
University of South Florida University of South Florida 

Digital Commons @ University of Digital Commons @ University of 

South Florida South Florida 

USF Tampa Graduate Theses and Dissertations USF Graduate Theses and Dissertations 

February 2013 

Location and Capacity Modeling of Network Interchanges Location and Capacity Modeling of Network Interchanges 

Aldo D. Fabregas 
University of South Florida, fabregas@cutr.usf.edu 

Follow this and additional works at: https://digitalcommons.usf.edu/etd 

 Part of the Operational Research Commons, Statistics and Probability Commons, and the Urban 

Studies and Planning Commons 

Scholar Commons Citation Scholar Commons Citation 
Fabregas, Aldo D., "Location and Capacity Modeling of Network Interchanges" (2013). USF Tampa 
Graduate Theses and Dissertations. 
https://digitalcommons.usf.edu/etd/4318 

This Dissertation is brought to you for free and open access by the USF Graduate Theses and Dissertations at 
Digital Commons @ University of South Florida. It has been accepted for inclusion in USF Tampa Graduate Theses 
and Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more 
information, please contact digitalcommons@usf.edu. 

https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/etd
https://digitalcommons.usf.edu/grad_etd
https://digitalcommons.usf.edu/etd?utm_source=digitalcommons.usf.edu%2Fetd%2F4318&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/308?utm_source=digitalcommons.usf.edu%2Fetd%2F4318&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/208?utm_source=digitalcommons.usf.edu%2Fetd%2F4318&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/436?utm_source=digitalcommons.usf.edu%2Fetd%2F4318&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/436?utm_source=digitalcommons.usf.edu%2Fetd%2F4318&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usf.edu


Location and Capacity Modeling of Multimodal Network Interchanges 
 
 
 

by 
 
 
 

Aldo Fabregas 
 
 
 
 
 

A dissertation submitted in partial fulfillment  
of the requirements for the degree of  

Doctor of Philosophy 
Department of Industrial and Management Systems Engineering 

College of Engineering 
University of South Florida 

 
 
 

Major Professor: Grisselle Centeno, Ph.D. 
Tapas Das, Ph.D. 

Pei-Sung Lin, Ph.D. 
Beverly Ward, Ph.D. 

Bo Zeng, Ph.D. 
 
 

Date of Approval: 
November 19, 2012 

 
 
 

Keywords: Stackelberg games, bi-level programming, network design problem, traffic 
equilibrium, transportation planning 

 
Copyright © 2012, Aldo Fabregas 



DEDICATION 

To the memory of my father, Jose Fabregas. 



ACKNOWLEDGMENTS 

I would like to thank my major professor, Dr. Grisselle Centeno, for her support 

and words of encouragement during the past several years. I would also like to give a 

special thanks to Dr. Tapas Das for his advice from the beginning. He has been a role 

model as a researcher, teacher, and mentor. 



i 
 

TABLE OF CONTENTS 

LIST OF TABLES .............................................................................................................. iii 

LIST OF FIGURES ........................................................................................................... iv 

ABSTRACT ...................................................................................................................... vi 

CHAPTER 1: INTRODUCTION ........................................................................................ 1 
1.1  Intellectual Significance .................................................................................. 3 
1.2  Societal Significance ...................................................................................... 4 
1.3  Industrial Significance .................................................................................... 5 
1.4  Dissertation Outline ........................................................................................ 6 

CHAPTER 2: VARIANTS OF THE MINIMUM COST FLOW PROBLEM AND THE 
TRAFFIC EQUILIBRIUM PROBLEM .................................................................... 8 
2.1  Network Representation and Notation ........................................................... 8 

2.1.1  Sets ............................................................................................ 10 
2.1.2  Parameters ................................................................................. 11 
2.1.3  Functions .................................................................................... 12 
2.1.4  Variables ..................................................................................... 13 

2.2  Multicommodity Minimum Cost Flow Problem Formulations ....................... 14 
2.3  Non-Linear Multicommodity Minimum Network Flow Problem ..................... 18 
2.4  Traffic Assignment Problem (TAP) ............................................................... 19 

2.4.1  Arc-Path Formulation of TAP ...................................................... 20 
2.4.2  Arc-Node Formulation of TAP .................................................... 22 

2.5  Taxonomy of Traffic Assignment Problems ................................................. 24 
2.6  Benchmark Network Problems ..................................................................... 26 

CHAPTER 3: MAX-AFFINE LINEARIZATION STRATEGY FOR CAPACITY 
MODELING IN NETWORK PROBLEMS ............................................................ 31 
3.1  Sources of Non-Linearity .............................................................................. 31 
3.2  Linearization Techniques in Mathematical Programming ............................ 34 
3.3  Least-Squares Partitioning Algorithm (LPA) ................................................ 35 
3.4  Modified Least Square Partitioning Algorithm (MLSPA) .............................. 41 
3.5  Max-Affine Formulation of TAP .................................................................... 43 

3.5.1  Arc-Path Linear Formulation of TAP ........................................... 44 
3.5.2  Arc-Node Linear Formulation of TAP ......................................... 45 

3.6  Linearization Tests ....................................................................................... 45 

CHAPTER 4: BI-LEVEL OPTIMIZATION PROBLEMS IN TRANSPORTATION ............ 51 
4.1  General Bi-Level Optimization Problem ....................................................... 51 
4.2  Continuous Network Design Problem (CNDP) ............................................. 59 
4.3  Discrete Network Design Model (DNDP) ..................................................... 62 
4.4  Multimodal Network Design Problem (MNDP) ............................................. 64 



ii 
 

CHAPTER 5: SOLUTION OF THE PROPOSED NETWORK DESIGN 
PROBLEMS ........................................................................................................ 71 
5.1  Reformulation Approach .............................................................................. 72 

5.1.1  Optimality Conditions for TAP .................................................... 72 
5.1.2  Linearization of Equilibrium Conditions ...................................... 75 
5.1.3  Reformulation of Objective Functions ......................................... 77 
5.1.4  Linearized CNDP ........................................................................ 77 
5.1.5  Linearized DNDP ........................................................................ 80 

5.2  Computational Approach .............................................................................. 83 
5.3  Computational Results for Capacity and Location Decisions ....................... 84 

CHAPTER 6: CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS ................... 92 

REFERENCES ................................................................................................................ 98 

APPENDICES ............................................................................................................... 102 
Appendix A: Sioux Falls Network Data .............................................................. 103 
Appendix B: Additional Flow-Capacity Surface Fitting Results ......................... 106 

 



iii 
 

LIST OF TABLES 

Table 1: Taxonomy of Traffic Assignment Problems ....................................................... 25 

Table 2: Base Data for the Friesz-Harker Network ......................................................... 26 

Table 3: Data for the Friesz-Harker Network for  Moderate Demand .............................. 27 

Table 4: Data for Network G1 ......................................................................................... 30 

Table 5: Fitting Parameter for Experimentation .............................................................. 46 

Table 6: Constrained Calibration Test Problem for the Congested Scenario .................. 86 

Table 7: Numerical Results for MIP Solution .................................................................. 88 

Table 8: Objective Function Values for L-CNDP ............................................................. 89 

Table 9: Calibration, Application, and Equilibrium  Differences for L-CNDP ................... 89 

Table 10: Calibration, Application, and Equilibrium  Differences for L-CNDP ................. 91 

Table A: Sioux Fall Network Parameters ...................................................................... 103 

 



iv 
 

LIST OF FIGURES 

Figure 1: Pseudo-Algorithm to Map an Arc-Node Solution to an Arc-Path Solution ....... 17 

Figure 2: Congestion Cost Function in an M/M/1 Queuing System ................................ 18 

Figure 3: Friesz-Harker Network Graph .......................................................................... 27 

Figure 4: Sioux Falls Network Graph .............................................................................. 29 

Figure 5: Gao’s Test Network 1 (G1) Graph ................................................................... 30 

Figure 6: Example of the BPR Arc Cost Function ........................................................... 32 

Figure 7: Summary of Least-Squares Partition Algorithm ............................................... 37 

Figure 8: Least-Squares Partition Algorithm for the Univariate Case .............................. 38 

Figure 9: Least Squares Partition Algorithm for the Bivariate Case ................................ 39 

Figure 10: R-Square and Number of Intervals for the  Linear Approximation 
Procedure ...................................................................................................... 41 

Figure 11: RMS and Number of Intervals for the  Linear Approximation Procedure ....... 41 

Figure 12: Under and Oversaturated Traffic Regions  in the Flow-Capacity 
Surface .......................................................................................................... 42 

Figure 13: Modified Least Square Partitioning Algorithm (MLSPA) for the Flow-
capacity Surface ............................................................................................ 43 

Figure 14: Flow-Capacity Fitting Parameters .................................................................. 47 

Figure 15: Fit Results and Capacity Ratio for the Friesz-Harker Network Using 
LSPA and 5 Functions ................................................................................... 48 

Figure 16: Fit Results and Capacity Ratio for the Friesz-Harker Network Using 
LSPA and 5 Functions ................................................................................... 48 

Figure 17: Fit Results and Capacity Ratio for the Friesz-Harker Network Using 
LSPA and 5 Functions ................................................................................... 49 

Figure 18: Fit Results and Capacity Ratio for the Friesz-Harker Network Using 
LSPA and 5 Functions ................................................................................... 49 

Figure 19: Fit Results and Capacity Ratio for the Friesz-Harker Network Using 
MLSPA, 5 Functions and Function Distribution 0.5 ....................................... 50 



v 
 

Figure 20: Fit Results and Capacity Ratio for the Friesz-Harker Network Using 
MLSPA, 10 Functions and Function Distribution 0.5 ..................................... 50 

Figure 21: Feasible Region of Example L-BLPP ............................................................. 54 

Figure 22: Rational Reaction Set for the Lower Level Problem ...................................... 56 

Figure 23: Inducible Region of the L-BLPP ..................................................................... 57 

Figure 24: Design Space and Criterion Space for the L-BLPP ....................................... 58 

Figure 25: Overview of a Stackelberg Game in Transportation ...................................... 65 

Figure 26: Summary of Solution Approach ..................................................................... 72 

Figure 27: Overview of the Computational Approach ..................................................... 84 

Figure 28: Overview of Performance Evaluation Approach ............................................ 85 

Figure 29: Comparison of Objective Functions for the Constrained Network 
Problem ......................................................................................................... 87 

Figure 30: Objective Function Comparison for L-CNDP for the Friesz-Harker 
Network ......................................................................................................... 89 

Figure 31: Elapsed Time for L-CNDP ............................................................................. 90 

Figure 32: Results for L-CNDP for 5 functions ................................................................ 91 

Figure A: Fit Results and Capacity Ratio for the Friesz-Harker Network Using 
MLSPA, 20 Functions and Function Distribution 0.5..................................... 106 

Figure B: Fit Results and Capacity Ratio for the Friesz-Harker Network Using 
MLSPA, 20 Functions Saturation Factor 1.0 ................................................. 106 

Figure C: Fit Results and Capacity Ratio for the Friesz-Harker Network Using 
MLSPA, 30 Functions and Function Distribution 0.5..................................... 107 

Figure D: Fit Results and Capacity Ratio for the Friesz-Harker Network Using 
MLSPA, 30 Functions Saturation Factor 1.0 ................................................. 107 

 
 
 
 
 



vi 
 

ABSTRACT 

Network design decisions, especially those pertaining to urban infrastructure, are 

made by a central authority or network leader, and taking into consideration the network 

users or followers. These network decision problems are formulated as non-linear bi-

level programming problems. In this work, a continuous network design problem (CNDP) 

and discrete network design problem (DNDP) bi-level optimization programs are 

proposed and solved in the context of transportation planning. The solution strategy 

involved reformulation and linearization as a single-level program by introducing the 

optimality conditions of the lower level problem into the upper level problem. For the 

CNDP, an alternative linearization algorithm (modified least squares partitioning, 

MLSPA) is proposed. MLSPA takes into consideration the current arc capacity and 

potential expansion to find a reduced set of planes to generalize the flow-capacity 

surface behavior. The concepts of flow capacity surface was introduced as a way to 

model of congested network and capture the effect of capacity on travel time/cost. It was 

found that the quality of the linear approximation depends on the goodness of fit the 

bottleneck arcs. The proposed approach was tested with well-known benchmark 

problems in transportation which yielded promising results in terms of efficiency, without 

sacrificing solution quality. 
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CHAPTER 1: INTRODUCTION 

A major challenge in today’s society involves the redevelopment of existing 

systems to become sustainable. One of the aspects of system sustainability is closely 

related to the concept of achieving resource-efficient operations which is especially 

desirable in the case of urban infrastructure. Here, the term urban infrastructure refers to 

the physical systems that support the activities of a community; it comprises of water, 

sewer, electricity, communications, and transportation systems, among others. The 

National Academy of Engineering defines the engineering challenge for transportation 

systems as, 

“…the greater challenge will be engineering integrated 
transportation systems, making individual vehicle travel, mass transit, 
bicycling, and walking all as easy and efficient as possible.” [1] 

 
This challenge implies capital investments in infrastructure that enable switching 

from one transportation network (e.g. car or transit) to another. The place where this 

network switch occurs can be referred to as a multimodal network interchange. 

Decisions related to these interchanges have to account for their location and capacity. 

These decisions are associated with significant capital investments, highlighting the 

need of a systematic approach to transportation decision making. In that respect, the 

Environmental Protection Agency (EPA) considers the integration of land use and 

transportation decision-making as one of the key tools in its program named, Urban 

Sustainability and the Built Environment. This program is also aligned with other 

initiatives such as emissions reduction through the use of mass transit. This can be 

achieved through a sound transportation network decision-making practice, which will 
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provide the appropriate infrastructure with adequate capacity in a timely and efficient 

manner such that budget and operational goals are met. 

From a decision modeling and operations research standpoint, the problem of 

communicating two or more networks falls into the network topology category, and is 

known as the discrete network design problem (DNDP). The scale and complexity of this 

network design problem is the group of constantly increasing, diverse network users, 

additional decision makers, and limited resources. This situation poses new challenges 

to current planning/decision support systems that must adapt to meet the needs of a 

constantly growing society.   

It is necessary to construct flexible modeling frameworks that can operate with 

existing data warehousing systems and support a wide range of decision-making 

scenarios. Such decision may involve capacity allocation (parking spaces, intersection 

green time) and infrastructure location (new station, bus stop). The goal of this work is to 

contribute to the existing methodologies which will assist in network design decision-

making in the transportation context by effectively addressing the following modeling key 

aspects: 

 Central authority objective 

 Network user’s objectives 

 Location modeling 

 Capacity constraints 

 Implementation considerations 

 Multiple networks interaction 
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1.1 Intellectual Significance 

Network decisions, especially those pertaining to urban infrastructure, are made by 

a central authority or network leader with system-wide objectives. In addition to the 

leader, other agents may be present in the network. These agents may adjust their 

behavior to adapt to the decisions of the leader. These agents could react in favor of the 

leader (system-optimal), selfishly (user-optimal), or against the central authority 

(pessimistic). These other agents are referred to as followers. This type of interaction 

between a central network authority, or leader, and network agents, or followers, is 

referred to as a Stackelberg game in the operations research literature, and is modeled 

via bi-level mathematical programming models. 

Bi-level programs arise in different scenarios. In market economics, firms 

participating in a homogeneous product market can be modeled as bi-level mathematical 

programs. The market leader chooses his strategy first (produced quantities) and then 

the remaining, competing firms will adjust their strategies (production), pursuing their 

own benefit. In environmental economics, a government may establish a series of taxes 

to polluting firms. These firms, in turn, will adjust their strategies to minimize their 

environmental cost in a way that may not necessarily favor the government’s objectives. 

In supply chain management, the facility location problem can be modeled, taking into 

consideration the changes in cost, demand, and price. In this case, the leader will 

attempt to find the best location for a new facility. As a result, changes in market prices 

and production levels may occur to accommodate the conditions imposed by the new 

facility. In the transportation context, a transportation agency may choose to implement a 

certain proposed network improvement such as an alternative transportation mode 

(network topology) or incentives to minimize emissions (network parameters). The 
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network users will react to these policies by finding the best paths to minimize their 

individual travel cost. 

The class of problems aimed at modeling flow patterns in the context of 

transportation networks incorporate the non-linearity derived from congestion and the 

user’s behavior. Such problems are associated with followers. The topology 

configuration problem is a binary problem and is associated with the leader. These 

problems constitute integer, non-linear, bi-level programming models, which in the 

transportation context are very likely to become large-scale. 

The proposed research will contribute to the field of operations research and 

transportation decision-making by exploring a flexible modeling framework and 

proposing complexity reduction for a class of bi-level, non-linear, integer network design 

problems. The resulting solution framework could be further exploited in other fields 

related to network design such as supply chain design. 

1.2 Societal Significance 

The societal significance can be derived directly from the context of application in 

the proposed research. Transportation is one of the more challenging issues in today’s 

society. Policy makers are looking into ways to encourage the use of mass public 

transportation to enhance the overall performance of the current transportation network 

and achieve environmental goals. These types of initiatives are expected to increase 

due to the emerging issues in transportation such as: 

 Urban sprawl 

 Increased demand/congestion 

 Increasing gas prices 
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 Reduce emissions 

Providing better transportation alternatives and infrastructure require major 

investments in capital improvements. Stations and facilities require decisions on the 

following subjects (relationship with mathematical programming in parentheses): 

 Land acquisition (fixed charge cost, binary) 

 Number, size, and length of stations (capacity, integer ) 

 Number of tracks or lanes (capacity, integer) 

 Number and size of parking lots or garages (Capacity, integer or continuous) 

Mathematical programming approaches can be used to model these and other 

decisions related to the problem of transportation infrastructure planning. By using 

operations research, the savings derived from capital expenses could be invested in 

additional projects. Therefore, there is a direct cost to society not only due to enhanced 

travel time, but in the investment portfolio for transportation funds. By using this type of 

approach, better transportations plans and alternatives can be formulated while making 

rational use of the available funds at the same time. 

1.3 Industrial Significance 

From the industry perspective the potential users for the outcome of this research 

could be companies developing and maintaining transportation planning decision 

support systems. Current issues in transportation planning are related to computational 

time, decision support capabilities, and solution accuracy. 

At the core of every network modeling application there is a variation of a 

minimum-cost flow model. In the context of transportation, the core problem is the traffic 
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equilibrium assignment. The most advanced transportation models contain different 

transportation modes, several user classes, and may consider demand elasticity, among 

other features. Industrial-size models are implemented to take advantage of multi-core 

features of current computers. This feature has a direct influence in the computational 

time and convergence of the core algorithms running traffic assignment models. 

Convergence in transportation models may affect the confidence of the model in regards 

to decision-making. For instance, when evaluating a network improvement project such 

as a new arc (ramp or street), it is expected that the updated network flow, with the 

improvement, will differ significantly at the vicinity of the improvement. Such differences 

are expected to be less noticeable at certain distances from the network improvement. 

Inappropriate stopping criteria or certain heuristics used to compute traffic assignment 

may overlook these situations, inducing unexplained behaviors, attributable to the 

model, and thereby undermining the confidence in the decision support tool. 

Transportation planning software companies could take advantage of some of the 

concepts related to this research by incorporating it into their current systems. Other 

industries with large enterprise resource planning (ERP) may also gain some benefits 

derived from the outcomes of the proposed research. 

1.4 Dissertation Outline 

In this research, location and capacity decisions for in the context of transportation 

network design problem are analyzed from a mathematical programming standpoint. 

The analysis starts with the basic multicommodity minimum cost network flow problem 

with linear cost and no congestion effects. The base problem was expanded adding 

more layers of complexity reaching a non-linear bi-level network design problem subject 

to congestion effects. Such problem reflects the situation of a transportation network 
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leader taking decisions on capacity allocation and new infrastructure taking in to 

consideration the network users’ reaction. This dissertation addresses the modeling and 

solution of such network problems through a reformulation-linearization approach. 

This dissertation is organized as follows: Chapter 2 presents the basic network 

model and the traffic assignment problem; Chapter 3 introduces the flow-capacity 

surface concept and linearization algorithm; Chapter 4 explains the Stackelberg games 

and their modeling via bi-level programming models. Chapter 5 presents the solution of 

selected network design problems and outlines the application of the proposed 

framework to multimodal networks. Chapter 6 summarized the findings and contributions 

of the proposed research and offer directions for future research.  
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CHAPTER 2: VARIANTS OF THE MINIMUM COST FLOW PROBLEM AND THE 
TRAFFIC EQUILIBRIUM PROBLEM 

This section introduces the main network concepts used in this dissertation and 

the basic core problems in network design models. The main benchmarking network 

problems are also presented. 

2.1 Network Representation and Notation 

A great variety of real world situations can be modeled through a network 

representation. A network model may be used to represent water flows, energy, food 

chains, and the states of a manufacturing process, among others. The complexity of the 

network model depends on the nature of the situation being analyzed and the level of 

detail in the model abstraction. In this section, the network concepts and notations 

pertaining to the central topic of this dissertation are introduced. Network representation, 

cost functions, and notations are presented and explained.  

In this dissertation, the network is represented by a directed graph ࣡ consisting of 

a set of nodes ࣨ and a set of arcs [2]. This network may be composed by different 

modal networks ݉ (e.g., roadway network, transit network, rail network, etc.) denoted by 

࣡ሺ ࣨ,ࣛሻ. The supersets for nodes and arcs are ࣨand ࣛ respectively. Similarly, the 

network formed by ࣨ and ࣛ is referred to as supernetwork. 

It is assumed that the origin-destination information is available. The network 

demand is assumed to be concentrated in origin nodes (࣪). Similarly, the destination 

nodes are a subset of nodes, denoted by ࣫. The Cartesian product of origins and 

destinations generates the origin-destination matrix (O-D matrix). The O-D matrix is a set 
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formed by the ordered pairs ሺ, ,ሻ. Each element ሺݍ ሻݍ ⊂ ࣱ can be regarded as a 

commodity for certain problem formulations such as the multicommodity minimum cost 

flow problem [3]. 

A route or path ݎ is an ordered sequence of arcs ܽଵ …ܽ …ܽ௭ such that the 

terminal node of ܽ is the initial node of ܽାଵ. A path is said to connect the initial node of 

ܽଵ with the terminal node of ܽ௭. No cycles are allowed in a path. Paths with the 

aforementioned characteristics are regarded as simple paths.  

The pass of entities through the network is referred to as the flow. If the network 

element being referenced is an arc or link, the flow is regarded as an arc flow. If the 

element being referenced is a path, then the flow is regarded as path flow. Arc flows and 

path flows give origin to different problem formulations of network flow problems. Arc-

flow based network problems are more granular than path-flow based network problems. 

Path flows have a unique representation through non-negative arc flows. However, arc 

flows are not uniquely represented by path flows [4]. 

The sign of network flows are determined using the following reasoning: a flow 

exiting the network (entering a node) will have a negative sign; conversely, a flow 

entering the network (exiting a node) will have a positive sign [2]. This convention will be 

adopted for conservation of flow equations throughout this document. 

The arc cost function ݂ represents the impedance of the arc ܽ to the flow of 

entities. Such function is usually expressed in time units, but it can be translated to 

monetary costs through the appropriate conversion factors. Each arc has its own 

characteristics, leading to the existence of a variety of cost functions. For a network to 

be consistent, especially in transportation networks, these cost functions should be 

monotonically increasing with respect to the arc flow. The flow of an arc should be a 

function of all of the network arc flows to account for congestion and interaction effects 



10 
 

such as queue overflow. For an arc ܽ this implies that ݂ ൌ ܽ|ሻ࢜ሺܨ ∈ |ࣛ| : Թܨ) ࣛ → Թ). 

These types of functions may be complicated to obtain and the effect of the flows on the 

surrounding arcs to the actual cost on arc ܽ may be weak. The effect of this assumption 

is that the arc cost function in ܽ only depends on the flow through arc ܽ This can be 

expressed as ݂ ൌ ܽ|ሻݒሺܨ ∈ ࣛ.  This assumption allows the cost function to be 

separable by arcs which facilitates the numerical treatment of network problems using 

mathematical programming.  

The demand for transportation is represented by ݀ for O-D pair ሺ,  ሻ for fixedݍ

demand case. For the variable demand case, or elastic demand, the demand is 

expressed as function of the cost of the shortest path (or less congested path) 

connecting O-D pair ሺ,  is the vector of ߨ ሻ whereߨሺܦ ሻ. This function will be denoted byݍ

path costs. 

The notation is organized in sets, indexes, parameter and functions for clarity and 

to facilitate computational implementation.  

2.1.1 Sets 

Sets are the starting point of the mathematical model construction. Sets help 

define the types of elements and the size of the optimization problem. The network is 

represented by the sets of nodes and arcs. The number of origin destinations 

determines the number of commodities, which in turn, is also a measure of the 

complexity of the problem. The main sets related to the transportation network design 

problem are: 

 

 ࣧ: Set of modes indexed by ݉ (car, transit, rail, etc.) 

 ࣨ: Set of all nodes (superset) for the multimodal network, indexed by ݅ and ݆ 
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 ࣛ: Set of all arcs or pairs ሺ݅, ݆ሻ for the network, indexed by ܽ 

 ୫ࣨ: Index set of nodes for modal network ݉  , ࣨ ⊂ ࣨ 

 ࣛ୫: Index set of arcs for modal network ݉, ࣛ ⊂ ࣛ 

 ࣪	: Set of origin nodes, ࣪ ⊂ ࣨ 

 ܳ: Set of destination nodes, ࣫ ⊂ ࣨ 

 ࣱ: Set of all the origin destination pairs ሺ, ࣱ ሻ such thatݍ ⊆ ࣪ ൈ ࣫. For notation 

simplicity the subindex ሺ,  where required ݓ ሻ may be replaced byݍ

 ܴ: Set of paths connecting the origin-destination pair ሺ, ሻݍ ∈ ࣱ.  

 ܴ: Set of all the paths (superset) or routes in the network, ܴ ൌ ⋃ ܴሺ,ሻ∈ࣱ , 

indexed by r 

2.1.2 Parameters 

Parameters relate to the abstraction of the physical characteristics of the set of 

elements being modeled such as the transfer rate of a network arc or the price of 

traversing a network node. Parameters also are used to describe relationships between 

the set elements. For example, part of the network parameters are used to describe how 

the nodes and arcs are connected. The main parameters in the network problems are:  

 ݀: Demand for O-D pair ሺ, ሻݍ ⊂ ࣱ. This parameter is used for fixed-demand 

problems 

 ߜ: Arc-path incidence indicator; ߜ ൌ 1 if arc ܽ ൌ ሺ݅, ݆ሻ is part of the path ݎ 

connecting O-D pair 0 ;ݍ otherwise 
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 Δ: Matrix formed by the ߜ terms for graph ࣡. Its dimensions are |A| x |R|. 

Depending upon the context it may refer to a modal network by adding the 

subindex ݉ 

 ߛ: O-D pair-path indicator; ߛ=1 if origin-destination pair ,   is joined by path ݍ

 otherwise 0 ;ݎ

 Γ: Matrix formed by the ߛ terms. Its dimensions are |W| x |R| 

 ݑ: Upper bound on the flow for arc ܽ or capacity 

2.1.3 Functions 

Functions describe special mathematical relationships between the parameters. 

The functions used in the modeling approach in this document are: 

 ܿ: Cost of using path r 

 ܿ: Vector of path costs 

 ݐ: Cost of traversing arc ܽ. This cost is a function of the arc flow. 

 ࢚: Vector of arc costs 

 ܦሺߨሻ: Demand functions expressed in terms of the minimum cost between O-D 

pairs. This function is used for elastic-demand problems 

 ߰ାሺ݅ሻ: Function that returns the set of out-arcs for node ݅, ݅ ∈ ࣨ 

 ߰ିሺ݅ሻ: Function that returns the set of in-arcs for node ݅, ݅ ∈ ࣨ 
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2.1.4 Variables 

This section describes the main decision variables in this research. The most 

relevant decision variables relate to flow, capacity, and equilibrium costs. 

 ݄: Flow of commodity ሺ,  ݎ ሻ on pathݍ

 ݄: Vector of path flows 

 ݂: Flow on arc ܽ. Depending upon the context, a superindex ݉ could be used to 

specify a modal network. ݂ is a function of the path flows ݄ 

 ݂: Flow on arc ܽ due to O-D pair (,  ሻݍ

 ݔ: Binary variable defined as 1 if arc ܽ is implemented , 0 otherwise 

 ߨ: Minimum cost path for O-D pair ሺ,  ሻ. This cost is derived from the shortestݍ

path (based on costs) connecting O-D pair ሺ,  ሻݍ

 ߨ: Equilibrium cost for node ݅ for O-D pair ሺ,  ሻ. This will be used in theݍ

context of arc-node formulation 

 ߨ:Vector of minimum cost paths for all of the O-D pairs the type of problem 

formulation (arc-path or arc-node) will be based on the context 

 ݕ: Capacity increase on arc ܽ  

 ݖோ: Binary variable defined as 1 if arc ܽ is used in an equilibrium solution, 0 

otherwise.  
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2.2 Multicommodity Minimum Cost Flow Problem Formulations 

The most basic network problem consisting of a single O-D pair is generally known 

as a single-commodity flow problem (each O-D pair can be referred to as a commodity). 

In this case, the set of O-D pairs ࣱ consist of only one element ሺ,  ሻ. In capacitatedݍ

problems, the arc flows ݂ are subject to the capacity constraints denoted by ݇. The 

objective function aims at minimizing the total transportation cost of transferring 

commodities from the origin  to the destination ݍ. The arc flows are subject to flow 

conservation constraints and capacity constraints, expressed as upper bounds, on the 

decision variables, the arc flows ݂. The cost of traversing an arc is denoted by the cost 

function ݐ. The arc cost function can be defined in different ways depending upon the 

nature of the problem being modeled. For example, in supply chain models 

transportation costs are proportional (linear) to the amounts being shipped, whereas in 

transportation networks the cost may be non-linear with respect to the flow which 

accounts for congestion effects. The minimum cost flow model can be formulated as a 

mathematical programming as follows [2]: 

݊݅ܯ  ൫ݖ ݂൯ ൌ   ൫ݐ ݂൯
ሺ,ሻ∈ࣛሺ,ሻ∈ࣱ

 (2.1) 

subject to: 

  ݂

	∈	టశሺሻ

െ  ݂

 ∈ టషሺሻ

ൌ ݀ ∀ ݅ ∈ ࣨ (2.2) 
 

 ݀ ൌ ቐ
െ݀, ݂݅ ݁݀݊ ݅ ൌ 
݀, ݂݅ ݁݀݊ ݅ ൌ ݍ
0, ݂݅ ݁݀݊ ݅ ്  ∧ ݅ ് ݍ

 (2.3) 

 

   ݂ 
∈ࣛሺ,ሻ∈ࣱ

  (2.4)ݑ
 

 ݂  0 ∀ ሺ, ሻݍ ∈ ࣱ, ሺ݅, ݆ሻ ∈ ࣛ (2.5) 
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It should be noted that in this case the arc subindex ܽ was explicitly referred to as 

a pair ሺ݅, ݆ሻ and the O-D pair ሺ,  for explanation purposes. Problem 2.1 can be ݓ ሻ asݍ

referred to as the minimum cost flow multicommodity flow problem (MCFMFP) in this 

problem; equation 2.1 represents the objective function to be minimized. For this 

problem, the cost functions are divisible and linear (no congestion). The function ݐ can 

be assumed as scalar function ݐ ൌ ܿ ݂ symbolizing the cost per flow-unit of 

commodity. Equation set 2.3 ensures that origin-demand requirements are satisfied. 

Constraint group 2.4 controls that the arc flow is kept at or below capacity. The non-

negativity conditions for the decision variables are represented in constraint group 2.5. 

Formulation 2.1 is regarded as the arc-node formulation. In such formulation the number 

of variables is |ࣱ||ࣛ| and the number of constraints is |ࣱ||ࣛ|  |ࣛ|. 

The arc-path formulation is an alternative method to the arc-node formulation. In 

the arc-path formulation the set of paths is assumed to be known and it uses one 

variable per path indicating path flows. The arc cost function is established by adding the 

flows on the path, using such arc, by means of the appropriate arc-path incidence 

coefficients (ߜሻ.  The number of variables in the arc-path formulation depends on the 

number paths which can grow exponentially with the size of the network. However, the 

constraint structure is simpler and allows the implementation of computationally-efficient 

solution algorithms (e.g. column generation) since only a fraction of the path is used. 

The arc-path formulation is as follows: 

൫݄൯ݖ	݊݅ܯ  ൌ  ሺ,ሻݐ   ݄ߜ
∈ோሺ,ሻ∈ࣱሺ,ሻ∈ࣛ

 (2.6) 

subject to: 

  ݄
∈ோ

ൌ ݀ ∀ ሺ, ሻݍ ∈ ࣱ (2.7) 
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   ݄ߜ
∈ோሺ,ሻ∈ࣱ

 ݑ ∀ ሺ݅, ݆ሻ ∈  (2.8) ܣ

 

 ݄  0 ∀ ሺ, ሻݍ ∈ ࣱ, ݎ ∈ ܴ (2.9) 

The arc flows ( ݂ሻ can be included as definitional constraints for clarity. The 

definitional constrain is expressed in 2.10. 

 ݂ ൌ   ݄ߜ
∈ோሺ,ሻ∈ࣱ

 (2.10)

The objective function and the capacity constraints can be rewritten in the 

following simplified form: 

݊݅ܯ  ,൫݄ݖ ݂൯ ൌ  ݐ ݂

ሺ,ሻ∈ࣛ

 (2.11) 
 

 ݂  ݑ ∀ ሺ݅, ݆ሻ ∈  (2.12) ܣ

The objective function 2.6 minimizes the path costs for the network. The demand 

requirement is handled by constraint group 2.7. Each path is assigned a flow ݄ with 

the condition that all of the paths connecting the same origin-destination pair will match 

the corresponding demand ݀. The capacity constraints are expressed in 2.8 by adding 

up the flows of all the paths using a particular arc. This expression can be simplified by 

the definitional arc flow variable ݂. 

The arc-path formulation has |ܴ|number of variables and  |ࣱ|  |ࣛ| constraints. 

The simplified constraint structure is reached at the expense of an exponentially 

increasing number of variables. These types of problems can be handled efficiently by 

column generation methods. 

The connection between multicommodity flows and linear programming can be 

made through the representation theorem [2]. This theorem states that any point ݔ in a 

convex polyhedron (ܺ) can be expressed as a convex combination of the extreme points 
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of ܺ plus a nonnegative linear combination (conic combination) of the extreme rays of ܺ. 

In the uncapacitated multicommodity flow, the extreme points correspond to simple 

paths and the extreme directions correspond to cycles [4]. Note that in the capacitated 

MCFP the capacity constraints form a compact polyhedral set and therefore no extreme 

directions (cycles) are present. Let ݕ be and element of the set of extreme points (ܻ) 

and ݒ an extreme direction of the set of extreme directions (ܸ) of ܺ.  

ݔ  ൌߣݕ
∈

ߤݒ
∈

 (2.13)
 

 ߣ
∈

ൌ 1 (2.14)
 

,ߣ  ߤ  0, ∀ ݅ ∈ ܻ , ∀ ݆ ∈ ܸ (2.15)

Let ܨ be the feasible set of the arc-path formulation and let ܨ be the feasible set 

of the arc-node formulation. Since only simple paths are included in the arc-path 

formulation, the set ܨ can only be obtained by making ܸ ൌ ∅. This means that the arc-

node formulation is composed of path flows and cycle flows and the path-flow 

formulation is a subset of the arc-flow formulation that excludes cycles. Letting ࣡∗ be the 

directed graph consisting of those arcs ܽ ൌ ሺ݅, ݆ሻ of ࣡ for which a positive flow ݂ exists 

in an optimal arc-flow problem solution ( ݂  0ሻ. Let ࣱ∗ be the O-D pairs (or 

commodities) and ܴ௪∗  the set of paths connecting the O-D pair ݓ in for ࣡∗. The following 

pseudo-algorithm can be used to map the arc-path solution to an arc-node solution. 

For each O-D pair ݍ in ࣱ∗

     For each path ݎ in ܴ∗  
          Set ݂ ← ሼ	݊݅ܯ ݂: ߜ ൌ 1ሽ  
          Subtract ݂ from ݂ for all the arcs ܽ with ߜ=1 
     Continue to next path ݎ 
     Remove remaining flows since they should correspond to cycles 
Continue to next O-D pair ݍ 

Figure 1: Pseudo-Algorithm to Map an Arc-Node Solution to an Arc-Path Solution 
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Note that the previous algorithm does not guarantee uniqueness of the path 

solutions obtained due to the existence of cycles, as previously stated. Both arc-path 

and arc-node formulation will be the used as representations for the network problems in 

this dissertation. 

2.3 Non-Linear Multicommodity Minimum Network Flow Problem  

To more accurately represent certain network scenarios, the modeling approach 

needs to incorporate congestion effects. This is usually achieved by non-linear 

monotonically increasing cost functions. The effect of congestion can be modeled by 

these types of functions even in overflow conditions. An experimental test on an M/M/1 

queuing system using simulated data and different traffic intensities (flow-to-capacity-

ratio) was performed by Fabregas, Centeno, and Lin [5]. The authors presented closed-

form expressions derived from simulated data that can be used to model congestion 

effects in service systems. Selected results of these tests are presented in Figure 2.  

 

Figure 2: Congestion Cost Function in an M/M/1 Queuing System 
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It can be observed that under regular conditions the length of the queue (selected 

performance measure) tends to be a constant value. This is referred to as the free flow 

condition. As the congestion of the system increases, the time in the queue lengths 

increase linearly in overflow conditions. Similar cost functions are found in the 

transportation network literature to reflect congestion effects [6]. 

For transportation planning models, the widely adopted closed form to account for 

congestion in network problems is the Bureau of Public Roads curve (BPR). The BPR is 

presented in 2.16 as follows [7]: 

ݐ  ൌ ሾ1ݐ  ܤ ൬ ݂

ݑ
൰


ሿ (2.16)

where: 

:ܽ|	ܽ :  Average travel time on arcݐ ሺ݅, ݆ሻ ∈ ࣛ 

݂:  Traffic volume (flow) on arc 	ܽ	|ܽ: ሺ݅, ݆ሻ ∈ ࣛ 

:ܽ|	ܽ :  Free-flow travel time on arcݐ ሺ݅, ݆ሻ ∈ ࣛ 

݇:  Capacity of arc ܽ	|ܽ: ሺ݅, ݆ሻ ∈ ࣛ 

,ܤ  Calibration parameters :

2.4 Traffic Assignment Problem (TAP) 

The traffic assignment problem is a variation of the minimum cost flow network 

problem and it is the core problem of the majority of transportation system models. A 

traffic assignment is a way to distribute (assign) the demand (O-D pairs) into a network 

following a predetermined assignment principle. The main elements of a traffic 

assignment problem are the network, the arc performance functions, and an O-D matrix. 

The result of a traffic assignment procedure consists of the flows on each network 

element and its corresponding cost. 
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 The traffic assignment reflects the interaction between the supply and the demand 

for service on a network. The way these flows are computed depends on the rationality 

of the agents traversing the network. In a cooperative scheme these agents will seek to 

optimize a global performance measure such as total travel time. This type of traffic 

assignment is regarded as system-optimal. When each entity acts selfishly, seeking its 

own benefit (i.e. minimize its least-cost path), the resulting assignment is regarded as a 

user equilibrium problem (user-optimal).  

2.4.1 Arc-Path Formulation of TAP 

The deterministic user equilibrium (DUE) is reached when the travel cost among 

all the paths used, connecting the same O-D pair, is minimum.. In other words, any path 

connecting the same O-D pair experiencing an increased travel cost will be unused, or 

equivalently, will have a zero path flow. Such equilibrium conditions are known as 

Wardrop’s first principle and this has been used extensively to reflect user behavior in 

transportation systems. Let ݄௪ be the flow on path ݎ connecting O-D pair |ݓ	ݓ ൌ

ሺ, ሻݍ ∈ ࣱ. Let ߨ௪ be the minimum cost among all the paths connecting the O-D pair ݓ. 

The equilibrium conditions are expressed mathematically in 2.17 and 2.18. 

 ݄௪  0 ⇒ ܿ௪ ൌ ,௪ߨ ∀ ݎ ∈ ܴ௪ (2.17) 
 

 ݄௪ ൌ 0 ⇒ ܿ௪  ,௪ߨ ∀ ݎ ∈ ܴ௪ (2.18) 

These conditions that can be expressed as constraints to a mathematical problem 

are given in 2.19. 

 

ܿ௪ െ ௪ߨ  0, ∀ ݎ ∈ ܴ௪, ∀ ݓ ∈ ࣱ 
 

 ݄௪
∈ோೢ

ൌ ݀௪, ∀ ݓ ∈ ࣱ 

 

݄௪  0, ∀ ݎ ∈ ܴ௪, ∀ ݓ ∈ ࣱ 
 

௪ߨ  0, ݓ∀ ∈ ࣱ 

(2.19) 
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Under separable, symmetric, and monotonically increasing cost functions and 

letting ܽ|ܽ: ሺ݅, ݆ሻ ∈ ࣛ	be the deterministic traffic assignment problem it can be solved by 

solving the following equivalent non-linear programming problem: 

݊݅ܯ  ܶሺ݂ሻ ൌ  න ݏሻ݀ݏሺݐ
ೌ

∈ࣛ

 (2.20)

 

  ݄௪
∈ோೢ

ൌ ݀௪ , ∀ ݓ ∈ ࣱ (2.21) 
 

   ௪݄௪ߜ ൌ ݂, ∀ ܽ ∈ ࣛ
∈ோೢ௪ ∈ࣱ

 (2.22) 

The previous formulation is an equivalent mathematical form that its Lagrangian 

multipliers correspond to the minimum cost path at equilibrium. Furthermore, the 

equilibrium conditions of the optimization problems correspond to those defined in 2.19 

[4]. Constraint 2.21 ensures that the demand for transportation is met. Constraint 2.22 is 

a definitional expression that relates path flows to arc flows. Network design problems 

using this formulation can be found in Ukkusuri et al. [8] , Boile & Spasovic [9], Gao & 

Wu [10] , and Patil & Ukkusuri [11] . 

Another way to formulate the equilibrium assignment problem is through 

variational inequalities (VI). The formulation using VI can handle a wide range of 

situations such as asymmetry, non-separable/non-additively for arc costs/path costs.  

 ൫ܥ൫ത݄൯, ݄ െ ത݄൯  0 (2.23) 
 

 ݄௪
∈௪

ൌ ݀௪ , ∀ ݓ ∈ ࣱ (2.24) 
 

 ݄௪  0, ݎ∀ ∈ ܴ௪ ∈ ࣱ (2.25) 

The objective function states that since the cost flow is a non-negative quantity, 

the probable way in which the inner product 2.23 is non-negative is that some of the 

components in ݄ are 0 for flows different than the equilibrium flows. Constraints 2.24 and 
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2.25 ensure that the set of feasible path flows is a polyhedral convex set. Models with VI 

formulation can be found in García & Marín [12] , Marín & Jaramillo [13], and Marín & 

García-Ródenas [14]. Both formulations are used extensively in the literature.  

2.4.2 Arc-Node Formulation of TAP 

The TAP can be formulated based on an arc-node formulation. In such cases the 

arc flow variables are defined as ݂௪ and can be interpreted as the flow on arc ܽ ∈ ࣛ 

due to the O-D pair ݓ	|	ݓ: ሺ, ሻݍ ∈ ࣱ. Note that ܽ is the compact notation for the pair 

ሺ݅, ݆ሻ ∈ ࣛ. In the arc-node formulation the nodes are used explicitly, therefore a more 

granular notation was used. In this formulation the flow conservations conditions should 

be modeled explicitly as presented in equation 2.26. This modeling aspect is not 

required in the arc-path formulation since it is implicit in the path-building procedure. 

 
 ݂௪

∈టషሺሻ

െ  ݂௪

∈టశሺሻ

ൌ ݀௪ , ∀ ݅ ∈ ࣨ, ∀ ݓ ∈ ࣱ 

 

݂௪  0 

(2.26) 

where, 

 

݀௪

ൌ ൝
݀௪	,									 ݂݅ ݁݀݊ ݅ ൌ  ሺ ࢍ࢘ ݂ ܦܱ ݎ݅ܽ ݓ ൌ ሺ, ሻݍ
െ݀௪,			݂݅	݊݁݀ ݅ ൌ ݍ ሺ࢚ࢇ࢚࢙ࢋࢊ ݂ ܦܱ ݎ݅ܽ ݓ ൌ ሺ. ሻݍ

0,									 ݁ݏ݅ݓݎ݄݁ݐ
 

(2.27) 

Flow conservation equations can be specified in compact form using the network 

structure. The network topology is described via the node-arc incidence matrix as 

defined in 2.28. 

 ߶ ൌ ൝
1, ݂݅ ݁݀݊ ݅ ݏ݅ ݄݁ݐ ࢋࢉ࢛࢙࢘ ݁݀݊ ݂ ݈݅݊݇ ܽ ൌ ሺ݅, ݆ሻ

െ1,				 ݂݅ ݁݀݊ ݅ ݏ݅ ݄݁ݐ ࢚ࢋࢍ࢘ࢇ࢚ ݁݀݊ ݈݅݊݇ ܽ ൌ ሺ݅, ݆ሻ
0,				 ݁ݏ݅ݓݎ݄݁ݐ

 (2.28) 
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The node-arc incidence matrix is denoted by Φ with elements ߶. The dimension 

of the matrix is|ࣨ| ൈ |ࣛ|. With the arc-node formulation the definitional constraints for 

the arc flows are as presented in equation 2.29. 

 ݂ ൌ   ݂௪

௪∈ࣱ ∈ࣛ

 (2.29) 

Based on the previous considerations, the arc-node formulation for the TAP is 

presented in 2.30 through 2.33. 

݊݅ܯ  ܶሺ݂ሻ ൌ  න ݏሻ݀ݏሺݐ
ೌ

∈ࣛ

 (2.30)

 

  ݂௪

∈టషሺሻ

െ  ݂௪

∈టశሺሻ

ൌ ݀௪ , ∀ ݅ ∈ ࣨ, ∀ ݓ ∈ ࣱ (2.31) 

 

 ݂ ൌ   ݂௪

௪∈ࣱ∈ࣛ

, ∀ ܽ ∈ ࣛ (2.32) 
 

 ݂௪  0 ∀ ܽ| ܽ: ሺ݅, ݆ሻ ∈ ࣛ, ∀ :ݓ|ݓ ሺ, ሻݍ ∈ ࣱ (2.33) 

The equilibrium conditions for the arc-node formulation can be derived from the 

first-order conditions for the TAP arc-node problem [4]. 

 ݂௪ሺݐሺ ݂ሻ  ௪ߨ െ ௪ሻߨ ൌ 0 , ∀ ܽ ∈ ࣛ, ∀ ݓ ∈ ࣱ (2.34) 
 

ሺݐ  ݂ሻ  ௪ߨ െ ௪ߨ  0 , ∀ ܽ ∈ ࣛ, ∀ ݓ ∈ ࣱ (2.35) 

The ߨ௪ terms are the Lagrangean multipliers of the nodes resulting from the 

relaxation of the flow conservation constraint. Such multipliers can be interpreted as the 

minimum cost to deliver commodity or O-D pair ݓ ൌ ሺ,  ሻ from node ݅. Based on thatݍ

definition, the path cost or the cost to deliver one unit of commodity ሺ,  is ݍ to  ሻ fromݍ

the difference of the node cost between them (ܿ௪ ൌ ௪ߨ െ  ௪). In equilibriumߨ

conditions, the difference between the cost potentials (ߨ௪ െ  on an	ݓ ௪) for commodityߨ

arc ܽ should be equal to the cost of one unit of ݓ traversing the arc ݐሺ ݂ሻ . For arcs 
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where this condition is not satisfied, the arc should have flows of 0 for that commodity 

( ݂௪=0). 

2.5 Taxonomy of Traffic Assignment Problems 

Traffic assignment problems comprise of several modeling components that can 

be modified to accommodate a wide variety of modeling situations. The inclusion of 

more components increases the complexity of the resulting traffic assignment model. In 

this section, a comprehensive taxonomy is provided. This taxonomy will be used later to 

lead the problem definition and scope. 

When the traffic assignment process is performed, assuming that the traversing 

entities have perfect knowledge of the network costs and actions of the other entities, 

and this information is known and fixed, then the problem can be regarded as a 

deterministic traffic assignment problem. On the other hand, when variability of the 

perceived network cost is allowed, the problem is referred to as a stochastic assignment 

problem. 

Another variation of the traffic assignment problem arises from the nature of the 

demand. If the demand in the origin-destination pair remains constant regardless of the 

network congestion then the problem is said to have a fixed demand. In cases where the 

demand is modeled so that it varies with the network performance, then the problem is 

said to have an elastic demand.  

The time horizon of the model depends on the type of decision it supports. For 

general planning decisions, static models or time-dependent models are the suitable 

choices. In such models, the field parameters are assumed to be steady for a sufficient 

period of time. For a more detailed analysis at the operational level, a dynamic traffic 

assignment model can be used. 
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One of the most common decisions of transportation networks is related to 

network design. In capacitated networks, this problem consists of setting values to the 

maximum flow that can traverse a specific arc (capacity). This type of problem is 

modeled in most cases as a continuous problem. The connectivity of a network or 

topology problem consists of selecting the best set of new arcs (including any new 

terminal nodes) to be added to the network. This topology problem is referred to as a 

discrete network design problem due to its combinatorial nature. Combinations of the 

problem characteristics previously mentioned gives origin to a series of modeling 

approaches that can be used to describe different network scenarios, as can be 

observed in Table 1. The total number of variations for the traffic assignment problem 

according to the criteria in Table 1 is 3 ൈ 2଼ ൌ 768. This work addresses both continuous 

and discrete design network problems (mixed network design problem) in a multimodal 

setting with deterministic fixed demand for a single class of users. The cost functions are 

modeled as asymmetric functions with a user-optimal rationality. 

Table 1: Taxonomy of Traffic Assignment Problems 

Modeling Component Values 

Rationality 
System optimal
User optimal

User’s perception 
Deterministic
Stochastic

Time horizon 
Static
Time-Dependent
Dynamic

Demand Behavior 
Fixed
Elastic

Demand Uncertainty 
Deterministic
Stochastic

Mode 
Unimodal
Multimodal

User 
Single Class
Multi-Class

Link Cost Functions 
Symmetric
Asymmetric

Design Objective 
Discrete
Continuous
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2.6 Benchmark Network Problems 

Several test or benchmark networks have been studied in the traffic assignment 

problem. The most cited networks are the Friesz-Harker network and the Sioux Falls 

network. Optimal solutions for capacity (continuous network design) and topology 

(discrete network design) design formulations are available. The Friesz-Haker (F-H) 

network is a 16-link network introduced in 1974 and has been used repeatedly 

throughout the years. The F-H network has been in use by Suwansirikul et al. [15], 

Friesz et al.  [16], Meng et al. [17], Gao & Wu [10], and more recently by Wang et al. 

[18], Farvaresh et al. [19] and Luathep et al.  [20]. 

Parameters for the base F-H network are presented in Table 2. These parameters 

along with capacity improvements are used to test the results of the proposed solution 

methodology for the mixed network design problem. The graph corresponding to the F-H 

network is presented in Figure 3. Network design problems with the F-H network have 

been tested under three demand scenarios for light, moderate, and high demand. The 

continuous network design problem has multiple solutions as reported by Luathep et al. 

[20]. Results for the continuous network design problem for the F-H network for 

moderate demand are presented in Table 3. 

Table 2: Base Data for the Friesz-Harker Network 

Arc 
Number 

Source 
node 

Target 
node 

 B K P ࢇ࢚

1 1 2 1 10 3 4 

2 1 3 2 5 10 4 

3 2 1 3 3 9 4 

4 2 3 4 20 4 4 

5 2 4 5 50 3 4 

6 3 1 2 20 2 4 

7 3 2 1 10 1 4 

8 3 5 1 1 10 4 
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 Table 2 (continued) 

Arc 
Number 

Source 
node 

Target 
node 

 B K P ࢇ࢚

9 4 2 2 8 45 4 

10 4 5 3 3 3 4 

11 4 6 9 2 2 4 

12 5 3 4 10 6 4 

13 5 4 4 25 44 4 

14 5 6 2 33 20 4 

15 6 4 5 5 1 4 

16 6 5 6 1 4.5 4 

 

 

Figure 3: Friesz-Harker Network Graph 
 
 

Table 3: Data for the Friesz-Harker Network for  
Moderate Demand  

Arc  
Number 

Source 
Node 

(i) 

Target 
Node 

(j) 

Initial 
Capacity 

(ka) 

Capacity 
Improvement 

(ya) 

Total  
Capacity 
(ka+ya) 

1 1 2 3   

2 1 3 10   

3 2 1 9   

4 2 3 4   

5 2 4 3   

6 3 1 2 6.58 8.58 

7 3 2 1   

8 3 5 10   

9 4 2 45   



28 
 

Table 3 (continued) 

Arc  
Number 

Source 
Node 

(i) 

Target 
Node 

(j) 

Initial 
Capacity 

(ka) 

Capacity 
Improvement 

(ya) 

Total  
Capacity 
(ka+ya) 

10 4 5 3   

11 4 6 2   

12 5 3 6   

13 5 4 44   

14 5 6 20   

15 6 4 1 7.01 8.01 

16 6 5 4.5 0.22 0.472 

Solver MINOS   Objective 211.25 

Another well-known network problem in the traffic assignment literature is the 

Sioux Falls (SF) network. Since its introduction by LeBlanc [21], the SF network has 

been used consistently as a benchmark for continuous and mixed network design 

problems. The data for the 24 nodes and 76 links comprising the SF base network are 

presented in Appendix A. Benchmarks for this problem for network design can be found 

in references [15], [16], [8] [10] , and more recently in referecces [19], and [20]. The 

graph of the SF network is presented in Figure 4. 

Two additional benchmark networks for transportation network design problems 

were introduced by Gao et al [10]. Gao’s test network 1 (G1) is composed by 12 nodes 

and 17 links. The graph corresponding to network G1 is presented in Figure 5. The 

numbers in the arcs represent the free flow time. The dashed lines represent candidate 

arcs. The underlined number is the project number.   
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Figure 4: Sioux Falls Network Graph 
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Figure 5: Gao’s Test Network 1 (G1) Graph 

Each improvement project is associated with a cost. The number of selected 

project depends on the available budget. The numerical parameters for problem G1 is 

presented in Table 4. 

Table 4: Data for Network G1 

 Project 
1 2 3 4 5 6 

ሺ,  ሻ (1,6) (5,10) (2,7) (6,11) (3,8) (7,12)
 28 21 32 30 25 19 ࢚

Project Cost 7 12 7 15 11 18 
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CHAPTER 3: MAX-AFFINE LINEARIZATION STRATEGY FOR CAPACITY 
MODELING IN NETWORK PROBLEMS  

This chapter deals with arc capacity modeling in transportation networks. A convex 

piecewise linear fitting algorithm (least square partitioning algorithm) and its variants are 

introduced and tested. The proposed approaches can be used for linearization of 

capacity functions or it can be applied to fit piecewise linear functions to capacity 

measurements (raw data). 

3.1 Sources of Non-Linearity 

The main source of non-linearity is the link cost functions commonly represented 

by  the Bureau of Public Roads (BPR) curve [7] . The BPR is expressed as follows: 

ݐ  ൌ ሾ1ݐ  ܤ ൬ ݂

݇
൰


ሿ (3.1)

where: 

 ܽ : Average travel time on arcݐ

݂: Traffic volume (flow) on arc ܽ 

 ܽ : Free-flow travel time on arcݐ

݇: Capacity of link ܽ 

,ܤ  Calibration parameters :

An example of a BPR function with parameters 5, 1.5, 300, and 4 representing 

 respectively is presented in Figure 6. The function represents a flow on  , and݇ ,ܤ	,ݐ

a network arc such that when there is no congestion, the travel time (or travel cost) 



32 
 

associated is five units (e.g. minutes). As flow approaches the nominal capacity value 

(e.g. 300) the cost of traversing the arc starts to increase. For flow values exceeding the 

capacity, the rate of increase in cost becomes significantly larger. It is important to note 

that these functions act as penalty for unstable flows, but do not impose hard limits on 

the flow on an arc. This allows accounting for congestion effects for a realistic 

representation of network scenarios. The function can be calibrated with the parameters 

  . and ܤ

 

Figure 6: Example of the BPR Arc Cost Function 

The BPR function is strictly monotonically increasing and convexing which helps in 

regards to the uniqueness of the solutions to the different network problems using this 

function [22]. Taking advantage of its convexity, the BPR function can be easily 

represented by a series of affine functions sorted by its slope in ascending order. The 

traffic assignment can be represented by such linear approximation and can be solved 

using standard linear programming solvers.  
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Another source of non-linearity in transportation problems arises from the modal-

split procedure of the multimodal planning process. Marin & Garcia [14] proposed a 

multimodal network design model with the mode choice function as shown in 3.2. 

ఠݑ௪൫  , ఠݑ ൯ ൌ
݁ିሺఈ

ାఉఓഘ
ሻ

∑ ݁ିሺఈ
ᇲାఉఓഘ

ᇲ
ሻ

ᇲ∈ሼ,ሽ

, ݉ ∈ ሼܽ, ܾሽ, ߱ ∈ ܹ		 (3.2) 

where: 

 ݃ఠ ൌ ఠݑ௪൫ , ఠݑ ൯݃ఠ, ݉ ∈ ሼܽ, ܾሽ, ߱ ∈ ܹ (3.3) 

The expression ߙ   ߱ ,݉ ఠ is referred to as the utility function of the modeߤߚ

represents a particular origin-destination pair, the set of all origin destination pairs is 

denoted by ܹ, and ݃ఠ represents the total demand for transportation in origin-

destination pair ߱. The modal split for network ݉  at origin-destination pair ߱ is given 

݃ఠ. 

The same function can be expressed as the cost differences (utilities) between 

modes ݑఠ ൌ ఠݑ െ ఠݑ  obtaining the following simplified expression: 

ఠ  ሺݑఠሻ ൌ
1

1  ݁ିሺఈାఉఓሻ
, where ߙ ൌ ߙ െ   (3.4)ߙ

The previous expression was linearized by the following polygonal function: 

 ܲሺݑሻ ൌ

ە
ۖ
۔

ۖ
ۓ
  ܽଵሺݑ െ ሻݑ ݑ  ݑ ൏ ଵݑ
ଵ  ܽଶሺݑ െ ଵሻݑ ଵݑ  ݑ ൏ ଶݑ
ଶ  ܽଷሺݑ െ ଶሻݑ ଶݑ  ݑ ൏ ଷݑ
…
ିଵ  ܽሺݑ െ ିଵሻݑ ିଵݑ  ݑ ൏ ݑ

 (3.5) 

where: 

 ܽ ൌ
 െ ିଵ
ݑ െ ିଵݑ

, ݅ ൌ 1,2, …݊ (3.6) 

This function can be modeled by introducing ݊ continuous variables ߜଵ, ଶߜ …   andߜ

݊ binary variables ݖଵ, …  in 3݊ݖ  1 constraints as presented in Equation 3.7. 
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The resulting model is a linear integer (binary) programming problem. Since this is 

required for each origin destination pair, a total of |ܹ|ሺ3݊  1ሻ additional constraints and 

|ܹ|݊ binary variables and |ܹ|݊ linear variables have to be introduced in the formulation. 

 

ݑ ൌ ݑ ߜ



ୀଵ

ܲሺݑሻ ൌ  ܽߜ



ୀଵ

Δݑଵݖଵ  ଵߜ  Δݑଵ
Δݑݖ  ߜ  Δݑݖିଵ, ݅ ൌ 2,…݊ െ 1
0  ߜ  Δݑݖିଵ	

ିଵݖ  ݖ
ݖ ∈ ሼ0,1ሽ

 

  

(3.7) 

where: 

Δݑ ൌ ݑ െ ݅			,ିଵݑ ൌ 1,… . , ݊ 

3.2 Linearization Techniques in Mathematical Programming 

The most representative publications in linearization methodologies using binary 

piecewise representations can be found in references [23] and  [24]. An alternative 

methodology based on the Maximum of Affine functions based on least squares 

partitions was developed by Magnani & Boyd [25]. The latter methodology provides an 

interval-free polygonal representation of a non-linear convex function.  In this research, 

an adaptation of the ideas presented in Magnani & Boyd [25] will be applied to linearize 

the existing non-linear functions arising in transportation network design problems. 

The problem of fitting an optimal polygonal representation of a non-linear function 

is a complex problem itself. An adequate and simple method of obtaining a linear 

representation is required to achieve the desired level of accuracy without significantly 

increasing the overall computational complexity.  
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3.3 Least-Squares Partitioning Algorithm (LPA) 

The solution strategy adopted in this work for the continuous network design 

problem is based on a series of reformulations. First, the original non-linear bi-level 

program was transformed into a single-level non-linear program with equilibrium 

constraints. Next, the problem was transformed into a non-linear binary problem by 

substituting the equilibrium constraints for their equivalent formulation via binary 

variables (MIP). The remaining non-linear elements are related to the use of the BPR 

function to model arc congestion. This section deals with the linearization of such 

elements by means of a series of max-affine functions. 

Several approaches have been proposed in recent literature to transform the bi-

level, non-linear transportation network design problem into a mixed-problem. The 

complexity of the resulting linearization depends on the type of decision being modeled. 

For example, [18]modeled capacity decisions for fixed-topology network. The flow-

capacity surface was approximated via mixed integer formulation adding additional 

binary variables and y constraints to the model. Similarly, [26] adopted a modeling 

approach to accommodate topology and capacity improvement for a transportation 

network. In their work, the flow-capacity surface was approximated via specially ordered 

sets, or SOS variables. The resulting model was too complex for conventional solvers 

and a relaxed version was used instead. Farvaresh, etal. [19] analyzed the mixed 

network design problem by using topology improvements with fixed capacity. In their 

approach they exploit the unimodularity of the formulation resulting from the linearization 

technique proposed by Padberg [23], and Bazaraa [2] by assuming fixed capacities for 

link improvements. In this work, an interval-free approach to model the flow-capacity 

surface is utilized. The technique was first presented by Magnani & Boyd [25]. The 

objective of the methodology was to fit piecewise linear approximations for convex (or 
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near convex) datasets. Since the methodology is a curve fitting procedure, it does not 

require strict properties of the underlying datasets. The approach is valid for 

multidimensional functions as long as the datasets have a reasonably convex form. 

The procedure starts with a non-linear function ܪ being approximated at the points 

݅) ሶݖ ൌ 1, . . ܰሻ by a linear function. The domain of  ܪ is divided into ݇ intervals with each 

one them having one linear approximation. The linear approximations are defined by the 

formula ࢇ
்  ܾ where ࢇ

்is a row vector of ݊ elements (number of independent 

variables), and ܾ is the intercept for the ݆௧ partition. The objective is to minimize the 

square of the deviations with respect to the original points for all the intervals as follows: 

݊݅ܯ  Ψ ൌ൬ max
ୀଵ,…,

൫ࢇ
ݑ்  ൯ߚ െ ሶ൰ݖ

ଶ
ே

ୀଵ

 (3.8) 

The decision variables for this optimization problem are the line coefficients and 

intercepts given by ܽଵ, ܽଶ, … ܽ ∈ ܴ and ܾଵ, ܾଶ, … , ܾ ∈ ܴrespectively. The algorithm has 

two major alternating steps consisting of data partitioning and least-squares fitting to 

update the coefficients. In this particular application, the BPR function is first discretized 

to the desired resolution (e.g. 1,000 data points) and the resulting set of data points are 

indexed, i.e. (1, . . ܰ). Let ܩ
ሺ௩ሻ be the ݆௧ partition of the data points at the ݒ௧ iteration i.e. 

ܩ
ሺ௩ሻ ⊆ ሼ1,…ܰሽ with the following conditions: 

ܩ 
ሺ௩ሻ ∩ ܩ

ሺ௩ሻ ൌ ∅ ݎ݂ ݅ ് ݆ (3.9) 
 

 ራܩ
ሺ௩ሻ ൌ ሼ1,… ,݉ሽ



 (3.10) 

At iterationݒ, the corresponding coefficients of the linear approximation for partition 

݆ are ࢇ
ሺ௩ሻ and ߚ

ሺ௩ሻ. The main step for the algorithm consists of generating the next 
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values ࢇ
ሺ௩ାଵሻ and ߚ

ሺ௩ାଵሻ from the current partition ܩ
ሺ௩ሻ using least-squares fitting. The 

algorithm is summarized in Figure 7. 

Step 0: Obtain and initial partition set ࡳ 
Set number of iterations ݒ ൌ 0 

 

Step 1: Update Coefficients  
 For each partition ݆ ൌ 1,…݇:  
  Calculate linear approximation coefficients ࢇ

ሺ௩ሻ , ܾ
ሺ௩ሻ 

 Next partition ݆  
Step 2: Update partitions, assign point ݅ to interval ܩ

ሺ௩ାଵሻ as follows: 
 Ψሺݖሶሻ ൌ max௦ୀଵ,..,ሺࢇ௦

ሺ௩ሻ்ݖሶ  ௦ߚ
ሺ௩ሻሻ, point ݅ is added to interval ݆ ൌ  ݏ

ݒ ൌ ݒ  1 
Step 3: If ࡳሺ௩ሻ ൌ ݒ ሺ௩ାଵሻ orࡳ ൌ ݔܽ݉  then end , else goto step 1 ݏ݊݅ݐܽݎ݁ݐ݅

Figure 7: Summary of Least-Squares Partition Algorithm 

LSPA has several advantages, such as speed and simplicity which facilitates its 

implementation. Magnani & Boyd [25] recommended several trials with random seeds 

for the initial solution and selecting the best fit. While this is a good approach for a strict 

piecewise linear fitting problem, for a transportation network design problem the true 

performance of the fitting problem is only known after the linearized version problem is 

solved and compared to the solution of the non-linear version. The problem of fitting the 

best piecewise linear function to minimize the error between the linearized NDP and the 

non-linear NDP is itself a bi-level programming problem. 

An example of the MB algorithm for piecewise linear fitting for the univariate case 

is presented in Figure 8. The example shows a five-piece approximation of the BPR 

function in equation 3.1. At iteration one, most of the lines were set to the same region, 

thus providing a poor approximation. As the algorithm evolves (iteration 5) the linear 

functions are reorganized so that the best estimate at flow ݔ of the non-linear function 

(BPR) is the maximum of all the linear pieces evaluated at ݔ. For the univariate case the 

algorithm converges after a few iterations.  
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Figure 8: Least-Squares Partition Algorithm for the Univariate Case 

The application of the MB algorithm to the bivariate case using a ten-plane linear 

fitting is presented in Figure 8. The upper left plot presents the discretization step of the 
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flow-capacity surface. At iteration one, the fitting is poor due to the concentration of the 

fitting planes in a confined region of the flow-capacity domain.  As the algorithm evolves, 

it converges at iteration 115 to the solution presented in the lower left plot. The resulting 

linear approximation resulting of evaluating the maximum of all the planes at each point 

of the flow capacity domain is depicted in the lower right plot. The measure of error are 

the coefficient of determination or ܴଶ and the root mean square ( ܴܵܯ). 

 

Figure 9: Least Squares Partition Algorithm for the Bivariate Case 

The coefficient of determination or r-square (ܴଶ) is a measure of the goodness of 

fit in a regression model. The calculation of ܴଶ starts by measuring the amount of 

variation of the dependent variable with respect to its average. This value is denoted as 
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the total sum of squares (SST). The variation with respect to a proposed model is 

calculated and it is denoted as SSM. The coefficient of determination is calculated as the 

percentage of the total variation explained by the proposed model. In addition to the 

coefficient of determination the root mean square (RMS) was used to assess the 

goodness of fit of the linear approximation. The expressions for ܴଶ and RMS are 

presented in equations 3.11 and 3.12 below. 

 

ܵܵܶ ൌሺݕ െ തሻଶݕ



 

ܯܵܵ ൌሺݕ െ ොሻଶݕ



 

ܴଶ ൌ 1 െ
ܯܵܵ
ܵܵܶ

 

 

(3.11) 

 

ܵܯܴ  ൌ ඨ
ܵܵܶ
݉

 

 

(3.12) 

where: 

 ݅ : Observationݕ

 ത: Average of dependent variableݕ

 ݅ ො: Estimation of dependent variable at pointݕ

As the number of intervals used to approximate the nonlinear function is 

increased, the goodness of fit measure increases. Several experiments varying the 

number of intervals were conducted. Examples of the result of such experiments for r-

square and RMS are presented in Figures 10 and 11 respectively. 
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Figure 10: R-Square and Number of Intervals for the  
Linear Approximation Procedure 

 

Figure 11: RMS and Number of Intervals for the  
Linear Approximation Procedure 

3.4 Modified Least Square Partitioning Algorithm (MLSPA) 

The capacity-flow surface can be partitioned in smaller subsets for a more 

accurate linear approximation. Luathep [20] divided the surface following a grid-type 

scheme. A similar approach was followed in Wang [18]. The main disadvantage of the 

grid partition approach is that it does not take into consideration the effect high flow-to-

capacity ratios. The situation when flows equals capacity on an arc is referred to as a 

saturated condition and it can be represented as ݂ ൌ ሺ݇   ሻ. The cases in which theݕ
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arc flow ݂ is less than the capacity of the arc are denoted as undersaturated conditions. 

Oversaturation occurs when the flow exceeds the capacity of the arc. A series of plots 

showing the concept of under and oversaturation are presented in Figure 12. 

 

Figure 12: Under and Oversaturated Traffic Regions  
in the Flow-Capacity Surface 

In Figure 12, it can be observed that most of the variation of the flow-capacity 

surface is concentrated in the oversaturated region. In a network with a moderate level 

of congestion the traffic tends to distribute among the different paths (divert) before 

assuming flow values in the oversaturated region. Optimal flows will tend to occur in the 

under saturated conditions. For that reason, it is reasonable to obtain a better function 

Undersaturated
Conditions 

Oversaturated
Conditions 

Saturation Line 
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representation for the approximation in the undersaturated region of the flow-capacity 

surface. 

The modified least squares partitioning algorithm (MLPA) was devised to give 

different priorities to the under and oversaturated regions of the flow-capacity surface. 

First the algorithm acts upon the points of the undersaturated region ( ݂   ) with aݕ

partition denoted by ݑܩ, this set contains ݃௨ partitions. The LSPA is applied to the set 

 The same procedure is applied for the oversaturated conditions with a set denoted .ݑܩ

by ܩ. The final approximation is the union of the linear approximations of the two sets 

(see Figure 13 for summary). 

Step 0: Split original data into under and over saturated sets ࡳ,࢛ࡳ 
 

Step 1: Apply LSPA to ࡳ,࢛ࡳ 

Obtain linear approximation ሺࢇ௦
ሺ௨ሻ்ݖሶ  ܾ௦

௨ሻ and ሺࢇ௦
ሺሻ்ݖሶ  ܾ௦

ሺሻሻ 
respectively 

Step 2:  Construct final approximation set L as  
:ܮ   ራ ሺࢇ௦

ሺ௩ሻ்ݖሶ  ܾ௦
ሺ௩ሻሻ

௩∈ሼீ௨,ீሽ

 

   

Figure 13: Modified Least Square Partitioning Algorithm (MLSPA) for the Flow-
capacity Surface 

The objective of the MLSPA is to obtain a better approximation, not in the 

goodness of fit of the function, but on the results of the optimization model. For instance, 

the fitting errors are reduced if a good fit is obtained in the oversaturated region. 

However, that fit is not useful in most of the cases since the optimization model will avoid 

the oversaturated region. Approximation tests based on this rationale will be presented 

in the following sections. 

3.5 Max-Affine Formulation of TAP 

The previous sections described the procedure to obtain a linear approximation of 

a convex function using a series of affine functions with a pointwise maximum 
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procedure. This approximation can be used to linearize a function without using binary 

variables. Let ܮ be the linear approximation for arc ܽ. The number of functions for ܮ is 

given by ܩ. The constant term of linear approximation ܮ is denoted by ߙ. Each linear 

term may have one or more variables. For ordinary arcs only one, the flow, is used as a 

predictor. For capacity improvement the arc cost is approximated using both, arc flow 

and arc capacity. Let ࣰ be the set of variables used for the linear approximation, the 

approximation of ݐ is given by expression 3.13. 

ܮ   ߙ ߚ௩
௩∈

∀ ݃ ∈ ܩ ∀ ܽ ∈ ࣛ (3.13) 

3.5.1 Arc-Path Linear Formulation of TAP 

Based on the max-affine approximation 3.13 the arc-path formulation of TAP can 

be re-written as a pure linear program. The number of additional constraints depends 

depend on the number of intervals used to approximate the arc-cost function. For 

example if five functions are used (ܩ ൌ 5	, ∀	ܽ ∈ ࣛ) then there will be |ࣛ| ൈ 5 new 

constraints and |ࣛ| number of linear variables. The arc-path formulation is presented by 

equations 3.14 through 3.17 

݊݅ܯ  ܶሺ݂ሻ ൌ  ܸ

∈ࣛ

 (3.14)
 

 ܸ  ߙ  ߚ ݂, ∀ ݃ ∈ ܩ ∀ ܽ ∈ ࣛ (3.15) 
 

  ݄
∈ோ

ൌ ݀ , ∀ ሺ, ሻݍ ∈ ࣱ (3.16) 

 
 

   ݄ߜ ൌ ݂, ∀ ܽ ∈ ࣛ
∈ோሺ,ሻ∈ࣱ

 (3.17) 

Note that in this case, the linear approximation depends only on the link flow ( ݂). 

For capacity decisions the link cost will depend on the added capacity (ݕሻ 
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3.5.2 Arc-Node Linear Formulation of TAP  

In a similar manner the arc-node formulation of TAP can be linearized with the 

inclusion of the linear approximation ܸ. The original problem consists of a non-linear 

objective function optimized over linear feasible region. After linearizing the objective the 

resulting problem is a pure linear problem denoted by TAP-LP. 

݊݅ܯ  ܶሺ݂ሻ ൌ  ܸ

∈ࣛ

 (3.18)
 

 ܸ  ߙ  ߚ ݂, ∀ ݃ ∈ ܩ ∀ ܽ ∈ ࣛ (3.19) 
 

  ݂

టషሺሻ

െ  ݂

టశሺሻ

ൌ ݀ , ∀ ݅ ∈ ࣨ, ∀ ሺ, ሻݍ ∈ ࣱ (3.20) 

 

 ݂ ൌ   ݂
ሺ,ሻ∈ࣱ ∈ࣛ

, ∀ ܽ ∈ ࣛ (3.21) 
 

 ݂  0 ∀ ሺ݅, ݆ሻ ∈ ࣛ, ∀ ሺ, ሻݍ ∈ ࣱ (3.22) 
 

3.6 Linearization Tests 

For the linearization method implementation, several fitting parameters were 

tested. The main fitting parameters used to fine tune the algorithm are listed: 

 Fitting method: Two fitting methods were considered, LSPA and MLSPA.  

 Number of functions: The number of intervals or linear functions used to 

approximate the linear function where tested values of 5, 10, 20, and 30 were 

used. 

 Function Distribution: This parameter was used in the MLSPA method only. It 

corresponds to the number of linear functions in the undersaturated region. For 

instance, a value of 0.6 with ten linear functions means that six functions will be 

used in the undersaturated region of the flow-capacity surface and four on the 

oversaturated region. 
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 Saturation Factor: This parameter was used in the MLSPA method only. This 

factor was used to vary the saturation line to provide a more flexible fitting 

process allowing the fitting process to extend either the oversaturated or the 

undersaturated regions of the flow-capacity surface. 

For the LSPA method there are four levels of experimentation. For the MLSPA 

method there were 4x4x5=80 experiments. There were a total of 84 fitting model 

scenarios. The scenarios were tested with the three demand scenarios of the Friesz-

Harker network. Each scenario was run for three replicates. The goodness of fit was 

tested by the ܴଶ and the RMS measures. An additional goodness of fit measure was 

tested by running a linearized version of the problem, constrained to a known solution for 

each scenario. The measure of the quality of the fitting process was based on how well 

the linearized model solution resembled that of the non-linear model. The fitting 

parameters for experimentation are summarized in Table 5. 

Table 5: Fitting Parameter for Experimentation 

Parameter Values 
Number of Functions (NF) 5,10,20,30 

Fitting Method (FM) LSPA, MLSPA 
MLSPA- Function Distribution(FD) 0.4 0.5 0.6 0.7 

MLSPA- Saturation Factor (SF) 0.8, 1.0, 1.2 

Figure 14 presents an example with ten functions using a distribution of 0.6 (6 

functions) for the undersaturated region and 0.4 (4 functions) for the oversaturated 

region. The different saturation limits based on the saturation factor are presented in 

Figure 14. A saturation factor of 0.8 has the effect of decreasing the slope of the 

saturation line, isolating the most congested section of the flow-capacity surface. 
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Figure 14: Flow-Capacity Fitting Parameters 

In addition to the fitting parameters, the goodness of fit for any flow-capacity 

surface depends on the relationship between the current capacity with respect to the 

maximum capacity that could be potentially added to the arc. Let ݇ be the current 

capacity for arc ܽ and let ݑ be the upper bound in the capacity increase. The potential 

maximum capacity is defined as ݇   . The quality of the goodness of fit is related toݑ

the capacity ratio ݇/ሺ݇   ሻ. Arcs with low capacity ratios are very likely candidates toݑ

become system bottlenecks and could be selected for capacity improvement. The quality 

of the solution based on the approximated flow-capacity surface is also dependent on 

the goodness of fit on such critical links especially in the undersaturated region. 

To verify this hypothesis an upper bound of ten capacity units was assumed for the 

Friesz-Harker network. The results for five functions using the LSPA method are 

presented in Figure 15. 

SF=1

 

 

SF=0.8 

SF=1.2
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Figure 15: Fit Results and Capacity Ratio for the Friesz-Harker Network Using 
LSPA and 5 Functions 

Figure 15 shows the hypothesized behavior of the goodness of fit results with 

respect to the capacity ratio. The overall goodness of fit is moderate and there is great 

variability in the performance at low capacity ratios. This can be compared with Figure 

16 which shows the results for the same fitting method using ten functions. It can be 

observed that there was an overall reduction of the variability and an improved goodness 

of fit. Additional results using 20 and 30 functions are presented in Figure 17 and Figure 

18 respectively. 

 

Figure 16: Fit Results and Capacity Ratio for the Friesz-Harker Network Using 
LSPA and 5 Functions 
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Figure 17: Fit Results and Capacity Ratio for the Friesz-Harker Network Using 
LSPA and 5 Functions 

 

Figure 18: Fit Results and Capacity Ratio for the Friesz-Harker Network Using 
LSPA and 5 Functions 

Results using the MLSPA and five functions are presented in Figure 19. The 

saturation factor was varied from 0.9 to 1.1 to test the sensitivity of the fitting method. 
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Figure 19: Fit Results and Capacity Ratio for the Friesz-Harker Network Using 
MLSPA, 5 Functions and Function Distribution 0.5 

The MLSPA performs poorly for a low number of functions. However, when the 

number of functions was increased to ten, the performance is comparable to that of the 

LSPA with the additional benefit of reduced variability (see Figure 20). The final 

performance of both methods will be compared based on the quality of the optimization 

results. Similar results for 20 and 30-function linear piecewise fitting can be found in 

Appendix B. 

 

Figure 20: Fit Results and Capacity Ratio for the Friesz-Harker Network Using 
MLSPA, 10 Functions and Function Distribution 0.5 
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CHAPTER 4: BI-LEVEL OPTIMIZATION PROBLEMS IN TRANSPORTATION  

In this section, the general bi-level optimization problem and its applications in 

transportations are introduced. Several bi-level optimization models for the continuous 

and discrete transportation network design problems are formulated and explained.  

4.1 General Bi-Level Optimization Problem 

In this section, the general bi-level programming problem is presented. The 

notations and terminology are adapted from those in Bard [27]. Bi-level programming 

models are motivated by leader-follower games called Stackelberg games. In bi-level 

programming, the set of decision variables is divided into two vectors ݔ and ݕ, with ݔ 

representing the set of decision of the leader (upper level problem) and ݕ representing 

the decisions of the follower (lower level problem). 

The problem definition will be given for the general linear bi-level problem, further 

definitions for the discrete and nonlinear cases will be provided when appropriate. Let 

ݔ ∈ ܺ ⊂ ܴ, ݕ ∈ ܻ ⊂ ܴ, ܨ: ܺ ൈ ܻ → ܴଵ	 be the decision variables and objective function 

for the upper level problem. Let ݂: ܺ ൈ ܻ → ܴଵ  be the objective function for the lower 

level problem. The linear bi-level programming problem (LL-BLPP) is shown in 4.1 

through 4.5 below. 

 min
௫ ∈

,ݔሺܨ ሻݕ ൌ ܿଵݔ  ݀ଵ(4.1) ݕ
 

subject to: 

ݔଵܣ   ݕଵܤ  ܾଵ (4.2)
 

 min
௬∈

݂ሺݔ, ሻݕ ൌ ܿଶݔ  ݀ଶ(4.3) ݕ
 

ݔଶܣ   ଶܤ  ܾଶ (4.4)
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where: 

ܿଵ, ܿଶ ∈ ܴ 
݀ଵ, ݀ଶ ∈ ܴ 

ܾଵ ∈ ܴ 
ܾଶ ∈ ܴ 

ଵܣ ∈ ܴൈ 
ଶܣ ∈ ܴൈ 

ଵܤ ∈ ܴൈ 
ଶܤ ∈ ܴൈ 

(4.5)

Non-negativity constraints and bounds on the decision variables can be included in 

sets ܺ and ܻ. Equations 4.1 to 4.5 represent the general bi-level linear programming 

problem. The objective function of the upper problem is shown in 4.1. Only ݔ is in control 

of the upper level problem ( leader) while the variable ݕ is the decision variable of the 

lower level problem (followers’ reaction), conditioned on the value of the decision 

variables of the upper level problem. Constraint group 4.2 represents the feasible region 

for the upper level problem. The objective function of the follower is represented by 4.3. 

It can be observed that once the leader has made a decision (ݔ) the corresponding term 

in 4.3 becomes a constant and can be excluded from the objective function. Constraint 

set 4.59 corresponds to the feasible set of the lower level problem. Let ܵ be the overall 

constraint region for the BLPP formed by the all the decision variable vectors defined as: 

 ܵ ൌ ሼሺݔ, :ሻݕ ݔ ∈ ܺ, ݕ ∈ ܻ , ݔଵܣ  ݕଵܤ  ܾଵ, ݔଶܣ  ݕଶܤ  ܾଶሽ (4.6)

In order for the BLPP to be solved, the first assumption over ܵ is that it should be 

non-empty and compact (i.e. bounded and closed).  

In the problem logic, the upper level (leader) decides first, that is selects an ݔ, 

conditioning the response of the lower level problem (follower). The feasible set for the 

follower for a fixed ݔ ∈ ܺ is denoted by ܵሺݔሻ and is given by: 

 ܵሺݔሻ ൌ ሼݕ ∈ ܻ ∶ ݕଶܤ  ܾଶ െ ሽ (4.7)ݔଶܣ

The follower reacts to the decisions imposed by the leader by choosing a 

response, ݕ. The response of the follower should be feasible not only on its own feasible 
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set, but in the joint feasible set for the leader. That is the projection of ܵሺݔሻ onto the 

decision space of the leader. The set is denoted by ܵሺܺሻ and is given by: 

 ܵሺܺሻ ൌ ሼݔ ∈ ܺ ∶ ∃ ݕ ∈ ܻ, ݔଵܣ  ݕଵܤ  ܾଵ, ݔଶܣ  ݕଶܤ  ܾଶሽ (4.8)

In equation 4.8 it can be highlighted that ܵሺܺሻ requires the existence of a feasible 

follower response ݕ for both problems. The follower acts, seeking its own benefit, by 

selecting the best ݕ for each ݔ the leader select. Therefore the follower has a rational 

reaction set for ݔ ∈ ܵሺܺሻ denoted by ܲሺݔሻ given by: 

 ܲሺݔሻ ൌ ሼݕ ∈ ܻ ∶ ݕ ∈ ݊݅݉݃ݎܽ ሾ݂ሺݔ, :ොሻݕ ොݕ ∈ ܵሺݔሻሿሽ (4.9)

The set of leader choices and rational reactions of the follower receives the name 

of inducible region (ܴܫ) in the bi-level programming theory and is expressed as: 

ܴܫ  ൌ ሼሺݔ, :ሻݕ ሺݔ. ሻݕ ∈ ܵ, ݕ ∈ ܲሺݔሻሽ (4.10)

The logical assumption over the rational set of the follower is that it is non-empty 

(i.e. ܲሺݔሻ ് ∅). In other words, the follower has some space to respond. The follower 

optimize its response over ܲሺݔሻ and the leader over ܴܫ. Since ܴܫ contains the reaction of 

the follower then the BLPP can be expressed as follows: 

 minሼܨሺݔ, :ሻݕ ሺݔ, ሻݕ ∈ ሽ (4.11)ܴܫ

Another critical assumption for BLPP to be solvable is that ܲሺݔሻ should be a point-

to-point map of ܺ onto ܻ. In other words, for each ݔ ∈ ܺ the optimal solution of the lower 

level problem is unique. To illustrate these concepts the following example of a linear bi-

level program should be considered: 

 min
௫ ∈

,ݔሺܨ ሻݕ ൌ ݔ െ (4.12) ݕ8
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subject to: 

 

 min
௬∈

݂ሺݕሻ ൌ (4.13) ݕ
 

െ5ݔ  ݕ3  4 (4.14)
 

ݔ   ݕ2  20 (4.15)
 

ݔ4  െ ݕ5  2 (4.16)
 

 െݔ െ ݕ2  െ7 (4.17)

The example problem has a simplified structure for illustration purposes. The 

feasible region ܵ is represented by the shaded area in Figure 21.  

 

Figure 21: Feasible Region of Example L-BLPP 
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The ݔ axis represents the upper level problem (UPL) or leader’s problem. The ݕ 

axis represents the lower level problem (LLP) or follower’s problem. The descent 

directions for both objective functions are also depicted in Figure 21. It can be observed 

that the best strategy for the leader in this case is point (4,8) assuming total cooperation 

of the follower. Similarly, for the follower the best strategy is located in (3,2) without 

considering the leader’s objective function. Since each of agents involved seek their own 

benefit, the best individual solutions for both problems will not coincide. In this case, the 

leader has certain degree of control over the environment and selects its strategy (ݔሻ 

first. The follower then prepares its reaction over the feasible set created by ݔ. That 

feasible set is denoted by  ܵሺݔሻ and corresponds to the vertical line inside the feasible 

region where ݔ is fixed. Since the follower minimizes its objective function based on ݔ, 

the follower’s optimal reaction in this case is the point in ܵሺݔሻ where ݂ is minimized (see 

Figure 22). 

The collection of all points where the reaction of the follower is optimized for each 

decision of the leader is called the rational reaction set ܲሺݔሻ and is represented in Figure 

22 by the thick lines in the feasible region.  

The induced region is defined  ܴܫ ൌ ሼሺݔ, :ሻݕ ሺݔ. ሻݕ ∈ ܵ, ݕ ∈ ܲሺݔሻሽ and depicted in 

Figure 23. It can be observed that it only suffices with optimizing over the inducible 

region to reach the optimum solution of the example L-BLPP. The optimum value of the 

example L-BLPP is the point (8,6) with a leader’s objective of -40, whereas the follower’s 

objective is six. If the leader attempts to improve its objective by selecting a different 

strategy its objective will be suboptimal due to the follower’s reaction. 
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Figure 22: Rational Reaction Set for the Lower Level Problem 
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Figure 23: Inducible Region of the L-BLPP 

Since the proposed problem has two objective functions and shares significant 

portions of the feasible region,it may be mistakenly associated with a multi-objective 

optimization problem. It is important to note that this is not true for all the cases. In a 

multi-objective optimization problem the different objective functions are related and 
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meet a criterion called Pareto efficiency. Pareto efficiency is related to the concept of 

dominance. This concept implies that there cannot be improvements in one objective 

without worsening other objective functions. In the context of leader-follower problems 

this means that neither the leader nor the follower can unilaterally improve their 

objectives. This concept is presented in Figure 24 where plot A shows the optimal 

solution for the leader and follower strategies and plot B presents the same points in the 

objective functions space. It can be observed that the optimal solution is dominated by 

all the points in the cone of the gradients of the objective functions. That means that 

Pareto optimality is not guaranteed unless the gradients of both the leader and follower 

are co-linear [28]. 

 

 

Figure 24: Design Space and Criterion Space for the L-BLPP 

The overall complexity of the bi-level program depends on the modeling approach 

taken to represent the situation being analyzed. As an initial approach it is expected that 

the lower level model will be solved for each iteration/decision of the leader. This implies 

that a significant portion of the complexity of the solution can be reduced and there will 

be efficient re-formulation/solution of the lower level model. 

A B 
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In the context of transportation systems, any change in the network design 

(topology and parameters) will bring on changes in the flow patterns of the network. The 

flow patterns are modeled as a traffic equilibrium model to reflect the behavior or 

rationale of the followers (network users) with respect to the transportation network 

topology and parameters. Without considering the lower level model, the resulting 

network design may be optimal for the leader, but it may decrease the overall 

performance of the network. This situation is referred to as the Braess paradox [29]. 

4.2 Continuous Network Design Problem (CNDP) 

The CNDP is associated with the capacity of the network arcs. Examples of 

capacity increase in transportation context are: 

 Roadway widening 

 Increase in green time at signalized intersection 

 Increased size of a train 

 Increase in bus headways 

In multimodal networks the capacity is associated with the requirement of the 

necessary infrastructure to allow the transition from one transportation mode to another. 

An example could be the number of parking spaces at a train station. 

 
Let ࣛ be the set of arcs that will not be modified. Let ࣛଵ be the set of arcs whose 

capacity will be modified. The CNDP for a unimodal network can be formulated as a bi-

level mathematical programming model as presented in equations 4.18 through 4.21. 

 min
࢟
ܼሺࢌ, ሻ࢟ ൌ ߩ ∙ ሺݐ ݂, ሻݕ ⋅ ݂   ݃ሺݕሻ

∈భ∈

 (4.18)
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subject to: 

ݕ   ݕ  ,௨ݕ ∀ ܽ ∈ ଵ (4.19)ܣ
 

 ݃ሺݕሻ  (4.20) ܤ
 

ࢌ  ൌ ሻ (4.21)࢟ሺܲܣܶ

The objective function (4.18) corresponds to the upper level problem or leader 

problem. In this case, the upper level function is minimizing the total travel and the 

capacity improvement costs. The term ߩ is a factor that converts travel time into utility 

values (e.g. value of time). The capacity improvement is assumed continuous for this 

initial formulation and is optimized over a bounded region (4.19).  Constraint 4.20 

ensures that the available budget is not exceeded. This constraint may be optional since 

the capacity improvement cost is minimized in the objective function. The lower level 

problem corresponds to a deterministic traffic assignment problem (4.21). The TAP 

problem takes the new capacity as input ࢟ and gives the link flows corresponding to a 

traffic equilibrium problem following Wardrop’s first principle (user equilibrium).  

The extended CND in an extended arc-node formulation is presented in equations 

4.22 through 4.29.  

 min
࢟
ܼሺࢌ, ሻ࢟ ൌ ߩ ∙ ሺݐ ݂, ሻݕ ⋅ ݂   ݃ሺݕሻ

∈భ∈

 (4.22)

subject to: 

ݕ   ݕ  ,௨ݕ ∀ ܽ ∈ ଵ (4.23)ܣ
 

 ݃ሺݕሻ  (4.24) ܤ

where ݂ is the solution of: 

݊݅ܯ  ܶሺ݂ሻ ൌ  න ݏሻ݀ݏሺݐ
ೌ

 ∈ࣛ

 (4.25)

 

ݐ  ൌ ሾ1ݐ  ܤ ൬ ݂

݇  ݕ
൰


ሿ (4.26)
 

  ݂௪

∈టషሺሻ

െ  ݂௪

∈టశሺሻ

ൌ ݀௪ , ∀ ݅ ∈ ࣨ, ∀ ݓ ∈ ࣱ (4.27) 
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 ݂ ൌ   ݂௪

௪∈ࣱ ∈ࣛ

, ∀ ܽ ∈ ࣛ (4.28) 
 

 ݂௪  0 ∀ ܽ ൌ ሺ݅, ݆ሻ ∈ ࣛ, ∀ ݓ ൌ ሺ, ሻݍ ∈ ࣱ (4.29) 

The problem expressed by 4.22 through 4.29 represents a CNDP in the arc-node 

formulation. The first term of the objective function (4.22) represents the total travel time 

experienced by the transportation network users. Such travel time accounts for 

congestion. The congested travel time per arc is given by ሺݐ). This is the travel time 

experienced by each transportation network user using arc ܽ ( ݂). The second term of 

the objective function seeks to minimize the investment cost in additional capacity (ݕ). 

Constraints 4.23 and 4.24 provide bounds for the upper level decision variables. The 

lower level problem is a traffic assignment problem conditioned on the capacity decision 

made by the leader at the upper level. In this case, the leader makes capacity addition 

decisions that affect the travel cost. These decisions are captured in the definitional 

constraint 4.26 by the term ݕ. Constraint group 4.27 represents the flow conservation 

constraints. Constraint group 4.28 defines the arc flow as the sum of the different 

commodities using the same arc. The non-negativity conditions for the arc flows are 

given by 4.29. Similarly, for the arc-path formulation the continuous network design 

problem can be expressed as follows: 

 min
࢟
ܼሺࢌ, ሻ࢟ ൌ ߩ ∙ ሺݐ ݂, ሻݕ ⋅ ݂   ݃ሺݕሻ

∈భ∈

 (4.30)

subject to: 

ݕ   ݕ  ,௨ݕ ∀ ܽ ∈ ଵ (4.31)ܣ
 

 ݃ሺݕሻ  (4.32) ܤ
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where ݂ is the solution of: 

݊݅ܯ  ܶሺ݂ሻ ൌ  න ݏሻ݀ݏሺݐ
ೌ

 ∈ࣛ

 (4.33)

 

ݐ  ൌ ሾ1ݐ  ܤ ൬ ݂

݇  ݕ
൰


ሿ (4.34)
 

  ݄௪
∈ோೢ

ൌ ݀௪, ∀ ݓ ∈ ࣱ (4.35)
 

 ݂ ൌ   ௪݄௪ߜ
∈ோೢ୵∈ࣱ

∀ ܽ ∈ ࣛ (4.36)
 

 
݄௪  0, ∀ ݎ ∈ ܴ௪, ∀ ݓ ∈ ࣱ 

݂  0 ∀ ܽ ൌ ሺ݅, ݆ሻ ∈ ࣛ 
(4.37)

The arc-path upper level problem is the same as the arc-node formulation. The 

main differences can be observed in the traffic assignment problem. The upper level 

capacity decisions are incorporated via ݕ variables in the definitional constraint group 

4.34. The flow conservation constraints are automatically satisfied with the path 

formulation. Constraint group 4.35 ensures that the transportation demand is satisfied. 

The flow-definitional constraint is expressed by 4.36. The flow definitional constraint 

states that the flow in link ܽ is the addition of all the paths for all the O-D pairs using such 

arc. Constraint group 4.37 represents the non-negativity constraints. 

4.3 Discrete Network Design Model (DNDP) 

In the discrete network design problem the goal is to modify the topology of the 

network by providing additional arcs to the network while minimizing the total costs. Let 

ࣛଶ ⊂ ࣛ be the subset of proposed arcs. Let ܧ be the fixed cost of implementing arc 

ܽ ∈ ࣛଶ and ݔ a binary variable defined as 1 if arc ܽ ∈ ࣛଶ is implemented, 0 otherwise. 

The DNDP in the arc-node formulation is expressed by 4.38 through 4.42. 

 min
࢟
ܼሺࢌ, ,࢟ ሻ࢞ ൌ ߩ	 ∙ ሺݐ ݂, ሻݕ ⋅ ݂

∈

  ݃ሺݕሻ   ݔܧ
∈మ∈ሺభ  ଶሻ

 (4.38)
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subject to: 

ݐ  ൌ ሾ1ݐ  ܤ ൬ ݂

݇  ݕ
൰


ሿ (4.39)
 

ݕ   ݕ  ,௨ݕ ∀ ܽ ∈ (4.40) ܣ
 

ࢌ  ൌ ,࢟ሺܲܣܶ ሻ (4.41)࢞
 

ݕ   0, ݔ ∈ ሼ0,1ሽ (4.42)

Where ݂ is the solution of: 

݊݅ܯ  ܶሺ݂ሻ ൌ  න ݏሻ݀ݏሺݐ
ೌ

 ∈ࣛ

 (4.43)

 

ݐ  ൌ ሾ1ݐ  ܤ ൬ ݂

݇  ݕ
൰


ሿ (4.44)
 

  ݂௪

∈టషሺሻ

െ  ݂௪

∈టశሺሻ

ൌ ݀௪ , ∀ ݅ ∈ ࣨ, ∀ ݓ ∈ ࣱ (4.45) 

 

 ݂ ൌ   ݂௪

௪∈ࣱ ∈ࣛ

, ∀ ܽ ∈ ࣛ (4.46) 
 

 ݂  ݔܯ ∀ ܽ ∈ ࣛଶ (4.47) 
 

 ݂௪  0 ∀ ܽ ൌ ሺ݅, ݆ሻ ∈ ࣛ, ∀ ݓ ൌ ሺ, ሻݍ ∈ ࣱ (4.48) 

Formulations 4.38 through 4.42 present the DNDP in the arc-node form. Similar to 

the previous formulations, the leader’s objective is to minimize the total travel time for 

the users. In addition, the leader seeks to minimize its investment cost in capacity (݃ሻ 

and new infrastructure (ܧݔሻ for new links. The constraint structure is very similar to 

that of the CNDP. The additional constraint group, 4.46, ensures that any proposed arc 

must be implemented before sending any flow through it. The big number ܯ in 4.46 can 

be the arc capacity. Constraint group 4.48 comprises of the non-negativity constraints for 

the arc flows. The DNDP for the arc-path formulation is presented in formulations 4.49 

through 4.58. 

 min
࢟
ܼሺࢌ, ,࢟ ሻ࢞ ൌ ߩ	 ∙ ሺݐ ݂, ሻݕ ⋅ ݂

∈

  ݃ሺݕሻ   ݔܧ
∈మ∈ሺభ  ଶሻ

 (4.49)

subject to: 

ݕ   ݕ  ,௨ݕ ∀ ܽ ∈ ଵ (4.50)ܣ
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 ݃ሺݕሻ   ݔܧ
∈మ

 (4.51) ܤ
 

ݕ   0, ݔ ∈ ሼ0,1ሽ (4.52)

Where ݂ is the solution of: 

݊݅ܯ  ܶሺ݂ሻ ൌ  න ݏሻ݀ݏሺݐ
ೌ

 ∈ࣛ

 (4.53)

 

ݐ  ൌ ሾ1ݐ  ܤ ൬ ݂

݇  ݕ
൰


ሿ (4.54)
 

  ݄௪
∈ோೢ

ൌ ݀௪, ∀ ݓ ∈ ࣱ (4.55)
 

 ݂ ൌ   ௪݄௪ߜ
∈ோೢ୵∈ࣱ

∀ ܽ ∈ ࣛ (4.56)
 

 ݂  ݔܯ ∀ ܽ ∈ ࣛଶ (4.57)
 

 
݄௪  0, ∀ ݎ ∈ ܴ௪, ∀ ݓ ∈ ࣱ 

݂  0 ∀ ܽ ൌ ሺ݅, ݆ሻ ∈ ࣛ 
(4.58)

Equations 4.49 through 4.58 present the arc-path formulation for the CNDP. The 

objective function 4.49 seeks to minimize the total travel time cost for the network users 

and the investment cost in capacity and infrastructure. Constraint 4.51 ensures that 

network improvements are feasible with respect to existing budget. The lower level 

problem is an arc-path traffic assignment problem on a network with location and 

capacity parameters ݕ ,ݔ respectively.  The effect on capacity is modeled via equation 

group 4.54. Constraint group 4.55 ensures that transportation demand is satisfied. The 

link definitional constraints are modeled by constraint group 4.56. Constraint group 4.57 

ensures that arcs will be implemented before sending any flow through them. Constraint 

group 4.58 sets the non-negativity conditions for arc flows and path flows. 

4.4 Multimodal Network Design Problem (MNDP) 

This section outlines the multimodal network design problem. In the multimodal 

network design there are different networks with limited interchange points. In the 
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transportation context the different networks are referred to as modal networks. These 

networks represent transportation modes such as car, rail, bus, bicycle, etc. The point 

where a user can switch from one network to another is referred to as a multimodal 

interchange. The leader of the network may be interested in decreasing the overall 

transportation costs by providing adequate infrastructure that enables a user to switch 

between networks at specific points. Multimodal interchanges should be placed such 

that their utilization is maximized and this will depend on the user preferences. 

Figure 25 presents an example of a multimodal network design scenario. The 

network leader or transportation authority seeks to minimize the total transportation time 

by promoting the use of combined transportation modes.  

 

Figure 25: Overview of a Stackelberg Game in Transportation 

The upper level has the ability to modify topology, set fares, capacity among 

others. Such network parameters define a network problem on which the users or 

followers will apply their strategies to reach their destination. This iterative procedure will 
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achieve the optimized setting of links and capacities that will minimize the total 

transportation cost, subject to budgetary and geographic constraints. 

The problem of transportation network design has been studied from different 

standpoints throughout the decades. Dantzig et al. [30] formulated a continuous network 

design problem using decomposition. In their approach a piece-wise approximation 

model was assumed and the model was formulated as a single-level system-optimal 

optimization model. A bi-level model using a special type of linear approximation was 

formulated by LeBlanc & Boyce [31]. In their approach, the bi-level non-linear problem is 

converted to a bi-level linear problem. In the resulting linear problem the objective 

functions of both the lower level and the upper level problems are joined in a convex 

combination and solved using the solution procedure proposed in Bard [27]. An 

improvement to the formulation of LeBlanc & Boyce [31] is presented by Ben-Ayed, 

Boyce, & Blair [32] where a more general shape of cost functions was assumed and 

linearized to allow the reformulation of the resulting problem in one of the first 

comprehensive bi-level programs for the transportation network design problem. 

However, a solution methodology was not presented at that time. 

An alternative view of the traffic equilibrium problem consists on formulating it as a 

system-optimal minimum cost flow model subject to equilibrium constraints. Such types 

of formulations are referred to as mathematical programming with equilibrium constraints 

(MPECs) and are re-formulated as variational inequality problems. Examples of network 

design models formulated as MPECs are presented in Friesz et al. [16]. In their 

approach, the authors proposed a simulated annealing algorithm to solve the resulting 

non-convex network design problem. Purely non-linear solution strategies are also 

suitable to solve certain classes of network design problems. A descend-type algorithm 

was proposed by Suh & Kim [33] . In their work, a comparative study of non-linear, bi-

level programming models applied to the equilibrium network design model problem was 
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performed. Also, heuristic approaches to the network design problem based on 

Wardrop’s equilibrium can be used to produce good solutions to the problem. An 

example of one of such heuristic is presented by Marcotte & Marquis [34].  

Details regarding historical developments of the traffic network equilibrium models 

can be found in Boyce [35]. Additional aspects regarding software applications 

implementing traffic equilibrium algorithms are also provided. A comprehensive review of 

the network design models is presented in Yang & Bell [36]. Additional reviews regarding 

transportation network equilibrium and traffic congestion modeling are presented in 

Boyce [37]. 

Recently, a growing interest for a more sustainable transportation system has led 

to the development of multimodal design network problems. García & Marín [38] 

proposed a non-linear, bi-level programming model for the location of urban multimodal 

interchange. The proposed model was formulated as a bi-level programming model. The 

demand was represented by a nested logit model including decisions of mode choice, 

multimodal interchange and type of parking. Their formulation considered parking 

demand implicitly by means of a penalty function that increased exponentially as parking 

usage approached its capacity. The lower level problem on their formulation 

corresponded to a deterministic user equilibrium assignment model. The bi-level 

programming was primarily solved by simulated annealing. A similar work by the same 

authors can be found in García & Marín [39]. 

A deterministic network equilibrium model for multiple modes was proposed by 

García & Marín [12]. Their work presents a detailed modeling of the demand through a 

nested logit model formulation. The multimodal network is modeled through the use of 

hyperpaths and unified equilibrium conditions were derived combining the two modal 

networks. The resulting mathematical problem with equilibrium constraint was 
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formulated using variational inequalities and solved using the column 

generation/simplicial decomposition method. 

Marín & García-Ródenas [14] considered the problem of location of infrastructure 

in urban rail network. Their objective was to maximize transit demand and minimize 

travel time. The problem was modeled initially as a non-linear integer bi-level program. 

The non-linearity arises from the use of a logit function for the modal split of the network 

users. To solve the resulting integer non-linear problem, a piecewise or polygonal 

function was used to represent the modal split. The resulting model was a linear integer 

and was modeled in GAMS,using CPLEX as the underlying solver. Patil & Ukkusuri [11] 

presented a network design problem formulation for a single-mode network with 

stochastic demand. Their work compared system optimal problem formulations against 

user optimal formulations. For their experimental cases they found that the difference 

between the two formulations does not exceed five percent. This finding allows the 

formulation of the network design problem without the user equilibrium constraints, 

making it more tractable. The authors extended the network design problem for the case 

of stochastic demand and solved the resulting non-linear constraint problem by 

introducing a new set of penalty functions. Alternative approaches to bi-level 

programming models have been considered. Farhan & Murray [40] formulated the 

problem of locating multimodal interchanges as a deterministic facility location problem 

from a system optimal viewpoint. Their approach was not based on traffic assignment; 

instead the authors modeled the preferences for the multimodal interchange location 

based on proximity to the demand. They used an exponential shaped function to 

represent a decay of preference for park-and-ride based on distance to populated areas.  

In this work, the problem of locating infrastructure in the context of multiple 

transportation networks is considered. The initial model is a non-linear integer bi-level 

programming model. The model considers modal split and interchange selection by 
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means of logit functions. As part of the solution approach the non-linearity of the network 

will be addressed by an interval-free polygonal approximation of the logit functions. This 

will enable the solution method to have a linear induced lower level model while the 

binary variables remain in the upper level model.  

This section presents an outline of the multimodal assignment model to be used as 

the lower level problem. The basis for the model is based on a model proposed by Boile 

& Spasovic [9] and slightly adapted to accommodate the model requirements for the 

current research. In the example below, the notation ܶ
்  is introduced to denote the 

number of transit trips (e.g. bus, rail, intermodal, etc.) taking place, the O-D pair ݓ. For a 

multimodal model, two different types of links have to be considered; roadway links and 

person links. For person link units, capacity and travel time are given in number of trips 

such as rail, sidewalks and bike lanes. Roadway links will handle buses and vehicles. 

For rail and bus service the quality of service can be reflected in the cost function and 

the preference function. The multimodal assignment problem can be formulated as 

follows: 

,ሺ݂ܮ	݊݅ܯ  ்ܶሻ ൌ  න ݏሻ݀ݏሺݐ   න
1
ߚ
ln ൬

ݏ
݀௪ െ ݏ

 ൰்ߙ ݏ݀
்ೢ


	

௪∈ࣱ

ೌ

∈ࣛ

 (4.59) 

 

 ݀௪ ൌ  ݄௪
∈ோೡ

 ݃௪, ∀ ݓ ∈ ࣱ ; (4.60) 
 

 ௪ܶ
் ൌ  ݄௪

∈ோ

ൌ  ݄௪
∈ோ

  ݄௪
∈ோೖ

, ∀ ݓ ∈ ࣱ; (4.61) 
 

 ݂ ൌ
1
ߛ
  ௪݄௪ߜ

∈ோೡ௪∈ࣱ


1
ߛ
  ௪݄௪ߜ

∈ோ௪∈ࣱ

, ∀	ܽ ∈  (4.62) ்ܣ	⋃௩ܣ

 

 ݂ ൌ   ௪݄௪ߜ
∈ோ௪∈ࣱ

, ∀ ܽ ∈ ⋃ܣ  ௪ (4.63)ܣ

 

 ݂  ߢ ∀ ܽ ∈ ⋃௩ܣ  (4.64) ்ܣ
 

 ݂  ߢ ∀ ܽ ∈ ⋃ܣ  ௪ (4.65)ܣ
 

 ݄௪  0 ∀ ݓ ∈ ࣱ,∀ ݎ ∈ ܴ, ∀ ݉ ∈  (4.66) ܯ
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Equation 4.59 has no physical interpretation other than guiding the mathematical 

programming model to achieve the user equilibrium conditions at optimality. The first 

term could be thought as the cumulative link cost which increases with the flow. On the 

other hand, the second term is the decrease in link costs due to the shift to transit mode. 

Constraints 4.60 and 4.61 are travel demand satisfaction constraints based on the modal 

split. Constraints 4.62 and 4.63 are link-flow definition constraints and 4.64 and 4.65 are 

upper bound constraints for link capacities, and constrain group 4.66  is the non-

negativity of route flows. The mode choice is obtained through the following logit model: 

 ௪ܶ
௩ ൌ ௪ܶ

݁ିሺఈೡାఉீೢ
ೡ ሻ

݁ିሺఈೡାఉீೢೡ ሻ  ݁ି൫ఈାఉீೢ
൯

, ∀ ݓ ∈ ࣱ  (4.67) 

where ߙ is the alternative specific constant and ߚ is the coefficient of the generalized 

cost (GC) for the corresponding mode/O-D pair. 
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CHAPTER 5: SOLUTION OF THE PROPOSED NETWORK DESIGN PROBLEMS  

The solution of the bi-level network design model can be performed by following 

two major solution principles, implicit enumeration and reformulation [28].  

In reformulation approaches, the bi-level programming model is reformulated as 

single level program and the lower level model is replaced by its optimality conditions. 

The resulting single level program is referred to as a mathematical program with 

equilibrium constraint (MPEC) and it is a subject of continuous research in the 

transportation research arena [26]. The work of Gao et al. [10] is an example of implicit 

enumeration using Generalized Benders Decomposition (GBD). 

The formulation presented in this dissertation corresponds to a mixed network 

design problem, being deterministic and user-optimal with asymmetric link cost functions 

for the fixed demand case. The problems are solved via reformulation of the bi-level 

program into a single-level mathematical program with equilibrium constraints (MPEC). 

The non-linear behaviors derived from the traffic equilibrium problem are represented by 

piece-wise approximations using a series of max-affine functions following the procedure 

introduced in Chapter 3. The MPEC bilinear terms are also linearized by means of binary 

variables. The results are compared with those of well-known network problems in the 

literature of transportation network design such as the Friesz-Harker, and G1. The 

solution approach is summarized in Figure 26. 
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Figure 26: Summary of Solution Approach 

5.1 Reformulation Approach 

In this section, the optimality conditions for both, the arc-path and the arc-node 

version of the TAP are derived. Such optimality conditions are the first step to obtain the 

target single-level reformulation of the different network design problems. 

5.1.1 Optimality Conditions for TAP 

Recall the arc-path formulation expressed in Equations 2.20 through 2.22. The 

problem corresponds to a deterministic traffic equilibrium problem. The arc-path 

formulation is presented again for clarity purposes. 

݊݅ܯ  ܶሺ݂ሻ ൌ  න ݏሻ݀ݏሺݐ
ೌ

∈ࣛ

 (5.1)

 

  ݄௪
∈ோೢ

ൌ ݀௪ , ∀ ݓ ∈ ࣱ (5.2) 

 

   ௪݄௪ߜ ൌ ݂, ∀ ܽ ∈ ࣛ
∈ோೢ௪ ∈ࣱ

 (5.3) 

The first order optimality conditions can be obtained by relaxing the demand 

constraints, in 5.2, and formulating the corresponding Lagrangean function. Let ߨ௪ be 

the Lagrange multipliers for constrain set 5.2. There are |ࣱ| constraints corresponding 

to each of the O-D pairs. The objective function depends of the link flows ( ݂) which at 

the same time depend on the route flows (݄௪). 

Original 
Problem: 

Bi-Level Non-
Linear Mixed 

Integer

Reformulation: 
Single-Level Non-

Linear Mixed Integer

Linearization: 
Single-Level 
Linear Mixed 

Integer

Solution with 
MIP Solver:

CPLEX
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,ࢎሺܮ  ሻ࣊ ൌ ܶ൫݂ሺ݄ሻ൯   ௪ߨ ቌ݀௪ െ  ݄௪
∈ோೢ

ቍ
௪∈ࣱ

 (5.4) 

The stationary point conditions for the Lagrangean ܮሺࢎ,  ሻ are be stated by 5.5࣊

through 5.9 [4]. 

 ݄௪
,ࢎሺܮ߲ ሻ࣊

߲݄௪
ൌ 0, ∀ ݎ ∈ ܴ௪, ∀ ݓ ∈ ࣱ (5.5) 

 

 
,ࢎሺܮ߲ ሻ࣊

߲݄௪
 0, ∀ ݎ ∈ ܴ௪, ∀ ݓ ∈ ࣱ (5.6) 

 

 
,ࢎሺܮ߲ ሻ࣊

௪ߨ߲
ൌ 0, ∀ ݎ ∈ ܴ௪, ∀ ݓ ∈ ࣱ (5.7) 

 

 ݄௪  0 ∀ ݎ ∈ ܴ௪, ∀ ݓ ∈ ࣱ (5.8) 
 

 
߲ܶሺ݂ሺ݄ሻሻ
߲݄௪

ൌ 
߲ܶ
߲ ݂

߲ ݂

߲݄௪∈

ሺ݂ሺ݄ሻሻ (5.9) 

The definitional constraint for the link flows and path flows can be expanded  as 

presented in 5.10. 

 ݂ ൌ ଵଵ݄ଵଵߜ  ଵଶ݄ଵଶߜ   ଶଵ݄ଶଵା⋯ (5.10)ߜ⋯ଵ|ோభ|݄ଵ|ோభ|ାߜ⋯

Any derivative with respect to ݄௪ will be zero except for the term ߜ௪. The term 

߲ܶ/߲ ݂ represents the derivative of the integral of the cost function. In this case, this will 

only be the cost function ݐሺ ݂ሻ. In this case the sum over all the links gives the path cost 

since the term ߜ௪ is a link-path indicator. 

 
߲ܶ
߲ ݂

߲ ݂

߲݄௪∈

൫݂ሺ݄ሻ൯ ൌ  ሺݐ௪ߜ ݂ሻ
∈

ൌ ܿ௪ (5.11) 

The derivative of the dualized constraint will be zero except for the term involving 

݄௪ which results in a value of െߨ௪. The extended derivation of the equilibrium 

conditions for equation 5.5 are expressed in 5.12. 
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,ࢎሺܮ߲ ሻ࣊

߲݄௪
ൌ

߲
߲݄௪

ቀܶ൫݂ሺ݄ሻ൯ቁ 
߲

߲݄௪
ቌ ௪ߨ ቌ݀௪ െ  ݄௪	

∈ோೢ

ቍ
௪∈ࣱ

ቍ 

 

,ࢎሺܮ߲ ሻ࣊

߲݄௪
ൌ

߲
߲݄௪

ቌܶ൫݂ሺ݄ሻ൯   ௪ߨ ቌ݀௪ െ  ݄௪	
∈ோೢ

ቍ
௪∈ࣱ

ቍ 

 

,ࢎሺܮ߲ ሻ࣊

߲݄௪
ൌ  ሺݐ௪ߜ ݂ሻ

∈	

െ  ௪ߨ

 

,ࢎሺܮ߲ ሻ࣊

߲݄௪
ൌ ܿ௪ െ  ௪ߨ

(5.12) 

The equilibrium expression based on the first-order condition for the arc-path 

formulation are shown below in 5.13 through 5.20. 

 ݄௪
,ࢎሺܮ߲ ሻ࣊

߲݄௪
ൌ 0,⇒ ݄௪ሺܿ௪ െ ௪ሻߨ ൌ 0, ∀ ݎ ∈ ܴ௪, ݓ	∀ ∈ ࣱ (5.13) 

 

 
,ࢎሺܮ߲ ሻ࣊

߲݄௪
 0 ⇒ ሺܿ௪ െ ௪ሻߨ  0, ∀ ݎ ∈ ܴ௪, ∀ ݓ ∈ ࣱ (5.14) 

 

 
,ࢎሺܮ߲ ሻ࣊

௪ߨ߲
ൌ 0 ⇒  ݄௪

∈ோೢ

ൌ ݀௪, ∀ ݎ ∈ ܴ௪, ∀ ݓ ∈ ࣱ (5.15) 

 

 ݄௪  0 ∀ ݎ ∈ ܴ௪, ∀ ݓ ∈ ࣱ (5.16) 

In a similar manner the optimality conditions for the arc-node formulation can be 

obtained. Equations 5.10 through 5.21 present the basic arc-node formulation of TAP. 

݊݅ܯ  ܶሺ݂ሻ ൌ  න ݏሻ݀ݏሺݐ
ೌ

∈ࣛ

 (5.17)

 

  ݂௪

∈టషሺሻ

െ  ݂௪

∈టశሺሻ

ൌ ݀௪ , ∀ ݅ ∈ ࣨ, ∀ ݓ ∈ ࣱ (5.18) 

 

 ݂ ൌ   ݂௪

௪∈ࣱ∈ࣛ

, ∀ ܽ ∈ ࣛ (5.19) 
 

 ݂௪  0 ∀ ܽ ൌ ሺ݅, ݆ሻ ∈ ࣛ, ∀ ݓ ൌ ሺ, ሻݍ ∈ ࣱ (5.20) 
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The flow conservation constraint is dualized to obtain the first-order conditions as 

presented in 5.21. 

,ࢌሺܮ  ሻ࣊ ൌ ܶሺࢌ௪ሻ   ߨ௪ ቌ  ݂௪

∈టషሺሻ

െ  ݂௪

∈టశሺሻ

ቍ
∈ࣨ௪∈ࣱ

 (5.21) 

The first order conditions for the arc-node formulation of TAP are summarized in 

equations 5.22 to 5.25 [4]. 

 ݂௪
∑ሺܮ߲ ,௪ࢌ ሻ௪∈ௐ࣊

߲ ݂௪
ൌ 0 ⇒ ݂௪൫ݐ൫ ݂൯  ௪ߨ െ ௪൯ߨ ൌ 0 

∀ ሺ݅, ݆ሻ ∈ ࣛ, ሺ, ሻݍ ∈ ࣱ 
(5.22) 

 

 
∑ሺܮ߲ ,௪ࢌ ሻ௪∈ௐ࣊

߲ ݂௪
 0 ⇒ ൫ݐ ݂൯  ௪ߨ െ ௪ߨ  0 

∀ ሺ݅, ݆ሻ ∈ ,ሺݓ,ࣛ ሻݍ ∈ ࣱ 
(5.23) 

 

 

∑ሺܮ߲ ,௪ࢌ 	ሻ௪∈ௐ࣊

௪ߨ߲
ൌ 0 ⇒  ݂௪

∈టషሺሻ

െ  ݂௪

∈టశሺሻ

ൌ ݀௪	 

∀ ݅ ∈ ࣨ, ∀ ݓ ∈ ࣱ 

(5.24) 

  

 ݂௪  0 ∀ ሺ݅, ݆ሻ ∈ ݓ,ࣛ ∈ ࣱ (5.25) 

5.1.2 Linearization of Equilibrium Conditions 

The equilibrium conditions for both problems are expressed as non-linear terms. 

Such constraints can be linearized using binary variables. For the arc-path formulation 

the equilibrium conditions are presented in 5.26. 

 

 

݄௪ሺܿ௪ െ ௪ሻߨ ൌ 0, ∀ ݎ ∈ ܴ௪, ∀ ݓ ∈ ࣱ 
 

ܿ௪ െ ௪ߨ  0, ∀ ݎ ∈ ܴ௪, ∀ ݓ ∈ ࣱ 
 

 ݄௪
∈ோೢ

ൌ ݀, ݓ	∀ ∈ ࣱ 

 

݄௪  0, ∀ ݎ ∈ ܴ௪, ∀ ݓ ∈ ࣱ 
 

௪ߨ  0, ݓ ∈ ࣱ 

(5.26) 
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An additional variable ݖ௪ is defined as 1 if path ݄௪ is used in the equilibrium, 0 

otherwise. The new equilibrium conditions for the arc-path formulation are presented in 

5.27. 

 

݄௪  ௪ݖଵܯ ൌ 0, ∀ ݎ ∈ ܴ௪, ∀ ݓ ∈ ࣱ 
 

ܿ௪ െ ௪ߨ  ሺ1 െ ,ଶܯ௪ሻݖ ∀ ݎ ∈ ܴ௪, ∀ ݓ ∈ ࣱ 
 

ܿ௪ െ ௪ߨ  0, ݎ	∀ ∈ ܴ௪, ݓ	∀ ∈ ࣱ 
 

 ݄௪
∈ோೢ

ൌ ݀௪, ݓ	∀ ∈ ࣱ 

 

݄௪  0, ݎ	∀ ∈ ܴ௪, ݓ	∀ ∈ ࣱ 
 

௪ߨ  0, ∀ ݓ ∈ ࣱ 
 

௪ݖ ∈ ሼ0,1ሽ 

(5.27) 

The equilibrium conditions for the arc-node formulation can be linearized in a 

similar way. The original non-linear equilibrium conditions are presented in 5.28. 

 

݂௪ሺݐ൫ ݂൯  ௪ߨ െ ௪ሻߨ ൌ 0 , ∀ ሺ݅, ݆ሻ ∈ ࣛ, ݓ	∀ ∈ ࣱ 
 

൫ݐ ݂൯  ௪ߨ െ ௪ߨ  0 , ∀ ሺ݅, ݆ሻ ∈ ࣛ, ∀ ݓ ∈ ࣱ 
 

 ݂௪

∈టషሺሻ

െ  ݂௪

∈టశሺሻ

ൌ ݀௪	, ∀	݅ ∈ ࣨ, ݓ	∀ ∈ ࣱ 

 

݂௪  0, ௪ߨ  0, ∀ ሺ݅, ݆ሻ ∈ ࣛ, ∀ ݓ ∈ ࣱ 

(5.28) 

With the introduction of the binary variable ݖ௪ defined as 1 if link ሺ݅, ݆ሻ ∈ ࣛ is 

used in the equilibrium solution, 0 otherwise.  The linearized equilibrium conditions are 

re-written in 5.29. 

 

݂௪  ௪ݖଵܯ , ∀ ሺ݅, ݆ሻ ∈ ࣛ, ∀ ݓ ∈ ࣱ 
 

൫ݐ ݂൯  ௪ߨ െ ௪ߨ  ൫1 െ ,ଶܯ௪൯ݖ ∀ ሺ݅, ݆ሻ ∈ ࣛ, ݓ	∀ ∈ ࣱ 
 

൫ݐ ݂൯  ௪ߨ െ ௪ߨ  0	, ∀	ሺ݅, ݆ሻ ∈ ࣛ, ݓ	∀ ∈ ࣱ 
 

 ݂௪

∈టషሺሻ

െ  ݂௪

∈టశሺሻ

ൌ ݀௪	, ∀	݅ ∈ ࣨ, ݓ	∀ ∈ ࣱ 

 

݂௪  0, ௪ߨ  0, ∀ ሺ݅, ݆ሻ ∈ ࣛ, ∀ ݓ ∈ ࣱ 
 

௪ݖ ∈ ሼ0,1ሽ 

(5.29) 
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5.1.3 Reformulation of Objective Functions 

The objective function of TAP seeks to minimize the total transportation time for all 

the network users. The implication of congestion modeling is that the unit cost of an arc 

is a function of a decision variable (flow) which is multiplied by another decision variable 

(flow). This poses additional challenges for the non-linearity of the objective function 

even in cases when the arc cost function can be linearized. 

To cope with this situation, the optimality conditions can be used to re-formulate 

the objective function in way that does not involve a product of two decision variables. In 

the arc-path formulation the total travel time in the network is shown in 5.30. 

 ܶ ൌ  ሺݐ ݂ሻ ݂

∈ࣛ

 (5.30) 

At the equilibrium, the transportation demands are satisfied݀௪, and the path cost 

for a given O-D pair is minimum and the same. Also, the only route flows ݄௪ greater than 

0 are those with route costs equal to the equilibrium cost ߨ௪. The total travel time can be 

re-written as 5.31. 

 ܶ ൌ   ݄௪ߨ௪
 ∈ோೢ௪∈ࣱ

 (5.31) 

A similar concept can be applied to the arc-node formulation, taking into 

consideration that the O-D pair cost is the difference in potentials between the origin and 

the destination nodes. 

 ܶ ൌ  ݀௪൫ߨ௪ െ ௪൯ߨ
௪∈ࣱ

 (5.32) 

5.1.4 Linearized CNDP 

The linearized version of the CNDP corresponds to network capacity modeling. 

The resulting model using the arc-path formulation is presented in 5.33 through 5.43. 
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 min
࢟
ܼሺࢌ, ሻ࢟ ൌ  ߩ ∙ ௪݀௪ߨ   ݃ሺݕሻ

∈భ௪∈ࣱ

 (5.33)

subject to: 

ݐ   ߙ  ߚ ݂  ,ݕߠ ∀ ݃ ∈ ܩ ∀ ܽ ∈ ࣛ (5.34) 
 

 ݃ሺݕሻ  (5.35) ܤ
 

ݕ   ݕ  ,௨ݕ ∀ ܽ ∈ ଵ (5.36)ܣ
 

 ݄௪  ௪ݖଵܯ ∀ ݎ ∈ ܴ௪, ∀ ݓ ∈ ࣱ (5.37)
 

 ܿ௪ െ ௪ߨ  ሺ1 െ ,ଶܯ௪ሻݖ ∀ ݎ ∈ ܴ௪, ∀ ݓ ∈ ࣱ (5.38)
 

 ܿ௪ െ ௪ߨ  0, ∀ ݎ ∈ ܴ௪, ∀ ݓ ∈ ࣱ (5.39)
 

  ݄௪
∈ோೢ

ൌ ݀௪, ∀ ݓ ∈ ࣱ (5.40)
 

 ݂ ൌ   ௪݄௪ߜ
∈ோೢ୵∈ࣱ

∀ ܽ ∈ ࣛ (5.41)
 

 ܿ௪ ൌ ߜ௪ݐ
∈

∀ ݎ ∈ ܴ௪, ∀ ݓ ∈ ࣱ (5.42)
 

 
݄௪  0, ∀ ݎ ∈ ܴ௪, ∀ ݓ ∈ ࣱ,

௪ߨ  0, ݓ ∈ ࣱ
௪ݖ ∈ ሼ0,1ሽ 

(5.43)

The objective function (5.33) seeks to minimize the total travel time in the network. 

The parameter ߩ can be thought as the value of time coefficient. It allows converting the 

network total travel time to a utility value or cost. The second term of the objective is 

related to the capacity investments. Constraint group 5.34 represents the linearized flow-

capacity surface. There are |ܩ| functions per arc ܽ, the arc travel time is denoted by ݐ. 

Note how the travel time estimate is he maximum ݐ for all the ܩ functions for link ܽ. 

Constraint group 5.35 ensures that the capacity improvements are within the available 

budget. Constraint group 5.36 set the search region or bounds on the additional capacity 

for arc ܽ. Constraint group 5.37 is part of the linearized equilibrium conditions; it states 

that the flow on a route is zero if the route is not in use. The big number ܯଵ is the 

minimum between the demand for OD pair ݓ or the route capacity (minimum capacity 

for ell the arcs in the route). Constraint group 5.38 is part of the equilibrium conditions 
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and states that when the path ݄௪  is used the path cost should be equal to the 

equilibrium cost or greater if the path is not used. Constraint group 5.39 ensures that the 

path cost is always greater or equal to the equilibrium path cost for OD pair ݓ.Constraint 

group 5.40 ensures that the transportation demand is satisfied. The arc-flow definitional 

constraints are given by 5.41 which state that the arc flow is sum of the flows of the 

paths using that arc. Similarly, the path cost definitional constraints are given by 

constraint group 5.42 stating that the path cost is the sum of the cost of its arcs. Non 

negativity constraints and binary variables specifications are given by 5.43. 

 Similarly, the CNDP using the arc-node formulation is presented in 4.60 through 

5.53. 

 min
࢟
ܼሺࢌ, ሻ࢟ ൌ ߩ  ݀௪൫ߨ௪ െ ௪൯ߨ

௪∈ࣱ

  ݃ሺݕሻ
∈భ

 (5.44)

subject to: 

ݐ   ߙ  ߚ ݂  ,ݕߠ ∀ ݃ ∈ ܩ ∀ ܽ ∈ ࣛ (5.45) 
 

 ݃ሺݕሻ  (5.46) ܤ
 

ݕ   ݕ  ,௨ݕ ∀ ܽ ∈ ଵ (5.47)ܣ
 

 ݂௪  ௪ݖଵܯ , ∀ ሺ݅, ݆ሻ ∈ ࣛ, ∀ ݓ ∈ ࣱ (5.48)
 

൫ݐ  ݂൯  ௪ߨ െ ௪ߨ  ൫1 െ ,ଶܯ௪൯ݖ ∀ ሺ݅, ݆ሻ ∈ ࣛ, ݓ	∀ ∈ ࣱ (5.49)
 

൫ݐ  ݂൯  ௪ߨ െ ௪ߨ  0 , ∀ ሺ݅, ݆ሻ ∈ ࣛ, ∀ ݓ ∈ ࣱ (5.50)
 

  ݂௪

టషሺሻ

െ  ݂௪

టశሺሻ

ൌ ݀௪ , ∀ ݅ ∈ ࣨ, ∀ ݓ ∈ ࣱ (5.51) 

 

 ݂ ൌ   ݂௪

௪∈ࣱ ∈ࣛ

, ∀ ܽ ∈ ࣛ (5.52) 
 

 
݂௪  0 ∀ ܽ ൌ ሺ݅, ݆ሻ ∈ ࣛ, ∀ ݓ ൌ ሺ, ሻݍ ∈ ࣱ 

௪ߨ  0, ∀ ሺ݅, ݆ሻ ∈ ࣛ, ∀ ݓ ∈ ࣱ
௪ݖ ∈ ሼ0,1ሽ 

(5.53) 

 

The objective function seeks to minimize the total transportation cost and the 

capacity investment cost. Constraint group 5.45 represents the linearized flow-capacity 

surface. Budget constraints are represented by 5.46. Upper and lower bounds on the 
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capacity improvement are handled by constraint group 5.47. Constraint group 5.48 

ensures that only selected arcs will have a positive O-D flow. Constraint group 5.49 is 

part of the equilibrium condition and states that when an arc has a positive O-D flow the 

difference in potentials between its terminal nodes is equal to the arc cost. Constraint 

group 5.50 guarantees that the arc cost is always greater than the difference in potential 

between its terminal nodes so that the equilibrium condition holds. Constraint group 5.51 

deals with flow-conservation conditions and demand satisfaction.  The arc flow 

definitional constraints are given by constraint group 5.52 which states that the arc flow 

is the sum of the arc flows due to the different O-D pairs ݓ. Non-negativity constraints 

and binary variable definitions are given by 5.53. 

5.1.5 Linearized DNDP 

The linearized version of the DNDP is similar to the previously defined 

formulations with the addition of the arc creation binary variable. The arc-path 

formulation for the DNDP is given in 5.54 through 5.65 

 min
࢟
ܼሺࢌ, ሻ࢟ ൌ  ∙ ߩ ∙ ௪݀௪ߨ

௪∈ࣱ

  ݃ሺݕሻ   ݔܧ
∈మ∈ሺభ  ଶሻ

 (5.54)

Subject to, 

ݐ   ߙ  ߚ ݂  ,ݕߠ ∀ ݃ ∈ ܩ ∀ ܽ ∈ ࣛ (5.55) 
 

 ݃ሺݕሻ   ݔܧ
∈మ

 (5.56) ܤ
 

ݕ   ݕ  ,௨ݕ ∀ ܽ ∈ ଵ (5.57)ܣ
 

 ݄௪  ௪ݖଵܯ ∀ ݎ ∈ ܴ௪, ∀ ݓ ∈ ࣱ (5.58)
 

 ܿ௪ െ ௪ߨ  ሺ1 െ ,ଶܯ௪ሻݖ ∀ ݎ ∈ ܴ௪, ∀ ݓ ∈ ࣱ (5.59)
 

 ܿ௪ െ ௪ߨ  0, ∀ ݎ ∈ ܴ௪, ∀ ݓ ∈ ࣱ (5.60)
 

  ݄௪
∈ோೢ

ൌ ݀௪, ∀ ݓ ∈ ࣱ (5.61)
 

 ݂ ൌ   ௪݄௪ߜ
∈ோೢ୵∈ࣱ

∀ ܽ ∈ ࣛ (5.62)
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 ܿ௪ ൌ ߜ௪ݐ
∈

∀ ݎ ∈ ܴ௪, ∀ ݓ ∈ ࣱ (5.63)
 

 ݂  ݔଷܯ ∀ ܽ ∈ ࣛ (5.64)
 

 

݄௪  0, ∀ ݎ ∈ ܴ௪, ∀ ݓ ∈ ࣱ,
௪ߨ  0, ݓ ∈ ࣱ

௪ݖ ∈ ሼ0,1ሽ 
ݔ ∈ ሼ0,1ሽ 

(5.65)

The objective function seeks to minimize the leader’s investment cost and the total 

travel time for network users. The parameter ߩ transforms the travel time units into 

monetary costs. The investments are composed by capacity and location of new 

infrastructure. The binary variable ݔ determines whether the new arc ܽ ∈  ଶ isܣ

implemented. Constraint 5.55 represents the linearized flow-capacity surface. Constraint 

5.56 ensures that the network improvement does not exceed the available budget. 

Constraint group 5.57 establishes the bounds of the capacity improvements. Constraint 

group 5.58 is an equilibrium condition that guarantees that the only the selected paths 

can have a positive flow. Constraint group 5.59 ensures that path costs are equal to the 

equilibrium costs when the paths carry a positive flow. Constraint group 5.60 ensures 

that the path cost is grater or equal than the equilibrium cost. Constraint group 5.61 

deals with demand satisfaction. Link definitional expressions are given by constraint 

group 5.62. 5.63 state that the path cost is the sum of the cost of its arcs. For arc 

addition, constraint group 5.64 establishes that only implemented links can have positive 

flow. Non-negativity constraints and binary variable definitions are given by constraint 

group 5.65. 

The arc-node formulation for the linearized DNDP is presented in 5.66 through 

5.76. 

 min
࢟
ܼሺࢌ, ሻ࢟ ൌ ߩ  ݀௪൫ߨ௪ െ ௪൯ߨ

௪∈ࣱ

  ݃ሺݕሻ   ݔܧ
∈మ∈ሺభ  ଶሻ

 (5.66)
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subject to: 

ݐ   ߙ  ߚ ݂  ,ݕߠ ∀ ݃ ∈ ܩ ∀ ܽ ∈ ࣛ (5.67) 
 

 ݃ሺݕሻ   ݔܧ
∈మ

 (5.68) ܤ
 

ݕ   ݕ  ,௨ݕ ∀ ܽ ∈ ଵ (5.69)ܣ
 

 ݂௪  ௪ݖଵܯ , ∀ ሺ݅, ݆ሻ ∈ ࣛ, ∀ ݓ ∈ ࣱ (5.70)
 

൫ݐ  ݂൯  ௪ߨ െ ௪ߨ  ൫1 െ ,ଶܯ௪൯ݖ ∀ ሺ݅, ݆ሻ ∈ ࣛ, ݓ	∀ ∈ ࣱ (5.71)
 

൫ݐ  ݂൯  ௪ߨ െ ௪ߨ  0 , ∀ ሺ݅, ݆ሻ ∈ ࣛ, ∀ ݓ ∈ ࣱ (5.72)
 

  ݂௪

టషሺሻ

െ  ݂௪

టశሺሻ

ൌ ݀௪ , ∀ ݅ ∈ ࣨ, ∀ ݓ ∈ ࣱ (5.73) 

 

 ݂ ൌ   ݂௪

௪∈ࣱ ∈ࣛ

, ∀ ܽ ∈ ࣛ (5.74) 
 

 ݂  ,ݔଷܯ ∀ ܽ ∈ ࣛ (5.75) 
 

 

݂௪  0 ∀ ܽ ൌ ሺ݅, ݆ሻ ∈ ࣛ, ∀ ݓ ൌ ሺ, ሻݍ ∈ ࣱ 
௪ߨ  0, ∀ ሺ݅, ݆ሻ ∈ ࣛ, ∀ ݓ ∈ ࣱ

௪ݖ ∈ ሼ0,1ሽ 
ݔ ∈ ሼ0,1ሽ 

(5.76) 

In the preceding formulation the objective function seeks to minimize the total 

travel time and the investment cost in capacity and new infrastructure. The travel time 

between any origin  and destination ݍ is given by the difference in their node potentials. 

This is equivalent to the equilibrium path cost in the arc-path formulation. The 

linearization of the flow-capacity surface is given by constraint group 5.67. Budget 

constraints are represented by 5.68. The bound on the capacity improvements are given 

by 5.69. Constraint group 5.70 represents the equilibrium conditions for O-D flow 

variables stating that only selected arcs can carry positive O-D flow. Constraint group 

5.71 ensures that at the equilibrium conditions the difference in node potential between 

arc terminals is equal to the arc cost if the arc carries a positive flow. Constraint group 

5.72 guarantees the consistency between cost and O-D flow for each arc. O-D flow 

conservation and demand satisfaction are handled by constraint group 5.73. Link flow 

definition constraints are given by 5.74. Constraint group 5.75 ensures that new links are 
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implemented before carrying any positive flow. Non-negativity constraints and binary 

variable definitions are given by constraint group 5.76. 

5.2 Computational Approach 

The computational framework was designed in Visual C#.NET. The LP/MIP solver 

of choice was CPLEX. Both solvers are accessed through academic licenses. For the 

non-linear benchmarks IPOPT was used. At early stages this research accessed solver 

via C#.NET. Later in the development it was decided to use GAMS to facilitate data 

input/output processes. 

Additional computational tools employed in this research are QuickGraph which is 

an open-source library and data structures to handle graphs and graphs algorithms. In 

addition, several functions from the CSLapak library were compiled and made available 

as a library for the project. CSLapak is library for linear algebra manipulation translated 

from the Fortan library LAPACK to C#.NET. A graphical summary of the computational 

approach is presented in Figure 27.  

The network problem or instance was set up in MS Excel. Also, a database to 

store the experiment data was created in MS Access. The database contained 

experiment parameters and methods to be tested on the problem instances.  

The experiment configuration was created and stored in the database. Also the 

network instance was read from MS Excel and the corresponding network objects were 

generated. Once the input was processed all the linearization tests were performed in 

accordance to the given experiment parameters. 
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Figure 27: Overview of the Computational Approach 

Note that the same model can be solved multiple times to test for the best subset 

of linearization parameters. The application then writes the GAMS code for the network 

problem providing instructions to produce a GDX dump file. The generated GAMS file is 

run from the main application via shell (DOS mode). Once the problem is solved, the 

application reads the GAMS output and transforms it into the desired data structure. The 

results are stored in the database via ADO.NET. 

5.3 Computational Results for Capacity and Location Decisions 

This section presents the computational results for the methods proposed in this 

dissertation for the capacity and location of infrastructure in unimodal networks. 

The Friesz-Harker network was used to calibrate the models and algorithms. First, 

the linearization procedure parameters were adjusted to provide a good fit in general for 
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all arc costs, including those with low capacity expansion ratios (potential bottlenecks). 

For the CNDP, the non-linear version of the problem was solved first (NLP-Friesz). The 

NLP-Friesz solution was set as the target for performance evaluation of the linearization 

parameters. The problem is linearized and solved subject to the capacity values of the 

Modular in core Nonlinear System (MINOS) solution [16] [18]. Results from the Friesz-

Harker network have been reported in the literature for more than two decades. The 

most accepted benchmarks are Equilibrium Decomposed Optimization (EDO), Hook and 

Jeeves (H-J) and Iterative optimization-assignment algorithm (IOA). CNDP solutions for 

the congested scenario are presented in Table 6. The baseline scenario for comparison 

is denoted as NLP-Friesz and it was solved using the non-linear solver IPOPT. 

This step was used to select the best set of parameters for the linearization 

algorithm. The linearized problem is then solved using an LP-MIP solver (CPLEX) to 

obtain the capacity improvements. An additional step to obtain the equilibrium flows was 

performed using the obtained capacity as inputs to the NLP-Friesz problem.  An 

overview of the evaluation approach is presented in Figure 28. 

 

Figure 28: Overview of Performance Evaluation Approach 
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The best subset of parameter was chosen based on the minimum calibration 

difference and number of functions across all the network scenarios 

Table 6: Constrained Calibration Test Problem for the Congested Scenario 

NLP-Friesz MINOS H-J EDO IOA 

4.61 4.61 5.4 4.88 4.55 

9.86 9.86 8.18 8.59 10.65 

7.71 7.71 8.1 7.48 6.43 

0.26 0 

0.59 0.59 0.9 0.85 0.59 

1.32 1.32 3.9 1.54 1.32 

19.14 19.14 8.1 0.26 19.32 

0.85 0.85 8.4 12.52 0.78 

557.144 557.14 557.22 540.74 556.61 

The best subset of a parameter was chosen based on the minimum calibration 

difference and number of functions across all the network scenarios. The selected 

linearization settings were 10 functions, with 0.5 distribution factor (equal number of 

linear functions for both undersaturated and oversaturated regions) and a saturation 

factor of 1.1. This means that the undersaturated region was reduced and is 

approximated with five functions while the oversaturated region was expanded and is 

approximated with five functions. These results are consistent with the modeling logic 

since most of the optimal solutions are expected to be in the undersaturated region. A 

comparison of the calibration results is presented inTable 7. 
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Figure 29: Comparison of Objective Functions for the Constrained Network 
Problem 

The numerical results for the MIP solution for the constrained design problem are 

presented in Table 7. It can be observed that the maximum difference occurs in the low 

congestion scenario (6%). Wang at al. [18] performed similar experiments with a grid-

type of partition using binary variables to model flow-capacity surface using a piece-wise 

linear representation. Such approach has the advantage of having a high level of 

accuracy at the expense of a computationally intensive model. For example, in [18] a 

total of 2338 variables including 336 binary variables were used to model the Friesz-

Harker network. In the proposed approach, the same network was modeled using 64 

variables of which 15 were binary. 

The smallest experiment in [18] used a grid (5 x 5), the error between the objective 

and the solution of the linearized problem was 2.9 percent. For the congested scenario 

(Scenario II in [18]) the relative error was 3.68 percent. The computational time for the 

MIP modeling by Wang et al. [18] had a reported computational time of 1.5 min for a 5x5 

discretization approach for the moderate congestion scenario. Using a 15 x 15 
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linearization approach, the reported computational time was 1.2 hours giving an error of 

0.63 percent.  

The results for the initial calibration test are presented in Table 7. The results were 

obtained with the selected linearization parameters in the calibration process. The 

results indicate a six percent difference in the low-congested scenario, one percent for 

the moderate-congested and 3.8 percent for the congested scenario. These results are 

for calibration purposes only and cannot be compared to those obtained in the literature.  

Table 7: Numerical Results for MIP Solution  

Scenario LP Objective NLP Objective Difference (%) 

FH-Low 98.29 92.10 6.07%

FH-Moderate 213.37 211.25 1.01%

FH-Congested 578.33 557.14 3.80%
 

The linearized CNDP was solved to obtain a full solution of the capacity expansion 

problem. This model is referred to as (LP-CAP-Friesz) and can be used to assess the 

solution quality of the proposed approximation. To finalize the evaluation of the proposed 

approach, the capacity results of the LP-CAP-Friesz are input as constraints to the 

capacity expansion variables ݕ of the non-linear version of the problem. The purpose of 

this last step is to obtain the corresponding equilibrium flows for the improved capacity 

conditions. The results for all the aforementioned problems are presented in Figure 30. 

To evaluate the quality of the solution, three performance measures indicators 

were devised, for calibration, application and equilibrium calculations. The calibration 

difference is the deviation of the L-CNDP with respect to the constrained version for 

parameter calibration. The application difference is the deviation of the solution of the 

linearized CNDP with respect to the baseline. The equilibrium difference is the difference 

between the baseline model and the equilibrium flows of the capacity vector obtained by 

L-CNDP. Tables 8 and  9 present such performance measures. 
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Figure 30: Objective Function Comparison for L-CNDP for the Friesz-Harker 
Network 

 

Table 8: Objective Function Values for L-CNDP 

Scenarios 
LP-Friesz  
Objective 

NLP-Friesz  
Objective 

LP-CAP-Friesz  
Objective 

NLP-LP-CAP 
Friesz 

 Objective 

FH-Low 98.28 92.09 93.08 90.73 

FH-Moderate 213.37 211.24 212.73 211.61 

FH-Congested 578.33 557.14 552.67 555.81 
 

Table 9: Calibration, Application, and Equilibrium 
 Differences for L-CNDP 

Scenarios 
Calibration 
Difference 

Application
Difference 

Equilibrium  
Difference 

FH-Low 6.723% 1.06% 1.50% 

FH-Moderate 1.007% 0.70% 0.17% 

FH-Congested 3.803% 0.81% 0.24% 

It can be observed that for the application and equilibrium differences, the selected 

linearization parameters exhibit a competitive performance. The proposed models are 



90 
 

comparable or outperform the previously obtained results. In terms of computational time 

the problem L-CNDP running time is less than one second. This is due to the absence of 

binary variables for the linearization scheme. Figure 31 presents the elapsed time 

(compilation and execution) for L-CNDP.  It can be observed that even when the number 

of functions increases that the execution time was not affected at exponential rates. This 

indicates that the model complexity is not heavily affected by the linearization approach. 

Comparing the maximum elapsed time for the L-CNDP with the minimum execution time 

of 90 seconds in [18], a reduction of 99.66% of the execution time was achieved. 

 

Figure 31: Elapsed Time for L-CNDP 

The proposed linearization approach has many advantages. It is relatively simple 

to implement and it has strong generalization features. For instance, results with the 

selected parameters and only five functions are presented in Figure 32 and Table 10. 

Depending on the application type, the proposed capacity modeling can be us to simplify 

and generalize estimated behaviors and the error is less than six percent. For 

transportation application this can be a way to simplify non-linear behavior, taking 

advantage of the computational advances of linear programming solvers. 
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Figure 32: Results for L-CNDP for 5 Functions 

 

Table 10: Calibration, Application, and Equilibrium 
 Differences for L-CNDP 

Scenarios 
Calibration 
Difference 

Application 
Difference 

Equilibrium  
Difference 

FH-Low 7.337% 1.04% 1.51% 

FH-Moderate 1.766% 4.33% 5.73% 

FH-Congested 4.427% 2.92% 1.51% 
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CHAPTER 6: CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

In this research a network design non-linear bi-level programming model decision 

problem was modeled and solved in the context of transportation network design. 

Location and capacity decisions were analyzed from a mathematical programming 

standpoint.  

The transportation network design was analyzed describing its constituent 

elements. The analysis started with the basic multicommodity minimum cost network 

with linear cost and no congestion effects. The base problem was expanded adding 

more layers of complexity reaching a non-linear bi-level network design problem subject 

to congestion effects. 

Solving the transportation network design problem is an ever evolving research 

topic in the transportation network modeling literature. Recently, there has been interest 

on solving the linearized version of the CNDP and the DNDP.  It was observed that the 

most representative examples of the latest research work in transportation network 

design problems used a linear-mixed integer representation of the flow-capacity surface 

was used. Such representations gave origin to a great number of binary variables and 

constraints. In general, the linearization of a univariate function in N pieces will give 

origin to N additional binary variables, N continuous variables and 3N+1 constraints. For 

a bivariate function, these numbers are greatly increased. In this work, a data mining 

algorithm was used to estimate a linear representation of the flow-capacity surface 

taking advantage of its convexity. The proposed linearization approach was based onan 

existing data mining algorithm and consists of approximating the functions as max-affine 
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combinations of linear functions. In the proposed approach, the function is estimated by 

the maximum of a series of functions. For that reason, intervals and interval indicator 

variables (binary variables) are not required in the proposed linearization strategy. As a 

result, a non-linear model can be linearized to a pure linear model rather than to a 

mixed-integer program as in the case of binary representations. In terms of problem 

representation, a partition in N intervals will require N constraints and N continuous 

variables.  

In addition to a decreased problem size, the proposed linearization of the flow-

capacity surface was analyzed further to obtain additional insights on the effect of the 

linear approximation, capacity modeling, and solution quality. The capacity expansion 

ratio was defined as the ratio of the current arc capacity divided by the maximum 

potential capacity. A large value of this ratio means that the current arc capacity is close 

to the potential maximum capacity. On the other hand, small capacity expansion ratios 

are indication of capacity bottlenecks and high variability in the flow-capacity surface. It 

was found that when a good fit was obtained in the flow-capacity surface of the arcs with 

low capacity expansion ratios (e.g. less than 0.1), the solution of the linearized problem 

was within six percent to that of a non-linear version of the problem. 

Additional capacity analyses were performed, dividing the flow-capacity plane in 

oversaturated and undersaturated regions depending on the flow-to-capacity ratio. In an 

oversaturated region the flow exceeds the capacity (flow-to-capacity ratio>1) leading to 

extreme values in the flow-capacity surface. On the other hand, the undersaturated 

region presents a more stable behavior. Such conditions were used in the linear 

approximation procedure to devise an algorithmic improvement, allocating more 

functions to the undersaturated region and fitting both regions separately. A detailed 

calibration procedure was performed to select adequate linearization parameters for the 

arc capacity modeling. The selected linearization settings were ten functions, distributed 
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evenly (5 for the unsaturated region and 5 for the oversaturated region) and a saturation 

factor of 1.1. This means that the undersaturated region was reduced and is 

approximated with five functions while the oversaturated region was expanded and is 

approximated with five functions. These results are consistent with the model logic since 

in most cases the minimum solution will tend to be in the undersaturated region.  

The resulting algorithm produced linear approximations offering comparable 

performance in solution quality to those that are in the existing literature. The results 

obtained with five and ten functions are comparable or in some cases outperform some 

of the results for the Friesz-Harker benchmark network presented in the existing 

literature. For example, some authors solved the CNDP using a 5 x 5 grid (25 intervals) 

for the capacity-flow surface while with the proposed linearization approach the same 

results can be obtained with ten functions. Similar results were obtained for other 

benchmark networks such as G1 for the DNDP. 

The computational time of the proposed approach for small and moderate 

networks outperformed some the existing result by a significant amount. Compared to 

linear mixed integer fallow-capacity representation, for three cases of the Fries-Harker 

benchmark network, the proposed approach was able to reduce the CPU time over 90 

percent for the CNDP. 

The problem of locating infrastructure was coupled with the proposed linearization 

approach to transform the original bi-level non-linear binary problem into a single-level 

mixed integer problem. Such problems can be solved by commercial linear and MIP 

solvers such as CPLEX for small and moderate network problems. The results obtained 

were compared to benchmark network G1. The results of the proposed approach are 

comparable to those obtained in the existing transportation network design literature. For 

larger networks it is recommended that specialized algorithms should be developed. 
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The problem of modeling and communicating multiple networks was treated as a 

larger instance of a single network problem using an arc-path formulation. This  concept 

is known as the hyperpath approach. The original problem is a non-linear bi-level binary 

problem. The application of the proposed solution approach lead to the capacity and 

location selection of infrastructure in a multimodal network setting. If the candidate arc 

transfers units between two networks then the problem becomes location and capacity 

of a multimodal network interchange. 

Additional detail on the modeling of a transportation network such as utility 

functions and congestion pricing can be integrated in the proposed approach and are left 

for future research. Also a more specialized algorithm for solving the resulting MIP can 

be expanded, using problem specific data to devise cuts to accelerate the convergence 

for large networks. These topics will be covered in research derived from this work. 

In the context of transportation planning, network designs, and operations 

research, this dissertation contributes to the theory and practice of the following aspects: 

 Modeled a decision-making process of a central agency with respect to an 

existing network with non-cooperative users. 

 Provided an alternative methodology to analyze capacity in non-linear networks 

subject to congestion effects.  

 Explored innovative linearization methods that provide good generalization power 

with competitive computational performance and solution quality. 

 Introduced the concept of network capacity modeling using the flow-capacity 

surface, capacity expansion ratio and saturation conditions. 

 Provided enhancement for a current convex piece-wise fitting method when 

applied to transportation system capacity analysis. The enhanced fitting 
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algorithm takes into consideration the existing capacity and the potential future 

capacity (upper boundary) to approximate the flow-capacity surface. 

 Contributed to the current literature of solutions to benchmark transportation 

problems. In this work, the solution to the linearized CNDP significantly 

outperforms some of the recently published results in computational time and 

competitive solution quality. 

 In this work, several mathematical programming models on the topic of 

transportation planning and traffic equilibrium were formulated. This by itself 

constitutes a contribution to the optimization/operations research field applied to 

transportation decision-making. 

 Created a computational framework that can be systematically utilized and 

enhanced for future research projects. In addition to research, several 

byproducts related to optimization and network modeling were created. These 

are products that can be used for educational purposes. 

The approach presented in this work can be expanded to other areas either within 

the transportation field or any application of network modeling. 

 The proposed approach to capacity modeling does not require a functional form. 

It can be applied to raw data to fit a flow-capacity surface. The proposed 

linearization approach was applied to a bivariate function. Since it is a model 

fitting approach it can be applied to multivariate functions as long as the functions 

are or tend to exhibit a convex behavior. For example, there could be a flow-

capacity-time function to schedule capacity changes in time.  
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 Multimodal freight networks: Topology decision on connectivity in multimodal 

networks can be adapted to modal networks for freight (e.g. rail, truck, air). 

Transshipment decisions occur at network interchanges, and capacity and 

location of such interchanges may have significant impact on the movement of 

goods in the country. The capacity modeling framework used in this work can be 

extended to other domains. 

 Supply chains: network modeling in supply chains benefit with the result of this 

research since it expands the traditional location concept where the demand is 

fixed and known. Preference or utility functions for the facility location problem 

can be modeled and solved with the decision-making framework proposed in this 

research 

  Telecommunications: With the increasing need of communication channels, 

leasing of optical fiber networks (dark fiber), and the inclusion of competing firms 

can make topology decisions on network/provider selection a critical issue in the 

near future.  
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Appendix A: Sioux Falls Network Data 

 
Table A: Sioux Fall Network Parameters 

Arc 
Number source target ࢇ࢚ B k P 

1 1 2 0.06 0.009 25.900201 4 

2 1 3 0.04 0.006 23.403473 4 

3 2 1 0.06 0.009 25.900201 4 

4 2 6 0.05 0.0075 4.9581809 4 

5 3 1 0.04 0.006 23.403473 4 

6 3 4 0.04 0.006 17.110524 4 

7 3 12 0.04 0.006 23.403473 4 

8 4 3 0.04 0.006 17.110524 4 

9 4 5 0.02 0.003 17.782794 4 

10 4 11 0.06 0.009 4.9088267 4 

11 5 4 0.02 0.003 17.782794 4 

12 5 6 0.04 0.006 4.9479955 4 

13 5 9 0.05 0.0075 10 4 

14 6 2 0.05 0.0075 4.9581809 4 

15 6 5 0.04 0.006 4.947995 4 

16 6 8 0.02 0.003 4.898588 4 

17 7 8 0.03 0.0045 7.841811 4 

18 7 18 0.02 0.003 23.40347 4 

19 8 6 0.02 0.003 4.898588 4 

20 8 7 0.03 0.0045 7.841811 4 

21 8 9 0.1 0.015 5.050193 4 

22 8 16 0.05 0.0075 5.045823 4 

23 9 5 0.05 0.0075 10 4 

24 9 8 0.1 0.015 5.050193 4 

25 9 10 0.03 0.0045 13.91579 4 
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Appendix A (continued) 
 

Table A (continued) 

Arc 
Number source target ࢇ࢚ B k P 

26 10 9 0.03 0.0045 13.91579 4 

27 10 11 0.05 0.0075 10 4 

28 10 15 0.06 0.009 13.512 4 

29 10 16 0.04 0.0075 4.854918 4 

30 10 17 0.08 0.012 4.993511 4 

31 11 4 0.06 0.009 4.908827 4 

32 11 10 0.05 0.0075 10 4 

33 11 12 0.06 0.009 4.908827 4 

34 11 14 0.04 0.006 4.876508 4 

35 12 3 0.04 0.006 23.40347 4 

36 12 11 0.06 0.009 4.908827 4 

37 12 13 0.03 0.0045 25.9002 4 

38 13 12 0.03 0.0045 25.9002 4 

39 13 24 0.04 0.006 5.0912562 4 

40 14 11 0.04 0.006 4.8765083 4 

41 14 15 0.05 0.0075 5.1275261 4 

42 14 23 0.04 0.006 4.9247906 4 

43 15 10 0.06 0.009 13.512002 4 

44 15 14 0.05 0.0075 5.1275261 4 

45 15 19 0.03 0.006 14.564753 4 

46 15 22 0.03 0.006 9.5991806 4 

47 16 8 0.05 0.0075 5.0458226 4 

48 16 10 0.04 0.0075 4.8549177 4 

49 16 17 0.02 0.003 5.2299101 4 

50 16 18 0.03 0.0045 19.679897 4 

51 17 10 0.08 0.012 4.9935107 4 

52 17 16 0.02 0.003 5.2299101 4 

53 17 19 0.02 0.003 4.823951 4 

54 18 7 0.02 0.003 23.40347 4 

55 18 16 0.03 0.0045 19.6799 4 

56 18 20 0.04 0.006 23.40347 4 

57 19 15 0.03 0.006 14.56475 4 

58 19 17 0.02 0.003 4.823951 4 

59 19 20 0.04 0.006 5.002608 4 

60 20 18 0.04 0.006 23.40347 4 
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Appendix A (continued) 
 

Table A (continued) 

Arc 
Number source target ࢇ࢚ B k P 

61 20 19 0.04 0.006 5.002608 4 

62 20 21 0.06 0.009 5.059912 4 

63 20 22 0.05 0.0075 5.075697 4 

64 21 20 0.06 0.009 5.059912 4 

65 21 22 0.02 0.003 5.22991 4 

66 21 24 0.03 0.0045 4.885358 4 

67 22 15 0.03 0.006 9.599181 4 

68 22 20 0.05 0.0075 5.075697 4 

69 22 21 0.02 0.003 5.22991 4 

70 22 23 0.04 0.006 5 4 

71 23 14 0.04 0.006 4.924791 4 

72 23 22 0.04 0.006 5 4 

73 23 24 0.02 0.003 5.078508 4 

74 24 13 0.04 0.006 5.091256 4 

75 24 21 0.03 0.0045 4.885358 4 

76 24 23 0.02 0.003 5.078508 4 
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Appendix B: Additional Flow-Capacity Surface Fitting Results  
 

 

Figure A: Fit Results and Capacity Ratio for the Friesz-Harker Network Using 
MLSPA, 20 Functions and Function Distribution 0.5 

 

 

Figure B: Fit Results and Capacity Ratio for the Friesz-Harker Network Using 
MLSPA, 20 Functions Saturation Factor 1.0 
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Appendix B (continued) 
 

 

Figure C: Fit Results and Capacity Ratio for the Friesz-Harker Network Using 
MLSPA, 30 Functions and Function Distribution 0.5 

 

 

Figure D: Fit Results and Capacity Ratio for the Friesz-Harker Network Using 
MLSPA, 30 Functions Saturation Factor 1.0 
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