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Abstract

Statistical models have greatly improved our understandirthe pathogenesis of HIV-1 infection
and guided for the treatment of AIDS patients and evaluatibantiretroviral (ARV) therapies.
Although various statistical modeling and analysis meghbdve been applied for estimating the
parameters of HIV dynamics via mixed-effects models, a commssumption of distribution is
normal for random errors and random-effects. This assumptiay lack the robustness against
departures from normality so may lead misleading or biaséetence. Moreover, some covari-
ates such as CD4 cell count may be often measured with stibstarrors. Bivariate clustered
(correlated) data are also commonly encountered in HIV ayaatudies, in which the data set par-
ticularly exhibits skewness and heavy tails. In the literat there has been considerable interest in,
via tangible computation methods, comparing differenppsed models related to HIV dynamics,
accommodating skewness (in univariate) and covariate une@ent errors, or considering skew-
ness in multivariate outcomes observed in longitudinallissi However, there have been limited
studies that address these issues simultaneously.

One way to incorporate skewness is to use a more generabudiiin family that can provide
flexibility in distributional assumptions of random-efte@and model random errors to produce ro-
bust parameter estimates. In this research, we developgesBa hierarchical models in which the
skewness was incorporated by using skew-elliptical (S&Jitdution and all of the inferences were
carried out through Bayesian approach via Markov chain El&@drlo (MCMC). Two real data set
from HIV/AIDS clinical trial were used to illustrate the grosed models and methods.

This dissertation explored three topics. First, with an &fitbution assumption, we compared
models with different time-varying viral decay rate fuiocts. The effect of skewness on the model
fitting was also evaluated. The associations between timaaest decay rates based on the best
fitted model and clinical related variables such as baseélliveviral load, CD4 cell count and long-
term response status were also evaluated. Second, by jonatlleling via a Bayesian approach,

we simultaneously addressed the issues of outcome withreggsarand a covariate process with

Vi



measurement errors. We also investigated how estimateangéers were changed under linear,
nonlinear and semiparametric mixed-effects models. Thirdbrder to accommodate individual
clustering within subjects as well as the correlation betwbivariate measurements such as CD4
and CD8 cell count measured during the ARV therapies, latatinear mixed-effects models with
skewed distributions were investigated. Extended unitgylgormality assumption with SE distri-
bution assumption was proposed. The impacts of differesttibdutions in SE family on the model
fit were also evaluated and compared.

Real data sets from AIDS clinical trial studies were usedltstrate the proposed method-
ologies based on the three topics and compare various @btertdels with different distribution
specifications. The results may be important for HIV/AIDG&dses in providing guidance to better
understand the virologic responses to antiretroviralttneat. Although this research is motivated
by HIV/AIDS studies, the basic concepts of the methods apexl here can have generally broader
applications in other fields as long as the relevant techsjmecifications are met. In addition, the
proposed methods can be easily implemented by using théclyuavailable WinBUGS package,

and this makes our approach quite accessible to practititigtEians in the fields.
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1 Introduction / Literature Review

1.1. Background

The history of human immunodeficiency virus (HIV) and acqdiimmunodeficiency syndrome
(AIDS) can be traced back to 1981. In California and New Yadgious doctors reported that a
small number of homosexual men had been diagnosed with oames fof Kaposi’'s sarcoma and
Pneumocystis carinjpneumonia, which are generally found in people with setjocempromised
immune systems. By mid 1982, it was clear that they were muaa tsolated incidents and in
September of that year, Centers for Disease Control aneeRtiiem (CDC) used the term AIDS as
an official diagnosis for this disease. Soon it was realizsapfe could get HIV if they engaged in
certain activities such as having unprotected sex, shaeegles, receiving a blood transfusion and
if they were born to a mother with HIV infection.

HIV infection is considered as a pandemic by the World He@lthanization (WHO). By the
end of 2010 (UNAIDS 2011), an estimated 34 million peopleaMerng with HIV, up 17% from
2001. Approximately 16.8 million are women and 3.4 milliore dess than 15 years old. The
estimated prevalence of HIV varies dramatically amongamrsgji the most affected region is Sub-
Saharan Africa and it accounts 68% HIV cases and 66% of HI\thdeabout 5% of the adult
population in this area is infected. Prevalence is the loweg/estern and Central Europe (0.2%)
and East Asia (0.1%). With the significant expansion of HI'¥vya@ntion programs and access to
antiretroviral therapy, the number of new infections an&/#IDS related deaths are decreasing.
In 2010, there were 2.7 million new HIV infections, which wis% less than in 2001 and 21%
less than the number of new infections that occurred at thk pethe epidemic in 1997, and there
were 1.8 million AIDS related deaths, which was 18% less th&2001. In the United States, since
the beginning of the HIV and AIDS epidemic, over half a miflipeople have died of AIDS, and
currently around 1.2 million people are living with HIV, hewer 20% of them are unaware of their
infection.

HIV belongs to a class of viruses known as retroviruses. dietrses use ribonucleic acid



(RNA) to encode their genetic information and RNA is tratesdiainto deoxyribonucleic acid (DNA)
during its life-cycle by a specific viral enzyme called resgetranscriptase. Viruses cannot grow
or reproduce on their own so they must infect cells of a livarganism in order to survive and
make new copies. There are two types of HIV, HIV-1 and HIV-8d doth originated through
the evolution of simian immunodeficiency virus (SIV). Altigh both types can be transmitted
by sexual contact, blood, and from mother to child, compavéld HIV-2, HIV-1 is more easily
transmitted and patients with HIV-1 infection will more glly progress to AIDS. Therefore, it is

responsible for the majority of global HIV infections andD$ cases.
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Figure 1.1: Diagram of HIV.

HIV virion is roughly spherical and has a diameter of abodi0J@00mm which is 60 times
smaller than a red blood cell. As Figure 1.1 shows, the basictsre of HIV includes: (i) a lipid
membrane. It is the outer envelope of the virus and consfste@ layers of lipids. Different
proteins are embedded in this viral envelope and form "sjikensisting of glycoprotein (gp) 120
and transmembrane gp4l. Gpl120 is needed to attach the tortbe host cell, and gp41 is critical
for the cell fusion process; (i) the HIV matrix proteins. &hlie between the envelope and core; (iii)
the viral core. It contains the viral capsule protein p24ckiFgurrounds two single strands of RNA

and the enzymes needed for HIV replication, such as reveasedriptase, protease, ribonuclease,



and integrase. Among the nine virus genes coded on one land st RNA, three genes, gag, pol

and env, contain information needed to make structurakprstfor new virus particles.
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Figure 1.2: HIV replication.

There are six steps involved in HIV infection and replicat{igure 1.2). Step 1: binding and
entry. By binding specific receptors on the surface of a targk such as CD4 positive T cells (i.e.,
CD4 cells), macrophages and microglial cells, HIV enteeshibst cells. The CD4 receptor is neces-
sary but not sufficient to permit virus entry. The secondangptors are “chemokine receptors” that
bind to chemokines and are needed to facilitate the ent¢Dnagic et al., 1996); Step 2: reverse
transcription. HIV uses an enzyme known as reverse trgstase to convert its RNA into DNA,;
Step 3: integration. HIV DNA enters the nucleus of the taggt and inserts itself into the cell’s
DNA, where it may “hide” and stay inactive for years; Steprénscription. HIV DNA instructs the
cell to make many copies of the original virus, along with samore specialized genetic materials
for making longer proteins; Step 5: assembly. A special erezgalled protease cuts the longer HIV
proteins into individual proteins. When these come togethith the virus genetic material, a new
virus is assembled; Step 6: release. The virus pushesaisetff the host cell and takes with it part
of the cell membrane. This outer part covers the virus andaims all of the structures necessary

for the virus to bind to a new CD4 cell and begin the virus lijele process again. Knowing these



steps is critical in the development of medications thatingrrupt the replication cycle. Current
treatment strategy involves a combination of drugs thgetadifferent steps of HIV's life cycle such

as entry inhibitors that prevent binding of HIV to the CD4eptor, reverse transcriptase inhibitors
that prevent the HIV RNA from being transcribed into DNA andtgase inhibitors that prevent the

assembly.
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Figure 1.3: A generalized graph of the relationship betwedin copies and CD4 cell count over

the average course of untreated HIV infection.

HIV infection generally can be broken into four stages: puyninfection, clinical latency
(asymptomatic) stage, symptomatic stage and AIDS (FigLBe Stage 1: primary infection. This
stage can last for a few weeks and patients are often accaoeddaya short flu-like symptom, such
as headache, nausea, sore throat or fever. During this, stegamount of HIV in the peripheral
blood increases sharply and the immune system starts tomégp the virus by producing HIV
antibodies and cytotoxic lymphocytes. This process is knaw/“seroconversion”. Since enzyme-
linked immunosorbent assay (ELISA), which is the most comijmased method to test for HIV,
uses blood, oral fluid or urine to detect HIV antibodies, thsuit may be negative if the ELISA
test is done before seroconversion is complete. There isr@aspwnding decrease in the number of
CD4 cells and an increase in CD8 cells. Patients are extyeimielctious during this stage. Stage

2: clinically asymptomatic stage. This stage lasts for aaraye of ten years and patients are free
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from major symptoms, although some may have swollen glaiiging this stage, the immune
system is able to mount an effective response, so the viaal fbarts to decrease and then stays
at a constant low level. The number of CD4 cells rises and ghanly falls. People remain in-
fectious and HIV antibodies are detectable in the blood sacattitibody test will show a positive
result. Although the viral load remains at a constant loveldar years, virus replication is very
active during this period. Stage 3. symptomatic HIV infecti Eventually, the immune system is
severely damaged or “burned out” by years of activity. HIVtates and becomes more pathogenic
leading more immune cells destruction, while the body failkeep up with replacing the lost cells.
Symptomatic HIV infection is mainly caused by opportumstifections that the normal immune
system usually would prevent. This stage of HIV infectiomfien characterized by multi-system
diseases and infections occurring in almost all body systanithout any effective treatment, the
immune suppression will continue to worsen. Stage 4: AlID&cedthe CD4 cell count is less than
200/mL or CD4 cell percentage is less than 15, AIDS will be diagnosed

The CD4 cell, the major target cell for HIV, is a T lymphocytddnder the microscope, lym-
phocytes can be divided into large and small lymphocytesyd lymphocytes include natural killer
(NK) cells, while small lymphocytes consist of T cells thaature from thymus and B cells that are
bursa-derived. T cells are involved in cell-mediated imitywwhereas B cells are primarily respon-
sible for humoral immunity (relating to antibodies). The £Exll is a subset of T cells that express
the cluster of differentiation 4 (CD4) and it is also knownTakelper cell. These cells assist other
white blood cells in immunologic processes. The normal CB#saccount for 32% to 68% of
total number of lymphocytes and range between 500 — 4&@0 Without effective HIV treatment,
the hallmark decrease in CD4 cells that occurs during AlDssilte in such a weakened immune
system that the body can no longer fight infections or cecaircers, and eventually death ensues.
The mechanisms of CD4 cell death in HIV infection are stilt idly understood and are one of
the most controversial issues in AIDS research. The mestreniby which HIV can directly induce
infected cell death include plasma membrane disruptiomareased permeability due to continu-
ous budding of the virion (Facui, 1988), increasing celtdicity due to build up of un-integrated
liner viral DNA (Levy, 1993) and inactivation of anti-apapic genes (Nie et al., 2002). However,
a longstanding question in HIV biology is how HIV virusesl kib many CD4 cells, despite the fact

that most of them appear to be “bystander” cells that arenfetied (Embretson et al., 1993). Re-



cent data demonstrate that the majority uninfected CD4 aelberipheral blood and lymph nodes
undergo three types of apoptosis (Varbanov et al., 2006k a tightly regulated programmed
cell death (Evan et al., 1998). Several HIV proteins, suckrmasand Vpr, have been found to be
able to up-regulate Fas/FasL gene expression either onfeéwed cells or neighboring uninfected
cells (Kaplan and Sieg, 1998), and these two genes will signalsof apoptosis to these cells.

CD8 cell is another type of T cell. It destroys virally infedt cells and tumor cells so it is
also known as cytotoxic T celll{. cells or CTLs). A healthy adult usually has 150 — 1,00d
CDS8 cells and the normal ratio of CD4/CD8 is 1.0 — 3.7. In casitto CD4 cells, CD8 cells often
increase in people with HIV and the significance has not beelhuaderstood. Researches have
revealed (Chevret et al., 1992; Krantz et al., 2011) thaia¢del total CD8 cell count was associated
with greater risk of future virologic failure. The CD4/CD&#b is used to help in diagnosing HIV,
monitoring HIV progress, and making treatment decisions.

HIV diagnostic test is done by either detecting host antk®dhade against different HIV pro-
teins or by directly detecting the whole virus or componesftyirus (lweala, 2004). Tests that
detect host antibodies that are specific to the virus inclidéSA, Western blot, the immunofluo-
rescence assay (IFA), and the detuned assay. For screampgsps, ELISA is usually used first,
and in order to minimize the risk of false positive resultspafirmatory test, such as Western blot
or IFA, should be conducted before a patient is given therdisig of HIV infection. Detuned
assay is used to distinguish recent HIV infection within faest 129 — 180 days from older HIV
infections (Parekh et al., 2002). These tests may be negdtixing the acute infection or before
seroconversion is completed. In contrast, three typessts tan directly detect the virus or parts
of the virus as soon as people become infected with HIV. Thests include p24 antigen detec-
tion, peripheral blood mononuclear cell culture and RNAleiecacid-based assays, such as reverse
transcription followed by polymerase chain reaction (RIR) and hybridization-based assays. Un-
detectable viral load is usually defined as less than 50 sopie Until recently, this was the lowest
detectable level for the commonly used tests in routind {oed monitoring. There are now some
ultra-sensitive tests that can measure less than 20 gepiesd even 1 copim! of plasma (Palmer
et al., 2003).

It takes an average of 10 years after HIV infection to devé&ldpS, and the viral load generally

remains unchanged if measured repeatedly during thoss.yé&xiginally, many people thought



the rate of HIV replication and disease process would be,shdwch is not true. In 1995 and
1996, several important papers (Ho et al., 1995; Perelsah,et996; Wei et al., 1995) published
in prestigious journals showed that HIV replication and disease process are very vibrant. On
average, plasma virions have a mean lifespan of 0.3 dayklifeat 0.24 days), and the average
total HIV-1 production is 10.3< 10° per day, the minimum duration of the HIV-1 life cycle in vivo
is 1.2 days, and the average HIV-1 generation time is 2.6 {@seration time is defined as the
time from release of a virion until it infects another celldacauses the release of a new genera-
tion of viral particles.) Because the high viral replicaticate may result in a high mutation rate,
Ho (1995) proposed the treatment strategy of “Hit Hard, Hitl¥#. “Hit Hard” requires simulta-
neously combining different medications in the treatmevtiile “Hit Early” means the treatment
should start as early as HIV infection has been confirmedchodigh the so called “cocktail” treat-
ment approach proposed by Ho is still the most commonly ussatment strategy, “Hit Early”
was abandoned quickly when clinicians realized the adveffeets outweighed the benefits. The
treatment should be “Hit HIV-1 hard, but only when necessésarrington et al., 2000). Based on
2012 U.S. Department of Health and Human Services Panel Grefoviral Guidelines for Adults
and Adolescents (Guidelines, 2012), the initiation ofrattoviral therapy (ART) is optional if the
CD4 cell count is> 500 /m L, moderately recommended if the CD4 cell count is 350 to 500
and strongly recommended if the value<is350 /m L. Regardless of the CD4 cell count, ART is
strongly recommended if patients have certain conditiarth ®1s pregnancy, history of an AIDS
defining illness or hepatitis B (HBV) co-infection. The ukbéghly active antiretroviral therapy
(HAART) combines three or more different medications sushveo nucleoside reverse transcrip-
tase inhibitors (NRTIs) and a protease inhibitor (Pl), a-naoleoside reverse transcriptase inhibitor
(NNRTI) or other such combinations. These HAART regimenghaeen proven to be able to re-
duce the amount of active viruses and in some cases can loeveumber of active viruses until it

is undetectable by current blood testing techniques.

1.2. HIV dynamic models

The basic model for HIV infection includes three parts: ¢drgninfected cell, virusV and infected

cell T*. The equations that describe the basic model of viral dycsulméfore the treatment are:



L = p—dT —kVT

I — RVT - 6T* (1.1)

% = nI* —cV
whereT is produced at a rate gfand dies at ratéd, virusV is cleared from the body at rateand
infects the target cell$ to T at rate offk, infected cellT* dies at rate) and produces new virus
particles at a constant rate This is a system of nonlinear ordinary differential eqoiasi (ODE)
without any closed form solution, however, we can derivaowes approximations and obtain an
understanding of the system.

Before infectionV = 0, 7* = 0 and uninfected cell$ are at equilibrium a§" = p/d. Denote
by ¢ = 0 is the time when infection occurs. Suppose infection ocevtls a certain amount of
virus, so the initial conditions arg) = p/d , T; = 0 andV;. Similar as the condition that spread of
an infectious disease in a population, whether or not theswian grow and establish an infection
depends on a crucial quantity called basic reproductive rat R is defined as the number of newly
infected cells arising from one infected cell when almostcalls are uninfected an® = %.

If R < 1 then the virus will not spread, because every infectedwveilllion average produce less
than one other infected cell. If starting wit\i infected cells, then on average, we expect roughly
In N/In(1 — R) rounds of replications before the virus population dies win the other handi

> 1, then, on average, every infected cell will produce moaa ttne newly infected cell. The chain
will generate an explosive multiplication of virus 8%t) = V{ exp(rt), wherer is the exponential
growth rate of the virus population and it is given by the éargpot of the equation® +(5 + ¢)R
+5c(1 — r?) = 0, the approximation of = §(R — 1), which means each infected cell produdes
newly infected cells before dying. Virus growth will not dorue indefinitely because the supply of
uninfected cells is limited.

During the short time since initiation of HAART treatmeritetviral load decrease sharply. This
change with time can be expressed by the differential eguats,dV/dt = P — AV, whereP is
the viral production rate) is the decay rate of viral load, aidis the HIV viral load in plasma. If
assuming a pretreatment steady state exi$tgdt = 0, and a perfect treatment effect that no new
infection or new virion produced, the HIV dynamics can beresped as a simple one-exponential

equation (Ho et al., 1995):
V(t) = V(0) exp(—At) (1.2)



whereV (t) is the viral load at time and V' (0) is the viral load at the baseline. Equation (1.2) can
only reasonably describe the behavior of the viral dynamhicgg 1-2 weeks after the initialization
of treatment.

Assuming a perfect protease inhibitor treatment effectgBen et al., 1996), which means no
new infectious virions {(7) but some noninfectious viriond/§;) will still be produced, the HIV

dynamics can be expressed as the following system of ODE:

a4 = kViT —oT*
% = —cV (1.3)
Wt = NOT* — Vg

where N is the number of new virions produced per infected cell dyite life time. Under the
assumption of constant supply of target élhnd quasi-steady state before treatmét'(dt = 0

anddV/dt = 0), a close form solution to the system of ODE (1.3) can be obthi

V(t) = Vyexp(=Xt)+ % X [%{exp(—ét) —exp(—At)} — dtexp(—At)] (1.4)

whereV (t) = Vi(t) + Vn;(t), Perelson et al.(1996) applied equation (1.4) to more fatjmea-
sured HIV-1 RNA data during the first week of treatment. By lim@ar least-squares regression,
the estimated half-life of free virions is about six hoursl@ns 1.6 days for productively infected
cells.

Perelson et al.(1997) further extended the ODE (1.3) inrdadmclude a longer period of treat-
ment that a biphasical decay rate of plasma HIV-1 RNA wasrmkse an initial rapid exponential
decline of nearly 2-logs (first phase), followed by a slowgranential decline (second phase). Two
more target cells are added in the model: (i) long-lived dtdd cells, macrophages (M), will be
infected intoM™* with a rate ofk,;, produce virions at rate gf and die with a rate ofi,;; (i)
latently infected lymphocytes (L) will be produced by a ratestantfk and die at a rate gfy..

The HIV dynamics can be expressed as:

= = KVT+aL—o0T*

L = VT —prL (L.5)
WL = kyVM — py M

& = NOT* +pM*—cV

where latent infected cells can become productively infected cells at ratexofWith the similar

assumptions used for equation (1.4), a closed form solotidhe system of ODE (1.5) is,



V() = VylAexp(—dt) + Bexp(—urt) + Cexp(—pupt) + (1+ A+ B+ C)) (1.6)

where A, B and C are functions of system parameters. Even adtitional peripheral blood
mononuclear cells information, this equation is too coogikd to identify all parameters, there-
fore, some parameters are assumed to be known and replatkd \®lues from previous studies.
The first six weeks since the treatment was used in equatiéy &hd the half-life of productively
infected CD4 cells, long-lived infected cells and latentlfected cells were estimated as 1.1 days,
14.1 days and 8.5 days, respectively.

Perfect treatment effect may not be a very reasonable assumnespecially after short period
of treatment. Wu and Ding (1999) proposed a system of ODEitltatded a protease inhibitor
efficacy parameter of, 0 < v < 1, while v = 0 means the Pl medications have no effect and
~ = 1 means perfect effect. The original ODE they proposed ireduthany parameters that either
can be negligible if they are associated with the fasterydeoacan be approximated by constants if
they are slow enough in the modeling time period or if theyimmossible to be accurately estimated

based on the HIV-1 viral load available. The simplified sgst& ODE Wu and Ding proposed is:
4T = kViT —6T*
%V[ = (1—v)P—cV; (1.7)
LVNr = P+ P*+ N6T* — Vg
where P is the virus produced rate by productively infected cellsshsas CD4 cell P* accounts
for virus produced from “mysterious” infected cells suchLamngerhans cells and microglial cells,

or long-lived infected cells such as macrophages and latédted cells, and, 7,5, Vi, V1, N

andc have the same meaning as ODE (1.3). A closed form solutidmetgytstem of ODE (1.7) is,
V(t) = exp(P1— A\it) +exp(P — Aat) + (P + Pyt) exp(—ct)

whereV (t) = Vi(t) + Vy(t), A1 = d and it is the first-phase viral decay rate that may represent
the minimum turnover rate of productively infected cellsgls as CD4 )\, is a possibly compound
clearance rate of long-lived and latently infected celld #re value depends on the infection rate
and destroyed rate by HIV virus. Becauskas been estimated to be very rapid (less than 6 hours
of half life), it can be negligible compared with other termghus, the equation can be further

simplified as a two-exponential equation:
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V(t) = exp(P; — M\it) +exp(Py — A\at) (1.8)

where P, and P, is initial viral production rate from productively infeatecells, long-lived and
latently infected cells, respectively. Nonlinear mixdteets (NLME) modeling can be used in the
estimation of the parameters in equation (1.8). NLME madglvill pool individual data together
to estimate the population parameters first, then estirhatentdividual parameters by the empirical
Bayesian method (Monesh and Chinchili, 1996).

Although the “cocktail” HAART treatment can suppress HIVGA to 90% of cases, 30 to 60%
of patients will end up as being considered treatment faikwentually because of the viral load
rebound (Havlir et al., 2000). However, all of the equationieoduced so far require the decay rate
to be constant so they can't be applied to rebound valuesr&lesxtensions have been developed
in order to catch up viral load response that include rebodeid and three representatives are

following:

() Extended from the ODE (1.1), Huang et al.(2003) propoaedral dynamic model with a
time varying treatment efficacy functior(t) as,
L = p—dl —[1 —~(t)kTV
a = [1—~(t)kTV —oT*
% = NT*—cV
where~(t) represents a time varying treatment efficacy and it can beetadds a function

of drug exposure and drug sensitivity.

(i) Extended from one exponential equation (1.2) by reipigdhe constant decay rate with a

time varying decay function (Wu, 2004):

(iif) Extended from two exponential (1.8) by replacing tleesnd constant decay rate with a time

varying decay rate function as (Wu and Zhang, 2002):

V(t) = exp(P1— Ait) +exp(FP — Aa(t)t)
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Among these three extensions, the first one is a system aheanlODE without a closed form, so
compared with the other two, the computation is even mor#iestgeable and the model may not
converge, therefore, we will focus on either the one exptaleor two exponential equation in the
Chapter 2 and 3.

HIV progress status is usually measured via HIV viral loacC@4 cell count, which are both
surrogate biomarkers. CD4 cell count is more often used andpoint for long follow-up trials or
advanced patients population, but for trials with shoroletup periods, viral load is often used as a
primary endpoint to quantify treatment effect, where CDll@munt is viewed as a covariate to help
predict virologic responses. However, we should be awagtssible issues of using either HIV
viral load or CD4 cell count as the outcome. The possiblebierome aspects of using the viral
load as the primary outcome include (i) if the viral load isasared by RT-PCR which is based
on the viral fragments, the result may overestimate the murobinfectious virus by an average
factor of 60,000 (Nowak et al., 1991); the lack correlati@ivieen of viral load and infection was
also noted in some publications (Perelson et al., 1993;)198%re no evidence of virus by culture
among the patients with detectable viral load; (ii) the lalcorrelation between viral load and
CD4 level such that the changes in viral load were only ablexjgain as little as 4% of change
in the CD4 cell count (Rodriguez et al., 2006). Although C24 count seems to be a better HIV
progression indicator, especially for the study with a lemfpllow-up period, prediction may be
risky since CD4 cell count models are often empirical (Wu &mag, 1999; Wu, 2002). On the
other hand, treating both viral load and CD4 cell count avarlzite response (Sy et al., 2007) may
be complicated, because the HIV dynamic model for viral ladonlinear and CD4 cell count

contains missing data.

1.3. Statistical inference in HIV dynamics

Various statistical inferences and analysis methods heee bpplied in HIV dynamics. Linear and
nonlinear regression via least-squares (LS) estimatinfoeapplied to very frequent measurements
during the first 1 — 2 weeks after the treatment is initiated étlal., 1995; Perelson et al., 1996;
1997; Wei et al., 1995). Because frequent viral load measene is only achievable in small
clinical studies and only subjects without any missing galaan be included in LS, this method is

considered to be less powerful than some other inferences.
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Because viral load are measured repeatedly since the #eftthe values obtained from the
same subject may be correlated but can be assumed to be ridéepéf obtained from different
subjects. One powerful tool to handle such longitudinahdatmixed-effects modeling, in which
within-subject and between-subject variations are botisiciered (Laird and Ware, 1982). Linear
mixed-effects (LME) and nonlinear mixed-effects (NLME) dating approaches have been pro-
posed in HIV dynamics (Wu et al., 1998; 2004; Wu and Ding, 39%emiparametric nonlinear
mixed-effects (SNLME) modeling (Liu and Wu, 2007; Wu and a9a2002; Wu et al., 2004) is
proposed in order to allow the decay rate to vary with timeéneaébound viral load can be included.
Joint model approach via Monte Carlo EM algorithm can beiadpio the NLME with covariate
measurement errors and non-ignorable missing respongear(il Wu, 2007; Wu, 2002; 2004). Es-
timation of NLME is complex because usually the likelihoagsmo closed form solution, even for
simple models. The Bayesian approach based on Markov chaimeMCarlo (MCMC) algorithm
has been proposed for complex ODE and NLME (Huang et al., ;2B0@ng and Dagne, 2011;
2012a; 2012b; Putter et al., 2002; Wu et al., 2005). To avmdhumerical computation of multiple
integrals involved in the likelihood, likelihood approxation such as linearization, Laplace ap-
proximation, Stochastic approximation EM algorithm (SAEhMwve been applied in HIV dynamics
(Ding and Wu, 2000; Gued;j et al., 2007; Kuhn and Lavielle,200u, 2004).

Another complexity of viral load analysis is left censoriwhich occurs when viral loads are
below a limit of qualification (LOQ), and if ignored, the censg may induce biased parameter
estimates. Different approaches have been proposed tesadiiis problem (Fitzgerald et al., 2002;
Hughes, 1999; Lavielle et al., 2011; Samson et al., 200&0hie et al., 2005).

The model random errors and random-effects in mixed-effeatels are usually assumed to
have a normal distribution and that assumption may not bsfigat in HIV viral load and CD4
cell count, so the estimation can be biased. Skewed distibaan be applied in order to consider
this non-ignorable departure from normality (Huang et2006; Huang and Dagne, 2012a; 2012b;
Dagne and Huang, 2012).

CD4 and CDS8 cell count can be used as surrogate biomarkets$l¥odisease process. Shah
et al.(1997) used an EM algorithm to fit a bivariate lineard@n-effects model. Sy et al.(1997)
used the Fisher scoring method to fit a bivariate linear ramdfiects model including an integrated

Orstein-Uhlenbeck process (IOU). IOU is a stochastic medhat includes Brownian motion as a
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special limiting case.

1.4. Skewe-elliptical distributions

Linear and nonlinear mixed-effect models are powerfulddol analyzing repeated measures and
clustered data. In these models, random-effects are iedlurdorder to account correlation. Usually
either random-effects or model errors or both are assumiedida a normal distribution. Although
normality assumption may be reasonable for many situgtibesskewness can still be obvious even
after the variables have been transformed. Ignoring thartie from normality may cause biases
or misleading results (Ghosh et al., 2007; Verbeke and kresdf996). Ideally, we hope to use a
more generalized distribution family that (i) has high flékiy in shapes and with a wide range of
skewness and kurtosis; (ii) is mathematically tractableictv means it can retain nice properties
of original family such that parameters can be directlydiddko some aspects of known probability
density function (pdf); (iii) allows us to easily apply thesttibutions in the existing software.

Skew-elliptical (SE) distribution is a parametric classpobbability distributions that is ex-
tended from elliptical distribution by including an additial shape parameter for skewness. This
class, which is usually obtained by using transformatioth @nditioning, contains many standard
families such as multivariate skew-normal (SN), ske(®T), Student-and normal distributions.
Different versions of the multivariate SE distributionssbdeen proposed. The version proposed
by Azzalini et al.(1996; 1999) is based on conditioning ouigakle random variable being greater
than zero; SE distribution proposed by Jones and Faddy J280aled inversey distribution;
Fernandez and Steel (1998) developed a form that two Studbstributions (with different scale
parameters) in positive and negative domains are combménth an SE distributions; We adopt
a class of multivariate SE distributions proposed by Salal.2003), which is obtained by using
transformation and conditioning, contains multivariae, SN, Student-and normal distribution
as special cases. B-dimensional random vectd" follows ak-variate SE distribution if its pdf is
given by

Flylp. =, Armi) = 28 f(ylp, A;m ) P(V > 0) (1.9)

whereA = X + A?, pis a location parameter vectdy] is a covariance matrixA is a skew-

ness diagonal matrix with the skewness parameter vécter(dy, s, ..., 6;)7, V follows the el-
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liptical distribution E] (AA_l(y —p), I — AATLA; m,(,k)) and the density generator function

m () = L = Tk};ﬁ:iy(u)dr, with m, (u) being a function such thaf™ »*/2~1m,, (u)dr

exists. The functionn, (u) provides the kernel of the original elliptical density andyrdepend
on the parameter. We denote this SE distribution byE(u,E,A;mf,k)). Two examples of
m,(u), leading to important special cases used throughout therpagem,, (u) = exp(—u/2) and
my(u) = (u/v)~ k)2 wherev > 0. These two expressions lead to the multivariate SN and ST

distributions, respectively. In the latter casegorresponds to the degree of freedom parameter.

1.4.1. Skewtdistribution

We briefly discuss a multivariate ST distribution introddd®y Sahu et al.(2003) in this section. A
k-dimensional random vectd follows ak-variate ST distribution if its pdf is given by
flylp, =, A v) = 2% ,(y|lp, A)P(V > 0) (1.10)

we denote thé-variatet distribution with parameterg, A and degrees of freedomby ¢, ,, (1, A)
and the corresponding pdf y . (y|p, A) henceforth,V follows thet distributionty, ... We
denote this distribution b§7T}. ., (1, =, A). In particular, wher® = oI, andA = §I}, equation
(1.10) simplifies to

Flylp, 02,6,v) = 2%(02 + 62)~k/2_L(rth)/2) {1 N (1)

T'(v/2)(vm)k/2 v(o2+42)
(624621 (Y — 1) T (1 — -1/2 _
N {{ . =T

}—(u—i-k) /2

oV o2462

whereT}, . (-) denotes the cumulative distribution function (cdf)t@f, (0, I;). However, un-
like in the SN distribution below, the ST density can not béttem as the product of univariate ST
densities. Her&  are dependent but uncorrelated.

The mean and covariance matrix of the ST distributi,. , (1, 021, A) are given by

T(v/2) v—2 7 T(v/2)

The ST distribution ofY” has two types of stochastic representation as follows, antd pro-

2
E(Y)=p+ (v/n)2 =2 s  op(y) = (020, + A?] 1 — 2 [F{(u—l)/2}} A2

vides a convenience device for random number generatioimgvidmentation purpose.
(). By the proposition of Sahu et al.(2003),

Y = p+ AlXo| + 22X, (1.11)
whereX and X ; are two independent random vectors followiag, (0, I;). Letw = | X |, then
w follows ak-dimensional standarddistributionty, ,, (0, I;) truncated in the spaae > 0 (i.e., the

standard halt-distribution). Thus, a hierarchical representation ot} .is given by
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Y|w ~ tk,l/-i—k(/j' + A’LU,(UZ), w ~ tk’,l/(07 Ik’)I(w > 0) (1.12)

wherew = (v + wlw)/(v + k).

(ii) By Proposition 1 of Arellano-Valle et al.(2007), the $TY has another convenient stochastic

representation as follows

Y = p+ A|X |+ 71282 X, (1.13)

where | X | and X; are two independendVi (0, I;,) random vectors. Letv = |X|, thenw
follows a k-dimensional standard normal distributid¥y, (O, I;) truncated in the spaces > 0.

Thus, following Sahu et al.(2003), a hierarchical represtgon of 1.13 is given by
Y|w, €~ Ne(p+ Aw,7'8), w~ Ne(0,I)I(w > 0), {~T(p/2,p/2)  (1.14)

Note that the ST distribution presented in (1.12) or (1.12h) be reduced to the following three
special distributions:
(@). An SN distributionS Ny (e, X, A) asv — oo and¢ — 1 with probability of 1 (based on
equation of 1.14) or a8 — oo with probability of 1 (based on equation of 1.12);
(b). A Studentt distributiont, , (p, X) asA = 0,
(c). A normal distributionVy (1, ) if both conditions of (a) and (b) are satisfied.

In order to better understand the shape of an ST distribupilots of an ST density as a function

of the skewness parameter with= —3, 0, 3 are shown in Figure 1.4(a).

(a): ST density with mean=0 (b): SN density with mean=0
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Figure 1.4: The univariate skewfdf v = 4) and skew-normal density functions with precision

o2 = 1 and skewness parameter 0, -3 and 3, respectively.
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1.4.2. Skew-normal distribution

We briefly discuss a multivariate SN distribution introddd®y Sahu et al.(2003) in this section. A

k-dimensional random vectd follows ak-variate SN distribution, if its pdf is given by
flylp, =, A) = 28| A|712¢, {A 2 (y — n)} P(V > 0), (1.15)

whereV ~ N {AA Yy — ), I, — AA LA}, andgy(-) is the pdf of N (0, I;,). We denote
the above distribution by Ny (i, 3, A). An appealing feature of equation (1.15) is that it gives
independent marginal wheél = diag(o?,03,...,0%). The pdf (1.15) thus reduces to

k i — ki Oi _Yi—Hi
Sl = A) =115, [ wi&”{ j02552}¢»{0—i \;%H ,

whereg(-) and®(-) are the pdf and cdf of the standard normal distribution, eetyely.

The mean and covariance matrix are given by
E(Y)=p+/2/76, cov(Y) =3+ (1 —2/m)A?

It is noted that whemA = 0, the SN distribution reduces to usual normal distributidn.
addition, the SN distribution is a special case of the STriligion. That is, the ST distribution
reduces to the SN distribution when the degree of freedomarge! In order to better understand
the shape of an SN distribution, plots of an SN density as etifum of the skewness parameter with

0 = —3,0, and 3 are shown in Figure 1.4(b).

1.5. Specific aims

A common assumption in mixed-effect model for random ereord random-effects is normal dis-
tribution. This assumption may lack robustness againsrdigm@ from normality and can be greatly
affected by outliers too, therefore, the results may be sdgraemisleading. In HIV/AIDS studies,
the viral load, CD4 and CDS8 cell count can exhibit obviousvakess, even after transformation.
It will be valuable to explore whether a general skewed ithstion such as ST or SN will bring

a better model fitting. Also due to the nature of HIV dynamite® related models can be very
complicated and associated intensive computation burdéreiinference. Non-convergence of the
algorithms may exist under the framework of likelihood mstiion. Besides these issues, there are

at least three specific questions that have not been s#biska@answered:

First, it is important to use entire HIV viral load data to baw better understand about the disease

progress and to compare the effect of different medicatidtiewever, among all of those
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models that can be applied to include the rebound data, makear which one is preferred, or
whether different distributions will affect the model fit, whether the estimated parameters

can be good predictors for some long-term result as as tesdtfailure.

Second, in order to explain individual difference in HIV @nics, covariates, such as CD4, are often

Third,

used in the model. However, CD4 values may be measured wlitstamutial errors or at a
different schedule as the viral load measurement. Also, LMBEME and SNLME can be
used for short, middle and long term of HIV dynamics datgpeetively. Although they have
some of the same parameters such as the first decay rate whiteh inimal turn over of
the productively infected cells, it is unclear whether tbssimation obtained from different

models is constant, and if not, which model will yield moragenable estimations.

using HIV viral load as a surrogate to predict the diseprogress might be problematic. For
example, the amount of infectious virus may be overestidjdberefore, the CD4 cell count
seems to be a better indicator. However, the mechanism lghvithe CD4 cell count change
during the HIV progress is not clear. Although using biveriautcomes of CD4 and CD8 cell
count appear to be superior to any of these cell count alotigeorratio (Ir et al., 1990), the
distribution of CD4 and CD8 cell count shows skewness witlivigdails, and no model has
been proposed to consider CD4 and CD8 as outcome simultsiyenith skewed distribution

assumption.

Via the Bayesian approach and assuming an SE distributisndissertation research is organized

as follow:

Aim 1.

Related to the first question of multiple models forienHIV viral load follow-up, in Chapter
2, we explored different models with time-varying decayrainction in order to find which
one has the best fit. We also assumed different distributroeach model to check the effect
of skewness on the model fit. After finding the best fitted modelexplored the applications
of the estimated decay rate, such as their association etifnydrate, CD4 cell count and viral
load rebound status. To the best of our knowledge, no timgng decay rate function was
checked or had been found to have any significant associafithnthe long-term outcome

such as viral load rebound, although some research fourzbtistant decay rate may reflect
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Aim 2.

Aim 3.

the potency of antiviral therapies in the short term. Forghgose of model comparisons,
we used one AIDS clinical trial study data to do the model canigons and then checked the

validity of the conclusions based on another AIDS clinicall tstudy.

Related to the second question of covariate with nressent errors and skewness, in Chapter
3, we compared the three most commonly used models for shimtlle and long term HIV
dynamics. CD4 was included as an important covariate in tbdets. A critical question

is whether these models produce coherent estimates ofdecaly rates, and if not, which
model is appropriate and should be used in practice. Iniaddibne common assumption is
that model random errors is normally distributed, but themadity assumption may be un-
realistic, particularly, if the data exhibit skewness. Ever, some covariates, such as CD4
cell count, may often be measured with substantial erroesatldressed these issues simulta-
neously by jointly modeling the response variable with skess and a covariate process with
measurement errors. A real data set from an AIDS clinical study was used to present the

proposed models.

Related to the third question of CD4 and CD8 as beingniiders during ARV and con-
sidering their dependence on common predictors, in Chdpter applied a joint bivariate
linear mixed-effects (BLME) model that can include CD4 aridi8Zell count simultaneously
as the outcomes, while the observed skewness in the dateowsislered by applying an SE
distribution. The baseline viral load, patients’ age, tivagying drug efficacy and the group

of treatments were also included as covariates in the BLME.
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2 Mixed-effects models with skewed distributions for timevarying vi-

ral decay rate in HIV dynamics
2.1. Introduction

Mathematical modeling is an important tool for understagdhe evolution of HIV viral load (num-
bers of HIV-1 RNA copies in plasma) and interactions betwid&hand its target cells. Most math-
ematical models developed prior to the mid-1990s were edeftr computer simulations and for
interpreting declines in CD4 cell count after HIV infectioDue to the availability of HAART and
methods of providing sensitive measurement of blood pladiwal RNA concentrations, it is pos-
sible to use viral load as a surrogate marker for the headtiusiof HIV-infected individuals. The
mathematical modelings of HIV dynamics on the cellular ollenolar level are based on a similar
principal used in large-scale epidemiological modeling.

Studies of viral dynamics have a common design, in which tred ad, targeted cells, phar-
macokinetic and pharmacodynamic factors are repeatediguned since treatment. The viral load
trajectory is complex and has multiple phases of change (Hh,e1995; Maldarelli et al., 2007,
Perelson et al., 1997; Wei et al., 1995). Data from A5055 §aet al., 2004) (Figure 2.1) shows
that: (i) within the first 2 weeks after the initial treatmetite viral load (transformed in natural
log scale) dropped linearly and sharply, therefore, the chafigéral load can be approximated
by an exponential function; (ii) within the first 2—3 monthst lafter the first 2 weeks, the relation-
ship between the viral load and time was still linear but tlope became flatter, which indicates
a slower decay rate; (iii) between the third to eighth motttle, viral load either decreased more
slowly, remained at a constant low level, or started to iaseeup to the level measured before treat-
ment was initiated. The possible reasons for viral load uedcare development of resistance to
the medications, and other clinical issues such as lackhwradce. There is no clear cutoff among
the phases, not every subject will have all of these phasgshenlength of the phases may vary
among individuals. Therefore, the associated decay rdteeimodels for the viral load trajectories

is expected to vary over time and can be individually specific
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Figure 2.1: Profile of viral load in natural log scale from midal trial study-A5055

For the first phase of HIV viral load dynamics (i.e., the firstol2 weeks), we can apply a

uniexponential equation (Ho et al., 1995; Wei et al., 1995) a

V(t) = V(0) exp(—At) (2.1)

whereV (¢) is total viral load at time, 1/(0) is the baseline viral load a&t= 0 and\ is a constant
viral change rate which is the speed of the loss of viral lofidr anitiation of potent antiviral
treatment. Although equation (2.1) can precisely desdhiegphenomenon of a linear decrease of
logarithm transformed viral load within approximately dogwo weeks since treatment is initiated,
we cannot apply it to the whole trajectory because the vaatilis only allowed to decrease at a
constant rate in this equation. Besides that, there arastttleree unsolved issues.

First, in order to use entire HIV follow-up data, extendeghirequation (2.1), different models
have been proposed in the literature, it is unclear whichi@ngore appropriate.

Second, in mixed-effects models for longitudinal data ysia] random errors and/or random-
effects are usually assumed to have a normal distributioithoAgh the normality assumption is
satisfied in many situations, it may cause biased or mistgaitiference if the data include ex-
treme values or show skewness with heavy tails, which areraamty seen in virological responses
(Huang and Dagne, 2011; Sahu et al., 2003; Verbeke and tesaf96). Figure 2.2 displays the

histogram of repeated viral load in natuleg scale for 44 subjects enrolled in the A5055 trial. The
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skewness, which is still obvious even after the transfoionais positive and ranges from 0.8 and
2.15 at each of the follow-up measurements. If the ratio betwskewness value and standard error
of skewness is greater than 2, the data may be regarded ag hargnorable skewness (Gardner,

2001). In the A5055 study, the ratio is 4 , which indicatesasiess needs to be accounted for.
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Figure 2.2: The histogram of viral load (in natutag scale) for 44 patients in a clinical trial study-
A5055

Third, computational infeasibility can be a challenge. daentist and Bayesian are two major
approaches used in studies of HIV dynamics. In the fregsieafiproach, based on the maximum
likelihood estimation (MLE), different extensions havesheproposed, such as Laplace approxi-
mation of the numerical integrals (Beal and Sheiner, 1988ddtrom and Bates, 1990; Wu and
Zhang, 2002), stochastic approximation EM (SAEM) alganitfikuhn and Lavielle, 2005; Lavielle
etal., 2011), joint model via Monte Carlo EM algorithm (LindaWu, 2007; Wu, 2004) and asymp-
totic distribution of the maximum h-likelihood estimatdidHLE) (Commenges et al., 2011). The
second approach is Bayesian mixed-effects modeling via MGMuang et al., 2006; Huang and
Dagne, 2011; Putter et al., 2002). The Bayesian approaah éffigient way to incorporate prior
information, both point estimates and uncertainties &rares), into analysis to identify more un-
known parameters in complex models.

Via Bayesian approach, the main focus of this chapter isdeige a comprehensive comparison

of five commonly used HIV dynamic models with SE distributiarrandom errors. The rest of the
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chapter is organized as follows: Section 2.2 presents thedyhamic models that have a time-
varying decay rate function so they can be applied to theesHtiV follow-up data. In Section 2.3,

we describe a general Bayesian mixed-effects modelingoappr In Section 2.4, we present the
motivated AIDS data and results of model comparisons. &e&i5 includes the conclusion and

discussion.

2.2. HIV dynamic models with time-varying decay rate functon

As mentioned in Section 2.1, there is a multiphasic changglihviral load after the initiation
of HAART. One potential interpretation of this phenomensrthat the process involves distinct
populations with different homogenous behaviors. For glamthe fast decreasing decay rate
observed in the first phase is due to the treatment effect aduptively infected CD4 cells, while
the slower decay rate in the second phase is primarily dubeaffect on the latently or long-
lived infected cells (Perelson et al., 1997). However, spmenomena can't be explained by this
theory. For example, there can be large differences in meaaydrates in response to different
treatment regimens: during the first week, the death of tatecells may be substantially slower
during days 3-6 than during days 2-3 (Grossman et al., 1989jifferent decay rates reflect
the rates at which different infected cells died, it is urentpd to see that the decay rate should
depend on the type or concentration of the treatment regifierller et al., 1998). Based on
the assumption that reduced production during immuneaativ events and fewer cycles account
for the observed multiphasic HIV decrease, Following up@ential equation (2.1), Grossman et
al.(1999) proposed an equation for viral load as:

V() = V(0)exp{—=&l)

R(v) = R(1)+ a(l —v)exp(—pv) (2.2)

o(t) = V()/V(0)
wherer is the average infection cycle timg,is adjustable parameter, aftlis reproduction ratio.
At steady state = 1, which means each infected cell is replaced, on average nbynewly
infected cell;V (0) is the baseline viral load(t) is the ratio between the viral load at tirhand the
baseline. Sinc& (¢) and R depend on each other, this equation may not be easy to schged®n

Zhang and Wu (2011), equation (2.2) is equivalent to the amu® (t) = V' (0) exp(—A(¢)t), and

At) = log{R(v)}/7 = log{ R[V(£)/V(0)]}/7
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A(t) is time varying and may be interpreted as the average reltss rate of the viral loatf (¢).

Let At denote a small time period, then the relative loss ¢étg is:

at) = limag oo { IR} AL = V() /V (1)

Solving the above differential equation yields:

V(t) = V(0)exp {— fg Oé(T)dT} = V(0) exp[—A(t)t] (2.3)

where \(t) = fot a(T)dr/t is the average relative lost rate of the viral loddt). A(t) can be
positive (if R < 1), zero (if R = 1), or negative (ifR > 1). If A(t) < 0, the decay rate\(¢)
at timet actually is a growth rate. Therefore, by including a timeyireg decay rate function(¢),
compared with equation (2.1), equation (2.3) is more flexisid can be applied to include the entire
follow-up data without need to arbitrarily truncate thealat

A unified model with a time-varying viral decay rate functican be expressed as:

y(t) =In[V ()] + € = In{V(0) exp[-A(t)t]} + e = B1 — A(t)t + € (2.4)

wherey(t) is the natural logarithm transformation of the number of HINRNA copies per mL
of plasma is the measurement errdn (1 (0)) = 5, and is the macro-parameter for initial viral
load in naturalog scale. In addition to the simplicity of this model’s struetpit also indicates that
the pattern of HIV decrease may be a physiologically stmectulocal non-equilibrium dynamic
interaction between HIV and immune activated cells afeatiment initiation. Therefore, the overall
decay rate is the weighted average that is proportionaletdoiteal level of infection.

Among the different decay rate functions proposed in thegdiure, we select five representa-

tives as follow (Dagne and Huang, 2012; Grossman et al.,;18892004; Zhang and Wu, 2011),

I A(t) = Ba+Bst
I A(t) = Baexp(—Bst) + Ba
N A(t) = Baexp(—PBst) + Bs+ Bt
IV: X(t) = Baexp(—pfat) + Baexp(—pst)
Vi) = ofw(t), hi(d)]
)

where the last one\(t) = v[w(t), hi(t)], is a nonparametric function.
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2.3. Bayesian mixed-effects models with skewed distribwtn

To account for the skewness observed in the data, the randons @ mixed-effects models can
be assumed to follow an SE distribution (see Section 1.4tailjleThe SE distribution is a family
of distributions that is not only mathematically tractablgt also flexible in its possible shapes.
Because in the SE family, skew-normal (SN), normal and Stiaddistribution are all a special
case of skew-(ST) distribution, therefore, in this section, we presegieaeral form of a mixed-
effects model with an ST distribution under the Bayesiarr@ggh. A general mixed-effects model

with an ST distribution can be expressed as:

Y, = gi(ti>18i)+eiv €; i.'l\(“iSTan(O»Z»A)a (25)
IBZ' = d(ﬂvbl)7 bl I'I\SJ.N(O7ZI))7 .

¥; = (Yi1, ..., Yin;)T With y;; being the response value for tith individual at thejth time ¢ =
1,2,..,n, j = 1,2,...m), g:(ti,8;) = (9(ti,Bin), - 9(ting, Bin ) "o i = (tit, - tin,) 7,
B = (Bi1,- - ,Bmi)T, B,; are individual-specific time-dependent parameter ve@nds3 is pop-
ulation parameter vector(-) andd(-) are linear or nonlinear known parametric functiobs,is
normal random-effect vector with;, being an unstructured covariance matrix. The vector of ran-
dom errorse; = (e, ..., emi)T follows a multivariate ST distribution with degrees of fdeen

v, within-subject covariance matri¥ and we usually can assun}e = 0—21,%, and unknown

n; x n; skewness diagonal matrix such that = diag(d;1, ..., din,), Skewness parameter vec-
tor &, = (5i1,...,5ini)T. In particular, ifé;; = -+ = 6, =0, thenA = 4I,,, andd; = d1,,,
wherel,. = (1,...,1)7, indicating that we are interested in skewness of overai det.

Following discussion in Section 1.4.1, to implement an MClIGcedure to model (2.5), by
introducing onen; x 1 random vectotv;, based on the stochastic representation, the model can be

hierarchically formulated as follows.

iid

Yilbiwi Nty (9 B) + Swi, wio? ),
o
wj ~ tni7ni+l/(071ni)[(wi>o)’ 26)
iid

b, ~ N(0,%,),
wherew; = (v + wlw;)/(v + n;), tn, (11, A) denotes the;-variate Student-distribution with
parameterg:, A and degrees of freedom I(w > 0) is an indicator function andb = | X o| with

Xo ~ tn, (0, I,,). Note that the hierarchical model above under Bayesiandvaork will allow
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researchers to easily implement the methods using the/fasailable WinBUGS software (Lynn,
et al., 2000) and the computational effort for the model w&ithST distribution is almost equivalent
to that of the model with a Studendistribution.

The unknown population parameters in the model (2.50are {3, 02, 3,6, v}, and we as-
sume they are independent of one another. Under Bayesiam@rark, we also need to specify
prior distributions for unknown parameters as follows.

B ~ N(Bo,A), 0%~IG(wi,wa), 3~ IW(Q,0), 27

0 ~ N(0,y), v~ Exp(v)l(v>2)
where the mutually independent Norm&'), Inverse Gammal(&), Exponential £zp) and In-
verse Wishart {IW) prior distributions are chosen to facilitate computasidDavidian and Gilti-
nan, 1995). The super-parameter matrideand{2 can be assumed to be diagonal for convenient
implementation.

Let 7(.) be a prior density function, so(0) = = (3)r(0?)m(Zy)7(v)7(5). Denote the ob-

served data byD = {y,,i = 1,...,n}, and f(:|-) as a conditional density function. Based on

Bayesian inference, the posterior densitydds proportional to the observed data and prior distri-

bution as:

FOID) o {L1] Fuilbewi 8.0 0.0) flwifw; > 0) f(b[Z)dbi}r(0)  (28)

In general, the integral in (2.8) is of high dimension andsdoet have any closed form. An-
alytic approximations to the integral may not be sufficigrattcurate. Therefore, it is prohibitive
to directly calculate the posterior distribution @éfbased on the observed data. As an alternative,
MCMC procedures can be used to sample based on (2.8) by thes Gampling along with the

Metropolis-Hastings (M-H) algorithm.

2.4. Application: AIDS clinical trial data

2.4.1. AIDS clinical trial data and specific models
We used two AIDS clinical trials to explore the best fit amamg models with different time-varying
decay rate functions and different model random errorsiligton assumption such as normal, SN,

Studentt and ST distribution. The first trial, A5055, is the focus. ther, we used data from another

clinical trial, A398 (Pfister et al., 2003), to validate thenclusions obtained from A5055.
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A5055 was a phase I/ll, randomized, open-label, 24-weekpeoative study. It included 44
HIV-1 infected patients who failed their first protease bitdr treatment. Subjects were randomly
assigned into one of the two arms. Subjects were schedulefdlfow up visits at study day O,
weeks 1, 2, and 4, and every 4 weeks thereafter through weeRRA viral load was measured
(copiegmL) in blood samples collected at study days O, 7, 14, 28, 56,182, 140 and 168.
The nucleic acid sequence-based amplification assay (NASRBA used to measure plasma HIV-1
RNA, with a low limit of quantification of 50 copigsnL. HIV-1 RNA measures below this limit
are not considered reliable, therefore we imputed suctesads 25 copigsn L (Acosta et al., 2004;
Davidian and Giltinan, 1995). The mean, minimum and maxinuatues for the baseline viral
load were 6.09x 103, 199 and 1.07% 10° /mL, respectively. The average age of subjects was
37.8 years (SD=8.1) and approximately 80% of subjects hadeaat 8 measurements (including
the initial measurement). The mean and median number of afafidlow-up were 155 and 168,
respectively.

A398 was a phase Il trial that included 481 HIV-1 positivei@atis with prior exposure to
approved Pls and loss of virological suppression. All pasievere assigned to receive routine ART.
Besides these medications, depending on the dose and tyjis taf which the patients previously
exposed, they were selectively randomly assigned into 6éfeuo arms. HIV-1 RNA levels were
measured at the time of entry into the study (day 0), at stuelgks 2, 4, 8, 16, 24, 32, 40, and 48,
every 8 weeks thereafter, and at the time of confirmed viickdailure. The mean, minimum and
maximum values for the baseline viral load were 2<760%, 260 and 1.3 107/mL, respectively.
The low limit of quantification is 100 copi¢s: L and the HIV-1 RNA measures below this limit are
not considered reliable and 50 copiesl. was used instead. The average age of subjects was 40.1
years (SD=19) and approximately 74% subjects had at leagte®unements (including the initial
measurement). The mean and median of follow-up is 168 anddayd, respectively. We draw
two samples from A398 based on the method of simple randorplssgrwithout replacement, one
sample includes 44 subjects and the other includes 100ctsibj#/e also used all of the 481 subjects

in A398 in the model comparisons.
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(a): ACTG5055 (N=44)

(b): ACTG398 (samplel: N=44)

(c): ACTG398 (sample2: N=100)
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Figure 2.3: Profiles of viral load in naturédg scale for four randomly selected patients among

A5055 and A398, respectively

Figure 2.3 shows the measurements of viral load natagascale for four randomly selected
patients from A5055 and two sample data sets from A398. Wesearthat viral load trajectories
vary widely and they are substantially different acrossviddials. To account for this time-varying
viral load change, we applied a mixed-effects model withnzetvarying decay rate function, as
discussed in Section 2.2. In addition, we assumed the moaekdollowed an ST distribution in
order to make the model flexible in considering the skewnbsgmed in the data. The exact day
of viral load measurement was used to compute study day iarmalysis.

Under the general layout as model (2.4), correspondingetéik time-varying decay functions

presented in Section 2.2, the mixed-effects models can fressed as follow.

Model I:  Quadratic linear mixed-effects model:
Yij = P — [Boi + Baitizltij + eij
ei N ST, ,(0,0%I, 6I,) (2.9)
Bri = P1+bu, B2 = P2+by, B3i=P3+0bsi
whereB = (51, 82, 3)" andb; = (bi;, bai, bsi)” 5 N3 (0, 2p).
Model II:  Nonlinear mixed-effects model (uniexponential plus a tam3:
Yij = Bri— [Baiexp(—Bsitij) + Baltij + eij
ei % ST, (0,021, 61, (2.10)
Bii = B1+buis Boi=P2+ba, Bsi=Ps+bsi, Bai= P+ by

whereB = (B1, B2, B3, B1)T andb; = (b1;, ba;, b, bai)” i N4(0,%).
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Model lll:  Nonlinear mixed-effects model (uniexponential plus adintinction):
Yij = B — [Boiexp(—Bitij) + Bai + Bsitizlti; + eij
e % STy, .(0,0%1,,,01,,) (2.11)
Bri = Bi+bii, B2i = B2+ boi, B3i = B3+ bsi, Bai = Pa+ bai, Bsi = B5 + bsi

iid
whereB = (81, Ba, B3, Ba, B5)T andb; = (b1, bai, bsi, bai, bsi) T ~ N5 (0, ).

Model IV:  Nonlinear mixed-effects model (two uniexponential):

Yij = Bri— [Boexp(—Bsiti;) + Bai exp(—PBsitij)|ti; + €ij
e; N ST, ,(0,0%I,,,61,) (2.12)
Bri = B1+bii, B2 = B2+ bai, Bsi = B3+ bsi, Bai = Ba+ baiy Bsi = Bs + b,
whereB = (51. Ba, B3, 51, B5)" andb; = (biy. bai, bi, bas, bsi)” = N5 (0, Sp).
Model V:  Semiparametric mixed-effects model:
vij = P —vlw(ts), hi(ti)]ti; + e

wherew(t) andh;(t) are unknown nonparametric smooth fixed-effects and raneffacts func-
tions, respectively, and;(t) areiid realizations of a zero-mean stochastic process. Model V is
a semiparametric mixed-effects modekift) andh;(¢t) are modeled non-parametrically such as
splines or local polynomials. There are several ways toamate these nonparametric functions.
Following the similar approach as Shi et al.(1996), Rice 4ud(2001), Huang and Dagne (2010),
we used natural cubic basis function instead of smoothifigesp(Ke and Wang, 2001; Wang 1998;
Zhang et al., 1998) or kernel methods (Wu and Zhang, 2002Woreasons: this method is more
straightforward in application and we can select the bageskaike information criterion (AIC) or

the Bayesian information criterion (BIC) to balance the djess-of-fit and model complexity. A

linear combination of base function can be expressed as:

w(t) = wy(t) = S50 un(t) = pyT,t)7 hi(t) = hig(t) = 310 Cadi(t) = &, @4 ()"

wherep,, and§;, (¢ < p) are the unknown vectors of fixed and random coefficientpesvely.
We setyyy = ¢9 = 1 and took the same natural cubic splines in the approximatwith p < ¢,

based on the AIC and BIC values, selected the following:
w(tij) + hi(tij) = po + pa(tiy) + paba(tiy) + &io
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wherep = 3 andq = 1. Model V, therefore, can be expressed as,

Yij = Bri— [po+ pmpr(tiy) + peve(tiy) + Soltij + eij
€; i STni,v(Q 0'2Im-75Ini) (2.13)
Bri = PB1+br, Boi=po+Eo, Bz =1, Ba=pe

whereB = (81, o, pi1, p2)” andb; = (byi, &i0)” % No(0, ).

In each of the five models above, besides the ST distributssniraption, the model random
errors can also be assumed to follow other more specifiglisons as normal, SN and Student-
We used several criteria to check the model fit by applyingribdels on the data mentioned above.

We first used deviance information criterion (DIC) (Spidwdter, 2002) to compare models.
DIC is a generalization of AIC that can be directly obtaineoihi WinBUGS, it consists of two

components:

DIC = D(6)+2pp
pp = Eg[—2logp(ylf)] — (—2log p(yl(y)))
= Ey,[D(O)] - D[Ey, (6)] = D - D)
so, DIC = D+pp
whereD(0) is deviance and defined a2 log p(y|#) andp(y|0) is likelihood, D is posterior mean
deviance which measures “goodness-of-fit”, the larger tlaevof D, the worse of the fitpp is
the effective number of parameters that indicates “conityfexhe larger the value of p, the more
complex is the model. Therefore, DIC = “goodness-of-fit” efigplexity”. SinceD will decrease as
the number of parameters in a model increasesy thierm compensates for this effect by favoring
models with fewer parameters. Unlike AIC and BIC that reguialculating the likelihood at its
maximum overd, which is not readily available from MCMC, DIC is easily calated from the
samples generated by MCMC. Same as AIC and BIC, the smadlesatilne of DIC, the better of the
model fit. DIC is not intended for identification of the ‘coctemodel, but rather merely as a way
to compare a collection of alternative formulations.

Because model comparisons are critical for our study, bedidC, we also compared the values
of expected predictive deviance (EPD) and residual sumuwdrss (RSS) that obtained from each
model. EPD is formulated by PD = E{2i7j(ymp,ij—yobs,ij)z}, where the predictive valug., ;;
is a replicate of the observegd, ;; and the expectation is taken over the posterior distributib
the model paramete® (Gelman et al., 2003). RSS is given B ;(yops,ij — yfittedij)z and itis

a measure of the discrepancy between the data and an estimatidel. The smaller the value of
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DIC, EPD and RSS, the better fit of the model to the data. Bedigese statistical criteria, two
diagnostic plots, Quantile-Quantile plot (Q-Q plot) andtplof observed values vs. fitted values,
were also reported to give a visualized goodness-of-fitemtlodel comparisons.

We re-scaled the original time t (days) so that the time seae between 0 and 1. We used
the entire follow-up data in all of the models. In the Bayasierential approach, we also need to
specify values of the hyper-parameters at the populatiesl.l&Veakly informative prior distribu-
tions are taken for all the parameters: (i) for each compbogtfixed-effect vector of3, the prior
was assumed to follow independent normal distributiorivas, 100); (ii) for the scale parameter
o2, we assumed a limiting non-informative inverse gamma pdistribution as/G(0.01,0.01),
therefore, the mean is 1 and variance is 100; (iii) the pootHie variance-covariance matrix for the
random-effec, was taken to be inverse Wishart distribution/&s (€2, v), the degree of freedom,
v = 5, andQ is diagonal matrix with diagonal elements being 0.01; (o) the skewness param-
etero, we chose normal distribution; (v) the degree of freedofollowed truncated exponential
distribution withry = 0.5

The MCMC sampler was implemented using WinBUGS softwaree @dde for Model 1V is
available in Appendix A. The posterior means and quantilesevdrawn after the collecting the final
MCMC samples. We used one long chain. Convergence, whiehsrdfe algorithm has reached its
equilibrium target distribution, was closely watched byngsthe standard tools within WinBUGS
such as trace plots, the MC error and depicting the evoluifdhe ergodic means of a quantity over
the number of iterations. After an initial 100,000 burnerations, every 86 MCMC sample was
retained from the next 200,000. Thus, we obtained 4,000 kesnap targeted posterior distribution

of the unknown parameters for statistical inference.

2.4.2 Results

Step 1 in Section 2.4.2.1, we determine when the model errorssmeraed to have an ST distribu-
tion, among the five models presented in Section 2.4.1, wdnehhas the best fitep 2 in Section
2.4.2.2, because normal, SN and Studedfistribution are all a special case of an ST distribution,
focusing on the model selected from Step 1, we compare thésdmsed on random errors with a
normal, SN and Studenitand ST distribution. The model comparisons are carried cd5Axata

and confirmed by A398 daté&btep 3 Section 2.4.2.3 presents the results based on the best mode
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selected.Step 4 Section 2.4.2.4 includes simulation study to validatedbeclusions made from

Step 1 and Step 2.

Table 2.1: DIC, EPD and RSS among the five models, randomsesrerassumed to follow ST.

Data set Modell Modelll Model Il Model IV  Model V

A5055: DIC 1192 401.1 669.2 21.7 1015.7
All subjects EPD 0.33 0.12 0.15 0.05 0.20

(n=44) RSS 59.2 20.7 27.1 8.4 35.3

A398: DIC 12394 1122.6 1162.9 576.9 1200.5
Samplel EPD 3.17 3.48 3.63 1.04 3.04
(n=44) RSS 396 436 454 134 381

A398: DIC  2264.9 1947.5 2855.3 1757.7 2204.5
Sample2 EPD 0.44 0.51 3.45 0.33 0.39
(n=100) RSS 130.6 158.3 1083 99.4 116.7

A398: DIC 12900.6 10891.2 10763.4 8819.3 14217
All subjects EPD 1.49 1.42 1.31 0.93 1.84
(n=481) RSS 2665 2185 2059 1470 2703

2.4.2.1. Comparison of five models under an ST distribution

When we compare the models that have different componeetshauld not directly compare the
estimated parameters’ values because they have differemings. However, because the models
were applied to the same HIV viral load data, we could use [EHRED and RSS to find out which
model had the best fit. The comparison results were shownhbieTal. Among all of the data
sets: A5055, the two randomly selected samples from A398A&88 that includes all of the 481
subjects, Model IV constantly has the lowest DIC, EPD and R®B example, in A5055, DIC
value for Model IV is 21.7, while it is 1192, 401.1, 669.2, ah@tl5.7 in Models I, Il, Il and V,

respectively, which indicates Model 1V is superior to theatmodels tested.

32



2.4.2.2. Comparison of four distributions about random erwors in the best fitted model -
Model IV

For Model 1V, we further investigated how different distrittons about random errors would affect
the model fit and DIC values are shown in Table 2.2 below. Amioognal, Student; SN and
ST distribution, the model with either ST (A5055 and the tvemnples of A398) or SN (whole
A398) has the lowest DIC. Because SN has a simpler strudtareST, and the larger the degree of
freedom, the closer the Studdrdistribution is to the normal distribution, it is not surgirig to see

when the sample size is big (e.g. A398, n=481), SN has a andl@value than ST.

Table 2.2: For Model IV, DIC values under different disttlon assumptions.

Data set:
Distribution | A5055 (n=44) A398 (n=44) A398 (n=100) A398 (n=481)
Normal 1133.3 961.4 2158.5 10222.0
SN 222.8 727.3 1937.2 7788.2
Studentt 1004.9 949.8 2144.3 8993.9
ST 21.7 576.9 1757.7 8819.3

We also calculated EPD and RSS, which provide the equivalemtlusions: for example, in
A5055 data (n=44), EPD is 0.05, 0.10, 2.19 and 2.29 for ST, &Ndentt and normal, respec-
tively; in A398 data (n=481), EPD is 0.24, 0.93, 2.74 and 3dt7ST, SN, Student-and normal,
respectively;

We applied Model IV on A5055 to further compare the estinratiesults got from different
distribution assumptions. The population posterior mdai)( the corresponding standard devi-
ation (SD) and 95% credible interval (Cl) for fixed-effectrgaeters are presented in Table 2.3.
Table 2.3 shows: (i) except; based on the normal distribution assumption, all of the roése
timates were significant since the 95% Cls don't include zéipfor variances?, the estimated
value based on the SN (0.05) and ST (0.01) models were mudresthan that based on the model
with normal (1.15) or Studerit{0.38) distribution; (iii) among all of the parameters gsited, the
related SD obtained from ST was the smallest; (iv) the estéismaere similar between normal and

Studentt distribution model, but they were substantially differemthose obtained from SN or ST
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model. For examplep, based on normal or Studendistribution was 34.67 and 38.10, respec-
tively, while it was 24.53 and 27.89 in SN and ST model, retpely; (v) the skewness parameter
0 was significantly positive in SN and ST, confirming the pesittkewness of the viral load in the
natural logarithm transformed as observed in Figure 2.2;compared to the model with normal
or Studentt distribution assumption for random errors, the models &ithSN or ST distribution
fit the data better. For example, in A5055, for DIC value, 13.33normal) vs. 222.8 (SN), 1004.9
(Studentt) vs. 21.7 (ST), it indicates that consideration of a deparftom normality will improve

the model fit.

Table 2.3: A summary of the estimated posterior values (baseA5055 data).

Model IV B B B3y  Bi  Bs o2 5§ DIC EPD RSS
Normal PM 830 3467 595 677 038 115 - 11333 229 1133.3
Le; 781 2686 401 265 -040 096 -
Uc; 877 43.04 854 1292 101 1.37 -
SD 026 415 126 252 035 011 -

SN PM 6.69 2453 6.38 1349 155 0.05 222 2228 0.10 175
Lcr 6.03 1266 410 710 089 0.01 1.97
Ucr 740 3503 1122 2019 215 0.16 251
Sb 035 569 172 385 037 0.04 0.14

Student PM 8.33 3810 941 1197 094 038 - 10049 219 420.8
Ler 7.84 3031 734 899 066 0.28 -
Ucr 883 46.61 11.64 1559 124 050 -
Sb 025 411 113 166 0.15 0.06 -

ST PM 7.18 2789 719 1369 173 001 117 217 0.05 8.4
Lcr 6.66 2153 6.34 11.72 155 0.00 0.99
Ucr 7.67 3393 8.63 16.22 198 0.04 1.34
SD 025 326 066 128 0.13 0.01 0.08

Note: Loy andUcr are lower limit and upper limit of 95% equal-tail credibléenval, respectively
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Several diagnostic plots for goodness-of-fit are also egpliFirst, we randomly select three
subjects from A5055. The individual estimates of viral |deajectories are shown in Figure (2.4).
The following findings are observed: (i) the estimated ifdinal trajectories got from SN and ST
fit the originally observed data much closer than those gohfthe model where the random errors
are assumed to be normal or Studenfi) all of the 95% CI from the model with an SN or ST
distribution cover the observed viral load, where 21% an®% 18 the 95% CI from normal and
Studentt, respectively, doesn't include the observed values; tii@ average SD got from ST is
the smallest, which is 0.15, while the mean of SD for the iitlial estimation got from SN, N
and Student-is 0.22, 0.52 and 0.46, respectively. Note that the lack adahmess in the SN and
ST Model estimates of individual trajectories is underdédte since a random component was
incorporated in the expected function (see equation (26)étails) according to the stochastic

representation feature of the SN and ST distribution foa&ihg the data” to this extent.
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Figure 2.4: Individual estimates of viral load trajectsrier three randomly selected patients based
on normal, t, SN and ST distribution assumption in Model IkeTobserved values are indicated by
diamond<>

Second, we created two diagnostic plots: plots of the olesevalues versus the fitted values
(Figure 2.5) and Q-Q plot (Figure 2.6).

The findings of these two plots agree with that from DIC: thedeis with SN and ST distri-
bution provided better fit to the observed data than the origsnermal or Student-distribution
assumption. Based on the results from DIC, EPD, RSS and #gmastic plots, we conclude that

Model IV with the ST distribution assumption fits the datateethan the other combinations be-
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tween a different time-varying viral decay rate functiomsl alistribution assumption of random

errors.
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Figure 2.5: The observed values versus fitted valuda(®NA) based on N, Studern-SN or ST
distribution for random errors
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Figure 2.6: Q-Q plot

2.4.2.3. Simulation study

In order to validate the conclusions obtained from StepsdlLzaim Sections 2.4.2.1 and 2.4.2.2,
resampling method is used via a simple random samplingitigaor Fifteen additional samples are
created from A398 and named as “A398-s1” to “A398-s15", wleidich sample includes 44 subjects.
The validations are carried out in two scenarios. Firstlg, evaluate whether Model 1V with the
ST distribution is the most appropriate among five modelsgmted in Section 2.4.1. Secondly, we
assess whether Model IV with the ST distribution will prowitdetter model fit in comparison of
Model IV with the N, Student-and SN distribution assumptions.

Scenario one. Under the ST distribution assumption, ModelModel V are applied to the
fifteen samples created from A398 data set. The DIC valueshemen in Table 2.4 and the related
Boxplots are presented in Figure 2.7. Model IV consistehtdg the smallest DIC value among
the five models. The average DIC in Model 1V is 528.68, whilesi®78.00, 859.38, 893.65 and
1051.66 in Model I, Model Il, Model Il and Model V, respeatly. The boxplots shown in Figure
2.7 indicate that the median of DIC in Model IV is smaller thliha values in the other four models,
while the medians of DIC are similar in Model I, Il and 11l bunaller than the value in Model V.

Scenario two. After confirming that Model 1V is the most apgmiate model among the five
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models, we investigate among the fifteen samples, whetheleM¥ with the ST distribution pro-
vides better model fit than that with the N, Student-t and S$frithutions. The DIC values are
shown in Table 2.5 and Figure 2.8. Among the four distributgssumptions, the median value
of DIC in Model IV with an ST distribution assumption is thenlest (641.47), followed by SN
(741.10), Student-t (856.60) and Normal (857.07).

In summary, we conclude that, based on the two resamplinglaiion studies, Model IV with
the ST distribution is the best model among the models withtfime-varying decay rate functions
and/or four distributions. We will further report analysesults based on Model IV with the ST

distribution below.

Table 2.4: DIC values among the five models in the 15 samptesa #398, random errors are
assumed to follow ST distribution.

Data set Model I Model Il Model Il Model IV Model V
A398-s1 1369.62 1335.26 1290.19 981.52 1379.38
A398-s2  931.63 348.82 509.20 171.86 1082.11
A398-s3  792.31 737.33 817.19 446.53 631.61
A398-s4  885.84 288.09 834.81 6.22 850.03
A398-s5 1199.30 1115.39 1132.25 778.70 1215.81
A398-s6 863.41 110555 1269.64 725.03 1208.31
A398-s7  844.77 636.58 700.77 557.90 906.25
A398-s8§ 1150.53 1059.46 1032.95 748.52 1155.85
A398-s9  1276.01 1102.07 1097.55 80.80 1273.38
A398-s10 860.40 954.13 871.74 779.33 1087.35
A398-s11 821.84 477.31 420.93 184.95 810.25
A398-s12 998.68 863.03 837.20 727.37 1002.01
A398-s13 1081.95 1189.50 1085.36 788.59 1317.84
A398-s14 1208.26 1010.11  920.54 788.37 1208.26
A398-s15 385.43 668.15 584.42 164.45 646.43
Mean 978.00 859.38 893.65 528.68 1051.66
SD 246.48 308.37 254.44 311.03 228.36
Median 931.63 908.58 882.7 641.47 1084.73
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Table 2.5: For Model IV, among the 15 samples in A398, DIC galunder different distribution
assumptions.

Statistics Normal SN Studemt- ST
Mean  805.08 810.06 872.90 509.50
SD 240.54 355.03 115.70 313.82
Median 857.07 741.10 856.60 557.90

2.4.2.4. Results based on Model IV with an ST distribution

Based on Model IV with an ST distribution, the estimated pafion decay rate function for A5055
data is

~

A(t) = 27.89 exp(—7.9t) + 13.69 exp(—1.73t).

Because the estimatéc(t) is always positive, the population viral load would alwagikase in
this specific HIV/AIDS data set.

The individual time-varying decay rate function is given by

A(tij) = Bz exp(—PBistij) + Bis exp(—Bisti;)

where the individual estimated decay ré(eij) is considered to be dependent on both subjects and
time. We found that the individual decay rate at initial tmant,ﬂ(tio), was positively correlated
with baseline viral load (Spearman correlation coefficiert0.769,p < 0.0001) and negatively
associated with baseline CD4 cell count (r = -0.4d% 0.0025). Overall, the individual decay rate,
S\(tij), was positively associated with viral loap € 0.0001) and negatively associated with CD4
cell count ¢ < 0.0001).

Because 30 60% (Havlir et al., 2000) of patients eventually will havealirebound, it is
important to have a model that can reasonably predict thes ¢f treatment failure in the long term.
Following Wu et al.(2008), we defined rebound as, compariitg the HIV-1 viral load (natural
log transformed) from the previous measurement, if there wd.15 increase at one time point
or > 0.46 increase at two or more consecutive time points. In ABJS5, there were 11 (26.2%)
subjects had rebound. There was no significant differendberbaseline viral load (naturabg

(RNA)) between the rebound and no rebound group (median vigsahd 8.78, respectivelp, =
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0.8610), while the median of baseline CD4 cell count inteinebe higher in the no rebound group
than that in the rebound group (285 vs. 2b3/, p=0.1169).

The trend of the changes in decay rates during the treatmresntlifferent between the rebound
and no rebound group (Figure 2.9). For example, every iddalidecay rate was positive in the no
rebound group, while some individual decay rates in theurt@roup became negative, especially

after the 3d month of the treatment, which corresponding to the viradllogbound.

(a): Profiles of viral load in natural log scale in rebound group (b):Profiles of viral load in natural log scale in no rebound group
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Figure 2.9: Profile of viral load itm scale and decay rate in rebound and no rebound group

Based on the results of Model IV under an ST distribution irDB% data, we also find that:
(i) overall, the average value of individual decay ratfe(sij), was bigger in the no rebound group
(14.97) than that in the rebound group (12.93); (ii) theiahiindividual decay ratesi(til), were
significantly bigger in the no rebound group than that in thleound group (mean is 53.16 and
40.95, respectively); (iii)X(til) was significantly associated with the rebound status in dihg |
term (OR = 0.703, 95% ClI is 0.580 — 0.8587 0.0003) and this association was still significant
even after controlling the baseline viral load and CD4 celird (OR = 0.717, 95% Cl is 0.588 —
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0.875,p = 0.0010). (iv) the average individual decay rate at the J&st (S\(tmi)) among the no
rebound subjects was 4.67, while it was -2.28 in the rebowadpgwhich indicates the viral load
actually increasing instead of decreasing in this group.oAgithese findings, the most interesting
is the associated relationship between initial individietay rate (X(tl-o)) and the rebound status:
the results indicated that the odds of rebound decreased a80% with each one unit increased in
the initial decay rate. This may be helpful for cliniciangtedict the long term results based on the

information at early stage of the disease.
2.5. Conclusion and discussion

With an ST distribution assumption for model random erroradcount skewness observed in viral
load responses, we compared five commonly used mixed-gffiectlels in HIV dynamics via the
Bayesian approach. We also investigated the impact of tinredistributions in the skew-elliptical
family on the model fit. The results indicate that with the S3tribution, there is potential gain of
efficiency and accuracy in estimating certain parametemnvthe normality assumption does not
apply to the data. The skew-elliptical modeling via the Baae approach proposed in this study
can be easily carried out via the WinBUGS package. Becawsprtposed model is quite general
in theory and accessible to the existing software, it withalstatisticians to apply this method in
other fields.

In any discussions of mathematical modeling of complexesyst it is important to point out
that, while complex models may be needed to provide accdegeriptions of the underlying dy-
namics, the models are most useful when they can be compargahical and/or experimental
data. In developing models for HIV infection and treatmehils requires a balance between com-
plexity and utility. After finding the best fitted model, wetiesated the relationship between the
viral decay rate and some clinical important variables. eflasn the results from the best fitted
model with an ST distribution assumption, we found the @hidistimated decay rate was positively
correlated with the baseline viral load and negatively eissed with baseline CD4 cell count. We
also found that, overall, the average decay rate was lowteeirebound than that in the no rebound
group. A more interesting finding is the significant assamimbetween the initial decay rate and
the rebound status in the long term, even after controllorgtie baseline viral load and CD4 cell

count. This finding is clinically important because it mayble physicians to predict the long-term
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outcome based on the estimated decay rate at an early stagaudg we didn’t find such kinds of

associations based on the model with Studemtnormal distribution assumption, it is important to
consider non-normality into the modeling when the normgagsumption cannot be satisfied even
after transformation.

Using the model with a time-varying decay rate function hame advantages over the bipha-
sical models. (i) In the biphasical models, the associdtiemveen the first decay rate and baseline
viral load could be positive (Notermans et al., 1998; Wu gt24104) or negative (Wu et al., 1999);
no significant association was found between the reboundhentirst decay rate either (Wu et al.,
2008); (ii) although the second decay rate in the biphasitalels is supposed to be associated with
long-term treatment status such as rebound (Ding and W@; 188 et al.,2005), no significant as-
sociation was found between the second decay rate and Hieagtication in long term (Sedaghat
et al., 2008; Wu et al., 2003).

This chapter has some limitations. Usually, covariatesrenleded in the mixed-effects models
to control within- and between-subject variation, and CBH# count is a commonly used covariate
in HIV dynamic models. However, in order to use the origin@gosed models in the comparisons,
we did not include any covariates such as CD4 cell count oroggaphic information. For the
viral load, the values below detection limit (BDL) are usyaonsidered as inaccurate. Instead of
treating these values as censored, we computed them bynhbathtue of the detectable level. The
issue of missing values is not considered in this study eithe

This chapter compared commonly used HIV dynamic models laagstimation was through
Bayesian statistical inference. The mathematically nindelvas extended from a normality as-
sumption and a general skew-elliptical distribution wasdum order to account the skewness ob-
served in the data. New technologies were applied to fa@lithe computation challenges related
to the complex nature of HIV/AIDS data. Furthermore, a moegifile distribution such as skew-
normal independent distribution, can be assumed; CD4 oahtg which can either be treated as a
covariate or an outcome in the HIV research, needs to bea®mmsl too, while the measurement
errors, skewness of CD4, and correlation with other factach as CD8 are all worth to explore.

In conclusion, the skewness parameter in the model with S8lTadistribution is significantly
positive, which confirms the positive skewness observellarviral load data even after natural log

transformed. The model fit is the best in the model with ske(@N or ST) distribution. Because
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estimated parameters can be considerably different batifeemodels with skewed distribution
and normal or Studeriteistribution, it is important to account for skewness inthedel when data
exhibits noticeable skewness. Different models may yi#f@émnt conclusions about the relation-
ship between the decay rate with viral load, CD4 cell coumt i@bound status in HIV dynamics,
therefore, it is also critical to choose a reasonable mdddldan balance between complexity and

utility.
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3 Simultaneous Bayesian inference for linear, nonlinear ath
semiparametric mixed-effects models with skew-normalityand
measurement errors in covariates

Disclaimer

This chapter has already been published as: Huang, Yan@xian, Ren; and Dagne, Getachew
(2011) “Simultaneous Bayesian Inference for Linear, Nugdir and Semiparametric Mixed-Effects
Models with Skew-Normality and Measurement Errors in Catas”. The International Journal
of Biostatistics Vol. 7 : Iss. 1, Article 8. The permission of including it ihd dissertation is in
the Appendix D. Except the section numbers and question atsrdhanging in order to make the

chapters labeling constant, all of the remaining contenhapter 3 are in the original format.

Abstract

In recent years various mixed-effects models have beenesteg) for estimating viral decay
rates in HIV viral dynamic models for complex longitudinatd. Among those models are lin-
ear mixed-effects (LME), nonlinear mixed-effects (NLMEjyd semiparametric nonlinear mixed-
effects (SNLME) models. However, a critical question is thlee these models produce coherent
estimates of viral decay rates, and if not, which model igaypate and should be used in practice.
In addition, one often assumes that model random errorscaineatly distributed, but the normality
assumption may be unrealistic, particularly, if the dataileik skewness. Moreover, some covariates
such as CD4 cell count may be often measured with substamt@is. This paper addresses these
issues simultaneously by jointly modeling the responsi&lbe with skewness and a covariate pro-
cess with measurement errors using a Bayesian approachetigate how estimated parameters
are changed or different under these three models. A realsgatfrom an AIDS clinical trial study
was used to illustrate the proposed models and methods.sltauad that there was a significant
incongruity in the estimated decay rates in viral loads thame the three mixed-effects models,

suggesting that the decay rates estimated by using BayleliBror NLME joint models should be
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interpreted differently from those estimated by using By SNLME joint models. The findings
also suggest that the Bayesian SNLME joint model is prefieiweother models because an arbitrary
data truncation is not necessary; and itis also shown teahtitdels with a skew-normal distribution

and/or measurement errors in covariate may achieve reliabults when the data exhibit skewness.
3.1. Introduction

Modeling of HIV dynamics in AIDS research has greatly imprdwour understanding of the patho-
genesis of HIV-1 infection and guided for the treatment oDA&l patients and evaluation of an-
tiretroviral (ARV) therapies (Perelson, 1997; Wu and Difi§99; Wu et al., 2005). Such models
often incorporate repeated measures over a period of tegdtin assess rates of changes in viral
load (number of HIV RNA copies in plasma). Recent researclicates that the first-phase de-
cay rate of viral response to treatment is a potentially uldgiomarker for ARV potency (Ding
and Wu, 1999). Even though various statistical modeling amalysis methods have been applied
for estimating the parameters of HIV dynamics, such asalie@d nonlinear regression (Perelson,
1997), linear mixed-effects (LME) and nonlinear mixedeets (NLME) modeling approach (Wu
and Ding, 1999; Wu, et al., 1998, 2004; Wu, 2004), nonparam&LME modeling approach (Liu
and Wu, 2007; Wu and Zhang, 2002; Wu, et al., 2004), joint rhagproach via Monte Carlo EM
algorithm (Liu and Wu, 2007; Wu, 2002; Wu, 2004) and Baye$iiME modeling approach via
Markov chain Monte Carlo (MCMC) procedure (Huang et al.,08uang and Dagne, 2010), itis
not clear which model should be used to estimate the firsteokacay rate. More importantly, in
all of these models at least one of the following three imgarissues standout.

Firstly, the common assumption of distributions for (within-saibjeandom error is normal in
those statistical models. This assumption may lack thestolegs against departures from normal-
ity and/or outliers as discussed by Verbeke and Lesaffroq),%nd may also lead to misleading
results (Verbeke and Lesaffre, 1996; Ghosh et al., 2007}y bfen in AIDS studies, the viro-
logic responses exhibit skewness. For example, Figurei§plags the histograms of repeated viral
load (in naturallog scale) and CD4 cell count measurements for 44 subjectsledhiol the AIDS
clinical trial study—A5055 (Acosta et al., 2004). It seemattfor these data sets to be analyzed in
this paper, the viral load responses are highly skewed etenraturallog-transformation. Thus,

a normality assumption is not quite realistic and may be &strictive to provide an accurate rep-
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resentation of the structure of the data. One way to incatposkewness is to use a skew-normal
(SN) distribution for (within-subject) random erroiSecondlythe mixed-effects models have been
used in the previous studies to account for both betweeeaubnd within-subject variations in
viral load measurements which are associated with coeariatluding CD4 cell count. However,
the covariates such as CD4 cell count which were considerddose studies are often measured
with substantial errors and highly skewed as shown in Figutédown panel).Thirdly, a major
challenge with these modeling approaches is the assodiatistsive computation burden in the
inference, and in some cases it can even be computatiomédigisible. Particularly, for nonlinear
longitudinal models in the presence of measurement emasvariates, the computational problem
becomes much worse. In addition, there may exist the problemon-convergence of these algo-
rithms under the framework of likelihood estimation. To thest of our knowledge, there is little
literature on simultaneously addressing measurementdrrgovariates and an SN distribution for
random errors to compare performance of the various mifedte models under the framework of
Bayesian mixed-effects modeling approach. This artictevidies a unified approach to investigate
SN Bayesian mixed-effects models with covariate measunegreors.

In this paper, the main focus is to provide a comprehensivepenison of three mixed-effects
models (LME, NLME and semiparametric NLME) with an SN distriion and measurement errors
in covariates for estimated viral decay rates in viral dyitamodels. We consider a multivariate
SN distribution introduced by Sahu et al.(2003) which igahle for a Bayesian inference since it
is built using conditional method and is defined in Sectioh T.he rest of the paper is organized
as follows. Section 3.2 presents a general modeling appriacSN Bayesian semiparametric
nonlinear mixed-effects (SN-BSNLME) joint models whiclelinde three specific models as special
cases to be discussed in Section 3.3. We describe data fréxtD&hclinical study that motivated
this research, discuss the specific models for HIV dynamick raports the results obtained by
using the three different methods or models In Section 3r&ally, the paper concludes with some

discussions in Section 3.4.
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(a): Raw data truncated at day 35 (b): Raw data truncated at day 84 (c): Complete raw data
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Figure 3.1: The histograms of viral load (in scale) and standardized CD4 cell count measured
from day O to day 35 [Set (a): data cut at truncation day 35},8f[Set (b): data cut at truncation
day 84] and the end of study period [Set (c): complete data}4gpatients in an AIDS clinical trial
study.

3.2. Bayesian inference on joint models with skew-normal dtributions

3.2.1. Measurement error models with a skew-normal distrilition

This section will briefly discuss measurement error joindele with a skew-normal distribution.
Various covariate models were investigated in the liteea(CGarroll et al., 2006; Higgins et al., 1997;
Liu and Wu, 2007; Wu, 2002). However, the fundamental assiomf distributions for measure-
ment random errors is normal in these statistical covanatelels and this assumption may lack
the robustness against departures from normality and/grvioéate the agreement with observed
data. Thus statistical inference and analysis with norsslig@ption may lead to misleading results.
In this paper, we extend the covariate models to have a skemai distribution for measurement
errors. For simplicity, we consider a single time-varyirgyariate. Letz;; be the observed covari-
ate value for individual at times;;, (i = 1,...n;k = 1,...,m;). Note that for each individual,
we allow the covariate measurement timgsto differ from the response measurement timgs
(j =1,...,n;). Inthe presence of measurement errors in covariate, wetngaodel the covariate

process. We consider the following LME model with an SN disition
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zip = uh o+ vhai+ep (=25 +en), € did~ SNy, (0,720, A.), (3.1)
wherez; = (zi1,... ,zimi)T with z;, being the covariate value for individualat time s;x, w;i
andw;;, arel x 1 design vectorsey = (a1, ...,q;)" anda; = (a;1,...,a;)" are unknown pop-
ulation (fixed-effects) and individual-specific (randoffeets) parameter vectors, respectively, and
€ = (€1,... ,eimi)T is a multivariate skew-normal distribution wit, being the measurement
error for individuali at time s;,, 72 is the unknown within-individual variance. The; x m;
skewness diagonal matrid,. = diag(de,,,...,0,, ) andm,; x 1 skewness parameter vector

) Y €imy

0e, = (0eyys -+ -5 0c,, )L In particular, ifs.,, =--- =6

€im.;
? im;

eimiﬁdg, thenA, = 4.1,,, andd,, = dc1,
with 1,,, = (1,...,1)7; this indicates that we are interested in skewness of dveedh set
which is the case to be used in real data analysis in the netibse z} = (z7,... ,zjmi)T and
2z}, = ul a+v}a; may be viewed as the true (but unobservable) covariate valutémes;;, under
normal distribution of model errors in which case skewnemsumeters,, = 0. We assume that
a; itd ~ Ni(0,%,), whereX, is the unrestricted covariance matrix. Note that the mo8dl)(
may be interpreted as a skew-normal (SN) covariate measmtesnror model which incorporates

the correlation of the repeated measurements on eachdndivi
3.2.2. Skew-normal Bayesian semiparametric nonlinear med-effects joint models

In this section, we present the joint models and methodshergé forms, illustrating that our meth-
ods may be applicable in other applications. Denote the rumisubjects by and the number of
measurements on thih subject byn,. For the response process, we consider a general semipara-
metric NLME (SNLME) model which is similar to Wu and Zhang () but incorporates possibly
mis-measured time-varying covariates and model randoonsewith a skew-normal distribution.
vij = g(tij,ﬁj-j, B(tij)) + eij, e iid ~ SNy, (O, o?I,,, A) ,
Bl = di[z;,B1b]], bl iid~ N, (0,%)), (3.2)
o(tij) = vw(ty),hi(ty)], i=1,2,...,n; j=1,2,...,n4
wherey; = (yi1, ..., yin;)’ With y;; being the response value for individuaht ¢;;, g(-), di()
and v(-) are known parametric functionsy(¢) and h;(t) are unknown nonparametric smooth
fixed-effects and random-effects functions, respectivielyt) are iid realizations of a zero-mean

stochastic process(jlj.j ares; x 1 individual-specific time-dependent parameter vectgrsare
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sy x 1 population parameter vectors,( > s;), o2 is the unknown within-subject variation,
e; = (eq,...,em,;)T is the vector of random errord;j. are s3 x 1 vector of random-effects
(s3 < s1) and ZZ is the unrestricted covariance matrix. Thex n; skewness diagonal matrix
A = diag(de, ;- - -, 0, ) and then; x 1 skewness parameter vecl, = (0c,q, - -, 0 )T In

€in.:
n;

particular, ifd.,, = --- = d¢,, =0, thenA = 6.1, andéd., = d.1,,. In the model (3.2), we

assume that the individual-specific paramemjrjsdepend on the true (but unobservable) covariate
z{; rather than the observed covariatg, which may be measured with errors.

Semiparametric NLME model (3.2) is more flexible than parmimé&LME models. It reverts
to a parametric NLME model when the nonparametric paif andh;(t) are constants. To fit
model (3.2), we apply the regression spline method. The wgrkrinciple is briefly described
as follows and more details can be found in Wu and Zhang (2002} main idea of regres-
sion spline is to approximate(¢) and h;(¢) by using a linear combination of spline basis func-
tions. For instancey(t) andh;(t) can be approximated by a linear combination of basis funstio
W, (1) = {o(t), V1(t), ooy Yp1 (1)} @and®,(t) = {¢o(t), 1(t), ..., pg—1(t)}7, respectively. That

is,

p—1
w(t) ~ wylt) = 3 un(t) = ()7, hit) ~ hig(t) Zm = £,%,(1)", (3.3)
=0

wherep,, and§;, (¢ < p) are the unknown vectors of fixed and random coefficientpects/ely.
Based on the assumption bf(t), we can regard;, asiid realizations of a zero-mean random
vector. For our model, we consider natural cubic spline agi¢h the percentile-based knots.
To select an optimal degree of regression spline and nunddekaots, i.e., optimal sizes gj
andgq, the Akaike information criterion (AIC) or the Bayesiananmation criterion (BIC) is often
applied (Davidian and Giltinan, 1995; Wu and Zhang, 2002)bs&itutingw(t) andh;(t) by their

approximationsu, (t) andh;,(t), we can approximate model (3.2) in a compact way as follows.

Yi; = 9 <tij> [ zgn@T ] [ (tlj) Hp? ( ) 52(1]) +eij = g(tij> [ 2]7B7 ]) +ew (3 4)

whereg = (87, uI)” andb; = (b, €¢L)T are the vectors of fixed-effects and random-effects,
respectively, andi(-) is a known but possible nonlinear function. By doing so, tedomness
of the nonparametric mixed-effects is transferred to tieloaness of the associated coefficients,

whereas the nonparametric feature is represented by tiefbastions. Thus, for give®,,(¢) and
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®,(t), we approximate the SN semiparametric NLME model (3.2) lsyftfiowing SN parametric
NLME model.

(3.5)
B, = dlz;,B,b], b iid~ N,(0,%),

wheresy = s3 + ¢, g;(tij, Bi;) = (9(ti1, Bir)s - - 9(tin,, Bin,))" with g(-) being a known linear
or nonlinear function, an&, is an unstructured covariance matrix.

Under Bayesian framework, we still need to specify priotrihisitions for unknown parameters
in the models (3.1) and (3.5) as follows.

o~ Np(ag,Ay), 72~ IG(wi,w2), Xg~IW(Q,v1), 8¢ ~ Ny, (0,T), (3.6)

B~ N (By,A2), 0%~ IG(ws,wy), Zp~IW(Q,12),  8e; ~ Np,(0,T2),
wheress = so+p, the mutually independent Inverse Gamm@), Normal (V) and Inverse Wishart
(/W) prior distributions are chosen to facilitate computasigbavidian and Giltinan, 1995). The
super-parameter matricas, Ao, 21, 2o, I'y andI's can be assumed to be diagonal for convenient
implementation.

We assume that;, €;, b; anda,; are independent of each other. Following Sahu et al.(2003) a

properties of skew-normal distribution, it can be showrt thaandy, in the models (3.1) and (3.5)

follow the following distributions

yi|aivbiaw8i ~ Nni (gi + 53wei7021ni) ’ We; ~ Nni(o7 Ini)I(wei > 0)7

(3.7)
zi|ai>wei ~ ]\fmZ (Z;k + 5ewei77—2Imi) s We, ~ le(oa ImZ)I('weZ > O)a
wherel(w;, > 0) is an indicator function aneb;, = |&| with & ~ N (0, I').
Letd = {a, B,72,0%, %4, %, 8¢;, 0,51 = 1,...,n} be the collection of unknown parameters

in the models (3.1) and (3.5), anl-|-) and 7 (-) be a conditional density function and a prior
density function, respectively. Denote the observed da@ b ((y;, z;),i = 1, ...,n ). We assume
thatey, B, 72,02, 2,4, %, 8,8, (i = 1,...,n) are independent of each other, and thus we have
7(0) = m(a)w(B)n(7?)7(0?)7 ()7 (p) [T, 7(8¢,)m(de,). After we specify the models for the
observed data and the prior distributions for the unknowdehparameters, we can make statistical
inference for the parameters based on their posterioilmisvns under Bayesian framework. The

joint posterior density of based on the observed data can be given by

F01D) o {I1J [ Flyilasbiwe; o, B,0% 80 f(w,,w,, > 0)x
f(zi|ai7’wei; a>7—27 661)f(w61|w61 > O) f(a'i|2a) f(bl|2b)da’ldbl}ﬂ-(0)

(3.8)
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In general, the integrals in (3.8) are of high dimension amdhot have closed form. Analytic
approximations to the integrals may not be sufficient adeurBherefore, it is prohibitive to directly
calculate the posterior distribution éf based on the observed data. As an alternative, MCMC
procedures can be used to sample based on (3.8) using the <aiipler along with the Metropolis-
Hastings (M-H) algorithm. The above representations bagsdtie models are useful as it allows to

implement easily using the WinBUGS codes (Lunn et al., 2000)

3.3. Analysis of AIDS clinical data
3.3.1. Data and models

We illustrate our methods using a real AIDS clinical datae $tudy consists of 44 HIV-infected pa-
tients who were treated with a potent ARV regimen. Viral lo@®4 cell count and other variables
were repeatedly measured over a period of 24 weeks. RNAle&dl was measured in copies/mL
at study days 0, 7, 14, 28, 56, 84, 112, 140 and 168 of follow-Tipe nucleic acid sequence-
based amplification assay (NASBA) was used to measure pledtd RNA, with a lower limit

of quantification, 50 copies/mL. the HIV-1 RNA measures telbis limit are not considered reli-
able, therefore we simply imputed such values as 25 copieffmosta et al., 2004; Davidian and
Giltinan, 1995). Covariates such as CD4 cell count inclgdassociated baseline data were also
measured throughout the study on similar schemes. Figdrshtws the measurements of viral
load in natural log scale and CD4 cell count for the three oanlg selected patients. Both viral
load and CD4 cell count trajectories exhibit distinctivelamportant patterns throughout the time
course. We can see that the rate change in viral load appessasyt substantially across patients,
reflecting both biological variation and systematic asstans with subject-level covariates.

The baseline value of HIV-1 RNA in plasmh(scale) ranged from 5.296 to 11.582 with mean
8.715 and standard deviation 1.531. As is evident from EiguB(c), RNA levels varied widely
during the early treatment stage. For some patients, the RX#\ decreased rapidly with treat-
ment (described as the first-phase decay rate); for othdesieased slowly. Studying the relation
between baseline RNA and the first-phase decay rate willigegowrseful information for clinical
decision-making and treatment individualization. Thetfiilsase decay rate indicates the potency
of ARV therapies (Ding and Wu, 1999). If we know the potencyadfeatment at an earlier stage,

we may be able to avoid the less potent regimens for a pati@altient. This will help clinicians
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(a): Profiles of viral load in In scale (b): Profiles of CD4
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Figure 3.2: Profiles of viral load (response) in natdegl scale and CD4 cell count (covariate) for
three randomly selected patients. The horizontal line levibéhe detectable level of viral load
(3.9140g(50)) and the two vertical lines represent truncation days 358@ndespectively.

to select a treatment for their patients. Although the pigienay receive the same treatment, there
may still exist the difference in the potency for differemtipnts with the same regimen. This is be-
cause the patients may absorb the drug differently, andmatimmune systems and other factors

related to response of the drugs may be different.

(a): Raw data truncated at day 35 (b): Raw data truncated at day 84 (c): Complete raw data
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Figure 3.3: Profiles of viral load ilm scale from an AIDS clinical trial study. Change in HIV-1
load, measured from RNA levels in plasma, with time durirgatment from day O to (a) day 35,
(b) day 84 and (c) the end of study period.

Viral dynamic models can be formulated through a system dinary differential equations
(ODE) (Huang et al., 2006; Wu et al., 1998; Wu and Ding, 1998)practice, some investigators
have used a LME model simplified from an ODE system to fit visghamic data from the very

early time period such as displayed in Figure 3.3(a). Thesponse model can be described by the
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following linear model

y(t) = Wn{V(t)} = p1 — Bat + e(t) (3.9
wherey(t) is the natural logarithm of the number of HIV-1 RNA copies p&r of plasma,e(t)
is the measurement errgt; is the first-phase viral decay rate which may represent timénmoim
turnover rate of productively infected cells (Perelsonlgti®97) ands; is macro-parameter with
exp(1) being the baseline viral load at tinie= 0.

Due to the limitations of current assays, only two infectell compartments can be identified
which are believed to produce a biphasic viral decay (Pemett al., 1997). Based on biological
and clinical arguments, an effective model used to estimiedbdynamic parameters is the biphasic
model approximated from a compartmental analysis-basgdn system (Perelson et al., 1997;
Wu and Ding, 1999). This model plays an important role in niadeHIV dynamics and has
demonstrated promise in studying HIV response processmidukel is described as follows.

y(t) = In{V(t)} = In{exp[B1 — Bot] + exp[Bs — Bat]} + e(t) (3.10)
wherej, is the second-phase viral decay rate which may represemhithismum turnover rate of
latently or long-lived infected cells (Perelson et al., ZP&ndexp(S;) + exp(fs) is the baseline
viral load at timet = 0. It is generally assumed thab > 34, which assures that the model is
identifiable and is appropriate for empirical studies. Ibfigarticular interest to estimate the viral
decay rateg’, and g, because they quantify the antiviral effect and hence cansbd to assess
the efficacy of the antiviral treatments (Ding and Wu, 1998)estimating these decay rates, only
the early segment of the viral load trajectory data (for eplendata shown in Figure 3.3(b)) can
be used (Perelson et al., 1997; Wu and Ding, 1999), becaasarti load trajectory may have a
different shape in later stages (see Figure 3.3(c)).

Although the models (3.9) and (3.10) are widely used in HIVialyic studies and have shown
promise, there are some concerns. For example, when differedels give different conclusions,
how do we know which is correct and should be used? In our aisadf the clinical data shown
above, the models (3.9) and (3.10) produce incongruousatsts of viral decay rates ¢f and
provide conflicting results on their correlations with Hase viral load: one indicates a strongly
positive correlation between baseline HIV-1 RNA levels #melfirst-phase decay rate and the other
indicates that these two factors are negatively correlatedaddition, both models are applied to

the early segment of the viral load data. That means one had the data at some arbitrary time
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point. It is not obvious what time point should be the cutrpar whether we should use different
cut-points. To avoid these problems, a semiparametrigbigantial model was proposed as follows

(Wu and Zhang, 2002).

y(t) = W{V(t)} = In{exp[Bi — Bat] + exp[Bs — Ba(t)t]} + e(t) (3.11)
where the second-phase decay ratg) is a smooth unknown function. Intuitively, model (3.11) is
more reasonable because it assumes that the viral decay théesecond-phase can vary with time
as a result of drug resistance, pharmacokinetics, medicatiherence and other relevant clinical
factors likely to affect changes in the viral load during the stage of treatment. Therefore, all
data obtained during ARV treatment can be used by fitting in(@lé1). We also assume that
B2 > B4(t) for all time in order to guarantee that there is the first phafseurve decay. This
is a semiparametric model because of the mechanistic steu¢two-exponential) with constant
parameters{i, B2, f3) and a time-varying parametef,(¢)) to capture the time-varying effects
of the treatment and over a longer period. This semiparénetodel preserves compartmental
mechanistic interpretation (Perelson et al., 1997; Wu aimd),D1999) of the original parametric
model under the biexponential form. In particular, the twer rate of productively infected cells,
(2, can still be estimated. Actually, by including long-terinaV load data, the estimate ¢f may
be more accurate and reasonable compared with those abtaipesvious studies (Perelson et al.,
1997; Wu and Ding, 1999) after excluding long-term viralda#ata for modeling and analysis by
somead hocrules (that is, the screening and inclusion of viral loadadate quite arbitrary). In
the mean time, this model enjoys the flexibility of a semipastic function for the second-phase
decay rate3,(t). The estimate ofi4(¢) provides not only an approximate turnover rate over time
of long-lived/latently infected cells at the early stagdreitment as the standard parametric model
does, but also more importantly describes how it may chamgealong treatment period as driven
by, presumably, drug resistance, non-compliance and olingzal determinants. Most importantly,
the semiparametric model is capable of modeling long-teiral load data of which the trajectory
may vary substantially among different patients (Wu andngh&002). It is noted that the three
different models are applied to different segments of tha dynamic data. Therefore, the standard
goodness-of-fit or model selection methods cannot be usieéntify the appropriate model.

To characterize skewness appeared often in viral loads & cell count, we will develop
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SN Bayesian mixed-effects joint models in conjunction vitike three dynamic response models
and LME covariate model. To model the covariate CD4 procgss;onsider empirical polynomial
LME models and choose the best model (3.1) with quadratie (3) based on AIC/BIC model
selection criteria as suggested by Liu and Wu (2007) and \W0ZR We thus adapted the quadratic
polynomial as the SN covariate model (3.1) with, = vix = (1, si, s3,)” for the CD4 trajectory

as follows.

Zik = 25, + €k, € ~ SNy, (0,721, 01 1,) (3.12)
wherez}, = (a1 + an) + (a2 + ai2)si + (a3 + a;3)s5, a = (a1, az, a3)T is population (fixed-
effects) parameter vector, amq = (a1, a2, a:3)" is individual-specific (random-effects) vector
with normal distributionN3(0, 3,). Special cases of the model (3.2), which are offered toljoint
model HIV dynamics in the presence of CD4 covariate procedsmeasurement errors described
in the model (3.12), are discussed below.

Model I: SN Bayesian semiparametric nonlinear mixed-effects (SWBME) joint model (3.5)
based on the semiparametric biexponential model (3.10njuaction with the SN covariate model
(3.12) along with specified prior distributions (3.6) candx@ressed as

yi; = In{exp[Bir — Biotis] + exp[Bis — Bija(tij)tij]} + €ij, € ~ SNy, (0,0%1,,,6.1,,)

Bin = Bi+bi, Bia=Pa+bia, Bis =P+ bis, Bijaltiy) = Ba+ Bszf; +wltij) + hiltij),
(3.13)

whereB = (81, B2, 83, B1, Bs, k)T, by = (bi1, biz, bis, &1,)T ~ N314(0, =); see equation (3.16)
below for detailed specification abopt, andg;,. We can see that the SN-BSNLME joint model
above reverts to an SN Bayesian nonlinear mixed-effectsgSNME) models when the nonpara-
metric partsw(t) andh;(t) become constants. More specifically, the SN-BNLME modeliced
to an SN Bayesian linear mixed-effects (SN-BLME) model whigs response function is linear.
Thus, we next present the following two simplified mixedeets models.

Model Il: SN Bayesian Nonlinear Mixed-Effects (SN-BNLME) joint mad@sed on the biexpo-

nential model (3.10) in conjunction with the SN covariated®l3.12) can be expressed as

yi; = In{exp[Bir — Bisti;] + exp[Bis — Bijatis]} + €ij, €i ~ SNy, (0,0%1,,,6.1,,) ,

Ba = PBi+bi, Bio=PB2+bia, Biz=PB3+bis, Bija=Pa+ Bs2j; + bia,
(3.14)

whereB = (81, B2, B3, Ba, B5)T andb; = (b1, bia, biz, bia)T ~ N4(0,%p).
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Model lll: SN Bayesian Linear Mixed-Effects (SN-BLME) model based s lthear model (3.9)

can be written as
Yi; = Bl — Bistij + €ij, €i~ SNy, (0,0°1,,,0.1,,),
Bir = Bi+bir, Biz = P2+ biz,

whered = (81, 82)" andb; = (bi1,bi2)" ~ Na(0,%y).

(3.15)

3.3.2. Results of analysis

In this section, we report the results of our analysis of tired data sets (mentioned in Figure 3.3)
using SN-BLME, SN-BNLME and SN-BSNLME joint models, respeely. A naturallog transfor-
mation for viral load data was used in the analysis in ordstdbilize the variation of measurement
error and speed up estimation algorithm. To avoid very s(tatje) estimates which may be un-
stable, we standardize the time-varying covariate CD4amelht (each CD4 value is subtracted by
mean 375.46 and divided by standard deviation 228.57) eswhlee the original time (in days)

so that the time scale is between 0 and 1. To fit the SN-BLME inaade the SN-BNLME joint
model, we included only the viral load data from day 0 to dayRBgure 3.3(a)) and day 0 to day
84 (Figure 3.3(b)), respectively, because the SN-BLME rhodeld only be used to fit linear tra-
jectories of viral load and the SN-BNLME assumptions mightvblated after long-term treatment
if there are rebounds of viral load (i.e., we excluded theificant rebound data from the analysis).
In fitting the SN-BSNLME joint model, we use all viral load dashown in Figure 3.3(c) and em-
ploy the linear combinations of natural cubic splines wigngentile-based knots to approximate the
nonparametric functions(¢) andh;(t). Following studies in (Liu and Wu, 2007; Wu and Zhang,
2002), we set)y(t) = ¢o(t) = 1 and take the same natural cubic splines in the approxingtion
(3.3) withg < p. The values op andq are determined based on the AIC/BIC which suggest the
following function for 3;;4(t;;) with p = 3 andg = 1 in the model (3.13).

Bija(tij) = Ba + Bs2i; + potbo(tiy) + mavhr(tiy) + pavpe(tij) + Sio- (3.16)

To carry out Bayesian inference, we need to specify the gatfiehe hyper-parameters in the
prior distributions. In Bayesian approach, we only neechixgy the priors at the population level.
We take weakly informative prior distributions for all thanameters. In particular, (i) fixed-effects
were taken to be independent normal distributié(0, 100) for each component of the population

parameter vectorsx and 3. (i) For the scale parametetg’ and 2 we assume a limiting non-
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informative inverse gamma prior distributiof(=(0.01,0.01) so that the distribution has mean 1
and variance 100. (iii) The priors for the variance-covac& matrices of the random-effedts,
andX, are taken to be inverse Wishart distributiofig’ (€2, 1) and IW (Q9, 12), where degree
of freedomv; = 15, = 5, and€2; and{2, are diagonal matrices with diagonal elements being 0.01.
(iv) For each of the skewness parametérsand 6., we choose independent normal distribution
N(0,100), where we specify thal., = é.1,, andéd., = d.1,,, to indicate that we are interested in
skewness of both overall viral load data and overall CD4@®lint data.

The MCMC sampler was implemented using WinBUGS softwaren(Let al., 2000), and the
program codes are available in Appendix B. In particulag, MfCMC scheme for drawing sam-
ples from the posterior distributions of all parametersha both response and covariate mod-
els is obtained by iterating between the following two stef@sGibbs sampler is used to update
a,B,72,0%, 24,3, 6, 6.; (ii) we updateb; anda; (i = 1,2, - -- ,n) using the Metroplis-Hastings
(M-H) algorithm. After collecting the final MCMC samples, \aee able to draw statistical inference
for the unknown parameters. Specifically, we are interestdde posterior means and quantiles.
See the articles (Huang et al., 2006; Lunn et al., 2000) ftaildel discussions of the Bayesian
modeling approach and the implementation of the MCMC proces] including the choice of the
hyper-parameters, the iterative MCMC algorithm, the cha€ proposal density related to M-H
sampling, sensitivity analysis and convergence diagogstiVhen the MCMC implementation is
applied to the actual clinical data, convergence of the igged samples is assessed using standard
tools within WinBUGS software (such as trace plots). Aftenwergence was achieved, one long
chain was run which may be more efficient. We propose tha aft initial number of 50,000 burn-
in iterations, every 40th MCMC sample is retained from thet @®0,000. Thus we obtain 10,000
samples of targeted posterior distributions of the unknpamrameters for statistical inference.

We will investigate the following two scenarios. FirstlysAhown in Figure 3.1, the histograms
of viral load and CD4 cell count clearly indicate their asystnt nature and it seems adequate
fitting an SN model to the data set. Since a normal distribuisoa special case of an SN distri-
bution when skewness parameter is zero, we will investibate an SN distribution for random
error contributes to modeling results and parameter estman comparison with a normal dis-
tribution for random error. Secondly, we also estimate tlueleh parameters by using the ‘naive’

method, which does not separate the measurement errorstectnue CD4 values (i.e., completely
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ignores measurement errors in CD4 values in the modelingat i§, the ‘naive’ method only uses
the observed CD4 values; rather than true (unobservable) CD4 valagsin the response Models
I-Il in which case the joint models revert to regular modeithaut covariate models involved for
inference. We use the ‘naive’ method as a comparison to ihenoodeling method proposed in
Section 3.2. This comparison attempts to investigate hewrtbasurement errors in CD4 contribute
to parameter estimation.

3.3.2.1. Comparison of results between models with normal and SN disibutions

As discussed previously, the fundamental assumption tfildlitions for (within-subject) random
error in Models I-lll is SN which is different from that of noal distribution in most statistical
models in publications (Liu and Wu, 2007; Perelson et al9719Vu et al., 1998; Wu and Ding,
1999; Wu and Zhang, 2002). In this section, we investigate &io SN distribution contributes to
modeling results in comparison with a normal distributionfandom error.

The population posterior mean (PM), the correspondingdstahdeviation (SD) an8is% cred-
ible interval (Cl) for fixed-effect parameters based on thedets with an SN or normal random
errors are presented in Table 3.1. The following findingsodogerved based on the estimated re-
sults. (i) Firstly, in the response models for the most ederd parameter$s, 54, 55), S2 based
on the three models with a normal random error are largerttienorresponding that based on the
three models with an SN random error; all the estimates atistitally significant since the 95%
Cls do not contain zero. Secondly, fo%, 35), it can be seen that the estimates based on the SN-
BNLME and SN-BSNLME models are substantially differentfréhose based on the N-BNLME
and N-BSNLME models. Thirdly, for the variance parametéy its estimated values (0.04, 0.08,
0.09) based on the three models with a SN random error are smaahler than those (0.96, 0.54,
1.31) based on the three models with a normal random erroall¥i for the skewness parameter
0., we found that), associated with the three models with an SN random errottima&®d to be
significantly positive; this confirms the positive skewnetthe viral load data ifin scale as shown
in Figure 3.1, and the estimates of the skewness parametased on SN-BLME model (1.57),
SN-BNLME model (1.15) and SN-BSNLME model (2.03) are fairligh. (ii) For estimated pa-
rameters in the CD4 covariate models, the estimates ofcepér; based on the N-BNLME and
N-BSNLME models are larger than those based on SN-BNLME aBSNLME models, how-

ever the estimates of coefficients andas are very similar between SN and normal models. For the
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variance parameter, the estimated values (0.10, 0.13) based on the N-BNLME aBSNLME

models are larger than those (0.01, 0.08) based on SN-BNLMESIN-BSNLME models. The

estimates of the skewness paramétdyased on SN-BNLME and SN-BSNLME models are signif-

icantly positive which is consistent with positive skewse$ the CD4 cell count data as shown in

Figure 3.1.

Table 3.1: A summary of the estimated posterior mean (PM)tefésted population (fixed-effects)

and precision parameters

Model aq Qo a3 51 52 ﬂg 54 55 T O’Z Oe de
N-BLME PM - - - 8.01 3.70 - - - - 0.96 - -
Lcr - - - 752 3.16 - - - - 0.74 - -
Ucr — - — 851 4.22 — - - - 1.25 - -
SD - - - 0.25 0.27 - - - - 0.13 - -
SN-BLME PM - - - 542 3.43 - - - - 0.04 - 1.57
Ler - - - 480 2.85 - - - - 0.01 - 1.34
Ucr — - — 6.03 4.04 — — — - 0.18 - 1.83
SD - - - 0.31 0.30 - - - - 0.05 - 0.13
N-BNLME PM -0.20 0.68 -0.42 852 21.0 5.59 1.26 0.04 0.10 0.54- -
Ler -047 015 -098 7.96 16.6 5.01 0.60 0.01 0.08 0.40 - -
Ucr 007 119 014 909 263 6.15 191 033 0.13 0.73 - -
SD 014 026 028 028 244 029 033 0.19 0.13 0.08 - -
SN-BNLME PM -1.01 0.70 -050 6.70 209 382 135 0.02 0.01 80.00.53 1.15
Ler -1.30 024 -099 597 166 3.03 064 001 001 0.01 038 0.79
Uecr -070 116 0.04 750 26.0 4.60 197 022 0.05 0.33 0.65 1.42
SD 0.16 024 027 039 239 039 034 015 0.01 0.09 0.07 0.16
N-BSNLME PM -0.22 0.66 -0.28 829 266 366 -256 0.88 0.13311. - -
Ler -048 013 -085 775 175 112 -106 0.31 0.10 1.06 - -
Ucr 003 120 029 883 36.2 5.27 290 1.77 0.15 1.62 - -
SD 0.13 0.27 029 0.28 477 1.02 333 045 001 0.14 - -
SN-BSNLME PM -0.62 065 -0.27 460 171 -0.09 -444 0.15 0.0809 0.25 2.03
Ler -113 010 -0.8 376 997 -276 -109 0.06 004 001 016416
Ucr 037 119 031 563 230 150 -060 094 013 038 052 234
SD 041 027 029 047 341 114 283 039 0.03 010 0.25 0.17
SN-BSNLME  PM - - - 534 281 157 0.39 0.78 - 0.12 - 1.84
(NV) Ler - - - 455 20.7 022 -3.98 0.17 - 0.01 - 1.45
Ucr — - — 6.18 36.7 273 357 1.37 - 0.43 - 2.18
SD - - - 041 399 064 192 0.32 - 0.12 - 0.18
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Figure 3.4: The individual estimates of viral load trajeis for three randomly selected patients
based on the BLME (left), BNLME (center) and BSNLME (rightpdels with a normal (dotted
line) or SN (solid line) random errors. The respective eaitdotted line (normal) ended witk™
and solid line (SN) ended with* on each fitted value are th% credible interval (Cl) associated

with the fitted value. The observed values are indicated dny Giossesx).

Figure 3.5 displays the three randomly selected indivighstiimates of viral load trajectories
along with the associateib% Cls on each fitted value obtained based on the BLME (left), BI&L
(center) and BSNLME (right) models with a Normal (dottecelror SN (solid line) random error,
respectively. The following findings are observed from jomodeling results. (i) The estimated
individual trajectories for the models where the randororeis assumed to be SN fit the originally
observed values much closer than those for the corresppmdatels where the random error is
assumed to be normal. (i) Overall, t86% CI associated with each of fitted values from the

normal models is wider than that from the corresponding SNeatwo (iii) All the 95% Cls from
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three SN models cover the true (observed) viralr load valwbse some 0f95% Cls from three
normal models do not. For example, for patient 39 whose sbdevalue at day 115 is 10.57,
the 95% CI from the SN-BSNLME model is (9.90,11.02) with the fittedue 10.51, while the
corresponding5% CI from the N-BSNLME model is (7.19, 9.53) with the fitted val8.33 which

does not cover the observed value 10.57.
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Figure 3.5: The observed values versus fitted valués(BiNA) based on the BLME (left), BNLME
(center) and BSNLME (right) models with a normal or SN randemor.

We also investigate the model fitting results for each of tiree mixed-effects models with
normal and SN random errors, respectively. We have seenithgeneral, all the models provided
a reasonably good fit to the observed data for most patierdaristudy, although the fitting for a
few patients was not completely satisfactory due to unuguall load fluctuation patterns for these
patients. To assess the goodness-of-fit of each of the thipeslraffects models with normal and
SN random errors, the diagnostic plots of the observed salaesus the fitted values are presented
in Figure 3.5. It was seen from Figure 3.5 that the models a/tleg random error is assumed to
be SN provided better fit to observed data, compared with théets where the random error is
assumed to be normal. This finding is further confirmed byrtresidual sum of squares (RSS).
That is, for the BLME model the RSSs are 3.62 (SN random eand) 117.37 (normal random
error); for the BNLME model the RSSs are 6.64 (SN random gmod 63.78 (normal random
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error); for the BSNLME model the RSSs are 7.49 (SN randonreaiod 312.58 (normal random
error).

For selecting the best model that fits the data adequatelgtyadtan selection criterion is used.
This criterion, known as deviance information criterion @), was first suggested in a recent pub-
lication by Spiegelhalter et al.(2002). As with other moslelection criteria, we caution that DIC
is not intended for identification of the ‘correct’ model,tlvather merely as a method of compar-
ing a collection of alternative formulations. In each of theee models with the specification of
different distributions for the random error, DIC can bedis&find out how assumption of an SN
distribution contributes to virologic responses and pat@mestimation in comparison with that
of a normal distribution. We found that the DIC values, 3353$N-BLME), 607.24 (SN-NLME)
and 1051.21 (SN-SNLME) for the three models with an SN randomor are smaller than the cor-
responding ones, 524.54 (normal-BLME), 701.17 (normaMfH) and 1355.45 (normal-SNLME)
for the three models with a normal random error, respegtivel

As mentioned before, it is hard to tell which model is ‘cotrdmit which one fits data better.
Therefore, based on the DIC criterion, the results inditdadt each of the three models with an SN
random error fits the data better, supporting the conterdfcam departure from normality. These
results are consistent with those from diagnosis of the gesstof-fit displayed in Figure 3.5. In
summary, our results may suggest that it is very importarasgume an SN distribution for the
response models in order to achieve reliable results, iticp&ar if data exhibit skewness. Along
with these observations, we further report our results faitdeonly for the three models with an SN
random error.
3.3.2.2. Results of analysis based on the SN models
The population (average) estimates of the viral dynamiarmpaters presented in Table 4 based on
the three (SN-BLME, SN-BNLME, SN-BSNLME) models indicateat the estimates gf; from
the different models agree fairly well. However, the estesa(20.9 and 17.1) of the first decay
rate 5, by SN-BNLME and SN-BSNLME modeling methods are significamtifferent from that
(3.43) obtained by SN-BLME modeling method. Although thiineates of3; by SN-BNLME and
SN-BSNLME modeling methods are comparable, one problemaswe considered only 84-day
data for SN-BNLME model fit. This means that or$% of the data from the 168-day period

were included due to arbitrary truncation of data. Theesftihe SN-BNLME modeling may not
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be efficient. In this case, we prefer to use the SN-BSNLME rhmdehich a smooth function of
treatment time is incorporated into the second-phase detayto better catch rebound viral load
data and all data measured during the treatment period casdae

In the SN-BLME and SN-BNLME model fittings, individual cuiwésolid lines in Figure 3.5)
for each subject follow a similar trend; that is, the trageigts of viral load decay in all 3 subjects
decrease rapidly in the first-phase, then flatten in genéfakn the entire treatment period is con-
sidered, the viral loads of subject 39 rebound after thersphase, whereas the viral loads of
subjects 23 and 32 remain low until the end of the treatmeribghe Obviously, the SN-BLME
and SN-BNLME model fittings are reasonable for data cuttindags 35 and 84, but they do not

represent data measured over the whole treatment period.

(a) Modle I: Mean=3.43, SD=0.45, CV=13.0% (b) Modle II: Mean=20.9, SD=0.65, CV=3.10% (c) Modle Ill: Mean=17.2, SD=1.54, CV=8.96%

. ,ﬁ .
mel H [my * u
=~ : S0 : N
) — H ZN
o N 7]
20 ! T
G5 z 23
=1 S e
< T oo
£ 3 a
8 £ £
Zun o<
o) o -
o~
0 10 20 30 0 10 20 30 0 10 20 30
Number of subjects Number of subjects Number of subjects
(a) Modle I: r= 0.874 , p<0.0001 (b) Modle II: r=-0.952 , p<0.0001 (c) Modle Ill: r=0.727 , p<0.0001
N
—~ N
my m
o e u
s~ 2 e
4
3 5 2
wn ]
g & 28
3 3 =1
T o o g ©
o = E - -
E™ £ =
K] K} g <
0 -
N
6 7 8 9 10 11 6 7 8 9 10 11 6 7 8 9 10 11
Baseline In(RNA) Baseline In(RNA) Baseline In(RNA)

Figure 3.6: Correlations between baselinéRNA) levels and the subject-specific first phase viral
decay ratess;; estimated by using each of the three different methods. ol lines are robust
(MM-estimator) linear regression fit. The correlation dméénts ¢-) and p-values were obtained

from Spearman rank correlation test.

It is also worth noting the differences among the estimagddes of the first-phase decay rate
(82) for each subject based on the three models. We can see figureR3.6 (top panel) that the
individual estimated values ¢k, obtained by the SN-BNLME model fitting are consistently much

greater than those obtained by the SN-BLME model fitting, det slightly different from those
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obtained by the SN-BSNLME model fitting. Although for eachdabthe individual estimates of
In(RNA) levels approximately follow the observed values, thgerences ing, values obtained
with each model may suggest a completely different reldbetweens, and baseline viral loads.
When we investigate the relation between the estimatedithdil first-phase decay ratés and
baselindn(RNA) levels, the results are incongruous. The correlatioetween the subject-specific
viral decay rateg, estimated by each method and baselif®NA) levels are shown in Figure 3.6
(bottom panel). The subject-specific estimatesipfobtained from the SN-BSNLME and SN-
BLME modeling methods show significantly positive corriglas (-; = 0.727 andr;;; = 0.874
with p-valuep < 0.0001) with baselineln(RNA) levels. However, the estimates 8 obtained
by using the SN-BNLME modeling method are negatively caitierd with baselinén(RNA) levels
(rrr = —0.952 with p-valuep < 0.0001).

The incongruity in the individual estimates of the first-phaviral decay rates and their cor-
relations with baselinén(RNA) levels, as determined by the SN-BLME, SN-BNLME and SN-
BSNLME modeling methods, is significantly different withetfollowing two observed scenarios:
(i) Although the individual estimates ¢§ obtained by the both SN-BLME and SN-BSNLME mod-
eling methods are positively correlated with baseli@NA) levels, the the individual estimates of
Bo from the SN-BSNLME method are, in general, five times largantthose from the SN-BLME
method. (ii) The individual estimates 6% by SN-BNLME and SN-BSNLME modeling methods
are fairly comparable, but the correlations between haskl(RNA) levels and the subject-specific
viral decay rateg, estimated by these two methods are completely oppositeseliheonsistences
are presumably caused by data truncation. From the abawiésrtdsmay suggest that the estimates
obtained from the both SN-BLME and SN-BNLME models might lo¢ reliable and the estimates
based on the SN-BSNLME model may be favorable.

To fit the SN-BLME model, we truncated the data at day 35 in shigly. However, it is not
clear where one should cut the data between the first- anchdgimses of decay. Also, different
subjects may have different change points between the tasgsh For example, truncation at day
35 may cause data from the second-phase to be included \gitipfiase data. It is for this reason
that SN-BLME models underestimate the first-phase decag (at). The SN-BSNLME modeling
method is preferable to the SN-BLME and SN-BNLME modelingtmoes, especially for sparse

individual data. We believe that estimates obtained froemSN-BSNLME modeling method and
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their correlations with baselin@(RNA) levels are reliable since the complete data are used- C
versely, the both SN-BLME and SN-BNLME model fittings mayukesn misleading conclusions,
as shown above, perhaps because it is impossible to find eatran point to data for these two
model fittings that would be suitable for all patients. Theneated values of; would be affected
by the inclusion of second-phase data if truncation ocduiwe late, and by the loss of data if trun-
cation was too early.

For comparison, as an example, we also employed the ‘naigdiod-based the SN-BSNLME
model to estimate the model parameters presented in TablesBig the observed CD4 values and
ignoring the CD4 measurement errors. It can be seen fromstitaated results that the estimates
of the parameters from the naive method are significantelathan those from the joint modeling
method. It indicates that the naive method may produce stigrated results with substantial bi-
ases; in particular, the estimated covariate CD4 effeétffom the naive method is 5 times greater
than that from the joint modeling method. The joint modelingthod appears to give larger SDs
in most cases, probably because it incorporates the \ariftbm fitting the CD4 covariate pro-
cess. Further, the estimate of the model skewness paramefar the naive method is slightly
smaller than that for the joint modeling method; this resuljgests that the naive method may un-
derestimate the skewness parameter due to ignoring measntrerrors in CD4 values. Thus the
difference of the naive estimates and the joint modelingredes, due to whether or not ignoring
potential CD4 measurement errors in conjunction with theBBYNLME model, indicates that it is
important to take the measurement errors into account iarthéysis when covariates are measured

with errors.

3.4. Discussion

For viral dynamic models with skewness characteristicsiraf \oad responses and CD4 measure-
ment errors in covariate, we have investigated and comphestthree Bayesian mixed-effects mod-
els with an SN distribution that may be preferred over thodgk svnormal distribution in the sense
that it produces less biased parameter estimates and psobétter fit to observed data. The pro-
posed method may have a significant impact on AIDS reseauzule, in the presence of skewness
in the data, appropriate statistical inference for HIV dyinas is important for making robust con-

clusions and reliable clinical decisions. Our proposedhoetis quite general and so can be used
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to other applications. This kind of SN modeling approachipartant in many biostatistical appli-
cation areas, allowing accurate inference of parameteilge @wtijusting for the data with skewness.
The SN distribution is shown to provide an alternative tormalr (symmetric) distribution that is
often assumed in statistical models. The results inditeteviith SN distribution assumption, there
is potential to gain efficiency and accuracy in estimatingaie parameters when the normality as-
sumption does not hold in the data. The models considereusmpaper can be easily fitted using
MCMC procedure. Moreover, the proposed modeling approaditied using the WinBUGS pack-
age that is available publicly. This makes our approachequitverful and accessible to practicing
statisticians in the fields.

To estimate the viral dynamic parameters and study theoelaf the baseline level of HIV-1
RNA in plasma with the decay rate of the first-phase of respdagreatment, we compared the
results of SN-BLME, SN-BNLME and SN-BSNLME model fittingsyagfound that the both SN-
BLME and SN-BNLME model fittings in short-term dynamics masgult in misleading conclusions
due to data truncation. Of particular interest is that whmgtterm dynamics are considered, SN-
BNLME may also become unreliable because of the compleXitheosecond-phase of decay. The
foregoing results indicate that in a two-phase HIV dynamaxdsi, the first decay rate may remain
constant, while the second decay rate may change which dementime-varying CD4 covariate
during the period of study. The analysis results suggestttigae may be a significantly posi-
tive correlation between the first-phase viral decay andodseline HIV-1 RNA levels based on
the SN-BSNLME modeling method. This finding is consisterthvwihose reported in publications
(Notermans et al.,1998; Wu et al., 2004). This positiveaation may be partially explained by the
fact that the higher baseline viral load value, which is egjent to the lower baseline CD4 value
due to a negative relation between these two baseline factioggests a lower turnover rate of hym-
phocyte cells, which may lead to a positive correlation leetmvthe first-phase viral decay rat& )
and the baseline HIV-1 RNA levels. Higher baseline HIV-1 RN#els reflect more productively
infected cells distributed at different sites; thus, geealrug potency or exposure may be required
to achieve a similar decay rate to that seen in patients witlell levels of viral replication. This
finding is very interesting and clinically important. Sinte viral decay rates may reflect the effi-
cacy of ARV treatment, the lower baseline HIV-1 RNA levelsynm@ed less potent drug efficacy to

suppress virus replication so that a strong treatmeneglyds not necessary to avoid side-effect of
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drug use. This may help improve understanding of the patiesie of HIV infection and evaluation
of ARV treatments.

We would point out that the problems we have addressed imptdpger cannot be resolved by
the standard goodness-of-fit or model selection methodghwdre usually used when applying
different models to the same data set. From Figure 3.5, wesearthat all three models (BLME,
BNLME and BSNLME) fitted the corresponding data very well.d@oess-of-fit or model selection
methods are unable to identify the right model. We have fdtatithe different models should not
be applied to the same, entire data set, but applied sinedtesty to appropriate segments of the
data set such that the results will be biologically meanihgf

In conclusion, BLME fitting may be misleading and its use sticae avoided; BNLME fit-
ting may work well but is subject to data truncation; BSNLM#irfig works in a similar way to
BNLME fitting but has no data-screening problems associai#dits use. Care is necessary in the
implementation of BNLME and BSNLME fittings. With the introdtion of SN distribution in the
models, the estimated results suggest that the skewnesagtars in viral load and CD4 cell count
are estimated to be significantly positive for each of theg¢hmodels. This confirms the positive
skewness of the viral load and CD4 data presented in FigareThus, we may conclude that ac-
counting for significant skewness is required when one nsoalelata which exhibits skewness.

This paper combines new technologies in mathematical rimgdahd statistical inference with
advances in viral dynamics and ARV treatment to quantify glem HIV disease mechanisms. The
complex nature of HIV/AIDS will naturally pose some chalyes such as nonignorable missing
data and data with detection limit problems. These comglcc@roblems are beyond the purpose
of this article, but a further study may be warranted. We ately investigating these problems

now. We hope that we could report these interesting resuttse near future.
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4 Bivariate linear mixed-effects models with an applicatio to AIDS

study using skew-elliptical distributions

4.1. Introduction

Multivariate or bivariate outcomes are used as primary eimdp in many longitudinal studies. For
example in AIDS studies, not only the RNA viral load, but alke CD4 and CD8 cell count are
measured (Acosta et al., 2004). HIV-1 infection resultspmagressive destruction of immune func-
tion, which may be indicated by a decrease of CD4 cell coudtaamincrease of CD8 cell count.
Studies of changing immunologic CD4 and CD8 responses maybartant to identifying indica-
tors for quantifying treatment effect and to improving mgement of patient care. With this type of
multiple outcomes (CD4 and CD8 cell count), the underlyitagistical question is to estimate the
functions that model their dependence on co-variates an/éstigate the relationships between
these functions. Similar clinical and epidemiologicaldi&s often generate clustered as well as
longitudinal follow-up data with bivariate or multivar@butcomes as primary endpoints, which are
routinely analyzed using multivariate linear mixed-effemodels (Matsuyama and Ohashi, 1997).
In this chapter, we focus on a bivariate LME (BLME) model oe $iituation where two response
variables (CD4 and CD8 cell count) are observed simultasigdar each subject to accommodate
individual clustering within subjects as well as the catien between bivariate measures. BLME
can facilitate borrowing of strength across all subject®mhssessing the effects of co-variates
through treatment time, baseline age, treatment grougl, lead at baseline and time-varying treat-
ment efficacy, etc. on AIDS progression. Thus, in particuldaBLME model is used to estimate
various parameters including the correlation coefficieetsveen CD4 and CD8 cell count. CD4 cell
count is an important indicator of the strength of the immaystem. CD4 cells are ‘helper’ cells
that lead the attack against infections and are considerttead |V main target cells. CD8 cells are
‘cytotoxic’ cells and are inappropriately “on” or active iarms of the immune hormones secreted
during HIV infection. The hyperdynamic or over-stimulat€®8 immune response, reflected by

activation of CD8 subsets as well as elevated total CD8 oelht; may accelerate immune dysfunc-
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tion and certain disease processes. The ratio of CD4 and €ID8uint is important in monitoring
the function of the immune system in patients who have viteddtions or who have undergone
tissue transplantation.

In traditional LME model analysis (Laird and Ware, 1982)g tborrelation due to clus-
tered/repeated measures on a subject is usually accouwntedréugh the inclusion of random-
effects and within-subject measurement errors, which #iem @assumed to be normally distributed
due to the mathematical tractability and computationalvearence. While such an assumption
makes data analysis amenable to popular software such asushR/Splus, the usual fidelity to
normality assumptions has been questionable (Ghidey,e2@04; Verbeke and Lesaffre, 1996)
when data exhibit non-normal behavior. A violation of thewmption could lead to misleading
inferences. In fact, observed data in AIDS studies are détefrom being “symmetric” and asym-
metric patterns of observations usually occur. A commorr@ah adopted for data analysis in
these situations is reverting back to usual multivariatenaity assumptions after suitable trans-
formation of the response on a continuous scale (e.g. sqoatdéransformation of CD4 and CD8
cell count). Although they may lead to reasonable empiniealllts, they may be avoided when
a suitable alternative theoretical model is available bsealata transformation hinds underlying
data generation mechanisms due to reduced information féerd @dmponent-wise transformation
does not lead to joint normality (Jara et al., 2008). Besitlesstransformations are not universal,
i.e. transforms used for one particular data may not be addpt a different data. Moreover, the
results may be difficult to interpret based on transformed.d@&his motivates researchers to con-
sider exploration of a more general mixed effects framevibat takes into account the flexibility
in distributional assumptions of random-effects and mesament errors to produce robust parame-
ter estimates. The term ‘robustness’ is quite extensivee tabustness is achieved with respect to
parameter estimation.

Considerable research has been done by introducing moielégarametric families that can
accommodate normality departures (skewness and heagy #amitl hence eliminate the need of
ad hoc data transformations (Azzalini and Capitanio, 1998)the context of LME models, the
random-effects distribution was relaxed using finite ndrmixtures (Verbeke and Lesaffre, 1996),
smoothing (Ghidey et al., 2004), a semi-nonparametric ie(Bhang and Davidian, 2001) or a

thick-tailed normal/independent (NI) densities (Rosalet2903). Much of recent frequentist and
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Bayesian advances in regression problems revolve arognattitactive and popular skew-elliptical
distributions (Azzalini and Capitanio, 1999, 2003; Azmaland Dalla-Valle, 1996; Sahu et al.,
2003). The related literature in this context is very richiglano-Valle et al., 2006; Azzalini, 2005;
De la Cruz, 2008; Lin, 2009) and the curious reader might sbdo venture an entire monograph
(Genton, 2004) dedicated to discuss recent developmentonAnon feature of these classes of
models is that the normal linear mixed model is a special negnmbeach class. In this chapter, we
propose a parametric modeling of LME model for robust edimnausing SE distributions under a
Bayesian paradigm. The multivariate SE distributions usdtlis chapter are developed primarily
from the multivariate SE density proposed by Sahu et al32@8 Bayesian regression problems
and is different from the SE version proposed by Azzalini &adla-Valle (1996). However, the
differences are only due to the various parameterizatidnsliano-Valle and Azzalini, 2006) used
and an unification of all SE variants is presented by Arelialle and Genton (2005). Recent
Bayesian implementation of multivariate SE distributiqdara et al., 2008) involves SN and ST
densities using a conditional stochastic representafidmee distributions, N, SN and ST will be
considered in this chapter.

The rest of the chapter proceeds as follows. In Section 4e2describe the data set that mo-
tivated this research and introduce BLME models. Secti@npdesents the associated Bayesian
inference method and related model comparison technidnéection 4.4, we apply the proposed
method to the real data set described in Section 4.2 andtriygoanalysis results. We conclude the

chapter with discussion in Section 4.5.

4.2. Data and models with the skew-elliptical distributiors

4.2.1. Motivating data set

The data set that motivated this research is from A5055 ame stetail information about this data
set can be found in Section 2.4.1. and 3.3.1. Besides thelHixal load in plasma, CD4 and CD8
cell count in peripheral blood were designed to be measureglisin L at the same schedule as
HIV, which was days 0, 7, 14, 28, 56, 84, 112, 140 and 168 ob¥ailip.

CD4 and CD8 cell count CD4 and CD8 cell count were measured in cells/ at designed
study days. The median value at the baseline Q) is 262m L for CD4 and 880h L for CD8
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cell. The exact day of CD4 and CD8 cell count measurementspfedefined study day) was used
to compute study day in our analysis. It is noted that obskdata in the AIDS studies are often
far from being “symmetric” and skewed heavy tailed pattem€D4 and CD8 cell count usually
occur (Figure 4.1). Thus, an asymmetric distribution (saslSE) should be more appropriate than
a symmetric distribution, and statistical analysis muke tdnese features of the data into account.
Figure 4.2 shows the trajectories of observed CD4 and CD&aeht (in standardized scale) after

the initiation of an ARV treatment for 44 patients.
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Figure 4.1: The histogram of CD4 and CD8 cell count (staridadiscale) measured in peripheral

blood for 44 patients.
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Figure 4.2: The trajectory profiles of CD4 and CD8 cell cowstafdardized scale) measured in
peripheral blood for 44 patients.
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Mean=5.24, SD=2.97, CV=56.8% Mean=20.61, SD=22.29, CV=108.1%
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Figure 4.3: The baseline)and failure timeg) /C5, for IDV/IRTV drugs (top panel), the minimum
drug concentration({;,;,,) for two drugs (middle panel) for the 44 individual patieatsl adherence
rates of IDV/RTV drugs (bottom panel) over time for the twpmesentative patients. SD and CV

denote the standard deviation and coefficient of variatiespectively.
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Phenotypic drug susceptibility, Phenotypic drug susceptibilities were retrospectivedyed
mined from baseline samples. Phenotypic determinationR) Arug resistance was performed at
baseline and/or at the time of virological failure (virahtbrebounds). Some patients had virologic
failure and phenotypic susceptibility testing done on dasat the time of failure. For analysis,
we used the phenotype marker, the median inhibitory coratdom (IC5y) (Molla et al., 1996) to
quantify agent-specific drug susceptibility. We refer t titmarker as the median inhibitory con-
centration. The baseline)(and failure timek) 1C5o from 44 individuals for the two agents used
in the A5055 trial, ritonavir (RTV) and indinavir (IDV), ardisplayed in Figure 4.3 (upper panel)
which were used to construéCs,(¢). Note that for patients without virological failuré(Cs(t)
was held by a constant with the baselif@;, over time.

Pharmacokinetics variation: Plasma for intensive Pharmacokinetics (PK) analysis was o
tained at pre-dose, and 0.5, 1, 2, 3, 4, 5, 6, 8, 10, and 12 ollow/ing an observed IDV/RTV
dose. PK parameters of IDV and RTV were determined usingaoonpartmental methods. Cal-
culated PK parameters included maximuf,(.), minimum (,,.;,) drug concentration, and area
under the curve (AUC). Wu et al.(2006) compared these PKnpeters as predictors of virological
responses and no significant differences were found. THys, displayed in Figure 4.3 (middle
panel) was used in our analysis because it is easily obtaingohical studies.

Medication adherence Medication adherence was measured by the use of questiesin#
was completed by the study participant and/or by a facexte-fnterview with study personnel. As
an example, the adherence rates over time based on questeodata for IDV (dotted stair-step
line) and RTV (dashed stair-step line) drugs from the twaoesentative patients are presented in
Figure 4.3 (bottom panel).

Time-varying drug efficacy: We briefly discuss the drug efficacy function with two or more
agents. In clinical practice, genotypic or phenotypicdestin be performed to determine the sensi-
tivity of HIV-1 to ARV agents before a treatment regimen iseséed. Here we use the phenotypic
marker,IC5, half maximal inhibitory concentration, to quantify agepiecific drug susceptibility.
Because experimental data tracking development of resistsuggest that the resistant fraction of

the viral population that grows exponentially, we propose-bnear function to model the within-
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host changes over time based on availdlilg, observations as follows.

In(Sp + S==50t) for 0 <t <t,

IC5(t) =
In(S,) fort > t,

(4.1)

whereS, andS, are respective exponential values sy at baseline and time point at which the
resistant mutations dominate. In our studyis the observed time of virologic failure from clinical
studies. Given thaiCs, is measured only at baseline and at the time of treatmentéajMolla et
al., 1996),IC5,(t) remains practical although more complex models/fGs,(¢) can be considered.
For patients without a failure timBC5,, baselinel C'sy was held constant over time. In other words,
if S, = Sy, no new drug resistant mutation is developed during treatme

Poor adherence to a treatment regimen is one of the majoesafisreatment failure (Ickovics
and Melisler, 1997). Patients may occasionally miss dosésjnderstand prescription instructions
or miss multiple consecutive doses for various reasonssé beviations from prescribed dosing
affect drug exposure in predictable ways. We use the foligwhodel to represent medication

adherence,

A(t) = 1 for T, <t < Ty, if all doses are taken inff, Ty 1] 4.2)
R for Ty <t < Tiyq, if 100R% doses are taken i}, Ty 1]

where0 < R < 1, with R indicating the adherence rate for a drug (in our study, weidoan
the two PI drugs discussed previouslyi), denotes the adherence evaluation time atkitheclin-
ical visit. HAART contains two or more reverse transcrigtashibitors (RTIs) and protease in-
hibitors (PIs) has proven to be effective at reducing thewarhof virus in the blood and tissues
of HIV-infected patients. In most viral dynamic studies fifiand Wu, 2000; Perelson et al.,
1996), investigators assumed that the drug efficacy wadamnever treatment time. Drug effi-
cacy may actually vary, however, because the concentsatbARV drugs and other factors (i.e.,
emergence of drug-resistant mutations) vary during treatmAlso, patients’ viral load may re-
bound because of drug resistance, non-adherence, andfattas. A simple pharmacodynamic
(PD) sigmoidal Emax model for the dose effect relation fwBo(Gabrielsson and Weiner, 2000):
E = E,,,.C/(EC5 + C), whereE,,,. is the maximal effect that can be achievédis the drug
concentration, an@'Cj is the drug concentration that induced an effect equivatef0% of the

maximal effect. Many different variations of the,,,, model have been developed by pharmacol-

ogists to model PD effects. More detailed discussiongzgp, models can be found in the book
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by Gabrielsson and Weiner (2000) and in the article by Hudrd.@003). To model the relation-
ship of multiple treatment factors with ARV drug efficacy, employ the following modified”, ..

equation to represent the time-varying drug efficacy for ARy agents within a class,

B 1 C}nmAl (t) anmAQ(t)
(8 =35 { ICL(t) + CL Aj(t)  ICZ () + C%inAz(t)}

man

(4.3)

where~(t) ranges from 0 to 144(¢), C¢. andIC%(t) (d = 1,2) are the adherence profile, the

min
minimum drug concentration in plasma and the time-courseeaafian inhibitory concentrations for
the two agents, respectively. Note tig@,;,, could be replaced by other PK parameters such as

AUC andC,,, 4 -

4.2.2. Bivariate linear mixed-effects models with ST distibution

Now we summarize the LME model for the AIDS data with biveriabrrelated responses (CD4
and CD8 cell count). Leygc) = (ylgf),yg),...,y%)T, (c = 4,8) be the repeated measure-
ments (in cellshm?) of the CD4 and CD8 cell count, respectively, for tHé subject at time

ti; (i = 1,2,...,n,j = 1,2,...,n;). Associated with each vector of measurements is a vector of
timest; = (t;1,...,tin,)’ at which subject’s measurements were taken.aiéé)[ andm§8) be the

n; X p design matrices associated with the fixed—eﬁﬁf@ and ﬁ(8) of the two markers, respec-
tively, andz§4) and z§8) be the corresponding; x ¢ design matrices associated with the random-
@r (8>T>T’

eﬁectsb§4) and b(8), respectively. To make notation more compact,¥gt = (yi Y,

7

X, :Diag(a:l(.‘l),asgg)), Z; :Diag<z§4),z§8)), B8 = (5(4)T’5(8)T>T, b; = <b§4)T7b(8)T>T’

e = <e§4)T, e§8)T>T, wheree§4) andegs) are the within-subject residuals for CD4 and CD8 cell
count, respectively. As suggested by Lachos et al. (2009))20ve consider a skew-t bivariate LME
(ST-BLME) model in which the within-subject errors are asgdl to follow a normal distribution
and the random-effects (latent random variables) are asdtorhave an ST distribution which may
be more reasonable. Thus, we have a skéwariate LME (ST-BLME) model as follows,

Y, = XB+Zb+e

b, ~ STo,(—J(¥)8,%p, A) (4.4)

e, ~ Ny, (09, %)
whereX;, = (Ax)ax4 IS the dispersion matrix corresponding to between-subjadtbility for

random-effects® = (07,)2x2 is variance-covariance matrix for model errors,= Diag(é) and
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§ = (01,...,029)7, and J(v) = (v/m)"2[T((v — 1)/2)/T(v/2)]. Note that, in the model (4.4),
the correlation between the bivariate responses is accaiaed and incorporated by both random-

effectsb; and model errorg;.

4.3. Bayesian Inference

In this section, we implement the Bayesian methodologygBI@MC techniques for the ST-BLME
model. A key feature of this model, which allows writing éa$¥inBUGS codes, is that the model
can be formulated in a flexible hierarchical representatiBy introducing one random variable
vector,w; = (w1, ..., wiz,)" and one random variablé;, (i = 1,...,n), based on the stochastic
representation for the ST distribution (see Section 1.4etait), Y'; in the ST-BLME model (4.4)
can be written hierarchically as
Yilwi, & ~ Nop,(X:B+ Z:ibi, &%)
b ~ Nog(Aw; — J(1)8,&13y)

(4.5)
w; ~  Nzg(0,I29)I(w; > 0)
&~ T(/2,v/2)
where(i = 1,...,n). An important advantage of the above representations basdide hierar-

chical model is that they allow us to easily implement theB2ME model via the freely available
WinBUGS software (Lunn et al., 2000), and the computati@ffart is similar to the one necessary
to fit the models with the standard normal distribution. Owtmodology can be widely applied
to real problems for longitudinal studies as long as theytrtiee specifications proposed in this
chapter.

Letd = {BW,B®) % 5, 5, v} be the collection of unknown parameters in model (4.4),
y= (', )T, b= . 60T, w= (w],..,wH)T and¢ = (¢&,...,£,)7, then the full
likelihood function is given by

L(Oly,b,w, &) o< T {Gon, (y;: XiB + Zibs, & 'X)dog(bs; Aw; — J(1)8, &%)

t2q(w;; 0, Tog)l (w; > O (1/2,v/2)}
(4.6)

To complete the Bayesian formulation, we specified the wabfdhe hyper-parameters in the
prior distributions and took weakly informative prior disution for the parameters as follows

B ~ Nop(Bo, G1),  Zp ~IW(Ga,m), X~ IW(G3,1m2),
0 ~ Nyy(0,Gy), v~ Exp(r)I(v>2)

4.7)
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where the mutually independent Inverse Gama@)( Normal (V), Exponential £xp) and In-
verse Wishart {IV) prior distributions are chosen to facilitate computasig@elman et al., 2003).
The super-parameter matricés, G, Gs andG,4 can be assumed to be diagonal for convenient
implementation.

One usually assumes that elements of the parameter v@coe independent of each other,
i.e., m(0) = w(B)m(X)w(d)m () (v). After we specify the models for the observed data and
the prior distributions for the unknown model parameters, c&n make statistical inference for
the parameters based on their posterior distributions ned@ayesian framework. Combining the
likelihood function (4.6) and the prior distributions, tf@nt posterior density 08 based on the

observed dat® can be given by
f(8|D) o L(Oly,b,w,&)m(0) (4.8)

Distribution (4.8) is analytically intractable, and it isghibitive to directly calculate the posterior
distribution of@ based on the observed data. As an alternative, MCMC proesdian be used to
sample based on (4.8) using the Gibbs sampler, from whi¢hriesaof marginal posterior distribu-

tion of interest can be inferred.

4.4. Data analysis

4.4.1. Specific model and implementation

We illustrate our method by applying it to the AIDS clinicadtd described in Section 4.2.1. We

consider the following BLME model for CD4 and CD8 cell count.

4 = A+ Aty + 0 g+ A o (RN A) + A2 +
O = A0+ A+ ) @9
0 = A0+ 0,

The BLME hierarchal models (4.9) can be formulated as fadlow

yy = B+ B9+ Bty + B (95 x tig) + BL Ages

+685) log o (RN A); + B4 (ti;) + b5 + 00t + €,

(4.10)

wherec = 4 and 8 correspond to CD4 and CD8 cell count, respecti\yéj?,andygf) are the respec-

tive standardized CD4 and CD8 cell count for tHesubject at time; ;, Age; andlog,(RN A); are
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age and viral load (itog,, scale) covariates for th&" subject at baseliney(t;;) is drug efficacy for
thes!" subject at time;;, g; = 1 if the i*" subject was treated in group one and 0 in group two. The
corresponding regression coefficieﬁf) can be interpreted as the treatment effect between groups
one and twob((]? andbg? are random-effects representing a random intercept anddamaslope,
respectively. This model assumes that the mean baselinsunegaent (intercept) and mean rate of
change (slope) are different between two treatment groups.

Several statistical models with different distributiomrr the SE class for the latent random-

effects and random errors are compared. These models arkoasst
e N Model: Normal distribution for the random-effects and random estro

e SN Model: Skew-normal distribution for the random-effects and ndrdistribution for the

random errors.

e ST Model: Skew+ distribution for the random-effects and normal distribatfor the random

errors.

Note that random-errors can also be assumed to follow slewmal or skewt distribution,
however, once the random-effects are assumed to be SN ors8ibuation, the results are simi-
lar between normal and skewed distribution for random sremsumption. In order to make the
comparison more straightforward, the random-errors apt keder the same assumption of nor-
mal distribution among the three models. In the absencestbiical data/experiment, we spec-
ify practical weakly informative priors for all model paraters to obtain well-defined (proper)
posteriors following the recommendations in (Hobert andella, 1996; Zhao et al., 2006). In
particular, (i) fixed-effects are taken to be independentriab distribution N (0, 100) for each com-
ponent of the population parameter vegtbr(ii) The prior for the variance-covariance matrix of the
random-effects; is taken to be inverse Wishart distributiohd’ (G2, 1) with covariance matrix
G2 = Diag(0.01,0.01,0.01,0.01) and degree of freedomy = 5. (iii) The prior for the variance-
covariance matrix of the model erroBs is taken to be inverse Wishart distributioh®” (G, 12)
with covariance matribGs = Diag(0.01,0.01) and degree of freedom, = 3. (iv) For each of
the skewness parametersandd,, independent normal distributiol (0, 100) is used to accom-

modate either positive or negative skewness, and it alloeslata to determine which one is more
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appropriate. (v) Prior choice far is chosen ag ~ Exp(0.5)l (v > 2) (i.e., exponential density
truncated at 2) to reflect a prior enwith a well-defined and finite variance.

The MCMC sampler was implemented using WinBUGS softwarenfLet al., 2000), and the
program codes are available in Appendix C. In particula, MMCMC scheme for drawing samples
from the posterior distributions of all parameters is atdi by the Gibbs sampler. After collecting
the final MCMC samples, we are able to draw statistical imfegefor the unknown parameters.
Specifically, we are interested in the posterior means aadtdes. See the articles (Huang et al.,
2006; Lunn et al., 2000) for detailed discussions of the Beyemodeling approach and the im-
plementation of the MCMC procedures, including the choicthe hyper-parameters, the iterative
MCMC algorithm, sensitivity analysis and convergence dasgics. We propose that, after an initial
number of 50,000 burn-in iterations, every 20th MCMC sanipletained from the next 200,000.
Thus, we obtain 10,000 samples of targeted posterior bligioins of the unknown parameters for

statistical inference.

4.4.2. Model comparison results

Bayesian modeling approach based on the specific model) (4iftd different model distribution
specifications from the SE class was used to fit the data. Fextsey the best model that fits the
data adequately, a Bayesian selection criterion, DIC,asluds with other model selection criteria,
we caution that DIC is not intended for identification of thefrect” model, but rather merely as
a method of comparing a collection of alternative formalasi. As an alternative, we also evaluate
EPD and RSS, while the detail information related to DIC, E&id RSS can be found in Section
2.4.1.

Table 4.1 presents the DIC, EPD and RSS values among thecimggeting models. It is seen
that the SN and ST Model produce better fit than the N Modelnmseof DIC, EPD and RSS. In
particular, the ST Model (with the smallest DIC) offers thesbfit among the N, SN and ST Modal;
these findings are consistent to those obtained by EPD andcRi®6a. Thus, we select the ST
Model as our best fit model.

Figure 4.4 shows the box-plots for the skewness paramgtand ., among the SN and ST
Model. The 95% CI of skewness parameters in the ST Model fin B®4 and CD8 cell count

do not include zero, which confirm significantly positive wkess of the bivariate responses. In
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Table 4.1: Model comparison using DIC, EPD and RSS criteria.

Model
Criterion N SN ST
D 979.14 945.09 600.97
PD 140.58 141.91 186.02
DIC 1119.72 1086.86 788.99
EPD 0.840 0.825 0.821
RSS 690.4 128.6 127.1

the SN Model, the 95% CI of skewness parameter for CD8 celitdoesn't include zero, while it

includes zero for CD4 cell count.

4.4.3. Estimation results based on the ST Model

Based on DIC, EPD and RSS, the best fit model is the ST Modelhinharandom-effects are as-
sumed to have an ST distribution. Figure 4.5 plots the malgiasterior densities of the parameter
v for the ST Model. It shows some degree of right skewness eoimg non-normal nature.
Compared with the N and SN Models, the SD for the fixed-effeetameters for both CD4
and CD8 cell countfy ~ (5g) from the ST Model were smaller (Table 4.2). In the ST Modeg t
estimated skewness parameters for the CD4 and CD8 cell eoertt.441 and 0.518, respectively
(Table 4.2). Because the 95% posterior credible intervabfith skewness parameters do not in-
clude zero (95% Cl is 0.098 0.678 for the CD4 cell count, and is 0.2490.833 for the CD8 cell
count), this confirms the positive skewness observed frard#dia. We also found the estimated
skewness parameter for the CD8 cell count was significaiglyen than that for the CD4 cell count
(p < 0.0001). As expected, the results shown in Table 4.2 also inditetethere is a negative asso-
ciation between the CD4 cell count and baseling, RN A (ﬁé‘” = —0.113, 95% Cl is -0.208~
-0.016). But we did not find any significant association betvihe CD8 cell count and the baseline
log o RNA (B = 0.004, 95% Cl is -0.116~ 0.124). Both CD4 and CD8 cell count significantly

increase with the treatment time (95% Cl is 0.282 to 0.85aHerCD4 cell count, and is 0.210 to
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0.950 for the CD8 cell count). However, no significant groiffedence was found.

Table 4.2: A summary of the estimated posterior mean (PM)opufation (fixed-effects) param-
eters, as well as the corresponding standard deviation &8®Jower limit (Lo ;) and upper limit
(Ucy) of 95% equal-tail credible interval (ClI).

CD4 S R S S Y L
N PM -0.056 0.368 0.363 0.112 0.007 -0.233 1.546 - 0.131 -
Ler  -6.914  -0.100 0.053 -0.336 -0.024 -0.381 -5.618 - 0.109 -
Ucr  7.066 0.837 0.678 0.545 0.038 -0.056 8.864 — 0.156 -
SD 3.506 0.238 0.158 0.224 0.016 0.081 3.516 - 0.012 —

SN PM 0.433 0301 0410 0.070 0.001 -0.212 1.083 0.559 0.128 -
Lecr -5.893  -0.154 0.059 -0.407 -0.029 -0.337 -4.000 -0.469 1.10 —
Ucr 5639 0750 0.762 0544 0.029 -0.054 7.500 1.135 0.153 -
SD 3.118 0.229 0.179 0.242 0.014 0.071 3.137 0.441 0.012 -

ST PM -1.334 0.148 0559 -0.103 0.016 -0.113 1.437 0.407 10.02.914
Ler -3.837  -0.199 0.282 -0.466 -0.007 -0.208 -0.809 0.098 0.025072
Ucr 0841 05183 0850 0.259 0.035 -0.016 3.967 0.678 0.071 4.306
SD 1261 0.179 0.144 0.184 0.011 0.049 1298 0.148 0.009 20.60

cos R R A S S L R - -

N PM  -2108 -0.370 0.173 0469 0.001 0.051 1.764 - 0.290 0.062
Lecr -7435 -0.949 -0.244 -0.130 -0.027 -0.115 -4.275 - 0.239 3®.0
Ucr 4045 0246 0598 1.061 0.033 0.231 7.257 - 0.350 0.090

SD 3.097 0.304 0.213 0.303 0.015 0.087 3.254 - 0.028 0.014
SN PM -0457 -0.286 0.227 0.404 -0.008 0.028 0.561 1.017 30.28.061
Lcr -4523 -0.808 -0.223 -0.257 -0.041 -0.123 -3.351 0.605 @.23.037
Ucr 3595 0.236 0685 1.043 0.023 0.174 4871 1416 0.340 0.088
SD 2159 0.266 0.233 0332 0.016 0.078 2230 0.228 0.027 30.01
ST PM -2078 0.020 0565 -0.027 0.002 0.004 1860 0.518 0.12M037
Lcr -6.275 -0.383 0.210 -0.525 -0.025 -0.120 -1.569 0.219 0.088023
Ucr 0998 0435 0950 0468 0.032 0.137 6.480 0.833 0.166 0.054
SD 2.072 0.211 0.188 0.252 0.014 0.062 2.177 0.157 0.021 80.00

Although the increase of CD4 cell count is expected duringféattive HAART, elevated CD8
cell count is associated with HIV virologic treatment faduKrantz et al., 2011). Figure 4.6 shows
the estimated individual coefficient of time for CD4 and CDOSl count in the rebound and no

rebound group. The detailed definition of rebound can bedanrSection 2.4.2.3. Compared with
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the rebound group, in the no rebound group, the averageidudivcoefficient of time for CD4 cell
count is significantly higher (median value is 0.476 and 8,18r the no rebound and rebound,
respectively.p = 0.010). While no significant difference was found in the C@8ween the two
groups (median value is 0.379 vs. 0.260, for the no rebouddetround, respectively = 0.5420
). Because the maximum follow-up of A5055 study was only 6 therand even an interval of
12 months is considered as too premature to evaluate imnegpemse to HAART (Dronda et al.,

2002), a longer follow-up might be needed in order to drawrachsion.
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Figure 4.6: The coefficient of time for CD4 and CD8 cell countébound and no rebound group .

The estimated of SDs for the dispersion matrix parametdrarsiT Model are smaller compared
to the Normal or SN Model (Table 4.3). This is expected beednigh variability, heaviness of the

tails and the skewness are interrelated to a certain extent.
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Table 4.3: A summary of the estimated posterior mean (PMjspiasision matrix parameter, as well
as the corresponding standard deviation (SD) and lowet (ibqi;) and upper limit U ;) of 95%
equal-tail credible interval (CI).

Model A1 A22 A3 A1 A12 A13 A1a A23 A24 34
N PM 0.556 0.323 0.904 0.528 0.245 0.088 -0.035 0.060 0.062.3970
Ler 0342 0.162 0554 0.198 0.088 -0.149 -0.303 -0.155 -0.137.81€0
Ucr 0.885 0567 1437 1.048 0449 0360 0.205 0.285 0.291 -0.109
sd 0.140 0.106 0.231 0.219 0.092 0.127 0.127 0.111 0.105 90.17

SN PM 0340 0.235 0.320 0.314 0.116 0.071 0.048 0.022 0.091.1460
Lcr 0.091 0.082 0.097 0.103 -0.053 -0.088 -0.166 -0.141 -0.070.492
Ucr 0719 0506 0.809 0.740 0.355 0.275 0.266 0.193 0.301 0.051
sd 0.174 0.112 0.183 0.170 0.111 0.090 0.107 0.082 0.091 30.14

ST PM 0.181 0.148 0.241 0.257 0.028 0.061 -0.023 0.002 0.056.113
Lcr  0.078  0.071  0.103  0.097 -0.050 -0.024 -0.152 -0.099 -0.040.300
Ucr 0354 0279 0459 0542 0118 0.175 0.083 0.097 0.175 0.009
sd 0.071 0.054 0.092 0.118 0.042 0.051 0.058 0.049 0.054 90.07

4.4.4, Comparison between bivariate (CD4 and CD8) model andnivariate (CD4 or CD8)
model

It is also important to compare estimations from the bitarlmear mixed-effects models and the
ones from univariate model that CD4 and CD8 are modeled atghar Table 4.4 shows the es-
timated population parameters based on the bivariate nmetklunivariate model under the ST
distribution.

For CD4 cell count, except the SD for the intercept, the Shefgopulation parameters from
the bivariate model is bigger than that from the correspugdinivariate model. For example, the
SD of the skewness parameter from the bivariate model is8Q\tHile it is 0.119 in the univariate
model. The estimated parameters are also different. Fongheathe intercept from the bivariate is
-1.334, while it is 0.175 in the univariate model; the coedint for the time-varying drug efficacy is
only 24% in the univariate as the value in the bivariate m¢@d&i53 vs. 1.437).

For CD8 cell count, some estimated parameters show diffgreetween the univariate and

bivariate models. For example, the coefficient for the grauf.020 in the bivariate, while it is

85



Table 4.4: Bivariate and univariate mixed-effect modelsummary of the estimated PM of popu-

lation (fixed-effects) parameters, as well as the corredipgnSD and)5% equal-tail CI.

CD4 R S L S R S S

Bivariate-ST PM  -1.334 0.148 0.559 -0.103 0.016 -0.113 7.430.407
Lecr -3.837  -0.199 0.282 -0.466 -0.007 -0.208 -0.809 0.098
Ucr 0841 0513 0850 0.259 0.035 -0.016 3.967 0.678
SD 1261 0.179 0.144 0.184 0.011 0.049 1.298 0.148

Univariate-ST PM 0.175 0.071 0.529 -0.113 0.006 -0.127 3.350.409
Ler -3.226  -0.214 0.269 -0.441 -0.014 -0.219 -3.091 0.176
Ucr 3557 0.366 0.818 0.218 0.027 -0.039 3.878 0.650
SD 1732 0.149 0.139 0.167 0.010 0.046 1.786 0.119

cos R W S R/ S SN SN
Bivariate-ST PM  -2.078 0.020 0.565 -0.027 0.002 0.004 1.860.518

Lecr  -6.275  -0.383 0.210 -0.525 -0.025 -0.120 -1.569 0.219

Ucr 0998 0435 0.950 0468 0.032 0.137 6.480 0.833

SD 2072 0211 0.188 0.252 0.014 0.062 2177 0.157
Univariate-ST PM  -1.700 -0.016 0.493 0.081 -0.003 -0.0258971. 0.502

Lcr  -6.133  -0.420 0.139 -0.387 -0.029 -0.152 -2.719 0.126

Uecr 2719 0377 0.861 0569 0.022 0.102 6.610 0.843

SD 2234 0.202 0.184 0.241 0.013 0.064 2367 0.183

-0.016 in the univariate model. The estimated coefficientifoe for CD4 and CD8 got from the

univariate models are slightly smaller than that for theabate model.

4. 5. Conclusion and discussion

In this chapter, we consider a Bayesian bivariate SE appriwgointly model the CD4 and CD8 cell
count in peripheral blood. The hierarchical represenatigiven in equation 4.4 and 4.5 provide
easy model implementation by using the conventional Bayesiftware WinBUGS. Using suitable
model choice criteria (DIC, EPD and RSS), among the threeefspthe N, SN and ST Model, we
found the ST Model had the best model fit and the related SOibédiixed-effects parameters were
also the smallest.

The results from the ST Model confirm the positive skewnesisheavy tails observed from the

raw data. Because the estimated skewness parameter for €i®ent was bigger than that for
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CD4 cell count, it also confirms that the distribution of thB&cell count in peripheral blood are
more skewed than that of the CD4 cell count. The baseliné loiza (log;, RNA) was negatively
associated with the CD4 cell count, while we didn’t find sudigmificant association between the
baseline viral load and the CD8 cell count. Both CD4 and COBomeint significantly increased
with the time of the treatment. Compared with the reboundugyrdhe average increase rate of
the CD4 cell count over time was higher in no rebound grouplewto such significant difference
between the rebound and no rebound group was found in the €ID&cint.

For hierarchical LME via Bayesian approach, one concermas tising weakly informative
priors may lead to inconsistent inferential results (Ngjgr and Kass, 2000; Zhao et al., 2006).
In order to check whether the results were sensitive to tiar phoice, we conducted sensitive
analysis and recomputed the posterior quantities of isterthough slight changes in the values
of population parameters were noticed, the results were gabust overall and the conclusions
among the three models were kept the same.

This chapter has some limitations. The AIDS clinical triatalwe used only included the total
number of CD8 cells in peripheral blood. Because HIV-1 viniisnot directly ‘kill' CD8 cells, the
gualitative factors within the CD8 cells response and suogs of CD8 cells such as HIV specific
CD8 , naive CDS8, or activated CD8 cells, may be the principdédninants of HIV/AIDS disease
progression (Migueles et al., 2002). Also, a clinical tgaldy with longer follow-up and ‘naive’
patients who never got HAART treatment may be a better datiseesting the proposed models
and methods.

The skewed-elliptical models applied in this study areafléxible and can be easily extended
to a more general distribution family such as skew-normaépendent (SNI) by changing the dis-
tribution of &; in equation (4.5), for example, if we assuie~ Beta(v,1) andv > 0, then it
will be multivariate skew-slash distribution. This kindskewed modeling approach is important in
many biostatistical applications areas where either skewshould be considered or transformation
can be avoided. The method is useful for the exploring a tehesl” data, regardless of whether it
is cross-sectional or longitudinal one. We can easily afipdyproposed method in WinBUGS and

building in model checking will facilitate model comparnso
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5 Overall discussion and conclusions

This study has relaxed the normal distribution assumptidongitudinal data by using a multivari-
ate SE distribution family via Bayesian nonlinear or linezixed-effects modeling approach. This
chapter summarizes the new development arising from thdysthe contributions of this study in
terms of methodology and application, the study’s limiasi, and further research goals.

In linear and nonlinear mixed-effects models, randomegffand within-subject random errors
are commonly assumed to follow a normal distribution. Altgb this assumption will bring con-
venience in the computation, it may be an unrealistic anawlesimportant features among and
within subject variation. During recent years, modifyingliaknown distributions by condition-
ing and transforming in order to include skewness has redemuch attention. Among different
versions of modified skewed distributions, we selected Salassion because it can be easily ap-
plied via Bayesian approach in WinBUGS. The following sumimes the main contributions of
this dissertation.

Multiphasic HIV viral load changes since the treatmentcaties that the viral decay rate is a
time-varying process. Mixed-effects models with diffdréme-varying decay rate functions have
been proposed in the literature, however, there are twalritssues: (i) it has not been deter-
mined which model is more appropriate for practical appiocg (i) the model random errors are
commonly assumed to follow a normal distribution, which nbayunrealistic and can cause biased
inference. Because skewness of HIV viral load is still redigle even after transformation, it is im-
portant to use a more general distribution family that cémwals to relax the normal assumption.
In Chapter 2, we developed the skew-elliptical Bayesianedhigffects models by considering that
model random errors have an SE distribution. We comparepdtfermance of different SE models
with time-varying decay rate function. We also comparedpigormance among the models with
normal, Student; SN and ST distribution. Two AIDS clinical trial data setsre/@ised to test the
proposed models and methods. The results indicate the 8ibdi®n model with a time-varying

function that includes two exponential components is sopé&v the other models. The model fitis
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better with the assumption of ST and SN than with an assumptimormal or Student-distribu-
tion. This finding suggests that it is important to assume dehwith a skewed distribution in order
to achieve reasonable results when the data exhibit nanalidy characteristic. Based on the best
fitting model under the ST distribution, we found the timeywag viral decay rate was significantly
associated with the CD4 cell count and HIV-1 viral rebouratist, which may provide important
clinical information such as prediction of long-term outo® based on the early stage response.

Since we didn’t consider any covariates in Chapter 2, weneldd the SE mixed-effects mod-
els in Chapter 3 such that the CD4 cell count was included awariate in order to account for
between- and within-subject variation. Among the modeds tan be used for different lengths of
HIV follow-up, we compared LME, NLME, and SNLME models. Thetical question that needed
to be answered was whether these models produce coheriematest of viral decay rates, and if
not, which model is appropriate and should be used in pectiResides the skewed distribution
observed in the HIV viral load, CD4 cell count also shows skesg that should not be ignored
and they may be often measured with substantial errors dffetetht measurement schedules, in
Chapter 3 these issues are addressed simultaneously By jordeling the response variable with
skewness and a covariate process with measurement eriogsauBayesian approach to investi-
gate how estimated parameters are changed or different timele three models. We found that
there was a significant incongruity in the estimated decégsrim viral loads based on the three
mixed-effects models, suggesting that the decay ratevastl by using Bayesian LME or NLME
joint models should be interpreted differently from thostireated by using Bayesian SNLME
joint models. The findings also suggested that the BayedirVEE joint model is preferred to
other models because an arbitrary data truncation is n@&ssacy; and it was further shown that
the models with a skew-normal distribution and/or measergnerrors in covariates may achieve
reliable results when the data exhibit skewness.

In Chapter 4, multiple correlated outcomes should be egstichim a model where their depen-
dence on the independent variables can be considered. dmplish this, the bivariate outcomes
of CD4 and CD8 cell count were jointly analyzed under BLME jlelthe baseline viral load, age,
time-varying drug efficacy and treatment groups were iretlids covariates. In HIV immunologic
responses, such as CD4 and CD8 cell count, the correspowudlings often show noticeable non-

normal characteristics such as skewness with a heavy @aghtThere are several limitations to
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using transformation, including reduced information, m@@ntee of joint normality, no universal

transformation, or difficultly in interpreting of the ressil Therefore, we applied a more flexible
class of parametric multivariate SE distributions to ma@B¥ and CD8 cell count. This approach
provides an appealing robust alternative to the symmetnimal process in an LME model frame-

work. The estimated results confirmed the positive skewaedeavy tails observed from the data,
while the DIC value indicated the model fitting was improvedcbnsidering these two issues. One
of the advantages of the proposed methods is the easy exielnsa more general family such as
skew-normal independent distribution.

The proposed methods may have a significant impact on AID&rels from a methodology
and application standpoint of view. Given the fact that HIViral load, CD4 and CD8 cell count
all show noticeable skewness, relaxing normality assumptiith skew-elliptical distribution will
allow more accurate inference of parameters with adjudtinghe data with skewness. The esti-
mation is made via Bayesian MCMC approach that can be capueddy using publicly available
WinBUGS software. The theoretical and technical solutipreposed in this research are quite
general, so they can be used in other biological fields wHerersess should be considered. From
an application point of view and to our best knowledge, fewlighed articles have: (i) compared
different HIV dynamic models that can be used for the entioiv-up data with the normality
assumption being relaxed, (ii) compared HIV dynamic modesied in different lengths of HIV
follow-up through a joint model that can simultaneously sider the measurement errors in the
covariates such as CD4 and skewness observed in the outcaheariates, (iii) used CD4 and
CDS8 as bivariate outcomes and accommodated normality tleparskewness and heavy tails) and
hence eliminated the need for ad hoc data transformations.

Until the late 1980s, Bayesian statistics were only comsidi@s an interesting alternative to the
“classical” frequentist approach for several reasons. ma@ objection from “classical” statisti-
cians was the subjective view point via the prior distribntin Bayesian approach, which can be
easily arguable since either non-informative prior disttions can be used when no strong previous
information exists or reasonable informative prior dimitions should be selected so the knowl-
edge is a developing process, therefore, no need of “bgilfliom scratch” every time. The real
obstacle that prevented Bayesian theory from being as otieeahain stream approaches was the

intractability involved in the calculation of the posteritistribution. Implementation of the MCMC
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methods equipped with powerful personal computers maded$ay statistics applicable. In HIV
dynamic models, the estimation of the parameters is conmpéeruse many times, the likelihood
has no closed form, even for simple models. Asymptotic appration methods had provided some
solutions but may have issues such as lack of generalizatimtonsistent estimates. The Bayesian
approach provides an attractive alternative solutionimfikld, and it allows us to build more real-
istic models with more complicated structure that may bdiitve or at least very cumbersome
in frequentist approach.

Although the Bayesian approach has proved to be a very usefuin the complex model in-
ference, a main concern is the uncertainty regardling th@ gistributions and the initial values
selection. The basic tool for investigating model uncettais the sensitivity analysis. Based on
different initial values, re-computing the posterior qtities of interest can indicate whether the re-
sults have changed in a way that will significantly affectithsults interpretations and conclusions.
If the results are robust against the different initial esuwe can report the results with confidence
and be assured that the related conclusions are solid. $higshould be explained with caution
if they are sensitive to the initial values. The sensitiatyalyses in this dissertation show that the
estimated parameters were not sensitive to both prior peteEasand the initial values, so the re-
sults were reasonable and robust. One thing needs to beegant: after we found the results
were robust to the priors and initial values, we used the gaines and initial values in the model
comparisons.

The complicated HIV pathogenesis motivated us to combineva general distribution fam-
ily and Bayesian inference. The proposed methods enhamscentideling flexibility and allow
researchers to analyze longitudinal and multiple treatrferiors in a wide variety of considera-
tions. In addition, the proposed hierarchical modelingrapph can be easily implemented using
the WinBUGS package that is publicly available. These factoake our approach quite power-
ful and easily accessible to statisticians. In many biaalgand medical fields, non-normality is a
commonly seen phenomenon while the underlying mechanistmeofutcome is always complex,
which requires advanced mathematical modeling. We betfev@roposed models and methods are
quite general and helpful and can be used in other biostatistpplications.

There are several limitations in this dissertation. We ditl gonsider missing data issue, and

due to the complex nature of HIV/AIDS and the toxicity of meations, the assumption of missing

91



at random may not be a reasonable assumption. This issue enagldoessed using two-step or
multiple computation methods. Below detection limit, whiis left censoring, was not considered
in this study either. Another limitation involves the redtbiomarkers used: we examined a pooled
host cell population and did not consider the individual pamments of short-lived productively in-
fected cells, long-lived or latently infected cells; theuwd compartment was not further decomposed
into infectious versus noninfectious virions.

Although the SE distributions used in this dissertatiorobglto a general family that includes
many commonly used distributions, ideally, it would be lhelgo have an even more general
family that can be used to develop a Bayesian analysis obcedsnixed-effects models. Skew-
normal/independent (SNI) distribution is an attractivessl of asymmetric heavy-tailed distributions
that includes the skew-normal, the skevekew slash and the skew-contaminated normal distribu-
tions as special cases. As viral decay rates reflect the gotdrantiviral regimens, it is important
to evaluate the regimen’s effect on long term responsesid&gshe binary endpoint used in this
research (rebound vs. no rebound), the long term respoasdsecsurvival endpoints such as time
to HIV-1 RNA falling below the detection limit, time to virobical failure or time to progression to
AIDS. The estimated viral decay rates can be treated asiatesrand because frequent evaluations
may not be common during long-term follow-up, the event Wwél known only to have occurred
within some interval of time (interval censoring). Rebousidenerally caused by emergence of a
drug-resistant virus strain, and it is important to devedoftexible, yet parsimonious mechanistic
model to predict the rebound. By Extending basic HIV dynamiudel, the latent HIV dynamic
model can be use via Bayesian MCMC-SAEM algorithm. There asked variation in how the
body responds to the virus , and in the time-course of pregmedo AIDS. It is known that host
genetic differences contribute to this variation, but onowledge of the relevant host genetic fac-
tors is currently limited. Systematic searches of the gentoridentify common genetic variants

(genotypes) that influence the human response to HIV-1 imiging approach.
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Appendix A: WinBUGS Code for ST-Model IV-Equation (2.12) in Chapter 2
## Begin of model

model
{
for (i in 1:N)
{
## parametric random effects of normal-Response model
b2[i,1] <- 0
b2[i,2] <- 0
b2[i,3] <- 0
b2[i,4] <- 0
b2[i,5] <- 0

b[i,1:5] "dmnorm(b2]i,1:5],O0mega2][,])

nbetal[il<- beta[1l]+b][i,1]
nbeta2[i]l<- beta[2]+b]i,2]
nbeta3[i]<- beta[3]+b][i,3]
nbeta4[i]l<- beta[4]+b]i,4]
nbeta5[i]<- beta[5]+b][i,5]

## Individual parameter estimates

}

for (j in 1 : M)
{
## Main components of response based on ST
betal[j] <- beta[1]+b[y[],4],1]
beta2[j] <- beta[2]+b[y][j,4],2]
beta3[j] <- beta[3]+bl[y[],4],3]
betad[j] <- beta[4]+b[y][j,4],4]
# ylj,4]= id
beta5[j] <- beta[5]+b[y][j,4],5]

#decay rate for Model IV
decay[j] <- (beta2][j] * exp(-beta3[j] *y[},6]) +
betad[j] *exp(-beta5[j] *y[j,6]) )

dml[j] <-betallj] -decay][j] *y[},6]
# y[,6]= time(day)

## skew-T distribution to t sidtribution
w[j] =~ dt(0, 1,nu) I(0,)

mufj] <- dml[j] + delta * WIj]
# ST distribution
aaufj] <- (nu+w[j] *W[j[))nl +eta

y[j,212] ~ dt(mu[j],aau[j],n1)
# y[,12]=logeRNA
Y.pred[j] = dt(mul[j],aau[j],nl)
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# predicted values

## Fitted values and Residuals

fit[] <- mulj]

resid[j] <- Vy[},12]-fit[j]

sresid[j] <- sqrt(eta) * (y[j,12]-fit[j])
ssr.r[j] <- pow(resid[j],2)

# squares of residuals

sssr.rfj] <- pow(sresid[j],2)

# squares of SR
ssr.Y.obsJ[j]<-pow((Y.pred[j]-yl[j,12]),2)

}

SSR <-sum(ssr.r[])

# sum of squares of residuals

SSSR <- sum(sssr.r[])

# sum of standardized squares of residuals
SSR.pred <- mean(ssr.Y.obs[])

# EPD

## Prior distributions of the hyperparameters
# (0) Degree of freedom

nu0<-0.1

nu =~ dexp(nu0) 1(2,)

nil<-nu+l

# (1) Coefficients
for (I in 1:5){ beta[l"dnorm(0,1.0E-2)}

# (3) Skew-t random effects
delta ~ dnorm(0.0, 0.01)

# (4) Variance-covariance matrice
Omega2[1:5,1:5] “dwish(R2][,],5)
v2[1:5,1:5] <- inverse(Omega2[,])

# (5) Precision parameters
eta "dgamma(0.01,0.01)
sigma <- ll/eta

}
## End of model

## Data inputed
list(N=44, M=274,

R2 = structure(
.Data = c¢(1,0, 0, 0, O,
01,0, 0,0
0,0, 1, 0, O,
00,0 1,0

107



0,0, 0, 0, 1),
.Dim = c¢(5, 9)))

## Initial values

list(beta=c(4.54, -5.55, 5.00, 0.5, 1),nu=10,delta=1.5, eta=1,
Omega2= structure(

.Data = c¢( 1.94 , 1.00, -0.56, -0.58, -0.45,

1.00, 7.03, -1.08, -3.93, -1.08,
-0.56, -1.08, 1.30, 2.74, 0.69,
-0.58, -3.93, 2.74, 8.75, 2.07,
-0.45, -1.08, 0.69, 2.07, 0.66),
.Dim = c¢(5, 5)))

## End of program
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Appendix B: WinBUGS Code for Model | in Chapter 3

# Model I: Skew-Normal Bayesian Semiparametric
# Nonlinear Mixed-Effects

# (SN-BSNLME) Model in conjunction with the

# semiparametric biexponential

# model (3.3)}.

model{
for (i in 1:44) {
a2i,1] <- 0
a2fi,2] <- 0
a2i,3] <- 0
a2fi,4] <- 0

a3fi,1] <- 0
a3fi,2] <- 0
a3[i,3] <- 0

b[i,1:4]"dmnorm(a2[i,1:4], Sigma2[,])
a[i,1:3]"dmnorm(a3]i,1:3], Sigma3[,])
}

for (j in 1:310) {
## modeling true CD4 via measurement error model
z.star[j] <-(alpha[l]+alyl},4],1]) +
(alpha[2]+al[y[j,4],2]) *y[,13] +
(alpha[3]+aly[},4],3]) *y[,13]  *y[j,13]+
delta2 *w2J[j]
w2[j] “"dnorm(0,1)I(0,)

y[j,11]"dnorm(z.star[j],tau2)

## Viral load response model associated with true CD4 covari
betaill[j] <-beta[l] +b[y[j,4],1]

betai2[j]] <-beta[2] +b[y[},4],2]

betai3[j]] <-beta[3] +b[y[},4],3]

betaij4[j] <-beta[4] +beta[5] * z.star]j]

+mu.not[1] =*Z[},2]+mu.not[2] * Z[],3]+b[y][},4],4]

dml[j] <-betail[j]-step(betai2[j]-betaij4[j]) * petai2[]]
dm2[j] <-betai3[j]-step(betai2[j]-betaij4[j]) * betaij4[j]
dm3[j] <-exp(dmi[j])

dm4[j] <-exp(dm2[j])

dmb5[j] <-dm3[j] +dm4j]

mulfj] <-log(dm5[j]) +delta * WIj]
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w[j]"dnorm(mul[j],tau)
y[j,10]"dnorm(mulj],tau) # SN

## Fitted values and residues
fit[j] <-mulj]
res[j] <-y[j,10]-fit[j]

}

## prior distributions of the hyperparameters:

# 1. coefficients

for(l in 1.5) {beta[l]"”dnorm(0, 1.0E-2)}
for(l in 1:2) {mu.not[l]]"dnorm(0, 1.0E-2)}
for(k in 1:3) {alphalk]"dnorm(0, 1.0E-2)}

# 2. Precision parameters
tau"dgamma(0.01, 0.01)
sigma.tau <- l/tau
tau2"dgamma(0.01, 0.01)
sigma.tau2 <- 1/tau2

# 3. Variance-cvoariance matrices
Sigma2[1:4,1:4]"dwish(R2][,],5)
v2[1:4,1:4] <-inverse(Sigmaz2[,])
Sigma3[1:3,1:3]"dwish(R3],],5)
v3[1:3,1:3] <-inverse(Sigma3[,])

# 4. skewness parameters
deltadnorm(0.0,0.01)
delta2”dnorm(0.0,0.01)

}
## Data
list(R2=structure(.Data=c(1,0,0,0,0,1,0,0,0,0,1,0,0 ,0,0,1),
.Dim=c(4,4)),R3=structure(.Data=c(1,0,0,0,1,0,0,0,1 ), .Dim=c(3,3)))

#initial values
list(beta=c(5, 4, 3.4, 4.0, 1.5, 4.2),
alpha=c(0,0,0),mu.not=c(0,0),delta=0.5,
delta2=0.5,tau=1, tau2=1,
Sigma2=structure(.Data=c(1.229, 0.043, -0.750, 0.710,
0.043, 0.090, 0.002, -0.013,
-0.750, -0.002,1.059, -0.214,
0.170, -0.013,-0.214, 0.120),
.Dim=c(4,4)),
Sigma3=structure(.data=c(.1,0, 0, 0,.1, 0, 0, 0,.1), .Dim =c(3,3)))
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Appendix C: WinBUGS Code for ST Bivariate Model-Equation (4.5) in Chapter 4

model
{
for (i in 1:N)
{ u.b[i] © dgamma(db,db)

# random effects for bivariate model
# correlation between Cd4 and CDS8 is
incorporated in random effects and model errors
for (k in 1:2)
{ b1[ik] <- 0
w.b1[i,k]"dnorm(b1[i,k], R.a[k,k]) 1(0,)
w.b[i,k]<-w.b1]i,K]/sqgrt(u.bli])

b1.b[i,k]<-deltal * (w.b[i,K]-mub)
}
for (k in 3:4)
{ bl[i,k] <- O
w.b1[i,k]"dnorm(b1[i,k], R.a[k,k]) 1(0,)
w.b[i,kK]<-w.b1]i,K]/sqgrt(u.bli])
b1.b[i,k]<-delta2 * (w.b[i,k]-mub)
}
for (k in 1:4)
{
for (I in 1:4)
{
Omegabli,k,l]<-Omegalk,l] * U.b[i]
}
}
b[i,1:4] "dmnorm(b1.b[i,1:4],0Omegabli,,])
}

for G in 1 : M)
{ # ST-Bivariate CD4 and CD8 LME model

betal[j] <-beta[l] +beta[2] *y[],2]+b[y[},4],1]

#y[j,2]=arm

beta?[j] <-beta[3] +beta[4] *y[j,2]+b[y[},4],2]

#y[j,4]=id

alphal[j] <-alpha[l] +alpha[2] *y[j,2]+b[yl[j,4],3]

#y[j,2]=arm

alpha2[j] <-alpha[3] +alphal4] *y[j,2]+bl[yl[},4],4]

#y[j,4]=id

cd[j,1] <-betal[j] + beta2][j] *y[j,6] +beta[5] *y[},17]
+beta[6] *y[},20] +beta[7] *y[j,18]

cd[j,2] <-alphall[j] + alpha2[j] *y[j,6] +alpha[5] *y[},17]

+alpha[6] *Y][j,20] +alpha[7] *y[},18]

111



# y[j,6]=scaled time (0,1); y[},17] =age;
# Vy[j,20]=baseline In(RNA); y][j,18]=eff
for (k in 1:2){

for (I in 1.2)
{

01]j,k,l]<-Omegallk,l] * U.b[y[j,4]]
}
}

ylj,15:16]"dmnorm(cd[j,1:2], O1[j,.])
# ylj,15]=CD4, yJj,16]=CD8

Y.pred[j,1:2]"dmnorm(cdlj,1:2], O1]j,,])

# Prior distributions of the hyperparameters
# (0) Degree of freedom
nub™ dexp(0.1) 1(2,)
nb<-nub+1
mub<- exp(loggam(0.5  *(nub-1.))-
loggam(0.5 +nub)) *sqrt(nub/3.14159)
db<-0.5 *nub

# (1) Coefficients
for (I in 1:7)
{ beta[l]"dnorm(0,0.01)
alpha[l]"dnorm(0,0.01)}

# (2). Variance-covariance matrice for model errors
Omegal[l:2,1:2] “dwish(R1][,],3)
v1[1:2,1:2] <- inverse(Omegall,])

# (3) Variance-covariance matrice for random effects
Omega[l:4,1:4] “dwish(R[,],5)
v[1:4,1:4] <- inverse(Omegal,])

# (4). Skewness parameters

deltal”"dnorm(0,0.01)
delta2”dnorm(0,0.01)

}
## End of model
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Appendix D: WinBUGS Code for ST Univariate Model for CD4 in Chapter 4

## Begin of model

model
{
for (i in 1:N)
{
u.b[i] © dgamma(db,db) # for random effects of bivariate mod el

# Random effects for bivariate model
for (k in 1:2)
{ bl[ik] <- 0
w.b1[i,k]"dnorm(b1[i,k], R.a[k,k]) 1(0,)
w.b[i,kK]<-w.b1]i,K]/sqgrt(u.bli])

b1.b[i,k]<-deltal * (w.b[i,k]-mub)
}
for (k in 1:2){
for (I in 1.2)
{
Omegabli,k,l]l<-Omegalk,l] * U.D[i]
}
}

b[i,1:2] "dmnorm(b1.b[i,1:2],Omegabli,,])
}
for G in1: M)
{ # Univariate LME model for CD4

betal[j] <-beta[l] +beta[2] *y[j,2]+b[y[},4],1]
#y[j,2]=arm
beta2?[j] <-beta[3] +beta[4] *y[j,2]+b[y[},4],2]
#y[j,4]=id
cd4[j] <-betal[j] + beta2[j] *y[j,6] +beta[5] *y[},17]

+beta[6] *y[j,20] +beta[7] *y[j,18]
# y[j,6]=scaled time (0,1); y[},17] =age;
# Vy[j,20]=baseline In(RNA); y[j,18]=eff

aud[j]<-u.bly[j,41] *taul
y[j,15] “dnorm(cd4[j], au4[j])

# vy[,j,15] =standarized CD4
Y.predcd4[j]"dnorm(cd4[j], au4[j])

# Fitted values and Residuals
fitcd4[j] <- cd4]j]
residcd4[j] <- y[j,15]-fitcd4[j]
sresidcd4[j] <- sqgrt(taul) * (y[j,15]-fitcd4[j]) *sqrt(1- 2/nub)
ssr.cd4[j] <- pow(residcd4[j],2)
# SR of CD4
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sssr.cd4[j] <- pow(sresidcd4][j],2)

# SSR of CD4
ssr.Pcd4[jl<-pow((Y.predcd4(j]-y[j,15]),2)
# squares of predicted value

}

SSR.CD4 <- sum(ssr.cd4]])
# sum of SR of CD4
SSSR.CD4 <- sum(sssr.cd4])
# sum of SSR of CD4
SSRP.CD4<- mean(ssr.Pcd4])
# EPD of CD4

## Prior distributions of the hyperparameters
# (0) Degree of freedom
nub™ dexp(0.1) 1(2,)
nb<-nub+1
mub<- exp(loggam(0.5  *(nub-1.))-loggam(0.5
db<-0.5 *nub

# (1) Coefficients
for (I in 1:7)
{beta[l]"dnorm(0,0.01)}

# (2). Precision parameters
taul"dgamma(0.01,0.01)
sigmal <- 1l/taul

# (3) Variance-covariance matrice
Omega[1:2,1:2] “dwish(R[,],5)
v[1:2,1:2] <- inverse(Omegal,])

# (4). Skewness parameters
deltal"dnorm(0,0.01)

}
## End of model

# Data
list(N=44, M=310,

R = structure(
.Data = c(1, 0.5,

0.5, 1),
.Dim = ¢(2,2)),
R.a= structure(
.Data=c(1,0,
0,1),
.Dim = ¢(2,2)))
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