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Abstract

Statistical models have greatly improved our understanding of the pathogenesis of HIV-1 infection

and guided for the treatment of AIDS patients and evaluationof antiretroviral (ARV) therapies.

Although various statistical modeling and analysis methods have been applied for estimating the

parameters of HIV dynamics via mixed-effects models, a common assumption of distribution is

normal for random errors and random-effects. This assumption may lack the robustness against

departures from normality so may lead misleading or biased inference. Moreover, some covari-

ates such as CD4 cell count may be often measured with substantial errors. Bivariate clustered

(correlated) data are also commonly encountered in HIV dynamic studies, in which the data set par-

ticularly exhibits skewness and heavy tails. In the literature, there has been considerable interest in,

via tangible computation methods, comparing different proposed models related to HIV dynamics,

accommodating skewness (in univariate) and covariate measurement errors, or considering skew-

ness in multivariate outcomes observed in longitudinal studies. However, there have been limited

studies that address these issues simultaneously.

One way to incorporate skewness is to use a more general distribution family that can provide

flexibility in distributional assumptions of random-effects and model random errors to produce ro-

bust parameter estimates. In this research, we developed Bayesian hierarchical models in which the

skewness was incorporated by using skew-elliptical (SE) distribution and all of the inferences were

carried out through Bayesian approach via Markov chain Monte Carlo (MCMC). Two real data set

from HIV/AIDS clinical trial were used to illustrate the proposed models and methods.

This dissertation explored three topics. First, with an SE distribution assumption, we compared

models with different time-varying viral decay rate functions. The effect of skewness on the model

fitting was also evaluated. The associations between the estimated decay rates based on the best

fitted model and clinical related variables such as baselineHIV viral load, CD4 cell count and long-

term response status were also evaluated. Second, by jointly modeling via a Bayesian approach,

we simultaneously addressed the issues of outcome with skewness and a covariate process with

vi



measurement errors. We also investigated how estimated parameters were changed under linear,

nonlinear and semiparametric mixed-effects models. Third, in order to accommodate individual

clustering within subjects as well as the correlation between bivariate measurements such as CD4

and CD8 cell count measured during the ARV therapies, bivariate linear mixed-effects models with

skewed distributions were investigated. Extended underlying normality assumption with SE distri-

bution assumption was proposed. The impacts of different distributions in SE family on the model

fit were also evaluated and compared.

Real data sets from AIDS clinical trial studies were used to illustrate the proposed method-

ologies based on the three topics and compare various potential models with different distribution

specifications. The results may be important for HIV/AIDS studies in providing guidance to better

understand the virologic responses to antiretroviral treatment. Although this research is motivated

by HIV/AIDS studies, the basic concepts of the methods developed here can have generally broader

applications in other fields as long as the relevant technical specifications are met. In addition, the

proposed methods can be easily implemented by using the publicly available WinBUGS package,

and this makes our approach quite accessible to practicing statisticians in the fields.
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1 Introduction / Literature Review

1.1. Background

The history of human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome

(AIDS) can be traced back to 1981. In California and New York,various doctors reported that a

small number of homosexual men had been diagnosed with rare forms ofKaposi’s sarcoma and

Pneumocystis cariniipneumonia, which are generally found in people with seriously compromised

immune systems. By mid 1982, it was clear that they were more than isolated incidents and in

September of that year, Centers for Disease Control and Prevention (CDC) used the term AIDS as

an official diagnosis for this disease. Soon it was realized people could get HIV if they engaged in

certain activities such as having unprotected sex, sharingneedles, receiving a blood transfusion and

if they were born to a mother with HIV infection.

HIV infection is considered as a pandemic by the World HealthOrganization (WHO). By the

end of 2010 (UNAIDS 2011), an estimated 34 million people were living with HIV, up 17% from

2001. Approximately 16.8 million are women and 3.4 million are less than 15 years old. The

estimated prevalence of HIV varies dramatically among regions: the most affected region is Sub-

Saharan Africa and it accounts 68% HIV cases and 66% of HIV deaths; about 5% of the adult

population in this area is infected. Prevalence is the lowest in Western and Central Europe (0.2%)

and East Asia (0.1%). With the significant expansion of HIV prevention programs and access to

antiretroviral therapy, the number of new infections and HIV/AIDS related deaths are decreasing.

In 2010, there were 2.7 million new HIV infections, which was15% less than in 2001 and 21%

less than the number of new infections that occurred at the peak of the epidemic in 1997, and there

were 1.8 million AIDS related deaths, which was 18% less thanin 2001. In the United States, since

the beginning of the HIV and AIDS epidemic, over half a million people have died of AIDS, and

currently around 1.2 million people are living with HIV, however 20% of them are unaware of their

infection.

HIV belongs to a class of viruses known as retroviruses. Retroviruses use ribonucleic acid
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(RNA) to encode their genetic information and RNA is translated into deoxyribonucleic acid (DNA)

during its life-cycle by a specific viral enzyme called reverse transcriptase. Viruses cannot grow

or reproduce on their own so they must infect cells of a livingorganism in order to survive and

make new copies. There are two types of HIV, HIV-1 and HIV-2, and both originated through

the evolution of simian immunodeficiency virus (SIV). Although both types can be transmitted

by sexual contact, blood, and from mother to child, comparedwith HIV-2, HIV-1 is more easily

transmitted and patients with HIV-1 infection will more quickly progress to AIDS. Therefore, it is

responsible for the majority of global HIV infections and AIDS cases.

Figure 1.1: Diagram of HIV.

HIV virion is roughly spherical and has a diameter of about 1/10,000mm, which is 60 times

smaller than a red blood cell. As Figure 1.1 shows, the basic structure of HIV includes: (i) a lipid

membrane. It is the outer envelope of the virus and consists of two layers of lipids. Different

proteins are embedded in this viral envelope and form ”spikes” consisting of glycoprotein (gp) 120

and transmembrane gp41. Gp120 is needed to attach the virionto the host cell, and gp41 is critical

for the cell fusion process; (ii) the HIV matrix proteins. They lie between the envelope and core; (iii)

the viral core. It contains the viral capsule protein p24 which surrounds two single strands of RNA

and the enzymes needed for HIV replication, such as reverse transcriptase, protease, ribonuclease,
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and integrase. Among the nine virus genes coded on one long stand of RNA, three genes, gag, pol

and env, contain information needed to make structural proteins for new virus particles.

Figure 1.2: HIV replication.

There are six steps involved in HIV infection and replication (Figure 1.2). Step 1: binding and

entry. By binding specific receptors on the surface of a target cell, such as CD4 positive T cells (i.e.,

CD4 cells), macrophages and microglial cells, HIV enters the host cells. The CD4 receptor is neces-

sary but not sufficient to permit virus entry. The secondary receptors are “chemokine receptors” that

bind to chemokines and are needed to facilitate the entering(Dragic et al., 1996); Step 2: reverse

transcription. HIV uses an enzyme known as reverse transcriptase to convert its RNA into DNA;

Step 3: integration. HIV DNA enters the nucleus of the targetcell and inserts itself into the cell’s

DNA, where it may “hide” and stay inactive for years; Step 4: transcription. HIV DNA instructs the

cell to make many copies of the original virus, along with some more specialized genetic materials

for making longer proteins; Step 5: assembly. A special enzyme called protease cuts the longer HIV

proteins into individual proteins. When these come together with the virus genetic material, a new

virus is assembled; Step 6: release. The virus pushes itselfout of the host cell and takes with it part

of the cell membrane. This outer part covers the virus and contains all of the structures necessary

for the virus to bind to a new CD4 cell and begin the virus life cycle process again. Knowing these
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steps is critical in the development of medications that caninterrupt the replication cycle. Current

treatment strategy involves a combination of drugs that target different steps of HIV’s life cycle such

as entry inhibitors that prevent binding of HIV to the CD4 receptor, reverse transcriptase inhibitors

that prevent the HIV RNA from being transcribed into DNA and protease inhibitors that prevent the

assembly.

Figure 1.3: A generalized graph of the relationship betweenHIV copies and CD4 cell count over

the average course of untreated HIV infection.

HIV infection generally can be broken into four stages: primary infection, clinical latency

(asymptomatic) stage, symptomatic stage and AIDS (Figure 1.3). Stage 1: primary infection. This

stage can last for a few weeks and patients are often accompanied by a short flu-like symptom, such

as headache, nausea, sore throat or fever. During this stage, the amount of HIV in the peripheral

blood increases sharply and the immune system starts to respond to the virus by producing HIV

antibodies and cytotoxic lymphocytes. This process is known as “seroconversion”. Since enzyme-

linked immunosorbent assay (ELISA), which is the most commonly used method to test for HIV,

uses blood, oral fluid or urine to detect HIV antibodies, the result may be negative if the ELISA

test is done before seroconversion is complete. There is a corresponding decrease in the number of

CD4 cells and an increase in CD8 cells. Patients are extremely infectious during this stage. Stage

2: clinically asymptomatic stage. This stage lasts for an average of ten years and patients are free
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from major symptoms, although some may have swollen glands.During this stage, the immune

system is able to mount an effective response, so the viral load starts to decrease and then stays

at a constant low level. The number of CD4 cells rises and thenslowly falls. People remain in-

fectious and HIV antibodies are detectable in the blood so the antibody test will show a positive

result. Although the viral load remains at a constant low level for years, virus replication is very

active during this period. Stage 3: symptomatic HIV infection. Eventually, the immune system is

severely damaged or “burned out” by years of activity. HIV mutates and becomes more pathogenic

leading more immune cells destruction, while the body failsto keep up with replacing the lost cells.

Symptomatic HIV infection is mainly caused by opportunistic infections that the normal immune

system usually would prevent. This stage of HIV infection isoften characterized by multi-system

diseases and infections occurring in almost all body systems. Without any effective treatment, the

immune suppression will continue to worsen. Stage 4: AIDS. Once the CD4 cell count is less than

200/mL or CD4 cell percentage is less than 15, AIDS will be diagnosed.

The CD4 cell, the major target cell for HIV, is a T lymphocytes. Under the microscope, lym-

phocytes can be divided into large and small lymphocytes. Large lymphocytes include natural killer

(NK) cells, while small lymphocytes consist of T cells that mature from thymus and B cells that are

bursa-derived. T cells are involved in cell-mediated immunity whereas B cells are primarily respon-

sible for humoral immunity (relating to antibodies). The CD4 cell is a subset of T cells that express

the cluster of differentiation 4 (CD4) and it is also known asT helper cell. These cells assist other

white blood cells in immunologic processes. The normal CD4 cells account for 32% to 68% of

total number of lymphocytes and range between 500 – 1600/mL. Without effective HIV treatment,

the hallmark decrease in CD4 cells that occurs during AIDS results in such a weakened immune

system that the body can no longer fight infections or certaincancers, and eventually death ensues.

The mechanisms of CD4 cell death in HIV infection are still not fully understood and are one of

the most controversial issues in AIDS research. The mechanisms by which HIV can directly induce

infected cell death include plasma membrane disruption or increased permeability due to continu-

ous budding of the virion (Facui, 1988), increasing cellular toxicity due to build up of un-integrated

liner viral DNA (Levy, 1993) and inactivation of anti-apoptotic genes (Nie et al., 2002). However,

a longstanding question in HIV biology is how HIV viruses kill so many CD4 cells, despite the fact

that most of them appear to be “bystander” cells that are not infected (Embretson et al., 1993). Re-
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cent data demonstrate that the majority uninfected CD4 cells in peripheral blood and lymph nodes

undergo three types of apoptosis (Varbanov et al., 2006), which is a tightly regulated programmed

cell death (Evan et al., 1998). Several HIV proteins, such asEnv and Vpr, have been found to be

able to up-regulate Fas/FasL gene expression either on the infected cells or neighboring uninfected

cells (Kaplan and Sieg, 1998), and these two genes will send signal of apoptosis to these cells.

CD8 cell is another type of T cell. It destroys virally infected cells and tumor cells so it is

also known as cytotoxic T cell (Tc cells or CTLs). A healthy adult usually has 150 – 1,000/mL

CD8 cells and the normal ratio of CD4/CD8 is 1.0 – 3.7. In contrast to CD4 cells, CD8 cells often

increase in people with HIV and the significance has not been well understood. Researches have

revealed (Chevret et al., 1992; Krantz et al., 2011) that elevated total CD8 cell count was associated

with greater risk of future virologic failure. The CD4/CD8 Ratio is used to help in diagnosing HIV,

monitoring HIV progress, and making treatment decisions.

HIV diagnostic test is done by either detecting host antibodies made against different HIV pro-

teins or by directly detecting the whole virus or componentsof virus (Iweala, 2004). Tests that

detect host antibodies that are specific to the virus includeELISA, Western blot, the immunofluo-

rescence assay (IFA), and the detuned assay. For screening purposes, ELISA is usually used first,

and in order to minimize the risk of false positive results, aconfirmatory test, such as Western blot

or IFA, should be conducted before a patient is given the diagnosis of HIV infection. Detuned

assay is used to distinguish recent HIV infection within thepast 129 – 180 days from older HIV

infections (Parekh et al., 2002). These tests may be negative during the acute infection or before

seroconversion is completed. In contrast, three types of tests can directly detect the virus or parts

of the virus as soon as people become infected with HIV. Thesetests include p24 antigen detec-

tion, peripheral blood mononuclear cell culture and RNA nucleic acid-based assays, such as reverse

transcription followed by polymerase chain reaction (RT-PCR) and hybridization-based assays. Un-

detectable viral load is usually defined as less than 50 copies/ml. Until recently, this was the lowest

detectable level for the commonly used tests in routine viral load monitoring. There are now some

ultra-sensitive tests that can measure less than 20 copies/ml and even 1 copy/ml of plasma (Palmer

et al., 2003).

It takes an average of 10 years after HIV infection to developAIDS, and the viral load generally

remains unchanged if measured repeatedly during those years. Originally, many people thought
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the rate of HIV replication and disease process would be slow, which is not true. In 1995 and

1996, several important papers (Ho et al., 1995; Perelson etal., 1996; Wei et al., 1995) published

in prestigious journals showed that HIV replication and thedisease process are very vibrant. On

average, plasma virions have a mean lifespan of 0.3 days (half-life = 0.24 days), and the average

total HIV-1 production is 10.3× 109 per day, the minimum duration of the HIV-1 life cycle in vivo

is 1.2 days, and the average HIV-1 generation time is 2.6 days(generation time is defined as the

time from release of a virion until it infects another cell and causes the release of a new genera-

tion of viral particles.) Because the high viral replication rate may result in a high mutation rate,

Ho (1995) proposed the treatment strategy of “Hit Hard, Hit Early”. “Hit Hard” requires simulta-

neously combining different medications in the treatment,while “Hit Early” means the treatment

should start as early as HIV infection has been confirmed. Although the so called “cocktail” treat-

ment approach proposed by Ho is still the most commonly used treatment strategy, “Hit Early”

was abandoned quickly when clinicians realized the adverseeffects outweighed the benefits. The

treatment should be “Hit HIV-1 hard, but only when necessary” (Harrington et al., 2000). Based on

2012 U.S. Department of Health and Human Services Panel on Antiretroviral Guidelines for Adults

and Adolescents (Guidelines, 2012), the initiation of antiretroviral therapy (ART) is optional if the

CD4 cell count is> 500/mL, moderately recommended if the CD4 cell count is 350 to 500/mL

and strongly recommended if the value is< 350/mL. Regardless of the CD4 cell count, ART is

strongly recommended if patients have certain conditions such as pregnancy, history of an AIDS

defining illness or hepatitis B (HBV) co-infection. The usual highly active antiretroviral therapy

(HAART) combines three or more different medications such as two nucleoside reverse transcrip-

tase inhibitors (NRTIs) and a protease inhibitor (PI), a non-nucleoside reverse transcriptase inhibitor

(NNRTI) or other such combinations. These HAART regimens have been proven to be able to re-

duce the amount of active viruses and in some cases can lower the number of active viruses until it

is undetectable by current blood testing techniques.

1.2. HIV dynamic models

The basic model for HIV infection includes three parts: target uninfected cellT, virusV and infected

cell T ∗. The equations that describe the basic model of viral dynamics before the treatment are:
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dT
dt = ρ− dT − kV T

dT ∗

dt = kV T − δT ∗

dV
dt = ηT ∗ − cV

(1.1)

whereT is produced at a rate ofρ and dies at rated, virus V is cleared from the body at ratec and

infects the target cellsT to T ∗ at rate ofk, infected cellT ∗ dies at rateδ and produces new virus

particles at a constant rateη. This is a system of nonlinear ordinary differential equations (ODE)

without any closed form solution, however, we can derive various approximations and obtain an

understanding of the system.

Before infection,V = 0 , T ∗ = 0 and uninfected cellsT are at equilibrium asT = ρ/d. Denote

by t = 0 is the time when infection occurs. Suppose infection occurswith a certain amount of

virus, so the initial conditions areT0 = ρ/d , T ∗
0 = 0 andV0. Similar as the condition that spread of

an infectious disease in a population, whether or not the virus can grow and establish an infection

depends on a crucial quantity called basic reproductive ratio R. R is defined as the number of newly

infected cells arising from one infected cell when almost all cells are uninfected andR = ρkη
dδc .

If R < 1 then the virus will not spread, because every infected cellwill on average produce less

than one other infected cell. If starting withN infected cells, then on average, we expect roughly

lnN/ ln(1−R) rounds of replications before the virus population dies out. If on the other hand,R

> 1, then, on average, every infected cell will produce more than one newly infected cell. The chain

will generate an explosive multiplication of virus asV (t) = V0 exp(rt), wherer is the exponential

growth rate of the virus population and it is given by the larger root of the equationr2 +(δ + c)R

+δc(1 − r2) = 0, the approximation ofr = δ(R − 1), which means each infected cell producesR

newly infected cells before dying. Virus growth will not continue indefinitely because the supply of

uninfected cells is limited.

During the short time since initiation of HAART treatment, the viral load decrease sharply. This

change with time can be expressed by the differential equation as,dV/dt = P − λV , whereP is

the viral production rate,λ is the decay rate of viral load, andV is the HIV viral load in plasma. If

assuming a pretreatment steady state exists,dV/dt = 0, and a perfect treatment effect that no new

infection or new virion produced, the HIV dynamics can be expressed as a simple one-exponential

equation (Ho et al., 1995):
V (t) = V (0) exp(−λt) (1.2)
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whereV (t) is the viral load at timet andV (0) is the viral load at the baseline. Equation (1.2) can

only reasonably describe the behavior of the viral dynamicsduring 1–2 weeks after the initialization

of treatment.

Assuming a perfect protease inhibitor treatment effect (Perelson et al., 1996), which means no

new infectious virions (VI ) but some noninfectious virions (VNI ) will still be produced, the HIV

dynamics can be expressed as the following system of ODE:
dT ∗

dt = kVIT − δT ∗

dVI
dt = −cVI

dVNI
dt = NδT ∗ − cVNI

(1.3)

whereN is the number of new virions produced per infected cell during its life time. Under the

assumption of constant supply of target cellT and quasi-steady state before treatment (dT ∗/dt = 0

anddV/dt = 0), a close form solution to the system of ODE (1.3) can be obtained:

V (t) = V0 exp(−λt) + λV0
λ−δ × [ λV0

λ−δ{exp(−δt)− exp(−λt)} − δt exp(−λt)] (1.4)

whereV (t) = VI(t) + VNI(t), Perelson et al.(1996) applied equation (1.4) to more frequent mea-

sured HIV-1 RNA data during the first week of treatment. By nonlinear least-squares regression,

the estimated half-life of free virions is about six hours and it is 1.6 days for productively infected

cells.

Perelson et al.(1997) further extended the ODE (1.3) in order to include a longer period of treat-

ment that a biphasical decay rate of plasma HIV-1 RNA was observed: an initial rapid exponential

decline of nearly 2-logs (first phase), followed by a slower exponential decline (second phase). Two

more target cells are added in the model: (i) long-lived infected cells, macrophages (M), will be

infected intoM∗ with a rate ofkM , produce virions at rate ofp and die with a rate ofµM ; (ii)

latently infected lymphocytes (L) will be produced by a rateconstantfk and die at a rate ofµL.

The HIV dynamics can be expressed as:

dT ∗

dt = kV T + αL− δT ∗

dL
dt = fkV T − µLL

dM∗

dt = kMVM − µMM
∗

dV
dt = NδT ∗ + pM∗ − cV

(1.5)

where latent infected cellsL can become productively infected cells at rate ofα. With the similar

assumptions used for equation (1.4), a closed form solutionto the system of ODE (1.5) is,
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V (t) = V0[A exp(−δt) +B exp(−µLt) + C exp(−µM t) + (1 +A+B + C)] (1.6)

where A, B and C are functions of system parameters. Even withadditional peripheral blood

mononuclear cells information, this equation is too complicated to identify all parameters, there-

fore, some parameters are assumed to be known and replaced bythe values from previous studies.

The first six weeks since the treatment was used in equation (1.6) and the half-life of productively

infected CD4 cells, long-lived infected cells and latentlyinfected cells were estimated as 1.1 days,

14.1 days and 8.5 days, respectively.

Perfect treatment effect may not be a very reasonable assumption, especially after short period

of treatment. Wu and Ding (1999) proposed a system of ODE thatincluded a protease inhibitor

efficacy parameter ofγ, 0 ≤ γ ≤ 1, while γ = 0 means the PI medications have no effect and

γ = 1 means perfect effect. The original ODE they proposed included many parameters that either

can be negligible if they are associated with the faster decays or can be approximated by constants if

they are slow enough in the modeling time period or if they areimpossible to be accurately estimated

based on the HIV-1 viral load available. The simplified system of ODE Wu and Ding proposed is:
d
dtT

∗ = kVIT − δT ∗

d
dtVI = (1− γ)P − cVI

d
dtVNI = γP + P ∗ +NδT ∗ − cVNI

(1.7)

whereP is the virus produced rate by productively infected cells, such as CD4 cell,P ∗ accounts

for virus produced from “mysterious” infected cells such asLangerhans cells and microglial cells,

or long-lived infected cells such as macrophages and latentinfected cells, andk, T ∗, δ, VI , VNI , N

andc have the same meaning as ODE (1.3). A closed form solution to the system of ODE (1.7) is,

V (t) = exp(P1 − λ1t) + exp(P2 − λ2t) + (P3 + P4t) exp(−ct)

whereV (t) = VI(t) + VNI(t), λ1 = δ and it is the first-phase viral decay rate that may represent

the minimum turnover rate of productively infected cells, such as CD4,λ2 is a possibly compound

clearance rate of long-lived and latently infected cells and the value depends on the infection rate

and destroyed rate by HIV virus. Becausec has been estimated to be very rapid (less than 6 hours

of half life), it can be negligible compared with other terms. Thus, the equation can be further

simplified as a two-exponential equation:
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V (t) = exp(P1 − λ1t) + exp(P2 − λ2t) (1.8)

whereP1 andP2 is initial viral production rate from productively infected cells, long-lived and

latently infected cells, respectively. Nonlinear mixed-effects (NLME) modeling can be used in the

estimation of the parameters in equation (1.8). NLME modeling will pool individual data together

to estimate the population parameters first, then estimate the individual parameters by the empirical

Bayesian method (Vonesh and Chinchili, 1996).

Although the “cocktail” HAART treatment can suppress HIV in60 to 90% of cases, 30 to 60%

of patients will end up as being considered treatment failure eventually because of the viral load

rebound (Havlir et al., 2000). However, all of the equationsintroduced so far require the decay rate

to be constant so they can’t be applied to rebound values. Several extensions have been developed

in order to catch up viral load response that include rebounddata and three representatives are

following:

(i) Extended from the ODE (1.1), Huang et al.(2003) proposeda viral dynamic model with a

time varying treatment efficacy functionγ(t) as,

dT
dt = ρ− dT − [1− γ(t)]kTV

dT ∗

dt = [1− γ(t)]kTV − δT ∗

dV
dt = NδT ∗ − cV

whereγ(t) represents a time varying treatment efficacy and it can be modeled as a function

of drug exposure and drug sensitivity.

(ii) Extended from one exponential equation (1.2) by replacing the constant decay rate with a

time varying decay function (Wu, 2004):

V (t) = V (0) exp(−λ(t)t)

(iii) Extended from two exponential (1.8) by replacing the second constant decay rate with a time

varying decay rate function as (Wu and Zhang, 2002):

V (t) = exp(P1 − λ1t) + exp(P2 − λ2(t)t)

11



Among these three extensions, the first one is a system of nonlinear ODE without a closed form, so

compared with the other two, the computation is even more challengeable and the model may not

converge, therefore, we will focus on either the one exponential or two exponential equation in the

Chapter 2 and 3.

HIV progress status is usually measured via HIV viral load orCD4 cell count, which are both

surrogate biomarkers. CD4 cell count is more often used as anendpoint for long follow-up trials or

advanced patients population, but for trials with short follow-up periods, viral load is often used as a

primary endpoint to quantify treatment effect, where CD4 cell count is viewed as a covariate to help

predict virologic responses. However, we should be aware the possible issues of using either HIV

viral load or CD4 cell count as the outcome. The possible troublesome aspects of using the viral

load as the primary outcome include (i) if the viral load is measured by RT-PCR which is based

on the viral fragments, the result may overestimate the number of infectious virus by an average

factor of 60,000 (Nowak et al., 1991); the lack correlation between of viral load and infection was

also noted in some publications (Perelson et al., 1993; 1999), where no evidence of virus by culture

among the patients with detectable viral load; (ii) the lackof correlation between viral load and

CD4 level such that the changes in viral load were only able toexplain as little as 4% of change

in the CD4 cell count (Rodriguez et al., 2006). Although CD4 cell count seems to be a better HIV

progression indicator, especially for the study with a longer follow-up period, prediction may be

risky since CD4 cell count models are often empirical (Wu andDing, 1999; Wu, 2002). On the

other hand, treating both viral load and CD4 cell count as a bivariate response (Sy et al., 2007) may

be complicated, because the HIV dynamic model for viral loadis nonlinear and CD4 cell count

contains missing data.

1.3. Statistical inference in HIV dynamics

Various statistical inferences and analysis methods have been applied in HIV dynamics. Linear and

nonlinear regression via least-squares (LS) estimation can be applied to very frequent measurements

during the first 1 – 2 weeks after the treatment is initiated (Ho et al., 1995; Perelson et al., 1996;

1997; Wei et al., 1995). Because frequent viral load measurement is only achievable in small

clinical studies and only subjects without any missing values can be included in LS, this method is

considered to be less powerful than some other inferences.
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Because viral load are measured repeatedly since the treatment, the values obtained from the

same subject may be correlated but can be assumed to be independent if obtained from different

subjects. One powerful tool to handle such longitudinal data is mixed-effects modeling, in which

within-subject and between-subject variations are both considered (Laird and Ware, 1982). Linear

mixed-effects (LME) and nonlinear mixed-effects (NLME) modeling approaches have been pro-

posed in HIV dynamics (Wu et al., 1998; 2004; Wu and Ding, 1999). Semiparametric nonlinear

mixed-effects (SNLME) modeling (Liu and Wu, 2007; Wu and Zhang, 2002; Wu et al., 2004) is

proposed in order to allow the decay rate to vary with time so the rebound viral load can be included.

Joint model approach via Monte Carlo EM algorithm can be applied to the NLME with covariate

measurement errors and non-ignorable missing responses (Liu and Wu, 2007; Wu, 2002; 2004). Es-

timation of NLME is complex because usually the likelihood has no closed form solution, even for

simple models. The Bayesian approach based on Markov chain Monte Carlo (MCMC) algorithm

has been proposed for complex ODE and NLME (Huang et al., 2006; Huang and Dagne, 2011;

2012a; 2012b; Putter et al., 2002; Wu et al., 2005). To avoid the numerical computation of multiple

integrals involved in the likelihood, likelihood approximation such as linearization, Laplace ap-

proximation, Stochastic approximation EM algorithm (SAEM) have been applied in HIV dynamics

(Ding and Wu, 2000; Guedj et al., 2007; Kuhn and Lavielle, 2005; Wu, 2004).

Another complexity of viral load analysis is left censoringwhich occurs when viral loads are

below a limit of qualification (LOQ), and if ignored, the censoring may induce biased parameter

estimates. Different approaches have been proposed to address this problem (Fitzgerald et al., 2002;

Hughes, 1999; Lavielle et al., 2011; Samson et al., 2006; Thiébaue et al., 2005).

The model random errors and random-effects in mixed-effectmodels are usually assumed to

have a normal distribution and that assumption may not be satisfied in HIV viral load and CD4

cell count, so the estimation can be biased. Skewed distribution can be applied in order to consider

this non-ignorable departure from normality (Huang et al.,2006; Huang and Dagne, 2012a; 2012b;

Dagne and Huang, 2012).

CD4 and CD8 cell count can be used as surrogate biomarkers forHIV disease process. Shah

et al.(1997) used an EM algorithm to fit a bivariate linear random-effects model. Sy et al.(1997)

used the Fisher scoring method to fit a bivariate linear random-effects model including an integrated

Orstein-Uhlenbeck process (IOU). IOU is a stochastic process that includes Brownian motion as a
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special limiting case.

1.4. Skew-elliptical distributions

Linear and nonlinear mixed-effect models are powerful tools for analyzing repeated measures and

clustered data. In these models, random-effects are included in order to account correlation. Usually

either random-effects or model errors or both are assumed tofollow a normal distribution. Although

normality assumption may be reasonable for many situations, the skewness can still be obvious even

after the variables have been transformed. Ignoring the departure from normality may cause biases

or misleading results (Ghosh et al., 2007; Verbeke and Lesaffre, 1996). Ideally, we hope to use a

more generalized distribution family that (i) has high flexibility in shapes and with a wide range of

skewness and kurtosis; (ii) is mathematically tractable, which means it can retain nice properties

of original family such that parameters can be directly linked to some aspects of known probability

density function (pdf); (iii) allows us to easily apply the distributions in the existing software.

Skew-elliptical (SE) distribution is a parametric class ofprobability distributions that is ex-

tended from elliptical distribution by including an additional shape parameter for skewness. This

class, which is usually obtained by using transformation and conditioning, contains many standard

families such as multivariate skew-normal (SN), skew-t (ST), Student-t and normal distributions.

Different versions of the multivariate SE distributions have been proposed. The version proposed

by Azzalini et al.(1996; 1999) is based on conditioning one suitable random variable being greater

than zero; SE distribution proposed by Jones and Faddy (2003) is scaled inverseχ distribution;

Fernandez and Steel (1998) developed a form that two Student-t distributions (with different scale

parameters) in positive and negative domains are combined to form an SE distributions; We adopt

a class of multivariate SE distributions proposed by Sahu etal.(2003), which is obtained by using

transformation and conditioning, contains multivariate ST , SN, Student-t and normal distribution

as special cases. Ak-dimensional random vectorY follows ak-variate SE distribution if its pdf is

given by

f(y|µ,Σ,∆;m
(k)
ν ) = 2kf(y|µ,A;m

(k)
ν )P (V > 0) (1.9)

whereA = Σ + ∆
2, µ is a location parameter vector,Σ is a covariance matrix,∆ is a skew-

ness diagonal matrix with the skewness parameter vectorδ = (δ1, δ2, . . . , δk)
T , V follows the el-

14



liptical distributionEl
(

∆A−1(y − µ), Ik −∆A−1
∆;m

(k)
ν

)

and the density generator function

m
(k)
ν (u) = Γ(k/2)

πk/2

mν(u)∫
∞

0 rk/2−1mν(u)dr
, with mν(u) being a function such that

∫∞
0 rk/2−1mν(u)dr

exists. The functionmν(u) provides the kernel of the original elliptical density and may depend

on the parameterν. We denote this SE distribution bySE(µ,Σ,∆;m
(k)
ν ). Two examples of

mν(u), leading to important special cases used throughout the paper, aremν(u) = exp(−u/2) and

mν(u) = (u/ν)−(ν+k)/2, whereν > 0. These two expressions lead to the multivariate SN and ST

distributions, respectively. In the latter case,ν corresponds to the degree of freedom parameter.

1.4.1. Skew-t distribution

We briefly discuss a multivariate ST distribution introduced by Sahu et al.(2003) in this section. A

k-dimensional random vectorY follows ak-variate ST distribution if its pdf is given by

f(y|µ,Σ,∆, ν) = 2ktk,ν(y|µ,A)P (V > 0) (1.10)

we denote thek-variatet distribution with parametersµ, A and degrees of freedomν by tk,ν(µ,A)

and the corresponding pdf bytk,ν(y|µ,A) henceforth,V follows the t distribution tk,ν+k. We

denote this distribution bySTk,ν(µ,Σ,∆). In particular, whenΣ = σ2Ik and∆ = δIk, equation

(1.10) simplifies to

f(y|µ, σ2, δ, ν) = 2k(σ2 + δ2)−k/2 Γ((ν+k)/2)

Γ(ν/2)(νπ)k/2

{

1 +
(y−µ)T (y−µ)

ν(σ2+δ2)

}−(ν+k)/2

×Tk,ν+k

[

{

ν+(σ2+δ2)−1(y−µ)T (y−µ)
ν+k

}−1/2 δ(y−µ)

σ
√
σ2+δ2

]

whereTk,ν+k(·) denotes the cumulative distribution function (cdf) oftk,ν+k(0, Ik). However, un-

like in the SN distribution below, the ST density can not be written as the product of univariate ST

densities. HereY are dependent but uncorrelated.

The mean and covariance matrix of the ST distributionSTk,ν(µ, σ
2Ik,∆) are given by

E(Y ) = µ+ (ν/π)1/2 Γ((ν−1)/2)
Γ(ν/2) δ, cov(Y ) =

[

σ2Ik +∆
2
]

ν
ν−2 − ν

π

[

Γ{(ν−1)/2}
Γ(ν/2)

]2
∆

2

The ST distribution ofY has two types of stochastic representation as follows, and each pro-

vides a convenience device for random number generation andimplementation purpose.

(i). By the proposition of Sahu et al.(2003),

Y = µ+∆|X0|+Σ
1/2X1 (1.11)

whereX0 andX1 are two independent random vectors followingtk,ν(0, Ik). Letw = |X0|, then

w follows ak-dimensional standardt distributiontk,ν(0, Ik) truncated in the spacew > 0 (i.e., the

standard half-t distribution). Thus, a hierarchical representation of (1.11) is given by
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Y |w ∼ tk,ν+k(µ+∆w, ωΣ), w ∼ tk,ν(0, Ik)I(w > 0) (1.12)

whereω = (ν +wTw)/(ν + k).

(ii) By Proposition 1 of Arellano-Valle et al.(2007), the STof Y has another convenient stochastic

representation as follows

Y = µ+∆|X0|+ ξ−1/2
Σ

1/2X1 (1.13)

where |X0| andX1 are two independentNk(0, Ik) random vectors. Letw = |X0|, thenw

follows a k-dimensional standard normal distributionNk(0, Ik) truncated in the spacew > 0.

Thus, following Sahu et al.(2003), a hierarchical representation of 1.13 is given by

Y |w, ξ ∼ Nk(µ+∆w, ξ−1
Σ), w ∼ Nk(0, Ik)I(w > 0), ξ ∼ Γ(ρ/2, ρ/2) (1.14)

Note that the ST distribution presented in (1.12) or (1.14) can be reduced to the following three

special distributions:

(a). An SN distributionSNk(µ,Σ,∆) asν → ∞ and ξ → 1 with probability of 1 (based on

equation of 1.14) or asν → ∞ with probability of 1 (based on equation of 1.12);

(b). A Student-t distributiontk,ν(µ,Σ) as∆ = 0;

(c). A normal distributionNk(µ,Σ) if both conditions of (a) and (b) are satisfied.

In order to better understand the shape of an ST distribution, plots of an ST density as a function

of the skewness parameter withδ = −3, 0, 3 are shown in Figure 1.4(a).
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Figure 1.4: The univariate skew-t (df ν = 4) and skew-normal density functions with precision

σ2 = 1 and skewness parameterδ = 0, -3 and 3, respectively.
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1.4.2. Skew-normal distribution

We briefly discuss a multivariate SN distribution introduced by Sahu et al.(2003) in this section. A

k-dimensional random vectorY follows ak-variate SN distribution, if its pdf is given by

f(y|µ,Σ,∆) = 2k|A|−1/2φk{A−1/2(y − µ)}P (V > 0), (1.15)

whereV ∼ Nk{∆A−1(y − µ), Ik − ∆A−1
∆}, andφk(·) is the pdf ofNk(0, Ik). We denote

the above distribution bySNk(µ,Σ,∆). An appealing feature of equation (1.15) is that it gives

independent marginal whenΣ = diag(σ21 , σ
2
2 , . . . , σ

2
k). The pdf (1.15) thus reduces to

f(Y |µ,Σ,∆) =
∏k

i=1

[

2√
σ2
i +δ2i

φ

{

yi−µi√
σ2
i +δ2i

}

Φ

{

δi
σi

yi−µi√
σ2
i +δ2i

}]

,

whereφ(·) andΦ(·) are the pdf and cdf of the standard normal distribution, respectively.

The mean and covariance matrix are given by

E(Y ) = µ+
√

2/πδ, cov(Y ) = Σ+ (1− 2/π)∆2

It is noted that when∆ = 0, the SN distribution reduces to usual normal distribution.In

addition, the SN distribution is a special case of the ST distribution. That is, the ST distribution

reduces to the SN distribution when the degree of freedom is large. In order to better understand

the shape of an SN distribution, plots of an SN density as a function of the skewness parameter with

δ = −3, 0, and 3 are shown in Figure 1.4(b).

1.5. Specific aims

A common assumption in mixed-effect model for random errorsand random-effects is normal dis-

tribution. This assumption may lack robustness against departure from normality and can be greatly

affected by outliers too, therefore, the results may be somewhat misleading. In HIV/AIDS studies,

the viral load, CD4 and CD8 cell count can exhibit obvious skewness, even after transformation.

It will be valuable to explore whether a general skewed distribution such as ST or SN will bring

a better model fitting. Also due to the nature of HIV dynamics,the related models can be very

complicated and associated intensive computation burden in the inference. Non-convergence of the

algorithms may exist under the framework of likelihood estimation. Besides these issues, there are

at least three specific questions that have not been satisfactorily answered:

First, it is important to use entire HIV viral load data to have a better understand about the disease

progress and to compare the effect of different medications. However, among all of those
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models that can be applied to include the rebound data, it is unclear which one is preferred, or

whether different distributions will affect the model fit, or whether the estimated parameters

can be good predictors for some long-term result as as treatment failure.

Second, in order to explain individual difference in HIV dynamics, covariates, such as CD4, are often

used in the model. However, CD4 values may be measured with substantial errors or at a

different schedule as the viral load measurement. Also, LME, NLME and SNLME can be

used for short, middle and long term of HIV dynamics data, respectively. Although they have

some of the same parameters such as the first decay rate which is the minimal turn over of

the productively infected cells, it is unclear whether thisestimation obtained from different

models is constant, and if not, which model will yield more reasonable estimations.

Third, using HIV viral load as a surrogate to predict the disease progress might be problematic. For

example, the amount of infectious virus may be overestimated, therefore, the CD4 cell count

seems to be a better indicator. However, the mechanism by which the CD4 cell count change

during the HIV progress is not clear. Although using bivariate outcomes of CD4 and CD8 cell

count appear to be superior to any of these cell count alone ortheir ratio (Ir et al., 1990), the

distribution of CD4 and CD8 cell count shows skewness with heavy tails, and no model has

been proposed to consider CD4 and CD8 as outcome simultaneously with skewed distribution

assumption.

Via the Bayesian approach and assuming an SE distribution, this dissertation research is organized

as follow:

Aim 1. Related to the first question of multiple models for entire HIV viral load follow-up, in Chapter

2, we explored different models with time-varying decay rate function in order to find which

one has the best fit. We also assumed different distributionsin each model to check the effect

of skewness on the model fit. After finding the best fitted model, we explored the applications

of the estimated decay rate, such as their association with decay rate, CD4 cell count and viral

load rebound status. To the best of our knowledge, no time-varying decay rate function was

checked or had been found to have any significant associationwith the long-term outcome

such as viral load rebound, although some research found theconstant decay rate may reflect
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the potency of antiviral therapies in the short term. For thepurpose of model comparisons,

we used one AIDS clinical trial study data to do the model comparisons and then checked the

validity of the conclusions based on another AIDS clinical trial study.

Aim 2. Related to the second question of covariate with measurement errors and skewness, in Chapter

3, we compared the three most commonly used models for short,middle and long term HIV

dynamics. CD4 was included as an important covariate in the models. A critical question

is whether these models produce coherent estimates of viraldecay rates, and if not, which

model is appropriate and should be used in practice. In addition, one common assumption is

that model random errors is normally distributed, but the normality assumption may be un-

realistic, particularly, if the data exhibit skewness. Moreover, some covariates, such as CD4

cell count, may often be measured with substantial errors. We addressed these issues simulta-

neously by jointly modeling the response variable with skewness and a covariate process with

measurement errors. A real data set from an AIDS clinical trial study was used to present the

proposed models.

Aim 3. Related to the third question of CD4 and CD8 as being biomarkers during ARV and con-

sidering their dependence on common predictors, in Chapter4, we applied a joint bivariate

linear mixed-effects (BLME) model that can include CD4 and CD8 cell count simultaneously

as the outcomes, while the observed skewness in the data was considered by applying an SE

distribution. The baseline viral load, patients’ age, time-varying drug efficacy and the group

of treatments were also included as covariates in the BLME.
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2 Mixed-effects models with skewed distributions for time-varying vi-

ral decay rate in HIV dynamics

2.1. Introduction

Mathematical modeling is an important tool for understanding the evolution of HIV viral load (num-

bers of HIV-1 RNA copies in plasma) and interactions betweenHIV and its target cells. Most math-

ematical models developed prior to the mid-1990s were created for computer simulations and for

interpreting declines in CD4 cell count after HIV infection. Due to the availability of HAART and

methods of providing sensitive measurement of blood plasmaHIV-1 RNA concentrations, it is pos-

sible to use viral load as a surrogate marker for the health status of HIV-infected individuals. The

mathematical modelings of HIV dynamics on the cellular or molecular level are based on a similar

principal used in large-scale epidemiological modeling.

Studies of viral dynamics have a common design, in which the viral load, targeted cells, phar-

macokinetic and pharmacodynamic factors are repeatedly measured since treatment. The viral load

trajectory is complex and has multiple phases of change (Ho et al., 1995; Maldarelli et al., 2007;

Perelson et al., 1997; Wei et al., 1995). Data from A5055 (Acosta et al., 2004) (Figure 2.1) shows

that: (i) within the first 2 weeks after the initial treatment, the viral load (transformed in natural

log scale) dropped linearly and sharply, therefore, the changeof viral load can be approximated

by an exponential function; (ii) within the first 2–3 months but after the first 2 weeks, the relation-

ship between the viral load and time was still linear but the slope became flatter, which indicates

a slower decay rate; (iii) between the third to eighth month,the viral load either decreased more

slowly, remained at a constant low level, or started to increase up to the level measured before treat-

ment was initiated. The possible reasons for viral load rebound are development of resistance to

the medications, and other clinical issues such as lack of adherence. There is no clear cutoff among

the phases, not every subject will have all of these phases and the length of the phases may vary

among individuals. Therefore, the associated decay rate inthe models for the viral load trajectories

is expected to vary over time and can be individually specific.
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Figure 2.1: Profile of viral load in natural log scale from a clinical trial study-A5055

For the first phase of HIV viral load dynamics (i.e., the first 1to 2 weeks), we can apply a

uniexponential equation (Ho et al., 1995; Wei et al., 1995) as,

V (t) = V (0) exp(−λt) (2.1)

whereV (t) is total viral load at timet, V (0) is the baseline viral load att = 0 andλ is a constant

viral change rate which is the speed of the loss of viral load after initiation of potent antiviral

treatment. Although equation (2.1) can precisely describethe phenomenon of a linear decrease of

logarithm transformed viral load within approximately oneto two weeks since treatment is initiated,

we cannot apply it to the whole trajectory because the viral load is only allowed to decrease at a

constant rate in this equation. Besides that, there are at least three unsolved issues.

First, in order to use entire HIV follow-up data, extended from equation (2.1), different models

have been proposed in the literature, it is unclear which oneis more appropriate.

Second, in mixed-effects models for longitudinal data analysis, random errors and/or random-

effects are usually assumed to have a normal distribution. Although the normality assumption is

satisfied in many situations, it may cause biased or misleading inference if the data include ex-

treme values or show skewness with heavy tails, which are commonly seen in virological responses

(Huang and Dagne, 2011; Sahu et al., 2003; Verbeke and Lesaffre, 1996). Figure 2.2 displays the

histogram of repeated viral load in naturallog scale for 44 subjects enrolled in the A5055 trial. The
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skewness, which is still obvious even after the transformation, is positive and ranges from 0.8 and

2.15 at each of the follow-up measurements. If the ratio between skewness value and standard error

of skewness is greater than 2, the data may be regarded as having unignorable skewness (Gardner,

2001). In the A5055 study, the ratio is 4 , which indicates skewness needs to be accounted for.
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Figure 2.2: The histogram of viral load (in naturallog scale) for 44 patients in a clinical trial study-

A5055

Third, computational infeasibility can be a challenge. Frequentist and Bayesian are two major

approaches used in studies of HIV dynamics. In the frequentist approach, based on the maximum

likelihood estimation (MLE), different extensions have been proposed, such as Laplace approxi-

mation of the numerical integrals (Beal and Sheiner, 1982; Lindstrom and Bates, 1990; Wu and

Zhang, 2002), stochastic approximation EM (SAEM) algorithm (Kuhn and Lavielle, 2005; Lavielle

et al., 2011), joint model via Monte Carlo EM algorithm (Liu and Wu, 2007; Wu, 2004) and asymp-

totic distribution of the maximum h-likelihood estimators(MHLE) (Commenges et al., 2011). The

second approach is Bayesian mixed-effects modeling via MCMC (Huang et al., 2006; Huang and

Dagne, 2011; Putter et al., 2002). The Bayesian approach is an efficient way to incorporate prior

information, both point estimates and uncertainties (variances), into analysis to identify more un-

known parameters in complex models.

Via Bayesian approach, the main focus of this chapter is to provide a comprehensive comparison

of five commonly used HIV dynamic models with SE distributionin random errors. The rest of the
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chapter is organized as follows: Section 2.2 presents the HIV dynamic models that have a time-

varying decay rate function so they can be applied to the entire HIV follow-up data. In Section 2.3,

we describe a general Bayesian mixed-effects modeling approach. In Section 2.4, we present the

motivated AIDS data and results of model comparisons. Section 2.5 includes the conclusion and

discussion.

2.2. HIV dynamic models with time-varying decay rate function

As mentioned in Section 2.1, there is a multiphasic change inHIV viral load after the initiation

of HAART. One potential interpretation of this phenomenon is that the process involves distinct

populations with different homogenous behaviors. For example, the fast decreasing decay rate

observed in the first phase is due to the treatment effect on productively infected CD4 cells, while

the slower decay rate in the second phase is primarily due to the effect on the latently or long-

lived infected cells (Perelson et al., 1997). However, somephenomena can’t be explained by this

theory. For example, there can be large differences in mean decay rates in response to different

treatment regimens: during the first week, the death of infected cells may be substantially slower

during days 3–6 than during days 2–3 (Grossman et al., 1999).If different decay rates reflect

the rates at which different infected cells died, it is unexpected to see that the decay rate should

depend on the type or concentration of the treatment regimen(Mueller et al., 1998). Based on

the assumption that reduced production during immune activation events and fewer cycles account

for the observed multiphasic HIV decrease, Following uniexponential equation (2.1), Grossman et

al.(1999) proposed an equation for viral load as:

V (t) = V (0) exp{− log(R)
τ t}

R(v) = R(1) + α(1 − v) exp(−ρv)
v(t) = V (t)/V (0)

(2.2)

whereτ is the average infection cycle time,ρ is adjustable parameter, andR is reproduction ratio.

At steady state,R = 1, which means each infected cell is replaced, on average, by one newly

infected cell;V (0) is the baseline viral load;v(t) is the ratio between the viral load at timet and the

baseline. SinceV (t) andR depend on each other, this equation may not be easy to solve. Based on

Zhang and Wu (2011), equation (2.2) is equivalent to the equation V (t) = V (0) exp(−λ(t)t), and

λ(t) = log{R(v)}/τ = log{R[V (t)/V (0)]}/τ
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λ(t) is time varying and may be interpreted as the average relative loss rate of the viral loadV (t).

Let△t denote a small time period, then the relative loss rateα(t) is:

α(t) = lim△t→∞{V (t)−V (t+△t)
V (t) }/△t = −V (t)

′

/V (t)

Solving the above differential equation yields:

V (t) = V (0) exp
{

−
∫ t
0 α(τ)dτ

}

= V (0) exp[−λ(t)t] (2.3)

whereλ(t) =
∫ t
0 α(τ)dτ/t is the average relative lost rate of the viral loadV (t). λ(t) can be

positive (ifR < 1 ), zero (ifR = 1 ), or negative (ifR > 1 ). If λ(t) < 0, the decay rateλ(t)

at timet actually is a growth rate. Therefore, by including a time-varying decay rate functionλ(t),

compared with equation (2.1), equation (2.3) is more flexible and can be applied to include the entire

follow-up data without need to arbitrarily truncate the data.

A unified model with a time-varying viral decay rate functioncan be expressed as:

y(t) = ln[V (t)] + ǫ = ln{V (0) exp[−λ(t)t]} + ǫ = β1 − λ(t)t+ ǫ (2.4)

wherey(t) is the natural logarithm transformation of the number of HIV-1 RNA copies per mL

of plasma,ǫ is the measurement error,ln(V (0)) = β1 and is the macro-parameter for initial viral

load in naturallog scale. In addition to the simplicity of this model’s structure, it also indicates that

the pattern of HIV decrease may be a physiologically structured, local non-equilibrium dynamic

interaction between HIV and immune activated cells after treatment initiation. Therefore, the overall

decay rate is the weighted average that is proportional to the local level of infection.

Among the different decay rate functions proposed in the literature, we select five representa-

tives as follow (Dagne and Huang, 2012; Grossman et al., 1999; Wu, 2004; Zhang and Wu, 2011),

I: λ(t) = β2 + β3t

II: λ(t) = β2 exp(−β3t) + β4

III: λ(t) = β2 exp(−β3t) + β4 + β5t

IV: λ(t) = β2 exp(−β3t) + β4 exp(−β5t)
V: λ(t) = v[w(t), hi(t)]

where the last one,λ(t) = v[w(t), hi(t)], is a nonparametric function.
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2.3. Bayesian mixed-effects models with skewed distribution

To account for the skewness observed in the data, the random errors in mixed-effects models can

be assumed to follow an SE distribution (see Section 1.4 in detail). The SE distribution is a family

of distributions that is not only mathematically tractablebut also flexible in its possible shapes.

Because in the SE family, skew-normal (SN), normal and Student-t distribution are all a special

case of skew-t (ST) distribution, therefore, in this section, we present ageneral form of a mixed-

effects model with an ST distribution under the Bayesian approach. A general mixed-effects model

with an ST distribution can be expressed as:

yi = gi(ti,βi) + ei, ei
iid∼ STni,ν(0,Σ,∆),

βi = d(β, bi), bi
iid∼ N(0,Σb),

(2.5)

yi = (yi1, . . . , yini)
T with yij being the response value for theith individual at thejth time (i =

1, 2, ..., n, j = 1, 2, ..., ni), gi(ti,βi) = (g(ti1,βi1), . . . , g(tini ,βini
))T , ti = (ti1, . . . , tini)

T ,

βi = (βi1, . . . ,βini
)T , βij are individual-specific time-dependent parameter vectorsandβ is pop-

ulation parameter vector,g(·) andd(·) are linear or nonlinear known parametric functions,bi is

normal random-effect vector withΣb being an unstructured covariance matrix. The vector of ran-

dom errorsei = (ei1, . . . , eini)
T follows a multivariate ST distribution with degrees of freedom

ν, within-subject covariance matrixΣ and we usually can assumeΣ = σ2Ini , and unknown

ni × ni skewness diagonal matrix such that∆ = diag(δi1, . . . , δini), skewness parameter vec-

tor δi = (δi1, . . . , δini)
T . In particular, ifδi1 = · · · = δini=̂δ, then∆ = δIni andδi = δ1ni ,

where1ni = (1, . . . , 1)T , indicating that we are interested in skewness of overall data set.

Following discussion in Section 1.4.1, to implement an MCMCprocedure to model (2.5), by

introducing oneni × 1 random vectorwi, based on the stochastic representation, the model can be

hierarchically formulated as follows.

yi|bi,wi
iid∼ tni,ni+ν(g(ti,βi) + δwi, wiσ

2Ini),

wi
iid∼ tni,ni+ν(0, Ini)I(wi > 0),

bi
iid∼ N(0,Σb),

(2.6)

wherewi = (ν + wT
i wi)/(ν + ni), tni,ν(µ,A) denotes theni-variate Student-t distribution with

parametersµ, A and degrees of freedomν, I(w > 0) is an indicator function andw = |X0| with

X0 ∼ tni,ν(0, Ini). Note that the hierarchical model above under Bayesian framework will allow
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researchers to easily implement the methods using the freely available WinBUGS software (Lynn,

et al., 2000) and the computational effort for the model withan ST distribution is almost equivalent

to that of the model with a Student-t distribution.

The unknown population parameters in the model (2.5) areθ = {β, σ2,Σb, δ, ν}, and we as-

sume they are independent of one another. Under Bayesian framework, we also need to specify

prior distributions for unknown parameters as follows.

β ∼ N(β0,Λ), σ2 ∼ IG(ω1, ω2), Σb ∼ IW (Ω, v),

δ ∼ N(0, γ), ν ∼ Exp(ν0)I(ν > 2)
(2.7)

where the mutually independent Normal (N ), Inverse Gamma (IG), Exponential (Exp) and In-

verse Wishart (IW ) prior distributions are chosen to facilitate computations (Davidian and Gilti-

nan, 1995). The super-parameter matricesΛ andΩ can be assumed to be diagonal for convenient

implementation.

Let π(.) be a prior density function, soπ(θ) = π(β)π(σ2)π(Σb)π(ν)π(δ). Denote the ob-

served data byD = {yi, i = 1, ..., n}, andf(·|·) as a conditional density function. Based on

Bayesian inference, the posterior density ofθ is proportional to the observed data and prior distri-

bution as:

f(θ|D) ∝ {
n
∏

i

∫

f(yi|bi,wi;β, σ
2, ν, δ) f(wi|wi > 0) f(bi|Σb)dbi}π(θ) (2.8)

In general, the integral in (2.8) is of high dimension and does not have any closed form. An-

alytic approximations to the integral may not be sufficiently accurate. Therefore, it is prohibitive

to directly calculate the posterior distribution ofθ based on the observed data. As an alternative,

MCMC procedures can be used to sample based on (2.8) by the Gibbs sampling along with the

Metropolis-Hastings (M-H) algorithm.

2.4. Application: AIDS clinical trial data

2.4.1. AIDS clinical trial data and specific models

We used two AIDS clinical trials to explore the best fit among the models with different time-varying

decay rate functions and different model random errors distribution assumption such as normal, SN,

Student-t and ST distribution. The first trial, A5055, is the focus. Further, we used data from another

clinical trial, A398 (Pfister et al., 2003), to validate the conclusions obtained from A5055.
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A5055 was a phase I/II, randomized, open-label, 24-week comparative study. It included 44

HIV-1 infected patients who failed their first protease inhibitor treatment. Subjects were randomly

assigned into one of the two arms. Subjects were scheduled for follow up visits at study day 0,

weeks 1, 2, and 4, and every 4 weeks thereafter through week 24. RNA viral load was measured

(copies/mL) in blood samples collected at study days 0, 7, 14, 28, 56, 84,112, 140 and 168.

The nucleic acid sequence-based amplification assay (NASBA) was used to measure plasma HIV-1

RNA, with a low limit of quantification of 50 copies/mL. HIV-1 RNA measures below this limit

are not considered reliable, therefore we imputed such values as 25 copies/mL (Acosta et al., 2004;

Davidian and Giltinan, 1995). The mean, minimum and maximumvalues for the baseline viral

load were 6.09× 103, 199 and 1.07× 105 /mL, respectively. The average age of subjects was

37.8 years (SD=8.1) and approximately 80% of subjects had atleast 8 measurements (including

the initial measurement). The mean and median number of daysof follow-up were 155 and 168,

respectively.

A398 was a phase II trial that included 481 HIV-1 positive patients with prior exposure to

approved PIs and loss of virological suppression. All patients were assigned to receive routine ART.

Besides these medications, depending on the dose and type ofPIs to which the patients previously

exposed, they were selectively randomly assigned into one of four arms. HIV-1 RNA levels were

measured at the time of entry into the study (day 0), at study weeks 2, 4, 8, 16, 24, 32, 40, and 48,

every 8 weeks thereafter, and at the time of confirmed virological failure. The mean, minimum and

maximum values for the baseline viral load were 2.76× 104, 260 and 1.32× 107/mL, respectively.

The low limit of quantification is 100 copies/mL and the HIV-1 RNA measures below this limit are

not considered reliable and 50 copies/mL was used instead. The average age of subjects was 40.1

years (SD=19) and approximately 74% subjects had at least 8 measurements (including the initial

measurement). The mean and median of follow-up is 168 and 144days, respectively. We draw

two samples from A398 based on the method of simple random sampling without replacement, one

sample includes 44 subjects and the other includes 100 subjects. We also used all of the 481 subjects

in A398 in the model comparisons.
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Figure 2.3: Profiles of viral load in naturallog scale for four randomly selected patients among

A5055 and A398, respectively

Figure 2.3 shows the measurements of viral load naturallog scale for four randomly selected

patients from A5055 and two sample data sets from A398. We cansee that viral load trajectories

vary widely and they are substantially different across individuals. To account for this time-varying

viral load change, we applied a mixed-effects model with a time-varying decay rate function, as

discussed in Section 2.2. In addition, we assumed the model errors followed an ST distribution in

order to make the model flexible in considering the skewness observed in the data. The exact day

of viral load measurement was used to compute study day in ouranalysis.

Under the general layout as model (2.4), corresponding to the five time-varying decay functions

presented in Section 2.2, the mixed-effects models can be expressed as follow.

Model I: Quadratic linear mixed-effects model:

yij = β1i − [β2i + β3itij]tij + eij

ei
iid∼ STni,v(0, σ

2Ini , δIni)

β1i = β1 + b1i, β2i = β2 + b2i, β3i = β3 + b3i

(2.9)

whereβ = (β1, β2, β3)
T andbi = (b1i, b2i, b3i)

T iid∼ N3(0,Σb).

Model II: Nonlinear mixed-effects model (uniexponential plus a constant):
yij = β1i − [β2i exp(−β3itij) + β4i]tij + eij

ei
iid∼ STni,v(0, σ

2Ini , δIni)

β1i = β1 + b1i, β2i = β2 + b2i, β3i = β3 + b3i, β4i = β4 + b4i

(2.10)

whereβ = (β1, β2, β3, β4)
T andbi = (b1i, b2i, b3i, b4i)

T iid∼ N4(0,Σb).
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Model III: Nonlinear mixed-effects model (uniexponential plus a linear function):

yij = β1i − [β2i exp(−β3itij) + β4i + β5itij]tij + eij

ei
iid∼ STni,v(0, σ

2Ini , δIni)

β1i = β1 + b1i, β2i = β2 + b2i, β3i = β3 + b3i, β4i = β4 + b4i, β5i = β5 + b5i

(2.11)

whereβ = (β1, β2, β3, β4, β5)
T andbi = (b1i, b2i, b3i, b4i, b5i)

T iid∼ N5(0,Σb).

Model IV: Nonlinear mixed-effects model (two uniexponential):

yij = β1i − [β2i exp(−β3itij) + β4i exp(−β5itij)]tij + eij

ei
iid∼ STni,v(0, σ

2Ini , δIni)

β1i = β1 + b1i, β2i = β2 + b2i, β3i = β3 + b3i, β4i = β4 + b4i, β5i = β5 + b5i

(2.12)

whereβ = (β1, β2, β3, β4, β5)
T andbi = (b1i, b2i, b3i, b4i, b5i)

T iid∼ N5(0,Σb).

Model V: Semiparametric mixed-effects model:

yij = β1i − v[w(tij), hi(tij)]tij + eij

wherew(t) andhi(t) are unknown nonparametric smooth fixed-effects and random-effects func-

tions, respectively, andhi(t) are iid realizations of a zero-mean stochastic process. Model V is

a semiparametric mixed-effects model ifw(t) andhi(t) are modeled non-parametrically such as

splines or local polynomials. There are several ways to approximate these nonparametric functions.

Following the similar approach as Shi et al.(1996), Rice andWu (2001), Huang and Dagne (2010),

we used natural cubic basis function instead of smoothing splines (Ke and Wang, 2001; Wang 1998;

Zhang et al., 1998) or kernel methods (Wu and Zhang, 2002) fortwo reasons: this method is more

straightforward in application and we can select the bases by Akaike information criterion (AIC) or

the Bayesian information criterion (BIC) to balance the goodness-of-fit and model complexity. A

linear combination of base function can be expressed as:

w(t) ≈ wp(t) =
∑p−1

l=0 µlψl(t) = µpΨp(t)
T hi(t) ≈ hiq(t) =

∑q−1
l=0 ξilφl(t) = ξiqΦq(t)

T

whereµp andξiq (q ≤ p) are the unknown vectors of fixed and random coefficients, respectively.

We setψ0 = φ0 ≡ 1 and took the same natural cubic splines in the approximations with p ≤ q,

based on the AIC and BIC values, selected the following:

w(tij) + hi(tij) ≈ µ0 + µ1ψ1(tij) + µ2ψ2(tij) + ξi0
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wherep = 3 andq = 1. Model V, therefore, can be expressed as,

yij = β1i − [µ0 + µ1ψ1(tij) + µ2ψ2(tij) + ξi0]tij + eij

ei
iid∼ STni,v(0, σ

2Ini , δIni)

β1i = β1 + b1i, β2i = µ0 + ξi0, β3 = µ1, β4 = µ2

(2.13)

whereβ = (β1, µ0, µ1, µ2)
T andbi = (b1i, ξi0)

T iid∼ N2(0,Σb).

In each of the five models above, besides the ST distribution assumption, the model random

errors can also be assumed to follow other more specific distributions as normal, SN and Student-t.

We used several criteria to check the model fit by applying themodels on the data mentioned above.

We first used deviance information criterion (DIC) (Spiegelhalter, 2002) to compare models.

DIC is a generalization of AIC that can be directly obtained from WinBUGS, it consists of two

components:

DIC = D(θ̄) + 2pD

pD = Eθ|y[−2 log p(y|θ)]− (−2 log p(y|θ̂(y)))
= Eθ|y[D(θ)]−D[Eθ|y(θ)] = D̄ −D(θ̄)

so, DIC = D̄ + pD

whereD(θ) is deviance and defined as−2 log p(y|θ) andp(y|θ) is likelihood,D̄ is posterior mean

deviance which measures “goodness-of-fit”, the larger the value ofD̄, the worse of the fit;pD is

the effective number of parameters that indicates “complexity”, the larger the value ofpD, the more

complex is the model. Therefore, DIC = “goodness-of-fit” + “complexity”. SinceD̄ will decrease as

the number of parameters in a model increases, thepD term compensates for this effect by favoring

models with fewer parameters. Unlike AIC and BIC that require calculating the likelihood at its

maximum overθ, which is not readily available from MCMC, DIC is easily calculated from the

samples generated by MCMC. Same as AIC and BIC, the smaller the value of DIC, the better of the

model fit. DIC is not intended for identification of the ‘correct’ model, but rather merely as a way

to compare a collection of alternative formulations.

Because model comparisons are critical for our study, besides DIC, we also compared the values

of expected predictive deviance (EPD) and residual sum of squares (RSS) that obtained from each

model. EPD is formulated byEPD = E{Σi,j(yrep,ij−yobs,ij)2}, where the predictive valueyrep,ij

is a replicate of the observedyobs,ij and the expectation is taken over the posterior distribution of

the model parametersθ (Gelman et al., 2003). RSS is given byΣi,j(yobs,ij − yfitted,ij)
2 and it is

a measure of the discrepancy between the data and an estimation model. The smaller the value of
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DIC, EPD and RSS, the better fit of the model to the data. Besides these statistical criteria, two

diagnostic plots, Quantile-Quantile plot (Q-Q plot) and plots of observed values vs. fitted values,

were also reported to give a visualized goodness-of-fit in the model comparisons.

We re-scaled the original time t (days) so that the time scalewas between 0 and 1. We used

the entire follow-up data in all of the models. In the Bayesian inferential approach, we also need to

specify values of the hyper-parameters at the population level. Weakly informative prior distribu-

tions are taken for all the parameters: (i) for each component of fixed-effect vector ofβ, the prior

was assumed to follow independent normal distribution asN(0, 100); (ii) for the scale parameter

σ2, we assumed a limiting non-informative inverse gamma priordistribution asIG(0.01, 0.01),

therefore, the mean is 1 and variance is 100; (iii) the prior for the variance-covariance matrix for the

random-effectΣb was taken to be inverse Wishart distribution asIW (Ω, v), the degree of freedom,

v = 5, andΩ is diagonal matrix with diagonal elements being 0.01; (iv) for the skewness param-

eterδ, we chose normal distribution; (v) the degree of freedomν followed truncated exponential

distribution withν0 = 0.5

The MCMC sampler was implemented using WinBUGS software. The code for Model IV is

available in Appendix A. The posterior means and quantiles were drawn after the collecting the final

MCMC samples. We used one long chain. Convergence, which refers the algorithm has reached its

equilibrium target distribution, was closely watched by using the standard tools within WinBUGS

such as trace plots, the MC error and depicting the evolutionof the ergodic means of a quantity over

the number of iterations. After an initial 100,000 burn-in iterations, every 50th MCMC sample was

retained from the next 200,000. Thus, we obtained 4,000 samples of targeted posterior distribution

of the unknown parameters for statistical inference.

2.4.2 Results

Step 1: in Section 2.4.2.1, we determine when the model errors are assumed to have an ST distribu-

tion, among the five models presented in Section 2.4.1, whichone has the best fit.Step 2: in Section

2.4.2.2, because normal, SN and Student-t distribution are all a special case of an ST distribution,

focusing on the model selected from Step 1, we compare the results based on random errors with a

normal, SN and Student-t and ST distribution. The model comparisons are carried on A5055 data

and confirmed by A398 data.Step 3: Section 2.4.2.3 presents the results based on the best model
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selected.Step 4: Section 2.4.2.4 includes simulation study to validate theconclusions made from

Step 1 and Step 2.

Table 2.1: DIC, EPD and RSS among the five models, random errors are assumed to follow ST.

Data set Model I Model II Model III Model IV Model V

A5055: DIC 1192 401.1 669.2 21.7 1015.7

All subjects EPD 0.33 0.12 0.15 0.05 0.20

(n=44) RSS 59.2 20.7 27.1 8.4 35.3

A398: DIC 1239.4 1122.6 1162.9 576.9 1200.5

Sample 1 EPD 3.17 3.48 3.63 1.04 3.04

(n=44) RSS 396 436 454 134 381

A398: DIC 2264.9 1947.5 2855.3 1757.7 2204.5

Sample 2 EPD 0.44 0.51 3.45 0.33 0.39

(n=100) RSS 130.6 158.3 1083 99.4 116.7

A398: DIC 12900.6 10891.2 10763.4 8819.3 14217

All subjects EPD 1.49 1.42 1.31 0.93 1.84

(n=481) RSS 2665 2185 2059 1470 2703

2.4.2.1. Comparison of five models under an ST distribution

When we compare the models that have different components, we should not directly compare the

estimated parameters’ values because they have different meanings. However, because the models

were applied to the same HIV viral load data, we could use DIC,EPD and RSS to find out which

model had the best fit. The comparison results were shown in Table 2.1. Among all of the data

sets: A5055, the two randomly selected samples from A398 andA398 that includes all of the 481

subjects, Model IV constantly has the lowest DIC, EPD and RSS. For example, in A5055, DIC

value for Model IV is 21.7, while it is 1192, 401.1, 669.2, and1015.7 in Models I, II, III and V,

respectively, which indicates Model IV is superior to the other models tested.
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2.4.2.2. Comparison of four distributions about random errors in the best fitted model -

Model IV

For Model IV, we further investigated how different distributions about random errors would affect

the model fit and DIC values are shown in Table 2.2 below. Amongnormal, Student-t, SN and

ST distribution, the model with either ST (A5055 and the two samples of A398) or SN (whole

A398) has the lowest DIC. Because SN has a simpler structure than ST, and the larger the degree of

freedom, the closer the Student-t distribution is to the normal distribution, it is not surprising to see

when the sample size is big (e.g. A398, n=481), SN has a smaller DIC value than ST.

Table 2.2: For Model IV, DIC values under different distribution assumptions.

Data set:

Distribution A5055 (n=44) A398 (n=44) A398 (n=100) A398 (n=481)

Normal 1133.3 961.4 2158.5 10222.0

SN 222.8 727.3 1937.2 7788.2

Student-t 1004.9 949.8 2144.3 8993.9

ST 21.7 576.9 1757.7 8819.3

We also calculated EPD and RSS, which provide the equivalentconclusions: for example, in

A5055 data (n=44), EPD is 0.05, 0.10, 2.19 and 2.29 for ST, SN,Student-t and normal, respec-

tively; in A398 data (n=481), EPD is 0.24, 0.93, 2.74 and 3.17for ST, SN, Student-t and normal,

respectively;

We applied Model IV on A5055 to further compare the estimation results got from different

distribution assumptions. The population posterior mean (PM), the corresponding standard devi-

ation (SD) and 95% credible interval (CI) for fixed-effect parameters are presented in Table 2.3.

Table 2.3 shows: (i) exceptβ5 based on the normal distribution assumption, all of the other es-

timates were significant since the 95% CIs don’t include zero; (ii) for varianceσ2, the estimated

value based on the SN (0.05) and ST (0.01) models were much smaller than that based on the model

with normal (1.15) or Student-t (0.38) distribution; (iii) among all of the parameters estimated, the

related SD obtained from ST was the smallest; (iv) the estimates were similar between normal and

Student-t distribution model, but they were substantially differentto those obtained from SN or ST
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model. For example,β2 based on normal or Student-t distribution was 34.67 and 38.10, respec-

tively, while it was 24.53 and 27.89 in SN and ST model, respectively; (v) the skewness parameter

δ was significantly positive in SN and ST, confirming the positive skewness of the viral load in the

natural logarithm transformed as observed in Figure 2.2; (vi) compared to the model with normal

or Student-t distribution assumption for random errors, the models withan SN or ST distribution

fit the data better. For example, in A5055, for DIC value, 11333.3 (normal) vs. 222.8 (SN), 1004.9

(Student-t) vs. 21.7 (ST), it indicates that consideration of a departure from normality will improve

the model fit.

Table 2.3: A summary of the estimated posterior values (based on A5055 data).

Model IV β1 β2 β3 β4 β5 σ2 δ DIC EPD RSS

Normal PM 8.30 34.67 5.95 6.77 0.38 1.15 – 1133.3 2.29 1133.3

LCI 7.81 26.86 4.01 2.65 -0.40 0.96 –

UCI 8.77 43.04 8.54 12.92 1.01 1.37 –

SD 0.26 4.15 1.26 2.52 0.35 0.11 –

SN PM 6.69 24.53 6.38 13.49 1.55 0.05 2.22 222.8 0.10 17.5

LCI 6.03 12.66 4.10 7.10 0.89 0.01 1.97

UCI 7.40 35.03 11.22 20.19 2.15 0.16 2.51

SD 0.35 5.69 1.72 3.85 0.37 0.04 0.14

Student-t PM 8.33 38.10 9.41 11.97 0.94 0.38 – 1004.9 2.19 420.8

LCI 7.84 30.31 7.34 8.99 0.66 0.28 –

UCI 8.83 46.61 11.64 15.59 1.24 0.50 –

SD 0.25 4.11 1.13 1.66 0.15 0.06 –

ST PM 7.18 27.89 7.19 13.69 1.73 0.01 1.17 21.7 0.05 8.4

LCI 6.66 21.53 6.34 11.72 1.55 0.00 0.99

UCI 7.67 33.93 8.63 16.22 1.98 0.04 1.34

SD 0.25 3.26 0.66 1.28 0.13 0.01 0.08

Note:LCI andUCI are lower limit and upper limit of 95% equal-tail credible interval, respectively
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Several diagnostic plots for goodness-of-fit are also applied. First, we randomly select three

subjects from A5055. The individual estimates of viral loadtrajectories are shown in Figure (2.4).

The following findings are observed: (i) the estimated individual trajectories got from SN and ST

fit the originally observed data much closer than those got from the model where the random errors

are assumed to be normal or Student-t; (ii) all of the 95% CI from the model with an SN or ST

distribution cover the observed viral load, where 21% and 19% of the 95% CI from normal and

Student-t, respectively, doesn’t include the observed values; (iii)the average SD got from ST is

the smallest, which is 0.15, while the mean of SD for the individual estimation got from SN, N

and Student-t is 0.22, 0.52 and 0.46, respectively. Note that the lack of smoothness in the SN and

ST Model estimates of individual trajectories is understandable since a random componentwi was

incorporated in the expected function (see equation (2.6) for details) according to the stochastic

representation feature of the SN and ST distribution for “chasing the data” to this extent.
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Figure 2.4: Individual estimates of viral load trajectories for three randomly selected patients based
on normal, t, SN and ST distribution assumption in Model IV. The observed values are indicated by
diamond♦

Second, we created two diagnostic plots: plots of the observed values versus the fitted values

(Figure 2.5) and Q-Q plot (Figure 2.6).

The findings of these two plots agree with that from DIC: the models with SN and ST distri-

bution provided better fit to the observed data than the ones with normal or Student-t distribution

assumption. Based on the results from DIC, EPD, RSS and the diagnostic plots, we conclude that

Model IV with the ST distribution assumption fits the data better than the other combinations be-
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tween a different time-varying viral decay rate functions and distribution assumption of random

errors.
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Figure 2.5: The observed values versus fitted values ofln(RNA) based on N, Student-t, SN or ST
distribution for random errors
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Figure 2.6: Q-Q plot

2.4.2.3. Simulation study

In order to validate the conclusions obtained from Steps 1 and 2 in Sections 2.4.2.1 and 2.4.2.2,

resampling method is used via a simple random sampling algorithm. Fifteen additional samples are

created from A398 and named as “A398-s1” to “A398-s15”, while each sample includes 44 subjects.

The validations are carried out in two scenarios. Firstly, we evaluate whether Model IV with the

ST distribution is the most appropriate among five models presented in Section 2.4.1. Secondly, we

assess whether Model IV with the ST distribution will provide better model fit in comparison of

Model IV with the N, Student-t and SN distribution assumptions.

Scenario one. Under the ST distribution assumption, Model I∼ Model V are applied to the

fifteen samples created from A398 data set. The DIC values areshown in Table 2.4 and the related

Boxplots are presented in Figure 2.7. Model IV consistentlyhas the smallest DIC value among

the five models. The average DIC in Model IV is 528.68, while itis 978.00, 859.38, 893.65 and

1051.66 in Model I, Model II, Model III and Model V, respectively. The boxplots shown in Figure

2.7 indicate that the median of DIC in Model IV is smaller thanthe values in the other four models,

while the medians of DIC are similar in Model I, II and III but smaller than the value in Model V.

Scenario two. After confirming that Model IV is the most appropriate model among the five
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models, we investigate among the fifteen samples, whether Model IV with the ST distribution pro-

vides better model fit than that with the N, Student-t and SN distributions. The DIC values are

shown in Table 2.5 and Figure 2.8. Among the four distribution assumptions, the median value

of DIC in Model IV with an ST distribution assumption is the lowest (641.47), followed by SN

(741.10), Student-t (856.60) and Normal (857.07).

In summary, we conclude that, based on the two resampling simulation studies, Model IV with

the ST distribution is the best model among the models with five time-varying decay rate functions

and/or four distributions. We will further report analysisresults based on Model IV with the ST

distribution below.

Table 2.4: DIC values among the five models in the 15 samples from A398, random errors are
assumed to follow ST distribution.

Data set Model I Model II Model III Model IV Model V

A398-s1 1369.62 1335.26 1290.19 981.52 1379.38

A398-s2 931.63 348.82 509.20 171.86 1082.11

A398-s3 792.31 737.33 817.19 446.53 631.61

A398-s4 885.84 288.09 834.81 6.22 850.03

A398-s5 1199.30 1115.39 1132.25 778.70 1215.81

A398-s6 863.41 1105.55 1269.64 725.03 1208.31

A398-s7 844.77 636.58 700.77 557.90 906.25

A398-s8 1150.53 1059.46 1032.95 748.52 1155.85

A398-s9 1276.01 1102.07 1097.55 80.80 1273.38

A398-s10 860.40 954.13 871.74 779.33 1087.35

A398-s11 821.84 477.31 420.93 184.95 810.25

A398-s12 998.68 863.03 837.20 727.37 1002.01

A398-s13 1081.95 1189.50 1085.36 788.59 1317.84

A398-s14 1208.26 1010.11 920.54 788.37 1208.26

A398-s15 385.43 668.15 584.42 164.45 646.43

Mean 978.00 859.38 893.65 528.68 1051.66

SD 246.48 308.37 254.44 311.03 228.36

Median 931.63 908.58 882.7 641.47 1084.73
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Table 2.5: For Model IV, among the 15 samples in A398, DIC values under different distribution
assumptions.

Statistics Normal SN Student-t ST

Mean 805.08 810.06 872.90 509.50

SD 240.54 355.03 115.70 313.82

Median 857.07 741.10 856.60 557.90

2.4.2.4. Results based on Model IV with an ST distribution

Based on Model IV with an ST distribution, the estimated population decay rate function for A5055

data is

λ̂(t) = 27.89 exp(−7.9t) + 13.69 exp(−1.73t).

Because the estimated̂λ(t) is always positive, the population viral load would always decrease in

this specific HIV/AIDS data set.

The individual time-varying decay rate function is given by,

λ̂(tij) = β̂i2 exp(−β̂i3tij) + β̂i4 exp(−β̂i5tij)

where the individual estimated decay rateλ̂(tij) is considered to be dependent on both subjects and

time. We found that the individual decay rate at initial treatment,λ̂(ti0), was positively correlated

with baseline viral load (Spearman correlation coefficientr = 0.769,p < 0.0001) and negatively

associated with baseline CD4 cell count (r = -0.447,p= 0.0025). Overall, the individual decay rate,

λ̂(tij), was positively associated with viral load (p < 0.0001) and negatively associated with CD4

cell count (p< 0.0001).

Because 30∼ 60% (Havlir et al., 2000) of patients eventually will have viral rebound, it is

important to have a model that can reasonably predict this type of treatment failure in the long term.

Following Wu et al.(2008), we defined rebound as, comparing with the HIV-1 viral load (natural

log transformed) from the previous measurement, if there was ≥ 1.15 increase at one time point

or ≥ 0.46 increase at two or more consecutive time points. In ACTG5055, there were 11 (26.2%)

subjects had rebound. There was no significant difference inthe baseline viral load (naturallog

(RNA)) between the rebound and no rebound group (median was 9.18 and 8.78, respectively,p =
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0.8610), while the median of baseline CD4 cell count intended to be higher in the no rebound group

than that in the rebound group (285 vs. 253/mL, p = 0.1169).

The trend of the changes in decay rates during the treatment was different between the rebound

and no rebound group (Figure 2.9). For example, every individual decay rate was positive in the no

rebound group, while some individual decay rates in the rebound group became negative, especially

after the 3rd month of the treatment, which corresponding to the viral load rebound.
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Figure 2.9: Profile of viral load inln scale and decay rate in rebound and no rebound group

Based on the results of Model IV under an ST distribution in A5055 data, we also find that:

(i) overall, the average value of individual decay rates,λ̂(tij), was bigger in the no rebound group

(14.97) than that in the rebound group (12.93); (ii) the initial individual decay rates,̂λ(ti1), were

significantly bigger in the no rebound group than that in the rebound group (mean is 53.16 and

40.95, respectively); (iii)̂λ(ti1) was significantly associated with the rebound status in the long

term (OR = 0.703, 95% CI is 0.580 – 0.853,p = 0.0003) and this association was still significant

even after controlling the baseline viral load and CD4 cell count (OR = 0.717, 95% CI is 0.588 –
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0.875,p = 0.0010). (iv) the average individual decay rate at the lastvisit (λ̂(tini)) among the no

rebound subjects was 4.67, while it was -2.28 in the rebound group which indicates the viral load

actually increasing instead of decreasing in this group. Among these findings, the most interesting

is the associated relationship between initial individualdecay rate (̂λ(ti0)) and the rebound status:

the results indicated that the odds of rebound decreased about 30% with each one unit increased in

the initial decay rate. This may be helpful for clinicians topredict the long term results based on the

information at early stage of the disease.

2.5. Conclusion and discussion

With an ST distribution assumption for model random errors to account skewness observed in viral

load responses, we compared five commonly used mixed-effects models in HIV dynamics via the

Bayesian approach. We also investigated the impact of the four distributions in the skew-elliptical

family on the model fit. The results indicate that with the ST distribution, there is potential gain of

efficiency and accuracy in estimating certain parameters when the normality assumption does not

apply to the data. The skew-elliptical modeling via the Bayesian approach proposed in this study

can be easily carried out via the WinBUGS package. Because the proposed model is quite general

in theory and accessible to the existing software, it will allow statisticians to apply this method in

other fields.

In any discussions of mathematical modeling of complex systems, it is important to point out

that, while complex models may be needed to provide accuratedescriptions of the underlying dy-

namics, the models are most useful when they can be compared to clinical and/or experimental

data. In developing models for HIV infection and treatment,this requires a balance between com-

plexity and utility. After finding the best fitted model, we estimated the relationship between the

viral decay rate and some clinical important variables. Based on the results from the best fitted

model with an ST distribution assumption, we found the initial estimated decay rate was positively

correlated with the baseline viral load and negatively associated with baseline CD4 cell count. We

also found that, overall, the average decay rate was lower inthe rebound than that in the no rebound

group. A more interesting finding is the significant association between the initial decay rate and

the rebound status in the long term, even after controlling for the baseline viral load and CD4 cell

count. This finding is clinically important because it may enable physicians to predict the long-term
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outcome based on the estimated decay rate at an early stage. Because we didn’t find such kinds of

associations based on the model with Student-t or normal distribution assumption, it is important to

consider non-normality into the modeling when the normality assumption cannot be satisfied even

after transformation.

Using the model with a time-varying decay rate function has some advantages over the bipha-

sical models. (i) In the biphasical models, the associationbetween the first decay rate and baseline

viral load could be positive (Notermans et al., 1998; Wu et al., 2004) or negative (Wu et al., 1999);

no significant association was found between the rebound andthe first decay rate either (Wu et al.,

2008); (ii) although the second decay rate in the biphasicalmodels is supposed to be associated with

long-term treatment status such as rebound (Ding and Wu, 1999; Wu et al.,2005), no significant as-

sociation was found between the second decay rate and the viral replication in long term (Sedaghat

et al., 2008; Wu et al., 2003).

This chapter has some limitations. Usually, covariates areincluded in the mixed-effects models

to control within- and between-subject variation, and CD4 cell count is a commonly used covariate

in HIV dynamic models. However, in order to use the original proposed models in the comparisons,

we did not include any covariates such as CD4 cell count or demographic information. For the

viral load, the values below detection limit (BDL) are usually considered as inaccurate. Instead of

treating these values as censored, we computed them by half the value of the detectable level. The

issue of missing values is not considered in this study either.

This chapter compared commonly used HIV dynamic models and the estimation was through

Bayesian statistical inference. The mathematically modeling was extended from a normality as-

sumption and a general skew-elliptical distribution was used in order to account the skewness ob-

served in the data. New technologies were applied to facilitate the computation challenges related

to the complex nature of HIV/AIDS data. Furthermore, a more flexible distribution such as skew-

normal independent distribution, can be assumed; CD4 cell count, which can either be treated as a

covariate or an outcome in the HIV research, needs to be considered too, while the measurement

errors, skewness of CD4, and correlation with other factorssuch as CD8 are all worth to explore.

In conclusion, the skewness parameter in the model with SN orST distribution is significantly

positive, which confirms the positive skewness observed in the viral load data even after natural log

transformed. The model fit is the best in the model with skewed(SN or ST) distribution. Because
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estimated parameters can be considerably different between the models with skewed distribution

and normal or Student-t distribution, it is important to account for skewness in themodel when data

exhibits noticeable skewness. Different models may yield different conclusions about the relation-

ship between the decay rate with viral load, CD4 cell count and rebound status in HIV dynamics,

therefore, it is also critical to choose a reasonable model that can balance between complexity and

utility.
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3 Simultaneous Bayesian inference for linear, nonlinear and
semiparametric mixed-effects models with skew-normalityand

measurement errors in covariates

Disclaimer

This chapter has already been published as: Huang, Yangxin;Chen, Ren; and Dagne, Getachew

(2011) “Simultaneous Bayesian Inference for Linear, Nonlinear and Semiparametric Mixed-Effects

Models with Skew-Normality and Measurement Errors in Covariates”. The International Journal

of Biostatistics: Vol. 7 : Iss. 1, Article 8. The permission of including it in the dissertation is in

the Appendix D. Except the section numbers and question numbers changing in order to make the

chapters labeling constant, all of the remaining contents in Chapter 3 are in the original format.

Abstract

In recent years various mixed-effects models have been suggested for estimating viral decay

rates in HIV viral dynamic models for complex longitudinal data. Among those models are lin-

ear mixed-effects (LME), nonlinear mixed-effects (NLME),and semiparametric nonlinear mixed-

effects (SNLME) models. However, a critical question is whether these models produce coherent

estimates of viral decay rates, and if not, which model is appropriate and should be used in practice.

In addition, one often assumes that model random errors are normally distributed, but the normality

assumption may be unrealistic, particularly, if the data exhibit skewness. Moreover, some covariates

such as CD4 cell count may be often measured with substantialerrors. This paper addresses these

issues simultaneously by jointly modeling the response variable with skewness and a covariate pro-

cess with measurement errors using a Bayesian approach to investigate how estimated parameters

are changed or different under these three models. A real data set from an AIDS clinical trial study

was used to illustrate the proposed models and methods. It was found that there was a significant

incongruity in the estimated decay rates in viral loads based on the three mixed-effects models,

suggesting that the decay rates estimated by using BayesianLME or NLME joint models should be
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interpreted differently from those estimated by using Bayesian SNLME joint models. The findings

also suggest that the Bayesian SNLME joint model is preferred to other models because an arbitrary

data truncation is not necessary; and it is also shown that the models with a skew-normal distribution

and/or measurement errors in covariate may achieve reliable results when the data exhibit skewness.

3.1. Introduction

Modeling of HIV dynamics in AIDS research has greatly improved our understanding of the patho-

genesis of HIV-1 infection and guided for the treatment of AIDS patients and evaluation of an-

tiretroviral (ARV) therapies (Perelson, 1997; Wu and Ding,1999; Wu et al., 2005). Such models

often incorporate repeated measures over a period of treatment to assess rates of changes in viral

load (number of HIV RNA copies in plasma). Recent research indicates that the first-phase de-

cay rate of viral response to treatment is a potentially useful biomarker for ARV potency (Ding

and Wu, 1999). Even though various statistical modeling andanalysis methods have been applied

for estimating the parameters of HIV dynamics, such as, linear and nonlinear regression (Perelson,

1997), linear mixed-effects (LME) and nonlinear mixed-effects (NLME) modeling approach (Wu

and Ding, 1999; Wu, et al., 1998, 2004; Wu, 2004), nonparametric NLME modeling approach (Liu

and Wu, 2007; Wu and Zhang, 2002; Wu, et al., 2004), joint model approach via Monte Carlo EM

algorithm (Liu and Wu, 2007; Wu, 2002; Wu, 2004) and BayesianNLME modeling approach via

Markov chain Monte Carlo (MCMC) procedure (Huang et al., 2006; Huang and Dagne, 2010), it is

not clear which model should be used to estimate the first-phase decay rate. More importantly, in

all of these models at least one of the following three important issues standout.

Firstly, the common assumption of distributions for (within-subject) random error is normal in

those statistical models. This assumption may lack the robustness against departures from normal-

ity and/or outliers as discussed by Verbeke and Lesaffre (1996), and may also lead to misleading

results (Verbeke and Lesaffre, 1996; Ghosh et al., 2007). Very often in AIDS studies, the viro-

logic responses exhibit skewness. For example, Figure 3.1 displays the histograms of repeated viral

load (in naturallog scale) and CD4 cell count measurements for 44 subjects enrolled in the AIDS

clinical trial study–A5055 (Acosta et al., 2004). It seems that for these data sets to be analyzed in

this paper, the viral load responses are highly skewed even after naturallog-transformation. Thus,

a normality assumption is not quite realistic and may be too restrictive to provide an accurate rep-
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resentation of the structure of the data. One way to incorporate skewness is to use a skew-normal

(SN) distribution for (within-subject) random errors.Secondly, the mixed-effects models have been

used in the previous studies to account for both between-subject and within-subject variations in

viral load measurements which are associated with covariates including CD4 cell count. However,

the covariates such as CD4 cell count which were considered in those studies are often measured

with substantial errors and highly skewed as shown in Figure3.1(down panel).Thirdly, a major

challenge with these modeling approaches is the associatedintensive computation burden in the

inference, and in some cases it can even be computationally infeasible. Particularly, for nonlinear

longitudinal models in the presence of measurement errors in covariates, the computational problem

becomes much worse. In addition, there may exist the problemof non-convergence of these algo-

rithms under the framework of likelihood estimation. To thebest of our knowledge, there is little

literature on simultaneously addressing measurement errors in covariates and an SN distribution for

random errors to compare performance of the various mixed-effects models under the framework of

Bayesian mixed-effects modeling approach. This article provides a unified approach to investigate

SN Bayesian mixed-effects models with covariate measurement errors.

In this paper, the main focus is to provide a comprehensive comparison of three mixed-effects

models (LME, NLME and semiparametric NLME) with an SN distribution and measurement errors

in covariates for estimated viral decay rates in viral dynamic models. We consider a multivariate

SN distribution introduced by Sahu et al.(2003) which is suitable for a Bayesian inference since it

is built using conditional method and is defined in Section 1.4. The rest of the paper is organized

as follows. Section 3.2 presents a general modeling approach for SN Bayesian semiparametric

nonlinear mixed-effects (SN-BSNLME) joint models which include three specific models as special

cases to be discussed in Section 3.3. We describe data from anAIDS clinical study that motivated

this research, discuss the specific models for HIV dynamics and reports the results obtained by

using the three different methods or models In Section 3.3. Finally, the paper concludes with some

discussions in Section 3.4.
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Figure 3.1: The histograms of viral load (inln scale) and standardized CD4 cell count measured
from day 0 to day 35 [Set (a): data cut at truncation day 35], day 84 [Set (b): data cut at truncation
day 84] and the end of study period [Set (c): complete data] for 44 patients in an AIDS clinical trial
study.

3.2. Bayesian inference on joint models with skew-normal distributions

3.2.1. Measurement error models with a skew-normal distribution

This section will briefly discuss measurement error joint models with a skew-normal distribution.

Various covariate models were investigated in the literature (Carroll et al., 2006; Higgins et al., 1997;

Liu and Wu, 2007; Wu, 2002). However, the fundamental assumption of distributions for measure-

ment random errors is normal in these statistical covariatemodels and this assumption may lack

the robustness against departures from normality and/or may violate the agreement with observed

data. Thus statistical inference and analysis with normal assumption may lead to misleading results.

In this paper, we extend the covariate models to have a skew-normal distribution for measurement

errors. For simplicity, we consider a single time-varying covariate. Letzik be the observed covari-

ate value for individuali at timesik (i = 1, . . . n; k = 1, . . . ,mi). Note that for each individual,

we allow the covariate measurement timessik to differ from the response measurement timestij

(j = 1, . . . , ni). In the presence of measurement errors in covariate, we need to model the covariate

process. We consider the following LME model with an SN distribution
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zik = uT
ikα+ vT

ikai + ǫik (≡ z∗ik + ǫik), ǫi iid ∼ SNmi

(

0, τ2Imi ,∆ǫ

)

, (3.1)

wherezi = (zi1, . . . , zimi)
T with zik being the covariate value for individuali at timesik, uik

andvik arel × 1 design vectors,α = (α1, . . . , αl)
T andai = (ai1, . . . , ail)

T are unknown pop-

ulation (fixed-effects) and individual-specific (random-effects) parameter vectors, respectively, and

ǫi = (ǫi1, . . . , ǫimi)
T is a multivariate skew-normal distribution withǫik being the measurement

error for individual i at time sik, τ2 is the unknown within-individual variance. Themi × mi

skewness diagonal matrix∆ǫ = diag(δǫi1 , . . . , δǫimi
) andmi × 1 skewness parameter vector

δǫi = (δǫi1 , . . . , δǫimi
)T . In particular, ifδǫi1 = · · · = δǫimi

=̂δǫ, then∆ǫ = δǫImi andδǫi = δǫ1mi

with 1mi = (1, . . . , 1)T ; this indicates that we are interested in skewness of overall data set

which is the case to be used in real data analysis in the next section. z∗
i = (z∗i1, . . . , z

∗
imi

)T and

z∗ik = uT
ikα+vT

ikai may be viewed as the true (but unobservable) covariate values at timesik under

normal distribution of model errors in which case skewness parameterδǫik = 0. We assume that

ai iid ∼ Nl(0,Σa), whereΣa is the unrestricted covariance matrix. Note that the model (3.1)

may be interpreted as a skew-normal (SN) covariate measurement error model which incorporates

the correlation of the repeated measurements on each individual.

3.2.2. Skew-normal Bayesian semiparametric nonlinear mixed-effects joint models

In this section, we present the joint models and methods in general forms, illustrating that our meth-

ods may be applicable in other applications. Denote the number of subjects byn and the number of

measurements on theith subject byni. For the response process, we consider a general semipara-

metric NLME (SNLME) model which is similar to Wu and Zhang (2002) but incorporates possibly

mis-measured time-varying covariates and model random errors with a skew-normal distribution.

yij = g(tij ,β
†
ij, φ(tij)) + eij, ei iid ∼ SNni

(

0, σ2Ini ,∆
)

,

β
†
ij = d†[z∗ij ,β

†, b†i ], b
†
i iid ∼ Ns3(0,Σ

†
b),

φ(tij) = v[w(tij), hi(tij)], i = 1, 2, . . . , n; j = 1, 2, . . . , ni,

(3.2)

whereyi = (yi1, . . . , yini)
T with yij being the response value for individuali at tij , g(·), d†(·)

and v(·) are known parametric functions,w(t) and hi(t) are unknown nonparametric smooth

fixed-effects and random-effects functions, respectively, hi(t) are iid realizations of a zero-mean

stochastic process,β†
ij are s1 × 1 individual-specific time-dependent parameter vectors,β† are
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s2 × 1 population parameter vectors (s2 ≥ s1), σ2 is the unknown within-subject variation,

ei = (ei1, . . . , eini)
T is the vector of random errors;b†i are s3 × 1 vector of random-effects

(s3 ≤ s1) andΣ†
b is the unrestricted covariance matrix. Theni × ni skewness diagonal matrix

∆ = diag(δei1 , . . . , δeini
) and theni × 1 skewness parameter vectorδei = (δei1 , . . . , δeini

)T . In

particular, if δei1 = · · · = δeini
=̂δe, then∆ = δeIni andδei = δe1ni . In the model (3.2), we

assume that the individual-specific parametersβ
†
ij depend on the true (but unobservable) covariate

z∗ij rather than the observed covariatezij , which may be measured with errors.

Semiparametric NLME model (3.2) is more flexible than parametric NLME models. It reverts

to a parametric NLME model when the nonparametric partsw(t) andhi(t) are constants. To fit

model (3.2), we apply the regression spline method. The working principle is briefly described

as follows and more details can be found in Wu and Zhang (2002). The main idea of regres-

sion spline is to approximatew(t) andhi(t) by using a linear combination of spline basis func-

tions. For instance,w(t) andhi(t) can be approximated by a linear combination of basis functions

Ψp(t) = {ψ0(t), ψ1(t), ..., ψp−1(t)}T andΦq(t) = {φ0(t), φ1(t), ..., φq−1(t)}T , respectively. That

is,

w(t) ≈ wp(t) =

p−1
∑

l=0

µlψl(t) = µpΨp(t)
T , hi(t) ≈ hiq(t) =

q−1
∑

l=0

ξilφl(t) = ξiqΦq(t)
T , (3.3)

whereµp andξiq (q ≤ p) are the unknown vectors of fixed and random coefficients, respectively.

Based on the assumption ofhi(t), we can regardξiq as iid realizations of a zero-mean random

vector. For our model, we consider natural cubic spline bases with the percentile-based knots.

To select an optimal degree of regression spline and numbersof knots, i.e., optimal sizes ofp

andq, the Akaike information criterion (AIC) or the Bayesian information criterion (BIC) is often

applied (Davidian and Giltinan, 1995; Wu and Zhang, 2002). Substitutingw(t) andhi(t) by their

approximationswp(t) andhiq(t), we can approximate model (3.2) in a compact way as follows.

yij = g
(

tij,d
†[z∗ij ,β

†, b†i ], v[Ψp(tij)
Tµp,Φq(tij)

T ξiq]
)

+ eij ≡ g
(

tij ,d[z
∗
ij ,β, bi]

)

+ eij (3.4)

whereβ = (β†T ,µT
p )

T andbi = (b†Ti , ξTiq)
T are the vectors of fixed-effects and random-effects,

respectively, andd(·) is a known but possible nonlinear function. By doing so, the randomness

of the nonparametric mixed-effects is transferred to the randomness of the associated coefficients,

whereas the nonparametric feature is represented by the basis functions. Thus, for givenΨp(t) and
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Φq(t), we approximate the SN semiparametric NLME model (3.2) by the following SN parametric

NLME model.

yi = gi(tij ,βij) + ei, ei iid ∼ SNni

(

0, σ2Ini ,∆
)

,

βij = d[z∗ij ,β, bi], bi iid ∼ Ns4(0,Σb),
(3.5)

wheres4 = s3 + q, gi(tij ,βij) = (g(ti1,βi1), . . . , g(tini ,βini
))T with g(·) being a known linear

or nonlinear function, andΣb is an unstructured covariance matrix.

Under Bayesian framework, we still need to specify prior distributions for unknown parameters

in the models (3.1) and (3.5) as follows.

α ∼ Nr(α0,Λ1), τ2 ∼ IG(ω1, ω2), Σa ∼ IW (Ω1, ν1), δǫi ∼ Nmi(0,Γ1),

β ∼ Ns5(β0,Λ2), σ2 ∼ IG(ω3, ω4), Σb ∼ IW (Ω2, ν2), δei ∼ Nni(0,Γ2),
(3.6)

wheres5 = s2+p, the mutually independent Inverse Gamma (IG), Normal (N ) and Inverse Wishart

(IW ) prior distributions are chosen to facilitate computations (Davidian and Giltinan, 1995). The

super-parameter matricesΛ1, Λ2, Ω1, Ω2, Γ1 andΓ2 can be assumed to be diagonal for convenient

implementation.

We assume thatei, ǫi, bi andai are independent of each other. Following Sahu et al.(2003) and

properties of skew-normal distribution, it can be shown that zi andyi in the models (3.1) and (3.5)

follow the following distributions

yi|ai, bi,wei ∼ Nni

(

gi + δewei , σ
2Ini

)

, wei ∼ Nni(0, Ini)I(wei > 0),

zi|ai,wǫi ∼ Nmi

(

z∗
i + δǫwǫi, τ

2Imi

)

, wǫi ∼ Nmi(0, Imi)I(wǫi > 0),
(3.7)

whereI(wk > 0) is an indicator function andwk = |ξ| with ξ ∼ Nk(0, Ik).

Let θ = {α,β, τ2, σ2,Σa,Σb, δǫi , δei ; i = 1, . . . , n} be the collection of unknown parameters

in the models (3.1) and (3.5), andf(·|·) andπ(·) be a conditional density function and a prior

density function, respectively. Denote the observed data by D = (( yi, zi), i = 1, ..., n ). We assume

thatα,β, τ2, σ2,Σa,Σb, δǫi , δei (i = 1, . . . , n) are independent of each other, and thus we have

π(θ) = π(α)π(β)π(τ2)π(σ2)π(Σa)π(Σb)
∏

i π(δǫi)π(δei). After we specify the models for the

observed data and the prior distributions for the unknown model parameters, we can make statistical

inference for the parameters based on their posterior distributions under Bayesian framework. The

joint posterior density ofθ based on the observed data can be given by

f(θ|D) ∝ {
n
∏

i

∫ ∫

f(yi|ai, bi,wei ;α,β, σ
2, δei) f(wei |wei > 0)×

f(zi|ai,wǫi ;α, τ
2, δǫi)f(wǫi |wǫi > 0) f(ai|Σa) f(bi|Σb)daidbi}π(θ).

(3.8)
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In general, the integrals in (3.8) are of high dimension and do not have closed form. Analytic

approximations to the integrals may not be sufficient accurate. Therefore, it is prohibitive to directly

calculate the posterior distribution ofθ based on the observed data. As an alternative, MCMC

procedures can be used to sample based on (3.8) using the Gibbs sampler along with the Metropolis-

Hastings (M-H) algorithm. The above representations basedon the models are useful as it allows to

implement easily using the WinBUGS codes (Lunn et al., 2000).

3.3. Analysis of AIDS clinical data

3.3.1. Data and models

We illustrate our methods using a real AIDS clinical data. The study consists of 44 HIV-infected pa-

tients who were treated with a potent ARV regimen. Viral load, CD4 cell count and other variables

were repeatedly measured over a period of 24 weeks. RNA viralload was measured in copies/mL

at study days 0, 7, 14, 28, 56, 84, 112, 140 and 168 of follow-up. The nucleic acid sequence-

based amplification assay (NASBA) was used to measure plasmaHIV-1 RNA, with a lower limit

of quantification, 50 copies/mL. the HIV-1 RNA measures below this limit are not considered reli-

able, therefore we simply imputed such values as 25 copies/mL (Acosta et al., 2004; Davidian and

Giltinan, 1995). Covariates such as CD4 cell count including associated baseline data were also

measured throughout the study on similar schemes. Figure 3.2 shows the measurements of viral

load in natural log scale and CD4 cell count for the three randomly selected patients. Both viral

load and CD4 cell count trajectories exhibit distinctive and important patterns throughout the time

course. We can see that the rate change in viral load appears to vary substantially across patients,

reflecting both biological variation and systematic associations with subject-level covariates.

The baseline value of HIV-1 RNA in plasma (ln scale) ranged from 5.296 to 11.582 with mean

8.715 and standard deviation 1.531. As is evident from Figure 3.3(c), RNA levels varied widely

during the early treatment stage. For some patients, the RNAlevel decreased rapidly with treat-

ment (described as the first-phase decay rate); for others itdecreased slowly. Studying the relation

between baseline RNA and the first-phase decay rate will provide useful information for clinical

decision-making and treatment individualization. The first-phase decay rate indicates the potency

of ARV therapies (Ding and Wu, 1999). If we know the potency ofa treatment at an earlier stage,

we may be able to avoid the less potent regimens for a particular patient. This will help clinicians
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Figure 3.2: Profiles of viral load (response) in naturallog scale and CD4 cell count (covariate) for
three randomly selected patients. The horizontal line is below the detectable level of viral load
(3.91=log(50)) and the two vertical lines represent truncation days 35 and84, respectively.

to select a treatment for their patients. Although the patients may receive the same treatment, there

may still exist the difference in the potency for different patients with the same regimen. This is be-

cause the patients may absorb the drug differently, and patients’ immune systems and other factors

related to response of the drugs may be different.
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(a): Raw data truncated at day 35
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(b): Raw data truncated at day 84
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Figure 3.3: Profiles of viral load inln scale from an AIDS clinical trial study. Change in HIV-1
load, measured from RNA levels in plasma, with time during treatment from day 0 to (a) day 35,
(b) day 84 and (c) the end of study period.

Viral dynamic models can be formulated through a system of ordinary differential equations

(ODE) (Huang et al., 2006; Wu et al., 1998; Wu and Ding, 1999).In practice, some investigators

have used a LME model simplified from an ODE system to fit viral dynamic data from the very

early time period such as displayed in Figure 3.3(a). Their response model can be described by the
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following linear model

y(t) = ln{V (t)} = β1 − β2t+ e(t) (3.9)

wherey(t) is the natural logarithm of the number of HIV-1 RNA copies permL of plasma,e(t)

is the measurement error,β2 is the first-phase viral decay rate which may represent the minimum

turnover rate of productively infected cells (Perelson et al., 1997) andβ1 is macro-parameter with

exp(β1) being the baseline viral load at timet = 0.

Due to the limitations of current assays, only two infected cell compartments can be identified

which are believed to produce a biphasic viral decay (Perelson et al., 1997). Based on biological

and clinical arguments, an effective model used to estimateviral dynamic parameters is the biphasic

model approximated from a compartmental analysis-based anODE system (Perelson et al., 1997;

Wu and Ding, 1999). This model plays an important role in modeling HIV dynamics and has

demonstrated promise in studying HIV response process. Themodel is described as follows.

y(t) = ln{V (t)} = ln {exp[β1 − β2t] + exp[β3 − β4t]}+ e(t) (3.10)

whereβ4 is the second-phase viral decay rate which may represent theminimum turnover rate of

latently or long-lived infected cells (Perelson et al., 1997) andexp(β1) + exp(β3) is the baseline

viral load at timet = 0. It is generally assumed thatβ2 > β4, which assures that the model is

identifiable and is appropriate for empirical studies. It isof particular interest to estimate the viral

decay ratesβ2 andβ4 because they quantify the antiviral effect and hence can be used to assess

the efficacy of the antiviral treatments (Ding and Wu, 1999).In estimating these decay rates, only

the early segment of the viral load trajectory data (for example, data shown in Figure 3.3(b)) can

be used (Perelson et al., 1997; Wu and Ding, 1999), because the viral load trajectory may have a

different shape in later stages (see Figure 3.3(c)).

Although the models (3.9) and (3.10) are widely used in HIV dynamic studies and have shown

promise, there are some concerns. For example, when different models give different conclusions,

how do we know which is correct and should be used? In our analysis of the clinical data shown

above, the models (3.9) and (3.10) produce incongruous estimates of viral decay rates ofβ2 and

provide conflicting results on their correlations with baseline viral load: one indicates a strongly

positive correlation between baseline HIV-1 RNA levels andthe first-phase decay rate and the other

indicates that these two factors are negatively correlated. In addition, both models are applied to

the early segment of the viral load data. That means one has tocut the data at some arbitrary time
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point. It is not obvious what time point should be the cut-point or whether we should use different

cut-points. To avoid these problems, a semiparametric biexponential model was proposed as follows

(Wu and Zhang, 2002).

y(t) = ln{V (t)} = ln {exp[β1 − β2t] + exp[β3 − β4(t)t]}+ e(t) (3.11)

where the second-phase decay rateβ4(t) is a smooth unknown function. Intuitively, model (3.11) is

more reasonable because it assumes that the viral decay ratein the second-phase can vary with time

as a result of drug resistance, pharmacokinetics, medication adherence and other relevant clinical

factors likely to affect changes in the viral load during thelate stage of treatment. Therefore, all

data obtained during ARV treatment can be used by fitting model (3.11). We also assume that

β2 > β4(t) for all time in order to guarantee that there is the first phaseof curve decay. This

is a semiparametric model because of the mechanistic structure (two-exponential) with constant

parameters (β1, β2, β3) and a time-varying parameter (β4(t)) to capture the time-varying effects

of the treatment and over a longer period. This semiparametric model preserves compartmental

mechanistic interpretation (Perelson et al., 1997; Wu and Ding, 1999) of the original parametric

model under the biexponential form. In particular, the turnover rate of productively infected cells,

β2, can still be estimated. Actually, by including long-term viral load data, the estimate ofβ2 may

be more accurate and reasonable compared with those obtained in previous studies (Perelson et al.,

1997; Wu and Ding, 1999) after excluding long-term viral load data for modeling and analysis by

somead hocrules (that is, the screening and inclusion of viral load data are quite arbitrary). In

the mean time, this model enjoys the flexibility of a semiparametric function for the second-phase

decay rateβ4(t). The estimate ofβ4(t) provides not only an approximate turnover rate over time

of long-lived/latently infected cells at the early stage oftreatment as the standard parametric model

does, but also more importantly describes how it may change over a long treatment period as driven

by, presumably, drug resistance, non-compliance and otherclinical determinants. Most importantly,

the semiparametric model is capable of modeling long-term viral load data of which the trajectory

may vary substantially among different patients (Wu and Zhang, 2002). It is noted that the three

different models are applied to different segments of the viral dynamic data. Therefore, the standard

goodness-of-fit or model selection methods cannot be used toidentify the appropriate model.

To characterize skewness appeared often in viral loads and CD4 cell count, we will develop
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SN Bayesian mixed-effects joint models in conjunction withthe three dynamic response models

and LME covariate model. To model the covariate CD4 process,we consider empirical polynomial

LME models and choose the best model (3.1) with quadratic (l = 3) based on AIC/BIC model

selection criteria as suggested by Liu and Wu (2007) and Wu (2002). We thus adapted the quadratic

polynomial as the SN covariate model (3.1) withuik = vik = (1, sik, s
2
ik)

T for the CD4 trajectory

as follows.

zik = z∗ik + ǫik, ǫi ∼ SNmi

(

0, τ2Imi , δǫImi

)

, (3.12)

wherez∗ik = (α1 + ai1) + (α2 + ai2)sik + (α3 + ai3)s
2
ik, α = (α1, α2, α3)

T is population (fixed-

effects) parameter vector, andai = (ai1, ai2, ai3)
T is individual-specific (random-effects) vector

with normal distributionN3(0,Σa). Special cases of the model (3.2), which are offered to jointly

model HIV dynamics in the presence of CD4 covariate process with measurement errors described

in the model (3.12), are discussed below.

Model I: SN Bayesian semiparametric nonlinear mixed-effects (SN-BSNLME) joint model (3.5)

based on the semiparametric biexponential model (3.11) in conjunction with the SN covariate model

(3.12) along with specified prior distributions (3.6) can beexpressed as

yij = ln {exp[βi1 − βi2tij] + exp[βi3 − βij4(tij)tij ]}+ eij , ei ∼ SNni

(

0, σ2Ini , δeIni

)

,

βi1 = β1 + bi1, βi2 = β2 + bi2, βi3 = β3 + bi3, βij4(tij) = β4 + β5z
∗
ij + w(tij) + hi(tij),

(3.13)

whereβ = (β1, β2, β3, β4, β5,µ
T
p )

T , bi = (bi1, bi2, bi3, ξ
T
iq)

T ∼ N3+q(0,Σb); see equation (3.16)

below for detailed specification aboutµp andξiq. We can see that the SN-BSNLME joint model

above reverts to an SN Bayesian nonlinear mixed-effects (SN-BNLME) models when the nonpara-

metric partsw(t) andhi(t) become constants. More specifically, the SN-BNLME model reduces

to an SN Bayesian linear mixed-effects (SN-BLME) model whenthe response function is linear.

Thus, we next present the following two simplified mixed-effects models.

Model II: SN Bayesian Nonlinear Mixed-Effects (SN-BNLME) joint model based on the biexpo-

nential model (3.10) in conjunction with the SN covariate model (3.12) can be expressed as

yij = ln {exp[βi1 − βi2tij] + exp[βi3 − βij4tij ]}+ eij , ei ∼ SNni

(

0, σ2Ini , δeIni

)

,

βi1 = β1 + bi1, βi2 = β2 + bi2, βi3 = β3 + bi3, βij4 = β4 + β5z
∗
ij + bi4,

(3.14)

whereβ = (β1, β2, β3, β4, β5)
T andbi = (bi1, bi2, bi3, bi4)

T ∼ N4(0,Σb).
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Model III: SN Bayesian Linear Mixed-Effects (SN-BLME) model based on the linear model (3.9)

can be written as

yij = βi1 − βi2tij + eij, ei ∼ SNni

(

0, σ2Ini , δeIni

)

,

βi1 = β1 + bi1, βi2 = β2 + bi2,
(3.15)

whereβ = (β1, β2)
T andbi = (bi1, bi2)

T ∼ N2(0,Σb).

3.3.2. Results of analysis

In this section, we report the results of our analysis of the three data sets (mentioned in Figure 3.3)

using SN-BLME, SN-BNLME and SN-BSNLME joint models, respectively. A naturallog transfor-

mation for viral load data was used in the analysis in order tostabilize the variation of measurement

error and speed up estimation algorithm. To avoid very small(large) estimates which may be un-

stable, we standardize the time-varying covariate CD4 cellcount (each CD4 value is subtracted by

mean 375.46 and divided by standard deviation 228.57) and rescale the original timet (in days)

so that the time scale is between 0 and 1. To fit the SN-BLME model and the SN-BNLME joint

model, we included only the viral load data from day 0 to day 35(Figure 3.3(a)) and day 0 to day

84 (Figure 3.3(b)), respectively, because the SN-BLME model could only be used to fit linear tra-

jectories of viral load and the SN-BNLME assumptions might be violated after long-term treatment

if there are rebounds of viral load (i.e., we excluded the significant rebound data from the analysis).

In fitting the SN-BSNLME joint model, we use all viral load data shown in Figure 3.3(c) and em-

ploy the linear combinations of natural cubic splines with percentile-based knots to approximate the

nonparametric functionsw(t) andhi(t). Following studies in (Liu and Wu, 2007; Wu and Zhang,

2002), we setψ0(t) = φ0(t) ≡ 1 and take the same natural cubic splines in the approximations

(3.3) with q ≤ p. The values ofp andq are determined based on the AIC/BIC which suggest the

following function forβij4(tij) with p = 3 andq = 1 in the model (3.13).

βij4(tij) ≈ β4 + β5z
∗
ij + µ0ψ0(tij) + µ1ψ1(tij) + µ2ψ2(tij) + ξi0. (3.16)

To carry out Bayesian inference, we need to specify the values of the hyper-parameters in the

prior distributions. In Bayesian approach, we only need to specify the priors at the population level.

We take weakly informative prior distributions for all the parameters. In particular, (i) fixed-effects

were taken to be independent normal distributionN(0, 100) for each component of the population

parameter vectorsα andβ. (ii) For the scale parametersσ2 and τ2 we assume a limiting non-
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informative inverse gamma prior distribution,IG(0.01, 0.01) so that the distribution has mean 1

and variance 100. (iii) The priors for the variance-covariance matrices of the random-effectsΣa

andΣb are taken to be inverse Wishart distributionsIW (Ω1, ν1) andIW (Ω2, ν2), where degree

of freedomν1 = ν2 = 5, andΩ1 andΩ2 are diagonal matrices with diagonal elements being 0.01.

(iv) For each of the skewness parametersδe and δǫ, we choose independent normal distribution

N(0, 100), where we specify thatδei = δe1ni andδǫi = δǫ1mi to indicate that we are interested in

skewness of both overall viral load data and overall CD4 cellcount data.

The MCMC sampler was implemented using WinBUGS software (Lunn et al., 2000), and the

program codes are available in Appendix B. In particular, the MCMC scheme for drawing sam-

ples from the posterior distributions of all parameters in the both response and covariate mod-

els is obtained by iterating between the following two steps: (i) Gibbs sampler is used to update

α,β, τ2, σ2,Σa,Σb, δǫ, δe; (ii) we updatebi andai (i = 1, 2, · · · , n) using the Metroplis-Hastings

(M-H) algorithm. After collecting the final MCMC samples, weare able to draw statistical inference

for the unknown parameters. Specifically, we are interestedin the posterior means and quantiles.

See the articles (Huang et al., 2006; Lunn et al., 2000) for detailed discussions of the Bayesian

modeling approach and the implementation of the MCMC procedures, including the choice of the

hyper-parameters, the iterative MCMC algorithm, the choice of proposal density related to M-H

sampling, sensitivity analysis and convergence diagnostics. When the MCMC implementation is

applied to the actual clinical data, convergence of the generated samples is assessed using standard

tools within WinBUGS software (such as trace plots). After convergence was achieved, one long

chain was run which may be more efficient. We propose that, after an initial number of 50,000 burn-

in iterations, every 40th MCMC sample is retained from the next 400,000. Thus we obtain 10,000

samples of targeted posterior distributions of the unknownparameters for statistical inference.

We will investigate the following two scenarios. Firstly, As shown in Figure 3.1, the histograms

of viral load and CD4 cell count clearly indicate their asymmetric nature and it seems adequate

fitting an SN model to the data set. Since a normal distribution is a special case of an SN distri-

bution when skewness parameter is zero, we will investigatehow an SN distribution for random

error contributes to modeling results and parameter estimation in comparison with a normal dis-

tribution for random error. Secondly, we also estimate the model parameters by using the ‘naive’

method, which does not separate the measurement errors fromthe true CD4 values (i.e., completely
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ignores measurement errors in CD4 values in the modeling). That is, the ‘naive’ method only uses

the observed CD4 valueszij rather than true (unobservable) CD4 valuesz∗ij in the response Models

I–II in which case the joint models revert to regular models without covariate models involved for

inference. We use the ‘naive’ method as a comparison to the joint modeling method proposed in

Section 3.2. This comparison attempts to investigate how the measurement errors in CD4 contribute

to parameter estimation.

3.3.2.1. Comparison of results between models with normal and SN distributions

As discussed previously, the fundamental assumption of distributions for (within-subject) random

error in Models I–III is SN which is different from that of normal distribution in most statistical

models in publications (Liu and Wu, 2007; Perelson et al., 1997; Wu et al., 1998; Wu and Ding,

1999; Wu and Zhang, 2002). In this section, we investigate how an SN distribution contributes to

modeling results in comparison with a normal distribution for random error.

The population posterior mean (PM), the corresponding standard deviation (SD) and95% cred-

ible interval (CI) for fixed-effect parameters based on the models with an SN or normal random

errors are presented in Table 3.1. The following findings areobserved based on the estimated re-

sults. (i) Firstly, in the response models for the most interested parameters(β2, β4, β5), β2 based

on the three models with a normal random error are larger thanthe corresponding that based on the

three models with an SN random error; all the estimates are statistically significant since the 95%

CIs do not contain zero. Secondly, for(β4, β5), it can be seen that the estimates based on the SN-

BNLME and SN-BSNLME models are substantially different from those based on the N-BNLME

and N-BSNLME models. Thirdly, for the variance parameterσ2, its estimated values (0.04, 0.08,

0.09) based on the three models with a SN random error are muchsmaller than those (0.96, 0.54,

1.31) based on the three models with a normal random error. Finally, for the skewness parameter

δe, we found thatδe associated with the three models with an SN random error is estimated to be

significantly positive; this confirms the positive skewnessof the viral load data inln scale as shown

in Figure 3.1, and the estimates of the skewness parameterδe based on SN-BLME model (1.57),

SN-BNLME model (1.15) and SN-BSNLME model (2.03) are fairlyhigh. (ii) For estimated pa-

rameters in the CD4 covariate models, the estimates of interceptα1 based on the N-BNLME and

N-BSNLME models are larger than those based on SN-BNLME and SN-BSNLME models, how-

ever the estimates of coefficientsα2 andα3 are very similar between SN and normal models. For the
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variance parameterτ2, the estimated values (0.10, 0.13) based on the N-BNLME and N-BSNLME

models are larger than those (0.01, 0.08) based on SN-BNLME and SN-BSNLME models. The

estimates of the skewness parameterδǫ based on SN-BNLME and SN-BSNLME models are signif-

icantly positive which is consistent with positive skewness of the CD4 cell count data as shown in

Figure 3.1.

Table 3.1: A summary of the estimated posterior mean (PM) of interested population (fixed-effects)
and precision parameters

Model α1 α2 α3 β1 β2 β3 β4 β5 τ 2 σ2 δǫ δe

N-BLME PM – – – 8.01 3.70 – – – – 0.96 – –
LCI – – – 7.52 3.16 – – – – 0.74 – –
UCI – – – 8.51 4.22 – – – – 1.25 – –
SD – – – 0.25 0.27 – – – – 0.13 – –

SN-BLME PM – – – 5.42 3.43 – – – – 0.04 – 1.57
LCI – – – 4.80 2.85 – – – – 0.01 – 1.34
UCI – – – 6.03 4.04 – – – – 0.18 – 1.83
SD – – – 0.31 0.30 – – – – 0.05 – 0.13

N-BNLME PM -0.20 0.68 -0.42 8.52 21.0 5.59 1.26 0.04 0.10 0.54– –
LCI -0.47 0.15 -0.98 7.96 16.6 5.01 0.60 0.01 0.08 0.40 – –
UCI 0.07 1.19 0.14 9.09 26.3 6.15 1.91 0.33 0.13 0.73 – –
SD 0.14 0.26 0.28 0.28 2.44 0.29 0.33 0.19 0.13 0.08 – –

SN-BNLME PM -1.01 0.70 -0.50 6.70 20.9 3.82 1.35 0.02 0.01 0.08 0.53 1.15
LCI -1.30 0.24 -0.99 5.97 16.6 3.03 0.64 0.01 0.01 0.01 0.38 0.79
UCI -0.70 1.16 0.04 7.50 26.0 4.60 1.97 0.22 0.05 0.33 0.65 1.42
SD 0.16 0.24 0.27 0.39 2.39 0.39 0.34 0.15 0.01 0.09 0.07 0.16

N-BSNLME PM -0.22 0.66 -0.28 8.29 26.6 3.66 -2.56 0.88 0.13 1.31 – –
LCI -0.48 0.13 -0.85 7.75 17.5 1.12 -10.6 0.31 0.10 1.06 – –
UCI 0.03 1.20 0.29 8.83 36.2 5.27 2.90 1.77 0.15 1.62 – –
SD 0.13 0.27 0.29 0.28 4.77 1.02 3.33 0.45 0.01 0.14 – –

SN-BSNLME PM -0.62 0.65 -0.27 4.60 17.1 -0.09 -4.44 0.15 0.080.09 0.25 2.03
LCI -1.13 0.10 -0.85 3.76 9.97 -2.76 -10.9 0.06 0.04 0.01 0.16 1.64
UCI 0.37 1.19 0.31 5.63 23.0 1.50 -0.60 0.94 0.13 0.38 0.52 2.34
SD 0.41 0.27 0.29 0.47 3.41 1.14 2.83 0.39 0.03 0.10 0.25 0.17

SN-BSNLME PM – – – 5.34 28.1 1.57 0.39 0.78 – 0.12 – 1.84
(NV) LCI – – – 4.55 20.7 0.22 -3.98 0.17 – 0.01 – 1.45

UCI – – – 6.18 36.7 2.73 3.57 1.37 – 0.43 – 2.18
SD – – – 0.41 3.99 0.64 1.92 0.32 – 0.12 – 0.18
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Figure 3.4: The individual estimates of viral load trajectories for three randomly selected patients

based on the BLME (left), BNLME (center) and BSNLME (right) models with a normal (dotted

line) or SN (solid line) random errors. The respective vertical dotted line (normal) ended with ‘◦’

and solid line (SN) ended with ‘•’ on each fitted value are the95% credible interval (CI) associated

with the fitted value. The observed values are indicated by sign crosses (×).

Figure 3.5 displays the three randomly selected individualestimates of viral load trajectories

along with the associated95% CIs on each fitted value obtained based on the BLME (left), BNLME

(center) and BSNLME (right) models with a Normal (dotted line) or SN (solid line) random error,

respectively. The following findings are observed from joint modeling results. (i) The estimated

individual trajectories for the models where the random error is assumed to be SN fit the originally

observed values much closer than those for the corresponding models where the random error is

assumed to be normal. (ii) Overall, the95% CI associated with each of fitted values from the

normal models is wider than that from the corresponding SN models. (iii) All the 95% CIs from
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three SN models cover the true (observed) viralr load values, while some of95% CIs from three

normal models do not. For example, for patient 39 whose observed value at day 115 is 10.57,

the 95% CI from the SN-BSNLME model is (9.90,11.02) with the fitted value 10.51, while the

corresponding95% CI from the N-BSNLME model is (7.19, 9.53) with the fitted value 8.33 which

does not cover the observed value 10.57.
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Figure 3.5: The observed values versus fitted values ofln(RNA) based on the BLME (left), BNLME

(center) and BSNLME (right) models with a normal or SN randomerror.

We also investigate the model fitting results for each of the three mixed-effects models with

normal and SN random errors, respectively. We have seen that, in general, all the models provided

a reasonably good fit to the observed data for most patients inour study, although the fitting for a

few patients was not completely satisfactory due to unusualviral load fluctuation patterns for these

patients. To assess the goodness-of-fit of each of the three mixed-effects models with normal and

SN random errors, the diagnostic plots of the observed values versus the fitted values are presented

in Figure 3.5. It was seen from Figure 3.5 that the models where the random error is assumed to

be SN provided better fit to observed data, compared with the models where the random error is

assumed to be normal. This finding is further confirmed by their residual sum of squares (RSS).

That is, for the BLME model the RSSs are 3.62 (SN random error)and 117.37 (normal random

error); for the BNLME model the RSSs are 6.64 (SN random error) and 63.78 (normal random
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error); for the BSNLME model the RSSs are 7.49 (SN random error) and 312.58 (normal random

error).

For selecting the best model that fits the data adequately, a Bayesian selection criterion is used.

This criterion, known as deviance information criterion (DIC), was first suggested in a recent pub-

lication by Spiegelhalter et al.(2002). As with other modelselection criteria, we caution that DIC

is not intended for identification of the ‘correct’ model, but rather merely as a method of compar-

ing a collection of alternative formulations. In each of thethree models with the specification of

different distributions for the random error, DIC can be used to find out how assumption of an SN

distribution contributes to virologic responses and parameter estimation in comparison with that

of a normal distribution. We found that the DIC values, 335.14 (SN-BLME), 607.24 (SN-NLME)

and 1051.21 (SN-SNLME) for the three models with an SN randomerror are smaller than the cor-

responding ones, 524.54 (normal-BLME), 701.17 (normal-NLME) and 1355.45 (normal-SNLME)

for the three models with a normal random error, respectively.

As mentioned before, it is hard to tell which model is ‘correct’ but which one fits data better.

Therefore, based on the DIC criterion, the results indicatethat each of the three models with an SN

random error fits the data better, supporting the contentionof a departure from normality. These

results are consistent with those from diagnosis of the goodness-of-fit displayed in Figure 3.5. In

summary, our results may suggest that it is very important toassume an SN distribution for the

response models in order to achieve reliable results, in particular if data exhibit skewness. Along

with these observations, we further report our results in details only for the three models with an SN

random error.

3.3.2.2. Results of analysis based on the SN models

The population (average) estimates of the viral dynamic parameters presented in Table 4 based on

the three (SN-BLME, SN-BNLME, SN-BSNLME) models indicate that the estimates ofβ1 from

the different models agree fairly well. However, the estimates (20.9 and 17.1) of the first decay

rateβ2 by SN-BNLME and SN-BSNLME modeling methods are significantly different from that

(3.43) obtained by SN-BLME modeling method. Although the estimates ofβ2 by SN-BNLME and

SN-BSNLME modeling methods are comparable, one problem is that we considered only 84-day

data for SN-BNLME model fit. This means that only68% of the data from the 168-day period

were included due to arbitrary truncation of data. Therefore, the SN-BNLME modeling may not
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be efficient. In this case, we prefer to use the SN-BSNLME model in which a smooth function of

treatment time is incorporated into the second-phase decayrate to better catch rebound viral load

data and all data measured during the treatment period can beused.

In the SN-BLME and SN-BNLME model fittings, individual curves (solid lines in Figure 3.5)

for each subject follow a similar trend; that is, the trajectories of viral load decay in all 3 subjects

decrease rapidly in the first-phase, then flatten in general.When the entire treatment period is con-

sidered, the viral loads of subject 39 rebound after the second-phase, whereas the viral loads of

subjects 23 and 32 remain low until the end of the treatment period. Obviously, the SN-BLME

and SN-BNLME model fittings are reasonable for data cutting at days 35 and 84, but they do not

represent data measured over the whole treatment period.
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Figure 3.6: Correlations between baselineln(RNA) levels and the subject-specific first phase viral

decay rates,βi1 estimated by using each of the three different methods. The solid lines are robust

(MM-estimator) linear regression fit. The correlation coefficients (r) andp-values were obtained

from Spearman rank correlation test.

It is also worth noting the differences among the estimated values of the first-phase decay rate

(β2) for each subject based on the three models. We can see from Figure 3.6 (top panel) that the

individual estimated values ofβ2 obtained by the SN-BNLME model fitting are consistently much

greater than those obtained by the SN-BLME model fitting, butare slightly different from those
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obtained by the SN-BSNLME model fitting. Although for each model the individual estimates of

ln(RNA) levels approximately follow the observed values, thedifferences inβ2 values obtained

with each model may suggest a completely different relationbetweenβ2 and baseline viral loads.

When we investigate the relation between the estimated individual first-phase decay ratesβ2 and

baselineln(RNA) levels, the results are incongruous. The correlations between the subject-specific

viral decay ratesβ2 estimated by each method and baselineln(RNA) levels are shown in Figure 3.6

(bottom panel). The subject-specific estimates ofβ2 obtained from the SN-BSNLME and SN-

BLME modeling methods show significantly positive correlations (rI = 0.727 andrIII = 0.874

with p-valuep < 0.0001) with baselineln(RNA) levels. However, the estimates ofβ2 obtained

by using the SN-BNLME modeling method are negatively correlated with baselineln(RNA) levels

(rII = −0.952 with p-valuep < 0.0001).

The incongruity in the individual estimates of the first-phase viral decay rates and their cor-

relations with baselineln(RNA) levels, as determined by the SN-BLME, SN-BNLME and SN-

BSNLME modeling methods, is significantly different with the following two observed scenarios:

(i) Although the individual estimates ofβ2 obtained by the both SN-BLME and SN-BSNLME mod-

eling methods are positively correlated with baselineln(RNA) levels, the the individual estimates of

β2 from the SN-BSNLME method are, in general, five times larger than those from the SN-BLME

method. (ii) The individual estimates ofβ2 by SN-BNLME and SN-BSNLME modeling methods

are fairly comparable, but the correlations between baseline ln(RNA) levels and the subject-specific

viral decay ratesβ2 estimated by these two methods are completely opposite. These inconsistences

are presumably caused by data truncation. From the above results, it may suggest that the estimates

obtained from the both SN-BLME and SN-BNLME models might be not reliable and the estimates

based on the SN-BSNLME model may be favorable.

To fit the SN-BLME model, we truncated the data at day 35 in thisstudy. However, it is not

clear where one should cut the data between the first- and second-phases of decay. Also, different

subjects may have different change points between the two phases. For example, truncation at day

35 may cause data from the second-phase to be included with first-phase data. It is for this reason

that SN-BLME models underestimate the first-phase decay rates (β2). The SN-BSNLME modeling

method is preferable to the SN-BLME and SN-BNLME modeling methods, especially for sparse

individual data. We believe that estimates obtained from the SN-BSNLME modeling method and
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their correlations with baselineln(RNA) levels are reliable since the complete data are used. Con-

versely, the both SN-BLME and SN-BNLME model fittings may result in misleading conclusions,

as shown above, perhaps because it is impossible to find a truncation point to data for these two

model fittings that would be suitable for all patients. The estimated values ofβ2 would be affected

by the inclusion of second-phase data if truncation occurred too late, and by the loss of data if trun-

cation was too early.

For comparison, as an example, we also employed the ‘naive’ method-based the SN-BSNLME

model to estimate the model parameters presented in Table 3.1 using the observed CD4 values and

ignoring the CD4 measurement errors. It can be seen from the estimated results that the estimates

of the parameters from the naive method are significantly larger than those from the joint modeling

method. It indicates that the naive method may produce overestimated results with substantial bi-

ases; in particular, the estimated covariate CD4 effect (β5) from the naive method is 5 times greater

than that from the joint modeling method. The joint modelingmethod appears to give larger SDs

in most cases, probably because it incorporates the variation from fitting the CD4 covariate pro-

cess. Further, the estimate of the model skewness parameterδe for the naive method is slightly

smaller than that for the joint modeling method; this resultsuggests that the naive method may un-

derestimate the skewness parameter due to ignoring measurement errors in CD4 values. Thus the

difference of the naive estimates and the joint modeling estimates, due to whether or not ignoring

potential CD4 measurement errors in conjunction with the SN-BSNLME model, indicates that it is

important to take the measurement errors into account in theanalysis when covariates are measured

with errors.

3.4. Discussion

For viral dynamic models with skewness characteristics of viral load responses and CD4 measure-

ment errors in covariate, we have investigated and comparedthe three Bayesian mixed-effects mod-

els with an SN distribution that may be preferred over those with a normal distribution in the sense

that it produces less biased parameter estimates and provides better fit to observed data. The pro-

posed method may have a significant impact on AIDS research because, in the presence of skewness

in the data, appropriate statistical inference for HIV dynamics is important for making robust con-

clusions and reliable clinical decisions. Our proposed method is quite general and so can be used
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to other applications. This kind of SN modeling approach is important in many biostatistical appli-

cation areas, allowing accurate inference of parameters while adjusting for the data with skewness.

The SN distribution is shown to provide an alternative to normal (symmetric) distribution that is

often assumed in statistical models. The results indicate that with SN distribution assumption, there

is potential to gain efficiency and accuracy in estimating certain parameters when the normality as-

sumption does not hold in the data. The models considered in this paper can be easily fitted using

MCMC procedure. Moreover, the proposed modeling approach is fitted using the WinBUGS pack-

age that is available publicly. This makes our approach quite powerful and accessible to practicing

statisticians in the fields.

To estimate the viral dynamic parameters and study the relation of the baseline level of HIV-1

RNA in plasma with the decay rate of the first-phase of response to treatment, we compared the

results of SN-BLME, SN-BNLME and SN-BSNLME model fittings, and found that the both SN-

BLME and SN-BNLME model fittings in short-term dynamics may result in misleading conclusions

due to data truncation. Of particular interest is that when long-term dynamics are considered, SN-

BNLME may also become unreliable because of the complexity of the second-phase of decay. The

foregoing results indicate that in a two-phase HIV dynamic model, the first decay rate may remain

constant, while the second decay rate may change which depends on time-varying CD4 covariate

during the period of study. The analysis results suggest that there may be a significantly posi-

tive correlation between the first-phase viral decay and thebaseline HIV-1 RNA levels based on

the SN-BSNLME modeling method. This finding is consistent with those reported in publications

(Notermans et al.,1998; Wu et al., 2004). This positive correlation may be partially explained by the

fact that the higher baseline viral load value, which is equivalent to the lower baseline CD4 value

due to a negative relation between these two baseline factors, suggests a lower turnover rate of hym-

phocyte cells, which may lead to a positive correlation between the first-phase viral decay rate (β2)

and the baseline HIV-1 RNA levels. Higher baseline HIV-1 RNAlevels reflect more productively

infected cells distributed at different sites; thus, greater drug potency or exposure may be required

to achieve a similar decay rate to that seen in patients with lower levels of viral replication. This

finding is very interesting and clinically important. Sincethe viral decay rates may reflect the effi-

cacy of ARV treatment, the lower baseline HIV-1 RNA levels may need less potent drug efficacy to

suppress virus replication so that a strong treatment strategy is not necessary to avoid side-effect of
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drug use. This may help improve understanding of the pathogenesis of HIV infection and evaluation

of ARV treatments.

We would point out that the problems we have addressed in thispaper cannot be resolved by

the standard goodness-of-fit or model selection methods, which are usually used when applying

different models to the same data set. From Figure 3.5, we cansee that all three models (BLME,

BNLME and BSNLME) fitted the corresponding data very well. Goodness-of-fit or model selection

methods are unable to identify the right model. We have foundthat the different models should not

be applied to the same, entire data set, but applied simultaneously to appropriate segments of the

data set such that the results will be biologically meaningful.

In conclusion, BLME fitting may be misleading and its use should be avoided; BNLME fit-

ting may work well but is subject to data truncation; BSNLME fitting works in a similar way to

BNLME fitting but has no data-screening problems associatedwith its use. Care is necessary in the

implementation of BNLME and BSNLME fittings. With the introduction of SN distribution in the

models, the estimated results suggest that the skewness parameters in viral load and CD4 cell count

are estimated to be significantly positive for each of the three models. This confirms the positive

skewness of the viral load and CD4 data presented in Figure 3.1. Thus, we may conclude that ac-

counting for significant skewness is required when one models a data which exhibits skewness.

This paper combines new technologies in mathematical modeling and statistical inference with

advances in viral dynamics and ARV treatment to quantify complex HIV disease mechanisms. The

complex nature of HIV/AIDS will naturally pose some challenges such as nonignorable missing

data and data with detection limit problems. These complicated problems are beyond the purpose

of this article, but a further study may be warranted. We are actively investigating these problems

now. We hope that we could report these interesting results in the near future.
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4 Bivariate linear mixed-effects models with an application to AIDS

study using skew-elliptical distributions

4.1. Introduction

Multivariate or bivariate outcomes are used as primary endpoints in many longitudinal studies. For

example in AIDS studies, not only the RNA viral load, but alsothe CD4 and CD8 cell count are

measured (Acosta et al., 2004). HIV-1 infection results in aprogressive destruction of immune func-

tion, which may be indicated by a decrease of CD4 cell count and an increase of CD8 cell count.

Studies of changing immunologic CD4 and CD8 responses may beimportant to identifying indica-

tors for quantifying treatment effect and to improving management of patient care. With this type of

multiple outcomes (CD4 and CD8 cell count), the underlying statistical question is to estimate the

functions that model their dependence on co-variates and toinvestigate the relationships between

these functions. Similar clinical and epidemiological studies often generate clustered as well as

longitudinal follow-up data with bivariate or multivariate outcomes as primary endpoints, which are

routinely analyzed using multivariate linear mixed-effects models (Matsuyama and Ohashi, 1997).

In this chapter, we focus on a bivariate LME (BLME) model on the situation where two response

variables (CD4 and CD8 cell count) are observed simultaneously for each subject to accommodate

individual clustering within subjects as well as the correlation between bivariate measures. BLME

can facilitate borrowing of strength across all subjects when assessing the effects of co-variates

through treatment time, baseline age, treatment group, viral load at baseline and time-varying treat-

ment efficacy, etc. on AIDS progression. Thus, in particular, a BLME model is used to estimate

various parameters including the correlation coefficientsbetween CD4 and CD8 cell count. CD4 cell

count is an important indicator of the strength of the immunesystem. CD4 cells are ‘helper’ cells

that lead the attack against infections and are considered as the HIV main target cells. CD8 cells are

‘cytotoxic’ cells and are inappropriately “on” or active interms of the immune hormones secreted

during HIV infection. The hyperdynamic or over-stimulatedCD8 immune response, reflected by

activation of CD8 subsets as well as elevated total CD8 cell count, may accelerate immune dysfunc-
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tion and certain disease processes. The ratio of CD4 and CD8 cell count is important in monitoring

the function of the immune system in patients who have viral infections or who have undergone

tissue transplantation.

In traditional LME model analysis (Laird and Ware, 1982), the correlation due to clus-

tered/repeated measures on a subject is usually accounted for through the inclusion of random-

effects and within-subject measurement errors, which are often assumed to be normally distributed

due to the mathematical tractability and computational convenience. While such an assumption

makes data analysis amenable to popular software such as SASand R/Splus, the usual fidelity to

normality assumptions has been questionable (Ghidey et al., 2004; Verbeke and Lesaffre, 1996)

when data exhibit non-normal behavior. A violation of the assumption could lead to misleading

inferences. In fact, observed data in AIDS studies are oftenfar from being “symmetric” and asym-

metric patterns of observations usually occur. A common approach adopted for data analysis in

these situations is reverting back to usual multivariate normality assumptions after suitable trans-

formation of the response on a continuous scale (e.g. square-root transformation of CD4 and CD8

cell count). Although they may lead to reasonable empiricalresults, they may be avoided when

a suitable alternative theoretical model is available because data transformation hinds underlying

data generation mechanisms due to reduced information and often component-wise transformation

does not lead to joint normality (Jara et al., 2008). Besides, the transformations are not universal,

i.e. transforms used for one particular data may not be adapted for a different data. Moreover, the

results may be difficult to interpret based on transformed data. This motivates researchers to con-

sider exploration of a more general mixed effects frameworkthat takes into account the flexibility

in distributional assumptions of random-effects and measurement errors to produce robust parame-

ter estimates. The term ‘robustness’ is quite extensive; here robustness is achieved with respect to

parameter estimation.

Considerable research has been done by introducing more flexible parametric families that can

accommodate normality departures (skewness and heavy tails) and hence eliminate the need of

ad hoc data transformations (Azzalini and Capitanio, 1999). In the context of LME models, the

random-effects distribution was relaxed using finite normal mixtures (Verbeke and Lesaffre, 1996),

smoothing (Ghidey et al., 2004), a semi-nonparametric density (Zhang and Davidian, 2001) or a

thick-tailed normal/independent (NI) densities (Rosa et al., 2003). Much of recent frequentist and
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Bayesian advances in regression problems revolve around the attractive and popular skew-elliptical

distributions (Azzalini and Capitanio, 1999, 2003; Azzalini and Dalla-Valle, 1996; Sahu et al.,

2003). The related literature in this context is very rich (Arellano-Valle et al., 2006; Azzalini, 2005;

De la Cruz, 2008; Lin, 2009) and the curious reader might choose to venture an entire monograph

(Genton, 2004) dedicated to discuss recent developments. Acommon feature of these classes of

models is that the normal linear mixed model is a special member in each class. In this chapter, we

propose a parametric modeling of LME model for robust estimation using SE distributions under a

Bayesian paradigm. The multivariate SE distributions usedin this chapter are developed primarily

from the multivariate SE density proposed by Sahu et al.(2003) for Bayesian regression problems

and is different from the SE version proposed by Azzalini andDalla-Valle (1996). However, the

differences are only due to the various parameterizations (Arellano-Valle and Azzalini, 2006) used

and an unification of all SE variants is presented by Arellano-Valle and Genton (2005). Recent

Bayesian implementation of multivariate SE distributions(Jara et al., 2008) involves SN and ST

densities using a conditional stochastic representation.Three distributions, N, SN and ST will be

considered in this chapter.

The rest of the chapter proceeds as follows. In Section 4.2, we describe the data set that mo-

tivated this research and introduce BLME models. Section 4.3 presents the associated Bayesian

inference method and related model comparison techniques.In Section 4.4, we apply the proposed

method to the real data set described in Section 4.2 and report the analysis results. We conclude the

chapter with discussion in Section 4.5.

4.2. Data and models with the skew-elliptical distributions

4.2.1. Motivating data set

The data set that motivated this research is from A5055 and some detail information about this data

set can be found in Section 2.4.1. and 3.3.1. Besides the HIV-1 viral load in plasma, CD4 and CD8

cell count in peripheral blood were designed to be measured in cells/mL at the same schedule as

HIV, which was days 0, 7, 14, 28, 56, 84, 112, 140 and 168 of follow-up.

CD4 and CD8 cell count: CD4 and CD8 cell count were measured in cells/mL at designed

study days. The median value at the baseline (t = 0) is 262/mL for CD4 and 880/mL for CD8
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cell. The exact day of CD4 and CD8 cell count measurements (not predefined study day) was used

to compute study day in our analysis. It is noted that observed data in the AIDS studies are often

far from being “symmetric” and skewed heavy tailed patternsin CD4 and CD8 cell count usually

occur (Figure 4.1). Thus, an asymmetric distribution (suchas SE) should be more appropriate than

a symmetric distribution, and statistical analysis must take these features of the data into account.

Figure 4.2 shows the trajectories of observed CD4 and CD8 cell count (in standardized scale) after

the initiation of an ARV treatment for 44 patients.

Standardized CD4

D
en

si
ty

−1 0 1 2 3 4

0
20

40
60

80

Standardized CD8

D
en

si
ty

−2 0 2 4 6

0
40

80
12

0

Figure 4.1: The histogram of CD4 and CD8 cell count (standardized scale) measured in peripheral

blood for 44 patients.
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Figure 4.2: The trajectory profiles of CD4 and CD8 cell count (standardized scale) measured in

peripheral blood for 44 patients.
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Figure 4.3: The baseline (◦) and failure time(×) IC50 for IDV/RTV drugs (top panel), the minimum

drug concentration (Cmin) for two drugs (middle panel) for the 44 individual patientsand adherence

rates of IDV/RTV drugs (bottom panel) over time for the two representative patients. SD and CV

denote the standard deviation and coefficient of variation,respectively.
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Phenotypic drug susceptibility: Phenotypic drug susceptibilities were retrospectively deter-

mined from baseline samples. Phenotypic determination of ARV drug resistance was performed at

baseline and/or at the time of virological failure (viral load rebounds). Some patients had virologic

failure and phenotypic susceptibility testing done on samples at the time of failure. For analysis,

we used the phenotype marker, the median inhibitory concentration (IC50) (Molla et al., 1996) to

quantify agent-specific drug susceptibility. We refer to this marker as the median inhibitory con-

centration. The baseline (◦) and failure time(×) IC50 from 44 individuals for the two agents used

in the A5055 trial, ritonavir (RTV) and indinavir (IDV), aredisplayed in Figure 4.3 (upper panel)

which were used to constructIC50(t). Note that for patients without virological failure,IC50(t)

was held by a constant with the baselineIC50 over time.

Pharmacokinetics variation: Plasma for intensive Pharmacokinetics (PK) analysis was ob-

tained at pre-dose, and 0.5, 1, 2, 3, 4, 5, 6, 8, 10, and 12 hoursfollowing an observed IDV/RTV

dose. PK parameters of IDV and RTV were determined using non-compartmental methods. Cal-

culated PK parameters included maximum (Cmax), minimum (Cmin) drug concentration, and area

under the curve (AUC). Wu et al.(2006) compared these PK parameters as predictors of virological

responses and no significant differences were found. Thus,Cmin displayed in Figure 4.3 (middle

panel) was used in our analysis because it is easily obtainedin clinical studies.

Medication adherence: Medication adherence was measured by the use of questionnaires. It

was completed by the study participant and/or by a face-to-face interview with study personnel. As

an example, the adherence rates over time based on questionnaire data for IDV (dotted stair-step

line) and RTV (dashed stair-step line) drugs from the two representative patients are presented in

Figure 4.3 (bottom panel).

Time-varying drug efficacy: We briefly discuss the drug efficacy function with two or more

agents. In clinical practice, genotypic or phenotypic tests can be performed to determine the sensi-

tivity of HIV-1 to ARV agents before a treatment regimen is selected. Here we use the phenotypic

marker,IC50, half maximal inhibitory concentration, to quantify agent-specific drug susceptibility.

Because experimental data tracking development of resistance suggest that the resistant fraction of

the viral population that grows exponentially, we propose aln-linear function to model the within-

74



host changes over time based on availableIC50 observations as follows.

IC50(t) =







ln(S0 +
Sr−S0

tr
t) for 0 < t < tr

ln(Sr) for t ≥ tr
(4.1)

whereS0 andSr are respective exponential values ofIC50 at baseline and time pointtr at which the

resistant mutations dominate. In our study,tr is the observed time of virologic failure from clinical

studies. Given thatIC50 is measured only at baseline and at the time of treatment failure (Molla et

al., 1996),IC50(t) remains practical although more complex models forIC50(t) can be considered.

For patients without a failure timeIC50, baselineIC50 was held constant over time. In other words,

if Sr = S0, no new drug resistant mutation is developed during treatment.

Poor adherence to a treatment regimen is one of the major causes of treatment failure (Ickovics

and Melisler, 1997). Patients may occasionally miss doses,misunderstand prescription instructions

or miss multiple consecutive doses for various reasons. These deviations from prescribed dosing

affect drug exposure in predictable ways. We use the following model to represent medication

adherence,

A(t) =







1 for Tk < t ≤ Tk+1, if all doses are taken in [Tk,Tk+1]

R for Tk < t ≤ Tk+1, if 100R% doses are taken in [Tk,Tk+1]
(4.2)

where0 ≤ R < 1, with R indicating the adherence rate for a drug (in our study, we focus on

the two PI drugs discussed previously).Tk denotes the adherence evaluation time at thekth clin-

ical visit. HAART contains two or more reverse transcriptase inhibitors (RTIs) and protease in-

hibitors (PIs) has proven to be effective at reducing the amount of virus in the blood and tissues

of HIV-infected patients. In most viral dynamic studies (Ding and Wu, 2000; Perelson et al.,

1996), investigators assumed that the drug efficacy was constant over treatment time. Drug effi-

cacy may actually vary, however, because the concentrations of ARV drugs and other factors (i.e.,

emergence of drug-resistant mutations) vary during treatment. Also, patients’ viral load may re-

bound because of drug resistance, non-adherence, and otherfactors. A simple pharmacodynamic

(PD) sigmoidal Emax model for the dose effect relation follows (Gabrielsson and Weiner, 2000):

E = EmaxC/(EC50 + C), whereEmax is the maximal effect that can be achieved,C is the drug

concentration, andEC50 is the drug concentration that induced an effect equivalentto 50% of the

maximal effect. Many different variations of theEmax model have been developed by pharmacol-

ogists to model PD effects. More detailed discussions onEmax models can be found in the book
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by Gabrielsson and Weiner (2000) and in the article by Huang et al.(2003). To model the relation-

ship of multiple treatment factors with ARV drug efficacy, weemploy the following modifiedEmax

equation to represent the time-varying drug efficacy for twoARV agents within a class,

γ(t) =
1

2

{

C1
minA1(t)

IC1
50(t) + C1

minA1(t)
+

C2
minA2(t)

IC2
50(t) + C2

minA2(t)

}

(4.3)

whereγ(t) ranges from 0 to 1;Ad(t), Cd
min andICd

50(t) (d = 1, 2) are the adherence profile, the

minimum drug concentration in plasma and the time-course ofmedian inhibitory concentrations for

the two agents, respectively. Note thatCmin could be replaced by other PK parameters such as

AUC andCmax.

4.2.2. Bivariate linear mixed-effects models with ST distribution

Now we summarize the LME model for the AIDS data with bivariate correlated responses (CD4

and CD8 cell count). Lety(c)
i = (y

(c)
i1 , y

(c)
i2 , . . . , y

(c)
ini

)T , (c = 4, 8) be the repeated measure-

ments (in cells/mm3) of the CD4 and CD8 cell count, respectively, for theith subject at time

tij (i = 1, 2, ..., n, j = 1, 2, ..., ni). Associated with each vector of measurements is a vector of

timesti = (ti1, . . . , tini)
T at which subject’s measurements were taken. Letx

(4)
i andx(8)

i be the

ni × p design matrices associated with the fixed-effectsβ(4) andβ(8) of the two markers, respec-

tively, andz(4)
i andz(8)

i be the correspondingni × q design matrices associated with the random-

effectsb(4)i andb(8)i , respectively. To make notation more compact, letY i =
(

y
(4)T
i ,y

(8)T
i

)T
,

Xi =Diag
(

x
(4)
i ,x

(8)
i

)

, Zi =Diag
(

z
(4)
i ,z

(8)
i

)

, β =
(

β(4)T ,β(8)T
)T

, bi =
(

b
(4)T
i , b

(8)T
i

)T
,

ei =
(

e
(4)T
i ,e

(8)T
i

)T
, wheree(4)i ande(8)i are the within-subject residuals for CD4 and CD8 cell

count, respectively. As suggested by Lachos et al. (2009, 2010), we consider a skew-t bivariate LME

(ST-BLME) model in which the within-subject errors are assumed to follow a normal distribution

and the random-effects (latent random variables) are assumed to have an ST distribution which may

be more reasonable. Thus, we have a skew-t bivariate LME (ST-BLME) model as follows,

Y i = X iβ +Zibi + ei

bi ∼ ST2q,ν(−J(ν)δ,Σb,∆)

ei ∼ N2ni(02ni ,Σ)

(4.4)

whereΣb = (λkl)4×4 is the dispersion matrix corresponding to between-subjectvariability for

random-effects,Σ = (σ2kl)2×2 is variance-covariance matrix for model errors,∆ = Diag(δ) and
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δ = (δ1, . . . , δ2q)
T , andJ(ν) = (ν/π)1/2[Γ((ν − 1)/2)/Γ(ν/2)]. Note that, in the model (4.4),

the correlation between the bivariate responses is accommodated and incorporated by both random-

effectsbi and model errorsei.

4.3. Bayesian Inference

In this section, we implement the Bayesian methodology using MCMC techniques for the ST-BLME

model. A key feature of this model, which allows writing easily WinBUGS codes, is that the model

can be formulated in a flexible hierarchical representation. By introducing one random variable

vector,wi = (wi1, ..., wi2q)
T and one random variable,ξi, (i = 1, ..., n), based on the stochastic

representation for the ST distribution (see Section 1.4 in detail),Y i in the ST-BLME model (4.4)

can be written hierarchically as

Y i|wi, ξi ∼ N2ni(X iβ +Zibi, ξ
−1
i Σ)

bi ∼ N2q(∆wi − J(ν)δ, ξ−1
i Σb)

wi ∼ N2q(0, I2q)I(wi > 0)

ξi ∼ Γ(ν/2, ν/2)

(4.5)

where(i = 1, . . . , n). An important advantage of the above representations basedon the hierar-

chical model is that they allow us to easily implement the ST-BLME model via the freely available

WinBUGS software (Lunn et al., 2000), and the computationaleffort is similar to the one necessary

to fit the models with the standard normal distribution. Our methodology can be widely applied

to real problems for longitudinal studies as long as they meet the specifications proposed in this

chapter.

Let θ = {β(4),β(8),Σ, δ,Σb, ν} be the collection of unknown parameters in model (4.4),

y = (yT
1 , ...,y

T
n )

T , b = (bT1 , ..., b
T
n )

T , w = (wT
1 , ...,w

T
n )

T andξ = (ξ1, ..., ξn)
T , then the full

likelihood function is given by

L(θ|y, b,w, ξ) ∝ Πn
i=1{φ2ni(yi;X iβ +Zibi, ξ

−1
i Σ)φ2q(bi;∆wi − J(ν)δ, ξ−1

i Σb)

φ2q(wi;0, I2q)I(wi > 0)Γ(ν/2, ν/2)}
(4.6)

To complete the Bayesian formulation, we specified the values of the hyper-parameters in the

prior distributions and took weakly informative prior distribution for the parameters as follows

β ∼ N2p(β0,G1), Σb ∼ IW (G2, η1), Σ ∼ IW (G3, η2),

δ ∼ N2q(0,G4), ν ∼ Exp(τ)I(ν > 2)
(4.7)
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where the mutually independent Inverse Gamma (IG), Normal (N ), Exponential (Exp) and In-

verse Wishart (IW ) prior distributions are chosen to facilitate computations (Gelman et al., 2003).

The super-parameter matricesG1, G2, G3 andG4 can be assumed to be diagonal for convenient

implementation.

One usually assumes that elements of the parameter vectorθ are independent of each other,

i.e., π(θ) = π(β)π(Σ)π(δ)π(Σb)π(ν). After we specify the models for the observed data and

the prior distributions for the unknown model parameters, we can make statistical inference for

the parameters based on their posterior distributions under a Bayesian framework. Combining the

likelihood function (4.6) and the prior distributions, thejoint posterior density ofθ based on the

observed dataD can be given by

f(θ|D) ∝ L(θ|y, b,w, ξ)π(θ) (4.8)

Distribution (4.8) is analytically intractable, and it is prohibitive to directly calculate the posterior

distribution ofθ based on the observed data. As an alternative, MCMC procedures can be used to

sample based on (4.8) using the Gibbs sampler, from which features of marginal posterior distribu-

tion of interest can be inferred.

4.4. Data analysis

4.4.1. Specific model and implementation

We illustrate our method by applying it to the AIDS clinical data described in Section 4.2.1. We

consider the following BLME model for CD4 and CD8 cell count.

y
(c)
ij = β

(c)
0i + β

(c)
1i tij + β

(c)
4 Agei + β

(c)
5 log10(RNA)i + β

(c)
6 γ(tij) + e

(c)
ij ,

β
(c)
0i = β

(c)
0 + β

(c)
1 gi + b

(c)
0i ,

β
(c)
1i = β

(c)
2 + β

(c)
3 gi + b

(c)
1i ,

(4.9)

The BLME hierarchal models (4.9) can be formulated as follows.

y
(c)
ij = β

(c)
0 + β

(c)
1 gi + β

(c)
2 tij + β

(c)
3 (gi × tij) + β

(c)
4 Agei

+β
(c)
5 log10(RNA)i + β

(c)
6 γ(tij) + b

(c)
0i + b

(c)
1i tij + e

(c)
ij ,

(4.10)

wherec = 4 and 8 correspond to CD4 and CD8 cell count, respectively,y
(4)
ij andy(8)ij are the respec-

tive standardized CD4 and CD8 cell count for theith subject at timetij,Agei andlog10(RNA)i are
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age and viral load (inlog10 scale) covariates for theith subject at baseline,γ(tij) is drug efficacy for

theith subject at timetij, gi = 1 if the ith subject was treated in group one and 0 in group two. The

corresponding regression coefficientβ
(c)
3 can be interpreted as the treatment effect between groups

one and two.b(c)0i andb(c)1i are random-effects representing a random intercept and a random slope,

respectively. This model assumes that the mean baseline measurement (intercept) and mean rate of

change (slope) are different between two treatment groups.

Several statistical models with different distribution from the SE class for the latent random-

effects and random errors are compared. These models are as follows.

• N Model: Normal distribution for the random-effects and random errors.

• SN Model: Skew-normal distribution for the random-effects and normal distribution for the

random errors.

• ST Model: Skew-t distribution for the random-effects and normal distribution for the random

errors.

Note that random-errors can also be assumed to follow skew-normal or skew-t distribution,

however, once the random-effects are assumed to be SN or ST distribution, the results are simi-

lar between normal and skewed distribution for random errors assumption. In order to make the

comparison more straightforward, the random-errors are kept under the same assumption of nor-

mal distribution among the three models. In the absence of historical data/experiment, we spec-

ify practical weakly informative priors for all model parameters to obtain well-defined (proper)

posteriors following the recommendations in (Hobert and Casella, 1996; Zhao et al., 2006). In

particular, (i) fixed-effects are taken to be independent normal distributionN(0, 100) for each com-

ponent of the population parameter vectorβ. (ii) The prior for the variance-covariance matrix of the

random-effectsΣb is taken to be inverse Wishart distributionsIW (G2, η1) with covariance matrix

G2 = Diag(0.01, 0.01, 0.01, 0.01) and degree of freedomη1 = 5. (iii) The prior for the variance-

covariance matrix of the model errorsΣ is taken to be inverse Wishart distributionsIW (G3, η2)

with covariance matrixG3 = Diag(0.01, 0.01) and degree of freedomη2 = 3. (iv) For each of

the skewness parametersδ1 andδ2, independent normal distributionN(0, 100) is used to accom-

modate either positive or negative skewness, and it allows the data to determine which one is more
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appropriate. (v) Prior choice forν is chosen asν ∼ Exp(0.5)I(ν > 2) (i.e., exponential density

truncated at 2) to reflect a prior onν with a well-defined and finite variance.

The MCMC sampler was implemented using WinBUGS software (Lunn et al., 2000), and the

program codes are available in Appendix C. In particular, the MCMC scheme for drawing samples

from the posterior distributions of all parameters is obtained by the Gibbs sampler. After collecting

the final MCMC samples, we are able to draw statistical inference for the unknown parameters.

Specifically, we are interested in the posterior means and quantiles. See the articles (Huang et al.,

2006; Lunn et al., 2000) for detailed discussions of the Bayesian modeling approach and the im-

plementation of the MCMC procedures, including the choice of the hyper-parameters, the iterative

MCMC algorithm, sensitivity analysis and convergence diagnostics. We propose that, after an initial

number of 50,000 burn-in iterations, every 20th MCMC sampleis retained from the next 200,000.

Thus, we obtain 10,000 samples of targeted posterior distributions of the unknown parameters for

statistical inference.

4.4.2. Model comparison results

Bayesian modeling approach based on the specific model (4.10) with different model distribution

specifications from the SE class was used to fit the data. For selecting the best model that fits the

data adequately, a Bayesian selection criterion, DIC, is used. As with other model selection criteria,

we caution that DIC is not intended for identification of the “correct” model, but rather merely as

a method of comparing a collection of alternative formulations. As an alternative, we also evaluate

EPD and RSS, while the detail information related to DIC, EPDand RSS can be found in Section

2.4.1.

Table 4.1 presents the DIC, EPD and RSS values among the threecompeting models. It is seen

that the SN and ST Model produce better fit than the N Model in terms of DIC, EPD and RSS. In

particular, the ST Model (with the smallest DIC) offers the best fit among the N, SN and ST Modal;

these findings are consistent to those obtained by EPD and RSScriteria. Thus, we select the ST

Model as our best fit model.

Figure 4.4 shows the box-plots for the skewness parameter,δ1 andδ2, among the SN and ST

Model. The 95% CI of skewness parameters in the ST Model for both CD4 and CD8 cell count

do not include zero, which confirm significantly positive skewness of the bivariate responses. In
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Table 4.1: Model comparison using DIC, EPD and RSS criteria.

Model

Criterion N SN ST

D̄ 979.14 945.09 600.97

pD 140.58 141.91 186.02

DIC 1119.72 1086.86 788.99

EPD 0.840 0.825 0.821

RSS 690.4 128.6 127.1

the SN Model, the 95% CI of skewness parameter for CD8 cell count doesn’t include zero, while it

includes zero for CD4 cell count.

4.4.3. Estimation results based on the ST Model

Based on DIC, EPD and RSS, the best fit model is the ST Model, in which random-effects are as-

sumed to have an ST distribution. Figure 4.5 plots the marginal posterior densities of the parameter

ν for the ST Model. It shows some degree of right skewness confirming non-normal nature.

Compared with the N and SN Models, the SD for the fixed-effectsparameters for both CD4

and CD8 cell count (β0 ∼ β6) from the ST Model were smaller (Table 4.2). In the ST Model, the

estimated skewness parameters for the CD4 and CD8 cell countare 0.441 and 0.518, respectively

(Table 4.2). Because the 95% posterior credible interval for both skewness parameters do not in-

clude zero (95% CI is 0.098∼ 0.678 for the CD4 cell count, and is 0.219∼ 0.833 for the CD8 cell

count), this confirms the positive skewness observed from the data. We also found the estimated

skewness parameter for the CD8 cell count was significantly higher than that for the CD4 cell count

(p < 0.0001). As expected, the results shown in Table 4.2 also indicate that there is a negative asso-

ciation between the CD4 cell count and baselinelog10RNA (β(4)5 = −0.113, 95% CI is -0.208∼

-0.016). But we did not find any significant association between the CD8 cell count and the baseline

log10RNA (β(8)5 = 0.004, 95% CI is -0.116∼ 0.124). Both CD4 and CD8 cell count significantly

increase with the treatment time (95% CI is 0.282 to 0.850 forthe CD4 cell count, and is 0.210 to
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0.950 for the CD8 cell count). However, no significant group difference was found.

Table 4.2: A summary of the estimated posterior mean (PM) of population (fixed-effects) param-

eters, as well as the corresponding standard deviation (SD)and lower limit (LCI ) and upper limit

(UCI ) of 95% equal-tail credible interval (CI).

CD4 β
(4)
0 β

(4)
1 β

(4)
2 β

(4)
3 β

(4)
4 β

(4)
5 β

(4)
6 δ1 σ2

11 ν

N PM -0.056 0.368 0.363 0.112 0.007 -0.233 1.546 – 0.131 –

LCI -6.914 -0.100 0.053 -0.336 -0.024 -0.381 -5.618 – 0.109 –

UCI 7.066 0.837 0.678 0.545 0.038 -0.056 8.864 – 0.156 –

SD 3.506 0.238 0.158 0.224 0.016 0.081 3.516 – 0.012 –

SN PM 0.433 0.301 0.410 0.070 0.001 -0.212 1.083 0.559 0.128 –

LCI -5.893 -0.154 0.059 -0.407 -0.029 -0.337 -4.000 -0.469 0.107 –

UCI 5.639 0.750 0.762 0.544 0.029 -0.054 7.500 1.135 0.153 –

SD 3.118 0.229 0.179 0.242 0.014 0.071 3.137 0.441 0.012 –

ST PM -1.334 0.148 0.559 -0.103 0.016 -0.113 1.437 0.407 0.051 2.914

LCI -3.837 -0.199 0.282 -0.466 -0.007 -0.208 -0.809 0.098 0.0352.072

UCI 0.841 0.513 0.850 0.259 0.035 -0.016 3.967 0.678 0.071 4.306

SD 1.261 0.179 0.144 0.184 0.011 0.049 1.298 0.148 0.009 0.602

CD8 β
(8)
0 β

(8)
1 β

(8)
2 β

(8)
3 β

(8)
4 β

(8)
5 β

(8)
6 δ2 σ2

22 σ2
12

N PM -2.108 -0.370 0.173 0.469 0.001 0.051 1.764 – 0.290 0.062

LCI -7.435 -0.949 -0.244 -0.130 -0.027 -0.115 -4.275 – 0.239 0.036

UCI 4.045 0.246 0.598 1.061 0.033 0.231 7.257 – 0.350 0.090

SD 3.097 0.304 0.213 0.303 0.015 0.087 3.254 – 0.028 0.014

SN PM -0.457 -0.286 0.227 0.404 -0.008 0.028 0.561 1.017 0.283 0.061

LCI -4.523 -0.808 -0.223 -0.257 -0.041 -0.123 -3.351 0.605 0.236 0.037

UCI 3.595 0.236 0.685 1.043 0.023 0.174 4.871 1.416 0.340 0.088

SD 2.159 0.266 0.233 0.332 0.016 0.078 2.230 0.228 0.027 0.013

ST PM -2.078 0.020 0.565 -0.027 0.002 0.004 1.860 0.518 0.1200.037

LCI -6.275 -0.383 0.210 -0.525 -0.025 -0.120 -1.569 0.219 0.0830.023

UCI 0.998 0.435 0.950 0.468 0.032 0.137 6.480 0.833 0.166 0.054

SD 2.072 0.211 0.188 0.252 0.014 0.062 2.177 0.157 0.021 0.008

Although the increase of CD4 cell count is expected during aneffective HAART, elevated CD8

cell count is associated with HIV virologic treatment failure (Krantz et al., 2011). Figure 4.6 shows

the estimated individual coefficient of time for CD4 and CD8 cell count in the rebound and no

rebound group. The detailed definition of rebound can be found in Section 2.4.2.3. Compared with

83



the rebound group, in the no rebound group, the average individual coefficient of time for CD4 cell

count is significantly higher (median value is 0.476 and 0.133, for the no rebound and rebound,

respectively.p = 0.010). While no significant difference was found in the CD8 between the two

groups (median value is 0.379 vs. 0.260, for the no rebound and rebound, respectively.p = 0.5420

). Because the maximum follow-up of A5055 study was only 6 months and even an interval of

12 months is considered as too premature to evaluate immune response to HAART (Dronda et al.,

2002), a longer follow-up might be needed in order to draw a conclusion.
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Figure 4.6: The coefficient of time for CD4 and CD8 cell count in rebound and no rebound group .

The estimated of SDs for the dispersion matrix parameter in the ST Model are smaller compared

to the Normal or SN Model (Table 4.3). This is expected because high variability, heaviness of the

tails and the skewness are interrelated to a certain extent.
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Table 4.3: A summary of the estimated posterior mean (PM) of dispersion matrix parameter, as well

as the corresponding standard deviation (SD) and lower limit (LCI ) and upper limit (UCI ) of 95%

equal-tail credible interval (CI).

Model λ11 λ22 λ33 λ44 λ12 λ13 λ14 λ23 λ24 λ34

N PM 0.556 0.323 0.904 0.528 0.245 0.088 -0.035 0.060 0.062 -0.397

LCI 0.342 0.162 0.554 0.198 0.088 -0.149 -0.303 -0.155 -0.137 -0.810

UCI 0.885 0.567 1.437 1.048 0.449 0.360 0.205 0.285 0.291 -0.109

sd 0.140 0.106 0.231 0.219 0.092 0.127 0.127 0.111 0.105 0.179

SN PM 0.340 0.235 0.320 0.314 0.116 0.071 0.048 0.022 0.091 -0.146

LCI 0.091 0.082 0.097 0.103 -0.053 -0.088 -0.166 -0.141 -0.070 -0.492

UCI 0.719 0.506 0.809 0.740 0.355 0.275 0.266 0.193 0.301 0.051

sd 0.174 0.112 0.183 0.170 0.111 0.090 0.107 0.082 0.091 0.143

ST PM 0.181 0.148 0.241 0.257 0.028 0.061 -0.023 0.002 0.056 -0.113

LCI 0.078 0.071 0.103 0.097 -0.050 -0.024 -0.152 -0.099 -0.041 -0.300

UCI 0.354 0.279 0.459 0.542 0.118 0.175 0.083 0.097 0.175 0.009

sd 0.071 0.054 0.092 0.118 0.042 0.051 0.058 0.049 0.054 0.079

4.4.4. Comparison between bivariate (CD4 and CD8) model andunivariate (CD4 or CD8 )

model

It is also important to compare estimations from the bivariate linear mixed-effects models and the

ones from univariate model that CD4 and CD8 are modeled separately. Table 4.4 shows the es-

timated population parameters based on the bivariate modeland univariate model under the ST

distribution.

For CD4 cell count, except the SD for the intercept, the SD of the population parameters from

the bivariate model is bigger than that from the corresponding univariate model. For example, the

SD of the skewness parameter from the bivariate model is 0.148, while it is 0.119 in the univariate

model. The estimated parameters are also different. For example, the intercept from the bivariate is

-1.334, while it is 0.175 in the univariate model; the coefficient for the time-varying drug efficacy is

only 24% in the univariate as the value in the bivariate model(0.353 vs. 1.437).

For CD8 cell count, some estimated parameters show differently between the univariate and

bivariate models. For example, the coefficient for the groupis 0.020 in the bivariate, while it is
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Table 4.4: Bivariate and univariate mixed-effect models: asummary of the estimated PM of popu-

lation (fixed-effects) parameters, as well as the corresponding SD and95% equal-tail CI.

CD4 β
(4)
0 β

(4)
1 β

(4)
2 β

(4)
3 β

(4)
4 β

(4)
5 β

(4)
6 δ1

Bivariate-ST PM -1.334 0.148 0.559 -0.103 0.016 -0.113 1.437 0.407

LCI -3.837 -0.199 0.282 -0.466 -0.007 -0.208 -0.809 0.098

UCI 0.841 0.513 0.850 0.259 0.035 -0.016 3.967 0.678

SD 1.261 0.179 0.144 0.184 0.011 0.049 1.298 0.148

Univariate-ST PM 0.175 0.071 0.529 -0.113 0.006 -0.127 0.353 0.409

LCI -3.226 -0.214 0.269 -0.441 -0.014 -0.219 -3.091 0.176

UCI 3.557 0.366 0.818 0.218 0.027 -0.039 3.878 0.650

SD 1.732 0.149 0.139 0.167 0.010 0.046 1.786 0.119

CD8 β
(8)
0 β

(8)
1 β

(8)
2 β

(8)
3 β

(8)
4 β

(8)
5 β

(8)
6 δ2

Bivariate-ST PM -2.078 0.020 0.565 -0.027 0.002 0.004 1.8600.518

LCI -6.275 -0.383 0.210 -0.525 -0.025 -0.120 -1.569 0.219

UCI 0.998 0.435 0.950 0.468 0.032 0.137 6.480 0.833

SD 2.072 0.211 0.188 0.252 0.014 0.062 2.177 0.157

Univariate-ST PM -1.700 -0.016 0.493 0.081 -0.003 -0.025 1.897 0.502

LCI -6.133 -0.420 0.139 -0.387 -0.029 -0.152 -2.719 0.126

UCI 2.719 0.377 0.861 0.569 0.022 0.102 6.610 0.843

SD 2.234 0.202 0.184 0.241 0.013 0.064 2.367 0.183

-0.016 in the univariate model. The estimated coefficient for time for CD4 and CD8 got from the

univariate models are slightly smaller than that for the bivariate model.

4.5. Conclusion and discussion

In this chapter, we consider a Bayesian bivariate SE approach to jointly model the CD4 and CD8 cell

count in peripheral blood. The hierarchical representations given in equation 4.4 and 4.5 provide

easy model implementation by using the conventional Bayesian software WinBUGS. Using suitable

model choice criteria (DIC, EPD and RSS), among the three models, the N, SN and ST Model, we

found the ST Model had the best model fit and the related SDs forthe fixed-effects parameters were

also the smallest.

The results from the ST Model confirm the positive skewness and heavy tails observed from the

raw data. Because the estimated skewness parameter for CD8 cell count was bigger than that for
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CD4 cell count, it also confirms that the distribution of the CD8 cell count in peripheral blood are

more skewed than that of the CD4 cell count. The baseline viral load (log10 RNA) was negatively

associated with the CD4 cell count, while we didn’t find such asignificant association between the

baseline viral load and the CD8 cell count. Both CD4 and CD8 cell count significantly increased

with the time of the treatment. Compared with the rebound group, the average increase rate of

the CD4 cell count over time was higher in no rebound group, while no such significant difference

between the rebound and no rebound group was found in the CD8 cell count.

For hierarchical LME via Bayesian approach, one concern is that using weakly informative

priors may lead to inconsistent inferential results (Natarajan and Kass, 2000; Zhao et al., 2006).

In order to check whether the results were sensitive to the prior choice, we conducted sensitive

analysis and recomputed the posterior quantities of interest. Although slight changes in the values

of population parameters were noticed, the results were quite robust overall and the conclusions

among the three models were kept the same.

This chapter has some limitations. The AIDS clinical trial data we used only included the total

number of CD8 cells in peripheral blood. Because HIV-1 viruswill not directly ‘kill’ CD8 cells, the

qualitative factors within the CD8 cells response and sub-groups of CD8 cells such as HIV specific

CD8 , naive CD8, or activated CD8 cells, may be the principal determinants of HIV/AIDS disease

progression (Migueles et al., 2002). Also, a clinical trialstudy with longer follow-up and ‘naive’

patients who never got HAART treatment may be a better data set for testing the proposed models

and methods.

The skewed-elliptical models applied in this study are quite flexible and can be easily extended

to a more general distribution family such as skew-normal independent (SNI) by changing the dis-

tribution of ξi in equation (4.5), for example, if we assumeξi ∼ Beta(ν, 1) andν > 0, then it

will be multivariate skew-slash distribution. This kind ofskewed modeling approach is important in

many biostatistical applications areas where either skewness should be considered or transformation

can be avoided. The method is useful for the exploring a “clustered” data, regardless of whether it

is cross-sectional or longitudinal one. We can easily applythe proposed method in WinBUGS and

building in model checking will facilitate model comparisons.
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5 Overall discussion and conclusions

This study has relaxed the normal distribution assumption in longitudinal data by using a multivari-

ate SE distribution family via Bayesian nonlinear or linearmixed-effects modeling approach. This

chapter summarizes the new development arising from this study, the contributions of this study in

terms of methodology and application, the study’s limitations, and further research goals.

In linear and nonlinear mixed-effects models, random-effects and within-subject random errors

are commonly assumed to follow a normal distribution. Although this assumption will bring con-

venience in the computation, it may be an unrealistic and obscure important features among and

within subject variation. During recent years, modifying well-known distributions by condition-

ing and transforming in order to include skewness has received much attention. Among different

versions of modified skewed distributions, we selected Sahu’s version because it can be easily ap-

plied via Bayesian approach in WinBUGS. The following summarizes the main contributions of

this dissertation.

Multiphasic HIV viral load changes since the treatment indicates that the viral decay rate is a

time-varying process. Mixed-effects models with different time-varying decay rate functions have

been proposed in the literature, however, there are two critical issues: (i) it has not been deter-

mined which model is more appropriate for practical application; (ii) the model random errors are

commonly assumed to follow a normal distribution, which maybe unrealistic and can cause biased

inference. Because skewness of HIV viral load is still noticeable even after transformation, it is im-

portant to use a more general distribution family that can allow us to relax the normal assumption.

In Chapter 2, we developed the skew-elliptical Bayesian mixed-effects models by considering that

model random errors have an SE distribution. We compared theperformance of different SE models

with time-varying decay rate function. We also compared theperformance among the models with

normal, Student-t, SN and ST distribution. Two AIDS clinical trial data sets were used to test the

proposed models and methods. The results indicate the ST distribution model with a time-varying

function that includes two exponential components is superior to the other models. The model fit is
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better with the assumption of ST and SN than with an assumption of normal or Student-t distribu-

tion. This finding suggests that it is important to assume a model with a skewed distribution in order

to achieve reasonable results when the data exhibit non-normality characteristic. Based on the best

fitting model under the ST distribution, we found the time-varying viral decay rate was significantly

associated with the CD4 cell count and HIV-1 viral rebound status, which may provide important

clinical information such as prediction of long-term outcome based on the early stage response.

Since we didn’t consider any covariates in Chapter 2, we extended the SE mixed-effects mod-

els in Chapter 3 such that the CD4 cell count was included as a covariate in order to account for

between- and within-subject variation. Among the models that can be used for different lengths of

HIV follow-up, we compared LME, NLME, and SNLME models. The critical question that needed

to be answered was whether these models produce coherent estimates of viral decay rates, and if

not, which model is appropriate and should be used in practice. Besides the skewed distribution

observed in the HIV viral load, CD4 cell count also shows skewness that should not be ignored

and they may be often measured with substantial errors or at different measurement schedules, in

Chapter 3 these issues are addressed simultaneously by jointly modeling the response variable with

skewness and a covariate process with measurement errors using a Bayesian approach to investi-

gate how estimated parameters are changed or different under these three models. We found that

there was a significant incongruity in the estimated decay rates in viral loads based on the three

mixed-effects models, suggesting that the decay rates estimated by using Bayesian LME or NLME

joint models should be interpreted differently from those estimated by using Bayesian SNLME

joint models. The findings also suggested that the Bayesian SNLME joint model is preferred to

other models because an arbitrary data truncation is not necessary; and it was further shown that

the models with a skew-normal distribution and/or measurement errors in covariates may achieve

reliable results when the data exhibit skewness.

In Chapter 4, multiple correlated outcomes should be estimated in a model where their depen-

dence on the independent variables can be considered. To accomplish this, the bivariate outcomes

of CD4 and CD8 cell count were jointly analyzed under BLME, while the baseline viral load, age,

time-varying drug efficacy and treatment groups were included as covariates. In HIV immunologic

responses, such as CD4 and CD8 cell count, the correspondingvalues often show noticeable non-

normal characteristics such as skewness with a heavy right tail. There are several limitations to
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using transformation, including reduced information, no guarantee of joint normality, no universal

transformation, or difficultly in interpreting of the results. Therefore, we applied a more flexible

class of parametric multivariate SE distributions to modelCD4 and CD8 cell count. This approach

provides an appealing robust alternative to the symmetric normal process in an LME model frame-

work. The estimated results confirmed the positive skewnessand heavy tails observed from the data,

while the DIC value indicated the model fitting was improved by considering these two issues. One

of the advantages of the proposed methods is the easy extension to a more general family such as

skew-normal independent distribution.

The proposed methods may have a significant impact on AIDS research from a methodology

and application standpoint of view. Given the fact that HIV-1 viral load, CD4 and CD8 cell count

all show noticeable skewness, relaxing normality assumption with skew-elliptical distribution will

allow more accurate inference of parameters with adjustingfor the data with skewness. The esti-

mation is made via Bayesian MCMC approach that can be carriedout by using publicly available

WinBUGS software. The theoretical and technical solutionsproposed in this research are quite

general, so they can be used in other biological fields where skewness should be considered. From

an application point of view and to our best knowledge, few published articles have: (i) compared

different HIV dynamic models that can be used for the entire follow-up data with the normality

assumption being relaxed, (ii) compared HIV dynamic modelsused in different lengths of HIV

follow-up through a joint model that can simultaneously consider the measurement errors in the

covariates such as CD4 and skewness observed in the outcome and covariates, (iii) used CD4 and

CD8 as bivariate outcomes and accommodated normality departures (skewness and heavy tails) and

hence eliminated the need for ad hoc data transformations.

Until the late 1980s, Bayesian statistics were only considered as an interesting alternative to the

“classical” frequentist approach for several reasons. Themain objection from “classical” statisti-

cians was the subjective view point via the prior distribution in Bayesian approach, which can be

easily arguable since either non-informative prior distributions can be used when no strong previous

information exists or reasonable informative prior distributions should be selected so the knowl-

edge is a developing process, therefore, no need of “building from scratch” every time. The real

obstacle that prevented Bayesian theory from being as one ofthe main stream approaches was the

intractability involved in the calculation of the posterior distribution. Implementation of the MCMC
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methods equipped with powerful personal computers made Bayesian statistics applicable. In HIV

dynamic models, the estimation of the parameters is complexbecause many times, the likelihood

has no closed form, even for simple models. Asymptotic approximation methods had provided some

solutions but may have issues such as lack of generalizationor inconsistent estimates. The Bayesian

approach provides an attractive alternative solution in this field, and it allows us to build more real-

istic models with more complicated structure that may be prohibitive or at least very cumbersome

in frequentist approach.

Although the Bayesian approach has proved to be a very usefultool in the complex model in-

ference, a main concern is the uncertainty regardling the prior distributions and the initial values

selection. The basic tool for investigating model uncertainty is the sensitivity analysis. Based on

different initial values, re-computing the posterior quantities of interest can indicate whether the re-

sults have changed in a way that will significantly affect theresults interpretations and conclusions.

If the results are robust against the different initial values, we can report the results with confidence

and be assured that the related conclusions are solid. The results should be explained with caution

if they are sensitive to the initial values. The sensitivityanalyses in this dissertation show that the

estimated parameters were not sensitive to both prior parameters and the initial values, so the re-

sults were reasonable and robust. One thing needs to be pointed out: after we found the results

were robust to the priors and initial values, we used the samepriors and initial values in the model

comparisons.

The complicated HIV pathogenesis motivated us to combine a new general distribution fam-

ily and Bayesian inference. The proposed methods enhance the modeling flexibility and allow

researchers to analyze longitudinal and multiple treatment factors in a wide variety of considera-

tions. In addition, the proposed hierarchical modeling approach can be easily implemented using

the WinBUGS package that is publicly available. These factors make our approach quite power-

ful and easily accessible to statisticians. In many biological and medical fields, non-normality is a

commonly seen phenomenon while the underlying mechanism ofthe outcome is always complex,

which requires advanced mathematical modeling. We believethe proposed models and methods are

quite general and helpful and can be used in other biostatistical applications.

There are several limitations in this dissertation. We did not consider missing data issue, and

due to the complex nature of HIV/AIDS and the toxicity of medications, the assumption of missing
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at random may not be a reasonable assumption. This issue may be addressed using two-step or

multiple computation methods. Below detection limit, which is left censoring, was not considered

in this study either. Another limitation involves the related biomarkers used: we examined a pooled

host cell population and did not consider the individual compartments of short-lived productively in-

fected cells, long-lived or latently infected cells; the virus compartment was not further decomposed

into infectious versus noninfectious virions.

Although the SE distributions used in this dissertation belong to a general family that includes

many commonly used distributions, ideally, it would be helpful to have an even more general

family that can be used to develop a Bayesian analysis of censored mixed-effects models. Skew-

normal/independent (SNI) distribution is an attractive class of asymmetric heavy-tailed distributions

that includes the skew-normal, the skewt, skew slash and the skew-contaminated normal distribu-

tions as special cases. As viral decay rates reflect the potency of antiviral regimens, it is important

to evaluate the regimen’s effect on long term responses. Besides the binary endpoint used in this

research (rebound vs. no rebound), the long term responses can be survival endpoints such as time

to HIV-1 RNA falling below the detection limit, time to virological failure or time to progression to

AIDS. The estimated viral decay rates can be treated as covariates and because frequent evaluations

may not be common during long-term follow-up, the event willbe known only to have occurred

within some interval of time (interval censoring). Reboundis generally caused by emergence of a

drug-resistant virus strain, and it is important to developa flexible, yet parsimonious mechanistic

model to predict the rebound. By Extending basic HIV dynamicmodel, the latent HIV dynamic

model can be use via Bayesian MCMC-SAEM algorithm. There is marked variation in how the

body responds to the virus , and in the time-course of progression to AIDS. It is known that host

genetic differences contribute to this variation, but our knowledge of the relevant host genetic fac-

tors is currently limited. Systematic searches of the genome to identify common genetic variants

(genotypes) that influence the human response to HIV-1 is promising approach.
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Appendix A: WinBUGS Code for ST-Model IV-Equation (2.12) in Chapter 2

## Begin of model
model
{
for (i in 1:N)
{

## parametric random effects of normal-Response model
b2[i,1] <- 0
b2[i,2] <- 0
b2[i,3] <- 0
b2[i,4] <- 0
b2[i,5] <- 0
b[i,1:5] ˜dmnorm(b2[i,1:5],Omega2[,])

nbeta1[i]<- beta[1]+b[i,1]
nbeta2[i]<- beta[2]+b[i,2]
nbeta3[i]<- beta[3]+b[i,3]
nbeta4[i]<- beta[4]+b[i,4]
nbeta5[i]<- beta[5]+b[i,5]

## Individual parameter estimates
}

for (j in 1 : M)
{
## Main components of response based on ST

beta1[j] <- beta[1]+b[y[j,4],1]
beta2[j] <- beta[2]+b[y[j,4],2]
beta3[j] <- beta[3]+b[y[j,4],3]
beta4[j] <- beta[4]+b[y[j,4],4]
# y[j,4]= id
beta5[j] <- beta[5]+b[y[j,4],5]

#decay rate for Model IV
decay[j] <- (beta2[j] * exp(-beta3[j] * y[j,6]) +

beta4[j] * exp(-beta5[j] * y[j,6]) )

dm1[j] <-beta1[j] -decay[j] * y[j,6]
# y[,6]= time(day)

## skew-T distribution to t sidtribution
w[j] ˜ dt(0, 1,nu) I(0,)
mu[j] <- dm1[j] + delta * w[j]
# ST distribution
aau[j] <- (nu+w[j] * w[j])/n1 * eta
y[j,12] ˜ dt(mu[j],aau[j],n1)
# y[,12]=logeRNA
Y.pred[j] ˜ dt(mu[j],aau[j],n1)
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# predicted values

## Fitted values and Residuals
fit[j] <- mu[j]
resid[j] <- y[j,12]-fit[j]
sresid[j] <- sqrt(eta) * (y[j,12]-fit[j])
ssr.r[j] <- pow(resid[j],2)

# squares of residuals
sssr.r[j] <- pow(sresid[j],2)

# squares of SR
ssr.Y.obs[j]<-pow((Y.pred[j]-y[j,12]),2)

}
SSR <-sum(ssr.r[])

# sum of squares of residuals
SSSR <- sum(sssr.r[])
# sum of standardized squares of residuals
SSR.pred <- mean(ssr.Y.obs[])
# EPD

## Prior distributions of the hyperparameters
# (0) Degree of freedom

nu0<-0.1
nu ˜ dexp(nu0) I(2,)
n1<-nu+1

# (1) Coefficients
for (l in 1:5){ beta[l]˜dnorm(0,1.0E-2)}

# (3) Skew-t random effects
delta ˜ dnorm(0.0, 0.01)

# (4) Variance-covariance matrice
Omega2[1:5,1:5] ˜dwish(R2[,],5)

v2[1:5,1:5] <- inverse(Omega2[,])

# (5) Precision parameters
eta ˜dgamma(0.01,0.01)

sigma <- 1/eta
}
## End of model

## Data inputed
list(N=44, M=274,

R2 = structure(
.Data = c(1,0, 0, 0, 0,

0,1, 0, 0, 0,
0,0, 1, 0, 0,
0,0, 0, 1, 0,
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0,0, 0, 0, 1),
.Dim = c(5, 5)))

## Initial values
list(beta=c(4.54, -5.55, 5.00, 0.5, 1),nu=10,delta=1.5, eta=1,

Omega2= structure(
.Data = c( 1.94 , 1.00, -0.56, -0.58, -0.45,

1.00, 7.03, -1.08, -3.93, -1.08,
-0.56, -1.08, 1.30, 2.74, 0.69,
-0.58, -3.93, 2.74, 8.75, 2.07,
-0.45, -1.08, 0.69, 2.07, 0.66),
.Dim = c(5, 5)))

## End of program
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Appendix B: WinBUGS Code for Model I in Chapter 3

# Model I: Skew-Normal Bayesian Semiparametric
# Nonlinear Mixed-Effects
# (SN-BSNLME) Model in conjunction with the
# semiparametric biexponential
# model (3.3)}.

model{
for (i in 1:44) {

a2[i,1] <- 0
a2[i,2] <- 0
a2[i,3] <- 0

a2[i,4] <- 0

a3[i,1] <- 0
a3[i,2] <- 0
a3[i,3] <- 0

b[i,1:4]˜dmnorm(a2[i,1:4], Sigma2[,])
a[i,1:3]˜dmnorm(a3[i,1:3], Sigma3[,])

}

for (j in 1:310) {
## modeling true CD4 via measurement error model

z.star[j] <-(alpha[1]+a[y[j,4],1]) +
(alpha[2]+a[y[j,4],2]) * y[j,13] +

(alpha[3]+a[y[j,4],3]) * y[j,13] * y[j,13]+
delta2 * w2[j]

w2[j] ˜dnorm(0,1)I(0,)

y[j,11]˜dnorm(z.star[j],tau2)

## Viral load response model associated with true CD4 covari ate
betai1[j] <-beta[1] +b[y[j,4],1]
betai2[j] <-beta[2] +b[y[j,4],2]
betai3[j] <-beta[3] +b[y[j,4],3]
betaij4[j] <-beta[4] +beta[5] * z.star[j]
+mu.not[1] * Z[j,2]+mu.not[2] * Z[j,3]+b[y[j,4],4]

dm1[j] <-betai1[j]-step(betai2[j]-betaij4[j]) * betai2[j] * y[j,13]
dm2[j] <-betai3[j]-step(betai2[j]-betaij4[j]) * betaij4[j] * y[j,13]
dm3[j] <-exp(dm1[j])
dm4[j] <-exp(dm2[j])
dm5[j] <-dm3[j] +dm4[j]

mu[j] <-log(dm5[j]) +delta * w[j]
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w[j]˜dnorm(mu[j],tau)
y[j,10]˜dnorm(mu[j],tau) # SN

## Fitted values and residues
fit[j] <-mu[j]
res[j] <-y[j,10]-fit[j]

}

## prior distributions of the hyperparameters:

# 1. coefficients
for(l in 1:5) {beta[l]˜dnorm(0, 1.0E-2)}
for(l in 1:2) {mu.not[l]˜dnorm(0, 1.0E-2)}
for(k in 1:3) {alpha[k]˜dnorm(0, 1.0E-2)}

# 2. Precision parameters
tau˜dgamma(0.01, 0.01)
sigma.tau <- 1/tau
tau2˜dgamma(0.01, 0.01)
sigma.tau2 <- 1/tau2

# 3. Variance-cvoariance matrices
Sigma2[1:4,1:4]˜dwish(R2[,],5)
v2[1:4,1:4] <-inverse(Sigma2[,])
Sigma3[1:3,1:3]˜dwish(R3[,],5)
v3[1:3,1:3] <-inverse(Sigma3[,])

# 4. skewness parameters
delta˜dnorm(0.0,0.01)
delta2˜dnorm(0.0,0.01)

}

## Data
list(R2=structure(.Data=c(1,0,0,0,0,1,0,0,0,0,1,0,0 ,0,0,1),
.Dim=c(4,4)),R3=structure(.Data=c(1,0,0,0,1,0,0,0,1 ), .Dim=c(3,3)))

#initial values
list(beta=c(5, 4, 3.4, 4.0, 1.5, 4.2),

alpha=c(0,0,0),mu.not=c(0,0),delta=0.5,
delta2=0.5,tau=1, tau2=1,
Sigma2=structure(.Data=c(1.229, 0.043, -0.750, 0.710,

0.043, 0.090, 0.002, -0.013,
-0.750, -0.002,1.059, -0.214,
0.170, -0.013,-0.214, 0.120),
.Dim=c(4,4)),

Sigma3=structure(.data=c(.1,0, 0, 0,.1, 0, 0, 0,.1), .Dim =c(3,3)))
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Appendix C: WinBUGS Code for ST Bivariate Model-Equation (4.5) in Chapter 4

model
{
for (i in 1:N)

{ u.b[i] ˜ dgamma(db,db)

# random effects for bivariate model
# correlation between Cd4 and CD8 is

incorporated in random effects and model errors
for (k in 1:2)

{ b1[i,k] <- 0
w.b1[i,k]˜dnorm(b1[i,k], R.a[k,k]) I(0,)
w.b[i,k]<-w.b1[i,k]/sqrt(u.b[i])
b1.b[i,k]<-delta1 * (w.b[i,k]-mub)

}
for (k in 3:4)
{ b1[i,k] <- 0

w.b1[i,k]˜dnorm(b1[i,k], R.a[k,k]) I(0,)
w.b[i,k]<-w.b1[i,k]/sqrt(u.b[i])
b1.b[i,k]<-delta2 * (w.b[i,k]-mub)

}
for (k in 1:4)

{
for (l in 1:4)

{
Omegab[i,k,l]<-Omega[k,l] * u.b[i]
}

}
b[i,1:4] ˜dmnorm(b1.b[i,1:4],Omegab[i,,])

}

for (j in 1 : M)
{ # ST-Bivariate CD4 and CD8 LME model

beta1[j] <-beta[1] +beta[2] * y[j,2]+b[y[j,4],1]
#y[j,2]=arm

beta2[j] <-beta[3] +beta[4] * y[j,2]+b[y[j,4],2]
#y[j,4]=id
alpha1[j] <-alpha[1] +alpha[2] * y[j,2]+b[y[j,4],3]
#y[j,2]=arm
alpha2[j] <-alpha[3] +alpha[4] * y[j,2]+b[y[j,4],4]
#y[j,4]=id

cd[j,1] <-beta1[j] + beta2[j] * y[j,6] +beta[5] * y[j,17]
+beta[6] * y[j,20] +beta[7] * y[j,18]

cd[j,2] <-alpha1[j] + alpha2[j] * y[j,6] +alpha[5] * y[j,17]
+alpha[6] * y[j,20] +alpha[7] * y[j,18]
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# y[j,6]=scaled time (0,1); y[j,17] =age;
# y[j,20]=baseline ln(RNA); y[j,18]=eff
for (k in 1:2){

for (l in 1:2)
{

O1[j,k,l]<-Omega1[k,l] * u.b[y[j,4]]
}
}

y[j,15:16]˜dmnorm(cd[j,1:2], O1[j,,])
# y[j,15]=CD4, y[j,16]=CD8

Y.pred[j,1:2]˜dmnorm(cd[j,1:2], O1[j,,])

}

# Prior distributions of the hyperparameters
# (0) Degree of freedom

nub˜ dexp(0.1) I(2,)
nb<-nub+1
mub<- exp(loggam(0.5 * (nub-1.))-

loggam(0.5 * nub)) * sqrt(nub/3.14159)
db<-0.5 * nub

# (1) Coefficients
for (l in 1:7)

{ beta[l]˜dnorm(0,0.01)
alpha[l]˜dnorm(0,0.01)}

# (2). Variance-covariance matrice for model errors
Omega1[1:2,1:2] ˜dwish(R1[,],3)
v1[1:2,1:2] <- inverse(Omega1[,])

# (3) Variance-covariance matrice for random effects
Omega[1:4,1:4] ˜dwish(R[,],5)
v[1:4,1:4] <- inverse(Omega[,])

# (4). Skewness parameters
delta1˜dnorm(0,0.01)
delta2˜dnorm(0,0.01)

}
## End of model
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Appendix D: WinBUGS Code for ST Univariate Model for CD4 in Chapter 4

## Begin of model
model
{
for (i in 1:N)

{
u.b[i] ˜ dgamma(db,db) # for random effects of bivariate mod el

# Random effects for bivariate model
for (k in 1:2)

{ b1[i,k] <- 0
w.b1[i,k]˜dnorm(b1[i,k], R.a[k,k]) I(0,)

w.b[i,k]<-w.b1[i,k]/sqrt(u.b[i])
b1.b[i,k]<-delta1 * (w.b[i,k]-mub)

}
for (k in 1:2){

for (l in 1:2)
{

Omegab[i,k,l]<-Omega[k,l] * u.b[i]
}

}
b[i,1:2] ˜dmnorm(b1.b[i,1:2],Omegab[i,,])

}
for (j in 1 : M)

{ # Univariate LME model for CD4
beta1[j] <-beta[1] +beta[2] * y[j,2]+b[y[j,4],1]

#y[j,2]=arm
beta2[j] <-beta[3] +beta[4] * y[j,2]+b[y[j,4],2]

#y[j,4]=id
cd4[j] <-beta1[j] + beta2[j] * y[j,6] +beta[5] * y[j,17]
+beta[6] * y[j,20] +beta[7] * y[j,18]
# y[j,6]=scaled time (0,1); y[j,17] =age;
# y[j,20]=baseline ln(RNA); y[j,18]=eff

au4[j]<-u.b[y[j,4]] * tau1
y[j,15] ˜dnorm(cd4[j], au4[j])
# y[,j,15] =standarized CD4
Y.predcd4[j]˜dnorm(cd4[j], au4[j])

# Fitted values and Residuals
fitcd4[j] <- cd4[j]
residcd4[j] <- y[j,15]-fitcd4[j]
sresidcd4[j] <- sqrt(tau1) * (y[j,15]-fitcd4[j]) * sqrt(1- 2/nub)
ssr.cd4[j] <- pow(residcd4[j],2)
# SR of CD4
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sssr.cd4[j] <- pow(sresidcd4[j],2)
# SSR of CD4
ssr.Pcd4[j]<-pow((Y.predcd4[j]-y[j,15]),2)
# squares of predicted value

}

SSR.CD4 <- sum(ssr.cd4[])
# sum of SR of CD4
SSSR.CD4 <- sum(sssr.cd4[])
# sum of SSR of CD4
SSRP.CD4<- mean(ssr.Pcd4[])
# EPD of CD4

## Prior distributions of the hyperparameters
# (0) Degree of freedom

nub˜ dexp(0.1) I(2,)
nb<-nub+1
mub<- exp(loggam(0.5 * (nub-1.))-loggam(0.5 * nub)) * sqrt(nub/3.14159)

db<-0.5 * nub

# (1) Coefficients
for (l in 1:7)

{beta[l]˜dnorm(0,0.01)}

# (2). Precision parameters
tau1˜dgamma(0.01,0.01)
sigma1 <- 1/tau1

# (3) Variance-covariance matrice
Omega[1:2,1:2] ˜dwish(R[,],5)
v[1:2,1:2] <- inverse(Omega[,])

# (4). Skewness parameters
delta1˜dnorm(0,0.01)

}
## End of model

# Data
list(N=44, M=310,

R = structure(
.Data = c(1, 0.5,

0.5, 1),
.Dim = c(2,2)),

R.a= structure(
.Data=c(1,0,

0,1),
.Dim = c(2,2)))
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