_dfrac; 
print eta_sqr_g_samp_comm; 
print eta_sqr_g_samp_dfrac; 
print eta_sqr_g_comm_dfrac; 
print eta_sqr_g_method; 
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print eta_sqr_g_method_k; 
print eta_sqr_g_method_p; 
print eta_sqr_g_method_samp; 
print eta_sqr_g_method_comm; 
print eta_sqr_g_method_dfrac; 
print eta_sqr_g_method_k; 
print eta_sqr_g_method_p; 
print eta_sqr_g_method_samp; 
print eta_sqr_g_method_comm; 
print eta_sqr_g_method_dfrac; 
print eta_sqr_g_method_k_p; 
print eta_sqr_g_method_k_samp; 
print eta_sqr_g_method_k_comm; 
print eta_sqr_g_method_k_dfrac; 
print eta_sqr_g_method_p_samp; 
print eta_sqr_g_method_p_comm; 
print eta_sqr_g_method_p_dfrac; 
print eta_sqr_g_method_samp_comm; 
print eta_sqr_g_method_samp_dfrac; 
print eta_sqr_g_method_comm_dfrac; 
print prprtn_var_expl; 
quit; 
 
 
proc glm data = c; 
class k p Sampsize commun_type d_frac; 
model _bias_loadings_p _bias_loadings_o _bias_loadings_m = k | p | Sampsize | commun_type | 
d_frac @2; 
repeated method 3/printe; 
ods output ModelANOVA = c8; 
means k*p k*commun_type k*d_frac k*Sampsize; 
 
proc iml; 
use c8; 
 
read all var {SS} where (Source = 'K' & DEPENDENT = 'BetweenSubjects') into SS_K; 
read all var {SS} where (Source = 'P' & DEPENDENT = 'BetweenSubjects') into SS_P; 
read all var {SS} where (Source = 'SAMPSIZE' & DEPENDENT = 'BetweenSubjects') into SS_SAMP; 
read all var {SS} where (Source = 'COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into SS_COMM; 
read all var {SS} where (Source = 'D_FRAC' & DEPENDENT = 'BetweenSubjects') into SS_DFRAC; 
read all var {SS} where (Source = 'K*P' & DEPENDENT = 'BetweenSubjects') into SS_K_P; 
read all var {SS} where (Source = 'K*SAMPSIZE' & DEPENDENT = 'BetweenSubjects') into 
SS_K_SAMP; 
read all var {SS} where (Source = 'K*COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into 
SS_K_COMM; 
read all var {SS} where (Source = 'K*D_FRAC' & DEPENDENT = 'BetweenSubjects') into SS_K_DFRAC; 
read all var {SS} where (Source = 'P*SAMPSIZE' & DEPENDENT = 'BetweenSubjects') into 
SS_P_SAMP; 
read all var {SS} where (Source = 'P*COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into 
SS_P_COMM; 
read all var {SS} where (Source = 'P*D_FRAC' & DEPENDENT = 'BetweenSubjects') into SS_P_DFRAC; 
read all var {SS} where (Source = 'SAMPSIZE*COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into 
SS_SAMP_COMM; 
read all var {SS} where (Source = 'SAMPSIZE*D_FRAC' & DEPENDENT = 'BetweenSubjects') into 
SS_SAMP_DFRAC; 
read all var {SS} where (Source = 'COMMUN_TYPE*D_FRAC' & DEPENDENT = 'BetweenSubjects') into 
SS_COMM_DFRAC; 
read all var {SS} where (Source = 'Error' & DEPENDENT = 'BetweenSubjects') into SS_Error_Btwn; 
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read all var {SS} where (Source = 'method' & DEPENDENT = 'WithinSubject') into SS_Method; 
read all var {SS} where (Source = 'method*K' & DEPENDENT = 'WithinSubject') into SS_Method_K; 
read all var {SS} where (Source = 'method*P' & DEPENDENT = 'WithinSubject') into SS_Method_P; 
read all var {SS} where (Source = 'method*SAMPSIZE' & DEPENDENT = 'WithinSubject') into 
SS_Method_SAMP; 
read all var {SS} where (Source = 'method*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') into 
SS_Method_COMM; 
read all var {SS} where (Source = 'method*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_DFRAC; 
read all var {SS} where (Source = 'method*K*P' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_P; 
read all var {SS} where (Source = 'method*K*SAMPSIZE' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_SAMP; 
read all var {SS} where (Source = 'method*K*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_COMM; 
read all var {SS} where (Source = 'method*K*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_DFRAC; 
read all var {SS} where (Source = 'method*P*SAMPSIZE' & DEPENDENT = 'WithinSubject') into 
SS_Method_P_SAMP; 
read all var {SS} where (Source = 'method*P*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') into 
SS_Method_P_COMM; 
read all var {SS} where (Source = 'method*P*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_P_DFRAC; 
read all var {SS} where (Source = 'method*SAMPSIZE*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') 
into SS_Method_SAMP_COMM; 
read all var {SS} where (Source = 'method*SAMPSIZE*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_SAMP_DFRAC; 
read all var {SS} where (Source = 'method*COMMUN_TYPE*D_FRAC' & DEPENDENT = 'WithinSubject') 
into SS_Method_COMM_DFRAC; 
read all var {SS} where (Source = 'Error(method)' & DEPENDENT = 'WithinSubject') into 
SS_Error_Wthn; 
 
total_ss = SS_K + SS_P + SS_SAMP + SS_COMM + SS_DFRAC + SS_K_P + SS_K_SAMP + SS_K_COMM + 
SS_K_DFRAC + SS_P_SAMP + SS_P_COMM + SS_P_DFRAC + 
SS_SAMP_COMM + SS_SAMP_DFRAC + SS_COMM_DFRAC + SS_Error_Btwn + SS_Method + SS_Method_K + 
SS_Method_P + SS_Method_SAMP + SS_Method_COMM +  
SS_Method_DFRAC + SS_Method_K_P + SS_Method_K_SAMP + SS_Method_K_COMM + SS_Method_K_DFRAC + 
SS_Method_P_SAMP + SS_Method_P_COMM + SS_Method_P_DFRAC + 
SS_Method_SAMP_COMM + SS_Method_SAMP_DFRAC + SS_Method_COMM_DFRAC + SS_Error_Wthn; 
model_ss = total_ss ‐ (SS_Error_Btwn + SS_Error_Wthn); 
prprtn_var_expl = model_ss/total_ss; 
eta_sqr_g_method = SS_Method/(SS_Method + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k = SS_K/(SS_K + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p = SS_P/(SS_P + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_samp = SS_SAMP/(SS_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_comm = SS_COMM/(SS_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_dfrac = SS_DFRAC/(SS_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k_p = SS_K_P/(SS_K_P +  SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k_samp = SS_K_SAMP/(SS_K_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k_comm = SS_K_COMM/(SS_K_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k_dfrac = SS_K_DFRAC/(SS_K_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p_samp = SS_P_SAMP/(SS_P_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p_comm = SS_P_COMM/(SS_P_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p_dfrac = SS_P_DFRAC/(SS_P_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_samp_comm = SS_SAMP_COMM/(SS_SAMP_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_samp_dfrac = SS_SAMP_DFRAC/(SS_SAMP_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_comm_dfrac = SS_COMM_DFRAC/(SS_COMM_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k = SS_Method_K/(SS_Method_K + SS_Error_Btwn + SS_Error_Wthn); 
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eta_sqr_g_method_p = SS_Method_P/(SS_Method_P + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_samp = SS_Method_Samp/(SS_Method_Samp + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_comm = SS_Method_Comm/(SS_Method_Comm + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_dfrac = SS_Method_Dfrac/(SS_Method_Dfrac + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k_p = SS_Method_K_P/(SS_Method_K_P + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k_samp = SS_Method_K_SAMP/(SS_Method_K_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k_comm = SS_Method_K_COMM/(SS_Method_K_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k_dfrac = SS_Method_K_DFRAC/(SS_Method_K_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
eta_sqr_g_method_p_samp = SS_Method_P_SAMP/(SS_Method_P_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_p_comm = SS_Method_P_COMM/(SS_Method_P_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_p_dfrac = SS_Method_P_DFRAC/(SS_Method_P_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
eta_sqr_g_method_samp_comm = SS_Method_SAMP_COMM/(SS_Method_SAMP_COMM + SS_Error_Btwn + 
SS_Error_Wthn); 
eta_sqr_g_method_samp_dfrac = SS_Method_SAMP_DFRAC/(SS_Method_SAMP_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
eta_sqr_g_method_comm_dfrac = SS_Method_COMM_DFRAC/(SS_Method_COMM_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
 
print eta_sqr_g_k; 
print eta_sqr_g_p; 
print eta_sqr_g_samp; 
print eta_sqr_g_comm; 
print eta_sqr_g_dfrac; 
print eta_sqr_g_k_p; 
print eta_sqr_g_k_samp; 
print eta_sqr_g_k_comm; 
print eta_sqr_g_k_dfrac; 
print eta_sqr_g_p_samp; 
print eta_sqr_g_p_comm; 
print eta_sqr_g_p_dfrac; 
print eta_sqr_g_samp_comm; 
print eta_sqr_g_samp_dfrac; 
print eta_sqr_g_comm_dfrac; 
print eta_sqr_g_method; 
print eta_sqr_g_method_k; 
print eta_sqr_g_method_p; 
print eta_sqr_g_method_samp; 
print eta_sqr_g_method_comm; 
print eta_sqr_g_method_dfrac; 
print eta_sqr_g_method_k; 
print eta_sqr_g_method_p; 
print eta_sqr_g_method_samp; 
print eta_sqr_g_method_comm; 
print eta_sqr_g_method_dfrac; 
print eta_sqr_g_method_k_p; 
print eta_sqr_g_method_k_samp; 
print eta_sqr_g_method_k_comm; 
print eta_sqr_g_method_k_dfrac; 
print eta_sqr_g_method_p_samp; 
print eta_sqr_g_method_p_comm; 
print eta_sqr_g_method_p_dfrac; 
print eta_sqr_g_method_samp_comm; 
print eta_sqr_g_method_samp_dfrac; 
print eta_sqr_g_method_comm_dfrac; 
print prprtn_var_expl; 
quit; 
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proc glm data = c; 
class k p Sampsize commun_type d_frac; 
model _mse_leadings_p _mse_leadings_o _mse_leadings_m =  k | p | Sampsize | commun_type | 
d_frac @2; 
repeated method 3/printe; 
ods output ModelANOVA = c9; 
means k*commun_type k*p k*d_frac commun_type*d_frac Sampsize; 
 
proc iml; 
use c9; 
 
read all var {SS} where (Source = 'K' & DEPENDENT = 'BetweenSubjects') into SS_K; 
read all var {SS} where (Source = 'P' & DEPENDENT = 'BetweenSubjects') into SS_P; 
read all var {SS} where (Source = 'SAMPSIZE' & DEPENDENT = 'BetweenSubjects') into SS_SAMP; 
read all var {SS} where (Source = 'COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into SS_COMM; 
read all var {SS} where (Source = 'D_FRAC' & DEPENDENT = 'BetweenSubjects') into SS_DFRAC; 
read all var {SS} where (Source = 'K*P' & DEPENDENT = 'BetweenSubjects') into SS_K_P; 
read all var {SS} where (Source = 'K*SAMPSIZE' & DEPENDENT = 'BetweenSubjects') into 
SS_K_SAMP; 
read all var {SS} where (Source = 'K*COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into 
SS_K_COMM; 
read all var {SS} where (Source = 'K*D_FRAC' & DEPENDENT = 'BetweenSubjects') into SS_K_DFRAC; 
read all var {SS} where (Source = 'P*SAMPSIZE' & DEPENDENT = 'BetweenSubjects') into 
SS_P_SAMP; 
read all var {SS} where (Source = 'P*COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into 
SS_P_COMM; 
read all var {SS} where (Source = 'P*D_FRAC' & DEPENDENT = 'BetweenSubjects') into SS_P_DFRAC; 
read all var {SS} where (Source = 'SAMPSIZE*COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into 
SS_SAMP_COMM; 
read all var {SS} where (Source = 'SAMPSIZE*D_FRAC' & DEPENDENT = 'BetweenSubjects') into 
SS_SAMP_DFRAC; 
read all var {SS} where (Source = 'COMMUN_TYPE*D_FRAC' & DEPENDENT = 'BetweenSubjects') into 
SS_COMM_DFRAC; 
read all var {SS} where (Source = 'Error' & DEPENDENT = 'BetweenSubjects') into SS_Error_Btwn; 
read all var {SS} where (Source = 'method' & DEPENDENT = 'WithinSubject') into SS_Method; 
read all var {SS} where (Source = 'method*K' & DEPENDENT = 'WithinSubject') into SS_Method_K; 
read all var {SS} where (Source = 'method*P' & DEPENDENT = 'WithinSubject') into SS_Method_P; 
read all var {SS} where (Source = 'method*SAMPSIZE' & DEPENDENT = 'WithinSubject') into 
SS_Method_SAMP; 
read all var {SS} where (Source = 'method*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') into 
SS_Method_COMM; 
read all var {SS} where (Source = 'method*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_DFRAC; 
read all var {SS} where (Source = 'method*K*P' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_P; 
read all var {SS} where (Source = 'method*K*SAMPSIZE' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_SAMP; 
read all var {SS} where (Source = 'method*K*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_COMM; 
read all var {SS} where (Source = 'method*K*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_DFRAC; 
read all var {SS} where (Source = 'method*P*SAMPSIZE' & DEPENDENT = 'WithinSubject') into 
SS_Method_P_SAMP; 
read all var {SS} where (Source = 'method*P*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') into 
SS_Method_P_COMM; 
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read all var {SS} where (Source = 'method*P*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_P_DFRAC; 
read all var {SS} where (Source = 'method*SAMPSIZE*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') 
into SS_Method_SAMP_COMM; 
read all var {SS} where (Source = 'method*SAMPSIZE*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_SAMP_DFRAC; 
read all var {SS} where (Source = 'method*COMMUN_TYPE*D_FRAC' & DEPENDENT = 'WithinSubject') 
into SS_Method_COMM_DFRAC; 
read all var {SS} where (Source = 'Error(method)' & DEPENDENT = 'WithinSubject') into 
SS_Error_Wthn; 
 
total_ss = SS_K + SS_P + SS_SAMP + SS_COMM + SS_DFRAC + SS_K_P + SS_K_SAMP + SS_K_COMM + 
SS_K_DFRAC + SS_P_SAMP + SS_P_COMM + SS_P_DFRAC + 
SS_SAMP_COMM + SS_SAMP_DFRAC + SS_COMM_DFRAC + SS_Error_Btwn + SS_Method + SS_Method_K + 
SS_Method_P + SS_Method_SAMP + SS_Method_COMM +  
SS_Method_DFRAC + SS_Method_K_P + SS_Method_K_SAMP + SS_Method_K_COMM + SS_Method_K_DFRAC + 
SS_Method_P_SAMP + SS_Method_P_COMM + SS_Method_P_DFRAC + 
SS_Method_SAMP_COMM + SS_Method_SAMP_DFRAC + SS_Method_COMM_DFRAC + SS_Error_Wthn; 
model_ss = total_ss ‐ (SS_Error_Btwn + SS_Error_Wthn); 
prprtn_var_expl = model_ss/total_ss; 
eta_sqr_g_method = SS_Method/(SS_Method + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k = SS_K/(SS_K + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p = SS_P/(SS_P + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_samp = SS_SAMP/(SS_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_comm = SS_COMM/(SS_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_dfrac = SS_DFRAC/(SS_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k_p = SS_K_P/(SS_K_P +  SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k_samp = SS_K_SAMP/(SS_K_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k_comm = SS_K_COMM/(SS_K_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k_dfrac = SS_K_DFRAC/(SS_K_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p_samp = SS_P_SAMP/(SS_P_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p_comm = SS_P_COMM/(SS_P_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p_dfrac = SS_P_DFRAC/(SS_P_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_samp_comm = SS_SAMP_COMM/(SS_SAMP_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_samp_dfrac = SS_SAMP_DFRAC/(SS_SAMP_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_comm_dfrac = SS_COMM_DFRAC/(SS_COMM_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k = SS_Method_K/(SS_Method_K + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_p = SS_Method_P/(SS_Method_P + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_samp = SS_Method_Samp/(SS_Method_Samp + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_comm = SS_Method_Comm/(SS_Method_Comm + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_dfrac = SS_Method_Dfrac/(SS_Method_Dfrac + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k_p = SS_Method_K_P/(SS_Method_K_P + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k_samp = SS_Method_K_SAMP/(SS_Method_K_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k_comm = SS_Method_K_COMM/(SS_Method_K_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k_dfrac = SS_Method_K_DFRAC/(SS_Method_K_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
eta_sqr_g_method_p_samp = SS_Method_P_SAMP/(SS_Method_P_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_p_comm = SS_Method_P_COMM/(SS_Method_P_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_p_dfrac = SS_Method_P_DFRAC/(SS_Method_P_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
eta_sqr_g_method_samp_comm = SS_Method_SAMP_COMM/(SS_Method_SAMP_COMM + SS_Error_Btwn + 
SS_Error_Wthn); 
eta_sqr_g_method_samp_dfrac = SS_Method_SAMP_DFRAC/(SS_Method_SAMP_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
eta_sqr_g_method_comm_dfrac = SS_Method_COMM_DFRAC/(SS_Method_COMM_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
 
print eta_sqr_g_k; 
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print eta_sqr_g_p; 
print eta_sqr_g_samp; 
print eta_sqr_g_comm; 
print eta_sqr_g_dfrac; 
print eta_sqr_g_k_p; 
print eta_sqr_g_k_samp; 
print eta_sqr_g_k_comm; 
print eta_sqr_g_k_dfrac; 
print eta_sqr_g_p_samp; 
print eta_sqr_g_p_comm; 
print eta_sqr_g_p_dfrac; 
print eta_sqr_g_samp_comm; 
print eta_sqr_g_samp_dfrac; 
print eta_sqr_g_comm_dfrac; 
print eta_sqr_g_method; 
print eta_sqr_g_method_k; 
print eta_sqr_g_method_p; 
print eta_sqr_g_method_samp; 
print eta_sqr_g_method_comm; 
print eta_sqr_g_method_dfrac; 
print eta_sqr_g_method_k; 
print eta_sqr_g_method_p; 
print eta_sqr_g_method_samp; 
print eta_sqr_g_method_comm; 
print eta_sqr_g_method_dfrac; 
print eta_sqr_g_method_k_p; 
print eta_sqr_g_method_k_samp; 
print eta_sqr_g_method_k_comm; 
print eta_sqr_g_method_k_dfrac; 
print eta_sqr_g_method_p_samp; 
print eta_sqr_g_method_p_comm; 
print eta_sqr_g_method_p_dfrac; 
print eta_sqr_g_method_samp_comm; 
print eta_sqr_g_method_samp_dfrac; 
print eta_sqr_g_method_comm_dfrac; 
print prprtn_var_expl; 
quit; 
 
 
proc glm data = c; 
class k p Sampsize commun_type d_frac; 
model _pattern_accuracy_p _pattern_accuracy_o _pattern_accuracy_m = k | p | Sampsize | 
commun_type | d_frac @2; 
repeated method 3/printe; 
ods output ModelANOVA = c10; 
means k*p k*commun_type k*sampsize p*commun_type sampsize*commun_type; 
 
 
proc iml; 
use c10; 
 
read all var {SS} where (Source = 'K' & DEPENDENT = 'BetweenSubjects') into SS_K; 
read all var {SS} where (Source = 'P' & DEPENDENT = 'BetweenSubjects') into SS_P; 
read all var {SS} where (Source = 'SAMPSIZE' & DEPENDENT = 'BetweenSubjects') into SS_SAMP; 
read all var {SS} where (Source = 'COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into SS_COMM; 
read all var {SS} where (Source = 'D_FRAC' & DEPENDENT = 'BetweenSubjects') into SS_DFRAC; 
read all var {SS} where (Source = 'K*P' & DEPENDENT = 'BetweenSubjects') into SS_K_P; 
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read all var {SS} where (Source = 'K*SAMPSIZE' & DEPENDENT = 'BetweenSubjects') into 
SS_K_SAMP; 
read all var {SS} where (Source = 'K*COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into 
SS_K_COMM; 
read all var {SS} where (Source = 'K*D_FRAC' & DEPENDENT = 'BetweenSubjects') into SS_K_DFRAC; 
read all var {SS} where (Source = 'P*SAMPSIZE' & DEPENDENT = 'BetweenSubjects') into 
SS_P_SAMP; 
read all var {SS} where (Source = 'P*COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into 
SS_P_COMM; 
read all var {SS} where (Source = 'P*D_FRAC' & DEPENDENT = 'BetweenSubjects') into SS_P_DFRAC; 
read all var {SS} where (Source = 'SAMPSIZE*COMMUN_TYPE' & DEPENDENT = 'BetweenSubjects') into 
SS_SAMP_COMM; 
read all var {SS} where (Source = 'SAMPSIZE*D_FRAC' & DEPENDENT = 'BetweenSubjects') into 
SS_SAMP_DFRAC; 
read all var {SS} where (Source = 'COMMUN_TYPE*D_FRAC' & DEPENDENT = 'BetweenSubjects') into 
SS_COMM_DFRAC; 
read all var {SS} where (Source = 'Error' & DEPENDENT = 'BetweenSubjects') into SS_Error_Btwn; 
read all var {SS} where (Source = 'method' & DEPENDENT = 'WithinSubject') into SS_Method; 
read all var {SS} where (Source = 'method*K' & DEPENDENT = 'WithinSubject') into SS_Method_K; 
read all var {SS} where (Source = 'method*P' & DEPENDENT = 'WithinSubject') into SS_Method_P; 
read all var {SS} where (Source = 'method*SAMPSIZE' & DEPENDENT = 'WithinSubject') into 
SS_Method_SAMP; 
read all var {SS} where (Source = 'method*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') into 
SS_Method_COMM; 
read all var {SS} where (Source = 'method*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_DFRAC; 
read all var {SS} where (Source = 'method*K*P' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_P; 
read all var {SS} where (Source = 'method*K*SAMPSIZE' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_SAMP; 
read all var {SS} where (Source = 'method*K*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_COMM; 
read all var {SS} where (Source = 'method*K*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_K_DFRAC; 
read all var {SS} where (Source = 'method*P*SAMPSIZE' & DEPENDENT = 'WithinSubject') into 
SS_Method_P_SAMP; 
read all var {SS} where (Source = 'method*P*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') into 
SS_Method_P_COMM; 
read all var {SS} where (Source = 'method*P*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_P_DFRAC; 
read all var {SS} where (Source = 'method*SAMPSIZE*COMMUN_TYPE' & DEPENDENT = 'WithinSubject') 
into SS_Method_SAMP_COMM; 
read all var {SS} where (Source = 'method*SAMPSIZE*D_FRAC' & DEPENDENT = 'WithinSubject') into 
SS_Method_SAMP_DFRAC; 
read all var {SS} where (Source = 'method*COMMUN_TYPE*D_FRAC' & DEPENDENT = 'WithinSubject') 
into SS_Method_COMM_DFRAC; 
read all var {SS} where (Source = 'Error(method)' & DEPENDENT = 'WithinSubject') into 
SS_Error_Wthn; 
 
total_ss = SS_K + SS_P + SS_SAMP + SS_COMM + SS_DFRAC + SS_K_P + SS_K_SAMP + SS_K_COMM + 
SS_K_DFRAC + SS_P_SAMP + SS_P_COMM + SS_P_DFRAC + 
SS_SAMP_COMM + SS_SAMP_DFRAC + SS_COMM_DFRAC + SS_Error_Btwn + SS_Method + SS_Method_K + 
SS_Method_P + SS_Method_SAMP + SS_Method_COMM +  
SS_Method_DFRAC + SS_Method_K_P + SS_Method_K_SAMP + SS_Method_K_COMM + SS_Method_K_DFRAC + 
SS_Method_P_SAMP + SS_Method_P_COMM + SS_Method_P_DFRAC + 
SS_Method_SAMP_COMM + SS_Method_SAMP_DFRAC + SS_Method_COMM_DFRAC + SS_Error_Wthn; 
model_ss = total_ss ‐ (SS_Error_Btwn + SS_Error_Wthn); 
prprtn_var_expl = model_ss/total_ss; 
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eta_sqr_g_method = SS_Method/(SS_Method + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k = SS_K/(SS_K + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p = SS_P/(SS_P + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_samp = SS_SAMP/(SS_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_comm = SS_COMM/(SS_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_dfrac = SS_DFRAC/(SS_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k_p = SS_K_P/(SS_K_P +  SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k_samp = SS_K_SAMP/(SS_K_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k_comm = SS_K_COMM/(SS_K_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_k_dfrac = SS_K_DFRAC/(SS_K_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p_samp = SS_P_SAMP/(SS_P_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p_comm = SS_P_COMM/(SS_P_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_p_dfrac = SS_P_DFRAC/(SS_P_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_samp_comm = SS_SAMP_COMM/(SS_SAMP_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_samp_dfrac = SS_SAMP_DFRAC/(SS_SAMP_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_comm_dfrac = SS_COMM_DFRAC/(SS_COMM_DFRAC + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k = SS_Method_K/(SS_Method_K + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_p = SS_Method_P/(SS_Method_P + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_samp = SS_Method_Samp/(SS_Method_Samp + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_comm = SS_Method_Comm/(SS_Method_Comm + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_dfrac = SS_Method_Dfrac/(SS_Method_Dfrac + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k_p = SS_Method_K_P/(SS_Method_K_P + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k_samp = SS_Method_K_SAMP/(SS_Method_K_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k_comm = SS_Method_K_COMM/(SS_Method_K_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_k_dfrac = SS_Method_K_DFRAC/(SS_Method_K_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
eta_sqr_g_method_p_samp = SS_Method_P_SAMP/(SS_Method_P_SAMP + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_p_comm = SS_Method_P_COMM/(SS_Method_P_COMM + SS_Error_Btwn + SS_Error_Wthn); 
eta_sqr_g_method_p_dfrac = SS_Method_P_DFRAC/(SS_Method_P_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
eta_sqr_g_method_samp_comm = SS_Method_SAMP_COMM/(SS_Method_SAMP_COMM + SS_Error_Btwn + 
SS_Error_Wthn); 
eta_sqr_g_method_samp_dfrac = SS_Method_SAMP_DFRAC/(SS_Method_SAMP_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
eta_sqr_g_method_comm_dfrac = SS_Method_COMM_DFRAC/(SS_Method_COMM_DFRAC + SS_Error_Btwn + 
SS_Error_Wthn); 
 
print eta_sqr_g_k; 
print eta_sqr_g_p; 
print eta_sqr_g_samp; 
print eta_sqr_g_comm; 
print eta_sqr_g_dfrac; 
print eta_sqr_g_k_p; 
print eta_sqr_g_k_samp; 
print eta_sqr_g_k_comm; 
print eta_sqr_g_k_dfrac; 
print eta_sqr_g_p_samp; 
print eta_sqr_g_p_comm; 
print eta_sqr_g_p_dfrac; 
print eta_sqr_g_samp_comm; 
print eta_sqr_g_samp_dfrac; 
print eta_sqr_g_comm_dfrac; 
print eta_sqr_g_method; 
print eta_sqr_g_method_k; 
print eta_sqr_g_method_p; 
print eta_sqr_g_method_samp; 
print eta_sqr_g_method_comm; 
print eta_sqr_g_method_dfrac; 
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print eta_sqr_g_method_k; 
print eta_sqr_g_method_p; 
print eta_sqr_g_method_samp; 
print eta_sqr_g_method_comm; 
print eta_sqr_g_method_dfrac; 
print eta_sqr_g_method_k_p; 
print eta_sqr_g_method_k_samp; 
print eta_sqr_g_method_k_comm; 
print eta_sqr_g_method_k_dfrac; 
print eta_sqr_g_method_p_samp; 
print eta_sqr_g_method_p_comm; 
print eta_sqr_g_method_p_dfrac; 
print eta_sqr_g_method_samp_comm; 
print eta_sqr_g_method_samp_dfrac; 
print eta_sqr_g_method_comm_dfrac; 
print prprtn_var_expl; 
quit; 
 
/*Box and Whisker plots*/ 
 
 
data c1; 
set c; 
d_frac_prct = d_frac*100; 
 
data d; 
set c1; 
K_x_P = k||'‐'||p; 
K_x_N = k||'‐'||sampsize; 
K_x_H = k||'‐'||commun_type; 
K_x_D = k||'‐'||d_frac_prct; 
P_x_H = p||'‐'||commun_type; 
P_x_N = p||'‐'||sampsize; 
N_x_H = sampsize||'‐'||commun_type; 
H_x_D = commun_type||'‐'||d_frac_prct; 
 
 
data d1; 
set d; 
Loading_sensitivity = _ok_load_p; 
General_agreement = _Pattern_Accuracy30_p; 
Per_element_agreement = _pattern_accuracy_p; 
Total_agreement = _Perfect_Accuracy_p; 
Mean_phi = _meanphi_p; 
Factor_score_R = _R_Fscores_p; 
Bias = _bias_loadings_p; 
RMSE = _mse_leadings_p; 
method = 'PAF'; 
 
data d2; 
set d; 
Loading_sensitivity = _ok_load_o; 
General_agreement = _Pattern_Accuracy30_o; 
Per_element_agreement = _pattern_accuracy_o; 
Total_agreement = _Perfect_Accuracy_o; 
Mean_phi = _meanphi_o; 
Factor_score_R = _R_Fscores_o; 
Bias = _bias_loadings_o; 



Appendix F (Continued) 
 

329 
 

RMSE = _mse_leadings_o; 
method = 'OLS'; 
 
data d3; 
set d; 
Loading_sensitivity = _ok_load_m; 
General_agreement = _Pattern_Accuracy30_m; 
Per_element_agreement = _pattern_accuracy_m; 
Total_agreement = _Perfect_Accuracy_m; 
Mean_phi = _meanphi_m; 
Factor_score_R = _R_Fscores_m; 
Bias = _bias_loadings_m; 
RMSE = _mse_leadings_m; 
method = 'MAX'; 
 
data d_comb; 
set d1; 
 
proc append base = d_comb data = d2 force; 
 
proc append base = d_comb data = d3 force; 
 
proc sort data = d_comb; 
by method; 
 
proc means data = d_comb; 
var Loading_sensitivity General_agreement Per_element_agreement Total_agreement Mean_phi 
Factor_score_R Bias RMSE; 
by method; 
 
data d4; 
set d_comb; 
xK_x_P = compress(K_x_P); 
xK_x_N = compress(K_x_N); 
xK_x_H = compress(K_x_H); 
xK_x_D = compress(K_x_D); 
xP_x_N = compress(P_x_N); 
xP_x_H = compress(P_x_H); 
xN_x_H = compress(N_x_H); 
xH_x_D = compress(H_x_D); 
 
method_x_N = method||'‐'||sampsize; 
 
/*K by P Interaction Boxplots*/ 
 
proc sort data = d4; 
by Method K_x_P; 
 
 
proc boxplot data = d4; 
  plot Loading_sensitivity*xK_x_P (Method)/npanelpos = 27 turnhlabels blockpos = 1 
boxstyle = schematic; 
  label xK_x_P = 'Number of Factors by Number of Observed Variables Interaction';  
  label method = 'Factor Extraction Method'; 
  label Loading_sensitivity ='Loading Sensitivity';  
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proc boxplot data = d4; 
  plot General_agreement*xK_x_P (Method)/npanelpos = 27 turnhlabels blockpos = 1 boxstyle 
= schematic; 
  label xK_x_P = 'Number of Factors by Number of Observed Variables Interaction'; 
  label method = 'Factor Extraction Method'; 
  label General_agreement ='General Pattern Agreement'; 
 
proc boxplot data = d4; 
  plot Per_element_agreement*xK_x_P (Method)/npanelpos = 27 turnhlabels blockpos = 1 
boxstyle = schematic; 
  label xK_x_P = 'Number of Factors by Number of Observed Variables Interaction'; 
  label method = 'Factor Extraction Method'; 
  label Per_element_agreement ='Per Element Agreement'; 
 
proc boxplot data = d4; 
  plot Total_agreement*xK_x_P (Method)/npanelpos = 27 turnhlabels blockpos = 1 boxstyle = 
schematic; 
  label xK_x_P = 'Number of Factors by Number of Observed Variables Interaction'; 
  label method = 'Factor Extraction Method'; 
  label Total_agreement ='Total Agreement'; 
 
proc boxplot data = d4; 
  plot Mean_phi*xK_x_P (Method)/npanelpos = 27 turnhlabels blockpos = 1 boxstyle = 
schematic; 
  label xK_x_P = 'Number of Factors by Number of Observed Variables Interaction'; 
  label method = 'Factor Extraction Method'; 
  label Mean_phi ='Mean Phi Values'; 
 
proc boxplot data = d4; 
  plot Factor_score_R*xK_x_P (Method)/npanelpos = 27 turnhlabels blockpos = 1 boxstyle = 
schematic; 
  label xK_x_P = 'Number of Factors by Number of Observed Variables Interaction'; 
  label method = 'Factor Extraction Method'; 
  label Factor_score_R ='Factor Score Correlations'; 
 
proc boxplot data = d4; 
  plot Bias*xK_x_P (Method)/npanelpos = 27 turnhlabels blockpos = 1 boxstyle = schematic; 
  label xK_x_P = 'Number of Factors by Number of Observed Variables Interaction'; 
  label method = 'Factor Extraction Method'; 
  label Bias ='Factor Loading Bias'; 
 
proc boxplot data = d4; 
  plot RMSE*xK_x_P (Method)/npanelpos = 27 turnhlabels blockpos = 1 boxstyle = schematic; 
  label xK_x_P = 'Number of Factors by Number of Observed Variables Interaction'; 
  label method = 'Factor Extraction Method'; 
  label RMSE ='RMSE'; 
 
 
/*K by N Interaction Boxplots*/ 
 
proc sort data = d4; 
by Method K_x_N; 
 
 
proc boxplot data = d4; 
  plot Per_element_agreement*xK_x_N (Method)/npanelpos = 36 turnhlabels blockpos = 1 
boxstyle = schematic; 
  label xK_x_N = 'Number of Factors by Sample Size Interaction'; 



Appendix F (Continued) 
 

331 
 

  label method = 'Factor Extraction Method'; 
  label Per_element_agreement ='Per Element Agreement'; 
 
proc boxplot data = d4; 
  plot Total_agreement*xK_x_N (Method)/npanelpos = 36 turnhlabels blockpos = 1 boxstyle = 
schematic; 
  label xK_x_N = 'Number of Factors by Sample Size Interaction'; 
  label method = 'Factor Extraction Method'; 
  label Total_agreement ='Total Agreement'; 
 
 
proc boxplot data = d4; 
  plot Mean_phi*xK_x_N (Method)/npanelpos = 36 turnhlabels blockpos = 1 boxstyle = 
schematic; 
  label xK_x_N = 'Number of Factors by Sample Size Interaction'; 
  label method = 'Factor Extraction Method'; 
  label Mean_phi ='Mean Phi Values'; 
 
proc boxplot data = d4; 
  plot Factor_score_R*xK_x_N (Method)/npanelpos = 36 turnhlabels blockpos = 1 boxstyle = 
schematic; 
  label xK_x_N = 'Number of Factors by Sample Size Interaction'; 
  label method = 'Factor Extraction Method'; 
  label Factor_score_R ='Factor Score Correlationss'; 
 
proc boxplot data = d4; 
  plot Bias*xK_x_N (Method)/npanelpos = 36 turnhlabels blockpos = 1 boxstyle = schematic; 
  label xK_x_N = 'Number of Factors by Sample Size Interaction'; 
  label method = 'Factor Extraction Method'; 
  label Bias ='Factor Loading Bias'; 
 
 
 
/*K by H Interaction Boxplots*/ 
 
proc sort data = d4; 
by Method K_x_H; 
 
proc boxplot data = d4; 
  plot Loading_sensitivity*xK_x_H (Method)/npanelpos = 27 turnhlabels blockpos = 1 
boxstyle = schematic; 
  label xK_x_H = 'Number of Factors by Communality Level (Low=1, Wide=2, High=3) 
Interaction';  
  label method = 'Factor Extraction Method'; 
  label Loading_sensitivity ='Loading Sensitivity';  
 
proc boxplot data = d4; 
  plot General_agreement*xK_x_H (Method)/npanelpos = 27 turnhlabels blockpos = 1 boxstyle 
= schematic; 
  label xK_x_H = 'Number of Factors by Communality Level (Low=1, Wide=2, High=3) 
Interaction'; 
  label method = 'Factor Extraction Method'; 
  label General_agreement ='General Pattern Agreement'; 
 
proc boxplot data = d4; 
  plot Per_element_agreement*xK_x_H (Method)/npanelpos = 27 turnhlabels blockpos = 1 
boxstyle = schematic; 
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  label xK_x_H = 'Number of Factors by Communality Level (Low=1, Wide=2, High=3) 
Interaction'; 
  label method = 'Factor Extraction Method'; 
  label Per_element_agreement ='Per Element Agreement'; 
 
proc boxplot data = d4; 
  plot Factor_score_R*xK_x_H (Method)/npanelpos = 27 turnhlabels blockpos = 1 boxstyle = 
schematic; 
  label xK_x_H = 'Number of Factors by Communality Level (Low=1, Wide=2, High=3) 
Interaction'; 
  label method = 'Factor Extraction Method'; 
  label Factor_score_R ='Factor Score Correlations'; 
 
proc boxplot data = d4; 
  plot Bias*xK_x_H (Method)/npanelpos = 27 turnhlabels blockpos = 1 boxstyle = schematic; 
  label xK_x_H = 'Number of Factors by Communality Level (Low=1, Wide=2, High=3) 
Interaction'; 
  label method = 'Factor Extraction Method'; 
  label Bias ='Factor Loading Bias'; 
 
proc boxplot data = d4; 
  plot RMSE*xK_x_H (Method)/npanelpos = 27 turnhlabels blockpos = 1 boxstyle = schematic; 
  label xK_x_H = 'Number of Factors by Communality Level (Low=1, Wide=2, High=3) 
Interaction'; 
  label method = 'Factor Extraction Method'; 
  label RMSE ='RMSE'; 
 
 
/*K by D Interaction Boxplots*/ 
 
proc sort data = d4; 
by Method K_x_D; 
 
proc boxplot data = d4; 
  plot Loading_sensitivity*xK_x_D (Method)/npanelpos = 45 turnhlabels blockpos = 1 
boxstyle = schematic; 
  label xK_x_D = 'Number of Factors by Dichotomization (as a Percentage of Observed 
Variables) Interaction';  
  label method = 'Factor Extraction Method'; 
  label Loading_sensitivity ='Loading Sensitivity';  
 
proc boxplot data = d4; 
  plot Mean_phi*xK_x_D (Method)/npanelpos = 45 turnhlabels blockpos = 1 boxstyle = 
schematic; 
  label xK_x_D = 'Number of Factors by Dichotomization (as a Percentage of Observed 
Variables) Interaction'; 
  label method = 'Factor Extraction Method'; 
  label Mean_phi ='Mean Phi Values'; 
 
proc boxplot data = d4; 
  plot Bias*xK_x_D (Method)/npanelpos = 45 turnhlabels blockpos = 1 boxstyle = schematic; 
  label xK_x_D = 'Number of Factors by Dichotomization (as a Percentage of Observed 
Variables) Interaction'; 
  label method = 'Factor Extraction Method'; 
  label Bias ='Factor Loading Bias'; 
 
proc boxplot data = d4; 
  plot RMSE*xK_x_D (Method)/npanelpos = 45 turnhlabels blockpos = 1 boxstyle = schematic; 
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  label xK_x_D = 'Number of Factors by Dichotomization  (as a Percentage of Observed 
Variables)Interaction'; 
  label method = 'Factor Extraction Method'; 
  label RMSE ='RMSE'; 
 
 
  /*P by N Interaction Boxplots*/ 
 
proc sort data = d4; 
by Method P_x_N; 
 
proc boxplot data = d4; 
  plot Total_agreement*xP_x_N (Method)/npanelpos = 36 turnhlabels blockpos = 1 boxstyle = 
schematic; 
  label xP_x_N = 'Number of Observed Variables by Sample Size Interaction'; 
  label method = 'Factor Extraction Method'; 
  label Total_agreement ='Total Agreement'; 
 
/*P by H Interaction Boxplots*/ 
 
proc sort data = d4; 
by Method P_x_H; 
 
proc boxplot data = d4; 
  plot Loading_sensitivity*xP_x_H (Method)/npanelpos = 27 turnhlabels blockpos = 1 
boxstyle = schematic; 
  label xP_x_H = 'Number of Observed Variables by Communality Level (Low=1, Wide=2, 
High=3) Interaction'; 
  label method = 'Factor Extraction Method'; 
  label Loading_sensitivity ='Loading Sensitivity';  
 
proc boxplot data = d4; 
  plot General_agreement*xP_x_H (Method)/npanelpos = 27 turnhlabels blockpos = 1 boxstyle 
= schematic; 
  label xP_x_H = 'Number of Observed Variables by Communality Level (Low=1, Wide=2, 
High=3) Interaction'; 
  label method = 'Factor Extraction Method'; 
  label General_agreement ='General Pattern Agreement'; 
 
proc boxplot data = d4; 
  plot Per_element_agreement*xP_x_H (Method)/npanelpos = 27 turnhlabels blockpos = 1 
boxstyle = schematic; 
  label xP_x_H = 'Number of Observed Variables by Communality Level (Low=1, Wide=2, 
High=3) Interaction'; 
  label method = 'Factor Extraction Method'; 
  label Per_element_agreement ='Per Element Agreement'; 
 
proc boxplot data = d4; 
  plot Factor_score_R*xP_x_H (Method)/npanelpos = 27 turnhlabels blockpos = 1 boxstyle = 
schematic; 
  label xP_x_H = 'Number of Observed Variables by Communality Level (Low=1, Wide=2, 
High=3) Interaction'; 
  label method = 'Factor Extraction Method'; 
  label Factor_score_R ='Factor Score Correlations'; 
 
/*N by H Interaction Boxplots*/ 
 
proc sort data = d4; 
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by Method N_x_H; 
 
proc boxplot data = d4; 
  plot General_agreement*xN_x_H (Method)/npanelpos = 36 turnhlabels blockpos = 1 boxstyle 
= schematic; 
  label xN_x_H = 'Sample Size by Communality Level (Low=1, Wide=2, High=3) Interaction'; 
  label method = 'Factor Extraction Method'; 
  label General_agreement ='General Pattern Agreement'; 
 
proc boxplot data = d4; 
  plot Per_element_agreement*xN_x_H (Method)/npanelpos = 36 turnhlabels blockpos = 1 
boxstyle = schematic; 
  label xN_x_H = 'Sample Size by Communality Level (Low=1, Wide=2, High=3) Interaction'; 
  label method = 'Factor Extraction Method'; 
  label Per_element_agreement ='Per Element Agreement'; 
 
proc boxplot data = d4; 
  plot Mean_phi*xN_x_H (Method)/npanelpos = 36 turnhlabels blockpos = 1 boxstyle = 
schematic; 
  label xN_x_H = 'Sample Size by Communality Level (Low=1, Wide=2, High=3) Interaction'; 
  label method = 'Factor Extraction Method'; 
  label Mean_phi ='Mean Phi Values'; 
 
 
/*H by D Interaction Boxplots*/ 
 
proc sort data = d4; 
by Method H_x_D; 
 
proc boxplot data = d4; 
  plot Mean_phi*xH_x_D (Method)/npanelpos = 45 turnhlabels blockpos = 1 boxstyle = 
schematic; 
  label xH_x_D = 'Communality Level (Low=1, Wide=2, High=3) by Dichotomization (as a 
Percentage of Observed Variables) Interaction'; 
  label method = 'Factor Extraction Method'; 
  label Mean_phi ='Mean Phi Values'; 
 
proc boxplot data = d4; 
  plot RMSE*xH_x_D (Method)/npanelpos = 45 turnhlabels blockpos = 1 boxstyle = schematic; 
  label xH_x_D = 'Communality Level (Low=1, Wide=2, High=3) by Dichotomization (as a 
Percentage of Observed Variables) Interaction'; 
  label method = 'Factor Extraction Method'; 
  label RMSE ='RMSE'; 
 
 
 
/*sample size main effect*/ 
data d5; 
set d4; 
xMethod_x_N = compress(Method_x_n); 
 
proc sort data = d5; 
by xMethod_x_N; 
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proc boxplot data = d5; 
  plot RMSE*xMethod_x_N/boxstyle = schematic; 
  label xMethod_x_N = 'Method by Sample Size Main Effect';  
  label RMSE ='RMSE';  
 
 
 
 
 
run; 
 
quit; 
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