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Abstract

The technological changes and educational expansion have created the heterogeneity

in the human species. Clearly, this heterogeneity generates a structure in the population

dynamics, namely: citizen, permanent resident, visitor, and etc. Furthermore, as the hetero-

geneity in the population increases, the human mobility between meta-populations patches

also increases. Depending on spatial scales, a meta-population patch can be decomposed

into sub-patches, for examples: homes, neighborhoods, towns, etc. The dynamics of human

mobility in a heterogeneous and scaled structured population is still its infancy level. We

develop and investigate (1) an algorithmic two scale human mobility dynamic model for a

meta-population. Moreover,the two scale human mobility dynamic model can be extended

to multi-scales by applying the algorithm. The subregions and regions are interlinked via

intra-and inter regional transport network systems. Under various types of growth order

assumptions on the intra and interregional residence times of the residents of a sub region,

different patterns of static behavior of the mobility process are studied. Furthermore, the

human mobility dynamic model is applied to a two-scale population dynamic exhibiting a

special real life human transportation network pattern. The static evolution of all categories

of residents of a given site ( homesite, visiting sites within the region, and visiting sites in

other regions) over continuous changes in the intra and inter-regional visiting times is also

analyzed.

The development of the two scale human mobility dynamic model provides a suitable

approach to undertake the study of the non-uniform global spread of emergent infectious

diseases of humans in a systematic and unified way. In view of this, we derive (2) a SIRS

stochastic epidemic dynamic process in a two scale structured population. By defining

a positively self invariant set for the dynamic model the stochastic asymptotic stability

vii



results of the disease free equilibrium are developed(2). Furthermore, the significance of

the stability results are illustrated in a simple real life scenario that is under controlled

quarantine disease strategy. In addition, the epidemic dynamic model (2) is applied to a

SIR influenza epidemic in a two scale population that is under the influence of a special real

life human mobility pattern. The simulated trajectories for the different states (susceptible,

Infective, Removal) with respect to current location in the two-scale population structure

are presented. The simulated findings reveal comparative evolution patterns for the different

states and current locations over time.

The SIRS stochastic epidemic dynamic model (2) is extended to a SIR delayed stochas-

tic epidemic dynamic model(3). The delay effects in the dynamic model (3) is temporary

and account for natural or infection acquired immunity conferred by the disease after dis-

ease recovery. Again, we justify the model validation as a prerequisite for the dynamic

modeling. Moreover, we also exhibit the real life scenario under controlled quarantine dis-

ease strategy.In addition, the developed delayed SIR dynamic model is also applied to SIR

influenza epidemic with temporary immunity to an influenza disease strain. The simulated

results reveal an oscillatory effect in the trajectory of the naturally immune population.

Moreover, the oscillations are more significant at the homesite.

We further extended the stochastic temporary delayed epidemic dynamic model (3) into

a stochastic delayed epidemic dynamic model with varying immunity period(4). The vary-

ing immunity period accounts for the varying time lengths of natural immunity against the

infectious agent exhibited within the naturally immune population. Obviously, the stochas-

tic dynamic model with varying immunity period generalizes the SIR temporary delayed

dynamic.

viii



1 A TWO-SCALE NETWORK DYNAMIC MODEL FOR HUMAN MOBILITY

PROCESS

1.1 Introduction

Over the centuries human societies across the globe have progressively established closer bilateral

relationships and contacts. With the recent advent of high technology in the area of communication,

transportation and basic services, multilateral interactions have been facilitated. As a result of this,

the world has become like a neighborhood. Furthermore, the national and binational problems have

become the multinational problems. This has generated a sense of cooperation and understanding

about the basic needs of human species in the global community. In short, the idea of globalization

is spreading in almost all aspects of the human species on the surface of earth.

The human mobility plays a very significant role in the globalization process[7]. Cultural

changes and understandings, flow of ideas about the current events, the occurrence and endemicity of

new infectious diseases of humans in new areas, the world events of disease pandemic, outsourcing

jobs and resources, economics and environmental conditions are a few byproducts of human mobil-

ity. In fact the 1918-19 influenza pandemic [1, 2, 3, 4] and the sociocultural changes in societies [6]

are a few illustrations exhibiting the movement of people.

Many studies regarding the mobility of the human species consider its impact in spreading in-

fectious diseases between communities as a result of the movement of people, goods, vectors and

animals across the globe. Different mathematical modeling techniques have been proposed to study

the mobility. The discrete time difference equations in continuous space [8, 9] is used to study the

global spread of influenza and the geographic spread of infectious diseases. The dynamics of dis-

eases between two patches and a finite number of patches resulting from human dispersal among

the patches are modeled by ordinary differential equations [42, 11, 12].
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The effects of human movements among a finite number of patches on the persistence of vector-born

diseases are described with ordinary differential equations[13].

Human mobility models are increasingly being used to evaluate and increase the efficiency,

effectiveness and feasibility of network systems for mobile wireless devices. Finding a realistic

human mobility model is a very important component of the study of network systems for mobile

wireless devices. Using real network data captured from a campus situation[15] and the movements

of pedestrians in downtown Osaka[14], models for mobile networks were designed. Also simulated

mobile network models have been studied in [16, 17, 18, 19].

A large population exhibits structure at many scales. The movement of people within and be-

tween these scales affects the population dynamics and demography. We define scale here as a

single level of interaction of people within the large population. For example, the population of

human species in/at the home level, in/at a town level, city level and so on. In fact, a population is

considered an n scales or n levels if there are n−1 levels nested in the nth level or scale of the hierar-

chy. Also, in these n scales population, movement can occur between spatially separated patches of

the same size or scale, beginning from patches of the (n−1)th scale down to patches of the lowest

level or lowest scale in the hierarchy. In addition, an n scales movement can be reduced to a single

scale if there is only one level movement between spatially separated patches of the same scale. For

example, a country level in a population can be considered to be five scales with four nested levels

namely: homes, neighborhoods, towns, counties and states in increasing order of nested scales. If

movement occurs in this five scales structure between patches of the lowest-level group (homes),

then we have a five scales movement. If the lowest scale is the neighborhoods, then we have a four

scales movement. If only one level is considered in the country structure made up of patches of the

same scale: homes only or neighborhoods only or towns only, then there is a single scale movement.

Many attempts have been made to describe human mobility in a metapopulation [8, 9, 42,

20].Several of these investigations characterize human movements on a single scale framework[8,

9, 42, 11, 12, 13, 16, 20, 22].A human mobility inter-geographical location model was designed to

study mobile network devices [16]. Some studies of the spread of diseases in a structured population

have considered the human mobility on multiple hierarchy of scales [21, 22, 23, 24]. Generally, we

can categorize all models describing human mobility into two types of mobility approaches, namely

the Lagrangian approach or the Euler approach in [13].
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The Lagrangian approach labels individuals by home site and current location. The Euler approach

only labels individuals by their current location.

In this work, we consider human mobility of a two scale population with a formulation that

allows the possibility of considering the two forms of movement of people: permanent displacement

(migration) and temporal displacement (visits) to patches within and between scales. The presented

model allows the possibility of simultaneous study of the intra and inter scale temporal displacement

of people in the structure. Hence, the model extends and generalizes the multiscale mobility models

[21, 22, 23, 24] in a systematic and unified way. This two scaled structure, formulation of the

mobility process provides an algorithmic framework to expand and extend the multiscales mobility

process of the human species. The byproduct of this multiscale human mobility model would play

a significant role in the study of mobile network wireless devices [16].

Of particular interest to our formulation is in the spirit of the single scale model by Sattenspiel

and Dietz [25] that incorporates the Lagrangian and Eulerian approaches. The same model was

used again by the authors to study the spread of the 1918-1919 influenza epidemic and later to

investigate the effects of quarantine on the spread of the epidemic among the Cree and Metis people

in the central Canadian Subarctic [26, 27]. By following the framework of the single scale model of

Sattenspiel and Dietz [25], we extend and expand their model into two scales, a local and a global

scale. The local scale is the sub-regional level consisting of a finite number of patches or subregions.

At this local level, there is a transport network of residents between the patches. The global scale is

the regional level consisting of a finite number of bigger patches or regions. Also at the global level,

there is a transport network of residents between the regions.

This chapter is organized as follows; in Section 1.2 we describe the general mobility process,

define our notations and state the assumptions of our model. We then present an explicit probabilistic

formulation of the travel rates of our mobility dynamic model in section 1.3. Using a compartmental

framework[28, 29], we derive a deterministic dynamical model for the mobility process described

by ordinary differential equations. In Section 1.4 we give a detailed analysis of the general static

mobility dynamic model structure. In addition, a description and the analysis of specific scenarios

of the general dynamic mobility process at its steady state are outlined. Moreover, we compare the

inter and intra regional visiting times on the distribution of the residents of a give region and draw a

few conclusions.
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1.2 Large-Scale Two Level Hierarchic Mobility Formulation Process

In this section, we introduce the idea of the mobility of human species in two level interconnected

hierarchic population. This study can be applied to any two level interconnected hierarchic system.

We define the following notations.

Definition 1.2.1

i. Let M be a positive integer, R be the set of real numbers, x̄= (x1,x2)∈R×R=R2 be arbitrary and

yr = (y1r ,y2r) ∈ R2 be fixed for all r ∈ {1,2, . . .M} = I(1,M), cr > 0. Also, let ||x̄||R2 =
√

x2
1 + x2

2.

The open ball in R2

B(yr,cr) =Cr = BR2(yr;cr) = {x̄ ∈ R2 : ||x̄− yr||R2 < cr}, (1.2.1)

where for each r,q ∈ I(1,M),r ̸= q, Cr ∩Cq = {}. Also, define C =
∪M

r=1Cr.

ii. Let r ∈ I(1,M), and let nr be a positive integer and let sr
i ∈ Cr, i ∈ {1,2, . . . ,nr} = I(1,nr). For

every i, j ∈ I(1,nr), i ̸= j, let ||sr
i − sr

j||R2 > 0. Also, let Crr(sr) = {sr
i ∈ Cr : i ∈ I(1,nr)} be a finite

collection of the nr distinct points in Cr. And C(s)= {sr
i ∈Cr : i∈ I(1,nr),r ∈ I(1,M)}=

∪M
r=1Crr(sr)

be the finite collection of all distinct points in C. The cardinality of C(s) is n = ∑M
r=1 nr.

Definition 1.2.2 Decomposition of Hierarchic Process: Let us consider a population that is dis-

tributed into M distinct spatial regions C1,C2, . . . ,CM . Each region Cr,r ∈ I(1,M) consists of nr

distinct sites sr
1,s

r
2, . . . ,s

r
nr

spatially distributed within the region. Residents of sites in a region can

either visit other sites within the region or visit sites in other regions.

Definition 1.2.3 Population Decomposition and Aggregation Process: Let Nrr
ii be the number of

residents of site sr
i , i ∈ I(1,nr) in region Cr,r ∈ I(1,M) who are actually present in their home site

at time t. Let Nrr
i j be the number of residents of sr

i , i, j ∈ I(1,nr) in region Cr,r ∈ I(1,M) visiting site

sr
j within the region. Let Nrq

il be the number of residents of sr
i , i ∈ I(1,nr) in region Cr,r,q ∈ I(1,M)

visiting site sq
l , l ∈ I(1,nq) in region Cq,q ̸= r. Let Nrr

i0 be the total number of residents of site sr
i

within Cr and visiting other regions, then

Nrr
i0 =

nr

∑
j=1

Nrr
i j +

M

∑
q ̸=r

nq

∑
l=1

Nrq
il , i ∈ I(1,nr). (1.2.2)
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Definition 1.2.4 Intra and Interregional Probabilistic visiting Rates: For each r ∈ I(1,M), resi-

dents of site sr
i in region Cr leave on trips to other sites within the region at a per capita rate σr

i .

The visitors then distribute themselves among the nr −1 sites sr
j, j ̸= i with the probabilistic rate νrr

i j .

Also, residents of site sr
i in region Cr leave on trips to other regions at a per capita rate γr

i . The res-

idents of site sr
j that leave on trips to other regions distribute themselves among M−1 destinations

with probability γrq
i0 to region Cq,q ̸= r. Collectively, the residents of sites in region Cr leave their

region to visit other sites in region Cq with a grand total rate γrq = ∑nr
i=1 γrq

i0 . The residents that leave

region Cr to visit sites in region Cq distribute themselves among nq destinations with probability γrq
0l

to site sq
l , l ∈ I(1,nq).

Definition 1.2.5 Inter regional Probabilistic Return Rates: For each r ∈ I(1,M), persons traveling

from site sr
i to sr

j in region Cr, have a per capita probabilistic return rate ρrr
i j . Also, for each q ∈

I(1,M),q ̸= r residents from all other regions that came to site sq
l , l ∈ I(1,nq) in region Cq,q ̸= r,

leave the site sq
l to return to their home region with rate ρq

l . This rate ρq
l further distributes among the

M−1 regions Cr,r ̸= q regions with probabilities ρrq
0l . Hence, the grand total per capita return rate

of the residents of region Cr that came to the nq sites in region Cq,q ̸= r is ρrq = ∑nq
l=1 ρrq

0l . This return

rate ρrq of residents of region Cr from region Cq then distribute among the nr sites sr
i , i ∈ I(1,nr) in

region Cr,r ̸= q with the probability rate ρrq
i0 .

1.3 Probabilistic Mobility Dynamic Model Formulation Process

Here we define and derive our probabilistic rates at which residents leave and return to their home

sites and regions. The probabilistic formulation of the return rates is similar to the visiting rates by

virtue of the symmetry in these travel patterns. Therefore, below we give a detailed derivation of the

visiting rates and refer this frame work for the derivation of the return rates.

In the following, we define the accessible domain of residents of site sr
i in region Cr, which is

composed of sites within the region Cr and also in other regions Cq, that are accessible to residents

of site sr
i . For this purpose, we introduce a few notions and definitions. For r ∈ I(1,M), i ∈ I(1,nr),

we define

Ir(1,M) = {q ∈ I(1,M) : r ̸= q,γrq > 0}, Ir(1,M)⊆ I(1,M). (1.3.3)

Ir
i (1,nr) = { j ∈ I(1,nr) : j ̸= i,νrr

i j > 0}, Ir
i (1,nr)⊆ I(1,nr). (1.3.4)
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Let q ∈ I(1,Mr),

Ir
i (1,nq) = {l ∈ I(1,nq) : γrq > 0, and γrq

0l > 0}, Ir
i (1,nq)⊆ I(1,nq). (1.3.5)

Definition 1.3.1 Inter and Intra Regional Accessible Domain: For each i∈ I(1,nr) and r ∈ I(1,M),

Crr(sr
i ) = {sr

j ∈Crr(sr) : j ∈ Ir
i (1,nr)} is the intra regional accessible domain of residents of site sr

i

in region Cr.

For each r ∈ I(1,M), i ∈ I(1,nr) and q ∈ Ir(1,M), Crq(sr
i ) = {sq

l ∈Cqq(sq) : l ∈ Ir
i (1,nq)} is the

inter regional accessible domain of residents of site sr
i in region Cr.

Given i ∈ I(1,nr), C(sr
i ) = {sq

j ∈C(s) : j ∈ Ir
i (1,nr),q ∈ Ir(1,M)}

=
∪

q∈Ir(1,M)

∪
j∈Ir

i (1,nr)Crq(sr
i ) = [Crr(sr

i )]∪ [
∪

q∈Ir(1,M)Crq(sr
i )], is the aggregate inter and intra re-

gional accessible domain of residents of site sr
i in region Cr.

Definition 1.3.2 Intra Regional Visiting Rates: Residents of site sr
i leave on trips to other sites sr

j

within the region at a per capita rate σrr
i j = σr

i νrr
i j , i, j ∈ I(1,nr), j ̸= i, where σr

i and νrr
i j are defined

in the previous section.

Indeed, let Nrr
i0 (Crr(sr

i )) be the total number of residents of site sr
i that leave the site to visit other

sites in Crr(sr
i ). Furthermore, let T rr

i,total be the total time during which the visiting to sites in Crr(sr
i )

takes place.

σr
i =

Nrr
i0 (Crr(sr

i ))

Nrr
i0 ∗T rr

i,total
(1.3.6)

Also, let Er
i be the event that residents leave their site sr

i to visit other sites in Crr(sr
i ), and let Err

i j be

the event that residents leave their site sr
i and visit site sr

j. Then the intra regional probability visiting

rates are given by

P(Er
i ) = σr

i , νrr
i j = P(Err

i j |Er
i ) =

Nrr
i j

Nrr
i0 (Crr(sr

i ))
,

σrr
i j = P(Err

i j ) = P(Err
i j |Er

i )P(E
r
i ) = σr

i ν
rr
i j . (1.3.7)

Definition 1.3.3 Inter Regional Visiting Rates: Residents of site sr
i in region Cr,r ∈ I(1,M) leave

on trips to other sites sq
l in other regions Cq,q ̸= r at a per capita rate γrq

il = γr
i γ

rq
i0 γrqγrq

0l , i∈ I(1,nr), l ∈

I(1,nq),r ̸= q.
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In fact, it can be justified as follows: for all q ∈ Ir(1,M), let Nrq
i0 (Crq(sr

i )) be the total number of

residents of site sr
i that leave the site to visit other sites in Crq(sr

i ) and let Fr
i be the event representing

this movement. In addition, we let T rq
i,total be the total time during which the visiting to sites in Crq(sr

i )

takes place. Then

P(Fr
i ) = γr

i =
∑t∈Ir(1,M) Nrt

i0(Crt(sr
i ))

Nrr
i0 ∗∑t∈Ir(1,M) T rt

i,total
. (1.3.8)

Now for each q ∈ I(1,M), and l ∈ Ir
i (1,nq), let Frq

i0 be the event that residents leave the site sr
i , and

go to region Cq (the specific destination in Cq is not taken into account at this point). Furthermore,

let Frq be the event that residents coming from region Cr, go to region Cq, and Frq
0l be the event that

the residents coming from Cr to region Cq, go to site sq
l in Cq (the site of origin in Cr is not taken

into account at this point). Then we can formulate the conditional probability rates as follows

P(Frq
i0 |F

r
i ) = γrq

i0 =
Nrq

i0 (Crq(sr
i0))

∑t∈Ir(1,M) Nrt
i0(Crt(sr

i ))
, (1.3.9)

P(Frq) = γrq =
nr

∑
i=1

P(Frq
i0 |F

r
i ) =

nr

∑
i=1

γrq
i0 . (1.3.10)

P(Frq
0l |F

rq) = γrq
0l =

Nrq
il

Nrq
i0 (Crq(sr

i ))
. (1.3.11)

Therefore given that Frq
il is the event that residents of site sr

i in region Cr travel to site sq
l in region

Cq, then Frq
il = Frq

i0 ∩Frq
0l , where Frq

i0 and Frq
0l are independent events. This is because sites of origin

in region Cr of residents from region Cr that travel to region Cq is not taken into account when

they arrive at site sq
i ; that is, Frq

0l is independent of sr
i . Also, the destination in other regions Cq, of

residents of site sr
i in region Cr is not taken into account when defining Frq

i0 .

γrq
il = P(Frq

il ) = P(Frq
i0 ∩Frq

0l ) = P(Frq
i0 )∗P(Frq

0l ) = P(Frq
i0 |F

r
i )P(F

r
i )∗P(Frq

0l |F
rq)P(Frq)

= γr
i γ

rq
i0 γrqγrq

0l . (1.3.12)

Definition 1.3.4 Intra Regional Return Rates: Persons traveling from site sr
i to sr

j within a region

Cr,r ∈ I(1,M) have a per capita return rate ρrr
i j , i, j ∈ I(1,nr), i ̸= j.
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Definition 1.3.5 Inter Regional Return Rates: Persons traveling from site sr
i in region Cr to site sq

l

in region Cq,q ̸= r have a per capita return rate ρrq
il = ρrq

0l ρ
q
l ρrq

i0 ρrq, i ∈ I(1,nr), l ∈ I(1,nq),r ̸= q.

The large two-scale hierarchic mobility structure is illustrated in Figure 1.1 and Figure 1.2.
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Figure 1.1: shows the intra-regional mobility network between nr sites in Cr,r ∈ I(1,M). Dotted

lines and curves represent connections with other sites in region Cr. Furthermore, the parameters in

the diagram are defined in Section 1.3.
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Figure 1.2: shows the interregional mobility network between M regions Cr,r ∈ I(1,M) and nr sites

that are present in each region Cr. Dotted lines and curves represent connections with other sites in

other regions. The parameters are defined in Section 1.3.

Using the above defined mobility rates, the travel pattern of individuals among all sites and all

regions leads to the following large-scale interconnected linear system of differential equations

dNrr
ii

dt
=

nr

∑
k=1

ρrr
ik Nrr

ik +
M

∑
q ̸=r

nq

∑
l=1

ρrq
il Nrq

il − (γr
i +σr

i )N
rr
ii , (1.3.13)

dNrr
i j

dt
= σrr

i j N
rr
ii −ρrr

i j N
rr
i j , i ̸= j, (1.3.14)

dNrq
il

dt
= γrq

il Nrr
ii −ρrq

il Nrq
il ,r ̸= q, (1.3.15)

i ∈ I(1,nr), l ∈ Ir
i (1,nq);r,q ∈ Ir(1,M),

where all the parameters in (1.3.13)-(1.3.15), are nonnegative and at time t = 0, Nrr
ii (0) = Nrr

i0 ,

Nrr
i j (0) = 0 and Nrq

il (0) = 0. And Nrr
ii , Nrr

i j and Nrq
il i, j ∈ Ir

i (1,nr), l ∈ Ir
i (1,nq),r,q ∈ I(1,M) are as

defined before.
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Remark 1.3.1 It is important to note that residents of every site sr
i , i ∈ I(1,nr) can only reach out to

other sites in their accessible domain C(sr
i ). Thus the summations in (1.3.13) reduce to summation

over all q ∈ Ir(1,M), k ∈ Ir
i (1,nr) and l ∈ Ir

i (1,nq). Keeping this in mind, for easy presentation we

keep the current expressions.

In the following we analyze the steady states of the mobility process determined by the system of

differential equations. The analysis of this section also gives the equilibrium states of a general

mobility system whose sites and regions are connected. In real life many mobility patterns that

occur frequently, are specific scenarios of this general mobility process. In the following we shall

consider a few of these cases.

We denote the equilibrium states of Nrr
ii , Nrr

i j and Nrq
il by N∗rr

ii , N∗rr
i j and N∗rq

il , respectively. Hence

at the equilibrium, we have dNrr
ii

dt = 0,
dNrr

i j
dt = 0 and dNrq

il
dt = 0. Therefore, setting (1.3.13), (1.3.14)

and (1.3.15) to zero, one can see that

N∗rr
i j =

σrr
i j N

∗rr
ii

ρrr
i j

, i ̸= j, (1.3.16)

N∗rq
il =

γrq
il N∗rr

ii

ρrq
il

,r ̸= q, (1.3.17)

i, j ∈ I(1,nr), l ∈ I(1,nq);r,q ∈ I(1,M).

We rewrite (1.2.2) in terms of steady states, then we have

N∗rr
i0 = N∗rr

ii +
nr

∑
k ̸=i

N∗rr
ik +

M

∑
q̸=r

nq

∑
l=1

N∗rq
il , i ∈ I(1,nr). (1.3.18)

Now substituting (1.3.16) and (1.3.17) into (1.3.18) and factorizing N∗rr
ii , we have

N∗rr
i0 = N∗rr

ii
(
1+

nr

∑
k ̸=i

σrr
ik

ρrr
ik
+

M

∑
q̸=r

nq

∑
l=1

γrq
il

ρrq
il

)
, i ∈ I(1,nr). (1.3.19)

From (1.3.19), we have

N∗rr
ii = N∗rr

i0
(
1+

nr

∑
k ̸=i

σrr
ik

ρrr
ik
+

M

∑
q ̸=r

nq

∑
l=1

γrq
il

ρrq
il

)−1
, i ∈ I(1,nr). (1.3.20)
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Now substituting (1.3.20) into (1.3.16) and (1.3.17), N∗rr
i j and N∗rq

il are represented by

N∗rr
i j = N∗rr

i0

σrr
i j

ρrr
i j(

1+∑nr
k ̸=i

σrr
ik

ρrr
ik
+∑M

q ̸=r ∑nq
l=1

γrq
il

ρrq
il

) , j ∈ Ir
i (1,nr), and N∗rr

i j = 0 otherwise, (1.3.21)

and

N∗rq
il = N∗rr

i0

γrq
il

ρrq
il(

1+∑nr
k ̸=i

σrr
ik

ρrr
ik
+∑M

q ̸=r ∑nq
l=1

γrq
il

ρrq
il

) , l ∈ Ir
i (1,nq) and N∗rq

il = 0, otherwise. (1.3.22)

Let us denote

S∗rr
ii =

(
1+

nr

∑
k ̸=i

σrr
ik

ρrr
ik
+

M

∑
q̸=r

nq

∑
l=1

γrq
il

ρrq
il

)−1
, i ∈ I(1,nr), (1.3.23)

U∗rr
i j =

σrr
i j

ρrr
i j(

1+∑nr
k ̸=i

σrr
ik

ρrr
ik
+∑M

q ̸=r ∑nq
l=1

γrq
il

ρrq
il

) , j ∈ Ir
i (1,nr), and U∗rr

i j = 0, otherwise, (1.3.24)

V ∗rq
il =

γrq
i j

ρrq
il(

1+∑nr
k ̸=i

σrr
ik

ρrr
ik
+∑M

q̸=r ∑nq
l=1

γrq
il

ρrq
il

) , l ∈ Ir
i (1,nq), and V ∗rq

il = 0, otherwise. (1.3.25)

The quantities in (1.3.20), (1.3.21) and (1.3.22) represent the equilibrium sizes of residents of site

sr
i , present at their home site, visiting the jth site sr

j, j ̸= i in their intra regional accessible domain

Crr(sr
i ), and also visiting the lth site sq

l in their inter regional accessible domain Crq(sr
i ), respectively.

Thus it follows that the quantities in (1.3.23), (1.3.24) and (1.3.25) represent the fraction of the

equilibrium size of residents in the different categories present at the corresponding locations.

We further observe that for each r,q ∈ I(1,M) and r ̸= q, persons traveling from site sr
i to sr

j

have a per capital return rate ρrr
i j , and persons traveling from site sr

i in region Cr to site sq
l in region

Cq,q ̸= r have a per capita return rate ρrq
il . The average length of time spent visiting site sr

j and site

sq
l is denoted by τrr

i j and τrq
il , respectively, where

τrr
i j =

1
ρrr

i j
, j ∈ Ir

i (1,nr),r ∈ I(1,M) and τrr
i j = 0 otherwise. (1.3.26)

τrq
il =

1
ρrq

il
, l ∈ Ir

i (1,nq),q ∈ Ir(1,M), and τrq
il = 0 otherwise, (1.3.27)
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In addition, given r ∈ I(1,M) and i ∈ I(1,nr), for every s, t ∈ Ir(1,M), we let

Krst
imn ≡ Krst

imn(τ
rs
im,τ

rt
in) =

τrs
im

τrt
in
,m ∈ Ir

i (1,ns),n ∈ Ir
i (1,nt) (1.3.28)

be the ratio of visiting times of residents of the ith site sr
i in region Cr visiting the mth and nth sites

in region Cs and Ct respectively, where m ̸= n, and m,n ̸= i whenever s = t = r. Now, substituting

(1.3.26), (1.3.27) and (1.3.28) into (1.3.23), (1.3.24) and (1.3.25) and further simplifying we have

the following

S∗rr
ii =

1(
1+∑nr

k ̸=i σrr
ik τrr

ik +∑M
q ̸=r ∑nq

a=1 γrq
ia τrq

ia

) , i ∈ I(1,nr), (1.3.29)

U∗rr
i j =

σrr
i j( 1

τrr
i j
+∑nr

k ̸=i σrr
ik Krrr

ik j +∑M
q̸=r ∑nq

a=1 γrq
ia Krqr

ia j

) , j ∈ Ir
i (1,nr), (1.3.30)

and

V ∗rq
il =

γrq
il( 1

τrq
il
+∑nr

k ̸=i σrr
ik Krrq

ikl +∑M
q ̸=r ∑nq

a=1 γrq
ia Krqq

ial

) , l ∈ Ir
i (1,nq). (1.3.31)

We define for each i ∈ I(1,nr),r ∈ I(1,M),

τrr
i,min = min

1≤ j≤nr
τrr

i j , (1.3.32)

τrq
i,min = min

1≤l≤nq
τrq

il ,q ∈ Ir(1,M), (1.3.33)

τr,min
i,min = min

q ̸=r
τrq

i,min, (1.3.34)

τrr
i,max = max

1≤ j≤nr
τrr

i j (1.3.35)

τrq
i,max = max

1≤l≤nq
τrq

il ,q ∈ Ir(1,M) (1.3.36)

τr,max
i,max = max

q̸=r
τrq

i,max, (1.3.37)
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1.4 Special Mobility Patterns

The special mobility patterns are characterized by the qualitative behavior of the mobility rates of

the large-scale hierarchic regional mobility dynamics process. In order to understand the mobility

patterns we need to classify the qualitative behavior of the mobility rates. We define the following.

Definition 1.4.1 Given two real valued functions f and g,

1. if ∃k > 0, and n0, such that ∀n > n0, | f (n)| ≤ k|g(n)|, we say that f is big-o of g, and is denoted

by f (n) = 0(g(n)) or f = 0(g). If f (n)→ 0, as n → ∞, that is, f turns in the limit to a zero function

for sufficiently large n, we write f = 0(ε) or f (n) = 0(1
n), for ε > 0. If f (n) is a constant function

as n → ∞, we write f (n) = 0(1).

2. if ∃k1,k2 > 0, and n0, such that ∀n > n0,k1|g(n)| ≤ | f (n)| ≤ k2|g(n)|, we say that f is big-theta of

g, and is denoted by f (n) = θ(g(n)). If f (n)→ ∞ as n → ∞, we write f (n) = θ(n) or f = θ(1
ε ), for

ε > 0.

To classify the qualitative behavior of the mobility rates we make the following assumptions about

the mobility rate functions. Assume that for fixed r ∈ I(1,M) and i ∈ I(1,nr), and for any q ∈

Ir(1,M), j ∈ Ir
i (1,nr) and l ∈ Ir

i (1,nq), the inter and intra regional visiting times of residents of the

ith site visiting the jth site within the rth region, and the ith site visiting lth site in the qth region satisfy

Hypothesis 1.4.1 Using Definition 1.4.1, we assume that

H1: τrr
i j → 0 and τrq

il < ∞ ⇐⇒ τrr
i j = 0(ε) and τrq

il = 0(1);

H2: τrq
il → 0 and τrr

i j < ∞ ⇐⇒ τrq
il = 0(ε) and τrr

i j = 0(1);

H3: τrr
i j < ∞ and τrq

il < ∞ ⇐⇒ τrq
il = 0(1) and τrr

i j = 0(1);

H4: τrr
i j → 0 and τrq

il → 0 ⇐⇒ τrq
il = 0(ε) and τrr

i j = 0(ε);

H5: τrr
i j → ∞ and τrq

il → ∞ ⇐⇒ τrq
il = θ(1

ε ) and τrr
i j = θ(1

ε ), for ε > 0.

The interpretation of H1 is that residents of site sr
i that visit sites in their intra regional accessible

domain Crr(sr
i ), tend to spend infinitesimally small time, while residents of the same site that visit

sites in their inter regional accessible domain Crq(sr
i ), tend to spend a finite amount of time. The

interpretation of H2 and H3 is similar to H1. On the other hand, H4 means that residents of site sr
i

that visit sites in their inter and intra regional accessible domain C(sr
i ), tend to spend infinitesimally
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small time. Finally, H5 means that residents of site sr
i that visit sites in their inter and intra regional

accessible domain C(sr
i ), tend to stay permanently. The following result is a characterization of the

steady states as intra regional visiting time approaches zero and the inter regional visiting time is

finite.

Theorem 1.4.1 If H1 holds, then the steady state of the mobility system satisfies

N∗rr
ii → Nrr

i
1(

1+∑M
q̸=r ∑nq

a=1 γrq
ia τrq

ia

) , N∗rr
i j → 0,

N∗rq
il → Nrr

i
γrq

il( 1
τrq

il
+∑M

q ̸=r ∑nq
a=1 γrq

ia Krqq
ial

) .
(1.4.38)

for j ∈ Ir
i (1,nr),q ∈ Ir(1,M), l ∈ Ir

i (1,nq).

Proof: Letting τrr
i j = 0(ε) and τrq

il = 0(1) in (1.3.29), (1.3.30) and (1.3.31), we have

S∗rr
ii → 1(

1+∑M
q̸=r ∑nq

a=1 γrq
ia τrq

ia

) , U∗rr
i j → 0

V ∗rq
il →

γrq
il( 1

τrq
il
+∑M

q ̸=r ∑nq
a=1 γrq

ia Krqq
ial

) .
(1.4.39)

for l ∈ Ir
i (1,nq). Then substituting (1.4.39) into (1.3.20), (1.3.21) and (1.3.22) gives us (1.4.38).

Remark 1.4.1 Theorem 1.4.1 suggests that a fraction of residents tend to be life long residents of

their home site and the remaining fraction of residents tend to reside a finite time to the sites in the

inter regional accessible domain Crq(sr
i ). This situation is illustrated in Figure 1.3.

14



Figure 1.3: Shows that residents of site sr
i are only present at their home site and also at those sites

sq
l that are in their interregional accessible domain Crq(sr

i ). The arrows represent a transport network

between any two sites and regions. Furthermore, the dotted lines and arrows indicate a connection

with other accessible sites in other regions.

In the next theorem we characterize the steady states when there is finite intra regional and short

inter regional visiting time.

Theorem 1.4.2 If H2 holds, then the steady state of the mobility system satisfies

N∗rr
ii → Nrr

i
1(

1+∑nr
k ̸=i σrr

ik τrr
ik

) ,N∗rq
il → 0 and N∗rr

i j → Nrr
i

σrr
i j( 1

τrr
i j
+∑nr

k ̸=i σrr
ik Krrr

ik j

) , (1.4.40)

for j ∈ Ir
i (1,nr(sr

i )), l ∈ Ir
i (1,nq(sr

i )).

Proof: Similar to Theorem 1.4.2.

Remark 1.4.2 Theorem 1.4.2 suggest that a fraction of residents tend to be life long residents of the

home sites and the remaining fraction of the residents tend to stay for a finite time to sites in their

intra regional accessible domain Crr(sr
i ). This special pattern is illustrated in Figure 1.4.
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Figure 1.4: shows that residents of site sr
i are present at their home site, at sitesin their intra and inter-

regional accessible domain C(sr
i ) whenever the average interregional visiting times are sufficiently

small. The arrows represent a transport network between any two sites and regions. Furthermore,

as average interregional visiting times tends to zero, (a) the solid lines represent the intraregional

mobility of the equilibrium states of the residents which approaches to finite fractions, and (b) the

dotted lines indicate interregional mobility of the equilibrium states of residents that approaches to

arbitrarily small fractions.

We now characterize the steady states of the system when the inter and intra regional visiting times

are constant and the same.

Theorem 1.4.3 If H3 holds and τrr
i j = τrq

il = τr
i ,∃τ > 0, then the steady states of the mobility system

satisfy

N∗rr
ii → Nrr

i
1(

1+ τσr
i + τγr

i γ
rq
i0

) , N∗rr
i j → Nrr

i
σrr

i j τ(
1+ τσr

i + τγr
i γ

rq
i0

) ,
N∗rq

il → Nrr
i

γrq
il(

1+ τσr
i + τγr

i γ
rq
i0

) (1.4.41)

for j ∈ Ir
i (1,nr),q ∈ Ir(1,M), l ∈ Ir

i (1,nq).

Proof: Letting τrr
i j = τrq

il = τr
i in (1.3.29), (1.3.30) and (1.3.31) and remembering that σrr

i j = σr
i νrr

i j ,

γrq
il = γr

i γ
rq
i0 γrqγrq

0l , j ∈ Ir
i (1,nr), l ∈ Ir

i (1,nq), are probabilities with sum equal one, that is ∑nr
k ̸=i νrr

ik = 1

and ∑M
q̸=r ∑nq

l=1 γrqγrq
0l = 1. Thus we have the following reduced formula

S∗rr
ii =

1(
1+ τr

i σr
i + τr

i γr
i γ

rq
i0

) , U∗rr
i j =

σrr
i j τr

i(
1+ τr

i σr
i + τr

i γr
i γ

rq
i0

) ,
V ∗rq

il =
γrq

il(
1+ τr

i σr
i + τr

i γr
i γ

rq
i0

) . (1.4.42)
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for j ∈ Ir
i (1,nr), l ∈ Ir

i (1,nq),q ∈ Ir
i (1,M). Hence substituting (1.4.42) into (1.3.20), (1.3.21) and

(1.3.22) gives (1.4.41).

Remark 1.4.3 Under the assumption of Theorem 1.4.3, almost all the residents of any site sr
i , tend

to be permanent residents at their home site sr
i , and at all site in their intra and inter regional

accessible domain C(sr
i ), for finite time. Also, the fraction of the residents that reside a finite time at

a given site in C(sr
i ), is primarily determined by the probabilistic rate at which the residents leave

their original home site sr
i , to visit other sites in this domain C(sr

i ). This special mobility pattern is

illustrated in Figure 1.5.
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Figure 1.5: Shows that residents of site sr
i are present at all sites in their inter and intra regional ac-

cessible domain C(sr
i ). The arrows represent a transport network between any two sites and regions.

The dotted lines and arrows indicate connection with other sites in other regions.

We now consider the case when intra and inter regional visiting times are decreasing at the same

rate.

17



Theorem 1.4.4 If H4 holds, then the steady states of the mobility system satisfies

N∗rr
ii → Nrr

i , N∗rr
i j → 0 and N∗rq

il → 0. (1.4.43)

for j ∈ Ir
i (1,nr),q ∈ Ir(1,M), l ∈ Ir

i (1,nq).

Proof: Letting τrr
i j → 0 and τrq

il → 0, in (1.3.29), (1.3.30) and (1.3.31). This leads us to

S∗rr
ii → 1, U∗rr

i j → 0 and V ∗rq
il → 0, l ∈ Ir

i (1,nq), j ∈ Ir
i (1,nr). (1.4.44)

Substituting (1.4.44) into (1.3.20), (1.3.21) and (1.3.22) gives us (1.4.43).

Remark 1.4.4 Theorem 1.4.4 suggests the residents of site sr
i are isolated from all other sites in

their intra and inter regional accessible domain C(sr
i ). That is, all the residents of site sr

i tend to be

life long stationary residents at their home site. However this does not mean site sr
i is isolated from

visitors from other sites in C(sr
i ). This special case is illustrated in Figure 1.6.
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Figure 1.6: Shows that residents of site sr
i are present only at their home site sr

i . Hence they isolate

every site from their inter and intra reginal accessible domain C(sr
i ). Site sr

i is a ’sink’ in the context

of the compartmental system. The arrows represent a transport network between any two sites and

regions. Furthermore, the dotted lines and arrows indicate connection with other sites in regions.

We now characterize the steady states when the intra and inter regional visiting times grow unbound-

edly at the same rate.
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Theorem 1.4.5 Let H5 holds. Let τrq
il = θ( f0),τrr

i j = θ(g0) where f0, and g0 are positive real valued

functions satisfy f0,g0 = θ(1
ε ). For j ∈ Ir

i (1,nr),q ∈ Ir(1,M), l ∈ Ir
i (1,nq).

1. If θ( f0) = θ(g0), then the steady state of the mobility system satisfies

N∗rr
ii → 0, N∗rr

i j → N∗rr
i

σrr
i j(

∑nr
k ̸=i σrr

ik Krrr
ik j +∑M

q ̸=r ∑nq
a=1 γrq

ia Krqr
ia j

) ,
and N∗rq

il → N∗rr
i

γrq
il(

∑nr
k ̸=i σrr

ik Krrq
ikl +∑M

q ̸=r ∑nq
a=1 γrq

ia Krqq
ial

) . (1.4.45)

2. If θ( f0)> θ(g0), then

N∗rr
ii → 0, N∗rr

i j → 0, N∗rq
il → N∗rr

i
γrq

il(
∑M

q̸=r ∑nq
a=1 γrq

ia Krqq
ial

) . (1.4.46)

3. If θ( f0)< θ(g0), then

N∗rr
ii → 0, N∗rr

i j → N∗rr
i

σrr
i j(

∑nr
k ̸=i σrr

ik Krrr
ik j

) , N∗rq
il → 0. (1.4.47)

Proof: For j ∈ Ir
i (1,nr),q ∈ Ir(1,M), l ∈ Ir

i (1,nq), θ(Krqr
il j ) =

θ( f0)
θ(g0)

. If θ( f0) = θ(g0) then Krqr
il j = 0(1)

and Krrq
i jl = 0(1) as τrr

i j → ∞ and τrq
il → ∞. If θ( f0)> θ(g0) then Krqr

ia j → ∞ and Krrq
i jl → 0 as τrr

i j → ∞

and τrq
il → ∞. And if If θ( f0) < θ(g0) then Krqr

il j → 0 and Krrq
i jl → ∞ as τrr

i j → ∞ and τrq
il → ∞. By

substituting each of these conditions into (1.3.29), (1.3.30) and (1.3.31), and then substituting the

results into (1.3.20), (1.3.21) and (1.3.22), we obtain (1.4.45), (1.4.46) and (1.4.47) respectively.

Remark 1.4.5 Under the assumption of Theorem 1.4.5, the condition θ( f0) = θ(g0) states that τrq
il

and τrr
i j are increasing at the same order. The significance of this relationship is that for sufficiently

large values of the intra and interregional visiting times, all the residents of site sr
i leave their homes

and emigrate to sites in their intra and interregional accessible domain C(sr
i ). Therefore at the

steady state, the original home site of the residents is occupied by visitors from other sites in Cr and

Cq. This special pattern is illustrated in Figure 1.7.

Also, the results under the condition θ( f0) > θ(g0) signifies that for sufficiently large values of

intra and interregional visiting time, the residents of sr
i emigrate from their home region Cr, and

become permanent residents at sites in their interregional accessible domain Crq(sr
i ).
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Hence their original home site sr
i is occupied by residents from other sites in Cr and Cq. This special

pattern is illustrated in Figure 1.8.

The results under the condition θ( f0) < θ(g0) now signifies that for sufficiently large values of

intra and interregional visiting time, the residents of site sr
i now leave their home site sr

i and become

permanent residents only at sites in their intra regional accessible domain Crr(sr
i ). This special

pattern is illustrated in Figure 1.9.
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Figure 1.7: Shows that residents of site sr
i are present only at sites sr

j in their intra regional accessible

domain and at sites sr
l in their interregional accessible domain Crq(sr

i ). The arrows represent a

transport network between any two sites and regions. Moreover dotted arrows indicate connections

with other sites in other regions.
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Figure 1.8: Shows that residents of site sr
i are present only at sites sr

l in their interregional accessible

domain Crq(sr
i ). The arrows represent a transport network between any two sites and regions. In

addition, the dotted lines and arrows indicate a connection with other sites in other regions.
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Figure 1.9: Shows that residents of site sr
i are present only at sites sr

j in their intra-regional acces-

sible domain Crq(sr
i ). The arrows represent a transport network between any two sites and regions.

Furthermore, the dotted lines and arrows indicate a connection with other sites in other regions.

Assuming the mobility rate functions change at different rates, we now characterize the steady states

of the system. Consider the following assumption.

Assumption 1.4.1 Given ε > 0, and for all j ∈ Ir
i (1,nr), l ∈ Ir

i (1,nq), let τrr
i j and τrq

il be related as

follows,

τrr
i j = 0( f (τrr

i,min)), τrq
i,min = 0(h(τrr

i,max)), τrq
il = 0(g(τrq

i,min),

whenever τrr
i,max = 0(1) and τrq

i,max = 0(1), and

τrr
i j = θ( f (τrr

i,min)), τrq
i,min = θ(h(τrr

i,max)), τrq
il = θ(g(τrq

i,min), (1.4.48)

whenever τrr
i,min = θ(

1
ε
) and τrq

i,min = θ(
1
ε
),

where h has the explicit form

h :]0,∞[7→ [0,∞[,x 7→ h(x) = xc,c > 0, and f ,g :]0,∞[7→ [0,∞[ (1.4.49)

are arbitrary positive real valued functions.

For the sake of easy reference and simplicity, we state the following hypotheses.

Hypothesis 1.4.2 Assume that τrr
i j and τrq

il satisfy Assumption 1.4.1. Further assume that

H6: 0 < τrr
i,max < 1 and 0 < c < 1;

H7: 0 < τrr
i,max < 1, and c ≥ 1;
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H8: τrr
i,max ≥ 1, and 0 < c < 1;

H9: τrr
i,max ≥ 1, and c ≥ 1.

In the following theorems we describe the steady states of the mobility system under these hypothe-

ses.

Theorem 1.4.6 Suppose H6 holds and for any given ε > 0.

1. If τrr
i,max → 0+ and c → 0+, then for all j ∈ Ir

i (1,nr), l ∈ Ir
i (1,nq), τrr

i j = 0(ε) and τrq
il = 0(1)

and τrr
i j ≤ τrq

il .

Moreover, the steady state of the mobility system satisfies

N∗rr
ii → N∗rr

i
1(

1+∑M
q ̸=r ∑nq

a=1 γrq
ia τrq

ia

) , N∗rr
i j → 0

and N∗rq
il → N∗rr

i
γrq

il( 1
τrq

il
+∑M

q ̸=r ∑nq
a=1 γrq

ia Krqq
ial

) . (1.4.50)

2. If τrr
i,max → 0+, and c → 1−, then τrr

i j = 0(ε) for all j ∈ Ir
i (1,nr), and there exists j0 ∈ Ir

i (1,nr)

and l0 ∈ Ir
i (1,nq) such that τrq

il0 → 0+ slower than τrr
i j0 → 0+. Moreover,

i. the steady state of the mobility system satisfies

N∗rr
ii → N∗rr

i
1(

1+∑M
q̸=r ∑nq

a=1 γrq
ia τrq

ia

) , N∗rr
i j → 0 and

N∗rq
il0 → 0, N∗rq

il → N∗rr
i

γrq
il( 1

τrq
il
+∑M

q̸=r ∑nq
a=1 γrq

ia Krqq
ial

) , l ̸= l0, (1.4.51)

whenever τrq
il = 0(1)

ii. the steady state is given by Theorem1.4.4, whenever τrq
il = 0(ε), for all l ∈ Ir

i (1,nq).

3. If τrr
i,max → 1− and c → 0+, then for all j ∈ Ir

i (1,nr), l ∈ Ir
i (1,nq), τrq

il = 0(1). Also, there exists

j1 ∈ Ir
i (1,nr) such that τrr

i j1 = 0(1). Furthermore,

i. if τrr
i j = 0(1) for all j ∈ Ir

i (1,nr) then the steady state of the mobility system is given by

(1.3.20), (1.3.21) and (1.3.22),
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ii. if τrr
i j = 0(ε), for all j ̸= j1, j, j1 ∈ Ir

i (1,nr), then the steady state of the mobility system

satisfies

N∗rr
ii → Nrr

i
1(

1+σrr
i j1τrr

i j1 +∑M
q̸=r ∑nq

a=1 γrq
ia τrq

ia

) ,N∗rr
i j → 0, j ̸= j1,

N∗rr
i j1 → N∗rr

i
σrr

i j1( 1
τrr

i j1
+σrr

i j1 +∑M
q ̸=r ∑nq

a=1 γrq
ia Krqr

ia j1

) , and

N∗rq
il → N∗rr

i
γrq

il( 1
τrq

il
+σrr

i j1Krrq
i j1l +∑M

q̸=r ∑nq
a=1 γrq

ia Krqq
ial

) . (1.4.52)

4. If τrr
i,max → 1− and c → 1−, then for all j ∈ Ir

i (1,nr), l ∈ Ir
i (1,nq), τrq

il = 0(1). Also, there exists

j2 ∈ Ir
i (1,nr) such that τrr

i j2 = 0(1). In addition,

i. if τrr
i j = 0(1) for all j ∈ Ir

i (1,nr) then the steady states of the mobility system is given by

(1.3.20), (1.3.21) and (1.3.22).

ii. if τrr
i j = 0(ε), for all j ̸= j2, j, j2 ∈ Ir

i (1,nr), then the steady state of the mobility system

is given by (1.4.52).

Proof: Under H6, we have

τrq
i,min = 0((τrr

i,max)
c),r ̸= q. (1.4.53)

1. If τrr
i,max → 0+ and c→ 0+, then it follows that (τrr

i,max)
c → 1−. Thus from (1.4.48) and (1.4.53),

for all j ∈ Ir
i (1,nr), l ∈ Ir

i (1,nq), 0 ≤ τrr
i j ≤ τrr

i,max → 0+, we obtain

τrq
i,min = 0(1),τrq

il = 0(g(τrq
i,min)) = 0(1) and τrr

i j = 0(ε). (1.4.54)

Also, τrq
i,min = 0(1)⇒ τrq

il > 0, for all l ∈ Ir
i (1,nq). Hence τrq

il ≥ τrr
i j .

Finally, from (1.4.54), (1.3.29), (1.3.30) and (1.3.31), (1.3.20), (1.3.21) and (1.3.22), we get

(1.4.50).

2. If τrr
i,max → 0+ and c → 1−, then from (1.4.53), (τrr

i,max)
c → 0+ at a slower rate. Hence, take

τrq
i,min = τrq

il0 and τrr
i,max = τrr

i j0 , and the existence of l0 and j0 is verified. Now, from τrr
i j = 0(ε) and

τrq
il = 0(1), l ̸= l0, the proof of the steady state follows from Theorem 1.4.6(1). From τrr

i j = 0(ε)

and τrq
il = 0(ε), for all l ∈ Ir

i (1,nq), the proof of the steady state follows from Theorem 1.4.4.
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3. If τrr
i,max → 1− and c → 1+, then it suffices to note τrr

i j1 = τrr
i,max, for some j1 ∈ Ir

i (1,nr), and

this proves the existence of j1. The rest of the proof follows from part (1) and (2) above.

4. The proof of Theorem 1.4.6(4) follow from part (1), (2) and (3) above.

Remark 1.4.6 The interpretation of Theorem 1.4.6(1) is similar to Theorem 1.4.1. Theorem 1.4.6(2)

signifies that, whenever all the residents of a given site sr
i that travel to sites within their intra

regional accessible domain Crr(sr
i ) spend infinitesimally small amount of time visiting the sites, and

there is also one site sq
l0 in the inter regional accessible domain Crq(sr

i ), where all the residents of

site sr
i that travel to this site also spend infinitesimally small amount of time visiting that site, that

is, a fraction of the residents of sr
i would remain permanent residents of their home site sr

i , and a

fraction would relocate to all sites sq
l ̸= sq

l0 in their interregional accessible domain Crq(sr
i ), and

spend a finite amount of time visiting these sites.

Theorem 1.4.6(3) also states that all the residents of site sr
i that travel to sites in their interre-

gional accessible domain Crq(sr
i ), spend a finite amount of time visiting the sites, and there is a site

sr
j1 in Crr(sr

i ), where the residents of site sr
i can spend a finite amount of time visiting. From Assump-

tion in Theorem 1.4.6(3)(ii) the residents of site sr
i that travel in the intra regional accessible domain

Crr(sr
i ) spend infinitesimally small amount of time visiting, this implies that the distribution of the

residents of site sr
i , (i) a fraction would remain permanent residents at their home site sr

i , (ii) a frac-

tion would migrate to site sr
j1 in Crr(sr

i ), and (iii) the remaining fraction would migrate to all sites in

Crq(sr
i ) and become residents of those sites for a finite amount of time. Under Theorem 1.4.6(3)(i) a

fraction the residents of site sr
i would remain permanent residents at home site sr

i and the remaining

fraction would distribute among the visiting sites for a finite visiting time. Theorem 1.4.6(4) has

similar interpretations to Theorem 1.4.6(2).

The conditions on c in Theorem 1.4.6(1) and Theorem 1.4.6(2) indicate the existence of a critical

value for c∈]0,1[ denoted by c0. For 0< c< c0, the steady state is given by (1.4.50), and for c0 < c<

1, the steady state is given by(1.4.51). Similar conclusion with regards to Theorem 1.4.6(3)&(4) can

be drawn about a critical value for c∈]0,1[ denoted by c1. Moreover, in the case of Theorem 1.4.6(3)

we have 0 < c < c1, and the steady state is given by (1.4.52). In the case of Theorem 1.4.6(4) we

have c1 < c < 1, and the steady state is given by Theorem 1.4.6(4).

The conditions on τrr
i,max in Theorem 1.4.6 also indicate the existence of a critical value for

τrr
i,max ∈]0,1[ denoted by τrr

i,max0
, such that for 0 < τrr

i,max < τrr
i,max0

, whenever 0 < c < c0, the steady
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state is given by (1.4.50), and whenever c0 < c < 1, the steady state is given by(1.4.51). Also, for

τrr
i,max0

< τrr
i,max < 1, when 0 < c < c1, the steady state is given by (1.4.52), and when c1 < c < 1, the

steady state is given by Theorem 1.4.6(4).

Remark 1.4.7 The condition on the intra regional visiting times in (1.4.48) signifies that these times

are of the same order. A similar conclusion can be drawn with respect to the interregional visiting

times. We further note that the functions f , g and h, can take arbitrary forms such as quadratic,

cubic, exponential, or logarithmic functions depending on the kind of mobility process that is being

modeled. Under this consideration, we incorporate more details about the mobility process. For

instance, if one site sr
j0 in the intra regional accessible domain receives more visitors than all other

sites in the domain, then we could have a hub in the domain. And one possible representation of

this detail about the mobility process, can be τrr
i j = 0(g(τrr

i,min)),∀ j ̸= i, j ̸= j0, j ∈ Ir
i (1,nr), τrr

i j0 =

0(g1(τrr
i,min)), j0 ∈ Ir

i (1,nr), where g ̸= g1. Where g1 is an arbitrary positive real valued function

describing the return rate of visitors to site sr
j0 .

We now describe the steady states of the system under H7. Observe that H7 is composed of two

conditions (τrr
i,max → 0+ and c ≥ 1) and (τrr

i,max → 1− and c ≥ 1). Under τrr
i,max → 0+ and c ≥ 1, the

construction of the steady state is similar to Theorem 1.4.6(2). Similarly, the steady states is similar

to Theorem 1.4.6(4) whenever τrr
i,max → 1− and c ≥ 1. We further remark that τrr

i,max has a critical

value τrr
i,max1

∈]0,1[, such that for c ≥ 1 the steady states are given by Theorem 1.4.6(2) whenever

0< τrr
i,max < τrr

i,max1
, and the steady states are given by Theorem 1.4.6(4) whenever τrr

i,max1
< τrr

i,max < 1.

Finally we describe the steady states of the system under H8 and H9.

Theorem 1.4.7 Suppose H8 and H9 hold. Given for any ε > 0,

1. If τrr
i,max = 0(1) and 0 < c < 1, for all j ∈ Ir

i (1,nr), and l ∈ Ir
i (1,nq), then (a) τrq

il = 0(1),

(b) there exists j3 ∈ Ir
i (1,nq) and l3 ∈ Ir

i (1,nr) such that τrr
i j3 = 0(1) and τrq

il3 ≤ τrr
i j3 , and (c)

furthermore,

i. if τrr
i j = 0(1) for all j ∈ Ir

i (1,nr), then the steady state of the mobility system satisfies

(1.3.20), (1.3.21) and (1.3.22).

ii. if τrr
i j = 0(ε) for all j ̸= j3, j, j3 ∈ Ir

i (1,nr), then the steady state of the mobility system
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satisfies

N∗rr
ii → Nrr

i
1(

1+σrr
i j3τrr

i j3 +∑M
q̸=r ∑nq

a=1 γrq
ia τrq

ia

) , N∗rr
i j → 0, j ̸= j3,

N∗rr
i j3 → Nrr

i
σrr

i j3( 1
τrr

i j3
+σrr

i j3 +∑M
q̸=r ∑nq

a=1 γrq
ia Krqr

ia j3

) ,
N∗rq

il → Nrr
i

γrq
il( 1

τrq
il
+σrr

i j3Krrq
i j3l +∑M

q̸=r ∑nq
a=1 γrq

ia Krqq
ial

) . (1.4.55)

2. If τrr
i,max = 0(1) and c ≥ 1, then (a) for all l ∈ Ir

i (1,nr), τrq
il = 0(1), (b) there exists j4 ∈ Ir

i (1,nr)

such that τrr
i j4 = 0(1) and τrr

i j ≤ τrq
il for all j ∈ Ir

i (1,nr), l ∈ Ir
i (1,nq), and (c) furthermore,

i. if τrr
i j = 0(1) for all j ∈ Ir

i (1,nr) then the steady state of the mobility system satisfies

(1.3.20), (1.3.21) and (1.3.22).

ii. if τrr
i j = 0(ε), for all j ̸= j4, j, j4 ∈ Ir

i (1,nr), then the steady state of the mobility system

satisfies (1.4.55) ( where, we replace j3 with j4).

3. If τrr
i,max = θ(1

ε ) and 0 < c < 1, then (a) for all j ∈ Ir
i (1,nr), l ∈ Ir

i (1,nq), τrq
il = θ(1

ε ), (b) there

exists j5 ∈ Ir
i (1,nr) such that τrr

i j5 = θ(1
ε ), and (c) furthermore,

i. for τrr
i j = 0(1) or τrr

i j = 0(ε), for all j ̸= j5, if θ( f )> θ(g), then

N∗rr
ii → 0, N∗rr

i j5 → N∗rr
i , N∗rr

i j → 0, j ̸= j5, N∗rq
il → 0, (1.4.56)

and if θ( f )< θ(g), then

N∗rr
ii → 0, N∗rr

i j → 0, N∗rq
il → Nrr

i
γrq

il(
∑M

q̸=r ∑nq
a=1 γrq

ia Krqq
ial

) . (1.4.57)

Finally, if θ( f ) = θ(g), then

N∗rr
ii → 0, N∗rr

i j5 → Nrr
i

σrr
i j5(

σrr
i j5 +∑M

q̸=r ∑nq
a=1 γrq

ia Krqr
ia j5

) ,
N∗rr

i j → 0, j ̸= j5, N∗rq
il → Nrr

i
γrq

il(
σrr

i j5Krrq
i j5l +∑M

q ̸=r ∑nq
a=1 γrq

ia Krqq
ial

) . (1.4.58)

ii. For τrr
i j = 0(1

ε ) for all j ∈ Ir
i (1,nr), the steady states are similar to Theorem 1.4.5.
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4. If τrr
i,max = θ(1

ε ) and c≥ 1, then for all j ∈ Ir
i (1,nr), l ∈ Ir

i (1,nq), τrq
il = θ(1

ε ) and τrr
i j ≤ τrq

il . Also,

there exists j6 ∈ Ir
i (1,nr) such that τrr

i j6 = θ(1
ε ). Furthermore, for τrr

i j = 0(1) or τrr
i j = 0(ε),

for all j ̸= j6, if θ( f ) > θ(g), then steady state of the mobility system satisfies (1.4.56); if

θ( f )< θ(g), then the steady state satisfies (1.4.57); and if θ( f ) = θ(g), then the steady state

satisfies (1.4.58).

Proof: The proofs of parts (1)& (2) follow from Theorem 1.4.6. Parts (3)& (4) follow from Theo-

rem 1.4.5.

Remark 1.4.8 A remark similar to Remark 1.4.5 and Remark 1.4.6 can be formulated with regards

to Theorem 1.4.7.

We also examine the situation where the growth rate of the minimum intra regional visiting time is

compared with a power function of the maximum inter regional visiting time. We shall consider the

cases where the power function is a fractional power and a polynomial function.

Assumption 1.4.2 Given ε > 0, and for all j ∈ Ir
i (1,nr), l ∈ Ir

i (1,nq), let τrr
i j and τrq

il be related as

follows,

τrr
i j = 0(g(τrr

i,min)),τ
rr
i,min = 0(h(τr,max

i,max)),τ
rq
il = 0( f (τrq

i,min)),

whenever τr,max
i,max = 0(1) and τrr

i,max = 0(1), and

τrr
i j = θ(g(τrr

i,min)),τ
rr
i,min = θ(h(τr,max

i,max)),τ
rq
il = θ( f (τrq

i,min)), (1.4.59)

whenever τrr
i,min = θ(

1
ε
) and τrq

i,min = θ(
1
ε
),

where f , g, and h are defined in Assumption 1.4.1.

We state the following hypotheses:

Hypothesis 1.4.3 Resident time τrr
i j and τrq

il satisfy Assumption 1.4.2 and moreover,

H10: 0 < τr,max
i,max < 1, and 0 < c < 1;

H11: 0 < τr,max
i,max < 1, and c ≥ 1;

H12: τr,max
i,max ≥ 1, and 0 < c < 1;

H13: τr,max
i,max ≥ 1, and c ≥ 1.
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We shall characterize the steady states of the mobility process under H13. The static behavior of the

system under the other hypotheses can be derived in a similar manner.

Theorem 1.4.8 Suppose H13 holds. Given ε > 0,

1. If τr,max
i,max = 0(1) and c ≥ 1, then for all q ∈ Ir(1,M), j ∈ Ir

i (1,nr) and l ∈ Ir
i (1,nq), τrr

i j = 0(1)

and τrq
il ≤ τrr

i j . Furthermore,

i. if τrq
il = 0(ε) for all q ∈ Ir(1,M) and l ∈ Ir

i (1,nr), then the steady states of the mobility

system satisfy

N∗rr
ii → N∗rr

i
1(

1+∑nr
j ̸=i σrr

i j τrr
i j

) , N∗rr
i j → N∗rr

i
σrr

i j( 1
τrr

i j
+∑nr

k ̸=i σrr
ik Krrr

ik j

) , j ∈ Ir
i (1,nr),

N∗rq
il → 0. (1.4.60)

ii. if for some q1 ∈ Ir(1,M), and l ∈ Ir
i (1,nq1), τrq1

il = 0(ε) and for all q ̸= q1, q ∈ Ir(1,M)

and l ∈ Ir
i (1,nq), τrq

il = 0(1), then the steady state of the mobility system satisfies

N∗rr
ii → N∗rr

i
1(

1+∑nr
j ̸=i σrr

i j τrr
i j +∑M

q ̸=r,q1 ∑nq
l=1 γrq

il τrq
il

) ,
N∗rr

i j → N∗rr
i

σrr
i j( 1

τrr
i j
+∑nr

k ̸=i σrr
ik Krrr

ik j +∑M
q̸=r,q1 ∑nq

a=1 γrq
ia Krqr

il j

) ,
N∗rq1

il → 0, l ∈ Ir
i (1,nq1), and for q ̸= q1, l ∈ Ir

i (1,nq),

N∗rq
il → N∗rr

i
γrq

il( 1
τrq

il
+∑nr

k ̸=i σrr
ik Krrr

ik j +∑M
q ̸=r,q1 ∑nq

a=1 γrq
ia Krqr

il j

) . (1.4.61)

iii. if for all q ∈ Ir(1,M) and l ∈ Ir
i (1,nr), τrq

il = 0(1) then the steady state of the mobility

system satisfies (1.3.20), (1.3.21) and (1.3.22).

2. If τr,max
i,max = θ(1

ε ) and c ≥ 1, then (a) for all j ∈ Ir
i (1,nr), τrr

i j = θ(1
ε ) and (b) for all l ∈ Ir

i (1,nq),

i. if τrq
il = 0(ε) or τrq

il = 0(1) for all q ∈ I(1,M), and l ∈ Ir
i (1,nq), then for j ∈ Ir

i (1,nr), the

steady state of the mobility system satisfies

N∗rr
ii → 0, N∗rr

i j → Nrr
i

σrr
i j(

∑nr
k ̸=i σrr

ik Krrr
ik j

) , N∗rq
il → 0. (1.4.62)
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ii. if for some q2 ∈ Ir(1,M), and l ∈ Ir
i (1,nq2), τrq2

il = 0(ε) and for all q ̸= q2, q ∈ Ir(1,M),

and l ∈ Ir
i (1,nq), τrq

il = 0(1) then the steady state of the mobility system satisfies

N∗rr
ii → 0,N∗rr

i j → Nrr
i

σrr
i j(

∑nr
k ̸=i σrr

ik Krrr
ik j

) ,
N∗rq

il → 0, for all q ∈ Ir(1,M), l ∈ Ir
i (1,nq(sr

i ). (1.4.63)

iii. if τrq
il = θ(1

ε ) for all q ∈ Ir(1,M), and l ∈ Ir
i (1,nq), then for j ∈ Ir

i (1,nr), if θ(g)< θ( f ),

the steady state of the mobility system satisfies

N∗rr
ii → 0, N∗rr

i j → Nrr
i

σrr
i j(

∑nr
k ̸=i σrr

ik Krrr
ik j

) , N∗rq
il → 0; (1.4.64)

if θ(g)> θ( f ), the steady state of the mobility system satisfies

N∗rr
ii → 0, N∗rr

i j → 0,

N∗rq
il → Nrr

i
γrq

il(
∑M

q ̸=r ∑nq
a=1 γrq

ia Krqr
il j

) , (1.4.65)

and if θ(g) = θ( f ), the steady state of the mobility system satisfies

N∗rr
ii → 0, N∗rr

i j → Nrr
i

σrr
i j(

∑nr
k ̸=i σrr

ik Krrr
ik j +∑M

q̸=r ∑nq
a=1 γrq

ia Krqr
il j

) ,
N∗rq

il → Nrr
i

γrq
il(

∑nr
k ̸=i σrr

ik Krrr
ik j +∑M

q̸=r ∑nq
a=1 γrq

ia Krqr
il j

) , (1.4.66)

iv. Assume that there exists q3 ∈ Ir(1,M) such that, for all q ̸= q3, τrq
il = θ(1

ε ) and τrq3
il = 0(ε)

or τrq3
il = 0(1) , l ∈ Ir

i (1,nq3)). (a) If θ(g) < θ( f ), then the steady state of the mobility

system satisfies (1.4.64);

(b) If θ(g)> θ( f ), then the steady state of the mobility system satisfies

N∗rr
ii → 0, N∗rr

i j → 0,

N∗rq3
il → 0, N∗rq

il → Nrr
i

γrq
il(

∑M
q̸=r ∑nq

a=1 γrq
ia Krqr

il j

) ,q ̸= q3, (1.4.67)
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and (c) if θ(g) = θ( f ), the steady state of the mobility system satisfies

N∗rr
ii → 0,N∗rr

i j → Nrr
i

σrr
i j(

∑nr
k ̸=i σrr

ik Krrr
ik j +∑M

q ̸=r ∑nq
a=1 γrq

ia Krqr
il j

) ,
N∗rq3

il → 0,N∗rq
il → Nrr

i
γrq

il(
∑nr

k ̸=i σrr
ik Krrr

ik j +∑M
q̸=r ∑nq

a=1 γrq
ia Krqr

il j

) ,
f or q ̸= q3. (1.4.68)

v. Finally, assume that there exists q4,q5 ∈ I(1,M) such that, for all q ̸= q4,q5, τrq
il = θ(1

ε )

for l ∈ Ir
i (1,nq), and τrq4

il = 0(ε), for l ∈ Ir
i (1,nq4) and τrq5

il = 0(1), for l ∈ Ir
i (1,nq5),

then (a) if θ(g)< θ( f ) the steady states of the mobility system are given by (1.4.65), (b)

if θ(g) > θ( f ) the steady states of the mobility system are given by (1.4.67), and (c) if

θ(g) = θ( f ) the steady states of the mobility system are given by (1.4.68). Where N∗rq4

and N∗rq5 take the same value as N∗rq3 in each case.

Proof: The proof follows immediately from the definition of τrr
i j and τrq

il in Assumption 1.4.2, and

the proof of Theorem 1.4.5 and Theorem 1.4.7.

Remark 1.4.9 The interpretations of the results of Theorem 1.4.8 are formulated in a similar man-

ner to the results of Theorem 1.4.7(3).

1.5 Conclusion

The rapid technological changes, scientific developments and educational expansion have created

the heterogeneity in the human species. This heterogeneity generates a structure in the human

population dynamics. The two-scale network dynamic model formulation for human mobility pro-

cess makes a transition from its current infancy level to a teen-age level. Moreover, the dynamic

model provides a bench mark to quantify the interactions between various scale levels generated

by the increase in heterogeneity in the human mobility process in systematic and unified way. In

fact, this work provides probabilistic and mathematical algorithmic tools to develop different level

nested type interaction rates as well as network-centric dynamic equations. Naturally, the derived

network-centric dynamic equations lead to network-centric steady-states of various types of steady-

state level population structures. Of course, the steady-state population structure varies according

to the: (a) various degrees of variations in the magnitude of intra-inter-regional visiting times, (b)
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various changes in mobility rate functions at different rates, and (c) various growth rates of the min-

imum intra regional visiting time compared with a power function of the maximum inter regional

visiting time. Several results are successfully developed and analyzed.
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2 SIMULATION RESULTS AND PROTOTYPE TWO-SCALE NETWORK

HUMAN MOBILITY DYNAMIC PROCESS

In this chapter we characterize the steady state behavior of a two scale network human dynamic

population that is under the influence of a special case real life human mobility process. The chapter

is organized as follows: In Section 2.1, we characterize the two scale population structure and the

human mobility process represented in this example. In Section 2.2, we describe the mathematical

algorithm for generating the steady state population, and also give graphical representations of the

steady state population.

2.1 The Two-Scale Hierarchic Population of the Special Real Life Mobility Process

By using three community single-scale model, the mobility dynamic structure determined by the

simulated data set for the three communities in the district of Central Manitoba, Canada, and the

data set for the interdistrict movement of the people in the West Indian Island of Dominica [27], we

develop a two-scale mobility model. We note that the estimates of the underlying parameters under

both simulated and real data sets are recorded in [27].

The development of this example is based on the following assumptions: In the absence of data

set and without loss of generality, we assume that the structure determined by the simulated data set

of the three communities in the district of Central Manitoba, Canada, is the structure of our two scale

model at the interregional level. The three districts in the West Indian Island of Dominica represent

’sites’ for each of the these three regions. Conceptually this assumption is not representative in the

sense of geography/size but in the sense of sample drawn from small community or vice versa, that

is representative of the big or small region. In short, we identify the three communities in the district

of Central Manitoba, Canada as ’regions’, and the districts of the West Indian Island of Dominica as

’sites’. Therefore every region has three sites, and we denote regions by Cr,r = 1,2,3, and the sites
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by sr
i , i = 1,2,3. The intra-regional visiting/travel rates are displayed in Table 2.1. This table was

rerecorded from the data set under the column of ‘Dominica mobility’ in ([27] page 14). We used

the following information about the structure of the one scale(interregional) mobility simulated data

set (NH mobility [27] page 14) for the above defined three regions and generate the interregional

visiting/travel rates as follows: (1) communication patterns between two of the three regions is com-

pletely symmetric, (2) the third region is partially symmetric with one of the two regions. This is

because of the fact that there is a zero flow rate into itself from one of the two regions. That is, one

of the two complete symmetric regions is a ’sink’ for the third region. From the this description, we

conclude that the travel pattern in [27] includes the human mobility structure of our presented model

as a special case. Using the structural and probabilistic understanding we constructed the interre-

gional visiting/travel rates. We display the interregional travel rates in Table 2.2. Furthermore, the

large scale two level population structure and the underlying human mobility pattern are exhibited

in Figure 2.1
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Figure 2.1: A two scale network of three spatial regions Cr,r = 1,2,3 of human habitation and three

interconnected sites sr
i , i = 1,2,3 in each region. The arrows represent direction of human mobility

and summarize the heterogeneities in the epidemic process at each site and region. C1 & C2, and C2

& C3 are symmetric in the human mobility process. C1 is a sink for C3 in human mobility. All sites

in each region are completely symmetric in the human mobility process.

We further assume that for every site sr
i , i = 1,2,3 in any region Cr,r = 1,2,3, for all j ̸= i, intra
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regional visiting times τrr
i j , of residents are the same, moreover it is assumed that the corresponding

interregional visiting times τrq
il , of residents of site sr

i in region Cr, are also the same for all l = 1,2,3

and q ̸= r.

Table 2.1: Intra regional visiting/travel rates for sites in region Cr,r = 1,2,3. The intra regional

travel rates within each of the three regions Cr,r = 1,2,3 are assumed to be the same. The estimates

of the parameters are derived from data[27] that was collected from the Island of Dominica in 1991.

The parameter estimates reflect the rates of travel that can be obtained in regions that have a low

technological development.

Parameter Intra-regional mobility

σrr
1 0.00147

σrr
2 0.03695

σrr
3 0.03754

νrr
12 0.7432

νrr
13 0.2568

νrr
21 0.9860

νrr
23 0.014.

νrr
31 0.8852

νrr
32 0.1147
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Table 2.2: The interregional visiting/travel rates between the three regions. The derivation of these

rates is based on the the structural understanding of the data set under the column ‘NH mobility’ in

[27], page 14 and probabilistic understanding of our presented model.

Parameter Interregional mobility

(γ1
1,γ1

2,γ1
3) ( 0.5,0.3.24,0.176)

(γ12
10,γ12

20,γ12
30) (1,1,1)

(γ13
10,γ

13
20,γ

13
30) (0,0,0)

(γ2
1,γ2

2,γ2
3) (0.16,0.06,0.03)

(γ21
10,γ21

20,γ21
30) (0.222,0.12,0.658)

(γ23
10,γ

23
20,γ

23
30) (0.778,0.88,0.342)

(γ3
1,γ

3
2,γ

3
3) (0.12,0.011,0.001)

(γ31
10,γ

31
20,γ

31
30) (0.200,0.080,0.006)

(γ32
10,γ

32
20,γ

32
30) (0.800,0.920,0.994)

(γ12,γ13) (3,0)

(γ21,γ23) ( 0.6,2)

(γ31,γ32) (0.286,2.714)

(γ13
01,γ

13
02,γ

13
03) (0, 0, 0)

(γrq
01,γ

rq
02,γ

rq
03)r,q=2,3.r ̸=q (0.333, 0.27, 0.397)

2.2 Mathematical Algorithm and Simulation Results

In this section, we perform simulations for three general scenarios. Each scenario is based on re-

strictions on the intra- and inter- regional visiting times between zero and hundred days. We re-

call the fraction of the steady state population of residents of site sr
i in region Cr at the home site,

intra-regional and interregional accessible domains are given in (1.3.29), (1.3.30) and (1.3.31) re-

spectively. Therefore all categories of the steady state population of the residents of site sr
i in region

Cr subject to continuous changes in the intra- and inter-regional visiting times can be characterized

by the following functions:
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S∗rr
ii ,U∗rr

i j ,V ∗rq
il : [0,∞]× [0,∞]→ [0,∞],∀ j ∈ Ir

i (1,nr), l ∈ Ir
i (1,nq)

where,

S∗rr
ii (τrr

i j ,τ
rq
il ) =

1(
1+∑nr

k ̸=i σrr
ik τrr

ik +∑M
q̸=r ∑nq

a=1 γrq
ia τrq

ia

) , i ∈ I(1,nr), (2.2.1)

U∗rr
i j (τrr

i j ,τ
rq
il ) =

σrr
i j( 1

τrr
i j
+∑nr

k ̸=i σrr
ik Krrr

ik j +∑M
q ̸=r ∑nq

a=1 γrq
ia Krqr

ia j

) , j ∈ Ir
i (1,nr), (2.2.2)

and

V ∗rq
il (τrr

i j ,τ
rq
il ) =

γrq
il( 1

τrq
il
+∑nr

k ̸=i σrr
ik Krrq

ikl +∑M
q̸=r ∑nq

a=1 γrq
ia Krqq

ial

) , l ∈ Ir
i (1,nq). (2.2.3)

Furthermore, the notation W ∗ru
ia (τrr

i j ,τ
rq
il ),W ∈ {S,U,V},∀u ∈ I(1,M),a ∈ I(1,nr) denotes the two

hierarchic population interaction levels, and should not be understood as representing a function of

two variables. In the following, we present the three scenarios. We fix r = 1, and i = 1.

Case 1: Constant Interregional Visiting Time and Varying Intra-regional Visiting Time:

Suppose that the assumptions of the example presented in the previous section are satisfied,

we further assume that interregional visiting time τrq
1l of residents of a given site s1

1 in com-

munity C1 is 10 days, and the intra-regional visiting time of the residents τ11
1 j , j = 2,3, equally

vary between zero and 100days. By utilizing (2.2.1), (2.2.2), (2.2.3) and the methods of graph

sketching[85], we obtain values and graphs for the steady state population for the different

categories of the residents of site s1
1 over all 0 ≤ τ11

1 j ≤ 100, j = 2,3. The results are displayed

in Figure 2.2
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Figure 2.2: Exhibits diagrams (b), (d) and (f) corresponding to (a), (c) and (e) respectively, under

magnified scales. Furthermore, we note that the axes labels for (a)&(b), (c)&(d), and (e)& (f)

respectively, are the same, and the axes represent quantities on different scale units. The figure

displays the behavior of the proportions S∗11
11 , U∗11

1 j , j = 2,3 and V ∗12
1l , l = 1,2,3 of the different

classes of residents of site s1
1, subject to continuous changes in intraregional visiting time over the

interval from zero to 100 days, given that interregional visiting time is fixed at 10 days. More

comments about this figure are given in Remark 2.2.1.

Remark 2.2.1 We observe from Figure 2.2 that as the intraregional visiting time continuously

changes value from zero to 100, diagrams (a) & (b) for S∗11
11 and (e) & (f) for V ∗12

1l , l = 1,2,3,

show a smooth decrease, indicating that for larger values of intraregional visiting time, S∗11
11 ,

and V ∗12
1l , l = 1,2,3 turn to be smaller values. This qualitative behavior of S∗11

11 , and V ∗12
1l , l =

1,2,3 is exhibited in Diagrams (a) and (e), respectively. Diagrams (d) for U∗11
1 j , j = 2,3 on

the other hand has a smooth rise with intraregional visiting time, also illustrating the growth

of U∗11
1 j , j = 2,3 with larger values of intraregional visiting time. Furthermore, for low intra-

regional visiting time,(i) S∗11
11 , and V ∗12

1l are maximum, for l = 1,2,3 and (ii) U∗11
1 j , j = 2,3 is

minimum. That is, residents of site s1
1 distribute them selves between home sites and sites in

other regions.
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Case 2: Varying Interregional Visiting Time and Constant Intra-regional Visiting Time:

When the intra-regional visiting time of residents of a given site s1
1 in region C1 is 20 days

and the corresponding interregional visiting time of the residents, τ12
1l , l = 1,2,3, equally vary

between zero and 100 days. We utilize (2.2.1), (2.2.2), (2.2.3) and the basic methods of graph

sketching[85], to obtain values and graphs for the steady state population for the different cat-

egories of the residents of site s1
1 over all 0 ≤ τ12

1l ≤ 100, l = 1,2,3. The results are illustrated

in Figure 2.3.
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Figure 2.3: Exhibits diagrams (b), (d) and (f) corresponding to (a), (c) and (e) respectively, under

magnified scales. Furthermore, we note that the axes labels for (a)&(b), (c)&(d), and (e)& (f)

respectively, are the same, and the axes represent quantities on different scale units. The figure shows

the behavior of the proportions S∗11
11 , U∗11

1 j , j = 2,3 and V ∗12
1l , l = 1,2,3 of the different classes of

residents of site s1
1, when the proportions are subject to continuous changes in interregional visiting

time over the interval from zero to 100 days. And the intraregional visiting time is 20 days. More

comments about this figure are given in Remark 2.2.2.

Remark 2.2.2 We observe from Figure 2.3 that as the interregional visiting time continuously

changes value from zero to 100, diagrams (a)&(b) for S∗11
11 , and (b) & (c) for U∗11

1 j , j = 2,3,

show a continuous decrease, and thus indicating that for larger values of interregional visiting

time, S∗11
11 , and U∗11

1 j , j = 2,3 tend to be very small values. This qualitative behavior of S∗11
11 ,
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and U∗11
1 j , j = 2,3 is exhibited in Diagrams (a) and (c), respectively. Diagrams (e) for l =

1,2,3, V 12
1l , has a continuous rise with an intraregional visiting time. Thus there is a tendency

for V ∗12
1l to increase with larger values of interregional visiting time. Also, for this example,

the rising of V ∗12
1l , l = 1,2,3 approaches one, for large values of interregional visiting time.

These observations signify that for sufficiently larger values of interregional visiting time, the

residents of site s1
1 tend to distribute them selves only among sites in other regions. For this

specific scenario, it is clear that for sufficiently large values of interregional visiting time,

the residents of site s1
1 totally isolate their home region. Therefore the fixed intraregional

visiting time does not change the residents’ decision to emigrate to another region. That is,

after spending more that 100 days in another region, all residents of site s1
1 would become

permanent residents of other sites in those regions Cr.

Case 3: Varying Inter- and Intra-regional Visiting Times: When the intra-regional τ11
1 j , j = 2,3,

and interregional τ12
1l , l = 1,2,3 visiting times of residents of the site s1

1 in region C1 equally

vary between zero and 100 days. From (2.2.1), (2.2.2), (2.2.3) and the basic methods of graph

sketching[85], we obtain values and graphs for the steady state population for the different

categories of the residents of site s1
1 over all 0 ≤ τ11

1 j ,τ12
1l ≤ 100, j = 2,3, l = 1,2,3. The results

are shown in Figure 2.4. We note that the results under these scenarios, exhibit the behavior of

the steady state population as visitors are allowed to spend up to 100 days at their destinations.
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Figure 2.4: Exhibits diagrams (b), (d) and (f) corresponding to (a), (c) and (e) respectively, un-

der magnified scales. Furthermore, we note that the axes labels for (a)&(b), (c)&(d), and (e)& (f)

respectively, are the same, and the axes represent quantities on different scale units. The figure fur-

ther exhibits the behavior of the proportions S∗11
11 , U∗11

1 j , j = 2,3 and V ∗12
1l , l = 1,2,3 of the different

classes of residents of site s1
1, when the proportions are subject to continuous change in interregional

and intra-regional visiting time simultaneously over the interval from zero to 100 days.The inter-

regional and intra-regional visiting time are are assumed to be equal. More comments about this

figure are given in Remark 2.2.3.

Remark 2.2.3 Figure 2.4 exhibit that as both visiting times continuously change values from

0 to 100, for S11
11, graphs (b) show a smooth decrease. Diagrams (d) for U∗11

1 j , j = 2,3, and (f)

for V ∗12
1l , l = 1,2,3 show a continuous rise with intra-regional and interregional visiting time

and vice versa. This qualitative behavior of U∗11
1 j , j = 2,3, and V ∗12

1l , l = 1,2,3 is exhibited in

Diagrams (d) and (f), respectively. This suggests that more residents are found visiting other

sites that are within their regions or in other regions when intra-regional and interregional

visiting time are large. This also signifies that for smaller values of intra-regional and inter-

regional visiting times, more residents are found in their home site s1
1, which could lead to an

isolation of home site.
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For this particular example, with the increase visiting times the rise of both U∗11
1 j , j = 2,3, and

V ∗12
1l , l = 1,2,3 saturate at different values less than one. This signifies that there is always a

fraction of residents of site s1
1 at other sites within their region and in other regions.

2.3 Conclusion

A special two-scale human mobility dynamic model with underlying real life human mobility pattern

and specified travel and return rates is implicitely defined. Comparative graphical representations of

the steady state population behavior of residents of a given site with respect to their current locations

are exhibited for different human mobility pattern strutures. The different human mobility pattern

structures are influnced by continuous changes in the intra and inter-regional visiting times. The

simulated findings reveal different steady state population displacement trends over the contiuous

changes in the intra and inter-regional visiting times.
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3 FUNDAMENTAL PROPERTIES OF A TWO-SCALE NETWORK

STOCHASTIC HUMAN EPIDEMIC DYNAMIC MODEL

3.1 Introduction

The recent advent of high technology in the areas such as communication and transportation has

increased the rate and effects of globalization in many aspects of the human species. Of particu-

lar importance is the rate of globalization of human infectious diseases[7]. For instance, the 2009

H1N1 flu pandemic[39] is a result of the many inter-patch connections facilitated human transporta-

tion. Several mathematical models describing the dynamics of infectious diseases of humans have

been studied. Models describing the dynamics of insect vector born diseases[13, 52], influenza[8],

HIV[48, 49, 51] and AIDS [50] are studied.

There has also been many studies[8, 9, 11, 12, 13, 26, 27, 20, 32, 42, 53, 54, 25] describing the

dynamics of human mobility and disease in meta-populations. Generally, these models can be called

multi-group models as they describe the dynamics of diseases in a network of the patches of a meta-

population. These models can be further categorized into two general classes based on the modeling

approach, namely: Langrangian[53, 54, 25, 13, 26, 27] and Eulerian [20, 32, 42, 11, 12, 8, 9] mod-

els. In addition, individuals in the population are labeled based on their residence or their current

location. In Langrangian models, individuals do not change their residence, but are allowed to visit

other patches in the meta-population. The Eulerian models on the other hand label individuals in

the population based only on the current location. Moreover, this model can be considered to be

migration models because only the present location of individuals is important.

Many authors have investigated the dynamics of diseases described with SIRS models. A sig-

nificant portion of SIRS models study the dynamics of the disease under variant incident rates[40,

41, 42, 43, 44, 45, 46]. Using Lyapunov functions, the local nonlinear and global stability of the

equilibria is established[40]. By constructing a Lyapunov function based on the structure of the

42



biological system [43, 28, 29], the existence, uniqueness and global stability of the endemic equi-

librium are investigated. Furthermore, the bifurcation and stability analysis of the disease free and

endemic equilibria, are investigated in [42, 45, 46]. SIRS epidemic models have also been described

and studied using complex network of human contacts[47]. In [58], a special SIRS epidemic model

is formulated with a proportional direct transfer from the infectious state to the susceptible state

immediately after the infectious period.

Stochastic models offer a better representation of the reality. Several stochastic models de-

scribing single and multi-group disease dynamics have been investigated[55, 56, 50, 51]. Assum-

ing random perturbation about the endemic equilibrium of a two-group SIR model, the stochastic

asymptotic stability of the endemic equilibrium via constructing a Lyapunov function according to

the structure the system is established in [55]. Also, the stability of the competitive equilibrium

[61], disease free equilibrium for SIRS[57] and SIR[56] single-group epidemic models are studied.

Furthermore, by showing the existence of nonnegative solution for a stochastic model, the stochastic

asymptotic stability behavior of the equilibria is proved in[50, 51, 61, 62].

In more complex meta-population structures, the understanding of the dynamics of infectious

diseases is still in the infancy level. This is due to the high degree of heterogeneities and com-

plexity of spatial human population structures. In Chapter 1, we characterized various patterns of

static behavior of multi-scale structured meta-population human mobility process described by the

Langrangian type dynamic model (1.3.13)-(1.3.15).

In this paper we incorporate the multi-scale structured meta-population human mobility process

(1.3.13)-(1.3.15) into an SIRS human epidemic model that is under the influence of random envi-

ronmental fluctuations. The resulting two-scale network structured SIRS human epidemic stochas-

tic dynamic model is an extension, expansion and generalization of the structured deterministic

epidemic model [25] that is under the influence of mobility process.The presented stochastic two-

scale network human dynamic epidemic process is described by a large-scale system of Ito-Doob

stochastic differential equations. In addition to well defined underlying system parameter domains

for disease eradication in the large-scale two level dynamic structure, the results are algebraically

simple, computationally attractive and explicit system parameter dependent threshold values.
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This chapter is organized as follows. In Section 3.2 we describe the general stochastic SIRS

epidemic process that is under the influence of human mobility process[59]. In Section 3.3, the

model validation is exhibited. The existence and asymptotic stability of the disease free equilibrium

is shown in Section 3.4.

3.2 Large Scale Two Level SIRS Epidemic Process

In this section, we define the structure of the SIRS epidemic dynamic process in the two-scale

network population dynamic structure. The human mobility dynamic structure of the intra and

inter-regional levels of the SIRS epidemic dynamic model of this study are exhibited in [Fig. 1,[30]]

and [Fig. 2.[30]] respectively. Furthermore, the characterization of the human mobility hierarchic

process in the two-scale population dynamic structure is also exhibited in [30]. The general SIRS

disease structure with dual conversions to the susceptible class from the infectious and immune

populations exhibited in this study is inspired by the work [58]. We make the following definitions

related to the SIRS disease process.

Definition 3.2.1 Endemic population decomposition and Aggregation:For each r ∈ I(1,M), let

i ∈ Ir
i (1,nr). The total population Nrr

i0 of residents of site sr
i at time t is distributed among the

sites in their intra and inter regional domain C(sr
i ), and it is partitioned into three general disease

compartments namely, susceptible (S), infectious (I) and removals (R) (those who were previously

sick and have acquired immunity from the disease). That is, Arq
il is the number of residents of site sr

i

whose disease status is of type A,A ∈ {S, I,R}, and are visiting to site sq
l , l ∈ Iq

i (1,nq) in region Cq,

where q ∈ Ir(1,M). Furthermore, when r = q, Arr
ik is the number of residents of site sr

i with disease

status A ∈ {S, I,R}, and are visiting to site sr
k,k ∈ Ir

i (1,nr) in their home region Cr. Moreover, when

k = i, Arr
ii is the number of residents of site sr

i who have disease status of type A,A ∈ {S, I,R} and

remain as permanent residents at their home site. Hence Nrr
i is given by

Nrr
i0 = Srr

i0 + Irr
i0 +Rrr

i0, (3.2.1)

where

Srr
i0 =

M

∑
q=1

nq

∑
k=1

Srq
ik , Irr

i0 =
M

∑
q=1

nq

∑
k=1

Irq
ik , and Rrr

i0 =
M

∑
q=1

nq

∑
k=1

Rrq
ik . (3.2.2)
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Remark 3.2.1 We note that the effective population e f f (Nrr
i0 ) present at the site sr

i at anytime is

different from the census population or the total number of residents Nrr
i0 (3.2.1) with permanent

residence site sr
i . At anytime t, the effective community size of site sr

i is made up of the permanent

residents of site sr
i and all visitors of to site sr

i . This is as given below

e f f (Nrr
i ) =

M

∑
q=1

nq

∑
k=1

Sqr
ki +

M

∑
q=1

nq

∑
k=1

Iqr
ki +

M

∑
q=1

nq

∑
k=1

Rqr
ki . (3.2.3)

e f f (Nrr
i ) represents the population that is at risk for infection at site sr

i and it is the population size

resulted by the mobility process in the two-scale network structure.

Definition 3.2.2 Disease Transmission Process: The disease transmission process in any site sr
i

in region Cr in a mobile population necessitates: (1) a susceptible person to travel from site su
k in

region Cu to site sr
i , ( u = r and k = i if there is no traveling), (2) an infectious person traveling from

site sq
l in region Cq,q ̸= r to site sr

i , (3) the susceptible and infectious persons meeting at a contact

zone z (which may be the home, market place or recreational facility etc) in site sr
i with a probability

p of a person being at a zone z at anytime t, and (4) β is the probability of the infectious agent being

transmitted from the infectious person to the susceptible person knowing that the contact between

the susceptible and the infectious individual took place.

Let nri be the number of contact zones denoted by zr
ib ,b ∈ {1,2, . . . ,nri} ≡ I(1,nri) at each site

sr
i .Furthermore, let pr

ib be the probability that a member of the effective population would be in a

zone zr
ib at a time t; in addition, we assume that the events of visiting contact zones are independent,

and the probability pr
ib of being in a given zone zr

ib is independent of the permanent residence of

the individual. In each zone zr
ib , there is random mixing and transmission of the infectious agent

from an infectious person to a susceptible person via a direct contact between the two individuals.

Moreover, let βruv∗
ik j be the probability that the transmission takes place given that the contact occurs

in any zone zr
ib ,∀b ∈ I(1,nri) in site sr

i between a susceptible Sur
ki from site su

k in region Cu and an

infectious individual Ivr
mi from site sv

m in region Cv. Then the infectious rate (average number of

contacts per individual per unit time required to transmit the disease), βruv∗
ibkm, in zone zr

ib between Sur
ki

and Ivr
mi is given by

βruv∗
ibkm = (pr

ib)
2βruv∗

ikm , (3.2.4)
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whenever v,u ∈ I(1,M), and v ̸= u. The infection process in zone zr
ib is illustrated by the following

transition.

Sur
ki + Ivr

mi

βruv∗
ibkm−−−→ Iur

ki + Ivr
mi. (3.2.5)

Hence, the net conversion rate to the infectious class from the susceptible class during the disease

transmission process at the site sr
i in region Cr of the meta-population with M regions is given by

M

∑
v=1

M

∑
u=1

nv

∑
m=1

nu

∑
k=1

nri

∑
b=1

βruv∗
ibkmIvr

miS
ur
ki (3.2.6)

We set

βruv
ikm =

nri

∑
b=1

βruv∗
ibkm (3.2.7)

We further assume that the disease status of an individual in the population does not affect travel

rates and the mobility pattern.

A diagram illustrating the disease transmission and mobility processes in the two scale dynamic

structure described in Definition 3.2.2 is exhibited in Figure 3.1.

Region C

Region CRegion C

Contact zone

Site

Site

S
u r

a i

I
v r

m i

v

m
s

u

a
s

r

i
b

z

Figure 3.1: Shows the movement of susceptible (Sur
ai ) and infective (Ivr

mi) from arbitrary home site su
a

in region Cu and from site sv
m in region Cv, to visit an arbitrary contact zone zr

ib in site sr
i , which is in

region Cr. Disease transmission takes place in zone zr
ib .
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Definition 3.2.3 Acquisition and Loss of Immunity Process: The changes in environmental condi-

tions influence the immunity systems of individuals in the large scale two level population dynamic

structure. This leads to dependence of the acquisition and loss of immunity rates of residents of all

sites in all regions in the two-scale structured population, on the current locations of the residents

in the population dynamic structure. In each site sr
i , let 1

ρr
i

be the average active infectious period of

infected individual (I) who recovered from the disease and acquired immunity (R),immediately after

the infectious period. Also, let 1
ηr

i
be the average infectious period of infected person in site sr

i , who

is recovered from the disease and become susceptible (S), immediately, after the infectious period.

Furthermore, let 1
αr

i
be the average immunity period of removal person (R) in site sr

i , who has lost

his/her their immunity and become susceptible (S) again immediately after the immunity period. The

recovery process of an infected person in site sr
i as well as the loss of immunity of a removal person

is illustrated in the following disease transition processes:

Iur
ki

ρr
i−→ Rur

ki , Iur
ki

ηr
i−→ Sur

ki , Rur
ki

αr
i−→ Sur

ki , (3.2.8)

for u ∈ I(1,M) and k ∈ I(1,nu).

Definition 3.2.4 Population Demography: The current SIRS infectious disease involves time scales

that are comparable with the life-time of individuals in the population. Furthermore, all births occur

at home site and deaths occur at current locations of residents in the two-scale population structure.

Let Br
i be a constant birthrate of the human population at site sr

i and at time t. We assume that

every new born is a susceptible and becomes a resident of the site of birth. Let δr
i be the per capita

natural mortality rate, and let dr
i be the per capita disease related mortality rate of all members of

the effective population at site sr
i .

A compartmental framework illustrating the different process and stages in the SIRS epidemic de-

scribed above is exhibited in Figure 3.2.

47



Figure 3.2: Compartmental framework summarizing the transition stages in the SIRS epidemic

process. All the parameters presented in this figure are define in Section 3.2 for particular sites and

regions.

From Definition 3.2.1-Definition 3.2.4, the complete SIRS epidemic model under the influence

of a large scale two-level population mobility process[30] is described by:

dSrq
il

dt
=



[Br
i +∑nr

k=1 ρrr
ik Srr

ik +∑M
q ̸=r ∑nq

a=1 ρrq
ia Srq

ia +ηr
i I

rr
ii +αr

i R
rr
ii

−(γr
i +σr

i +δr
i )S

rr
ii −∑M

u=1 ∑nu
a=1 βrru

iia Srr
ii Iur

ai ], f or q = r, l = i

[σrr
i j S

rr
ii +ηr

jI
rr
i j +αr

jR
rr
i j − (ρrr

i j +δr
j)S

rr
i j

−∑M
u=1 ∑nu

a=1 βrru
jia Srr

i j I
ur
a j ], f or q = r, l = j, j ̸= i,

[γrq
il Srr

ii +ηq
l Irq

il +αq
l Rrq

il − (ρrq
il +δq

l )S
rq
il

−∑M
u=1 ∑nu

a=1 βqru
lia Srq

il Iuq
al ], f or q ̸= r,

(3.2.9)

dIrq
il

dt
=



[∑nr
k=1 ρrr

ik Irr
ik +∑M

q ̸=r ∑nq
a=1 ρrq

ia Irq
ia −ηr

i I
rr
ii −ρr

i I
rr
ii

−(γr
i +σr

i +δr
i +dr

i )I
rr
ii +∑M

u=1 ∑nu
a=1 βrru

iia Srr
ii Iur

ai ], f or q = r, l = i

[σrr
i j I

rr
ii −ηr

jI
rr
i j −ρr

jI
rr
i j − (ρrr

i j +δr
j +dr

j)I
rr
i j

+ ∑M
u=1 ∑nu

a=1 βrru
jia Srr

i j I
ur
a j ], f or q = r, l = j, i ̸= j,

[γrq
il Irr

ii −ηq
l Irq

il −ρq
l Irq

il − (ρrq
il +δq

l +dq
l )I

rq
il

+∑M
u=1 ∑nu

a=1 βqru
lia Srq

il Iuq
al ], f or q ̸= r,

(3.2.10)
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dRrq
il

dt
=



[∑nr
k=1 ρrr

ik Rrr
ik +∑M

q ̸=r ∑nq
l=1 ρrq

il Rrq
il +ρr

i I
rr
ii − (γr

i +σr
i +αr

i +δr
i )R

rr
ii ],

f or q = r, l = i

[σrr
i j R

rr
ii +ρr

jI
rr
i j − (ρrr

i j +αr
j +δr

j)R
rr
i j ], f or q = r, l = j, i ̸= j,

[γrq
il Rrr

ii +ρq
l Irq

il − (ρrq
il +αq

l +δq
l )R

rq
il ], f or q ̸= r,

(3.2.11)

where i ∈ I(1,nr), l ∈ Ir
i (1,nq);r ∈ I(1,M),q ∈ Ir(1,M). Furthermore, the parameters Br

i , ηu
a, αu

a, δu
a

and du
a are nonnegative, and ρu

a is positive for r,u ∈ I(1,M), i ∈ I(1,nr), and a ∈ I(1,nu). Also, at

time t = t0, and for each r ∈ I(1,M), and i ∈ I(1,nr), (Srr
ii (t0),S

rr
i j (t0),S

rq
il (t0)) = (Srr

ii0,S
rr
i j0,S

rq
il0),

(Irr
ii (t0), I

rr
i j (t0), I

rq
il (t0)) = (Irr

ii0, I
rr
i j0, I

rq
il0), (Rrr

ii (t0),R
rr
i j (t0),R

rq
il (t0)) = (Rrr

ii0,R
rr
i j0,R

rq
il0), whenever j ∈

Ir
i (1,nr) and l ∈ Ir

i (1,nq). Furthermore, we denote n = ∑M
u=1 nu. We now incorporate the effects

of the random environmental perturbations into the modeling epidemic dynamic process described

in (3.2.9)-(3.2.11).

The random fluctuations lead to variabilities in the disease transmission, human mobility, birth

and death processes of the system. In this chapter, we assume that the effects of the fluctuating envi-

ronment manifest mainly as variations in the infectious rate β. Generally, we represent the variability

in the infectious rate by a white noise process as:

β → β+ vξ(t), dw(t) = ξ(t)dt, and var(β(t)) = v2, (3.2.12)

where ξ(t) is the standard white noise process, and w(t) is corresponding normalized Wiener process

or a homogenous Brownian motion process with the following properties: w(0) = 0, E(w(t)) = 0

and var(w(t)) = t.

Given t ≥ t0, we let (Ω,z,P) be a complete probability space, and zt is a filtration ( that is sub

σ−algebra zt satisfies the following: given t1 ≤ t2 ⇒zt1 ⊂zt2 ; E ∈zt and P(E) = 0 ⇒ E ∈z0

), for each r ∈ I(1,M), and i ∈ I(1,nr), the variability in the infectious process at sites sr
i , sr

j and sq
l

between a susceptible from site su
k and an infective from an arbitrary site sv

m, can be represented as

follows:

βruv
ikm → βruv

ikm + vruv
ikmξruv

ikm(t), dwruv
ikm(t) = ξruv

ikm(t)dt

βruv
jkm → βruv

jkm + vruv
jkmξruv

jkm(t),dwruv
jkm(t) = ξruv

jkm(t)dt

βquv
lkm → βquv

lkm + vquv
lkmξquv

lkm(t),dwquv
lkm(t) = ξquv

lkm(t)dt (3.2.13)
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and

var(βruv
ikm(t)) = (vruv

ikm)
2, var(βruv

jkm(t)) = (vruv
jkm)

2, var(βquv
lkm(t)) = (vquv

lkm)
2, (3.2.14)

where q,u,v ∈ Ir(1,M), k ∈ Iu
i (1,nu), m ∈ Iv

i (1,nv), and l ∈ Ir
i (1,nq).

We substitute (3.2.13) into (3.2.9)-(3.2.11), and obtain the following two level large scale stochas-

tic epidemic model under the influence of human mobility process [30]

dSrq
il =



[
Br

i +∑nr
k=1 ρrr

ik Srr
ik +∑M

q ̸=r ∑nq
a=1 ρrq

ia Srq
ia +ηr

i I
rr
ii +αr

i R
rr
ii

−(γr
i +σr

i +δr
i )S

rr
ii −∑M

u=1 ∑nu
a=1 βrru

iia Srr
ii Iur

ai
]
dt

−
[

∑M
u=1 ∑nu

a=1 vrru
iia Srr

ii Iur
ai dwrru

iia (t)
]
, f or q = r, l = i,[

σrr
i j S

rr
ii +ηr

jI
rr
i j +αr

jR
rr
i j − (ρrr

i j +δr
j)S

rr
i j −∑M

u=1 ∑nu
a=1 βrru

jia Srr
i j I

ur
a j
]
dt

−
[

∑M
u=1 ∑nu

a=1 vrru
jia Srr

i j I
ur
a j dwrru

jia(t)
]
, f or q = r, l = j, j ̸= i,[

γrq
il Srr

ii +ηq
l Irq

il +αq
l Rrq

il − (ρrq
il +δq

l )S
rq
il

−∑M
u=1 ∑nu

a=1 βqru
lia Srq

il Iuq
al

]
dt −

[
∑M

u=1 ∑nu
a=1 vqru

lia Srq
il Iuq

al dwqru
lia (t)

]
, f or q ̸= r,

(3.2.15)

dIrq
il =



[
∑nr

k=1 ρrr
ik Irr

ik +∑M
q ̸=r ∑nq

a=1 ρrq
ia Irq

ia −ηr
i I

rr
ii −ρr

i I
rr
ii

−(γr
i +σr

i +δr
i +dr

i )I
rr
ii +∑M

u=1 ∑nu
a=1 βrru

iia Srr
ii Iur

ai
]
dt

+
[

∑M
u=1 ∑nu

a=1 vrru
iia Srr

ii Iur
ai dwrru

iia (t)
]
, f or q = r, l = i[

σrr
i j I

rr
ii −ηr

jI
rr
i j −ρr

jI
rr
i j − (ρrr

i j +δr
j +dr

j)I
rr
i j +∑M

u=1 ∑nu
a=1 βrru

jia Srr
i j I

ur
a j
]
dt

+
[

∑M
u=1 ∑nu

a=1 vrru
jia Srr

i j I
ur
a j dwrru

jia(t)
]
, f or q = r, l = j, j ̸= i,[

γrq
il Irr

ii −ηq
l Irq

il −ρq
l Irq

il − (ρrq
il +δq

l +dq
l )I

rq
il

+∑M
u=1 ∑nu

a=1 βqru
lia Srq

il Iuq
al

]
dt +

[
∑M

u=1 ∑nu
a=1 vqru

lia Srq
il Iuq

al dwqru
lia (t)

]
, f or q ̸= r,

(3.2.16)

dRrq
il =



[
∑nr

k=1 ρrr
ik Rrr

ik +∑M
q̸=r ∑nq

l=1 ρrq
il Rrq

il +ρr
i I

rr
ii − (γr

i +σr
i +αr

i +δr
i )R

rr
ii
]
dt,

f or q = r, l = i[
σrr

i j R
rr
ii +ρr

jI
rr
i j − (ρrr

i j +αr
j +δr

j)R
rr
i j
]
dt, f or q = r, l = j, j ̸= i,[

γrq
il Rrr

ii +ρq
l Irq

il − (ρrq
il +αq

l +δq
l )R

rq
il

]
dt, f or q ̸= r,

(3.2.17)

where i ∈ I(1,nr), l ∈ Ir
i (1,nq);r ∈ I(1,M),q ∈ Ir(1,M); all parameters are as defined before.
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At time t = t0, for each r ∈ I(1,M) and i ∈ I(1,nr), (Srr
ii (t0),S

rr
i j (t0),S

rq
il (t0)) = (Srr

ii0,S
rr
i j0,S

rq
il0),

(Irr
ii (t0), I

rr
i j (t0), I

rq
il (t0)) = (Irr

ii0, I
rr
i j0, I

rq
il0), (Rrr

ii (t0),R
rr
i j (t0),R

rq
il (t0)) = (Rrr

ii0,R
rr
i j0,R

rq
il0), whenever j ∈

Ir
i (1,nr) and l ∈ Ir

i (1,nq), where the random variables (Srr
ii (t0),S

rr
i j (t0),S

rq
il (t0)), (I

rr
ii (t0), I

rr
i j (t0), I

rq
il (t0))

and (Rrr
ii (t0),R

rr
i j (t0),R

rq
il (t0)) are z0 −measurable, and are independent of w(t) whenever t ≥ t0.

We express the state of system (3.2.15)-(3.2.17) in vector form and use it, subsequently. We

denote

xru
ia = (Sru

ia , I
ru
ia ,R

ru
ia )

T ∈ R3

xru
i0 = (xruT

i1 ,xruT
i2 , . . . ,xruT

i,nu)
T ∈ R3nu ,

xru
00 = (xruT

10 ,xruT
20 , . . . ,xruT

nr0 )
T ∈ R3nrnu ,

xr0
00 = (xr1T

00 ,xr2T
00 , . . . ,xrMT

00 )T ∈ R3nr ∑M
u=1 nu ,

x00
00 = (x10

00,x
20
00, . . . ,x

M0
00 )T ∈ R3(∑M

r=1 nr)(∑M
u=1 nu), (3.2.18)

where r,u ∈ I(1,M), i ∈ I(1,nr), a ∈ Ir
i (1,nu). We set n = ∑M

u=1 nu.

Definition 3.2.5

1. p−norm in R3n2
: Let z00

00 ∈R3n2
be an arbitrary vector defined in (3.2.18), where zru

ia =(zru0
ia1 ,z

ru0
ia2 ,z

ru0
ia3 )

T

whenever r,u ∈ I(1,M), i ∈ I(1,nr), a ∈ Ir
i (1,nu). The p−norm on R3n2

is defined as follows

||z00
00||p =

(
M

∑
r=1

M

∑
u=1

nr

∑
i=1

nu

∑
a=1

3

∑
j=1

|zru0
ia j |p

) 1
p

(3.2.19)

whenever 1 ≤ p < ∞, and

z̄ ≡ ||z00
00||p = max

1≤r,u≤M,1≤i≤nr,1≤a≤nu,1≤ j≤3
|zru0

ia j |, (3.2.20)

whenever p = ∞. Let

k
¯
≡ k00

00min = min
1≤r,u≤M,1≤i≤nr,1≤a≤nu

|kru
ia |. (3.2.21)

2. Closed Ball in R3n2
: Let z∗00

00 ∈ R3n2
be fixed. The closed ball in R3n2

with center at z∗00
00 and

radius r > 0 denoted B̄R3n2 (z∗00
00 ;r) is the set

B̄R3n2 (z∗00
00 ;r) = {z00

00 ∈ R3n2
: ||z00

00 − z∗00
00 ||p ≤ r} (3.2.22)
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3. Ito-Doob Differential: Let x ∈ R3n be a stochastic process described by the following equation

dx = f (x, t)dt +g(x, t)dω (3.2.23)

where ω is a Wiener process. Furthermore, let V ∈ C 2,1(R3n,R+). The Ito-Doob stochastic differ-

ential of V with respect to (3.2.23) is given by

dV =Vtdt +Vxdx+
1
2

dxTVxxdx, (3.2.24)

where Vt ,Vx and Vxx are the first and second order differentials of V respectively.

3.3 Model Validation Results

We now show that the initial value problem associated with the system (3.2.15)-(3.2.17) has a unique

solution. We observe that the rate functions of the system are nonlinear and locally Lipschitz con-

tinuous with respect to x00
00 but do not satisfy the linear growth condition. As a result of this the

classical existence and uniqueness results[59] are not applicable. Therefore, we use the Lyapunov

energy function method (cf.[50, 51, 59, 60]) to prove the existence and uniqueness of solution pro-

cess of the system. We first state and prove two lemmas that are useful for the proof of the ex-

istence and uniqueness result. From (3.2.15)-(3.2.17), define the vector y00
00 ∈ Rn2

as follows: For

i ∈ I(1,nr), l ∈ Ir
i (1,nq),r ∈ I(1,M) and q ∈ Ir(1,M),

yru
ia = Sru

ia + Iru
ia +Rru

ia ∈ R+ = [0,∞)

yru
i0 = (yru

i1 ,y
ru
i2 , . . . ,y

ru
i,nu)

T ∈ Rnu
+ ,

yru
00 = (yruT

10 ,yruT
20 , . . . ,yruT

nr0 )
T ∈ Rnrnu

+ ,

yr0
00 = (yr1T

00 ,yr2T
00 , . . . ,yrMT

00 )T ∈ Rnr ∑M
u=1 nu

+ ,

y00
00 = (y10T

00 ,y20T
00 , . . . ,yM0T

00 )T ∈ R(∑M
r=1 nr)(∑M

u=1 nu)
+ , (3.3.25)
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and obtain

dyrq
il =



[
Br

i +∑nr
k ̸=i ρrr

ik yrr
ik +∑M

q ̸=r ∑nq
a=1 ρrq

ia yrq
ia − (γr

i +σr
i +δr

i )y
rr
ii −dr

i Irr
ii
]
dt,

f or q = r, l = i[
σrr

i j y
rr
ii − (ρrr

i j +δr
j)y

rr
i j −dr

jI
rr
i j
]
dt, f orq = r,a = j and i ̸= j,[

γrq
il yrr

ii − (ρrq
il +δq

l )y
rq
il −dq

l Irq
il

]
dt, f or q ̸= r,yrq

il (t0)≥ 0,

(3.3.26)

In the following, we show that the solution process of the initial value problem (3.3.26) is nonnega-

tive. That is for all t ≥ 0, yru
ia (t)≥ 0 is nonnegative, whenever yru

ia (t0)≥ 0.

Lemma 3.3.1 Let r,u ∈ I(1,M), i ∈ Ir(1,nr) and a ∈ Ir
i (1,nu). For all t ≥ t0, from (3.3.25), if

yru
ia (t0)≥ 0, then yru

ia (t)≥ 0.

Proof:

It follows from (3.3.25) and (3.2.15)-(3.2.17) that the system (3.3.26) is of the form u
′
=A(t,u)w(t,u),u(t0)≥

0, in [[33],equation (8)] and satisfies the quasimonotonicity condition. Furthermore, from Remark 4

in [33], we assert that this system (3.3.26) has nonnegative solutions whenever yrq
il (0) ≥ 0, ∀i ∈

I(1,nr), l ∈ Ir
i (1,nq),r ∈ I(1,M), and q ∈ Ir(1,M).

Remark 3.3.1 From the decomposition described in (3.2.1), we observe that yru
ia (t)=Nru

ia = Sru
ia (t)+

Iru
ia (t)+Rru

ia (t). Furthermore, that Nrr
i0 = ∑M

u=1 ∑nu
a=1 yru

ia . Therefore, Lemma 3.3.1 established that for

any nonnegative initial endemic population, the number of residents of site sr
i present at home, yrr

ii ,

or visiting any given site sru
ia in any other region Cu, yru

ia , is nonnegative. This implies that the total

population of residents of site sr
i present at home and also visiting sites in regions in their intra

and intra-regional accessible domains, Nrr
i0 (t), is nonnegative. Moreover, Lemma 3.3.1 exibits that

the effective population at any site in any region given by (3.2.3) is nonnegative at all time t ≥ t0.

Furthermore, Rn2

+ = {y ∈ Rn2
: y ≥ 0} is a self-invariant set with respect to (3.3.26).

In the following lemma, we use Lemma 3.3.1 to find an upper bound for the solution process of

(3.2.15)-(3.2.17)
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Lemma 3.3.2 Let µ = min1≤u≤M,1≤a≤nu(δu
a). If

M

∑
r=1

M

∑
u=1

nr

∑
i=1

nu

∑
a=1

yru
ia (t0)≤

1
µ

M

∑
r=1

nr

∑
i=1

Br
i , (3.3.27)

then
M

∑
r=1

M

∑
u=1

nr

∑
i=1

nu

∑
a=1

yru
ia (t)≤

1
µ

M

∑
r=1

nr

∑
i=1

Br
i , f or t ≥ 0,a.s. (3.3.28)

Proof:

From 3.3.25, define

M

∑
r=1

M

∑
u=1

nr

∑
i=1

nu

∑
a=1

dyru
ia =

M

∑
r=1

nr

∑
i=1

[
dyrr

ii +
nr

∑
a ̸=i

dyrr
ia +

M

∑
u̸=r

nr

∑
a=1

dyru
ia

]
(3.3.29)

From (3.2.15)-(3.2.17) and (3.3.29), one can see that

M

∑
r=1

M

∑
u=1

nr

∑
i=1

nu

∑
a=1

dyru
ia =

[
M

∑
r=1

nr

∑
i=1

Br
i −

M

∑
r=1

nr

∑
i=1

M

∑
u=1

nu

∑
a=1

(δu
ayru

ia +du
aIru

ia )

]
dt (3.3.30)

From lemma 3.3.1, and (3.3.30), we have

d

{
M

∑
r=1

M

∑
u=1

nr

∑
i=1

nu

∑
a=1

yru
ia

}
≤

[
M

∑
r=1

nr

∑
i=1

Br
i −µ

M

∑
r=1

nr

∑
i=1

M

∑
u=1

nu

∑
a=1

yru
ia

]
dt (3.3.31)

for a nonnegative differential of t. We note that(3.3.31) is a first order deterministic differential

inequality[59], and its solution is given by

M

∑
r=1

M

∑
u=1

nr

∑
i=1

nu

∑
a=1

yru
ia (t)≤

1
µ

M

∑
r=1

nr

∑
i=1

Br
i +

[
M

∑
r=1

nr

∑
i=1

M

∑
u=1

nu

∑
a=1

yru
ia (t0)

]
e−µt (3.3.32)

Therefore, (3.3.28) is satisfied provided (3.3.27) is valid.

Remark 3.3.2 From Lemma 3.3.2, we conclude that a closed ball in R3n2
under the sum norm with

radius r = 1
µ ∑M

r=1 ∑nr
i=1 Br

i is self-invariant with regard to a two-scale network dynamic of human

epidemic process that is under the influence of human mobility process[30].

Prior to presenting the model validation result, we need to establish an auxiliary result. this result

provides a fundamental tool in the context of the energy Lyapunov function approach.
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Lemma 3.3.3 Let us assume that the hypotheses of Lemma 3.3.2 be satisfied. Let V be a function

defined by V : R3n2

+ ×R+ → R̄+ as follows

V (x00
00) =

M

∑
r=1

nr

∑
i=1

M

∑
u=1

nu

∑
a=1

V ru
ia (xru

ia ), (3.3.33)

where

V ru
ia (xru

ia ) = [(Sru
ia −1− logSru

ia )+(Iru
ia −1− logIru

ia )+(Rru
ia −1− logRru

ia )] . (3.3.34)

Furthermore, let us denote

M00
001 = max

1≤r,q≤M,q̸=r,1≤l≤nq
1+

Srq
il

Irq
il
,

M00
002 = max

1≤r,q≤M,q̸=r,1≤l≤nq
1+

(Srq
il )

2

(Irq
il )

2 ,

N00
00 = max

1≤r,q≤M,q̸=r,1≤l≤nq
1+Srq

il ,

β000
000 = max

1≤r,q,u≤M,q̸=r,1≤l,a≤nq,u
βurq

ail

v000
000 = max

1≤r,q,u≤M,q̸=r,1≤l,a≤nq,u
vurq

ail

(ρ00
00,α

0
0,δ

0
0,d

0
0 ,σ

00
i0 ,ρ

0
0) = max

1≤r,u≤M,1≤a≤nu
(ρru

ia ,α
u
a,δ

u
a,d

u
a ,σ

ru
ia ,ρ

u
a), (3.3.35)

Then there exists K̃ > 0 such that

dV (x00
00)≤ K̃dt +

M

∑
r=1

nr

∑
i=1

M

∑
u=1

nu

∑
a=1

M

∑
v=1

nv

∑
b=1

(
1− Sru

ia
Iru
ia

)
vurv

aib Ivu
badwurv

aib (3.3.36)

Proof:

For r,u ∈ I(1,M), i ∈ Ir(1,nr) and a ∈ Ir
i (1,nu), under the assumptions of Lemma 3.3.2, and the

definitions of Su
ia, Iu

ia and Ru
ia, the function defined in (3.3.33) belongs to V ∈ C2,1(R3n2

+ ×R+, R̄+).

Moreover, we rewrite (3.3.33) as

V (x00
00) =

M

∑
r=1

nr

∑
i=1

M

∑
u=1

nu

∑
a=1

V ru
ia (x00

00),

=
M

∑
r=1

nr

∑
i=1

{
V rr

ii (x
00
00)+

nr

∑
a̸=i

V rr
ia (x

00
00)+

M

∑
u ̸=r

nu

∑
a=1

V ru
ia (x00

00)

}
, (3.3.37)
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where

V ru
ia (x00

00) = (Sru
ia −1− logSru

ia )+(Iru
ia −1− logIru

ia )+(Rru
ia −1− logRru

ia ). (3.3.38)

From (3.3.37) and (3.3.38), it follows that

dV (x00
00) =

M

∑
r=1

nr

∑
i=1

{
dV rr

ii (x
00
00)+

nr

∑
a ̸=i

dV rr
ia (x

00
00)+

M

∑
u ̸=r

nu

∑
a=1

dV ru
ia (x00

00)

}
, (3.3.39)

where

dV ru
ia (x00

00) =

[(
1− 1

Sru
ia

)
dSru

ia +
1

2(Sru
ia )

2 (dSru
ia )

2
]
+

[(
1− 1

Iru
ia

)
dIru

ia +
1

2(Iru
ia )

2 (dIru
ia )

2
]

+

[(
1− 1

Rru
ia

)
dRru

ia +
1

2(Rru
ia )

2 (dRru
ia )

2
]
. (3.3.40)

In the following, by considering positive differential of t (0 < ∆t ≈ dt), using the nature of the rate

coefficients of (3.2.15)-(3.2.17) and definitions (3.3.35), we carefully estimate the three terms in the

righthand side of (3.3.40). This is achieved by the usage of nested argument process.

Site level: the estimates on terms in the righthand side of (3.3.40) for the case of u = r, and a = i

[(
1− 1

Srr
ii

)
dSrr

ii +
1

2(Srr
ii )

2 (dSrr
ii )

2
]

≤

{
Br

i +
nr

∑
b=1

ρrr
ibSrr

ib +
M

∑
v ̸=r

nv

∑
b=1

ρrv
ibSrv

ib +ηr
i I

rr
ii +αr

i R
rr
ii +(γr

i +σr
i +δr

i +dr
i )

+
M

∑
v=1

nv

∑
b=1

βrrv
iib Ivr

bi +
1
2

M

∑
v=1

nv

∑
b=1

(vrrv
iib )

2(Ivr
bi )

2

}
dt +

[
(1−Srr

ii )
M

∑
v=1

nv

∑
b=1

vrrv
iib Ivr

bi dwrrv
iib

]
, (3.3.41)

[(
1− 1

Irr
ii

)
dIrr

ii +
1

2(Irr
ii )

2 (dIrr
ii )

2
]

≤

{
nr

∑
b=1

ρrr
ibIrr

ib +
M

∑
v ̸=r

nv

∑
b=1

ρrv
ib Irv

ib +(ρr
i +ηr

i + γr
i +σr

i +δr
i +dr

i )+
M

∑
v=1

nv

∑
b=1

βrrv
iib

Srr
ii Ivr

bi
Irr
ii

+
1

2(Irr
ii )

2 (S
rr
ii )

2
M

∑
v=1

nv

∑
b=1

(vrrv
iib )

2(Ivr
bi )

2

}
dt +

(
Srr

ii −
Srr

ii

Irr
ii

)[ M

∑
v=1

nv

∑
b=1

vrrv
iib Ivr

bi dwrrv
iib

]
, (3.3.42)
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and

(
1− 1

Rrr
ii

)
dRrr

ii ≤

[
nr

∑
b=1

ρrr
ibRrr

ib +
M

∑
v ̸=r

nv

∑
b=1

ρrv
ibRrv

ib +ρr
i I

rr
ii +(γr

i +αr
i +σr

i +δr
i +dr

i )

]
dt.

(3.3.43)

Regional Level: The estimated on terms in the righthand side of (3.3.40) for the case of u = r and

a ̸= i:

nr

∑
a ̸=i

[(
1− 1

Srr
ia

)
dSrr

ia +
1

2(Srr
ia)

2 (dSrr
ia)

2
]

≤
nr

∑
a ̸=i

{[
σrr

iaSrr
ii +ηr

aIrr
ia +αr

aRrr
ia +

M

∑
v=1

nv

∑
b=1

βrrv
aibIvr

ba

+(σrr
ia +δr

a +dr
a)

+
1
2

(
M

∑
v=1

nv

∑
b=1

(vrrv
aib)

2(Ivr
bi )

2

)]
dt

+ (1−Srr
ia)

M

∑
v=1

nv

∑
b=1

vrrv
aibIvr

bi dwrrv
aib

}
, (3.3.44)

nr

∑
a ̸=i

[(
1− 1

Irr
ia

)
dIrr

ia +
1

2(Irr
ia )

2 (dIrr
ia )

2
]

≤
nr

∑
a ̸=i

{[
σrr

iaIrr
ii +

M

∑
v=1

nv

∑
b=1

βrrv
aibSrr

iaIvr
ba

+ (ρr
a +ηr
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(3.3.45)

and
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∑
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Interregional Level: the estimate on terms in the righthand side of (3.3.40) for the case of u ̸= r,

a ∈ I(1,nu):
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(3.3.48)

and
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From (3.3.40) and (3.3.41)-(3.3.43), the first term in the righthand side of (3.3.37) can be estimated

as follows:
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(3.3.50)

From Lemma 3.3.2, (3.3.50) becomes
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where
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Similarly from (3.3.40) and (3.3.44)-(3.3.46) the second term in the righthand side of (3.3.37) is

estimated as
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Again from and Lemma 3.3.2, the above random differential inequality reduces to
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(3.3.55)

Finally from (3.3.37), (3.3.40) and (3.3.47)-(3.3.49), the third term in (3.3.37) is estimated as below

we get
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By using Lemma 3.3.2, differential inequality (3.3.57) becomes
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Hence, from (3.3.51), (3.3.54) and (3.3.57), we arrive at the following stochastic differential in-

equality
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Therefore choosing K̃ = K̃1 + K̃2 + K̃3 > 0, and combining the last three summations, concludes the

proof of the theorem. We now show the existence of a unique solution of the system (3.2.15)-(3.2.17)

in the following theorem.

Theorem 3.3.4 Given any initial condition x00
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+ under the assumptions of Lemma 3.4.1,
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τk(t) = min{t,τk}, f or t ≥ t0. (3.3.63)
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where k is defined in (3.3.61). Furthermore, we set in f∅ = ∞. It follows from (3.3.63) that τk

increases as k → ∞. We let τ∞ = limk→∞ τk. From (3.3.63) it implies that

τ∞ ≤ te a.s. (3.3.64)

Therefore to show te = ∞, we only show that τ∞ = ∞ a.s.

On the contrary suppose τ∞ < ∞, then ∃T > 0, such that for a given 0 < ε < 1, P(τ∞ ≤ T )> ε.

This means that {τk} is a finite sequence. Moreover, from the definition of a finite sequence there

exists a vector k100
00 ∈ Rn2

, with k100
00min ≡ k1 ≥ k0, ( where k1 ≡ k100

00min is defined by (3.3.61) and

(3.3.60),)

P(τk ≤ T )≥ ε, (3.3.65)

whenever k ≥ k1. From (3.3.38), (3.3.37) can be rewritten as

V (x00
00) =

M

∑
r=1

nr

∑
i=1

M

∑
u=1

nu

∑
a=1

[(Sru
ia −1− logSru

ia )+(Iru
ia −1− logIru

ia )

+(Rru
ia −1− logRru

ia )] . (3.3.66)

From Lemma 3.3.2& 3.3.3, the stopped solution process (3.2.15)-(3.2.17) satisfies the following

stochastic inequality for some K̃ > 0.

dV (x00
00(t))≤ K̃dt +

M

∑
r=1

nr

∑
i=1

M

∑
u=1

nu

∑
a=1

M

∑
v=1

nv

∑
b=1

(
1− Sru

ia
Iru
ia

)
vurv

aib Ivu
badwurv

aib (3.3.67)

Furthermore, for ∀t1 ≤ T , integrating both sides of (3.3.67) on [t0, t1 ∧ τk], and taking the expected

values of both sides, it implies that

E(V (x00
00(t1 ∧ τk))) ≤ V (x00

00(t0))+ K̃(t1 ∧ τk)

≤ V (x00
00(t0))+ K̃T (3.3.68)

Given that k ≥ k1, we set Ek = {τk ≤ T}. Then from (3.3.65), we see that P(Ek)≥ ε. If ω ∈ Ek, then

ω is an event at the stopping time where at least one of Sru
ia (τk,ω), Iru

ia (τk,ω), or Rru
ia (τk,ω) whenever
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r,u ∈ I(1,M), i ∈ I(1,nr) and a ∈ I(1,nu) is 1
||k00

00||∞
or k ≡ kmin. This implies from (3.3.66) that

V (x00
00(τk,ω))≥ [kmin −1− logkmin]∧

[
1

||k00
00||∞

−1− log||k00
00||∞

]
,∀ω ∈ Ek. (3.3.69)

It follows from (3.3.68) and (3.3.69) that

V (x00
i0 (t0))+ K̃T ≥ E(IEk(ω)V (x00

00(τk,ω)))

≥ ε
{
[kmin −1− logkmin]∧

[
1

||k00
00||∞

−1− log||k00
00||∞

]}
,

(3.3.70)

where IEk(ω) is the indicator function of Ek.

Hence as k = kmin →∞, (3.3.70) implies that V (x00
00(t0))+K̃T →∞ which leads to a contradiction

to the existence of a local solution. Therefore, we must have τ∞ = ∞, and the rest of the proof

follows.

Remark 3.3.3 For any r ∈ I(1,M) and i ∈ I(1,nr), Lemmas 3.3.1, 3.3.2, 3.3.3 and Theorem 3.3.4

show that there exists a positive self-invariant set for system (3.2.15)-(3.2.17) given by

A =

{
(Sru

ia , I
ru
ia ,R

ru
ia ) : yru

ia (t)≥ 0 and
M

∑
r=1

M

∑
u=1

nr

∑
i=1

nu

∑
a=1

yru
ia (t)≤

1
µ

M

∑
r=1

nr

∑
i=1

Br
i

}
(3.3.71)

whenever u ∈ Ir(1,M) and a ∈ Ir
i (1,nu). We shall denote

B̄ ≡ 1
µ

M

∑
r=1

nr

∑
i=1

Br
i (3.3.72)

3.4 Existence and Asymptotic Behavior of Disease Free Equilibrium

In this section, we study the existence and the asymptotic behavior of the disease free equilibrium

state of the system (3.2.15)-(3.2.17). The disease free equilibrium is obtained by solving the system

of algebraic equations obtained by setting the drift and the diffusion parts of the system of stochastic

differential equations to zero. In addition, conditions that I = R = 0 in the event when there is no

disease in the population. We summarize the results as follows.
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For any r,u ∈ I(1,M), i ∈ I(1,nr) and a ∈ I(1,nu), let

Dr
i = γr

i +σr
i +δr

i −
nr

∑
a=1

ρrr
iaσrr

ia

ρrr
ia +δr

a
−

M

∑
u̸=r

nu

∑
a=1

ρrr
iaγru

ia
ρru

ia +δu
a
> 0. (3.4.73)

Furthermore, let (Sru∗
ia , Iru∗

ia ,Rru∗
ia ), be the equilibrium state of the system (3.2.15)-(3.2.17). One can

see that the disease free equilibrium state is given by Eru
ia = (Sru∗

ia ,0,0), where

Sru∗
ia =


Br

i
Dr

i
, f or u = r,a = i,

Br
i

Dr
i

σrr
i j

ρrr
i j+δr

j
, f or u = r,a ̸= i,

Br
i

Dr
i

γru
ia

ρru
ia+δu

a
, f or u ̸= r.

(3.4.74)

The asymptotic stability property of Eru
ia will be established by verifying the conditions of the

stochastic version of the Lyapunov second method given in [[34],Theorem 2.4],[59], and [[34],Theorem

4.4],[59] respectively. In order to study the qualitative properties of (3.2.15)-(3.2.17) with respect

to the equilibrium state (Sru∗
ia ,0,0), first, we use the change of variable. For this purpose, we use the

following transformation: 
U ru

ia = Sru
ia −Sru∗

ia

V ru
ia = Iru

ia

W ru
ia = Rru

ia .

(3.4.75)

By employing this transformation, system (3.2.15)-(3.2.17) is transformed into the following forms

dU rq
il =



[
∑M

q ̸=r ∑nq
a=1 ρrq

iaU rq
ia +ηr

iV
rr
ii +αr

iW
rr
ii

−(γr
i +σr

i +δr
i )U

rr
ii −∑M

u=1 ∑nu
a=1 βrru

iia (S
rr∗
ii +U rr

ii )V
ur
ai
]
dt

−
[

∑M
u=1 ∑nu

a=1 vrru
iia (S

rr∗
ii +U rr

ii )V
ur
ai dwrru

iia (t)
]
, f or q = r, l = i[

σrr
i jU

rr
ii +ηr

jV
rr
i j +αr

jW
rr
i j − (ρrr

i j +δr
j)U

rr
i j −∑M

u=1 ∑nu
a=1 βrru

jia(S
rr∗
i j +U rr

i j )V
ur
a j
]
dt

−
[

∑M
u=1 ∑nu

a=1 vrru
jia(S

rr∗
i j +U rr

i j )V
ur
a j dwrru

jia(t)
]
, f or q = r, l = j, j ̸= i,[

γrq
il U rr

ii +ηq
l V rq

il +αq
l W rq

il − (ρrq
il +δq

l )U
rq
il

−∑M
u=1 ∑nu

a=1 βqru
lia Srq

il Iuq
al

]
dt −

[
∑M

u=1 ∑nu
a=1 vqru

lia (S
rq∗
il +U rq

il )V
uq
al dwqru

lia (t)
]
,

f or q ̸= r,
(3.4.76)
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dV rq
il =



[
∑M

q=1 ∑nq
a=1 ρrq

iaV rq
ia − (ηr

i +ρr
i + γr

i +σr
i +δr

i +dr
i )W

rr
ii

+∑M
u=1 ∑nu

a=1 βrru
iia (S

rr∗
ii +U rr

ii )V
ur
ai
]
dt

+
[

∑M
u=1 ∑nu

a=1 vrru
iia (S

rr∗
ii +U rr

ii )V
ur
ai dwrru

iia (t)
]
, f or q = r, l = i[

σrr
i jV

rr
ii − (ηr

j +ρr
j +ρrr

i j +δr
j +dr

j)V
rr
i j +∑M

u=1 ∑nu
a=1 βrru

jia(S
rr∗
i j +U rr

i j )V
ur
a j
]
dt

+
[

∑M
u=1 ∑nu

a=1 vrru
jia(S

rr∗
i j +U rr

i j )V
ur
a j dwrru

jia(t)
]
, f or q = r, l = j, j ̸= i,[

γrq
il V rr

ii − (ηq
l +ρq

l +ρrq
il +δq

l +dq
l )V

rq
il

∑M
u=1 ∑nu

a=1 βqru
lia (S

rq∗
il +U rq

il )V
uq
al

]
dt +

[
∑M

u=1 ∑nu
a=1 vqru

lia (S
rq∗
il +U rq

il )V
uq
al dwqru

lia (t)
]
,

f or q ̸= r,
(3.4.77)

and

dW rq
il =


[

∑M
q̸=r ∑nq

l=1 ρrq
il W rq

il +ρr
iV

rr
ii − (γr

i +σr
i +αr

i +δr
i )W

rr
ii
]
dt, f or q = r, l = i[

σrr
i jW

rr
ii +ρr

jV
rr
i j − (ρrr

i j +αr
j +δr

j)W
rr
i j
]
dt, f or q = r, l = j, j ̸= i[

γrq
il W rr

ii +ρq
l V rq

il − (ρrq
il +αq

l +δq
l )W

rq
il

]
dt, f or q ̸= r

(3.4.78)

We state and prove the following lemmas that would be useful in the proofs of the stability results.

Lemma 3.4.1 Let V : R3n2 ×R+ → R+ be a function defined by

V (x̃00
00) =

M

∑
r=1

M

∑
u=1

nr

∑
i=1

nu

∑
a=1

V (x̃ru
ia ), (3.4.79)

where,

V (x̃ru
ia ) = (Sru

ia −Sru∗
ia + Iru

ia )
2 + cru

ia (I
ru
ia )

2 +(Rru
ia )

2 (3.4.80)

x̃00
00 = (U ru

ia ,V
ru
ia ,W ru

ia )T and cru
ia ≥ 0.

Then V ∈ C 2,1(R3n2 ×R+,R+), and it satisfies

b(||x̃00
00||) ≤ V (x̃00

00(t))≤ a(||x̃00
00||) (3.4.81)
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where

b(||x̃00
00||) = min

1≤r,u≤M,1≤i≤nr,1≤a≤nu

{
cru

ia
2+ cru

ia

} M

∑
r=1

M

∑
u=1

nr

∑
i=1

nu

∑
a=1

[
(U ru

ia )
2 +(V ru

ia )2 +(W ru
ia )2]

a(||x̃00
00||) = max

1≤r,u≤M,1≤i≤nr,1≤a≤nu
{cru

ia +2}
M

∑
r=1

M

∑
u=1

nr

∑
i=1

nu

∑
a=1

[
(U ru

ia )
2 +(V ru

ia )2 +(W ru
ia )2] .

(3.4.82)

Proof: From (3.4.78), (3.4.79) can be written as

V (xru
ia ) = (U ru

ia +V ru
ia )2 + cru

ia (V
ru
ia )2 +(W ru

ia )2

= (U ru
ia )

2 +2U ru
ia V ru

ia +(cru
ia +1)(V ru

ia )2 +(W ru
ia )2

= (U ru
ia )

2 +(cru
ia +1)(V ru

ia )2 +2

 1√
1+ cru

ia
2

U ru
ia

(√1+
cru

ia
2

V ru
ia

)
+(W ru

ia )2

=

(
− 1

1+ cru
ia
2

+1

)
(U ru

ia )
2 +

(
−
(

1+
cru

ia
2

)
+ cru

ia +1
)
(V ru

ia )2 +(W ru
ia )2

+

 1√
1+ cru

ia
2

U ru
ia

+

(√
1+

cru
ia
2

V ru
ia

)2

Therefore, by nothing the fact that min{1− 1

1+
cru
ia
2

,
cru

ia
2 ,1}, we have

V (xru
ia ) ≥ cru

ia
2+ cru

ia

[
(U ru

ia )
2 +(V ru

ia )2 +(W ru
ia )2] (3.4.83)

Hence from (3.4.83) we have

V (x̃00
00) ≥

M

∑
r=1

M

∑
u=1

nr

∑
i=1

nu

∑
a=1

cru
ia

2+ cru
ia

[
(U ru

ia )
2 +(V ru

ia )2 +(W ru
ia )2)

]
≥ b(||x̃00

00||). (3.4.84)
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On the other hand, it follows from (3.4.79) that

V (xru
ia ) = (U ru

ia )
2 +2U ru

ia V ru
ia +(cru

ia +1)(V ru
ia )2 +(W ru

ia )2

≤ 2(U ru
ia )

2 +(cru
ia +2)(V ru

ia )2 +(W ru
ia )2

≤ (cru
ia +2)

[
(U ru

ia )
2 +(V ru

ia )2 +(W ru
ia )2] (3.4.85)

Thus, from (3.4.83) and (3.4.85) we have

V (x00
00(t)) ≤

M

∑
r=1

M

∑
u=1

nr

∑
i=1

nu

∑
a=1

(cru
ia +2)

[
(U ru

ia )
2 +(V ru

ia )2 +(W ru
ia )2]

≤ a(||x̃00
00||) (3.4.86)

Therefore from (3.4.79), (3.4.84) and (3.4.86), we establish the desired inequality.

Remark 3.4.1 Lemma 3.4.1 shows that the Lyapunov function V defined in (3.4.79) is positive

definite((3.4.84)), decrescent and radially unbounded ((3.4.86)) function[34, 59].

We now state the following lemma

Lemma 3.4.2 Assume that the hypothesis of Lemma 3.4.1 are satisfied. For each r,u,v ∈ I(1,M),

i ∈ I(1,nr), a ∈ I(1,nu) and b ∈ I(1,nv), let

dur
ai =

M

∑
v=1

nr

∑
b=1

cvu
ba

[
βuvr

abi(
Svu∗

ba
µvu

ba
+

B̄2

µvu
ba
)+(vuvr

abi)
2(Svu∗

ba + B̄)2
]
. (3.4.87)

for some positive numbers cru
ia . Furthermore, let

Uru
ia =



[
2∑M

u=1 ∑nu
a=1 µru

ia+∑M
u ̸=r ∑nr

a=1
(γru

ia )2

µrr
ii

+∑nr
a ̸=i

(σrr
ia )

2

µrr
ii

+ 3
2 µrr

ii

]
(γr

i+σr
i+δr

i )
f or u = r, i = a[

(ρrr
ia )

2

µrr
ia

+µrr
ii +

3
2 µrr

ia

]
(ρrr

ia+δr
a)

, f or u = r,a ̸= i[
(ρru

ia )2

µru
ia

+µrr
ii +

3
2 µru

ia

]
(ρru

ia+δu
a)

, f or u ̸= r,

(3.4.88)

Vru
ia =


∑M

u=1 ∑nu
a=1

1
2 µru

ia+∑M
v=1 ∑nv

b=1
1
2 βrrv

iib (S
rr∗
ii +µrr

ii )+
1
2 drr

ii
ηr

i+ρr
i+γr

i+σr
i+δr

i+dr
i

, f or a = i,u = r
1
2 µrr

ii +∑M
v=1 ∑nv

b=1
1
2 βrrv

aib(S
rr∗
ia +µrr

ia)+
1
2 drr

ai
ηr

a+ρr
a+ρrr

ia+δr
a+dr

a
, f or a ̸= i,u = r

1
2 µrr

ii +∑M
v=1 ∑nv

b=1
1
2 βurv

aib (S
ru∗
ii +µru

ia )+
1
2 dur

ai
ηu

a+ρu
a+ρru

ia+δu
a+du

a
, f or u ̸= r.

(3.4.89)
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and

Wru
ia =



[
1
2 ∑M

u=1 ∑nu
a=1 µru

ia+
1
2 µrr

ii +
1
2 ∑nr

a̸=i
(σrr

ia )
2

µrr
ii

+ 1
2 ∑M

u ̸=r ∑nr
a=1

(γru
ia )2

µrr
ii

+
(αr

i )
2

µrr
ii

]
(γr

i+σr
i+αr

i+δr
i )

, f or u = r,a = i,[
1
2
(ρrr

ia )
2

µrr
ia

+ 1
2 µrr

ii +
1
2 µrr

ia+
(αr

a)
2

µrr
ia

]
(ρrr

ia+αr
a+δr

a)
, f or u = r,a ̸= i,[

1
2
(ρru

ia )2

µru
ia

+ 1
2 µrr

ii +
1
2 µru

ia+
(αu

a)
2

µru
ia

]
(ρru

ia+αu
a+δu

a)
, f or u ̸= r

(3.4.90)

for some suitably defined positive number µru
ia , depending on δu

a, for all r,u ∈ Ir(1,M), i ∈ I(1,n)

and a ∈ Ir
i (1,nr). Assume that Uru

ia ≤ 1, Vru
ia < 1 and Wru

ia ≤ 1. There exist positive numbers ϕru
ia ,

ψru
ia and φru

ia such that the differential operator LV associated with Ito-Doob type stochastic system

(3.2.15)-(3.2.17)satisfies the following inequality

LV (x̃00
00) ≤

M

∑
r=1

nr

∑
i=1

[
−[ϕrr

ii (U
rr
ii )

2 +ψrr
ii (V

rr
ii )

2 +φrr
ii (W

rr
ii )

2]

−
nr

∑
a ̸=i

[ϕrr
ia(U

rr
ia )

2 +ψrr
ia(V

rr
ia )

2 +φrr
ia(W

rr
ia )

2]

−
M

∑
u̸=r

nu

∑
a=1

[ϕru
ia (U

rr
ia )

2 +ψru
ia (V

ru
ia )2 +φru

ia (W
ru
ia )2]

]
. (3.4.91)

Moreover,

LV (x̃00
00) ≤ −cV (x̃00

00) (3.4.92)

where a positive constant c is defined by

c =
min1≤r,u≤M,1≤i≤nr,1≤a≤nu(ϕru

ia ,ψru
ia ,φru

ia )

max1≤r,u≤M,1≤i≤nr,1≤a≤nu {Cru
ia +2}

(3.4.93)

Proof:

The computation of differential operator[59, 34] applied to the Lyapunov function V in (3.4.79) with

respect to the large-scale system of Ito-Doob type stochastic differential equation (3.2.15)-(3.2.17)

70



is as follows:

LV (x̃rr
ii ) = 2

M

∑
u=1

nu

∑
a=1

[(1+Crr
ii )ρ

ru
iaV ru

ia V rr
ii +ρru

iaU ru
ia U rr

ii +ρru
iaV ru

ia U rr
ii +ρru

iaU ru
ia V rr

ii

+ρru
iaW ru

ia W rr
ii ]+2αr

iU
rr
ii W rr

ii +2(αr
i +ρr

i )V
rr
ii W rr

ii

−2[ρr
i +dr

i +2(γr
i +σr

i +δr
i )]V

rr
ii U rr

ii −2(γr
i +σr

i +δr
i )(U

rr
ii )

2

−2[crr
ii ηr

i +2(crr
ii +1)(ρr

i + γr
i +σr

i +δr
i +dr

i )](V
rr
ii )

2 −2(γr
i +σr

i +αr
i +δr

i )(W
rr
ii )

2

+2
M

∑
u=1

nu

∑
a=1

crr
ii βrru

iia (S
rr∗
ii +U rr

ii )V
ur
ai V rr

ii + crr
ii

M

∑
u=1

nu

∑
a=1

(vrru
iia )

2(Srr∗
ii +U rr

ii )
2(V ur

ai )
2,

f or u = r,a = i (3.4.94)

nr

∑
a̸=i

LV (x̃rr
ia) =

nr

∑
a̸=r

{2(1+ crr
ia)σ

rr
iaV rr

ia V rr
ii +2σrr

iaU rr
ia U rr

ii +2σrr
iaV rr

ia U rr
ii +2σrr

iaU rr
ia V rr

ii

+2σrr
iaW rr

ia W rr
ii

−2[crr
iaηr

a +2(crr
ia +1)(ρr

a +ρrr
ia +δr

a)](V
rr
ia )

2 −2(ρrr
ia +δr

a)(U
rr
ia )

2

−2(ρrr
ia +αr

a +δr
a)(W

rr
ia )

2 +2αr
aW rr

ia U rr
ia +2(αr

a +ρr
a)V

rr
ia W rr

ia

− 2[ρr
a +dr

a +2(ρrr
ia +δr

a)]V
rr
ia U rr

ia }+2
nr

∑
a ̸=r

M

∑
v=1

nv

∑
b=1

crr
iaβrrv

aib(S
rr∗
ia +U rr

ia )V
vr
baV rr

ia

+
nr

∑
a̸=r

crr
ia

M

∑
v=1

nv

∑
b=1

(vrrv
aib)

2(Srr∗
ia +U rr

ia )
2(V vr

ba )
2 , f or u = r, a ̸= i (3.4.95)

M

∑
u=1

nr

∑
a=1

LV (x̃ru
ia ) =

M

∑
u=1

nu

∑
a=1

{2(1+ cru
ia )γ

ru
iaV ru

ia V rr
ii +2γru

iaU ru
ia U rr

ii +2γru
iaV ru

ia U rr
ii +2γru

iaU ru
ia V rr

ii

+2γru
iaW ru

ia W rr
ii −2[cru

ia ηu
a +2(cru

ia +1)(ρu
a +ρru

ia +δu
a +du

a)](V
ru
ia )2

−2(ρru
ia +δu

a)(U
ru
ia )

2

−2(ρru
ia +αu

a +δu
a)(W

rr
ia )

2 +2αu
aW ru

ia U ru
ia +2(αu

a +ρu
a)V

ru
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By using (3.3.71) and the algebraic inequality

2ab ≤ a2

g(c)
+b2g(c) (3.4.97)

where a,b,c ∈ R, and the function g is such that g(c) ≥ 0. The sixth term in (3.4.94), (3.4.95) and

(3.4.96) is estimated as follows:
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(3.4.98)
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From (3.4.94), (3.4.95) and repeated usage of inequality (3.4.97) and (3.4.98) coupled with algebraic

manipulations and simplifications, we have the following inequality
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where µru
ia = gr

i (δu
a), gr

i is appropriately defined by (3.4.97).

For each r,u ∈ I(1,M), i ∈ I(1,nr), and a ∈ I(1,nu), using algebraic manipulations and (3.4.88),

(3.4.89) and (3.4.90), the coefficients of (U ru
ia )

2, (V ru
ia )2 and (W ru

ia )2 in (3.4.99) defined by ϕru
ia , ψru
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ia respectively:
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Under the assumptions on Uru
ia , Vru

ia and Wru
ia , it is clear that ϕru

ia ,ψru
ia and φru

ia are positive for suitable

choice of cru
ia defined in (3.4.80). We substitute (3.4.87), (3.4.100), (3.4.101) and (3.4.102) into

(3.4.99). Thus inequality (3.4.99) can be rewritten as

LV (x̃00
00) ≤

M

∑
r=1

nr

∑
i=1

−
{
[ϕrr

ii (U
rr
ii )

2 +ψrr
ii )(V

rr
ii )

2

φrr
ii (W

rr
ii )

2]+
nr

∑
a̸=r

[ϕrr
ia(U

rr
ia )

2 +ψrr
ia(V

rr
ia )

2

+φrr
ia(W

rr
ia )

2]+
M

∑
u ̸=r

nu

∑
a=1

[ϕru
ia (U

ru
ia )

2 +ψru
ia (V

ru
ia )2

+ φru
ia (W

ru
ia )2]

}
(3.4.102)

This proves the inequality (3.4.91). Now, the validity of (3.4.92) follows from (3.4.91), that is,

LV (x̃00
00)≤−cV (x̃00

00),

where c = min1≤r,u≤M,1≤i≤nr ,1≤a≤nu (ϕru
ia ,ψ

ru
ia ,φ

ru
ia )

max1≤r,u≤M,1≤i≤nr ,1≤a≤nu{Cru
ia +2} . This establishes the result.

We now formally state the stochastic stability theorems for the disease free equilibria.

Theorem 3.4.3 Given r,u ∈ I(1,M), i ∈ I(1,nr) and a ∈ I(1,nu). Let us assume that the hypotheses

of Lemma 3.4.2 are satisfied. Then the disease free solutions Eru
ia , are asymptotically stable in the

large. Moreover, the solutions Eru
ia are exponentially mean square stable.

Proof:

From the application of comparison result[34, 59], the proof of stochastic asymptotic stability fol-
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lows immediately Moreover, the disease free equilibrium state is exponentially mean square stable.

We now consider the following corollary to Theorem 3.4.3.

Corollary 3.4.4 Let r ∈ I(1,M) and i ∈ I(1,nr). Assume that σr
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and
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The equilibrium state Err
ii is stochastically asymptotically stable provided that Uru

ia ,W
ru
ia ≤ 1 and

Vru
ia < 1, for all u ∈ Ir(1,M) and a ∈ Ir

i (1,nu).

Proof: Follows immediately from the hypotheses of Lemma 3.4.2,( letting σr
i = γr

i = 0), the conclu-

sion of Theorem 3.4.3 and some algebraic manipulations.

Remark 3.4.2 The presented results about the two-level large scale SIRS disease dynamic model

depend on the underlying system parameters. In particular, the sufficient conditions are alge-

braically simple, computationally attractive and explicit in terms of the rate parameters. As a result

of this, several scenarios can be discussed and exhibit practical course of action to control the dis-

ease. For simplicity, we present an illustration as follows: the conditions of σr
i = γr

i = 0,∀r, i in

Corollary 3.4.4 signify that the arbitrary site sr
i is a sink[28, 29] for all other sites in the inter and

intra-regional accessible domain. This scenario is displayed in Figure 7.1. The condition Uru
ia ≤ 1

exhibits that the average infectious period is smaller than the joint average life span of individuals

76



in the intra and inter-regional accessible domain of site sr
i . Furthermore, the condition Vru

ia < 1 sig-

nifies that the magnitude of disease inhibitory processes for example, the magnitude of the recovery

process is greater than the disease transmission process. A future detailed study of the disease dy-

namics in the two scale network dynamic structure for many real life scenarios using the presented

two level large-scale SIRS disease dynamic model will appear elsewhere.

rC
qC

r

is

q

ls

q

ms
r

js

Figure 3.3: Shows that residents of site sr
i are present only at their home site sr

i . Hence they isolate

every site from their inter and intra reginal accessible domain C(sr
i ). Site sr

i is a ’sink’ in the context

of the compartmental system[28, 29]. The arrows represent a transport network between any two

sites and regions. Furthermore, the dotted lines and arrows indicate connection with other sites and

regions.

3.5 Conclusion

The recent high technological changes and scientific developments have led to many\ variant struc-

ture types inter-patch connections interactions in the global human population. This has further

afforded efficient mass flow of human beings, animals, goods and equipments between patches

thereby causing the appearance of new disease strains and infectious agents at non-endemic zones.

The two-scale network disease dynamic model formulation characterizes the dynamics of an SIRS

epidemic in a population with various scale levels created by the heterogeneities in the population.

Moreover, the disease dynamics is subject to random environmental perturbations at the disease

transmission stage of the disease. Furthermore, the SIRS epidemic has a proportional transfer to the

susceptible class immediately after the infectiousness.
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This work provides a mathematical and probabilistic algorithmic tool to develop different levels

nested type disease transmission rates as well as the variability in the transmission process in the

framework of the network-centric Ito-Doob type dynamic equations.

The model validation results are developed and a positively self invariant set for the dynamic

model is defined. Moreover, the globalization of the solution process existence is obtained via the

construction of the two-scale dynamic structure motivated Lypunov function. The detailed stochas-

tic asymptotic stability results of the disease free equilibrium are also exhibited in this chapter.

Moreover, the system parameter dependent threshold values controlling the stochastic asymptotic

stability of the disease free equilibrium are also defined. The presented analysis of Chapter 3 are

illustrated in a simple real life scenario.

We note that the disease dynamics is subject to random environmental perturbations from other

related processes such as the mobility, recovery, birth and death processes. The presented stochas-

tic epidemic dynamic model will be extended to the variability in the mobility, recovery and birth

and death processes in our further work. A further detailed study of the oscillation of the epidemic

process about the ideal endemic equilibrium of the dynamic epidemic model will also appear else

where.
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4 SIMULATION RESULTS FOR A TWO-SCALE STOCHASTIC NETWORK

SIR INFLUENZA EPIDEMIC DYNAMIC MODEL

4.1 The Two-Scale Hierarchic Population Structure and Special SIR Epidemic

Dynamic Process

By using the two scale human mobility model and the underlying human mobility dynamic structure

determined by the respective intra and interregional mobility data recorded in Tables 1& 2 in the

example of Chapter 2, and also the influenza pandemic simulation model in [35], we develop a two-

scale SIR influenza epidemic dynamic model. The compartmental framework for the SIR epidemic

model is exhibited in Figure 3.2 in Chapter 3 with the restrictions ηr
i = αr

i = 0,∀r ∈ I(1,M), i ∈

I(1,nr). Furthermore, the diagram illustrating the inter-patch connections in the example for two

scale dynamic epidemic model represented in this example is shown in Figure 2.1 in Chapter 2.

In the absence of intra and interregional mobility return rates, based on the mobility structure and

the probabilistic formulation of the mobility process, we simulate intra and interregional mobility

return rates. We display the intra and inter-regional mobility return rates in Table 4.1 and Table 4.2

respectively.
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Table 4.1: The intra-regional return rates of residents of sites in the two scale network of spatial

patches illustrated in Figure 2.1 are simulated based on the special human mobility pattern and the

probabilistic formulation for the mobility process. (cf.Chapter 1 or [30]).

(ρ11
12,ρ11

13,ρ11
21,ρ11

23) (0.000092504,0.000177496,0.164327,0.0001173)

(ρ11
31,ρ11

32) (0.013230408,0.001305838)

(ρ22
12,ρ22

13,ρ22
21,ρ22

23) (0.000092504,0.000177496,0.164327,0.0001173)

(ρ22
31,ρ22

32) (,0.013230408,0.001305838)

(ρ33
12,ρ

33
13,ρ

33
21,ρ

33
23) (0.000092504,0.000177496,0.164327,0.0001173)

(ρ33
31,ρ

33
32) (0.013230408,0.001305838)
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Table 4.2: The inter-regional return rates of residents of sites in the two scale network of spatial

patches illustrated in Figure 2.1 are simulated based on the mobility structure and the probabilistic

formulation for the mobility process. (cf. Chapter 1 or [30]).

(ρ12
11,ρ12

12,ρ1213,ρ1221,ρ1222) (0.1995,0.035,0.0985,0.007892,0.02748)

(ρ1223,ρ1231,ρ1232,ρ1233) (0.075824,0.04256,0.009616,0.028628)

(ρ21
11,ρ21

12,ρ2113,ρ2121,ρ2122) (0.002096896,0.00175424,0.003460864,

0.00043856, 0.0001664)

(ρ2123,ρ2131,ρ2132,ρ2133) (0.00071504, 0.001944052,0.00119788,

0.0001713912)

(ρ23
11,ρ

23
12,ρ2313,ρ2321,ρ2322) (0.018512, 0.03290368,0.0272192,0.04883712,

0.00151648)

(ρ2323,ρ2331,ρ2332,ρ2333) (0.0219232, 0.00383316,0.0025404,

0.000414644)

(ρ31
11,ρ

31
12,ρ3113,ρ3121,ρ3122) (0.001285712,0.00085328,0.001725008,

0.0004380944,0.000379536)

(ρ3123,ρ3131,ρ3132,ρ3133) (0.0005991696 ,0.000000371428,0.00000026332,

0.000000281252)

(ρ32
11,ρ

32
12,ρ3213,ρ3221,ρ3122) (0.0003230096,0.00036224,0.0004619664,

0.00043146104,0.0003741576)

(ρ3223,ρ3231,ρ3232,ρ3233) (0.00059126136, 0.000498339428,0.00042838332,

0.000070993252)

The following assumptions are made concerning the influenza epidemic process represented in

this example:

(a1) The population structure and influenza transmission process at every site sr
i ,r = 1,2,3, i =

1,2,3 in region Cr,r = 1,2,3 is similar to the population structure and the influenza trans-

mission process represented in the simulation model of [35]. That is, we assume that every

person in site sr
i belongs to one age dependent stratum (ages≥ 0). In addition, each individual

belongs to three mixing or contact groups z j, j = 1,2,3, for example, household, marketplace,

and the community. In each day, a susceptible person, A, has contacts with other individ-
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uals in his or her contact zones. The probability of acquiring infection depends on (a) the

number of different persons A has contacts within the contact group, (b) the time duration,

in minutes, of all contacts (c) the rate of infection transmission per-minute if the contacted

person is infectious (see [35]). We assume that in a given day, a susceptible person makes

three contacts in mixing group z1, ten contacts in mixing group z2, and three contacts in

mixing group z3. In addition, each contacted person is infectious. Furthermore, the time

duration d and the per minute influenza transmission rate λ per contact in all contact zones

are [ zone z1: d ≈ 92 minutes, λ = 0.00062], [zone z2: d ≈ 120 minutes, λ = 0.00061] and

[zone z3: d ≈ 51 minutes, λ = 0.00061]. Furthermore, we assume that the number and du-

ration of contacts are the same on weekdays and weekend days. We utilize the probability

model 1− exp(−λd) for the influenza transmission occurring during a contact of d minutes

and a transmission rate λ (see [35]) to find the infection probability βurv
aib of the two-scale SIRS

epidemic dynamic model. It is easy to see that the infection probability per day for a sus-

ceptible person at site sr
i is βurv

aib = 1−Pr(No disease transmission in zones z1, z2, z3) =

1− exp(−3(92)(0.00062)−10(120)(0.00061)−3(51)(0.00061))≈ 0.6277.

(a2) In the absence of data for the recovery and disease related death processes, we take the recov-

ery and disease mortality rate to be ρu
a = 0.05067 and du

a = 0.01838,u = 1,2,3;a, i = 1,2,3

respectively.

(a3) The population in this example assumed to be remote and lacking the high technological facil-

ities found in the developed world. Furthermore, we assume that influenza is highly endemic

in this population. As a result, we can assume that the time duration of the epidemic is com-

parable with the average life span of individuals in the population. In the absence of data

concerning average birth rates, we use the yearly birth rate data from [36] for the people of

the Dominican republic, B = births
1000 = 22.39

1000 as an estimate. Furthermore, we assume this birth

rate is the same for all residents of sites in the population. That is, the constant birth rate is

Bu
a =

births
1000 = 22.39

1000 per year, f or u = 1,2,3;a, i = 1,2,3.
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(a4) In addition, using the average life span of the people of Dominican Republic [37], the natural

death rate of the residents at all sites and regions are the same and is calculated as the re-

ciprocal of the average life span of individuals in the population, that is, δu
a =

1
77.15×365 ,u =

1,2,3;a, i = 1,2,3 per day.

(a5) The effects of the fluctuating environment on the dynamics of the influenza epidemic is as-

sumed to be the same at all sites and regions. We take the standard deviation of the environ-

mental fluctuations to be vurv
aib = 0.5,r,u,v = 1,2,3;a,b, i = 1,2,3.

4.2 Mathematical Algorithm and Simulation Results

We use the standard Euler-Maruyama method stochastic approximation scheme[38] to generate the

trajectories for the residents of sites s1
1, s2

1 and s3
1 in regions C1, C2 and C3 respectively, for the

different population disease classifications (S, I,R), and current locations at some sites in the intra

and inter-regional accessible domain of the sites. Given a scalar autonomous stochastic differential

equation

dX(t) = f (X(t))dt +g(X(t))dW (t), X(0) = X0, T0 ≤ t ≤ T, (4.2.1)

let T0 = τ0 ≤ τ1 ≤ τ2 ≤ . . .≤ τn = T , be a regular partition of [T0,T ], where ∆τ = τ j − τ j−1 =
T−T0

L ,

τ j = T0+ j∆τ, j = 1, . . . ,L and L is a positive integer. The Euler-Maruyama method takes the form

X(τ j) = X(τ j−1)+ f (X(τ j−1))∆τ+g(X(τ j−1))(W (τ j)−W (τ j−1)), j = 1, . . . ,L. (4.2.2)

Using (4.2.1) as a general representation of the system (3.2.15)-(3.2.17) in the context of the scenario

considered in this example (see Section 4.1), the algorithm to execute the Euler-Maruyama method

to finding the solution process of (4.2.1) consists of the following steps:

Step one: Parameter Specification: The system rate parameters for the epidemic model (3.2.15)-

(3.2.17) represented in this example are specified in Section 4.1. Further the following conve-

nient initial conditions are used for the simulation process: for r,u ∈ I(1,3), i,a ∈ I(1,3),

Sru
ia (0) =


9, f or r = u, i = a

8, f or r = u, i ̸= a

7, f or r ̸= u,
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Iru
ia (0) =


6, f or r = u, i = a

4, f or r = u, i ̸= a

3, f or r ̸= u

and Rru
ia (0) = 2,∀r,u, i,a ∈ I(1,3). Furthermore, the trajectories were generated over the time

interval t ∈ [0,1].

Step Two: Generate Brownian Path: Given that W (t) is a standard Brownian motion or Wierner pro-

cess over the time interval [T0,T ], then (1) W (0) = 0, (2) for T0 ≤ s < t ≤ T , the increments

W (t)−W (s)∀s, t are independent and have normal distribution with mean equal to 0 and vari-

ance equal to t − s. In other words, W (t)−W (s) ∼
√

t − sN(0,1), where N(0,1) represents

the normally distributed random variable with zero mean and unit variance. From conditions

(1)&(2), we discretize the Brownian motion as follows: we let T0 = t0≤ t1 ≤ t2 ≤ . . .≤ tn = T ,

be a regular partition of [T0,T ], where δt = t j − t j−1 =
T−T0

N , t j = T0 + jδt, j = 1, . . . ,N and

N is a positive integer. The Brownian path is generated as the solution to the following differ-

ence equation  W (0) = 0,

W (t j) =W (t j−1)+dW (t j), j = 1, . . . ,N.
(4.2.3)

We simulated 1000 sample points for the Brownian motion over the interval [0,1].

Step Three: Generate Solution Path for the Susceptible, Infectious and Removal Populations: Using

(4.2.1) as a general representation of each equation in the system (3.2.15)-(3.2.17), we use the

discretization (4.2.2) to find solutions path for each equation in the system. For convenience,

we choose ∆τ = Rδt,[38], where the positive integer R ≥ 1. Moreover, from (4.2.2), it follows

that

W (τ j)−W (τ j−1) =W ( jRδt)−W (( j−1)Rδt) =
jR

∑
k= jR−R+1

dWk, (4.2.4)

where dWk is given by the Brownian path (4.2.3). We choose R = 1 for this example. More-

over, from (4.2.2), (4.2.3), and (4.2.4), we obtain trajectories for susceptible, infectious and

removal populations of residents of sites s1
1, s2

1 and s3
1 in regions C1, C2 and C3 over the time

interval [0,1]. The trajectories for the residents of sites s1
1, s2

1 and s3
1 in regions C1, C2 and C3

are exhibited in Figure 4.1, Figure 4.2 and Figure 4.3 respectively.
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Figure 4.1: Trajectories of the disease classification (S, I,R) for residents of site s1
1 in region C1

at their home site and the current location in the two-scale spatial patch dynamic structure. See

Remark 4.2.1 for more comments on this figure.

Remark 4.2.1 From Figure 4.1, we observe that Figures (a),(b) & (c) represent the trajectories

of the different disease classes of residents of site s1
1 at home. Figures (d),(e) & (f) represent the

trajectories of the different disease classes of residents of site s1
1 visiting site s1

2 in home region C1.

These two groups of figures are representative of the disease dynamics of influenza affecting the

residents of site s1
1 at the intra-regional level. Figures (g),(h) & (i) represent the trajectories of the

different disease classes of residents of site s1
1 visiting site s2

1 in region C2. These figures reflect the

behavior of the disease affecting the residents of site s1
1 at the inter-regional level.
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Furthermore, we observe that the trajectories of the susceptible (S) and infectious(I) populations

saturate to their equilibrium states. We further note that the trajectory paths are random in character

but because of the scale of the pictures presented in this figure, they appear to be smooth.
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Figure 4.2: Trajectories of the disease classification (S, I,R) for residents of site s2
1 in region C2 at

their home site and at their current locations in the two-scale spatial patch dynamic structure. See

Remark 4.2.2 for more comments on this figure.

Remark 4.2.2 From Figure 4.2, we observe that Figures (a),(b) & (c) represent the trajectories

of the different disease classes of residents of site s2
1 at home. Figures (d),(e) & (f) represent the

trajectories of the different disease classes of residents of site s2
1 visiting site s2

2 in home region

C2. These two groups of figures are representative of the disease dynamics of influenza affecting

the residents of site s2
1 at the intra-regional level. Figures (g),(h) & (i) represent the trajectories of

the different disease classes of residents of site s2
1 visiting site s1

1 in region C1. Figures (j),(k) & (l)
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represent the trajectories of the different disease classes of residents of site s2
1 visiting site s3

1 in region

C3. These last two groups of figures reflect the behavior of the disease affecting the residence of site

s2
1 at the inter-regional level. Furthermore, we observe that the trajectories of the susceptible (S)

and infectious(I) populations saturate to their equilibrium states. We further note that the trajectory

paths are random in character but because of the scale of the pictures presented in this figure, they

appear to be smooth.
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Figure 4.3: Trajectories of the disease classification (S, I,R) for residents of site s3
1 in region C3 at

their current location in the two-scale spatial patch dynamic structure. See Remark 4.2.3 for more

comments on this figure.

Remark 4.2.3 From Figure 4.3, we observe that Figures (a),(b) & (c) represent the trajectories

of the different disease classes of residents of site s3
1 at home. Figures (d),(e) & (f) represent the

trajectories of the different disease classes of residents of site s3
1 visiting site s3

2 in home region
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C3. These two groups of figures are representative of the disease dynamics of influenza affecting

the residents of site s3
1 at the intra-regional level. Figures (g),(h) & (i) represent the trajectories of

the different disease classes of residents of site s3
1 visiting site s1

1 in region C1. Figures (j),(k) &

(l) represent the trajectories of the different disease classes of residents of site s3
1 visiting site s2

1 in

region C2. The last two groups of figures reflect the behavior of the disease affecting the residence of

site s3
1 at the inter-regional level. Furthermore, we observe that the trajectories of the susceptible (S)

and infectious(I) populations saturate to their equilibrium states. We further note that the trajectory

paths are random in character but because of the scale of the pictures presented in this figure, they

appear to be smooth.

4.3 Conclusion

An influenza stochastic epidemic dynamic model in a two-scale population structure with specific

model parameters is implicitly defined in the framework of the epidemic dynamic model studied

in Chapter 3. The influenza transmission process at the site level is elaborated. In addition, a

suitable disease transmission rate function developed in [35] is modified and computed in the context

of the influenza transmission scenario presented in this example. The Euler-Maruyama stochastic

simulation scheme and application process is developed for the two-scale network centric Ito-Doob

system of stochastic differential equations. Furthermore, simulated trajectories for the different

state processes (susceptible, infective, removal) of residents of some sites in the three regions with

respect to the current locations in the intra and interregional levels are developed and presented. The

simulated findings reveal comparative evolution patterns for the different state processes and current

locations over time.
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5 GLOBAL PROPERTIES OF A TWO-SCALE NETWORK STOCHASTIC

DELAYED HUMAN EPIDEMIC DYNAMIC MODEL

5.1 Introduction

Delay epidemic dynamic models are more realistic than ordinary epidemic dynamic models because

they represent finer aspects of the disease process such as the hereditary features of the disease.

There are generally two sources of the time delay in most epidemic processes namely:- disease

latency and immunity. Disease latency is the time lapse between acquisition of the infectious agent

and infectiousness. On the other hand, disease immunity is conferred to the endangered population

in two general ways namely:- artificial immunity through vaccination of the susceptible individuals

or natural immunity (infection acquired immunity) conferred by the disease infection after recovery

from the disease. Most often the effectiveness of natural or artificial immunity wanes after a period

of time due to low disease exposure and therefore require boosting. For diseases such as measles,

vaccinated individuals are less immune than those with natural immunity[84]; for pertussis, the

immunity declines 6-12 years after the last disease episode or booster dose[63]. Several studies

representing the effects of disease latency or immunity of the epidemic process into the epidemic

dynamic model have been done[67, 68, 71, 72, 73, 74, 77].

Some of the main issues addressed in the study of mathematical delay epidemic dynamic models

include: model validation (existence and uniqueness of positive solution) and the stability of the

disease free equilibrium. The global positive solution existence is establish using an extension

criterion of a local solution. This approach is exhibited in [65, 68]. Moreover, the extension of

the local solution is exhibited in [68] by applying a Lyapunov energy function method.
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The global asymptotic stability of disease free equilibrium for delay epidemic dynamic models

is established by applying the Lyapunov functional approach [76, 50, 51, 61, 62, 68]. Furthermore,

the disease free equilibrium for SIRS[75, 57] and SIR[56] single-group delay epidemic models are

studied.

In this chapter we extend the stochastic epidemic dynamic model studied in Chapter 3 by incor-

porating the temporary immunity delay period of the disease. We consider an infectious disease that

confers natural immunity to all recovered individuals immediately after infectiousness. This work

is organized as follows. In Section 5.2, we derive the natural or infection-acquired immunity delay

part of the epidemic process. In Section 5.3, we present the model validation results. In Section 5.4,

we show the stochastic asymptotic stability of the disease free equilibrium.

5.2 Derivation of the SIR Delayed Stochastic dynamic Model

We assume that the epidemic represented in this chapter is an SIR(susceptible-infective-removal)

satisfying all assumptions for the population structure, human mobility process, and disease dy-

namics described in Chapter 3. Furthermore, all removals (R) are those who have acquired natural

immunity against the disease. For an exclusive SIR epidemic process with no fractional transfer

from the infectious to the susceptible states, the conditions for the recovery rates of the disease ηu
a

and αu
a, ∀u ∈ I(1,M) and ∀a ∈ I(1,nu) represented in the SIRS epidemic model (3.2.9)-(3.2.11)

reduce to ηu
a = αu

a = 0, ∀u ∈ I(1,M) and ∀a ∈ I(1,nu). Furthermore, we assume that for each

r ∈ I(1,M), and i ∈ I(1,nr), an infectious (Iru
ia ) resident of site sr

i in region Cr visiting site su
a in

region Cu recovers from the disease and acquires temporary natural or infection-acquired immunity

against the disease immediately after recovery. The recovered individual further looses immunity

against the disease and becomes susceptible to the disease after a period of time T r
i . We assume that

the natural immunity period T r
i is constant for all naturally immune residents of site sr

i present at

their home site and at all visiting sites su
a in region Cu,∀u ∈ I(1,M) and ∀a ∈ I(1,nu) in the large

scale two level dynamic structure. We incorporate the natural or infection acquired immunity into

the epidemic dynamic model (3.2.9)-(3.2.11) by introducing the term ρu
aIru

ia (t − T r
i )e

−δu
aT r

i , where

e−δu
aT r

i is the probability that an individual has survived from natural death during the immunity pe-

riod T r
i , before becoming susceptible again[67]. The two level large scale stochastic SIR delayed
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epidemic dynamic model that is under the influence of human mobility process is as follows:

dSru
ia =



[
Br

i +∑nr
k=1 ρrr

ik Srr
ik +∑M

q ̸=r ∑nq
a=1 ρrq

ia Srq
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i I
rr
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,u = q,a = l,q ̸= r,

(5.2.1)
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,u = r,a = j, j ̸= i,[

γrq
il Irr

ii −ρq
l Irq

il − (ρrq
il +δq

l +dq
l )I

rq
il

+∑M
u=1 ∑nu

a=1 βqru
lia Srq

il Iuq
al

]
dt +

[
∑M

u=1 ∑nu
a=1 vqru

lia Srq
il Iuq

al dwqru
lia (t)

]
,u = q,a = l,q ̸= r,

(5.2.2)

Rru
ia =



[
∑nr

k=1 ρrr
ik Rrr

ik +∑M
q̸=r ∑nq

l=1 ρrq
il Rrq

il +ρr
i I

rr
ii −ρr

i I
rr
ii (t −T r

i )e
−δr

i T r
i

−(γr
i +σr

i +δr
i )R

rr
ii
]
dt,u = r,a = i[

σrr
i j R

rr
ii +ρr

jI
rr
i j −ρr

jI
rr
i j (t −T r

i )e
−δr

jT
r

i

−(ρrr
i j +δr

j)R
rr
i j
]
dt,u = r,a = j, j ̸= i,[

γrq
il Rrr

ii +ρq
l Irq

il −ρq
l Irq

il (t −T r
i )e

−δq
l T r

i

−(ρrq
il +δq

l )R
rq
il

]
dt,u = q,a = l,q ̸= r,

(5.2.3)

where all parameters are previously defined. Furthermore, for each r ∈ I(1,M), and i ∈ I(1,nr), we

have the following initial conditions

(Sru
ia (t,w), I

ru
ia (t,w),R

ru
ia (t,w)) = (φru

ia1(t),φ
ru
ia2(t),φ

ru
ia3(t)), t ∈ [−T r

i , t0],

φru
iak ∈ C ([−T r

i , t0],R+),∀k = 1,2,3,∀r,q ∈ I(1,M),a ∈ I(1,nu), i ∈ I(1,nr),

φru
iak(t0)> 0,∀k = 1,2,3, (5.2.4)
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where C ([−T r
i , t0],R+) is the space of continuous functions with the supremum norm

||φ||∞ = Sup−T r
i ≤t≤t0 |φ(t)|, (5.2.5)

and w is a Wierner process. Furthermore, the random continuous functions φru
iak,k = 1,2,3 are

z0 −measurable, or independent of w(t) for all t ≥ 0.

We utilize (3.2.18) to express the state of system (5.2.1)-(5.2.3) in vector form. Furthermore,

using the expression (3.3.25), it follows from (5.2.1)-(5.2.3) that for each i∈ I(1,nr), l ∈ Ir
i (1,nq),r ∈

I(1,M) and q ∈ Ir(1,M),

dyrq
il =


[
Br

i +∑nr
k ̸=i ρrr

ik yrr
ik +∑M

q ̸=r ∑nq
a=1 ρrq

ia yrq
ia − (γr

i +σr
i +δr

i )y
rr
ii −dr

i Irr
ii
]
dt, f or q = r, l = i[

σrr
i j y

rr
ii − (ρrr

i j +δr
j)y

rr
i j −dr

jI
rr
i j
]
dt, f orq = r,a = j and i ̸= j,[

γrq
il yrr

ii − (ρrq
il +δq

l )y
rq
il −dq

l Irq
il

]
dt, f or q ̸= r,yrq

il (t0)≥ 0,
(5.2.6)

5.3 Model Validation Results

In the following we state and prove a positive solution process existence theorem for the delayed

system (5.2.1)-(5.2.3). We utilize the Lyapunov energy function method[68] to establish the results

of this theorem. We observe from (5.2.1)-(5.2.3) that (5.2.3) decouples from the first two equations

in the system. Therefore, it suffices to prove the existence of positive solution process for (Sru
ia , I

ru
ia ).

We utilize the notations (3.2.18) and keep in mind that X ru
ia = (Sru

ia , I
ru
ia )

T .

Theorem 5.3.1 Let r,u ∈ I(1,M), i ∈ I(1,nr) and a ∈ I(1,nu). Given any initial conditions (5.2.4)

and (5.2.5), there exists a unique solution process X ru
ia (t,w) = (Sru

ia (t,w), I
ru
ia (t,w))

T satisfying (5.2.1)

and (5.2.2), for all t ≥ t0. Moreover, the solution process is positive for all t ≥ t0 a.s. That is,

Sru
ia (t,w)> 0, Iru

ia(t,w) > 0,∀t ≥ t0 a.s.

Proof:

It is easy to see that the coefficients of (5.2.1) and (5.2.2) satisfy the local Lipschitz condition for

the given initial data (5.2.4). Therefore there exist a unique maximal local solution X ru
ia (t,w) on t ∈

[−T r
i ,τe(w)], where τe(w) is the first hitting time or the explosion time[34]. We show subsequently
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that Sru
ia (t,w), I

ru
ia (t,w)> 0 for all t ∈ [−T r

i ,τe(w)] almost surely. We define the stopping time

 τ+ = sup{t ∈ (t0,τe(w)) : Sru
ia |[t0,t] > 0 and Iru

ia |[t0,t] > 0},

τ+(t) = min(t,τ+), f or t ≥ t0.
(5.3.7)

and we show that τ+(t) = τe(w) a.s. Suppose on the contrary that P(τ+(t) < τe(w)) > 0. Let

w ∈ {τ+(t)< τe(w)}, and t ∈ [t0,τ+(t)). Define

 V (X00
00 ) = ∑M

r=1 ∑nr
i=1 ∑M

u=1 ∑nu
a=1V (X ru

ia ),

V (X ru
ia ) = ln(Sru

ia )+ ln(Iru
ia ),∀t ≤ τ+(t).

(5.3.8)

We rewrite (5.3.8) as follows

V (X00
00 ) =

M

∑
r=1

nr

∑
i=1

[
V (X rr

ii )+
nr

∑
j ̸=i

V (X rr
i j )+

M

∑
q ̸=r

nq

∑
l=1

V (X rq
il )

]
, (5.3.9)

And (5.3.9) further implies that

dV (X00
00 ) =

M

∑
r=1

nr

∑
i=1

[
dV (X rr

ii )+
nr

∑
j ̸=i

dV (X rr
i j )+

M

∑
q̸=r

nq

∑
l=1

dV (X rq
il )

]
, (5.3.10)

where dV is the Ito-Doob differential operator with respect to the system (5.2.1)-(5.2.3). We express

the terms of the right-hand-side of (5.3.10) in the following:

Site Level: From (5.3.8) the terms of the right-hand-side of (5.3.10) for the case of u = r,a = i

dV (X rr
ii ) =

[
Br

i

Srr
ii
+

nr

∑
k ̸=i

ρrr
ik

Srr
ik

Srr
ii
+

M

∑
q ̸=r

nq

∑
l=1

ρrq
ia

Srq
ia

Srr
ii
+

ρr
i I

rr
ii (t −T r

i )e
−δr

i T r
i

Srr
ii

−(γr
i +σr

i +δr
i )−

M

∑
u=1

nu

∑
a=1

βrru
iia Iur

ai −
1
2

M

∑
u=1

nu

∑
a=1

(vrru
iia )

2(Iur
ai )

2

]
dt[

nr

∑
k ̸=i

ρrr
ik

Irr
ik

Srr
ii
+

M

∑
q̸=r

nq

∑
l=1

ρrq
ia

Irq
ia

Srr
ii
−ρr

i − (γr
i +σr

i +δr
i +dr

i )

−
M

∑
u=1

nu

∑
a=1

βrru
iia

Srr
ii

Irr
ii

Iur
ai −

1
2

M

∑
u=1

nu

∑
a=1

(vrru
iia )

2 (S
rr
ii )

2

(Irr
ii )

2 (I
ur
ai )

2

]
dt

−
M

∑
u=1

nu

∑
a=1

vrru
iia Iur

ai dwrru
iia (t)+

M

∑
u=1

nu

∑
a=1

vrru
iia

Srr
ii

Irr
ii

Iur
ai dwrru

iia (t) (5.3.11)
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Intra-regional Level: From (5.3.8) the terms of the right-hand-side of (5.3.10) for the case

of u = r,a = j, j ̸= i

dV (X rr
i j ) =

[
σrr

i j
Srr

ii

Srr
i j
+

ρr
jI

rr
i j (t −T r

i )e
−δr

jT
r

i

Srr
i j

−(ρrr
i j +δr

j)−
M

∑
u=1

nu

∑
a=1

βrru
jia Iur

a j −
1
2

M

∑
u=1

nu

∑
a=1

(vrru
jia)

2(Iur
a j)

2

]
dt

+

[
σrr

i j
Irr
ii

Irr
i j
−ρr

j − (ρrr
i j +δr

j +dr
j)

+
M

∑
u=1

nu

∑
a=1

βrru
jia

Srr
i j

Irr
i j

Iur
a j −

1
2

M

∑
u=1

nu

∑
a=1

(vrru
jia)

2 (S
rr
i j )

2

(Irr
i j )

2 (I
ur
a j)

2

]
dt

−
M

∑
u=1

nu

∑
a=1

vrru
jia Iur

a j dwrru
jia(t)+

M

∑
u=1

nu

∑
a=1

vrru
jia

Srr
i j

Irr
i j

Iur
a j dwrru

jia(t) (5.3.12)

Regional Level: From (5.3.8) the terms of the right-hand-side of (5.3.10) for the case of

u = q,q ̸= r,a = l,

dV (X rq
il ) =

[
γrq

il
Srr

ii

Srq
iq
+

ρq
l Irq

il (t −T r
i )e

−δq
l T r

i

Srq
il

−(ρrq
il +δq

l )−
M

∑
u=1

nu

∑
a=1

βqru
lia Iuq

al −
1
2

M

∑
u=1

nu

∑
a=1

(vqru
lia )

2(Iuq
al )

2

]
dt

+

[
γrq

il
Irr
ii

Irq
il

−ρq
l − (ρrq

il +δq
l +dq

l )

+
M

∑
u=1

nu

∑
a=1

βqru
lia

Srq
il

Irq
il

Iuq
al −

1
2

M

∑
u=1

nu

∑
a=1

(vqru
lia )

2 (S
rq
il )

2

(Irq
il )

2 (I
uq
al )

2

]
dt

−
M

∑
u=1

nu

∑
a=1

vqru
lia Iuq

al dwqru
lia (t)+

M

∑
u=1

nu

∑
a=1

vqru
lia

Srq
il

Irq
il

Iuq
al dwqru

lia (t) (5.3.13)
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It follows from (5.3.11)-(5.3.13), (5.3.10), and (5.3.7) that for t < τ+(t),

V (X00
00 (t))−V (X00

00 (t0)) ≥
M

∑
r=1

nr

∑
i=1

∫ t

t0

[
ρr

i I
rr
ii (t −T r

i )e
−δr

i T r
i

Srr
ii

− (γr
i +σr

i +δr
i )−

M

∑
u=1

nu

∑
a=1

βrru
iia Iur

ai

−1
2

M

∑
u=1

nu

∑
a=1

(vrru
iia )

2(Iur
ai )

2

]
ds+

M

∑
r=1

nr

∑
i=1

∫ t

t0
[−ρr

i − (γr
i +σr

i +δr
i +dr

i )

−
M

∑
u=1

nu

∑
a=1

βrru
iia

Srr
ii

Irr
ii

Iur
ai −

1
2

M

∑
u=1

nu

∑
a=1

(vrru
iia )

2 (S
rr
ii )

2

(Irr
ii )

2 (I
ur
ai )

2

]
ds

−
M

∑
r=1

nr

∑
i=1

M

∑
u=1

nu

∑
a=1

∫ t

t0
vrru

iia Iur
ai dwrru

iia (s)

+
M

∑
r=1

nr

∑
i=1

M

∑
u=1

nu

∑
a=1

∫ t

t0
vrru

iia
Srr

ii

Irr
ii

Iur
ai dwrru

iia (s)

M

∑
r=1

nr

∑
i=1

nr

∑
j ̸=i

∫ t

t0

[
ρr

jI
rr
i j (t −T r

i )e
−δr

jT
r

i

Srr
i j

−(ρrr
i j +δr

j)−
M

∑
u=1

nu

∑
a=1

βrru
jia Iur

a j −
1
2

M

∑
u=1

nu

∑
a=1

(vrru
jia)

2(Iur
a j)

2

]
ds

+
M

∑
r=1

nr

∑
i=1

nr

∑
j ̸=i

∫ t

t0

[
−ρr

j − (ρrr
i j +δr

j +dr
j)−

1
2

M

∑
u=1

nu

∑
a=1

(vrru
jia)

2 (S
rr
i j )

2

(Irr
i j )

2 (I
ur
a j)

2

]
ds

−
M

∑
r=1

nr

∑
i=1

nr

∑
j ̸=i

M

∑
u=1

nu

∑
a=1

∫ t

t0
vrru

jia Iur
a j dwrru

jia(s)

+
M

∑
r=1

nr

∑
i=1

nr

∑
j ̸=i

M

∑
u=1

nu

∑
a=1

∫ t

t0
vrru

jia
Srr

i j

Irr
i j

Iur
a j dwrru

jia(s)

+
M

∑
r=1

nr

∑
i=1

M

∑
q̸=r

nq

∑
l=1

∫ t

t0

[
ρq

l Irq
il (t −T r

i )e
−δq

l T r
i

Srq
il

− (ρrq
il +δq

l )−
M

∑
u=1

nu

∑
a=1

βqru
lia Iuq

al

−1
2

M

∑
u=1

nu

∑
a=1

(vqru
lia )

2(Iuq
al )

2

]
ds+

M

∑
r=1

nr

∑
i=1

M

∑
q̸=r

nq

∑
l=1

∫ t

t0

[
−ρq

l − (ρrq
il +δq

l +dq
l )

−1
2

M

∑
u=1

nu

∑
a=1

(vqru
lia )

2 (S
rq
il )

2

(Irq
il )

2 (I
uq
al )

2

]
ds

−
M

∑
r=1

nr

∑
i=1

M

∑
q̸=r

nq

∑
l=1

M

∑
u=1

nu

∑
a=1

∫ t

t0
vqru

lia Iuq
al dwqru

lia (s)

+
M

∑
r=1

nr

∑
i=1

M

∑
q̸=r

nq

∑
l=1

M

∑
u=1

nu

∑
a=1

∫ t

t0
vqru

lia
Srq

il

Irq
il

Iuq
al dwqru

lia (s) (5.3.14)

Taking the limit on (5.3.14) as t → τ+(t), it follows from (5.3.8) and (5.3.7) that V (X00
00 (t))−

V (X00
00 (t0)) ≤ −∞. This contradicts the finiteness of the right-hand-side of the inequality (5.3.14).
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Hence τ+(t) = τe(w) a.s. We show subsequently that τe(w) = ∞. Let k > 0 be a positive integer

such that ||φ00
00||1 ≤ k, where the vector of initial values φ00

00 = (φru
ia )1≤r,u≤M,1≤i≤nr,1≤a≤nu ∈ R2n2

is

defined in (5.2.4). Furthermore, ||.||1 is the p-sum norm (3.2.19) for the case of p = 1. We define

the stopping time  τk = sup{t ∈ [t0,τe) : ||X00
00 (s)||1 ≤ k,s ∈ [0, t]}

τk(t) = min(t,τk).
(5.3.15)

where from (3.2.19),

||X00
00 (s)||1 =

M

∑
r=1

M

∑
u=1

nr

∑
i=1

nu

∑
a=1

(Sru
ia (s)+ Iru

ia (s)). (5.3.16)

It is easy to see that as k → ∞, τk(t) increases. Set limk→∞ τk(t) = τ∞. Then τ∞ ≤ τe a.s. We show in

the following that: (1.) τe = τ∞ a.s.⇔ P(τe ̸= τ∞) = 0, (2.) τ∞ = ∞ a.s.⇔ P(τ∞ = ∞) = 1.

Suppose on the contrary that P(τ∞ < τe)> 0. Let w∈{τ∞ < τe} and t ≤ τ∞. In the same structure

line as (5.3.8) and (5.3.10), define V1(X00
00 ) = ∑M

r=1 ∑nr
i=1 ∑M

u=1 ∑nu
a=1V (X ru

ia ),

V1(X ru
ia ) = eδu

at(Sru
ia + Iru

ia ),∀t ≤ τk(t).
(5.3.17)

From (5.3.17), using the expression (5.3.10), the Ito-Doob differential dV1 with respect to the system

(5.2.1)-(5.2.3) is given as follows:

Site Level: From (5.3.17), the terms of the right-hand-side of (5.3.10) for the case of u =

r,a = i

dV1(X rr
ii ) = eδr

i t

[
Br

i +
nr

∑
k ̸=i

ρrr
ik Srr

ik +
M

∑
q̸=r

nq

∑
l=1

ρrq
ia Srq

ia +ρr
i I

rr
ii (t −T r

i )e
−δr

i T r
i

−(γr
i +σr

i )S
rr
ii ]dt + eδr

i t

[
nr

∑
k ̸=i

ρrr
ik Irr

ik +
M

∑
q̸=r

nq

∑
l=1

ρrq
ia Irq

ia −ρr
i I

rr
ii

−(γr
i +σr

i +dr
i )I

rr
ii ]dt (5.3.18)

Intra-regional Level: From (5.3.17), the terms of the right-hand-side of (5.3.10) for the case

of u = r,a = j, j ̸= i

dV1(X rr
i j ) = eδr

i t
[
σrr

i j S
rr
ii +ρr

jI
rr
i j (t −T r

i )e
−δr

jT
r

i −ρrr
i j S

rr
i j

]
dt

+eδr
jt
[
σrr

i j I
rr
ii +ρr

jI
rr
i j − (ρrr

i j +dr
j)I

rr
i j
]

dt (5.3.19)
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Regional Level: From (5.3.17), the terms of the right-hand-side of (5.3.10) for the case of

u = q,q ̸= r,a = l

dV1(X
rq
il ) = eδq

l t
[
γrq

il Srr
ii +ρq

l Irq
il (t −T r

i )e
−δq

l T r
i −ρrq

il Srq
il

]
dt

+eδq
l t [γrq

il Irr
ii +ρq

l Irq
il − (ρrq

il +dq
l )I

rq
il

]
dt (5.3.20)

From (5.3.18)-(5.3.20), (5.3.10), integrating (5.3.10) over [t0,τ] leads to the following

V1(X00
00 (τ))

= V1(X00
00 (t0))+

M

∑
r=1

nr

∑
i=1

∫ τ

t0
eδr

i s

[
Br

i +
nr

∑
k ̸=i

ρrr
ik Srr

ik +
M

∑
q̸=r

nq

∑
l=1

ρrq
ia Srq

ia +ρr
i I

rr
ii (t −T r

i )e
−δr

i T r
i

−(γr
i +σr

i )S
rr
ii ]ds+

M

∑
r=1

nr

∑
i=1

∫ τ

t0
eδr

i s

[
nr

∑
k ̸=i

ρrr
ik Irr

ik +
M

∑
q ̸=r

nq

∑
l=1

ρrq
ia Irq

ia −ρr
i I

rr
ii

−(γr
i +σr

i +dr
i )I

rr
ii ]ds

+
M

∑
r=1

nr

∑
i=1

nr

∑
j ̸=i

∫ τ

t0
eδr

i s
[
σrr

i j S
rr
ii +ρr

jI
rr
i j (t −T r

i )e
−δr

jT
r

i −ρrr
i j S

rr
i j

]
ds

+
M

∑
r=1

nr

∑
i=1

nr

∑
j ̸=i

∫ τ

t0
eδr

js
[
σrr

i j I
rr
ii −ρr

jI
rr
i j − (ρrr

i j +dr
j)I

rr
i j
]

ds

+
M

∑
r=1

nr

∑
i=1

nr

∑
q ̸=r

nq

∑
l=1

∫ τ

t0
eδq

l s
[
γrq

il Srr
ii +ρq

l Irq
il (t −T r

i )e
−δq

l T r
i −ρrq

il Srq
il

]
ds

+
M

∑
r=1

nr

∑
i=1

nr

∑
q ̸=r

nq

∑
l=1

∫ τ

t0
eδq

l s [γrq
il Irr

ii −ρq
l Irq

il − (ρrq
il +dq

l )I
rq
il

]
ds (5.3.21)

From (5.3.21), we let τ = τk(t), where τk(t) is defined in (5.3.15). It is easy to see from (5.3.21),

(5.3.15), (5.3.16), and (5.3.17) that

k = ||X00
00 (τk(t))||1 ≤V1(X00

00 (τk(t))) (5.3.22)

Taking the limit on (5.3.22) as k → ∞ leads to a contradiction because the left-hand-side of the

inequality (5.3.22) is infinite, and the right-hand-side is finite. Hence τe = τ∞ a.s. In the following,

we show that τe = τ∞ = ∞ a.s.
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We let w ∈ {τe < ∞}. Applying some algebraic manipulations and simplifications to (5.3.21),

we have the following

I{τe<∞}V1(X00
00 (τ))

= I{τe<∞}V1(X00
00 (t0))+ I{τe<∞}

M

∑
r=1

nr

∑
i=1

Br
i

δr
i
(eδr

i τ −1)

+I{τe<∞}

M

∑
r=1

nr

∑
i=1

M

∑
q=1

nq

∑
l=1

[
ρq

l

∫ t0

−T r
i

Irq
il (s)e

δq
l sds−ρq

l

∫ τ

τ−T r
i

Irq
il (s)e

δq
l sds

]

−I{τe<∞}

M

∑
r=1

nr

∑
i=1

∫ τ

t0

[
σr

i e
δr

i s −
nr

∑
j ̸=i

σrr
i j e

δr
js

]
(Srr

ii + Irr
ii )ds

−I{τe<∞}

M

∑
r=1

nr

∑
i=1

∫ τ

t0

[
γr

i e
δr

i s −
M

∑
q=1

nq

∑
l=1

γrq
il eδq

l s

]
(Srr

ii + Irr
ii )ds

−I{τe<∞}

M

∑
r=1

nr

∑
i=1

dr
i

∫ τ

t0
Irr
ii eδr

i sds

−I{τe<∞}

M

∑
r=1

nr

∑
i=1

nr

∑
j ̸=i

dr
j

∫ τ

t0
Irr
i j eδr

jsds

−I{τe<∞}

M

∑
r=1

nr

∑
i=1

M

∑
q̸=r

nq

∑
l=1

dq
l

∫ τ

t0
Irq
il eδq

l sds,

(5.3.23)

where IA is the indicator function of the set A.

We recall [30], σr
i = ∑nr

j ̸=i σrr
i j and γr

i = ∑M
q ̸=r ∑nq

l=1 γrq
il . Hence the fourth and fifth terms on the

right-hand-side of (5.3.23) are such that
[
σr

i e
δr

i s −∑nr
j ̸=i σrr

i j e
δr

js
]
≥ 0,∀δr

i ≥ δr
j, j ̸= i and[

γr
i e

δr
i s −∑M

q=1 ∑nq
l=1 γrq

il eδq
l s
]
≥ 0,∀δr

i ≥ δq
l ,q ̸= r, l ∈ I(1,nq). We now let τ = τk(t)∧T in (5.3.23),

∃T > 0, where τk(t) is defined in (5.3.15). The expected value of (5.3.23) is estimated as follows

E
[
I{τe<∞}V1(X00

00 (τk(t)∧T ))
]

≤ V1(X00
00 (t0))+

nr

∑
i=1

Br
i

δr
i

eδr
i τk(t)∧T

+
M

∑
r=1

nr

∑
i=1

M

∑
q=1

nq

∑
l=1

[
ρq

l

∫ t0

−T r
i

φrq
il2(s)e

δq
l sds

]
(5.3.24)
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Furthermore, from (5.3.16), (5.3.17) and the definition of the indicator function IA it follows that

I{τe<∞,τk(t)≤T}||X00
00 (τk(t))||1 ≤ I{τe<∞}V1(X00

00 (τk(t)∧T )) (5.3.25)

It follows from (5.3.24), (5.3.25) and (5.3.15) that

P({τe < ∞,τk(t)≤ T})k = E
[
I{τe<∞,τk(t)≤T}||X00

00 (τk(t))||1
]

≤ E
[
I{τe<∞}V (X00

00 (τk(t)∧T ))
]

≤ V1(X00
00 (t0))+

nr

∑
i=1

Br
i

δr
i

eδr
i T

+
M

∑
r=1

nr

∑
i=1

M

∑
q=1

nq

∑
l=1

[
ρq

l

∫ t0

−T r
i

φrq
il2(s)e

δq
l sds

]
(5.3.26)

It follows immediately from (5.3.26) that P({τe < ∞,τ∞ ≤ T})→ 0 as k → ∞. Furthermore, since

T < ∞ is arbitrary, we conclude that P({τe < ∞,τ∞ < ∞}) = 0.

Finally, by the total probability principle,

P({τe < ∞}) = P({τe < ∞,τ∞ = ∞})+P({τe < ∞,τ∞ < ∞})

≤ P({τe ̸= τ∞})+P({τe < ∞,τ∞ < ∞})

= 0. (5.3.27)

Thus from (5.3.27), τe = τ∞ = ∞ a.s. as was required to show.

Remark 5.3.1 For any r ∈ I(1,M) and i ∈ I(1,nr), Theorem 5.3.1 signifies that the number of res-

idents of site sr
i of all categories present at home site sr

i , or visiting intra and inter-regional sites

sr
j and sq

l respectively, are nonnegative. This implies that the total population of residents of site

sr
i present at home and also visiting sites in regions in their intra and inter-regional accessible

domains[66], given by the sum Nrr
i0 (t) = ∑M

u=1 ∑nu
a=1 yru

ia , is nonnegative. Moreover, the total effective

population[66], defined by e f f (Nrr
i0 )(t) = ∑M

u=1 ∑nu
a=1 yur

ai , at any site sr
i in region Cr is also nonneg-

ative at all time t ≥ t0.

The following result defines an upper bound for the solution process of the system (5.2.1)-(5.2.3).

We use of Theorem 5.3.1 to establish this result.
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Theorem 5.3.2 Suppose the hypotheses of Theorem 5.3.1 is satisfied. Let µ=min1≤u≤M,1≤a≤nu(δu
a).

If
M

∑
r=1

M

∑
u=1

nr

∑
i=1

nu

∑
a=1

yru
ia (t0)≤

1
µ

M

∑
r=1

nr

∑
i=1

Br
i , (5.3.28)

then
M

∑
r=1

M

∑
u=1

nr

∑
i=1

nu

∑
a=1

yru
ia (t)≤

1
µ

M

∑
r=1

nr

∑
i=1

Br
i , f or t ≥ t0a.s. (5.3.29)

Proof:

See Lemma 3.3.2.

Remark 5.3.2 From Theorem 5.3.1 and Theorem 5.3.2, we conclude that a closed ball B̄R3n2 (⃗0;r)

in R3n2
under the sum norm ||.||1 centered at the origin 0⃗ ∈ R3n2

, with radius r = 1
µ ∑M

r=1 ∑nr
i=1 Br

i

is self-invariant with regard to a two-scale network dynamics of human epidemic process (5.2.1)-

(5.2.3) that is under the influence of human mobility process[30]. That is,

B̄R3n2 (⃗0;r) =

{
(Sru

ia , I
ru
ia ,R

ru
ia ) : yru

ia (t)≥ 0 and ||x00
00||1 =

M

∑
r=1

M

∑
u=1

nr

∑
i=1

nu

∑
a=1

yru
ia (t)≤

1
µ

M

∑
r=1

nr

∑
i=1

Br
i

}
(5.3.30)

is a positive self-invariant set for system (5.2.1)-(5.2.3). We shall denote

B̄ ≡ 1
µ

M

∑
r=1

nr

∑
i=1

Br
i (5.3.31)

5.4 Existence and Asymptotic Behavior of Disease Free Equilibrium

In this section, we study the existence and the asymptotic behavior of the disease free equilibrium

state of the system (5.2.1)-(5.2.3). The disease free equilibrium is obtained by solving the system of

algebraic equations obtained by setting the drift and the diffusion parts of the system of stochastic

differential equations to zero. In addition, we utilize the conditions that I = R = 0 in the event

when there is no disease in the population. We summarize the results in the following. For any

r,u ∈ I(1,M), i ∈ I(1,nr) and a ∈ I(1,nu), let

Dr
i = γr

i +σr
i +δr

i −
nr

∑
a=1

ρrr
iaσrr

ia

ρrr
ia +δr

a
−

M

∑
u̸=r

nu

∑
a=1

ρrr
iaγru

ia
ρru

ia +δu
a
> 0. (5.4.32)
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Furthermore, let (Sru∗
ia , Iru∗

ia ,Rru∗
ia ), be the equilibrium state of the delayed system (5.2.1)-(5.2.3). One

can see that the disease free equilibrium state is given by Eru
ia = (Sru∗

ia ,0,0), where

Sru∗
ia =


Br

i
Dr

i
, f or u = r,a = i,

Br
i

Dr
i

σrr
i j

ρrr
i j+δr

j
, f or u = r,a ̸= i,

Br
i

Dr
i

γru
ia

ρru
ia+δu

a
, f or u ̸= r.

(5.4.33)

The asymptotic stability property of Eru
ia will be established by verifying the conditions of the

stochastic version of the Lyapunov second method given in [[34],Theorem 2.4], and [[34],Theorem

4.4],[59] respectively. In order to study the qualitative properties of (5.2.1)-(5.2.3) with respect to

the equilibrium state (Sru∗
ia ,0,0), first, we use the change of variable that shifts the equilibrium to the

origin. For this purpose, we use the following transformation:


U ru

ia = Sru
ia −Sru∗

ia

V ru
ia = Iru

ia

W ru
ia = Rru

ia .

(5.4.34)

By employing this transformation, system (5.2.1)-(5.2.3) is transformed into the following forms

dU rq
il =



[
∑M

q=1 ∑nq
a=1 ρrq

iaU rq
ia +ρr

iV
rr
ii (t −T r

i )e
−δr

i T r
i

−(γr
i +σr

i +δr
i )U

rr
ii −∑M

u=1 ∑nu
a=1 βrru

iia (S
rr∗
ii +U rr

ii )V
ur
ai
]
dt

−
[

∑M
u=1 ∑nu

a=1 vrru
iia (S

rr∗
ii +U rr

ii )V
ur
ai dwrru

iia (t)
]
, f or q = r, l = i[

σrr
i jU

rr
ii +ρr

jV
rr
i j (t −T r

i )e
−δr

jT
r

i − (ρrr
i j +δr

j)U
rr
i j −∑M

u=1 ∑nu
a=1 βrru

jia(S
rr∗
i j +U rr

i j )V
ur
a j
]
dt

−
[

∑M
u=1 ∑nu

a=1 vrru
jia(S

rr∗
i j +U rr

i j )V
ur
a j dwrru

jia(t)
]
, f or q = r, l = j, j ̸= i,[

γrq
il U rr

ii +ρq
l V rq

il (t −T r
i )e

−δq
l T r

i − (ρrq
il +δq

l )U
rq
il

−∑M
u=1 ∑nu

a=1 βqru
lia Srq

il Iuq
al

]
dt −

[
∑M

u=1 ∑nu
a=1 vqru

lia (S
rq∗
il +U rq

il )V
uq
al dwqru

lia (t)
]
, f or q ̸= r,

(5.4.35)
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dV rq
il =



[
∑M

q=1 ∑nq
a=1 ρrq

iaV rq
ia − (ρr

i + γr
i +σr

i +δr
i +dr

i )W
rr
ii

+∑M
u=1 ∑nu

a=1 βrru
iia (S

rr∗
ii +U rr

ii )V
ur
ai
]
dt

+
[

∑M
u=1 ∑nu

a=1 vrru
iia (S

rr∗
ii +U rr

ii )V
ur
ai dwrru

iia (t)
]
, f or q = r, l = i[

σrr
i jV

rr
ii − (ρr

j +ρrr
i j +δr

j +dr
j)V

rr
i j +∑M

u=1 ∑nu
a=1 βrru

jia(S
rr∗
i j +U rr

i j )V
ur
a j
]
dt

+
[

∑M
u=1 ∑nu

a=1 vrru
jia(S

rr∗
i j +U rr

i j )V
ur
a j dwrru

jia(t)
]
, f or q = r, l = j, j ̸= i,[

γrq
il V rr

ii − (ρq
l +ρrq

il +δq
l +dq

l )V
rq
il

∑M
u=1 ∑nu

a=1 βqru
lia (S

rq∗
il +U rq

il )V
uq
al

]
dt +

[
∑M

u=1 ∑nu
a=1 vqru

lia (S
rq∗
il +U rq

il )V
uq
al dwqru

lia (t)
]
,

f or q ̸= r,
(5.4.36)

and

dW rq
il =



[
∑M

q=1 ∑nq
l=1 ρrq

il W rq
il +ρr

iV
rr
ii −ρr

iV
rr
ii (t −T r

i )e
−δr

i T r
i − (γr

i +σr
i +δr

i )W
rr
ii
]
dt,

f or q = r, l = i[
σrr

i jW
rr
ii +ρr

jV
rr
i j −ρr

jV
rr
i j (t −T r

i )e
−δr

jT
r

i − (ρrr
i j +δr

j)W
rr
i j
]
dt, f or q = r, l = j, j ̸= i[

γrq
il W rr

ii +ρq
l V rq

il −ρq
l V rq

il (t −T r
i )e

−δq
l T r

i − (ρrq
il +δq

l )W
rq
il

]
dt, f or q ̸= r

(5.4.37)

We state and prove the following lemmas that would be useful in the proofs of the stability results.

Lemma 5.4.1 Let V1 : R3n2 ×R+ → R+ be a function defined by


V1(x̃00

00) = ∑M
r=1 ∑M

u=1 ∑nr
i=1 ∑nu

a=1V (x̃ru
ia ),

V1(x̃ru
ia ) = (Sru

ia −Sru∗
ia + Iru

ia )
2 + cru

ia (I
ru
ia )

2 +(Rru
ia )

2

x̃ru
ia = (U ru

ia ,V
ru
ia ,W ru

ia )T and cru
ia ≥ 0.

(5.4.38)

Then V1 ∈ C 2,1(R3n2 ×R+,R+), and it satisfies

b(||x̃00
00||) ≤ V1(x̃00

00(t))≤ a(||x̃00
00||) (5.4.39)
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where

b(||x̃00
00||) = min

1≤r,u≤M,1≤i≤nr,1≤a≤nu

{
cru

ia
2+ cru

ia

} M

∑
r=1

M

∑
u=1

nr

∑
i=1

nu

∑
a=1

[
(U ru

ia )
2 +(V ru

ia )2 +(W ru
ia )2]

a(||x̃00
00||) = max

1≤r,u≤M,1≤i≤nr,1≤a≤nu
{cru

ia +2}
M

∑
r=1

M

∑
u=1

nr

∑
i=1

nu

∑
a=1

[
(U ru

ia )
2 +(V ru

ia )2 +(W ru
ia )2] .

(5.4.40)

Proof: See Lemma 3.4.1.

Remark 5.4.1 Lemma 5.4.1 shows that the Lyapunov function V defined in (5.4.38) is positive

definite((5.4.39)), decrescent and radially unbounded ((5.4.39)) function[34, 59].

We now state the following lemma

Lemma 5.4.2 Assume that the hypothesis of Lemma 5.4.1 is satisfied. Define a Lyapunov functional

V =V1 +V2, (5.4.41)

where V1 is defined by (5.4.38), and

V2 = 3
M

∑
r=1

nr

∑
i=1

M

∑
u=1

nu

∑
a=1

[
(ρu

a)
2

µru
ia

e−δu
aT r

i

]∫ t

t−T r
i

(V ru
ia (θ))2dθ, (5.4.42)

Suppose that

(γr
i +σr

i +δr
i )> max

((
∑M

u=1 ∑nu
a=1 µru

ia +∑nr
a ̸=i

(σrr
ia)

2

µrr
ii

+∑M
a ̸=r ∑nr

a=1
(γru

ia )
2

µrr
ii

+ 3
2 µrr

ii

)
,(

1
2 ∑M

u=1 ∑nu
a=1 µru

ia +
1
2 ∑M

u̸=r ∑nr
a=1

(γru
ia )

2

µrr
ii

+ 1
2 ∑nr

a̸=i
(σrr

ia)
2

µrr
ii

+ 1
2 µrr

ii

))
, f or u = r,a = i,

(ρrr
ia +δr

a)> max
((

(ρrr
ia)

2

µrr
ia

+µrr
ii +µrr

ia

)
,
(

1
2
(ρrr

ia)
2

µrr
ia

+ 1
2 µrr

ii +
1
2 µrr

ia

))
, f or u = r,a ̸= i,

(ρru
ia +δu

a)> max
((

(ρru
ia )

2

µru
ia

+µrr
ii +µru

ia

)
,
(

1
2
(ρru

ia )
2

µru
ia

+ 1
2 µrr

ii +
1
2 µru

ia

))
, f or u ̸= r.
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Furthermore, let

Mru
ia =



max

 1
δr

i
log

 µrr
ii

2
(
(γr

i+σr
i+δr

i )−
[

∑M
u=1 ∑nu

a=1 µru
ia+∑nr

a̸=i
(σrr

ia )
2

µrr
ii

+∑M
a ̸=r ∑nr

a=1
(γru

ia )2

µrr
ii

+ 3
2 µrr

ii

])
 ,

1
δr

i
log

 µrr
ii

2
(
(γr

i+σr
i+δr

i )−
[

1
2 ∑M

u=1 ∑nu
a=1 µru

ia+
1
2 ∑M

u ̸=r ∑nr
a=1

(γru
ia )2

µrr
ii

+ 1
2 ∑nr

a ̸=i
(σrr

ia )
2

µrr
ii

+ 1
2 µrr

ii

])
 ,

f or u = r, i = a

max

 1
δr

a
log

 µrr
ia

2
(
(ρrr

ia+δr
a)−

[
(ρrr

ia )
2

µrr
ia

+µrr
ii +µrr

ia

])
 ,

1
δr

a
log

 µrr
ia

2
(
(ρrr

ia+δr
a)−

[
1
2
(ρrr

ia )
2

µrr
ia

+ 1
2 µrr

ii +
1
2 µrr

ia

])
 ,

f or u = r,a ̸= i

max

 1
δu

a
log

 µru
ia

2
(
(ρru

ia+δu
a)−

[
(ρru

ia )2

µru
ia

+µrr
ii +µru

ia

])
 ,

1
δu

a
log

 µru
ia

2
(
(ρru

ia+δu
a)−

[
1
2
(ρru

ia )2

µru
ia

+ 1
2 µrr

ii +
1
2 µru

ia

])
 ,

f or u ̸= r,

and

Vru
ia =


1
2 ∑M

u=1 ∑nu
a=1 µru

ia+
1
2 ∑M

v=1 ∑nv
b=1 βrrv

iib (S
rr∗
ii µrr

ii +µrr
ii )+

1
2 drr

ii
ρr

i+γr
i+σr

i+δr
i+dr

i
, f or a = i,u = r

1
2 µrr

ii +
1
2 ∑M

v=1 ∑nv
b=1 βrrv

aib(S
rr∗
ia µrr

ia+µrr
ia)+

1
2 drr

ai
ρr

a+ρrr
ia+δr

a+dr
a

, f or a ̸= i,u = r
1
2 µrr

ii +
1
2 ∑M

v=1 ∑nv
b=1 βurv

aib (S
ru∗
ii µru

ia+µru
ia )+

1
2 dur

ai
ρu

a+ρru
ia+δu

a+du
a

, f or u ̸= r.

(5.4.43)

for some suitably defined positive number µru
ia , depending on δu

a, for all r,u ∈ Ir(1,M), i ∈ I(1,n)

and a ∈ Ir
i (1,nr). Assume that Vru

ia < 1 and T r
i ≥ max1≤r,u≤M,1≤i≤nr,1≤a≤nu(M

ru
ia ). There exist posi-

tive numbers ϕru
ia , ψru

ia and φru
ia such that the differential operator LV associated with Ito-Doob type

stochastic system (5.2.1)-(5.2.3)satisfies the following inequality
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LV (x̃00
00) ≤

M

∑
r=1

nr

∑
i=1

[
−[ϕrr

ii (U
rr
ii )

2 +ψrr
ii (V

rr
ii )

2 +φrr
ii (W

rr
ii )

2]

−
nr

∑
a ̸=i

[ϕrr
ia(U

rr
ia )

2 +ψrr
ia(V

rr
ia )

2 +φrr
ia(W

rr
ia )

2]

−
M

∑
u̸=r

nu

∑
a=1

[ϕru
ia (U

rr
ia )

2 +ψru
ia (V

ru
ia )2 +φru

ia (W
ru
ia )2]

]
. (5.4.44)

Moreover,

LV (x̃00
00) ≤ −cV1(x̃00

00) (5.4.45)

where a positive constant c is defined by

c =
min1≤r,u≤M,1≤i≤nr,1≤a≤nu{ϕru

ia ,ψru
ia ,φru

ia}
max1≤r,u≤M,1≤i≤nr,1≤a≤nu {Cru

ia +2}
(5.4.46)

Proof:

The computation of differential operator[34, 59] applied to the Lyapunov function V1 in (5.4.38) with

respect to the large-scale system of Ito-Doob type stochastic differential equation (5.2.1)-(5.2.3) is

as follows:

LV1(x̃00
00) =

M

∑
r=1

nr

∑
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[
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ii )+
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∑
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∑
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∑
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]
, (5.4.47)

where,
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ii ) = 2

M

∑
u=1

nu

∑
a=1

[(1+Crr
ii )ρ

ru
iaV ru

ia V rr
ii +ρru
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2
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∑
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∑
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∑
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f or u = r,a = i (5.4.48)

105



nr

∑
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M

∑
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∑
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∑
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∑
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By using (5.3.31) and the algebraic inequality

2ab ≤ a2

g(c)
+b2g(c) (5.4.51)

where a,b,c ∈ R, and the function g is such that g(c) > 0. The sixth term in (5.4.48)-(5.4.50) is

estimated as follows:

2
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crr
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+
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2
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(5.4.52)

From (5.4.48-(5.4.52), (5.4.47) and repeated usage of (5.3.31)and inequality (5.4.51) coupled with

some algebraic manipulations and simplifications, we have the following inequality
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(5.4.53)

where µru
ia = gr

i (δu
a), gr

i is appropriately defined by (5.4.51). For each r,u ∈ I(1,M), i ∈ I(1,nr) and

a ∈ I(1,nu), we define the constants dur
ai , ϕru

ia , ψru
ia and φru

ia as follows:
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for some positive numbers cru
ia , for all r,u ∈ Ir(1,M), i ∈ I(1,n) and a ∈ Ir

i (1,nr).
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and
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where Vru
ia is given in (5.4.43),
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From (5.4.41), (5.4.42), (5.4.53), (5.4.54), the differential operator LV [34, 59] applied to the Lya-

punov functional (5.4.41), and some further algebraic manipulations we have the following inequal-
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ity
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Under the assumption on T r
i , it follows that Uru

ia ≤ 1 and Wru
ia ≤ 1,∀u ∈ I(1,M),a ∈ I(1,nr). More-

over, under the assumption on Vru
ia , it is clear that ϕru

ia ,ψru
ia and φru

ia are positive for suitable choices of

the constants cru
ia > 0. Thus this proves the inequality (5.4.44). Now, the validity of (5.4.45) follows

from (5.4.44) and (5.4.39), that is,

LV (x̃00
00)≤−cV1(x̃00

00),

where c =
min1≤r,u≤M,1≤i≤nr ,1≤a≤nu{ϕru

ia ,ψ
ru
ia ,φ

ru
ia }

max1≤r,u≤M,1≤i≤nr ,1≤a≤nu{Cru
ia +2} . This completes the proof. We now formally state the

stochastic stability theorems for the disease free equilibria.

Theorem 5.4.3 Given r,u ∈ I(1,M), i ∈ I(1,nr) and a ∈ I(1,nu). Let us assume that the hypotheses

of Lemma 5.4.2 are satisfied. Then the disease free solutions Eru
ia , are asymptotically stable in the

large. Moreover, the solutions Eru
ia are exponentially mean square stable.

Proof:

From the application of comparison result[34, 59], the proof of stochastic asymptotic stability fol-

lows immediately. Moreover, the disease free equilibrium state is exponentially mean square stable.

We now consider the following corollary to Theorem 5.4.3.
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ia)
2

µrr
ia

+ 1
2 µrr

ii +
1
2 µrr

ia

))
, f or u = r,a ̸= i,

(ρru
ia +δu

a)> max
((

(ρru
ia )

2

µru
ia

+µrr
ii +µru

ia

)
,
(

1
2
(ρru

ia )
2

µru
ia

+ 1
2 µrr

ii +
1
2 µru

ia

))
, f or u ̸= r.
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Furthermore, let

Mru
ia =



max
(

1
δr

i
log
(

µrr
ii

2(δr
i−(∑M

u=1 ∑nu
a=1 µru

ia+
3
2 µrr

ii ))

)
,

1
δr

i
log
(

µrr
ii

2(δr
i−(

1
2 ∑M

u=1 ∑nu
a=1 µru

ia+
1
2 µrr

ii ))

))
,

f or u = r, i = a

max

 1
δr

a
log

 µrr
ia

2
(
(ρrr

ia+δr
a)−

[
(ρrr

ia )
2

µrr
ia

+µrr
ii +µrr

ia

])
 ,

1
δr

a
log

 µrr
ia

2
(
(ρrr

ia+δr
a)−

[
1
2
(ρrr

ia )
2

µrr
ia

+ 1
2 µrr

ii +
1
2 µrr

ia

])
 ,

f or u = r,a ̸= i

max

 1
δu

a
log

 µru
ia

2
(
(ρru

ia+δu
a)−

[
(ρru

ia )2

µru
ia

+µrr
ii +µru

ia

])
 ,

1
δu

a
log

 µru
ia

2
(
(ρru

ia+δu
a)−

[
1
2
(ρru

ia )2

µru
ia

+ 1
2 µrr

ii +
1
2 µru

ia

])
 ,

f or u ̸= r,

and

Vru
ia =


1
2 ∑M

u=1 ∑nu
a=1 µru

ia+
1
2 ∑M

v=1 ∑nv
b=1 βrrv

iib (S
rr∗
ii µrr

ii +µrr
ii )

ρr
i+γr

i+σr
i+δr

i+dr
i

, f or a = i,u = r
1
2 µrr

ii +
1
2 ∑M

v=1 ∑nv
b=1 βrrv

aib(S
rr∗
ia µrr

ia+µrr
ia)

ρr
a+ρrr

ia+δr
a+dr

a
, f or a ̸= i,u = r

1
2 µrr

ii +
1
2 ∑M

v=1 ∑nv
b=1 βurv

aib (S
ru∗
ii µru

ia+µru
ia )

ρu
a+ρru

ia+δu
a+du

a
, f or u ̸= r.

(5.4.61)

for some suitably defined positive number µru
ia , depending on δu

a, for all r,u ∈ Ir(1,M), i ∈ I(1,n) and

a ∈ Ir
i (1,nr). The equilibrium state Err

ii is stochastically asymptotically stable provided that Vru
ia < 1

and T r
i ≥ max1≤r,u≤M,1≤i≤nr,1≤a≤nu(M

ru
ia ).

Proof: Follows immediately from the hypotheses of Lemma 5.4.2,( letting σr
i = γr

i = 0), the conclu-

sion of Theorem 5.4.3 and some algebraic manipulations.

Remark 5.4.2 The presented results about the two-level large scale delayed SIR disease dynamic

model depend on the underlying system parameters. In particular, the sufficient conditions are al-

gebraically simple, computationally attractive and explicit in terms of the rate parameters. As a

result of this, several scenarios can be discussed and exhibit practical course of action to control the

disease. For simplicity, we present an illustration as follows: the conditions of σr
i = γr

i = 0,∀r, i

in Corollary 5.4.4 signify that the arbitrary site sr
i is a ’sink’ in the context of compartmental
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systems[28, 29] for all other sites in the inter and intra-regional accessible domain. This scenario is

displayed in Figure 7.1. The condition T r
i ≥ max1≤r,u≤M,1≤i≤nr,1≤a≤nu(M

ru
ia ) is a threshold condition

for the immunity delay period of residents of site sr
i in region Cr, controlling the stochastic asymp-

totic stability of the disease free equilibrium. Furthermore, the condition Vru
ia < 1 signifies that the

magnitude of disease inhibitory processes for example, the magnitude of the recovery process is

greater than the disease transmission process. A future detailed study of the disease dynamics in

the two scale network dynamic structure for many real life scenarios using the presented two level

large-scale delay SIR disease dynamic model will appear elsewhere.

rC
qC

r

is

q

ls

q

ms
r

js

Figure 5.1: Shows that residents of site sr
i are present only at their home site sr

i . Hence they isolate

every site from their inter and intra regional accessible domain C(sr
i ). Site sr

i is a ’sink’ in the context

of the compartmental system[28, 29]. The arrows represent a transport network between any two

sites and regions. Furthermore, the dotted lines and arrows indicate connection with other sites and

regions.

5.5 Conclusion

The formulated two-scale network delayed epidemic dynamic model characterizes the dynamics

of an SIR epidemic in a population with various scale levels created by the heterogeneities in the

population. Moreover, the disease dynamics is subject to random environmental perturbations at the

disease transmission stage of the disease. Furthermore, the SIR epidemic confers temporary natural

immunity to recovered individuals immediately after recovery. This work provides a mathematical

and probabilistic algorithmic tool to develop different levels nested type disease transmission rates as

well as the variability in the disease diseases transmission process in the framework of the network-

centric Ito-Doob type dynamic equations. In addition, the concept of temporary natural immunity
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delay of human epidemics is developed for the first time in the context of scale-structured human

meta-populations.

The model validation results are exhibited and a positively self-invariant set for the dynamic

model is defined. Moreover, the globalization of the solution existence is obtained by applying

the Lyapunov energy function technique. In addition, using the Lyapunov functional technique, the

detailed stochastic asymptotic stability results of the disease free equilibria are also exhibited. More-

over, the system parameter dependent and also temporary delay time threshold values controlling

the stochastic asymptotic stability of the disease free equilibrium are also defined. Furthermore, the

analysis of the general stochastic delayed dynamic model are exhibited in a controlled quarantine

strategy.

The stochastic delayed epidemic dynamic model will be extended to the variability in the mobil-

ity, recovery and birth and death processes. A further detailed study of the oscillation of the epidemic

process about the ideal endemic equilibrium of the dynamic epidemic model will also appear else

where.
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6 SIMULATION RESULTS FOR A TWO-SCALE STOCHASTIC NETWORK

SIR TEMPORARY DELAYED INFLUENZA EPIDEMIC DYNAMIC MODEL

6.1 Introduction

In this chapter, we extend the influenza stochastic epidemic model studied in Chapter 4 by incorpo-

rating the natural immunity delay period of the naturally immune population. Influenza has a short

lived and strain-dependent immunity[78]. The population hierarchic structure, the human mobility

process, the influenza transmission process, the birth and death processes of the previous example in

Chapter 4 are preserved in this example. Moreover, the respective parametric specifications defined

in Chapter 4 are also valid in this example. In the following, we describe the influenza recovery pro-

cess and the acquisition of temporary immunity. We refer the reader to Chapter 4 for the influenza

scenario that is presented in this example.

We assume that residents of site su
a in region Cu recover from the disease and acquire temporary

natural immunity to the specific influenza strain. In the absence of data for the recovery and disease

related death processes, we take the recovery and disease mortality rate to be ρu
a = 0.05067 and

du
a = 0.01838,u = 1,2,3;a, i = 1,2,3 respectively. Furthermore, we assume that the average natural

immunity period of recovered residents of all sites in the two scale population structure is the same.

In this example, for all residents of site sr
i in region Cr present at any sites in the intra-regional and

interregional accessible domain, we set the natural immunity period T r
i = 1,∀r = 1,2,3,∀i = 1,2,3.

6.2 Mathematical Algorithm and Simulation Results

We apply the standard Euler-Maruyama method stochastic approximation scheme[69, 70] to gener-

ate the trajectories for the residents of sites s1
1, s2

1 and s3
1 in regions C1, C2 and C3 respectively, for

the different population disease classification (S, I,R), and current locations at some sites in the intra
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and inter-regional accessible domain of the sites. We summarize the Euler-Maruyama method steps

to obtain strong solution approximations to a system of stochastic delay differential equations in the

following. Given a scalar autonomous stochastic delay differential equation

dX(t) = f (X(t),X(t − τ))dt +g(X(t),X(t − τ))dW (t), T0 ≤ t ≤ T,

X(t) = φ0(t), t ∈ [T0 − τ,T0]. (6.2.1)

where φ0(t) is a measurable random variable on C ([T0 − τ,T0],R) and T0,T ≥ 0. Let T0 = t0 ≤ t1 ≤

t2 ≤ . . . ≤ tn = T , be a regular partition of [T0,T ], where h = t j − t j−1 =
T−T0

N , t j = T0 + jh, j =

0, . . . ,N and N is a positive integer. Furthermore, suppose there exist a positive integer Nτ such that

the delay parameter τ = Nτh. The Euler-Maruyama method takes the form

X(t j−Nτ) = φ0(t j − τ), j−Nτ ≤ 0,

X(t j+1) = X(t j)+h f (X(t j),X(t j−Nτ))+g(X(t j),X(t j−Nτ))∆W (t j+1),

j = 0,1, . . . ,N −1, (6.2.2)

where ∆W (t j+1) = (W (t j+1)−W (t j)), j = 0, . . . ,N−1 are an independent Gaussian N(0,h) random

variables. Using (6.2.1) as a general form of the equations in the system (5.2.1)-(5.2.3) in the context

of this example, the algorithm to execute the Euler-Maruyama method to find the solution process

of (6.2.1) consists of the following steps:

Step one: Parameter Specification: The system rate parameters for the epidemic model (5.2.1)-(5.2.3)

represented in this example are specified in Section 4.1.

Step two: Initial Conditions: The initial solutions are approximated using X(t j−Nτ) = φ0(t j −τ), j =

0, . . .Nτ, X ∈ {Sru
ia , I

ru
ia ,R

ru
ia}. In this example, we set τ = T r

i = 1,∀r = 1,2,3, i = 1,2,3, T0 =

0 and T = 1. This implies from the definition of τ and Nτ in (6.2.2) that Nτ = N. Furthermore,

from (5.2.4) and (6.2.1), the following convenient initial conditions are used for the simulation

process: for r,u ∈ I(1,3), i,a ∈ I(1,3), φru
iak ∈ C ([−1,0],R+),k = 1,2,3

Sru
ia (t) = φru

ia1(t) =


9, f or r = u, i = a

8, f or r = u, i ̸= a

7, f or r ̸= u,∀t ∈ [−1,0]
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Iru
ia (t) = φru

ia2(t) =


6, f or r = u, i = a

4, f or r = u, i ̸= a

3, f or r ̸= u,∀t ∈ [−1,0]

and Rru
ia (t) = φru

ia3(t) = 2,∀t ∈ [−1,0],∀r,u, i,a ∈ I(1,3).

Step Three: Generate Brownian Path: The standard Brownian motion or normalized Wierner process

W (t) is generated over the time interval [T0,T ]. That is, we let T0 = τ0 ≤ τ1 ≤ τ2 ≤ . . .≤ τn =

T , be a regular partition of [T0,T ], where δτ = τ j+1−τ j =
T−T0

N , τ j = T0+ jδτ, j = 0, . . . ,N

and N is a positive integer. The Brownian motion is generated as the solution to the following

difference equation

 W (0) = 0,

W (τ j+1) =W (τ j)+ dW (τ j+1), j = 0, . . . ,N −1.
(6.2.3)

where dW (τ j+1), j = 0, . . . ,N − 1 are the independent
√

δtN(0,1) Gaussian random vari-

ables. Furthermore, for this example given that T0 = 0 and T = 1, we simulated 500 sample

points for the Brownian motion over the interval [0,1].

Step Four: Generate Solution Path for the Susceptible, Infectious and Removal Populations(States):

Using (6.2.1) as a general representation of each equation in the system (5.2.1)-(5.2.3), we

use the discretization (6.2.2) to find solutions path for each equation in the system. For con-

venience, we choose h = Rδτ,[38], where the positive integer R ≥ 1 and δτ is defined in Step

Three. Moreover, from (6.2.2), it follows that

∆W (t j+1) =W (t j+1)−W (t j) =W (T0 +( j+1)Rδτ)−W (T0 + jRδτ) =
jR+R−1

∑
k= jR

dWk+1,

(6.2.4)

where dWk+1 is given by the Brownian path (6.2.3). We choose R = 1 for this example.

Moreover, from (6.2.2), (6.2.3), and (6.2.4), we obtain trajectories for susceptible, infectious

and removal populations of residents of sites s1
1, s2

1 and s3
1 in regions C1, C2 and C3 over the

time interval [0,1]. The trajectories for the residents of sites s1
1, s2

1 and s3
1 in regions C1, C2 and

C3 are exhibited in Figure 6.1, Figure 6.2 and Figure 6.3 respectively.
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Figure 6.1: Trajectories of the disease classification (S, I,R) for residents of site s1
1 in region C1 at

their current location in the two-scale spatial patch dynamic structure. See Remark 6.2.1 for more

comments on this figure.

Remark 6.2.1 From Figure 6.1, the Figures (a),(b) & (c) represent the trajectories of the different

disease classes of residents of site s1
1 at home. Figures (d),(e) & (f) represent the trajectories of the

different disease classes of residents of site s1
1 visiting site s1

2 in home region C1. These two groups

of figures are representative of the disease dynamics of influenza affecting the residents of site s1
1 at

the intra-regional level. Figures (g),(h) & (i) represent the trajectories of the different disease classes

of residents of site s1
1 visiting site s2

1 in region C2. These figures reflect the behavior of the disease

affecting the residents of site s1
1 at the inter-regional level.
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Furthermore, we observe that the trajectories of the susceptible (S) and infectious(I) populations

saturate to their equilibrium states. We further note that the trajectory paths are random in character

but because of the scale of the pictures presented in this figure, they appear to be smooth.
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Figure 6.2: Trajectories of the disease classification (S, I,R) for residents of site s2
1 in region C2 at

their current location in the two-scale spatial patch dynamic structure. See Remark 6.2.1 for more

comments on this figure.

Remark 6.2.2 From Figure 6.2, we note that Figures (a),(b) & (c) represent the trajectories of the

different disease classes of residents of site s2
1 at home. Figures (d),(e) & (f) represent the trajectories

of the different disease classes of residents of site s2
1 visiting site s2

2 in home region C2. These two

groups of figures are representative of the disease dynamics of influenza affecting the residents of

site s2
1 at the intra-regional level. Figures (g),(h) & (i) represent the trajectories of the different

disease classes of residents of site s2
1 visiting site s1

1 in region C1. Figures (j),(k) & (l) represent
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the trajectories of the different disease classes of residents of site s2
1 visiting site s3

1 in region C3.

These last two groups of figures reflect the behavior of the disease affecting the residence of site s2
1

at the inter-regional level. Furthermore, we observe that the trajectories of the susceptible (S) and

infectious(I) populations saturate to their equilibrium states. We further note that the trajectory paths

are random in character but because of the scale of the pictures presented in this figure, they appear

to be smooth.
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Figure 6.3: Trajectories of the disease classification (S, I,R) for residents of site s3
1 in region C3 at

their current location in the two-scale spatial patch dynamic structure. See Remark 6.2.3 for more

comments on this figure.

Remark 6.2.3 From Figure 6.3, we note that Figures (a),(b) & (c) represent the trajectories of the

different disease classes of residents of site s3
1 at home. Figures (d),(e) & (f) represent the trajectories

of the different disease classes of residents of site s3
1 visiting site s3

2 in home region C3. These two
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groups of figures are representative of the disease dynamics of influenza affecting the residents of

site s3
1 at the intra-regional level. Figures (g),(h) & (i) represent the trajectories of the different

disease classes of residents of site s3
1 visiting site s1

1 in region C1. Figures (j),(k) & (l) represent

the trajectories of the different disease classes of residents of site s3
1 visiting site s2

1 in region C2.

The last two groups of figures reflect the behavior of the disease affecting the residence of site s3
1

at the inter-regional level. Furthermore, we observe that the trajectories of the susceptible (S) and

infectious(I) populations saturate to their equilibrium states. We further note that the trajectory paths

are random in character but because of the scale of the pictures presented in this figure, they appear

to be smooth.

We make the following comparative remark on the trends in the trajectories of the naturally immune

populations represented in Figure 6.1, Figure 6.2 and Figure 6.3, and on the trends of the naturally

immune populations represented in Figure 4.1, Figure 4.2 and Figure 4.3

Remark 6.2.4 We observe significant differences between the trajectories of the naturally immune

populations R11
11 in Figure 6.1, R22

11 in Figure 6.2 and R33
11 in Figure 6.3, and the corresponding

trajectories of R11
11 in [Figure 4.1,[66]], R22

11 in [Figure 4.2,[66]] and R33
11 in [Figure 4.3,[66]]. The

trajectories of the naturally immune populations R11
11 in Figure 6.1, R22

11 in Figure 6.2 and R33
11 in

Figure 6.3, exhibit a growth trend in the naturally immune population that initially decreases from

the initial state, and finally increases over time. This further exhibit the fact that natural immunity

and the fluctuating environment influence the growth trends of the endemic population. Moreover,

the trajectory of the naturally immune populations R11
11 in Figure 6.1 indicates a periodic solution

over time with period equal to the length of the immunity period.

6.3 Conclusion

An influenza stochastic temporary delayed epidemic dynamic model in a two-scale population struc-

ture with specific model parameters is implicitly defined as an extension of the influenza epidemic

dynamic model studied in Chapter 5. The influenza transmission process at the site level is elabo-

rated. In addition, the Euler-Maruyama stochastic simulation scheme and application process for the

two-scale network centric Ito-Doob system of delay stochastic differential equations is explained.

Furthermore, simulated trajectories for the different state processes (susceptible, infective, removal)
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of residents of some sites in the three regions with respect to the current locations in the intra and

interregional levels are developed and presented. The simulated findings reveal comparative evolu-

tion patterns for the different state processes and current locations over time. Furthermore, there is

an oscillatory effect in the trajectory of the naturally immune population. Moreover, the oscillations

are more significant at the homesite.
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7 GLOBAL ANALYSIS OF A STOCHASTIC TWO-SCALE NETWORK

HUMAN EPIDEMIC DYNAMIC MODEL WITH VARYING IMMUNITY

PERIOD

7.1 Introduction

In this chapter we extend the epidemic dynamic model with temporary immunity delay studied in

Chapter 5 into a more realistic epidemic dynamic model with varying immunity period delay. Gen-

erally, the length of the natural immunity period after recovery from the disease varies within the

immune population and also for different diseases. This variation is accounted for by the varia-

tions in strengths of the immune system of individuals recovering from diseases, and also because

individuals in the population exhibit varying immunity responses to different antigens produced by

different diseases. Some diseases confer almost life long immunity, and others give only a tempo-

rary immunity after recovery. For instance, those who recover from measles acquire life long natural

immunity [84]. Influenza has a temporary immunity to the particular disease strain after recovery to

the disease.

The epidemic dynamic processes in populations exhibiting varying time disease latency or im-

munity delay periods are represented by differential equation models with distributed time delays.

Several studies[79, 81, 82, 83, 56] incorporating distributed delays describing the effects of disease

latency or immunity in the dynamics of human infectious diseases have been done. A mathematical

SIR (susceptible-infective-removal) epidemic dynamic model with distributed time delays repre-

senting the varying time temporal immunity period in the immune population class is studied by

Blyuss and Kyrychko[83]. In their study, the existence of positive solution is exhibited. Further-

more, the global asymptotic stability of the disease free and endemic equilibria are shown by using

Lyapunov functional technique. Moreover, they presented numerical simulation results for a special

case SIR epidemic with temporal immunity.
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The temporal immunity was represented in the epidemic dynamic model by letting the Dirac delta-

function be the integral kernel or the probability density function of the distributed time delay.

Stochastic models with distributed time delays offer a much better representation of the reality.

In [56], a stochastic SIR epidemic dynamic model with distributed time delay is studied. Moreover,

the stochastic asymptotic stability of the disease free equilibrium is exhibited by applying the Lya-

punov functional technique. Furthermore, in [68, 80] the existence of positive solution process for

the stochastic epidemic model is exhibited by applying a Lyapunov energy function method. This

work is organized as follows. In Section 7.2, we derive the distributed time acquired immunity delay

epidemic dynamic model. In Section 7.3, we present the model validation results of the epidemic

model. In Section 7.4, we show the stochastic asymptotic stability of the disease free equilibrium.

7.2 Derivation of the SIR Delayed Stochastic dynamic Model

We assume that for each r ∈ I(1,M), and i ∈ I(1,nr), infectious (Iru
ia ) residents of site sr

i in region Cr

visiting site su
a in region Cu recover from the disease and acquire immunity against the disease im-

mediately after recovery. The recovered individuals further loose immunity and become susceptible

to the disease after a period of time s ∈ [0,∞), where the immunity period s is an infinite random

variable. Using ideas from [83], we incorporate the varying acquired immunity time delay into

the epidemic dynamic model (5.2.1)-(5.2.3), by introducing the term ρu
a
∫ ∞

0 Iru
ia (t − s) f ru

ia (s)e
−δu

asds,

where e−δu
as is the probability that an individual who recovered from disease at an earlier time t−s is

still alive at time t. Furthermore, f ru
ia (s) is the integral kernel[83] representing the probability density

of the time s to loose acquired immunity by residents of site sr
i in region Cr. The naturally immune

individuals were previously infectious at their visiting site su
a in region Cu, and the have recovered

from disease acquiring temporal natural immunity. Moreover,
∫ ∞

0 f ru
ia (s)ds = 1, and f ru

ia ≥ 0. The

two level large scale stochastic SIR delayed epidemic dynamic model with varying immunity period
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delay is as follows:

dSru
ia =



[
Br

i +∑nr
k=1 ρrr

ik Srr
ik +∑M

q ̸=r ∑nq
a=1 ρrq

ia Srq
ia +ρr

i
∫ ∞

0 Irr
ii (t − s) f rr

ii (s)e
−δr

i sds

−(γr
i +σr

i +δr
i )S

rr
ii −∑M

u=1 ∑nu
a=1 βrru

iia Srr
ii Iur

ai
]
dt

−
[

∑M
u=1 ∑nu

a=1 vrru
iia Srr

ii Iur
ai dwrru

iia (t)
]
,u = r,a = i[

σrr
i j S

rr
ii +ρr

j
∫ ∞

0 Irr
i j (t − s) f rr

i j (s)e
−δr

jsds− (ρrr
i j +δr

j)S
rr
i j

−∑M
u=1 ∑nu

a=1 βrru
jia Srr

i j I
ur
a j ]dt −

[
∑M

u=1 ∑nu
a=1 vrru

jia Srr
i j I

ur
a j dwrru

jia(t)
]
,u = r,a = j, j ̸= i,[

γrq
il Srr

ii +ρq
l
∫ ∞

0 Irq
il (t − s) f rq

il (s)e
−δq

l sds− (ρrq
il +δq

l )S
rq
il

−∑M
u=1 ∑nu

a=1 βqru
lia Srq

il Iuq
al

]
dt −

[
∑M

u=1 ∑nu
a=1 vqru

lia Srq
il Iuq

al dwqru
lia (t)

]
,u = q,a = l,q ̸= r,

(7.2.1)

dIru
ia =



[
∑nr

k=1 ρrr
ik Irr

ik +∑M
q ̸=r ∑nq

a=1 ρrq
ia Irq

ia −ρr
i I

rr
ii

−(γr
i +σr

i +δr
i +dr

i )I
rr
ii +∑M

u=1 ∑nu
a=1 βrru

iia Srr
ii Iur

ai
]
dt

+
[

∑M
u=1 ∑nu

a=1 vrru
iia Srr

ii Iur
ai dwrru

iia (t)
]
,u = r,a = i[

σrr
i j I

rr
ii −ρr

jI
rr
i j − (ρrr

i j +δr
j +dr

j)I
rr
i j +∑M

u=1 ∑nu
a=1 βrru

jia Srr
i j I

ur
a j
]
dt

+
[

∑M
u=1 ∑nu

a=1 vrru
jia Srr

i j I
ur
a j dwrru

jia(t)
]
,u = r,a = j, j ̸= i,[

γrq
il Irr

ii −ρq
l Irq

il − (ρrq
il +δq

l +dq
l )I

rq
il

+∑M
u=1 ∑nu

a=1 βqru
lia Srq

il Iuq
al

]
dt +

[
∑M

u=1 ∑nu
a=1 vqru

lia Srq
il Iuq

al dwqru
lia (t)

]
,u = q,a = l,q ̸= r,

(7.2.2)

Rru
ia =



[
∑nr

k=1 ρrr
ik Rrr

ik +∑M
q̸=r ∑nq

l=1 ρrq
il Rrq

il +ρr
i I

rr
ii −ρr

i
∫ ∞

0 Irr
ii (t − s) f rr

ii (s)e
−δr

i sds

−(γr
i +σr

i +δr
i )R

rr
ii
]
dt,u = r,a = i[

σrr
i j R

rr
ii +ρr

jI
rr
i j −ρr

j
∫ ∞

0 Irr
i j (t − s) f rr

i j (s)e
−δr

jsds

−(ρrr
i j +δr

j)R
rr
i j
]
dt,u = r,a = j, j ̸= i,[

γrq
il Rrr

ii +ρq
l Irq

il −ρq
l
∫ ∞

0 Irq
il (t − s) f rq

il (s)e
−δq

l sds

−(ρrq
il +δq

l )R
rq
il

]
dt,u = q,a = l,q ̸= r,

(7.2.3)

where all parameters are previously defined. Furthermore, for each r ∈ I(1,M), and i ∈ I(1,nr), we

have the following initial conditions

(Sru
ia (t), I

ru
ia (t),R

ru
ia (t)) = (φru

ia1(t),φ
ru
ia2(t),φ

ru
ia3(t)), t ∈ [−∞, t0],

φru
iak ∈ C ([−∞, t0],R+),∀k = 1,2,3,∀r,q ∈ I(1,M),a ∈ I(1,nu), i ∈ I(1,nr),

φru
iak(t0)> 0,∀k = 1,2,3, (7.2.4)
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where C ([−∞, t0],R+) is the space of continuous functions with the supremum norm

||φ||∞ = Sup−∞≤t≤t0 |φ(t)|. (7.2.5)

and w is a Wierner process. Furthermore, the random continuous functions φru
iak,k = 1,2,3 are

z0 −measurable, or independent of w(t) for all t ≥ t0.

It follows from (3.2.18) and the system (7.2.1)-(7.2.3) that for i ∈ I(1,nr), l ∈ Ir
i (1,nq),r ∈

I(1,M) and q ∈ Ir(1,M),

dyrq
il =


[
Br

i +∑nr
k ̸=i ρrr

ik yrr
ik +∑M

q ̸=r ∑nq
a=1 ρrq

ia yrq
ia − (γr

i +σr
i +δr

i )y
rr
ii −dr

i Irr
ii
]
dt, f or q = r, l = i[

σrr
i j y

rr
ii − (ρrr

i j +δr
j)y

rr
i j −dr

jI
rr
i j
]
dt, f or q = r,a = j and i ̸= j,[

γrq
il yrr

ii − (ρrq
il +δq

l )y
rq
il −dq

l Irq
il

]
dt, f or q ̸= r,yrq

il (t0)≥ 0,
(7.2.6)

7.3 Model Validation Results

In the following we state and prove a positive solution process existence theorem for the delayed

system (7.2.1)-(7.2.3). We utilize the Lyapunov energy function method[68] to establish the results

of this theorem. We observe from (7.2.1)-(7.2.3) that (7.2.3) decouples from the first two equations

in the system. Therefore, it suffices to prove the existence of positive solution process for (Sru
ia , I

ru
ia ).

We utilize the notations (3.2.18) and keep in mind that X ru
ia = (Sru

ia , I
ru
ia )

T .

Theorem 7.3.1 Let r,u ∈ I(1,M), i ∈ I(1,nr) and a ∈ I(1,nu). Given any initial conditions (7.2.4)

and (7.2.5), there exists a unique solution process X ru
ia (t,w) = (Sru

ia (t,w), I
ru
ia (t,w))

T satisfying (7.2.1)

and (7.2.2), for all t ≥ t0. Moreover, the solution process is positive for all t ≥ t0 a.s. That is,

Sru
ia (t,w)> 0, Iru

ia(t,w) > 0,∀t ≥ t0 a.s.

Proof:

It is easy to see that the coefficients of (7.2.1) and (7.2.2) satisfy the local Lipschitz condition for

the given initial data (7.2.4). Therefore there exist a unique maximal local solution X ru
ia (t,w) on t ∈

[−∞,τe(w)], where τe(w) is the first hitting time or the explosion time[34]. We show subsequently

that Sru
ia (t,w), I

ru
ia (t,w) > 0 for all t ∈ [−∞,τe(w)] almost surely. We define the following stopping
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time  τ+ = sup{t ∈ (t0,τe(w)) : Sru
ia |[t0,t] > 0 and Iru

ia |[t0,t] > 0},

τ+(t) = min(t,τ+), f or t ≥ t0.
(7.3.7)

and we show that τ+(t) = τe(w) a.s. Suppose on the contrary that P(τ+(t) < τe(w)) > 0. Let

w ∈ {τ+(t)< τe(w)}, and t ∈ [t0,τ+(t)). Define

 V (X00
00 ) = ∑M

r=1 ∑nr
i=1 ∑M

u=1 ∑nu
a=1V (X ru

ia ),

V (X ru
ia ) = ln(Sru

ia )+ ln(Iru
ia ),∀t ≤ τ+(t).

(7.3.8)

We rewrite (7.3.8) as follows

V (X00
00 ) =

M

∑
r=1

nr

∑
i=1

[
V (X rr

ii )+
nr

∑
j ̸=i

V (X rr
i j )+

M

∑
q ̸=r

nq

∑
l=1

V (X rq
il )

]
, (7.3.9)

And (7.3.9) further implies that

dV (X00
00 ) =

M

∑
r=1

nr

∑
i=1

[
dV (X rr

ii )+
nr

∑
j ̸=i

dV (X rr
i j )+

M

∑
q̸=r

nq

∑
l=1

dV (X rq
il )

]
, (7.3.10)

where dV is the Ito-Doob differential operator with respect to the system (7.2.1)-(7.2.3). We express

the terms on the right-hand-side of (7.3.10) in the following:

Site Level: From (7.3.8) the terms on the right-hand-side of (7.3.10) for the case of u= r,a= i

dV (X rr
ii ) =

[
Br

i

Srr
ii
+

nr

∑
k ̸=i

ρrr
ik

Srr
ik

Srr
ii
+

M

∑
q̸=r

nq

∑
l=1

ρrq
ia

Srq
ia

Srr
ii
+

ρr
i

Srr
ii

∫ ∞

0
Irr
ii (t − s) f rr

ii (s)e
−δr

i sds

−(γr
i +σr

i +δr
i )−

M

∑
u=1

nu

∑
a=1

βrru
iia Iur

ai −
1
2

M

∑
u=1

nu

∑
a=1

(vrru
iia )

2(Iur
ai )

2

]
dt[

nr

∑
k ̸=i

ρrr
ik

Irr
ik

Srr
ii
+

M

∑
q ̸=r

nq

∑
l=1

ρrq
ia

Irq
ia

Srr
ii
−ρr

i − (γr
i +σr

i +δr
i +dr

i )

−
M

∑
u=1

nu

∑
a=1

βrru
iia

Srr
ii

Irr
ii

Iur
ai −

1
2

M

∑
u=1

nu

∑
a=1

(vrru
iia )

2 (S
rr
ii )

2

(Irr
ii )

2 (I
ur
ai )

2

]
dt

−
M

∑
u=1

nu

∑
a=1

vrru
iia Iur

ai dwrru
iia (t)+

M

∑
u=1

nu

∑
a=1

vrru
iia

Srr
ii

Irr
ii

Iur
ai dwrru

iia (t) (7.3.11)
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Intra-regional Level: From (7.3.8) the terms on the right-hand-side of (7.3.10) for the case

of u = r,a = j, j ̸= i

dV (X rr
i j ) =

[
σrr

i j
Srr

ii

Srr
i j
+

ρr
j

Srr
i j

∫ ∞

0
Irr
i j (t − s) f rr

i j (s)e
−δr

jsds

−(ρrr
i j +δr

j)−
M

∑
u=1

nu

∑
a=1

βrru
jia Iur

a j −
1
2

M

∑
u=1

nu

∑
a=1

(vrru
jia)

2(Iur
a j)

2

]
dt

+

[
σrr

i j
Irr
ii

Irr
i j
−ρr

j − (ρrr
i j +δr

j +dr
j)

+
M

∑
u=1

nu

∑
a=1

βrru
jia

Srr
i j

Irr
i j

Iur
a j −

1
2

M

∑
u=1

nu

∑
a=1

(vrru
jia)

2 (S
rr
i j )

2

(Irr
i j )

2 (I
ur
a j)

2

]
dt

−
M

∑
u=1

nu

∑
a=1

vrru
jia Iur

a j dwrru
jia(t)+

M

∑
u=1

nu

∑
a=1

vrru
jia

Srr
i j

Irr
i j

Iur
a j dwrru

jia(t) (7.3.12)

Regional Level: From (7.3.8) the terms on the right-hand-side of (7.3.10) for the case of

u = q,q ̸= r,a = l,

dV (X rq
il ) =

[
γrq

il
Srr

ii

Srq
iq
+

ρq
l

Srq
il

∫ ∞

0
Irq
il (t − s) f rq

il (s)e
−δq

l sds

−(ρrq
il +δq

l )−
M

∑
u=1

nu

∑
a=1

βqru
lia Iuq

al −
1
2

M

∑
u=1

nu

∑
a=1

(vqru
lia )

2(Iuq
al )

2

]
dt

+

[
γrq

il
Irr
ii

Irq
il

−ρq
l − (ρrq

il +δq
l +dq

l )

+
M

∑
u=1

nu

∑
a=1

βqru
lia

Srq
il

Irq
il

Iuq
al −

1
2

M

∑
u=1

nu

∑
a=1

(vqru
lia )

2 (S
rq
il )

2

(Irq
il )

2 (I
uq
al )

2

]
dt

−
M

∑
u=1

nu

∑
a=1

vqru
lia Iuq

al dwqru
lia (t)+

M

∑
u=1

nu

∑
a=1

vqru
lia

Srq
il

Irq
il

Iuq
al dwqru

lia (t) (7.3.13)
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It follows from (7.3.11)-(7.3.13), (7.3.10), and (7.3.7) that for t < τ+(t),

V (X00
00 (t))−V (X00

00 (t0)) ≥
M

∑
r=1

nr

∑
i=1

∫ t

t0

[
ρr

i

Srr
ii

∫ ∞

0
Irr
ii (t − s) f rr

ii (s)e
−δr

i sds− (γr
i +σr

i +δr
i )

−
M

∑
u=1

nu

∑
a=1

βrru
iia Iur

ai −
1
2

M

∑
u=1

nu

∑
a=1

(vrru
iia )

2(Iur
ai )

2

]
ds

+
M

∑
r=1

nr

∑
i=1

∫ t

t0
[−ρr

i − (γr
i +σr

i +δr
i +dr

i )

−
M

∑
u=1

nu

∑
a=1

βrru
iia

Srr
ii

Irr
ii

Iur
ai −

1
2

M

∑
u=1

nu

∑
a=1

(vrru
iia )

2 (S
rr
ii )

2

(Irr
ii )

2 (I
ur
ai )

2

]
ds

−
M

∑
r=1

nr

∑
i=1

M

∑
u=1

nu

∑
a=1

∫ t

t0
vrru

iia Iur
ai dwrru

iia (s)

+
M

∑
r=1

nr

∑
i=1

M

∑
u=1

nu

∑
a=1

∫ t

t0
vrru

iia
Srr

ii

Irr
ii

Iur
ai dwrru

iia (s)

M

∑
r=1

nr

∑
i=1

nr

∑
j ̸=i

∫ t

t0

[
ρr

j

Srr
i j

∫ ∞

0
Irr
i j (t − s) f rr

i j (s)e
−δr

jsds

−(ρrr
i j +δr

j)−
M

∑
u=1

nu

∑
a=1

βrru
jia Iur

a j −
1
2

M

∑
u=1

nu

∑
a=1

(vrru
jia)

2(Iur
a j)

2

]
ds

+
M

∑
r=1

nr

∑
i=1

nr

∑
j ̸=i

∫ t

t0

[
−ρr

j − (ρrr
i j +δr

j +dr
j)

−1
2

M

∑
u=1

nu

∑
a=1

(vrru
jia)

2 (S
rr
i j )

2

(Irr
i j )

2 (I
ur
a j)

2

]
ds

−
M

∑
r=1

nr

∑
i=1

nr

∑
j ̸=i

M

∑
u=1

nu

∑
a=1

∫ t

t0
vrru

jia Iur
a j dwrru

jia(s)

+
M

∑
r=1

nr

∑
i=1

nr

∑
j ̸=i

M

∑
u=1

nu

∑
a=1

∫ t

t0
vrru

jia
Srr

i j

Irr
i j

Iur
a j dwrru

jia(s)

+
M

∑
r=1

nr

∑
i=1

M

∑
q ̸=r

nq

∑
l=1

∫ t

t0

[
ρq

l

Srq
il

∫ ∞

0
Irq
il (t − s) f rq

il (s)e
−δq

l sds− (ρrq
il +δq

l )

−
M

∑
u=1

nu

∑
a=1

βqru
lia Iuq

al −
1
2

M

∑
u=1

nu

∑
a=1

(vqru
lia )

2(Iuq
al )

2

]
ds

+
M

∑
r=1

nr

∑
i=1

M

∑
q ̸=r

nq

∑
l=1

∫ t

t0

[
−ρq

l − (ρrq
il +δq

l +dq
l )

−1
2

M

∑
u=1

nu

∑
a=1

(vqru
lia )

2 (S
rq
il )

2

(Irq
il )

2 (I
uq
al )

2

]
ds

−
M

∑
r=1

nr

∑
i=1

M

∑
q ̸=r

nq

∑
l=1

M

∑
u=1

nu

∑
a=1

∫ t

t0
vqru

lia Iuq
al dwqru

lia (s)

+
M

∑
r=1

nr

∑
i=1

M

∑
q ̸=r

nq

∑
l=1

M

∑
u=1

nu

∑
a=1

∫ t

t0
vqru

lia
Srq

il

Irq
il

Iuq
al dwqru

lia (s) (7.3.14)
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Taking the limit on (7.3.14) as t → τ+(t), it follows from (7.3.8) and (7.3.7) that the left-hand-

side V (X00
00 (t))−V (X00

00 (t0))≤−∞ (since from (7.3.8) and (7.3.7), V (X ru
ia (τ+(t))) = lnSru

ia (τ+(t))+

ln Iru
ia (τ+(t)) =−∞). This contradicts the finiteness of the right-hand-side of the inequality (7.3.14).

Hence τ+(t) = τe(w) a.s. We show subsequently that τe(w) = ∞.

Let k > 0 be a positive integer such that ||φ00
00||1 ≤ k, where the vector of initial values φ00

00 =

(φru
ia )1≤r,u≤M,1≤i≤nr,1≤a≤nu ∈R2n2

is defined in (7.2.4). Furthermore, ||.||1 is the p-sum norm (3.2.19)

for the case of p = 1. We define the stopping time

 τk = sup{t ∈ [t0,τe) : ||X00
00 (s)||1 ≤ k,s ∈ [0, t]}

τk(t) = min(t,τk).
(7.3.15)

where from (3.2.19),

||X00
00 (s)||1 =

M

∑
r=1

M

∑
u=1

nr

∑
i=1

nu

∑
a=1

(Sru
ia (s)+ Iru

ia (s)). (7.3.16)

It is easy to see that as k → ∞, τk increases. Set limk→∞ τk(t) = τ∞. Then τ∞ ≤ τe a.s. We show in

the following that: (1.) τe = τ∞ a.s.⇔ P(τe ̸= τ∞) = 0, (2.) τ∞ = ∞ a.s.⇔ P(τ∞ = ∞) = 1.

Suppose on the contrary that P(τ∞ < τe)> 0. Let w∈{τ∞ < τe} and t ≤ τ∞. In the same structure

form as (7.3.8) and (7.3.10), define V1(X00
00 ) = ∑M

r=1 ∑nr
i=1 ∑M

u=1 ∑nu
a=1V (X ru

ia ),

V1(X ru
ia ) = eδu

at(Sru
ia + Iru

ia ),∀t ≤ τk(t).
(7.3.17)

From (7.3.17), using the expression (7.3.10), the Ito-Doob differential dV1 with respect to the system

(7.2.1)-(7.2.3) is given as follows:

Site Level: From (7.3.17), the terms of the right-hand-side of (7.3.10) for the case of u =

r,a = i

dV1(X rr
ii ) = eδr

i t

[
Br

i +
nr

∑
k ̸=i

ρrr
ik Srr

ik +
M

∑
q ̸=r

nq

∑
l=1

ρrq
ia Srq

ia +ρr
i

∫ ∞

0
Irr
ii (t − s) f rr

ii (s)e
−δr

i sds

−(γr
i +σr

i )S
rr
ii ]dt + eδr

i t

[
nr

∑
k ̸=i

ρrr
ik Irr

ik +
M

∑
q̸=r

nq

∑
l=1

ρrq
ia Irq

ia −ρr
i I

rr
ii

−(γr
i +σr

i +dr
i )I

rr
ii ]dt (7.3.18)
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Intra-regional Level: From (7.3.17), the terms of the right-hand-side of (7.3.10) for the case

of u = r,a = j, j ̸= i

dV1(X rr
i j ) = eδr

i t
[

σrr
i j S

rr
ii +ρr

j

∫ ∞

0
Irr
i j (t − s) f rr

i j (s)e
−δr

jsds−ρrr
i j S

rr
i j

]
dt

+eδr
jt
[
σrr

i j I
rr
ii +ρr

jI
rr
i j − (ρrr

i j +dr
j)I

rr
i j
]

dt (7.3.19)

Regional Level: From (7.3.17), the terms of the right-hand-side of (7.3.10) for the case of

u = q,q ̸= r,a = l

dV1(X
rq
il ) = eδq

l t
[

γrq
il Srr

ii +ρq
l

∫ ∞

0
Irq
il (t − s) f rq

il (s)e
−δq

l sds−ρrq
il Srq

il

]
dt

+eδq
l t [γrq

il Irr
ii +ρq

l Irq
il − (ρrq

il +dq
l )I

rq
il

]
dt (7.3.20)

From (7.3.18)-(7.3.20), (7.3.10), integrating (7.3.10) over [t0,τ] leads to the following

V1(X00
00 (τ))

= V1(X00
00 (t0))+

M

∑
r=1

nr

∑
i=1

∫ τ

t0
eδr

i s

[
Br

i +
nr

∑
k ̸=i

ρrr
ik Srr

ik +
M

∑
q̸=r

nq

∑
l=1

ρrq
ia Srq

ia +ρr
i

∫ ∞

0
Irr
ii (t − s) f rr

ii (s)e
−δr

i sds

−(γr
i +σr

i )S
rr
ii ]ds+

M

∑
r=1

nr

∑
i=1

∫ τ

t0
eδr

i s

[
nr

∑
k ̸=i

ρrr
ik Irr

ik +
M

∑
q ̸=r

nq

∑
l=1

ρrq
ia Irq

ia −ρr
i I

rr
ii

−(γr
i +σr

i +dr
i )I

rr
ii ]ds

+
M

∑
r=1

nr

∑
i=1

nr

∑
j ̸=i

∫ τ

t0
eδr

i s
[

σrr
i j S

rr
ii +ρr

j

∫ ∞

0
Irr
i j (t − s) f rr

i j (s)e
−δr

jsds−ρrr
i j S

rr
i j

]
ds

+
M

∑
r=1

nr

∑
i=1

nr

∑
j ̸=i

∫ τ

t0
eδr

js
[
σrr

i j I
rr
ii −ρr

jI
rr
i j − (ρrr

i j +dr
j)I

rr
i j
]

ds

+
M

∑
r=1

nr

∑
i=1

nr

∑
q ̸=r

nq

∑
l=1

∫ τ

t0
eδq

l s
[

γrq
il Srr

ii +ρq
l

∫ ∞

0
Irq
il (t − s) f rq

il (s)e
−δq

l sds−ρrq
il Srq

il

]
ds

+
M

∑
r=1

nr

∑
i=1

nr

∑
q ̸=r

nq

∑
l=1

∫ τ

t0
eδq

l s [γrq
il Irr

ii −ρq
l Irq

il − (ρrq
il +dq

l )I
rq
il

]
ds (7.3.21)

From (7.3.21), we let τ = τk(t), where τk(t) is defined in (7.3.15). It is easy to see from (7.3.21),

(7.3.15), (7.3.16), and (7.3.17) that

k = ||X00
00 (τk(t))||1 ≤V1(X00

00 (τk(t))) (7.3.22)
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Taking the limit on (7.3.22) as k → ∞ leads to a contradiction because the left-hand-side of the

inequality (7.3.22) is infinite, and the right-hand-side is finite. Hence τe = τ∞ a.s. In the following,

we show that τe = τ∞ = ∞ a.s.

We let w ∈ {τe < ∞}. Applying some algebraic manipulations and simplifications to (7.3.21),

we have the following

I{τe<∞}V1(X00
00 (τ))

= I{τe<∞}V1(X00
00 (t0))+ I{τe<∞}

M

∑
r=1

nr

∑
i=1

Br
i

δr
i
(eδr

i τ −1)

+I{τe<∞}

M

∑
r=1

nr

∑
i=1

M

∑
q=1

nq

∑
l=1

∫ ∞

0
f rq
il (t)

[
ρq

l

∫ t0

−t
Irq
il (s)e

δq
l sds−ρq

l

∫ τ

τ−t
Irq
il (s)e

δq
l sds

]
dt

−I{τe<∞}

M

∑
r=1

nr

∑
i=1

∫ τ

t0

[
σr

i e
δr

i s −
nr

∑
j ̸=i

σrr
i j e

δr
js

]
(Srr

ii + Irr
ii )ds

−I{τe<∞}

M

∑
r=1

nr

∑
i=1

∫ τ

t0

[
γr

i e
δr

i s −
M

∑
q=1

nq

∑
l=1

γrq
il eδq

l s

]
(Srr

ii + Irr
ii )ds

−I{τe<∞}

M

∑
r=1

nr

∑
i=1

dr
i

∫ τ

t0
Irr
ii eδr

i sds

−I{τe<∞}

M

∑
r=1

nr

∑
i=1

nr

∑
j ̸=i

dr
j

∫ τ

t0
Irr
i j eδr

jsds

−I{τe<∞}

M

∑
r=1

nr

∑
i=1

M

∑
q=1

nq

∑
l=1

dq
l

∫ τ

t0
Irq
il eδq

l sds,

(7.3.23)

where IA is the indicator function of the set A.

We recall [30], σr
i = ∑nr

j ̸=i σrr
i j and γr

i = ∑M
q ̸=r ∑nq

l=1 γrq
il . Hence the fourth and fifth terms on the

right-hand-side of (7.3.23) are such that
[
σr

i e
δr

i s −∑nr
j ̸=i σrr

i j e
δr

js
]
≥ 0,∀δr

i ≥ δr
j, j ̸= i and[

γr
i e

δr
i s −∑M

q=1 ∑nq
l=1 γrq

il eδq
l s
]
≥ 0,∀δr

i ≥ δq
l ,q ̸= r, l ∈ I(1,nq). We now let τ = τk(t)∧T in (7.3.23),

∃T > 0, where τk(t) is defined in (7.3.15). The expected value of (7.3.23) is estimated as follows

E
[
I{τe<∞}V1(X00

00 (τk(t)∧T ))
]

≤ V1(X00
00 (t0))+

nr

∑
i=1

Br
i

δr
i

eδr
i τk(t)∧T

+
M

∑
r=1

nr

∑
i=1

M

∑
q=1

nq

∑
l=1

∫ ∞

0
f rq
il (t)

[
ρq

l

∫ t0

−t
φrq

il2(s)e
δq

l sds
]

dt

(7.3.24)
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Furthermore, from (7.3.16), (7.3.17) and the definition of the indicator function IA it follows that

I{τe<∞,τk(t)≤T}||X00
00 (τk(t))||1 ≤ I{τe<∞}V1(X00

00 (τk(t)∧T )) (7.3.25)

It follows from (7.3.24), (7.3.25) and (7.3.15) that

P({τe < ∞,τk(t)≤ T})k = E
[
I{τe<∞,τk(t)≤T}||X00

00 (τk(t))||1
]

≤ E
[
I{τe<∞}V (X00

00 (τk(t)∧T ))
]

≤ V1(X00
00 (t0))+

nr

∑
i=1

Br
i

δr
i

eδr
i T

+
M

∑
r=1

nr

∑
i=1

M

∑
q=1

nq

∑
l=1

∫ ∞

0
f rq
il (t)

[
ρq

l

∫ t0

−t
φrq

il2(s)e
δq

l sds
]

dt

(7.3.26)

It follows immediately from (7.3.26) that P({τe < ∞,τ∞ ≤ T})→ 0 as k → ∞. Furthermore, since

T < ∞ is arbitrary, we conclude that P({τe < ∞,τ∞ < ∞}) = 0.

Finally, by the total probability principle,

P({τe < ∞}) = P({τe < ∞,τ∞ = ∞})+P({τe < ∞,τ∞ < ∞})

≤ P({τe ̸= τ∞})+P({τe < ∞,τ∞ < ∞})

= 0. (7.3.27)

Thus from (7.3.27), τe = τ∞ = ∞ a.s. as was required to show.

Remark 7.3.1 For any r ∈ I(1,M) and i ∈ I(1,nr), Theorem 7.3.1 signifies that the number of res-

idents of site sr
i of all categories present at home site sr

i , or visiting intra and inter-regional sites

sr
j and sq

l respectively, are nonnegative. This implies that the total number of residents of site sr
i

present at home site and also visiting sites in regions in their intra and inter-regional accessible

domains[66], given by the sum Nrr
i0 (t) = ∑M

u=1 ∑nu
a=1 yru

ia , is nonnegative. Moreover, the total effective

population[66], defined by e f f (Nrr
i0 )(t) = ∑M

u=1 ∑nu
a=1 yur

ai , at any site sr
i in region Cr is also nonneg-

ative at all time t ≥ t0.

The following result defines an upper bound for the solution process of the system (7.2.1)-(7.2.3).

We utilize Theorem 7.3.1 to establish this result.
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Theorem 7.3.2 Suppose the hypotheses of Theorem 7.3.1 is satisfied. Let µ=min1≤u≤M,1≤a≤nu(δu
a).

If
M

∑
r=1

M

∑
u=1

nr

∑
i=1

nu

∑
a=1

yru
ia (t0)≤

1
µ

M

∑
r=1

nr

∑
i=1

Br
i , (7.3.28)

then
M

∑
r=1

M

∑
u=1

nr

∑
i=1

nu

∑
a=1

yru
ia (t)≤

1
µ

M

∑
r=1

nr

∑
i=1

Br
i , f or t ≥ t0 a.s. (7.3.29)

Proof: See [[66],Lemma 3.2]

Remark 7.3.2 From Theorem 7.3.1 and Theorem 7.3.2, we conclude that a closed ball B̄R3n2 (⃗0;r)

in R3n2
under the sum norm ||.||1 centered at the origin 0⃗ ∈ R3n2

, with radius r = 1
µ ∑M

r=1 ∑nr
i=1 Br

i

is self-invariant with regard to a two-scale network dynamics of human epidemic process (7.2.1)-

(7.2.3) that is under the influence of human mobility process[30]. That is,

B̄R3n2 (⃗0;r) =

{
(Sru

ia , I
ru
ia ,R

ru
ia ) : yru

ia (t)≥ 0 and ||x00
00||1 =

M

∑
r=1

M

∑
u=1

nr

∑
i=1

nu

∑
a=1

yru
ia (t)≤

1
µ

M

∑
r=1

nr

∑
i=1

Br
i

}
(7.3.30)

is a positive self-invariant set for system (7.2.1)-(7.2.3). We shall denote

B̄ ≡ 1
µ

M

∑
r=1

nr

∑
i=1

Br
i (7.3.31)

7.4 Existence and Asymptotic Behavior of Disease Free Equilibrium

In this section, we study the existence and the asymptotic behavior of the disease free equilibrium

state of the system (7.2.1)-(7.2.3). The disease free equilibrium is obtained by solving the system of

algebraic equations obtained by setting the drift and the diffusion parts of the system of stochastic

differential equations to zero. In addition, we utilize the conditions that I = R = 0 in the event

when there is no disease in the population. We summarize the results in the following. For any

r,u ∈ I(1,M), i ∈ I(1,nr) and a ∈ I(1,nu), let

Dr
i = γr

i +σr
i +δr

i −
nr

∑
a=1

ρrr
iaσrr

ia

ρrr
ia +δr

a
−

M

∑
u̸=r

nu

∑
a=1

ρrr
iaγru

ia
ρru

ia +δu
a
> 0. (7.4.32)
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Furthermore, let (Sru∗
ia , Iru∗

ia ,Rru∗
ia ), be the equilibrium state of the delayed system (7.2.1)-(7.2.3). One

can see that the disease free equilibrium state is given by Eru
ia = (Sru∗

ia ,0,0), where

Sru∗
ia =


Br

i
Dr

i
, f or u = r,a = i,

Br
i

Dr
i

σrr
i j

ρrr
i j+δr

j
, f or u = r,a ̸= i,

Br
i

Dr
i

γru
ia

ρru
ia+δu

a
, f or u ̸= r.

(7.4.33)

The asymptotic stability property of Eru
ia will be established by verifying the conditions of the

stochastic version of the Lyapunov second method given in [[34],Theorem 2.4],[59],

and [[34],Theorem 4.4], respectively. In order to study the qualitative properties of (7.2.1)-(7.2.3)

with respect to the equilibrium state (Sru∗
ia ,0,0), first, we use the change of variable that shifts the

equilibrium to the origin. For this purpose, we use the following transformation:


U ru

ia = Sru
ia −Sru∗

ia

V ru
ia = Iru

ia

W ru
ia = Rru

ia .

(7.4.34)

By employing this transformation, system (7.2.1)-(7.2.3) is transformed into the following forms

dU rq
il =



[
∑M

q=1 ∑nq
a=1 ρrq

iaU rq
ia +ρr

i
∫ ∞

0 V rr
ii (t − s) f rr

ii (s)e
−δr

i sds

−(γr
i +σr

i +δr
i )U

rr
ii −∑M

u=1 ∑nu
a=1 βrru

iia (S
rr∗
ii +U rr

ii )V
ur
ai
]
dt

−
[

∑M
u=1 ∑nu

a=1 vrru
iia (S

rr∗
ii +U rr

ii )V
ur
ai dwrru

iia (t)
]
, f or q = r, l = i[

σrr
i jU

rr
ii +ρr

j
∫ ∞

0 V rr
i j (t − s) f rr

i j (s)e
−δr

jsds− (ρrr
i j +δr

j)U
rr
i j

−∑M
u=1 ∑nu

a=1 βrru
jia(S

rr∗
i j +U rr

i j )V
ur
a j
]
dt

−
[

∑M
u=1 ∑nu

a=1 vrru
jia(S

rr∗
i j +U rr

i j )V
ur
a j dwrru

jia(t)
]
, f or q = r, l = j, j ̸= i,[

γrq
il U rr

ii +ρq
l
∫ ∞

0 V rq
il (t − s) f rq

il (s)e
−δq

l sds− (ρrq
il +δq

l )U
rq
il

−∑M
u=1 ∑nu

a=1 βqru
lia Srq

il Iuq
al

]
dt −

[
∑M

u=1 ∑nu
a=1 vqru

lia (S
rq∗
il +U rq

il )V
uq
al dwqru

lia (t)
]
, f or q ̸= r,

(7.4.35)
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dV rq
il =



[
∑M

q=1 ∑nq
a=1 ρrq

iaV rq
ia − (ρr

i + γr
i +σr

i +δr
i +dr

i )W
rr
ii

+∑M
u=1 ∑nu

a=1 βrru
iia (S

rr∗
ii +U rr

ii )V
ur
ai
]
dt

+
[

∑M
u=1 ∑nu

a=1 vrru
iia (S

rr∗
ii +U rr

ii )V
ur
ai dwrru

iia (t)
]
, f or q = r, l = i[

σrr
i jV

rr
ii − (ρr

j +ρrr
i j +δr

j +dr
j)V

rr
i j +∑M

u=1 ∑nu
a=1 βrru

jia(S
rr∗
i j +U rr

i j )V
ur
a j
]
dt

+
[

∑M
u=1 ∑nu

a=1 vrru
jia(S

rr∗
i j +U rr

i j )V
ur
a j dwrru

jia(t)
]
, f or q = r, l = j, j ̸= i,[

γrq
il V rr

ii − (ρq
l +ρrq

il +δq
l +dq

l )V
rq
il

∑M
u=1 ∑nu

a=1 βqru
lia (S

rq∗
il +U rq

il )V
uq
al

]
dt +

[
∑M

u=1 ∑nu
a=1 vqru

lia (S
rq∗
il +U rq

il )V
uq
al dwqru

lia (t)
]
,

f or q ̸= r,
(7.4.36)

and

dW rq
il =



[
∑M

q=1 ∑nq
l=1 ρrq

il W rq
il +ρr

iV
rr
ii −ρr

i
∫ ∞

0 V rr
ii (t − s) f rr

ii (s)e
−δr

i sds− (γr
i +σr

i +δr
i )W

rr
ii
]
dt,

f or q = r, l = i[
σrr

i jW
rr
ii +ρr

jV
rr
i j −ρr

j
∫ ∞

0 V rr
i j (t − s) f rr

i j (s)e
−δr

jsds− (ρrr
i j +δr

j)W
rr
i j
]
dt,

f or q = r, l = j, j ̸= i[
γrq

il W rr
ii +ρq

l V rq
il −ρq

l
∫ ∞

0 V rq
il (t − s) f rq

il (s)e
−δq

l sds− (ρrq
il +δq

l )W
rq
il

]
dt, f or q ̸= r

(7.4.37)

We state and prove the following lemmas that would be useful in the proofs of the stability results.

Lemma 7.4.1 Let V1 : R3n2 ×R+ → R+ be a function defined by


V1(x̃00

00) = ∑M
r=1 ∑M

u=1 ∑nr
i=1 ∑nu

a=1V (x̃ru
ia ),

V1(x̃ru
ia ) = (Sru

ia −Sru∗
ia + Iru

ia )
2 + cru

ia (I
ru
ia )

2 +(Rru
ia )

2

x̃00
00 = (U ru

ia ,V
ru
ia ,W ru

ia )T and cru
ia ≥ 0.

(7.4.38)

Then V1 ∈ C 2,1(R3n2 ×R+,R+), and it satisfies

b(||x̃00
00||) ≤ V1(x̃00

00(t))≤ a(||x̃00
00||) (7.4.39)

where

b(||x̃00
00||) = min

1≤r,u≤M,1≤i≤nr,1≤a≤nu

{
cru

ia
2+ cru

ia

} M

∑
r=1

M

∑
u=1

nr

∑
i=1

nu

∑
a=1

[
(U ru

ia )
2 +(V ru

ia )2 +(W ru
ia )2] ,
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and

a(||x̃00
00||) = max

1≤r,u≤M,1≤i≤nr,1≤a≤nu
{cru

ia +2}
M

∑
r=1

M

∑
u=1

nr

∑
i=1

nu

∑
a=1

[
(U ru

ia )
2 +(V ru

ia )2 +(W ru
ia )2] .

(7.4.40)

Proof: See [(Chapter3,Lemma 7.4.1) or ([66], Lemma 4.1)].

Remark 7.4.1 Lemma 7.4.1 shows that the Lyapunov function V defined in (7.4.38) is positive def-

inite, decrescent and radially unbounded ((7.4.39)) function[34, 59].

We now state the following lemma

Lemma 7.4.2 Assume that the hypothesis of Lemma 7.4.1 is satisfied. Define a Lyapunov functional

V =V1 +V2, (7.4.41)

where V1 is defined by (7.4.38), and
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∑
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]
, (7.4.42)

Furthermore, let
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(7.4.43)

Vru
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1
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(7.4.44)
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and

Wru
ia =



[
1
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1
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2
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ia )2
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(7.4.45)

for some suitably defined positive number µru
ia , depending on δu

a, for all r,u ∈ Ir(1,M), i ∈ I(1,n)

and a ∈ Ir
i (1,nr). Assume that Uru

ia ≤ 1, Vru
ia < 1 and Wru

ia ≤ 1. There exist positive numbers ϕru
ia ,

ψru
ia and φru

ia such that the differential operator LV associated with Ito-Doob type stochastic system

(7.2.1)-(7.2.3)satisfies the following inequality

LV (x̃00
00) ≤

M

∑
r=1
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∑
i=1

[
−[ϕrr

ii (U
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ii )

2 +ψrr
ii (V
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ii )
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−
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∑
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]
. (7.4.46)

Moreover,

LV (x̃00
00) ≤ −cV1(x̃00

00) (7.4.47)

where a positive constant c is defined by

c =
min1≤r,u≤M,1≤i≤nr,1≤a≤nu{ϕru

ia ,ψru
ia ,φru

ia}
max1≤r,u≤M,1≤i≤nr,1≤a≤nu {Cru

ia +2}
(7.4.48)

Proof:

The computation of differential operator[34, 59] applied to the Lyapunov function V1 in (7.4.38) with

respect to the large-scale system of Ito-Doob type stochastic differential equation (7.2.1)-(7.2.3) is

as follows:

LV1(x̃00
00) =

M

∑
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∑
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[
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∑
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, (7.4.49)
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where,
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ii ) = 2

M

∑
u=1

nu

∑
a=1

[(1+Crr
ii )ρ

ru
iaV ru

ia V rr
ii +ρru

iaU ru
ia U rr

ii +ρru
iaV ru

ia U rr
ii +ρru

iaU ru
ia V rr

ii

+ρru
iaW ru

ia W rr
ii ]+2ρr

iU
rr
ii

∫ ∞

0
V rr

ii (t − s) f rr
ii (s)e

−δr
i sds+2ρr

iV
rr
ii

∫ ∞

0
V rr

ii (t − s) f rr
ii (s)e

−δr
i sds

−2ρr
iW

rr
ii

∫ ∞

0
V rr

ii (t − s) f rr
ii (s)e

−δr
i sds−2ρr

iV
rr
ii W rr

ii

−2[(ρr
i +dr

i )+2(γr
i +σr

i +δr
i )]V

rr
ii U rr

ii −2(γr
i +σr

i +δr
i )(U

rr
ii )

2

−2[(crr
ii +1)ρr

i +2(crr
ii +1)(γr

i +σr
i +δr

i +dr
i )](V

rr
ii )

2 −2(γr
i +σr

i +αr
i +δr

i )(W
rr
ii )

2

+2crr
ii

M

∑
u=1

nu

∑
a=1

βrru
iia (S

rr∗
ii +U rr

ii )V
ur
ai V rr

ii + crr
ii

M

∑
u=1

nu

∑
a=1

(vrru
iia )

2(Srr∗
ii +U rr

ii )
2(V ur

ai )
2,

f or u = r,a = i (7.4.50)
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+2
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∑
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By using (7.3.31) and the algebraic inequality

2ab ≤ a2

g(c)
+b2g(c) (7.4.53)

where a,b,c ∈ R, and the function g is such that g(c)> 0. The fourteenth term in (7.4.50)-(7.4.52)

is estimated as follows:
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(7.4.54)

Furthermore, by using Cauchy−Swartz and Hölder inequalities and (7.4.53), the sixth, seventh and

eighth terms in (7.4.50)-(7.4.52) are estimated as follows:
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(7.4.55)
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From (7.4.50)-(7.4.54), (7.4.49), repeated usage of (7.3.31) and inequality (7.4.53) coupled with

some algebraic manipulations and simplifications, we have the following inequality
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(7.4.56)

where µru
ia = gr

i (δu
a), gr

i is appropriately defined by (7.4.53). For each r,u ∈ I(1,M), i ∈ I(1,nr) and

a ∈ I(1,nu), using (7.4.43), (7.4.44) and (7.4.45), we define the constants dur
ai , ϕru

ia , ψru
ia and φru

ia as

follows:
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for some positive numbers cru
ia , for all r,u ∈ Ir(1,M), i ∈ I(1,n) and a ∈ Ir
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(7.4.60)

141



where Uru
ia ,V
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ia ,W
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asds

(ρr
a+ρrr

ia+δr
a+dr

a)

]
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ia

+2µrr
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2
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ia

+4
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ia (s)e
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asds

(ρu
a+ρru

ia+δu
a+du

a)

]
, f or ,u ̸= r

From (7.4.41), (7.4.42), (7.4.56), (7.4.57), the differential operator LV [34, 59] applied to the Lya-

punov functional (7.4.41), and some further algebraic manipulations we have the following inequal-

ity

LV (x̃00
00) ≤

M

∑
r=1

nr

∑
i=1

−
{
[ϕrr

ii (U
rr
ii )

2 +ψrr
ii )(V

rr
ii )

2

φrr
ii (W

rr
ii )

2]+
nr

∑
a̸=r

[ϕrr
ia(U

rr
ia )

2 +ψrr
ia(V

rr
ia )

2

+φrr
ia(W

rr
ia )

2]+
M

∑
u ̸=r

nu

∑
a=1

[ϕru
ia (U

ru
ia )

2 +ψru
ia (V

ru
ia )2

+ φru
ia (W

ru
ia )2]

}
. (7.4.61)

Under the assumptions on Uru
ia , Vru

ia and Wru
ia , it is clear that ϕru

ia ,ψru
ia and φru

ia are positive for suitable

choices of the constants cru
ia > 0. Thus this proves the inequality (7.4.46). Now, the validity of

(7.4.47) follows from (7.4.46) and (7.4.39), that is,

LV (x̃00
00)≤−cV1(x̃00

00),

where c = min1≤r,u≤M,1≤i≤nr ,1≤a≤nu{ϕru
ia ,ψ

ru
ia ,φ

ru
ia }

max1≤r,u≤M,1≤i≤nr ,1≤a≤nu{Cru
ia +2} . This completes the proof.

We now formally state the stochastic stability theorems for the disease free equilibria.

Theorem 7.4.3 Given r,u ∈ I(1,M), i ∈ I(1,nr) and a ∈ I(1,nu). Let us assume that the hypotheses

of Lemma 7.4.2 are satisfied. Then the disease free solutions Eru
ia , are asymptotically stable in the

large. Moreover, the solutions Eru
ia are exponentially mean square stable.
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Proof:

From the application of comparison result[34, 59], the proof of stochastic asymptotic stability fol-

lows immediately. Moreover, the disease free equilibrium state is exponentially mean square stable.

We now consider the following corollary to Theorem 7.4.3.

Corollary 7.4.4 Let r ∈ I(1,M) and i ∈ I(1,nr). Assume that σr
i = γr

i = 0, for all r ∈ I(1,M) and

i ∈ I(1,nr).

Uru
ia =



1
δr
i
1

[∑M
u=1 ∑nu

a=1 µru
ia +2µrr

ii ]
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(ρrr
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2
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ii +

3
2 µrr
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]
(ρrr
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(ρru

ia )2
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ia

+µrr
ii +

3
2 µru

ia

]
(ρru

ia+δu
a)

, f or u ̸= r,

(7.4.62)
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and

Wru
ia =



1
δr
i
1

[ 1
2 ∑M

u=1 ∑nu
a=1 µru

ia +µrr
ii ]
, f or u = r,a = i,[

1
2
(ρrr

ia )
2

µrr
ia

+ 1
2 µrr
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2
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ia )2
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ia

+ 1
2 µrr

ii +µru
ia
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ia+δu
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, f or u ̸= r

(7.4.64)

The equilibrium state Err
ii is stochastically asymptotically stable provided that Uru

ia ,W
ru
ia ≤ 1 and

Vru
ia < 1, for all u ∈ Ir(1,M) and a ∈ Ir

i (1,nu).

Proof: Follows immediately from the hypotheses of Lemma 7.4.2,( letting σr
i = γr

i = 0), the conclu-

sion of Theorem 7.4.3 and some algebraic manipulations.

Remark 7.4.2 The presented results about the two-level large scale delayed SIR disease dynamic

model depend on the underlying system parameters. In particular, the sufficient conditions are al-

gebraically simple, computationally attractive and explicit in terms of the rate parameters. As a

result of this, several scenarios can be discussed and exhibit practical course of action to control the

disease. For simplicity, we present an illustration as follows: the conditions of σr
i = γr

i = 0,∀r, i

in Corollary 7.4.4 signify that the arbitrary site sr
i is a ’sink’ in the context of compartmental
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systems[28, 29] for all other sites in the inter and intra-regional accessible domain. This sce-

nario is displayed in Figure 7.1. The conditions Urr
ii ≤ 1 and Wrr

ii ≤ 1 exhibit that the average

life span is smaller than the joint average life span of individuals in the intra and inter-regional

accessible domain of site sr
i . Furthermore, the conditions Vru

ia < 1,∀u ∈ I(1,M),a ∈ I(1,nr), and

Uru
ia ≤ 1,Wru

ia ≤ 1∀u = r,a ̸= i, and ∀u ̸= r,a ∈ I(1,nr), signify that the magnitude of disease

inhibitory processes for example, the magnitude of the recovery process is greater than the disease

transmission process. A future detailed study of the disease dynamics in the two scale network dy-

namic structure for many real life scenarios using the presented two level large-scale delay SIR

disease dynamic model will appear elsewhere.

rC
qC

r

is

q

ls

q

ms
r

js

Figure 7.1: Shows that residents of site sr
i are present only at their home site sr

i . Hence they isolate

every site from their inter and intra regional accessible domain C(sr
i ). Site sr

i is a ’sink’ in the context

of the compartmental system[28, 29]. The arrows represent a transport network between any two

sites and regions. Furthermore, the dotted lines and arrows indicate connection with other sites and

regions.

Remark 7.4.3 The stochastic delayed epidemic model (7.2.1)-(7.2.3) is a general representation

of infection acquired immunity delay in a two-scale network population structure. The stochastic

delayed epidemic model with temporary immunity period (5.2.1)-(5.2.3) studied in Chapter 5 is a

special case of (7.2.1)-(7.2.3) when we let the probability density function of the immunity period,

f ru
ia (s) = δ(s−T r

i ),∀r,u ∈ I(1,3),∀i,a ∈ I(1,3), where δ is the Dirac δ-function[83].
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7.5 Conclusion

The developed two-scale network delayed epidemic dynamic model characterizes the dynamics of

an SIR epidemic in a population with various scale levels created by the heterogeneities in the

population. Moreover, the disease dynamics is subject to random environmental perturbations at

the disease transmission stage of the disease. Furthermore, the SIR epidemic confers varying time

acquired immunity to recovered individuals immediately after recovery. This work provides a math-

ematical and probabilistic algorithmic tool to develop different levels nested type disease transmis-

sion rates, the variability in the disease transmission process as well as the distributed time delay

in the framework of the network-centric Ito-Doob type dynamic equations. In addition, the concept

of distributed natural immunity time delay is explored for the first time in the context of complex

scale-structured type human meta-populations.

The model validation results are developed and a positively self-invariant set for the dynamic

model is defined. Moreover, the globalization of the positive solution process existence is estab-

lished by applying an energy function method. In addition, using the Lyapunov functional technique,

the detailed stochastic asymptotic stability results of the disease free equilibria are also exhibited in

this Chapter. Moreover, the system parameter dependent threshold values controlling the stochastic

asymptotic stability of the disease free equilibrium are also defined. Furthermore, the analysis of the

general stochastic dynamic model are illustrated in a controlled quarantine strategy. We note, further

detail study of the stochastic SIR human epidemic dynamic model with varying immunity period for

two scale network dynamic populations with underlying different real life human mobility patterns

will appear in our future study.
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