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Abstract

The technological changes and educational expansion have created the heterogeneity
in the human species. Clearly, this heterogeneity generates a structure in the population
dynamics, namely: citizen, permanent resident, visitor, and etc. Furthermore, as the hetero-
geneity in the population increases, the human mobility between meta-populations patches
also increases. Depending on spatial scales, a meta-population patch can be decomposed
into sub-patches, for examples: homes, neighborhoods, towns, etc. The dynamics of human
mobility in a heterogeneous and scaled structured population is still its infancy level. We
develop and investigate (1) an algorithmic two scale human mobility dynamic model for a
meta-population. Moreover,the two scale human mobility dynamic model can be extended
to multi-scales by applying the algorithm. The subregions and regions are interlinked via
intra-and inter regional transport network systems. Under various types of growth order
assumptions on the intra and interregional residence times of the residents of a sub region,
different patterns of static behavior of the mobility process are studied. Furthermore, the
human mobility dynamic model is applied to a two-scale population dynamic exhibiting a
special real life human transportation network pattern. The static evolution of all categories
of residents of a given site ( homesite, visiting sites within the region, and visiting sites in
other regions) over continuous changes in the intra and inter-regional visiting times is also
analyzed.

The development of the two scale human mobility dynamic model provides a suitable
approach to undertake the study of the non-uniform global spread of emergent infectious
diseases of humans in a systematic and unified way. In view of this, we derive (2) a SIRS
stochastic epidemic dynamic process in a two scale structured population. By defining

a positively self invariant set for the dynamic model the stochastic asymptotic stability

vii



results of the disease free equilibrium are developed(2). Furthermore, the significance of
the stability results are illustrated in a simple real life scenario that is under controlled
quarantine disease strategy. In addition, the epidemic dynamic model (2) is applied to a
SIR influenza epidemic in a two scale population that is under the influence of a special real
life human mobility pattern. The simulated trajectories for the different states (susceptible,
Infective, Removal) with respect to current location in the two-scale population structure
are presented. The simulated findings reveal comparative evolution patterns for the different
states and current locations over time.

The SIRS stochastic epidemic dynamic model (2) is extended to a SIR delayed stochas-
tic epidemic dynamic model(3). The delay effects in the dynamic model (3) is temporary
and account for natural or infection acquired immunity conferred by the disease after dis-
ease recovery. Again, we justify the model validation as a prerequisite for the dynamic
modeling. Moreover, we also exhibit the real life scenario under controlled quarantine dis-
ease strategy.In addition, the developed delayed SIR dynamic model is also applied to SIR
influenza epidemic with temporary immunity to an influenza disease strain. The simulated
results reveal an oscillatory effect in the trajectory of the naturally immune population.
Moreover, the oscillations are more significant at the homesite.

We further extended the stochastic temporary delayed epidemic dynamic model (3) into
a stochastic delayed epidemic dynamic model with varying immunity period(4). The vary-
ing immunity period accounts for the varying time lengths of natural immunity against the
infectious agent exhibited within the naturally immune population. Obviously, the stochas-
tic dynamic model with varying immunity period generalizes the SIR temporary delayed

dynamic.
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1 ATWO-SCALE NETWORK DYNAMIC MODEL FOR HUMAN MOBILITY
PROCESS

1.1 Introduction

Over the centuries human societies across the globe have progressively established closer bilateral
relationships and contacts. With the recent advent of high technology in the area of communication,
transportation and basic services, multilateral interactions have been facilitated. As a result of this,
the world has become like a neighborhood. Furthermore, the national and binational problems have
become the multinational problems. This has generated a sense of cooperation and understanding
about the basic needs of human species in the global community. In short, the idea of globalization
is spreading in almost all aspects of the human species on the surface of earth.

The human mobility plays a very significant role in the globalization process[7]. Cultural
changes and understandings, flow of ideas about the current events, the occurrence and endemicity of
new infectious diseases of humans in new areas, the world events of disease pandemic, outsourcing
jobs and resources, economics and environmental conditions are a few byproducts of human mobil-
ity. In fact the 1918-19 influenza pandemic [1, 2, 3, 4] and the sociocultural changes in societies [6]
are a few illustrations exhibiting the movement of people.

Many studies regarding the mobility of the human species consider its impact in spreading in-
fectious diseases between communities as a result of the movement of people, goods, vectors and
animals across the globe. Different mathematical modeling techniques have been proposed to study
the mobility. The discrete time difference equations in continuous space [8, 9] is used to study the
global spread of influenza and the geographic spread of infectious diseases. The dynamics of dis-
eases between two patches and a finite number of patches resulting from human dispersal among

the patches are modeled by ordinary differential equations [42, 11, 12].



The effects of human movements among a finite number of patches on the persistence of vector-born
diseases are described with ordinary differential equations[13].

Human mobility models are increasingly being used to evaluate and increase the efficiency,
effectiveness and feasibility of network systems for mobile wireless devices. Finding a realistic
human mobility model is a very important component of the study of network systems for mobile
wireless devices. Using real network data captured from a campus situation[15] and the movements
of pedestrians in downtown Osaka[14], models for mobile networks were designed. Also simulated
mobile network models have been studied in [16, 17, 18, 19].

A large population exhibits structure at many scales. The movement of people within and be-
tween these scales affects the population dynamics and demography. We define scale here as a
single level of interaction of people within the large population. For example, the population of
human species in/at the home level, in/at a town level, city level and so on. In fact, a population is
considered an 7 scales or n levels if there are n — 1 levels nested in the n'" level or scale of the hierar-
chy. Also, in these n scales population, movement can occur between spatially separated patches of
the same size or scale, beginning from patches of the (n — 1) scale down to patches of the lowest
level or lowest scale in the hierarchy. In addition, an n scales movement can be reduced to a single
scale if there is only one level movement between spatially separated patches of the same scale. For
example, a country level in a population can be considered to be five scales with four nested levels
namely: homes, neighborhoods, towns, counties and states in increasing order of nested scales. If
movement occurs in this five scales structure between patches of the lowest-level group (homes),
then we have a five scales movement. If the lowest scale is the neighborhoods, then we have a four
scales movement. If only one level is considered in the country structure made up of patches of the
same scale: homes only or neighborhoods only or towns only, then there is a single scale movement.

Many attempts have been made to describe human mobility in a metapopulation [8, 9, 42,
20].Several of these investigations characterize human movements on a single scale framework[8,
9,42, 11, 12, 13, 16, 20, 22].A human mobility inter-geographical location model was designed to
study mobile network devices [16]. Some studies of the spread of diseases in a structured population
have considered the human mobility on multiple hierarchy of scales [21, 22, 23, 24]. Generally, we
can categorize all models describing human mobility into two types of mobility approaches, namely

the Lagrangian approach or the Euler approach in [13].



The Lagrangian approach labels individuals by home site and current location. The Euler approach
only labels individuals by their current location.

In this work, we consider human mobility of a two scale population with a formulation that
allows the possibility of considering the two forms of movement of people: permanent displacement
(migration) and temporal displacement (visits) to patches within and between scales. The presented
model allows the possibility of simultaneous study of the intra and inter scale temporal displacement
of people in the structure. Hence, the model extends and generalizes the multiscale mobility models
[21, 22, 23, 24] in a systematic and unified way. This two scaled structure, formulation of the
mobility process provides an algorithmic framework to expand and extend the multiscales mobility
process of the human species. The byproduct of this multiscale human mobility model would play
a significant role in the study of mobile network wireless devices [16].

Of particular interest to our formulation is in the spirit of the single scale model by Sattenspiel
and Dietz [25] that incorporates the Lagrangian and Eulerian approaches. The same model was
used again by the authors to study the spread of the 1918-1919 influenza epidemic and later to
investigate the effects of quarantine on the spread of the epidemic among the Cree and Metis people
in the central Canadian Subarctic [26, 27]. By following the framework of the single scale model of
Sattenspiel and Dietz [25], we extend and expand their model into two scales, a local and a global
scale. The local scale is the sub-regional level consisting of a finite number of patches or subregions.
At this local level, there is a transport network of residents between the patches. The global scale is
the regional level consisting of a finite number of bigger patches or regions. Also at the global level,
there is a transport network of residents between the regions.

This chapter is organized as follows; in Section 1.2 we describe the general mobility process,
define our notations and state the assumptions of our model. We then present an explicit probabilistic
formulation of the travel rates of our mobility dynamic model in section 1.3. Using a compartmental
framework[28, 29], we derive a deterministic dynamical model for the mobility process described
by ordinary differential equations. In Section 1.4 we give a detailed analysis of the general static
mobility dynamic model structure. In addition, a description and the analysis of specific scenarios
of the general dynamic mobility process at its steady state are outlined. Moreover, we compare the
inter and intra regional visiting times on the distribution of the residents of a give region and draw a

few conclusions.



1.2 Large-Scale Two Level Hierarchic Mobility Formulation Process

In this section, we introduce the idea of the mobility of human species in two level interconnected
hierarchic population. This study can be applied to any two level interconnected hierarchic system.

We define the following notations.

Definition 1.2.1

i. Let M be a positive integer, R be the set of real numbers, = (x1,x;) € R x R = R? be arbitrary and

yr=(y1,,)2,) € R? be fixed for all r € {1,2,...M} =I(1,M), ¢, > 0. Also, let ||%||g2 = \/m
The open ball in R?

B(yr,c,) =C, = Bga(yicr) = {T € R?: ||F — v/l g2 < ¢/}, (1.2.1)

where for each r,q € I(1,M),r # q, C,NC, = {}. Also, define C =M., C..

ii. Letr € I(1,M), and let n, be a positive integer and let s € C,,i € {1,2,...,n,} =I(1,n,). For
every i,j € I(1,n,),i # j, let ||s; — s%||g2 > 0. Also, let C,(s") = {s] € G, :i € I(1,n,)} be a finite
collection of the n, distinct points in C,. And C(s) = {s; € C,:i € I(1,n,),r € I(1,M)} = UM, C,r(s7)

be the finite collection of all distinct points in C. The cardinality of C(s) is n = erwzl ny.

Definition 1.2.2 Decomposition of Hierarchic Process: Let us consider a population that is dis-

tributed into M distinct spatial regions Cy,Ca,...,Cy. Each region C,,r € I(1,M) consists of n,

r

distinct sites s\,85,...,s, spatially distributed within the region. Residents of sites in a region can

either visit other sites within the region or visit sites in other regions.

Definition 1.2.3 Population Decomposition and Aggregation Process: Let N} be the number of
residents of site si,i € I(1,n,) in region C.,r € I(1,M) who are actually present in their home site
at time t. Let Njj be the number of residents of s;,1i, j € I(1,n,) in region C,,r € I(1,M) visiting site
s'; within the region. Let N;! be the number of residents of si,i € I(1,n,) in region C,,r,q € I(1,M)

visiting site s;],l € I(1,ny) in region Cy,q # r. Let NJj be the total number of residents of site s}

within C, and visiting other regions, then

ny M nq
ir()r: ZN{J(—’_ZZNZIIJEI(I’””)' (1.2.2)
j=1 q#rl=1



Definition 1.2.4 Intra and Interregional Probabilistic visiting Rates: For each r € I(1,M), resi-
dents of site s in region C, leave on trips to other sites within the region at a per capita rate G;.
The visitors then distribute themselves among the n, — 1 sites s';, j 7 i with the probabilistic rate V;7.
Also, residents of site s} in region C, leave on trips to other regions at a per capita rate ;. The res-
idents of site s; that leave on trips to other regions distribute themselves among M — 1 destinations
with probability Y, to region C,,q # r. Collectively, the residents of sites in region C, leave their
region to visit other sites in region Cy with a grand total rate Y4 =Y " | Ylg . The residents that leave
region C, to visit sites in region C, distribute themselves among n, destinations with probability Yo?

to site s, 1 € 1(1,ny).

Definition 1.2.5 Inter regional Probabilistic Return Rates: For eachr € I(1,M), persons traveling
from site s; to s’ in region Cy, have a per capita probabilistic return rate p;;. Also, for each q €
I(1,M),q # r residents from all other regions that came to site sf,l € I(1,ny) in region Cy,q # r,
leave the site slq to return to their home region with rate plq. This rate p? further distributes among the
M — 1 regions C,,r # q regions with probabilities p(r)?. Hence, the grand total per capita return rate
of the residents of region C, that came to the n sites in region C1,q # r is p" = Z;’il p(r)[l’. This return

rate p"? of residents of region C, from region C, then distribute among the n, sites s;,i € I(1,n,) in

region Cy,r #£ g with the probability rate p;g.

1.3 Probabilistic Mobility Dynamic Model Formulation Process

Here we define and derive our probabilistic rates at which residents leave and return to their home
sites and regions. The probabilistic formulation of the return rates is similar to the visiting rates by
virtue of the symmetry in these travel patterns. Therefore, below we give a detailed derivation of the
visiting rates and refer this frame work for the derivation of the return rates.

In the following, we define the accessible domain of residents of site s} in region C,, which is
composed of sites within the region C, and also in other regions C,, that are accessible to residents
of site s7. For this purpose, we introduce a few notions and definitions. For r € I(1,M), i € I(1,n,),
we define

I(1L,M)={qgeI(1,M):r+#q,y?>0}1I(1,M)CI(1,M). (1.3.3)

(L) ={jel(l,n): j#iv >0} (1,n) CI(1,n,). (1.3.4)



Letg € I(1,M,),
[(Lng)={l€I(l,ny):¥Y?>0, and vy >0}1(1,n5) CI(1,ny). (1.3.5)

Definition 1.3.1 Inter and Intra Regional Accessible Domain: ForeachicI(1,n,)andrec1(1,M),
Crr(s7) = {s} € Cy(s") : j € I (1,n,) } is the intra regional accessible domain of residents of site s}
in region C,.

Foreachr € I(1,M), i € I(1,n,) and q € I'(1,M), Cry(s}) = {s] € Cyq(s9) : L € I!(1,n4)} is the
inter regional accessible domain of residents of site s; in region C,.

GivenicI(1,n,), C(sj) ={s§ € C(s): je I} (1,n,),q € I'(1,M)}
= Uger.mm Ujer (1n,) Cra(s7) = [Crr(s))] U [Ugerr(1,0) Crq(57)], is the aggregate inter and intra re-

gional accessible domain of residents of site s; in region C,.

Definition 1.3.2 Intra Regional Visiting Rates: Residents of site s; leave on trips to other sites s';

within the region at a per capita rate G;; = G;V;;,i,] € I(1,n,),j # i, where G and Vi are defined

in the previous section.

Indeed, let NJj(C,-(s7)) be the total number of residents of site s/ that leave the site to visit other
sites in Cy(s7). Furthermore, let 7/"” i1ora D€ the total time during which the visiting to sites in Crr(sh)

takes place.
c = W (1.3.6)
i0 itotal
Also, let E] be the event that residents leave their site s/ to visit other sites in C,.(s}), and let Ej be
the event that residents leave their site s; and visit site s’;. Then the intra regional probability visiting

rates are given by

P(Er) r (EN|E ) Nzrjr
i = Gy, V NI
v Nig (Crr(s7))
o;j = P(Ej)=P(E]j|E))P(E])=0;Vj;. (1.3.7)

Definition 1.3.3 Inter Regional Visiting Rates: Residents of site s! in region C,,r € I(1,M) leave
on trips to other sites s,q in other regions Cy,q # r at a per capita rate erlq = Y{Yigy”f 0‘;, iel(l,n,),le

I(lvnq)7r7éq-



In fact, it can be justified as follows: for all g € I"(1,M), let N;J(C,,(s})) be the total number of
residents of site s/ that leave the site to visit other sites in Cy,(s}) and let F;" be the event representing

this movement. In addition, we let 77

i 1oia1 D€ the total time during which the visiting to sites in Cy(s7)

takes place. Then
Ztel’(l,M) Niré(crt (s7))
Ni?)r * ZIEI’(LM) Tifttoml

P(F) =Y = (13.8)

Now for each g € I(1,M), and [ € I’(1,n,), let Fj be the event that residents leave the site s/, and
go to region C, (the specific destination in C, is not taken into account at this point). Furthermore,
let F" be the event that residents coming from region C;, go to region Cg, and Forlq be the event that
the residents coming from C; to region C,, go to site slq in C, (the site of origin in C, is not taken

into account at this point). Then we can formulate the conditional probability rates as follows

Nig (Crqg(5p))
Yier(im zO(C (s7))’

FUF) =i = (1.3.9)

P(F™) W—ZP ﬂ:f%. (1.3.10)
i=1

N}
— i
Nig (Cry(s7))

1

P(F|F™) = vy = (1.3.11)

Therefore given that Fifq is the event that residents of site s in region C, travel to site slq in region
Cy, then F' = F' N F/, where Fy) and F/ are independent events. This is because sites of origin
in region C, of residents from region C, that travel to region C;, is not taken into account when
they arrive at site s7; that is, Foz is independent of s;. Also, the destination in other regions C,, of
residents of site s in region C, is not taken into account when defining F'.

Vi = P(F")=P(Fg NFy) = P(Fy') « P(Fy) = P(Fy'|F)P(F) + P(Fy|F™) P(F™)

1

= Yy, (1.3.12)

Definition 1.3.4 Intra Regional Return Rates: Persons traveling from site s; to s'; within a region

C,,r € I(1,M) have a per capita return rate Pij.isJ € I(1,n,),i # j.



Definition 1.3.5 Inter Regional Return Rates: Persons traveling from site s} in region C, to site slq
in region C,,q # r have a per capita return rate p; = pyipipidp™,i € I(1,n,),l € I(1,ny),r # q.

The large two-scale hierarchic mobility structure is illustrated in Figure 1.1 and Figure 1.2.

Figure 1.1: shows the intra-regional mobility network between n, sites in C,,r € I(1,M). Dotted
lines and curves represent connections with other sites in region C,. Furthermore, the parameters in

the diagram are defined in Section 1.3.



Figure 1.2: shows the interregional mobility network between M regions C,,r € I(1,M) and n, sites
that are present in each region C,. Dotted lines and curves represent connections with other sites in

other regions. The parameters are defined in Section 1.3.

Using the above defined mobility rates, the travel pattern of individuals among all sites and all

regions leads to the following large-scale interconnected linear system of differential equations

dN!’ M & rq AT

o Zp” K+ L Y iV = (0 + DN (1.3.13)
qFri=

dN{I'r SN rraTrr

5 = SN —piNii# ), (1.3.14)

dqu rr T T

Tt’l — 'Y;quii —piquﬂq,r;éq, (1.3.15)

iel(l,n,),l€l(l,ng);r,gel"(1,M),

where all the parameters in (1.3.13)-(1.3.15), are nonnegative and at time ¢t = 0, N//(0) = NJj,

Nj7(0) = 0 and N;’(0) = 0. And N}/, N/T and N;" i, j € I](1,n,),1 € I/ (1,n4),1,q € I(1,M) are as

>

defined before.



Remark 1.3.1 It is important to note that residents of every site s.,i € I(1,n,) can only reach out to
other sites in their accessible domain C(s?). Thus the summations in (1.3.13) reduce to summation
overallq e I'(1,M), k € I'(1,n,) and | € I (1,n,). Keeping this in mind, for easy presentation we

keep the current expressions.

In the following we analyze the steady states of the mobility process determined by the system of
differential equations. The analysis of this section also gives the equilibrium states of a general
mobility system whose sites and regions are connected. In real life many mobility patterns that
occur frequently, are specific scenarios of this general mobility process. In the following we shall
consider a few of these cases.

We denote the equilibrium states of N, Njj and N}, " by N N;j" and Nl ;1 respectively. Hence

i i

at the equilibrium, we have dg;rfr =0, an ‘r’r —0and & ” = 0. Therefore, setting (1.3.13), (1.3.14)

and (1.3.15) to zero, one can see that

rrN*rr

N;;.rr — ’Jp i, (1.3.16)
ij
,{qN*rr

N = r#q, (1.3.17)

ll
i,jel(l,n.),l €I(l,ng);r,q €I(1,M).

We rewrite (1.2.2) in terms of steady states, then we have

M ng
;g{’:N;;"JrZ *”+ZZN§”’,:eI(1 n). (1.3.18)
k#i q#ri=

Now substituting (1.3.16) and (1.3.17) into (1.3.18) and factorizing N;{"", we have

u

ny rr M ng
o= N 1+Z +ZZ ).i€1(1,n,). (1.3.19)
k;él q#ril= tl
From (1.3.19), we have
ny rr M ng
Ni™ = Ny" 1+Z + Y Z Liel(l,n,). (1.3.20)
k#t g#ri=1

10



Now substituting (1.3.20) into (1.3.16) and (1.3.17), N;}" and N;;rq are represented by

r
61/

N =Ng" Pij ,JjEeI(l,n,), and N*rr 0 otherwise, (1.3.21)
(1 +Zk7éz p" +Z(15£r21 1 prq)

and

b/
~q
Ny =Ng" Pl —.1€I'(1,n,) and N;"=0, otherwise. (1.3.22)

(1 +Zk;éz p” +Zq7$rzl 1 p.’q)

Let us denote

ny rr M ng
;= 1+Z D) Z Liel(l,n,), (1.3.23)
ki tk q#rl=
(i;
Ui = - Py —J €I/(1,n;), and Uj" =0, otherwise, (1.3.24)
( +Zk;£z p” Zq;érzl lﬁ)
v
q
/MK P Jder(1,n,), and V=0, otherwise. (1.3.25)

ng
(1 +Zk;£z l." +Zq5£r2111 prq)

The quantities in (1.3.20), (1.3.21) and (1.3.22) represent the equilibrium sizes of residents of site
s7, present at their home site, visiting the j site s%,J 7 1 in their intra regional accessible domain

C,,(s7), and also visiting the /™"

site s/ ; in their inter regional accessible domain C,,(s}), respectively.
Thus it follows that the quantities in (1.3.23), (1.3.24) and (1.3.25) represent the fraction of the
equilibrium size of residents in the different categories present at the corresponding locations.

We further observe that for each r,q € I(1,M) and r # g, persons traveling from site s} to 8
have a per capital return rate p;7, and persons traveling from site s; in region C, to site s? in region

C4,q # r have a per capita return rate plrl" The average length of time spent visiting site s’; and site

s? ; 1s denoted by ;7 and 'cl /, respectively, where

1

T = rr,]EI (Ln,),r€l(1,M) and ;=0 otherwise. (1.3.26)
ij

v = —g.lell(lng),qel"(1,M), and T]/=0 otherwise, (1.3.27)

il

11



In addition, given r € I(1,M) and i € I(1,n,), for every s,r € I'(1,M), we let

rs

rst — rst rs rt
Klmn = szn( lm?Tin)_

"omel(1,ns),nel(1,n) (1.3.28)

rt
in

be the ratio of visiting times of residents of the i site s7 in region C, visiting the m™ and n'" sites
in region Cs and C; respectively, where m # n, and m,n # i whenever s =t = r. Now, substituting
(1.3.26), (1.3.27) and (1.3.28) into (1.3.23), (1.3.24) and (1.3.25) and further simplifying we have

the following
1

ST = Jdel(l,n,), (1.3.29)
S O VAN A ) W AT i) '
. ol .
Ul = el (1,n,), (1.3.30)

ij n
(‘E” + Zk#t Gtrnglrkr]r + Zq;«ér Z ! tZKZI/r)

and

*rq ,{q

i (& Lok + i v ZK;qu),lel,.’(l,nq). (1.3.31)
We define for each i € I(1,n,),r € I(1,M),
Timin = 1g;1<nn i (1.3.32)
Tonin =m0 T, q €1'(1, M), (1333)
T = M (1.3.34)
Timax = 121/_22%1,-1- (1.3.35)
T = max Tlqgel (1,M) (1.3.36)
Timax = rgixrﬁw, (1.3.37)

12



1.4 Special Mobility Patterns

The special mobility patterns are characterized by the qualitative behavior of the mobility rates of
the large-scale hierarchic regional mobility dynamics process. In order to understand the mobility

patterns we need to classify the qualitative behavior of the mobility rates. We define the following.

Definition 1.4.1 Given two real valued functions f and g,

1. if 3k > 0, and ny, such that ¥n > no,|f(n)| < k|g(n)

, we say that f is big-o of g, and is denoted
by f(n) =0(g(n)) or f =0(g). If f(n) — 0, as n — oo, that is, f turns in the limit to a zero function
for sufficiently large n, we write f = 0(€) or f(n) = 0(1), for € > 0. If f(n) is a constant function

as n — oo, we write f(n) =0(1).

2. if 3ki,ka > 0, and no, such that ¥Yn > no,ki|g(n)| <|f(n)| < ka|g(n)
g and is denoted by f(n) = 0(g(n)). If f(n) — = as n — o, we write f(n) = 0(n) or f = 0(1), for

, we say that f is big-theta of

€e>0.

To classify the qualitative behavior of the mobility rates we make the following assumptions about
the mobility rate functions. Assume that for fixed r € I(1,M) and i € I(1,n,), and for any ¢q €

I'(1,M), jeI/(1,n,) and I € I/(1,n,), the inter and intra regional visiting times of residents of the

lth

i"" site visiting the j"” site within the 7 region, and the i site visiting I'” site in the ¢’ region satisfy

Hypothesis 1.4.1 Using Definition 1.4.1, we assume that

Hy: i = 0and v <eo <= 17 =0(¢) and t;/ = 0(1);

Hy: t = 0and 1] <o <= 1 =0(¢) and tjj = 0(1);

H3: 1; <eoand T <oo <= T/ =0(1) and 7 = 0(1);

Hy: v7 = 0and v — 0 <= 1; = 0(¢) and 1j] = 0(¢e);

Hs: T — o0 and T} — co <= T/ =0(¢) and 77 = 6(3), for e > 0.
The interpretation of Hj is that residents of site s} that visit sites in their intra regional accessible
domain C,,(s}), tend to spend infinitesimally small time, while residents of the same site that visit
sites in their inter regional accessible domain C,,(s}), tend to spend a finite amount of time. The

interpretation of H, and H3 is similar to H;. On the other hand, H; means that residents of site s}

that visit sites in their inter and intra regional accessible domain C(s/), tend to spend infinitesimally

13



small time. Finally, Hs means that residents of site s that visit sites in their inter and intra regional
accessible domain C(s?), tend to stay permanently. The following result is a characterization of the
steady states as intra regional visiting time approaches zero and the inter regional visiting time is

finite.
Theorem 1.4.1 If H| holds, then the steady state of the mobility system satisfies

1
NI NI ,
! l (1+Zi,”¢rZZ":1 ig'c:g)

q

N*rq N NH’ ’erl
il i 1 M n q 799\ °
(ﬁ +Zq7ér2aq:1 ial{ial )

N —0,

(1.4.38)
forjell(1,n.),qelI"(1,M),l € I/ (1,ny).
Proof: Letting /7 = 0(e) and ‘tflq =0(1)in (1.3.29), (1.3.30) and (1.3.31), we have
S*rr — 1 U*rr R 0
' (14 Xg Lot Vama)
V;"’q ’{llq
/ n T °
(N E S S8 )
(1.4.39)

for I € I'(1,n,). Then substituting (1.4.39) into (1.3.20), (1.3.21) and (1.3.22) gives us (1.4.38).

Remark 1.4.1 Theorem 1.4.1 suggests that a fraction of residents tend to be life long residents of
their home site and the remaining fraction of residents tend to reside a finite time to the sites in the

inter regional accessible domain Cyy(s}). This situation is illustrated in Figure 1.3.

14



Figure 1.3: Shows that residents of site s7 are only present at their home site and also at those sites
s;] that are in their interregional accessible domain C,(s}). The arrows represent a transport network
between any two sites and regions. Furthermore, the dotted lines and arrows indicate a connection

with other accessible sites in other regions.

In the next theorem we characterize the steady states when there is finite intra regional and short
inter regional visiting time.

Theorem 1.4.2 If H, holds, then the steady state of the mobility system satisfies

1 “ o'
N;i" — N N0 and NN, (1.4.40)
(1+ Y1 ST ' (T; + X3 S KYT)

for j € II (1,n,(s7)), 1 € I} (1,n4(s7)).
Proof: Similar to Theorem 1.4.2.

Remark 1.4.2 Theorem 1.4.2 suggest that a fraction of residents tend to be life long residents of the
home sites and the remaining fraction of the residents tend to stay for a finite time to sites in their

intra regional accessible domain C,.(s}). This special pattern is illustrated in Figure 1.4.

15



Figure 1.4: shows that residents of site s; are present at their home site, at sitesin their intra and inter-
regional accessible domain C(s}) whenever the average interregional visiting times are sufficiently
small. The arrows represent a transport network between any two sites and regions. Furthermore,
as average interregional visiting times tends to zero, (a) the solid lines represent the intraregional
mobility of the equilibrium states of the residents which approaches to finite fractions, and (b) the
dotted lines indicate interregional mobility of the equilibrium states of residents that approaches to

arbitrarily small fractions.

We now characterize the steady states of the system when the inter and intra regional visiting times

are constant and the same.

Theorem 1.4.3 If H; holds and t/" = ‘C;lq = 17,31 > 0, then the steady states of the mobility system

ij
satisfy
NI NI ! NI — NI ik
! " (ol Y)Y " (4ol )
Vi
N4 — NI il 1.4.41
i " (1+1of + ) ( )

forjell(1,n.),qel"(1,M),l € I(1,ny).
Proof: Letting rl’]r = rflq =1/ in (1.3.29), (1.3.30) and (1.3.31) and remembering that G{Jr. = vafJ’.,
Vi =YY, j € I(1,n,),1 € I (1,ny), are probabilities with sum equal one, that is ZZ;HV{]: =1

and Zg’;r 2711 Y 0? = 1. Thus we have the following reduced formula

1 o'ltl

S»irr _ , KT iy ’

S (R 2 )N (B )

v, = - Yr’q . (1.4.42)
(1 +7T,0; "‘Tﬂfﬂo)
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for j € I/ (1,n,),l € I]/(1,ny),q € I (1,M). Hence substituting (1.4.42) into (1.3.20), (1.3.21) and
(1.3.22) gives (1.4.41).

Remark 1.4.3 Under the assumption of Theorem 1.4.3, almost all the residents of any site s;, tend
to be permanent residents at their home site s;, and at all site in their intra and inter regional
accessible domain C(s}), for finite time. Also, the fraction of the residents that reside a finite time at
a given site in C(s}), is primarily determined by the probabilistic rate at which the residents leave
their original home site s}, to visit other sites in this domain C(s}). This special mobility pattern is

illustrated in Figure 1.5.

) ()
N

Figure 1.5: Shows that residents of site s are present at all sites in their inter and intra regional ac-
cessible domain C(s}). The arrows represent a transport network between any two sites and regions.

The dotted lines and arrows indicate connection with other sites in other regions.

We now consider the case when intra and inter regional visiting times are decreasing at the same

rate.
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Theorem 1.4.4 If Hy holds, then the steady states of the mobility system satisfies
N;" = N/", Ni"—0 and N;"—0. (1.4.43)

forjell(1,n,),qelI"(1,M),l € I](1,ny).

Proof: Letting ’cl’J’ — 0 and ’cflq — 0, 1in (1.3.29), (1.3.30) and (1.3.31). This leads us to
SiT—=1, Uj"—=0 and V" =0,lel(1,n,),jel(1,n). (1.4.44)

Substituting (1.4.44) into (1.3.20), (1.3.21) and (1.3.22) gives us (1.4.43).

Remark 1.4.4 Theorem 1.4.4 suggests the residents of site s; are isolated from all other sites in
their intra and inter regional accessible domain C(s}). That is, all the residents of site s} tend to be
life long stationary residents at their home site. However this does not mean site s; is isolated from

visitors from other sites in C(s%). This special case is illustrated in Figure 1.6.

() ©
e}“‘@

Figure 1.6: Shows that residents of site s] are present only at their home site s;. Hence they isolate
every site from their inter and intra reginal accessible domain C(s?). Site s} is a ’sink’ in the context
of the compartmental system. The arrows represent a transport network between any two sites and

regions. Furthermore, the dotted lines and arrows indicate connection with other sites in regions.

We now characterize the steady states when the intra and inter regional visiting times grow unbound-

edly at the same rate.
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Theorem 1.4.5 Let Hs holds. Let T, = 0(fy), " T =0(g0) where fo, and gy are positive real valued
functions satisfy fo,80 = 9(%) For jell(1,n.),qeI'(1,M),l € I(1,ny).

1. If0(fo) = 0(go), then the steady state of the mobility system satisfies

o'"
KT *Ir *Ir U
Nii _>07 Nij _>]vz (Z rrKrrr Y’ qur>v
k#i Oix lkj q;ér ia™iaj

,Y"q

and N — N/ p—— - —. (1.4.45)
l l (Zk;éz tszqu+Zq7érZ ! 13Kw?lq)
2. If6(fo) > 0(go), then
q
Ni" =0, N —0, Nj— N i T (1.4.46)
(Zq;érz ia ml)
3. If6(fo) < 6(go), then
Oij r
N;i" =0, N — N,.*”—f Ny — 0. (1.4.47)

(ZezowKiy)

Proof: For j € I (1,n,),q € I"(1,M),1 € I/(1,n,), 8(K}) = g2k 16 0(fp) = 8(g0) then K} = 0(1)

and Klrjrlq =0(1) as T — o0 and T, — oo, If 0(fy) > 8(go) then KW — oo and K”q —0as T — oo

and ;) — co. And if If 8(fo) < 6(go) then K" — 0 and K}’ — o as T/7 — co and T/ — co. By
substituting each of these conditions into (1.3.29), (1.3.30) and (1.3.31), and then substituting the

results into (1.3.20), (1.3.21) and (1.3.22), we obtain (1.4.45), (1.4.46) and (1.4.47) respectively.

Remark 1.4.5 Under the assumption of Theorem 1.4.5, the condition 6(fy) = 6(go) states that T}
and T} are increasing at the same order. The significance of this relationship is that for sufficiently
large values of the intra and interregional visiting times, all the residents of site s} leave their homes
and emigrate to sites in their intra and interregional accessible domain C(s;). Therefore at the
steady state, the original home site of the residents is occupied by visitors from other sites in C, and
Cy- This special pattern is illustrated in Figure 1.7.

Also, the results under the condition 0(fy) > 0(go) signifies that for sufficiently large values of
intra and interregional visiting time, the residents of s; emigrate from their home region C,, and

become permanent residents at sites in their interregional accessible domain Cyy(s?).
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Hence their original home site s; is occupied by residents from other sites in C, and C4. This special
pattern is illustrated in Figure 1.8.

The results under the condition 0(fy) < 0(go) now signifies that for sufficiently large values of
intra and interregional visiting time, the residents of site s; now leave their home site s; and become
permanent residents only at sites in their intra regional accessible domain C,,(s!). This special

pattern is illustrated in Figure 1.9.

Figure 1.7: Shows that residents of site s; are present only at sites s”; in their intra regional accessible
domain and at sites s] in their interregional accessible domain C,,(s}). The arrows represent a
transport network between any two sites and regions. Moreover dotted arrows indicate connections

with other sites in other regions.

Figure 1.8: Shows that residents of site s] are present only at sites s; in their interregional accessible
domain Cy,(s}). The arrows represent a transport network between any two sites and regions. In

addition, the dotted lines and arrows indicate a connection with other sites in other regions.
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Figure 1.9: Shows that residents of site s; are present only at sites s’ in their intra-regional acces-
sible domain C,(s}). The arrows represent a transport network between any two sites and regions.

Furthermore, the dotted lines and arrows indicate a connection with other sites in other regions.

Assuming the mobility rate functions change at different rates, we now characterize the steady states

of the system. Consider the following assumption.

Assumption 1.4.1 Given € >0, and for all j € I[(1,n,),l € I} (1,n,), let V7 and T be related as

follows,

U7 = 00 (Win))s Timin = O(A(Ta))s T = 0(8(Ti i)

whenever 1T, =0(1) and 7%, =0(1), and
rtr; = e(f(rz”;mn))7 T:‘gnin = e(h(r{,';nax))v T,r[q = e(g(ft;gnin% (1448)
1 1
whenever T, = G(E) and ’C;an = G(E),
where h has the explicit form
h:]0,00[— [0,00[,x — h(x) =x°,¢ >0, and f,g:]0,00[— [0,00] (1.4.49)

are arbitrary positive real valued functions.
For the sake of easy reference and simplicity, we state the following hypotheses.

Hypothesis 1.4.2 Assume that v;; and ! satisfy Assumption 1.4.1. Further assume that

Heg: 0<t’ <land0<c<l1;

i,max

Hp: 0< 1

i,max

<1,andc>1;
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Hg: v >1,and0<c<1;

i,max

Hy: T >1, andc>1

l max

In the following theorems we describe the steady states of the mobility system under these hypothe-

ses.
Theorem 1.4.6 Suppose Hg holds and for any given € > Q.

L If . — 0% and ¢ — 0%, then for all j € I/ (1,n,),1 € I (1,n,), 7] = 0(¢) and v}/ = 0(1)

rr rq
and Ti; <.

,max

Moreover, the steady state of the mobility system satisfies

1
NI N N0
! L ( 1+ Zq#r an tZTtrZ) N

Y

and N, — N}’ . (1.4.50)
l l ( ’q +Zq7ér an ngzc?lq)
2. If e — 07, and ¢ — 17, then 17 = 0(¢) for all j € I/ (1,n,), and there exists jo € I} (1,n;)
and ly € I (1,ny) such that T;} — 0% slower than tj — 0%. Moreover,
i. the steady state of the mobility system satisfies
1
NAT _y NFIT N"—0 and
ii i (1 +Zq#r2nq ,ZT:;]) ij
Yrq

Nyt =0, Ny = N 1 # Iy, (1.451)

( o +Zq7ér %ZKerq)

whenever T, = 0(1)

ii. the steady state is given by Theorem1.4.4, whenever T, = 0(g), for all | € I (1,ny).

3 It — 17 and ¢ — 0T then for all j € I (1,n,),l € I (1,n,), T;} = 0(1). Also, there exists

L,max

J1 € I[(1,n,) such that t[; = O(1). Furthermore,

i. if it =0(1) for all j € I} (1,n;) then the steady state of the mobility system is given by
(1.3.20), (1.3.21) and (1.3.22),
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ii. ift;; =0(e), forall j# ji, j,j1 €I} (1,n,), then the steady state of the mobility system

satisfies

1

N — NI" NG = 0, # g,
! C (Lo L, Yl Yatid)
Gl’]’
]vl*rr N'*rr 1 nd
J i )
‘ (7 + 00, + Lier Lol Yia Kia,)
yrq

AR

(1.4.52)
1
(11 +Glr]r1 glql +Zq;£rz 15 1raqlq)

4. Ift”"
J2 € I/(1,n,) such that 17, = 0(1). In addition,

— 1" andc — 17, thenforall j € I'(1,n,),l € I'(1,ny), T, =0(1). Also, there exists

L,max

i. ift;=0(1) forall j € I'(1,n,) then the steady states of the mobility system is given by
(1.3.20), (1.3.21) and (1.3.22).

i. if T = 0(g), for all j # ja, j, ja € I' (1,n,), then the steady state of the mobility system
is given by (1.4.52).

Proof: Under Hg, we have

Ttin = 0((T 1)), 7 # 4. (1.4.53)

1. Ift” ~— 0" and c — 0", then it follows that (t

,max

— 17. Thus from (1.4.48) and (1.4.53),

i max)

forall j € I/ (1,n,),l € I (1,ny), 0 < T[7 <17, — 07, we obtain

1,max

‘anin =0(1),7) = O(g(’t;zmn)) =0(1) and 17 =0(¢). (1.4.54)
Also, T, = 0(1) = 1/ >0, for all / € I (1,n,). Hence t;/ > /7.

Finally, from (1.4.54), (1.3.29), (1.3.30) and (1.3.31), (1.3.20), (1.3.21) and (1.3.22), we get

(1.4.50).
2. 1f 1}, — 0" and ¢ — 17, then from (1.4.53), (7/7,,,)¢ — 0" at a slower rate. Hence, take
’c;‘fmn zlo ! and Timax = Tij,» and the existence of lp and jo is verified. Now, from 177 =0(¢) and

T = 0(1),1 # ly, the proof of the steady state follows from Theorem 1.4.6(1). From t// 7=0(¢)

and T,/ = 0(¢), for all € I/(1,ny), the proof of the steady state follows from Theorem 1.4.4.
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3. If 1}, — 17 and ¢ — 17, then it suffices to note 1} = 1/’,,,,, for some ji € [/ (1,n,), and

this proves the existence of jj. The rest of the proof follows from part (1) and (2) above.

4. The proof of Theorem 1.4.6(4) follow from part (1), (2) and (3) above.

Remark 1.4.6 The interpretation of Theorem 1.4.6(1) is similar to Theorem 1.4.1. Theorem 1.4.6(2)
signifies that, whenever all the residents of a given site s} that travel to sites within their intra
regional accessible domain C,,(s}) spend infinitesimally small amount of time visiting the sites, and
there is also one site SZ) in the inter regional accessible domain Cy(s}), where all the residents of
site s; that travel to this site also spend infinitesimally small amount of time visiting that site, that
is, a fraction of the residents of s; would remain permanent residents of their home site s}, and a
fraction would relocate to all sites s # sZ) in their interregional accessible domain C,(s}), and
spend a finite amount of time visiting these sites.

Theorem 1.4.6(3) also states that all the residents of site s, that travel to sites in their interre-

gional accessible domain C,(s}), spend a finite amount of time visiting the sites, and there is a site

r

5

| in Cyr(87), where the residents of site st can spend a finite amount of time visiting. From Assump-
tion in Theorem 1.4.6(3)(ii) the residents of site s that travel in the intra regional accessible domain
Cyr(s7) spend infinitesimally small amount of time visiting, this implies that the distribution of the
residents of site s}, (i) a fraction would remain permanent residents at their home site s}, (ii) a frac-
tion would migrate to site s’ in Cyr(s7), and (iii) the remaining fraction would migrate to all sites in
Cry(s7) and become residents of those sites for a finite amount of time. Under Theorem 1.4.6(3)(i) a
fraction the residents of site s; would remain permanent residents at home site s; and the remaining
fraction would distribute among the visiting sites for a finite visiting time. Theorem 1.4.6(4) has
similar interpretations to Theorem 1.4.6(2).

The conditions on c in Theorem 1.4.6(1) and Theorem 1.4.6(2) indicate the existence of a critical
value for ¢ €]0, 1| denoted by cy. For 0 < c < co, the steady state is given by (1.4.50), and for ¢y < ¢ <
1, the steady state is given by(1.4.51). Similar conclusion with regards to Theorem 1.4.6(3)&(4) can
be drawn about a critical value for ¢ €]0, 1| denoted by c|. Moreover, in the case of Theorem 1.4.6(3)
we have 0 < ¢ < ¢y, and the steady state is given by (1.4.52). In the case of Theorem 1.4.6(4) we
have c| < ¢ < 1, and the steady state is given by Theorem 1.4.6(4).

The conditions on .’ in Theorem 1.4.6 also indicate the existence of a critical value for

i,max

T;‘;nax 6]07 1[ denoted by T’ such thatfor 0<1r < T

A imax < Vimax,» Whenever 0 <c¢ < ¢, the steady
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state is given by (1.4.50), and whenever cy < ¢ < 1, the steady state is given by(1.4.51). Also, for

T <t <1, when 0 < c < cy, the steady state is given by (1.4.52), and when ¢ < ¢ < 1, the

i,max i,max

steady state is given by Theorem 1.4.6(4).

Remark 1.4.7 The condition on the intra regional visiting times in (1.4.48) signifies that these times
are of the same order. A similar conclusion can be drawn with respect to the interregional visiting
times. We further note that the functions f, g and h, can take arbitrary forms such as quadratic,
cubic, exponential, or logarithmic functions depending on the kind of mobility process that is being
modeled. Under this consideration, we incorporate more details about the mobility process. For
instance, if one site s’ in the intra regional accessible domain receives more visitors than all other
sites in the domain, then we could have a hub in the domain. And one possible representation of

this detail about the mobility process, can be T = 0(g(t}},:,)),VJj # i,j # jo.J € I (1,ny), T}, =

i,min ijo —
0(81(t/in))s Jo € I/ (1,n,), where g # g1. Where g is an arbitrary positive real valued function

describing the return rate of visitors to site s’ .

We now describe the steady states of the system under H;. Observe that H; is composed of two

conditions (t/" ~— 0" andc>1)and (t/" ~— 1" and ¢ >1). Under 7" _— 0" and ¢ > 1, the

i,max i,max i,max

construction of the steady state is similar to Theorem 1.4.6(2). Similarly, the steady states is similar

to Theorem 1.4.6(4) whenever 77" ~— 1~ and ¢ > 1. We further remark that Tt/ has a critical

i,max i,max

value T/”  €]0, 1], such that for ¢ > 1 the steady states are given by Theorem 1.4.6(2) whenever

i,max

o<t” <1” <.

imax < Timax,» and the steady states are given by Theorem 1.4.6(4) whenever T/, <7,

i,max i,max

Finally we describe the steady states of the system under Hg and Hy.
Theorem 1.4.7 Suppose Hy and Hy hold. Given for any € > 0,

L Ift,.=0(1)and 0 < c <1, forall j € I'(1,n,), and | € I!(1,n,), then (a) T,/ = 0(1),

i,max

(b) there exists j3 € I(1,n,) and I3 € I/ (1,n,) such that T = 0(1) and T;Z <1 and (c)

13’

furthermore,

i. if ] = 0(1) for all j € I[(1,n,), then the steady state of the mobility system satisfies
(1.3.20), (1.3.21) and (1.3.22).

ii. ift]; =0(¢) forall j# js, j,j3 € I (1,n;), then the steady state of the mobility system
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satisfies

1
N7 = N ; Ny 0,) % jy
rr v q q.9 1 ’ ’
(1+Glj3rlj3 +Zq;£r2 laTla)
o'
*Ir rr l]3
Ivlh - Ni ( 1 Lo+ ,Y’qK’qr)’
I{}S l]3 Q?ér la“"iajs3

,fq

rrq ng q 799\ *
( ”1 +G:;3Kljzl +Zq7érz szal )

N — NI (1.4.55)
2. If 1,0 =0(1) and ¢ > 1, then (a) for all € I (1,n,), T;} = 0(1), (b) there exists ji € I/ (1,n;)

such that ©j;, = 0(1) and v < v forall j € I} (1,n,),1 € I] (1,n,), and (c) furthermore,
i. if 1 =0(1) for all j € I/(1,n,) then the steady state of the mobility system satisfies
(1.3.20), (1.3.21) and (1.3.22).

ii. ift]] =0(e), forall j# ja, j,ja €I} (1,n,), then the steady state of the mobility system
satisfies (1.4.55) ( where, we replace j3 with j4).

3 I =0(1) and 0 < ¢ < 1, then (a) for all j € I! (1,n,),1 € I (1,n,), T;f = O(L), (b) there

L,max

exists js € I (1,n,) such that t;. = 9( ), and (c) furthermore,

i. for < =0(1) or 7 = 0(e), for all j # js, if6(f) > 0(g), then

N;i" =0, NN, Ni"—=0,j#js, N;/*—0, (1.4.56)

and if 0(f) < 6(g), then

,Yrq

N;" =0, NiT—0, Nj*— N/ (1.4.57)
! Y l l ( q;ér %gKl’Zq)
Finally, if 0(f) = 6(g), then
Grr
N-*-rr N 07 N*rr N_rr ljS ,
" A o e DR
Vq
N = 0,j#js, N '—N[" (1.4.58)

i o!" rr T
( ijs sz5ql q#r ’erZKu;]lq)
ii. Fort = 0(%) for all j € I'(1,n,), the steady states are similar to Theorem 1.4.5.
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4. Ifvr . =0(1)and c > 1, then forall j € I/ (1,n,),l € I! (1,ny), T, = 6( ) and 17 <. Also,

1
r,max €

there exists jo € I (1,n,) such that ;= 6( ). Furthermore, for t[; = 0(1) or 7 = 0(g),
for all j# je, if 0(f) > 0(g), then steady state of the mobility system satisfies (1.4.56); if
0(f) < 0(g), then the steady state satisfies (1.4.57); and if 0(f) = 0(g), then the steady state

satisfies (1.4.58).

Proof: The proofs of parts (1)& (2) follow from Theorem 1.4.6. Parts (3)& (4) follow from Theo-
rem 1.4.5.

Remark 1.4.8 A remark similar to Remark 1.4.5 and Remark 1.4.6 can be formulated with regards

to Theorem 1.4.7.

We also examine the situation where the growth rate of the minimum intra regional visiting time is
compared with a power function of the maximum inter regional visiting time. We shall consider the

cases where the power function is a fractional power and a polynomial function.
Assumption 1.4.2 Given € > 0, and for all j € I (1,n,),l € I (1,ny), let T[; and T be related as
follows,

T = 0850 0)) e = O((T0)) T = O(F (1),

ij imin) /> Vi,min i,max i,min

whenever 1, =0(1) and 1}, =0(1), and

T = 0(8(%in)) Tnin = O (T a)) T = O(f (Ti30in)); (1.4.59)

1 1
whenever r,mm—e(g) and r,mm—e(g),

where f, g, and h are defined in Assumption 1.4.1.
We state the following hypotheses:

Hypothesis 1.4.3 Resident time T;; and T i 1 satisfy Assumption 1.4.2 and moreover,

r,max
l ,max

Hijp: 0< <l,and0<c<l;

Hy: 0< T <1, andc > 1;

L,max

Hp: T >1,and0<c<1;

i, ,max

Hpiz: T > 1, and c > 1.

lmax
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We shall characterize the steady states of the mobility process under Hy3. The static behavior of the

system under the other hypotheses can be derived in a similar manner.
Theorem 1.4.8 Suppose Hi3 holds. Given € > 0,

1 Iftt =0(1) and ¢ > 1, then for all g € I'(1,M), j € I(1,n,) and | € I/ (1,n,), ©/7 = 0(1)

i,max ij

and qu <1 J’ . Furthermore,

i. if T =0(e) forall g € I"'(1,M) and | € I!(1,n,), then the steady states of the mobility

system satisfy

1 o'

NIy N NXT s N7 Y AS I-r(l n )
r ) 1 r ’ Ve
’ CEenw)’ Y (oK)
N o (1.4.60)

ii. if for some g1 € I'(1,M), and | € I'(1,ny,), T;' = 0(€) and for all g # q1, g € I'(1,M)

and 1 € I'(1,ny), T;} = 0(1), then the steady state of the mobility system satisfies

1
N;;rr _) Ni*rl’
ny rr et M ng q.79\ "’
(1 +Zj7éi Gijtij Jrzq;ér,ql Zl:l it Vil )
o'
2

N;;‘ rr N Nl* rr

1 - M n ;
(?’j’ +ZZ#iG;I:KIG<rJ'r+Zq#r,q1 Z‘raqzl iZKi'Z'r)
N — 0,0€ll(l,ng), and for q#qi,l€I/(1,n,),

q

N4 NET ’Y:l
i i 1 Ny <7 RITIT M ng q rqry
(ﬁ X O KT+ Yoy 0 Ll Y Kol )

(1.4.61)

iii. if forall g € I"(1,M) and | € I'(1,n,), T, = 0(1) then the steady state of the mobility
system satisfies (1.3.20), (1.3.21) and (1.3.22).

2. If Ty =0(3) and ¢ > 1, then (a) for all j € I} (1,n,), 7 = () and (b) for all | € I7(1,ny),

i. ifTy =0(e)orty =0(1) forallg € I(1,M), and | € I(1,ny), then for j € I/ (1,n,), the

steady state of the mobility system satisfies

o’
Y Ny —0. (1.4.62)

KIT *Ir T
Nii —0, Nij _>]vl ( ny GrrKrrr)’
ki Oir ik j
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ii. if for some > € I'(1,M), and | € I’ (1,ny,), T;> = 0(€) and for all g # q», g € I'(1,M),

and | € I'(1,ny), T} = 0(1) then the steady state of the mobility system satisfies

Grr

N = 0N N
! ! " (X ouKiy)
Ny — 0, for all gqel'(1,M),l€I/(1,ny(s}). (1.4.63)

iii. if ;] =0(%) forall g € I'(1,M), and 1 € I'(1,ny), then for j € I'(1,n,), if 8(g) < 6(f),

the steady state of the mobility system satisfies

o’
N =0, NI N"—Y N0, (1.4.64)
u 4 l ( ny GrrKrrr) il
ki Oik ik j

if0(g) > 0(f), the steady state of the mobility system satisfies

N — 0, Nj" =0,

124
Vil

N NI | : (1.4.65)
l ( g/lyér Zaqzl iZ K[%’)
and if ©(g) = 0(f), the steady state of the mobility system satisfies
rr
NI 0, N7 N %
ii ) i i , M n rqry
! ( Z;éi G;l:KzGcrjr + Zq;ér Z:aq:I ’Yirainlz' )
q
N — NI Y (1.4.66)

t Ny <rr Frrr M ng q prgry
(L O KT+ Ygwr Loy Va Kith )

iv. Assume that there exists q3 € I'(1,M) such that, for all q # g3, T} = 0(L) and T = 0(¢)
or TP =0(1), L €I'(1,ng,)). (a) If 8(g) < O(f), then the steady state of the mobility
system satisfies (1.4.64);

(b) If 0(g) > O(f), then the steady state of the mobility system satisfies

N — 0, Nj"—0,

1

NS® = 0, N"—N/"

M }”flq q rqr 7Q#q37 (1'4'67)
( q#rzazl iaKilj)
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and (c) if 0(g) = 0(f), the steady state of the mobility system satisfies
G;;
(X OHKHT + Eger Eal VaKif)
’Y:Iq
(XX ORKGT + Lol Sala K )
for 4 # @ (1.4.68)

Xrr Xrr rr
Ni" = O,N;" =N,

N® — O,N;"— N/

v. Finally, assume that there exists q4,qs € 1(1,M) such that, for all g # qa,qs, Ty = 9(%)
for 1 € I'(1,ny,), and T;* = 0(¢), for | € I'(1,ny,) and T;> = 0(1), for | € I!(1,n;),
then (a) if 0(g) < 8(f) the steady states of the mobility system are given by (1.4.65), (b)
if 0(g) > O(f) the steady states of the mobility system are given by (1.4.67), and (c) if
0(g) = O(f) the steady states of the mobility system are given by (1.4.68). Where N*"%

and N*'% take the same value as N* in each case.

Proof: The proof follows immediately from the definition of 7j7 and t;/ in Assumption 1.4.2, and

the proof of Theorem 1.4.5 and Theorem 1.4.7.

Remark 1.4.9 The interpretations of the results of Theorem 1.4.8 are formulated in a similar man-

ner to the results of Theorem 1.4.7(3).

1.5 Conclusion

The rapid technological changes, scientific developments and educational expansion have created
the heterogeneity in the human species. This heterogeneity generates a structure in the human
population dynamics. The two-scale network dynamic model formulation for human mobility pro-
cess makes a transition from its current infancy level to a teen-age level. Moreover, the dynamic
model provides a bench mark to quantify the interactions between various scale levels generated
by the increase in heterogeneity in the human mobility process in systematic and unified way. In
fact, this work provides probabilistic and mathematical algorithmic tools to develop different level
nested type interaction rates as well as network-centric dynamic equations. Naturally, the derived
network-centric dynamic equations lead to network-centric steady-states of various types of steady-
state level population structures. Of course, the steady-state population structure varies according

to the: (a) various degrees of variations in the magnitude of intra-inter-regional visiting times, (b)
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various changes in mobility rate functions at different rates, and (c) various growth rates of the min-
imum intra regional visiting time compared with a power function of the maximum inter regional

visiting time. Several results are successfully developed and analyzed.
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2 SIMULATION RESULTS AND PROTOTYPE TWO-SCALE NETWORK
HUMAN MOBILITY DYNAMIC PROCESS

In this chapter we characterize the steady state behavior of a two scale network human dynamic
population that is under the influence of a special case real life human mobility process. The chapter
is organized as follows: In Section 2.1, we characterize the two scale population structure and the
human mobility process represented in this example. In Section 2.2, we describe the mathematical
algorithm for generating the steady state population, and also give graphical representations of the

steady state population.

2.1 The Two-Scale Hierarchic Population of the Special Real Life Mobility Process

By using three community single-scale model, the mobility dynamic structure determined by the
simulated data set for the three communities in the district of Central Manitoba, Canada, and the
data set for the interdistrict movement of the people in the West Indian Island of Dominica [27], we
develop a two-scale mobility model. We note that the estimates of the underlying parameters under
both simulated and real data sets are recorded in [27].

The development of this example is based on the following assumptions: In the absence of data
set and without loss of generality, we assume that the structure determined by the simulated data set
of the three communities in the district of Central Manitoba, Canada, is the structure of our two scale
model at the interregional level. The three districts in the West Indian Island of Dominica represent
’sites’ for each of the these three regions. Conceptually this assumption is not representative in the
sense of geography/size but in the sense of sample drawn from small community or vice versa, that
is representative of the big or small region. In short, we identify the three communities in the district
of Central Manitoba, Canada as ’regions’, and the districts of the West Indian Island of Dominica as

’sites’. Therefore every region has three sites, and we denote regions by C,,r = 1,2, 3, and the sites
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by si,i = 1,2,3. The intra-regional visiting/travel rates are displayed in Table 2.1. This table was
rerecorded from the data set under the column of ‘Dominica mobility’ in ([27] page 14). We used
the following information about the structure of the one scale(interregional) mobility simulated data
set (NH mobility [27] page 14) for the above defined three regions and generate the interregional
visiting/travel rates as follows: (1) communication patterns between two of the three regions is com-
pletely symmetric, (2) the third region is partially symmetric with one of the two regions. This is
because of the fact that there is a zero flow rate into itself from one of the two regions. That is, one
of the two complete symmetric regions is a ’sink’ for the third region. From the this description, we
conclude that the travel pattern in [27] includes the human mobility structure of our presented model
as a special case. Using the structural and probabilistic understanding we constructed the interre-
gional visiting/travel rates. We display the interregional travel rates in Table 2.2. Furthermore, the
large scale two level population structure and the underlying human mobility pattern are exhibited

in Figure 2.1

Figure 2.1: A two scale network of three spatial regions C,,r = 1,2,3 of human habitation and three
interconnected sites s7,i = 1,2,3 in each region. The arrows represent direction of human mobility
and summarize the heterogeneities in the epidemic process at each site and region. C; & C;, and C;
& (3 are symmetric in the human mobility process. Cj is a sink for C3 in human mobility. All sites

in each region are completely symmetric in the human mobility process.

We further assume that for every site s7,i = 1,2, 3 in any region C,,r = 1,2,3, for all j # i, intra
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regional visiting times T;;, of residents are the same, moreover it is assumed that the corresponding
interregional visiting times ’c;lq, of residents of site s/ in region C,, are also the same forall / =1,2,3
and g # r.

Table 2.1: Intra regional visiting/travel rates for sites in region C,,r = 1,2,3. The intra regional
travel rates within each of the three regions C,,r = 1,2, 3 are assumed to be the same. The estimates
of the parameters are derived from data[27] that was collected from the Island of Dominica in 1991.

The parameter estimates reflect the rates of travel that can be obtained in regions that have a low

technological development.

Parameter | Intra-regional mobility

o) 0.00147
o5 0.03695
oy 0.03754
% 0.7432
vi5 0.2568
Vi 0.9860
Va5 0.014.

V3 0.8852
Vi, 0.1147
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Table 2.2: The interregional visiting/travel rates between the three regions. The derivation of these
rates is based on the the structural understanding of the data set under the column ‘NH mobility’ in

[27], page 14 and probabilistic understanding of our presented model.

Parameter Interregional mobility
(V1 %2:73) (0.5,0.3.24,0.176)
(Yio: ¥35:¥30) (1,1,1)

(Yio: 20+ ¥30) (0,0,0)
V.8.7%) (0.16,0.06,0.03)
(V0. 130, 30) (0.222,0.12,0.658)
(YR, 53:75) (0.778,0.88,0.342)
.%7) (0.12,0.011,0.001)
(Y10, Va0, Ya0) (0.200,0.080,0.006)
(Y15, V50, Va0) (0.800,0.920,0.994)
(v'%.7") (3.0)

', v°) (0.6,2)
Y'y?) (0.286,2.714)
(Vo1 V63 763) (0,0, 0)
(VNS V) rgmn3rtq | (0.333,0.27,0.397)

2.2 Mathematical Algorithm and Simulation Results

In this section, we perform simulations for three general scenarios. Each scenario is based on re-
strictions on the intra- and inter- regional visiting times between zero and hundred days. We re-
call the fraction of the steady state population of residents of site s} in region C, at the home site,
intra-regional and interregional accessible domains are given in (1.3.29), (1.3.30) and (1.3.31) re-
spectively. Therefore all categories of the steady state population of the residents of site s} in region
C, subject to continuous changes in the intra- and inter-regional visiting times can be characterized

by the following functions:
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S;}”,U;}”,Vi}”q :[0,00] x [0,00] — [0,00],Vj € I (1,n,),l € I(1,n,)

where,
1
S’-‘-”(r“,l’flq) — Jiel(l,n,), (2.2.1)
o (1+ ZZ;& Ol T + Z%ﬁr Yol Vet )
rr
Ui’;rr(T;‘;7T;IQ) =71 N rr rrrGiJ' M~ aprary ) € I (L,my), (222)
(f + O KT+ L Lol VaKid; )
and

kF T ’Y’l‘q
Vi () = 4 del(1,n,). (2.2.3)
l l (W + ZZ;EI Gfl:Kt;:lq + Zq;ﬁr Zaq:l ’{iZKiraqlq)

Furthermore, the notation W;;™(t/7,7;/),W € {S,U,V},Yu € I(1,M),a € I(1,n,) denotes the two

hierarchic population interaction levels, and should not be understood as representing a function of

two variables. In the following, we present the three scenarios. We fix r =1, and i = 1.

Case 1: Constant Interregional Visiting Time and Varying Intra-regional Visiting Time:
Suppose that the assumptions of the example presented in the previous section are satisfied,
we further assume that interregional visiting time rg of residents of a given site s% in com-
munity C; is 10 days, and the intra-regional visiting time of the residents 1:{ } ,J = 2,3, equally
vary between zero and 100days. By utilizing (2.2.1), (2.2.2), (2.2.3) and the methods of graph
sketching[85], we obtain values and graphs for the steady state population for the different
categories of the residents of site s} over all 0 < 1:{} <100, j = 2,3. The results are displayed

in Figure 2.2
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Figure 2.2: Exhibits diagrams (b), (d) and (f) corresponding to (a), (c) and (e) respectively, under
magnified scales. Furthermore, we note that the axes labels for (a)&(b), (c)&(d), and (e)& (f)
respectively, are the same, and the axes represent quantities on different scale units. The figure
displays the behavior of the proportions Sﬂl, Ul*}l, j=2,3 and Vl*lu,l = 1,2,3 of the different
classes of residents of site s}, subject to continuous changes in intraregional visiting time over the
interval from zero to 100 days, given that interregional visiting time is fixed at 10 days. More

comments about this figure are given in Remark 2.2.1.

Remark 2.2.1 We observe from Figure 2.2 that as the intraregional visiting time continuously

changes value from zero to 100, diagrams (a) & (b) for S;1! and (e) & () for V12,1 =1,2,3,

show a smooth decrease, indicating that for larger values of intraregional visiting time, Sﬂl,

and Vl*llz,l =1,2,3 turn to be smaller values. This qualitative behavior of Sﬂl, and Vl*llz,l =

1,2,3 is exhibited in Diagrams (a) and (e), respectively. Diagrams (d) for Ul"j“, j=2,30on
the other hand has a smooth rise with intraregional visiting time, also illustrating the growth

of Uf Jl ! j = 2,3 with larger values of intraregional visiting time. Furthermore, for low intra-

regional visiting time, (i) Sﬂl, and Vl*l12 are maximum, for / = 1,2,3 and (ii) Ul*j“, j=2,3is

minimum. That is, residents of site s} distribute them selves between home sites and sites in

other regions.
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Case 2: Varying Interregional Visiting Time and Constant Intra-regional Visiting Time:
When the intra-regional visiting time of residents of a given site s} in region Cj is 20 days
and the corresponding interregional visiting time of the residents, 1:{12,1 =1,2,3, equally vary
between zero and 100 days. We utilize (2.2.1), (2.2.2), (2.2.3) and the basic methods of graph
sketching[85], to obtain values and graphs for the steady state population for the different cat-
egories of the residents of site s% over all 0 < Tilz <100,/ =1,2,3. The results are illustrated
in Figure 2.3.

@ ®)

Residents Present at Home site Residents Present at Home site

~o— st11_11]

1

0.8

0.4
TR

S11.11
S1111

00 05 10 15

L

T T T T T T

0 20 40 60 80 100 0 20 40 60 80 100
Inter regional visiting time Inter regional visiting time
(©) (d)
Residents visit sites in home region Residents visit sites in home region
2 o
8 H < | [ vy
e o ~o- U111
b T
°
.
o 3 L
5 1\ g ]
= T T T T T S T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Inter regional visiting time Inter regional visiting time
(e) ®
Residents visit another region Residents visit another region

0.30

V12 il=1,2,3

VA12_ilI=1,2,3

L1

000 015

T T T T T T
0 20 40 60 80 100

Inter regional visiting time. Inter regional visiting time

Figure 2.3: Exhibits diagrams (b), (d) and (f) corresponding to (a), (c) and (e) respectively, under
magnified scales. Furthermore, we note that the axes labels for (a)&(b), (c)&(d), and (e)& (f)
respectively, are the same, and the axes represent quantities on different scale units. The figure shows
the behavior of the proportions Sii!, Ul*j“, j=2,3and V;i'2,1 = 1,2,3 of the different classes of
residents of site s}, when the proportions are subject to continuous changes in interregional visiting

time over the interval from zero to 100 days. And the intraregional visiting time is 20 days. More

comments about this figure are given in Remark 2.2.2.

Remark 2.2.2 We observe from Figure 2.3 that as the interregional visiting time continuously
changes value from zero to 100, diagrams (a)&(b) for Sﬂl, and (b) & (c) for Uy j“, j=2,3,
show a continuous decrease, and thus indicating that for larger values of interregional visiting

time, Sj;', and U}, j = 2,3 tend to be very small values. This qualitative behavior of S},
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and U[ ]“, j = 2,3 is exhibited in Diagrams (a) and (c), respectively. Diagrams (e) for [ =
1,2,3, Vllf, has a continuous rise with an intraregional visiting time. Thus there is a tendency
for Vi1 to increase with larger values of interregional visiting time. Also, for this example,
the rising of Vl*llz,l = 1,2,3 approaches one, for large values of interregional visiting time.
These observations signify that for sufficiently larger values of interregional visiting time, the
residents of site s1 tend to distribute them selves only among sites in other regions. For this
specific scenario, it is clear that for sufficiently large values of interregional visiting time,
the residents of site s} totally isolate their home region. Therefore the fixed intraregional
visiting time does not change the residents’ decision to emigrate to another region. That is,

after spending more that 100 days in another region, all residents of site si would become

permanent residents of other sites in those regions C;.

Case 3: Varying Inter- and Intra-regional Visiting Times: When the intra-regional T}, j =2,3,
and interregional ’c}lz,l = 1,2,3 visiting times of residents of the site s{ in region C; equally
vary between zero and 100 days. From (2.2.1), (2.2.2), (2.2.3) and the basic methods of graph
sketching[85], we obtain values and graphs for the steady state population for the different
categories of the residents of site s} over all 0 < 'c}}-,’c%lz <100,j=2,3,l =1,2,3. The results
are shown in Figure 2.4. We note that the results under these scenarios, exhibit the behavior of

the steady state population as visitors are allowed to spend up to 100 days at their destinations.
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Figure 2.4: Exhibits diagrams (b), (d) and (f) corresponding to (a), (c) and (e) respectively, un-
der magnified scales. Furthermore, we note that the axes labels for (a)&(b), (c)&(d), and (e)& (f)
respectively, are the same, and the axes represent quantities on different scale units. The figure fur-
ther exhibits the behavior of the proportions Sﬂ] U j“ ,J =2,3 and Vl*llz,l = 1,2,3 of the different
classes of residents of site s}, when the proportions are subject to continuous change in interregional
and intra-regional visiting time simultaneously over the interval from zero to 100 days.The inter-
regional and intra-regional visiting time are are assumed to be equal. More comments about this

figure are given in Remark 2.2.3.

Remark 2.2.3 Figure 2.4 exhibit that as both visiting times continuously change values from
0 to 100, for S H, graphs (b) show a smooth decrease. Diagrams (d) for Ul*j11 ,J =2,3, and (f)
for Vl*llz,l =1,2,3 show a continuous rise with intra-regional and interregional visiting time
and vice versa. This qualitative behavior of Ul*j“, j=2,3, and Vl*llz,l = 1,2,3 is exhibited in
Diagrams (d) and (f), respectively. This suggests that more residents are found visiting other
sites that are within their regions or in other regions when intra-regional and interregional
visiting time are large. This also signifies that for smaller values of intra-regional and inter-

regional visiting times, more residents are found in their home site s}, which could lead to an

isolation of home site.
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For this particular example, with the increase visiting times the rise of both U} ]l 1 j=2,3,and
Vl*ln,l =1,2,3 saturate at different values less than one. This signifies that there is always a

fraction of residents of site s} at other sites within their region and in other regions.

2.3 Conclusion

A special two-scale human mobility dynamic model with underlying real life human mobility pattern
and specified travel and return rates is implicitely defined. Comparative graphical representations of
the steady state population behavior of residents of a given site with respect to their current locations
are exhibited for different human mobility pattern strutures. The different human mobility pattern
structures are influnced by continuous changes in the intra and inter-regional visiting times. The
simulated findings reveal different steady state population displacement trends over the contiuous

changes in the intra and inter-regional visiting times.
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3 FUNDAMENTAL PROPERTIES OF A TWO-SCALE NETWORK
STOCHASTIC HUMAN EPIDEMIC DYNAMIC MODEL

3.1 Introduction

The recent advent of high technology in the areas such as communication and transportation has
increased the rate and effects of globalization in many aspects of the human species. Of particu-
lar importance is the rate of globalization of human infectious diseases[7]. For instance, the 2009
HINT1 flu pandemic[39] is a result of the many inter-patch connections facilitated human transporta-
tion. Several mathematical models describing the dynamics of infectious diseases of humans have
been studied. Models describing the dynamics of insect vector born diseases[13, 52], influenza[8],
HIV[48, 49, 51] and AIDS [50] are studied.

There has also been many studies[8, 9, 11, 12, 13, 26, 27, 20, 32, 42, 53, 54, 25] describing the
dynamics of human mobility and disease in meta-populations. Generally, these models can be called
multi-group models as they describe the dynamics of diseases in a network of the patches of a meta-
population. These models can be further categorized into two general classes based on the modeling
approach, namely: Langrangian[53, 54, 25, 13, 26, 27] and Eulerian [20, 32, 42, 11, 12, 8, 9] mod-
els. In addition, individuals in the population are labeled based on their residence or their current
location. In Langrangian models, individuals do not change their residence, but are allowed to visit
other patches in the meta-population. The Eulerian models on the other hand label individuals in
the population based only on the current location. Moreover, this model can be considered to be
migration models because only the present location of individuals is important.

Many authors have investigated the dynamics of diseases described with SIRS models. A sig-
nificant portion of SIRS models study the dynamics of the disease under variant incident rates[40,
41, 42, 43, 44, 45, 46]. Using Lyapunov functions, the local nonlinear and global stability of the

equilibria is established[40]. By constructing a Lyapunov function based on the structure of the
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biological system [43, 28, 29], the existence, uniqueness and global stability of the endemic equi-
librium are investigated. Furthermore, the bifurcation and stability analysis of the disease free and
endemic equilibria, are investigated in [42, 45, 46]. SIRS epidemic models have also been described
and studied using complex network of human contacts[47]. In [58], a special SIRS epidemic model
is formulated with a proportional direct transfer from the infectious state to the susceptible state
immediately after the infectious period.

Stochastic models offer a better representation of the reality. Several stochastic models de-
scribing single and multi-group disease dynamics have been investigated[55, 56, 50, 51]. Assum-
ing random perturbation about the endemic equilibrium of a two-group SIR model, the stochastic
asymptotic stability of the endemic equilibrium via constructing a Lyapunov function according to
the structure the system is established in [55]. Also, the stability of the competitive equilibrium
[61], disease free equilibrium for SIRS[57] and SIR[56] single-group epidemic models are studied.
Furthermore, by showing the existence of nonnegative solution for a stochastic model, the stochastic
asymptotic stability behavior of the equilibria is proved in[50, 51, 61, 62].

In more complex meta-population structures, the understanding of the dynamics of infectious
diseases is still in the infancy level. This is due to the high degree of heterogeneities and com-
plexity of spatial human population structures. In Chapter 1, we characterized various patterns of
static behavior of multi-scale structured meta-population human mobility process described by the
Langrangian type dynamic model (1.3.13)-(1.3.15).

In this paper we incorporate the multi-scale structured meta-population human mobility process
(1.3.13)-(1.3.15) into an SIRS human epidemic model that is under the influence of random envi-
ronmental fluctuations. The resulting two-scale network structured SIRS human epidemic stochas-
tic dynamic model is an extension, expansion and generalization of the structured deterministic
epidemic model [25] that is under the influence of mobility process.The presented stochastic two-
scale network human dynamic epidemic process is described by a large-scale system of Ito-Doob
stochastic differential equations. In addition to well defined underlying system parameter domains
for disease eradication in the large-scale two level dynamic structure, the results are algebraically

simple, computationally attractive and explicit system parameter dependent threshold values.
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This chapter is organized as follows. In Section 3.2 we describe the general stochastic SIRS
epidemic process that is under the influence of human mobility process[59]. In Section 3.3, the
model validation is exhibited. The existence and asymptotic stability of the disease free equilibrium

1s shown in Section 3.4.

3.2 Large Scale Two Level SIRS Epidemic Process

In this section, we define the structure of the SIRS epidemic dynamic process in the two-scale
network population dynamic structure. The human mobility dynamic structure of the intra and
inter-regional levels of the SIRS epidemic dynamic model of this study are exhibited in [Fig. 1,[30]]
and [Fig. 2.[30]] respectively. Furthermore, the characterization of the human mobility hierarchic
process in the two-scale population dynamic structure is also exhibited in [30]. The general SIRS
disease structure with dual conversions to the susceptible class from the infectious and immune
populations exhibited in this study is inspired by the work [58]. We make the following definitions

related to the SIRS disease process.

Definition 3.2.1 Endemic population decomposition and Aggregation:For each r € I[(1,M), let
i € I'(1,n,). The total population N} of residents of site s; at time t is distributed among the
sites in their intra and inter regional domain C(s}), and it is partitioned into three general disease
compartments namely, susceptible (S), infectious (I) and removals (R) (those who were previously
sick and have acquired immunity from the disease). That is, Aflq is the number of residents of site s
whose disease status is of type A,A € {S,I,R}, and are visiting to site s;’,l € Ilf’(l,nq) in region C,,
where g € I'(1,M). Furthermore, when r = g, Al is the number of residents of site s; with disease
status A € {S,1,R}, and are visiting to site s,k € I (1,n,) in their home region C.. Moreover, when
k =i, All is the number of residents of site s; who have disease status of type A,A € {S,I,R} and

remain as permanent residents at their home site. Hence N is given by

=S+ 1§ + Ry, (3.2.1)
where
M ng M Ny M N4
T T T
b= XS =Y Y I, ad Rg=Y Y Ry. (3:2.2)
qg=1k=1 g=1k=1 qg=1k=1
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Remark 3.2.1 We note that the effective population ef f(N}]) present at the site s} at anytime is
different from the census population or the total number of residents Njj (3.2.1) with permanent
residence site sj. At anytime t, the effective community size of site s; is made up of the permanent

residents of site s; and all visitors of to site s;. This is as given below

M ng M ng M ny
eff(N) =Y Y SE+Y Y I+ Y Y R (3.2.3)
q=1k=1 q=1k=1 q=1k=1

eff(N!") represents the population that is at risk for infection at site s\ and it is the population size

resulted by the mobility process in the two-scale network structure.

Definition 3.2.2 Disease Transmission Process: The disease transmission process in any site s;
in region C, in a mobile population necessitates: (1) a susceptible person to travel from site s; in
region C, to site s, (u = r and k = i if there is no traveling), (2) an infectious person traveling from
site s;] in region Cy,q # r to site s, (3) the susceptible and infectious persons meeting at a contact
zone z (which may be the home, market place or recreational facility etc) in site s; with a probability
p of a person being at a zone z at anytime t, and (4) B is the probability of the infectious agent being
transmitted from the infectious person to the susceptible person knowing that the contact between
the susceptible and the infectious individual took place.

Let ny; be the number of contact zones denoted by z),,b € {1,2,...,n,} =I(1,ny,) at each site
s;.Furthermore, let p; be the probability that a member of the effective population would be in a
zone Zfb at a time t; in addition, we assume that the events of visiting contact zones are independent,
and the probability p; of being in a given zone z;, is independent of the permanent residence of
the individual. In each zone z; , there is random mixing and transmission of the infectious agent
Jfrom an infectious person to a susceptible person via a direct contact between the two individuals.
Moreover, let Bf,ﬁ‘lv* be the probability that the transmission takes place given that the contact occurs

in any zone z; ,Vb € 1 (1,n,) in site sj between a susceptible S}! from site s} in region C, and an

. . e o
infectious individual 1)),

from site s, in region C,. Then the infectious rate (average number of

o oy . . . vk . ur
contacts per individual per unit time required to transmit the disease), Bi;, o N ZONE 7 between S
vr

and mi

is given by
ruvk __ (pr )2 ruvk (324)

i[,km ib ikm >
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whenever v,u € I(1,M), and v # u. The infection process in zone z;, s illustrated Dy the following
transition.
ipkm
SY+ Iy —= I+ 1. (3.25)
Hence, the net conversion rate to the infectious class from the susceptible class during the disease

transmission process at the site s} in region C, of the meta-population with M regions is given by

ny.
v Ty Ti

M M n
YY YN N Binns (3.2.6)

We set

Ty
ruy __ ruvx
it =2 B (327
b=1
We further assume that the disease status of an individual in the population does not affect travel

rates and the mobility pattern.

A diagram illustrating the disease transmission and mobility processes in the two scale dynamic

structure described in Definition 3.2.2 is exhibited in Figure 3.1.

Figure 3.1: Shows the movement of susceptible (S7;) and infective (/) from arbitrary home site s
in region C, and from site s,, in region Cy, to visit an arbitrary contact zone z; in site s;, which is in

region C;. Disease transmission takes place in zone z;, .
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Definition 3.2.3 Acquisition and Loss of Immunity Process: The changes in environmental condi-
tions influence the immunity systems of individuals in the large scale two level population dynamic
structure. This leads to dependence of the acquisition and loss of immunity rates of residents of all
sites in all regions in the two-scale structured population, on the current locations of the residents
in the population dynamic structure. In each site s}, let PL,’ be the average active infectious period of
infected individual (I) who recovered from the disease and acquired immunity (R),immediately after
the infectious period. Also, let %’ be the average infectious period of infected person in site s;, who
is recovered from the disease and become susceptible (S), immediately, after the infectious period.
Furthermore, let a% be the average immunity period of removal person (R) in site sj, who has lost
his/her their immunity and become susceptible (S) again immediately after the immunity period. The

recovery process of an infected person in site s; as well as the loss of immunity of a removal person

is illustrated in the following disease transition processes:

r r
ur Pi ur ur Mi ur i

ar
i — Ry, L7 — S, R — S, (3.2.8)
foruelI(1,M) and k € I(1,n,).

Definition 3.2.4 Population Demography: The current SIRS infectious disease involves time scales
that are comparable with the life-time of individuals in the population. Furthermore, all births occur
at home site and deaths occur at current locations of residents in the two-scale population structure.
Let B} be a constant birthrate of the human population at site s and at time t. We assume that
every new born is a susceptible and becomes a resident of the site of birth. Let &} be the per capita
natural mortality rate, and let d; be the per capita disease related mortality rate of all members of

the effective population at site s;.

A compartmental framework illustrating the different process and stages in the SIRS epidemic de-

scribed above is exhibited in Figure 3.2.
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Figure 3.2: Compartmental framework summarizing the transition stages in the SIRS epidemic

process. All the parameters presented in this figure are define in Section 3.2 for particular sites and

regions.

From Definition 3.2.1-Definition 3.2.4, the complete SIRS epidemic model under the influence

of a large scale two-level population mobility process[30] is described by:

B+ X Sy 4+ XM, X0 praSIe Iy + o Ry
(o OF+ 8)S XM X BSEIY], for q=rl=i
asy (OIS 4+ M+ GRS — (P +87) ST
di —YM Y IS, for q=rl=j,j#i,
Yi'Si i+ of Ry — (pyf +8))Sy/
| — Yl X Bl STL,  for q#r,

ng

{Zk 1 p:lglt’}cr + Zq#r Za 1 p:ﬁgllraq - nzrllrtr p{Il’;r

—(Y, + 0!+ +dNIT + < BEESTIY),  for q=rl=i
dry’ H,’IZ’ njl” piLT — (p{}+6§+d§>15-’
di + XML Y ST, for q=rl=ji# ],

\[‘11" N — el — (py +8] +d)1

il il

+Xut1 Yot Blia Sil Ll for a#r,
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(X PR+ XM, Y0, R + piIT — (Y +0F +of +8))RY],

dRj for gq=nl=i 3.2.11)
dt (OIRY + 5117 — (P +0+ )RS, for q=rl=jii ]

i RE + 011y — (P + 0y +8))Rif),  for q#r,
where i € I(1,n,),l € I (1,ny);r € I(1,M),q € I'(1,M). Furthermore, the parameters B}, N, o, &,
and d” are nonnegative, and p" is positive for ,u € I(1,M), i € I(1,n,), and a € I(1,n,). Also, at
time = f9, and for each r € I(1,M), and i € I(1,n,), (S} (10),S}7(t0),S (t0)) = (Siio»Sii0sSiso)»
(I (10), 17 0). I3 (10)) = (R, i 1) (R (f0). REF(10) Rf (10)) = Ry, R, Ryf). whenever j €
I'(1,n,) and I € I(1,n,). Furthermore, we denote n = Y™ , n,. We now incorporate the effects
of the random environmental perturbations into the modeling epidemic dynamic process described
in (3.2.9)-(3.2.11).

The random fluctuations lead to variabilities in the disease transmission, human mobility, birth
and death processes of the system. In this chapter, we assume that the effects of the fluctuating envi-

ronment manifest mainly as variations in the infectious rate 3. Generally, we represent the variability

in the infectious rate by a white noise process as:
B—PB+1vE(r), dw(t)=E(t)dt, and var(B(r)) =12, (3.2.12)

where &(t) is the standard white noise process, and w(z) is corresponding normalized Wiener process
or a homogenous Brownian motion process with the following properties: w(0) =0, E(w(r)) =0
and var(w(t)) =t.

Given ¢ > 1y, we let (Q, F, P) be a complete probability space, and [, is a filtration ( that is sub
G —algebra [ ; satisfies the following: givent) <thp = [, Cf,;E€f,and P(E)=0=E € [
), for each r € I(1,M), and i € I(1,n,), the variability in the infectious process at sites s/, s’ and sf
between a susceptible from site s and an infective from an arbitrary site s,,, can be represented as

follows:

i = Bl T ViemSin (1), dWig (1) = G (1)dt

ikm ikm — “ikm
Gim = Blon VinSlion (1), dWio (1) = Eljy, (1)dt
lm = Blion T Vi Sl (1) dW, () = &l (1)t (32.13)
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and
var(Biim(t)) = (Viim)?, var(Bi, (1)) = (Vi)?, var(B (1)) = (vian)?, (3.2.14)

where g,u,v € I'(1,M), k € I''(1,n,), m € I(1,n,), and [ € I](1,n,).
We substitute (3.2.13) into (3.2.9)-(3.2.11), and obtain the following two level large scale stochas-

tic epidemic model under the influence of human mobility process [30]

B + L 1P”S”+Zq¢r2a 1 PiaSia TNl + 0GR}

— (Y + ol +8)ST— Yo Yo RS dt
—[ X Xy ;zuszrlszdw;z% )], for q=rl=i,
rq u
sy = (7SI -+ MAT + ORI — (pf + 85)STT — Yol Yoo | BrrusrrIer] d

[ lza 1 ;;gS{;IngdW;:g( )]afor g=nl=j,j#Ii,
[YiST4+nin! + ol RY — (pif +87)S}}
L B (B K SO for

(3.2.15)
(S PiI + 222,221195213 nflff oiI;
(Y’ +o; +8’+d’)l” B{,;“S{{Ig[]dt
+[ X X v ,’,:,"S;’szdwzz"< >],for qzrlzi
dry' = (77T =W — 3L — (pff + &+ d)IT + Yol X | BrrusSirIL] de

[Zu IZZM 1 Zzstr;]g;‘dwgzrg( )] Jor gq=rl=j,j#Ii,
[%QIII;V QI”I pqqu ( i[ +SQ+dQ)Irq

qru rq uq qru rq uq 3. qru
Z IZ lia tlIal]dt+[ 1Zu 1 Viia lllald lza()]’for q#r’

(3.2.16)
[, PR + o, Lty P Ry + piI — (¥ + 0] + o +87)R7dr,
or g=rl=i
R = for 4 (3.2.17)
[OFF R + P17 — (P + 6+ S)RI]dr for q=nl=J,j#1,
[YqR +p;]1,rlq (pflq—i—(x?—l-ﬁ;])R:ﬂdt,for q#r,

where i € I(1,n,),l € I[(1,ny);r € I(1,M),q € I"(1,M); all parameters are as defined before.
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At time 7 = fo, for each r € I(1,M) and i € I(1,n,), (S} (o), S} (10),S;/ (0)) = (Siio»Sii0sSito)»

(I3 (10). I2£ (10), i (10)) = (I, i 1), (REF(10). RS (10), R (10)) = (R, Rily, R, whenever j €

I/ (1,n,) and [ € I} (1,n,), where the random variables (S} (10), S} (o), S (t0)), (I} (t0), 1] (t0), I/ (0))

and (R} (t0), R" (to), R} (t0)) are | o — measurable, and are independent of w(r) whenever ¢ > 1.
We express the state of system (3.2.15)-(3.2.17) in vector form and use it, subsequently. We

denote

X = (SELIRLRET € B

X = (AT T )T e R,

X o= T T e R,

X = R AT € RIVE

A = (w9, AT e R ) (Tim) (3.2.18)

where r,u € I(1,M), i € I(1,n,),a € I'(1,n,). Wesetn=YM  n,.

Definition 3.2.5

. 2 2 . .
1. p—normin R : Let 200 € R be an arbitrary vector defined in (3.2.18), where 7/ = (29,7719 Z\T

whenever ru € I(1,M), i € I(1,n,), a € I'(1,n,). The p—norm on R is defined as follows

3 »
Y Iz “0|P> (3.2.19)

a=1 j=1

S

m—(ff

r=lu=1i

I¥
—

whenever 1 < p < oo, and

= 0
= 11Zoollp = max Zigi 3.2.20
|| Hp 1<ru<M,1<i<n,,1<a<n,, 1<]<3| aj b ( )
whenever p = co. Let
k kOOmm = min |k,rau . (3221)

ISI’,MSMJSI‘SH” 1<a<n,

2. Closed Ball in R¥: Let zogo € R pe fixed. The closed ball in R3" with center at Z*oo and

radius r > 0 denoted ‘BRgnz (ZZ‘)(O)O; r) is the set

B (2500 7) = {9 € R : |20 — 26°)|, < r} (3.2.22)
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3. Ito-Doob Differential: Let x € R be a stochastic process described by the following equation
dx = f(x,t)dt +g(x,t)dw (3.2.23)

where ® is a Wiener process. Furthermore, let V € C*'(R¥,R"). The Ito-Doob stochastic differ-

ential of V with respect to (3.2.23) is given by
1
dV =V,dt + Vedx + ideVxxdx, (3.2.24)

where V,,V and V. are the first and second order differentials of V respectively.

3.3 Model Validation Results

We now show that the initial value problem associated with the system (3.2.15)-(3.2.17) has a unique
solution. We observe that the rate functions of the system are nonlinear and locally Lipschitz con-
tinuous with respect to x88 but do not satisfy the linear growth condition. As a result of this the
classical existence and uniqueness results[59] are not applicable. Therefore, we use the Lyapunov
energy function method (cf.[50, 51, 59, 60]) to prove the existence and uniqueness of solution pro-
cess of the system. We first state and prove two lemmas that are useful for the proof of the ex-
istence and uniqueness result. From (3.2.15)-(3.2.17), define the vector y88 € R™ as follows: For

iel(l,n.),l€l(l,ng),r€I(1,M)and g € I"(1,M),

Yia = Siat+ld +Ri§ ERL=[0,00)
ru ru . ru ru \T Rn“
Yio = (yi17yi27"-7yi,nu) SR
T ruT T\T My

Yoo = 10 250 »-- - Ymo) €RY™,

0 IT 2T MTA\T P Yy
y60 = (y60 7y60 7"'7y(r)0 ) ER}}'— 1”’

00 107 20T MOT\T ) (20
Yoo = (V0o Yoo »---2Y00 ) ERS 1) (B ), (3.3.25)
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and obtain

[BY + X vk + Loy L Piayia — (Vo + 07 +80)yi —df1ff | dr,
't for q=rl=i (3.3.26)
[otyir = (pif +8))yij —djl[f]dt, forg=ra=j and i#j,

iy — (P +8])yy —diLy]dt, for g +# 1y (10) >0,

In the following, we show that the solution process of the initial value problem (3.3.26) is nonnega-

tive. That is for all # > 0, y/¥(z) > 0 is nonnegative, whenever y?*(fy) > 0.

Lemma 3.3.1 Let r,u € I(1,M), i € I'(1,n,) and a € I/ (1,n,). For all t > 1y, from (3.3.25), if

Vid(to) > 0, then yi*(t) > 0.

Proof:

It follows from (3.3.25) and (3.2.15)-(3.2.17) that the system (3.3.26) is of the form u =A(t,u)w(t,u),u(ty) >
0, in [[33],equation (8)] and satisfies the quasimonotonicity condition. Furthermore, from Remark 4

in [33], we assert that this system (3.3.26) has nonnegative solutions whenever y:lq(O) >0, Vie

I(1,n.),l €I (1,n,),r €I(1,M), and g € I"(1,M).

Remark 3.3.1 From the decomposition described in (3.2.1), we observe that yi(t) = NI = S/(t) +

I7“(¢) + R™(¢t). Furthermore, that Ny = YM | Y« ' Therefore, Lemma 3.3.1 established that for

a=1

rr
i’

any nonnegative initial endemic population, the number of residents of site s; present at home, y
or visiting any given site s;; in any other region C,, y:", is nonnegative. This implies that the total
population of residents of site s; present at home and also visiting sites in regions in their intra
and intra-regional accessible domains, Nj; (t), is nonnegative. Moreover, Lemma 3.3.1 exibits that

the effective population at any site in any region given by (3.2.3) is nonnegative at all time t > .

Furthermore, R’f ={ye R™: y > 0} is a self-invariant set with respect to (3.3.26).

In the following lemma, we use Lemma 3.3.1 to find an upper bound for the solution process of

(3.2.15)-(3.2.17)
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M M n, ny 1 M n,
YY) Y v <-Y Y B, (3.3.27)
rlu=1i=1a=1 L |
then
M M n, ny 1 M n,
Y Y Y Y i) <=Y Y B/, for t>0,as. (3.3.28)
r=lu—=1i=1a=1 L |
Proof:
From 3.3.25, define
M M n. ny M n, M n,
ZZZZdy ZZ dyf +Zdy —I—ZZdy ] (3.3.29)
r=lu=li=la r=1i= a#i u#ra=

From (3.2.15)-(3.2.17) and (3.3.29), one can see that

r=1lu =1 r=1i= r=li=lu=la=

M M n. n, M n, M n. M n,
Y Z Z dyy [Z YB-YY Y Z (80yia +daliy) ] dt (3.3.30)
From lemma 3.3.1, and (3.3.30), we have

{ffiﬁym} [%il?’ ufifnzy] (3.3.31)

r=lu=li=la r=1i r=li=lu=la

for a nonnegative differential of . We note that(3.3.31) is a first order deterministic differential

inequality[59], and its solution is given by

M M n, n, an M n. M ny
3D MW IAUEES 1 VIR W3 3Ll ] e
r=lu=1i=1a=1 o | 1 im =1 am

Therefore, (3.3.28) is satisfied provided (3.3.27) is valid.

Remark 3.3.2 From Lemma 3.3.2, we conclude that a closed ball in R3 under the sum norm with
radius r = - Z Y Bl is self-invariant with regard to a two-scale network dynamic of human

epidemic process that is under the influence of human mobility process[30].

Prior to presenting the model validation result, we need to establish an auxiliary result. this result

provides a fundamental tool in the context of the energy Lyapunov function approach.
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Lemma 3.3.3 Let us assume that the hypotheses of Lemma 3.3.2 be satisfied. Let Vbe a function

defined by V : ]R3" xRy — Ry as follows

M n. M ny
00 _ 7l ru
Vi) = LYY Y Vi), (3.3.33)
r=li=lu=1a=1
where
Vid'(xig) = [(Sig — 1 —1ogSiy) + (Ii — 1 —logli) + (Rig — 1 —logRiy)]. (3.3.34)
Furthermore, let us denote
Sit
M® = max 1+ -iL
001 1<rg<Mgri<i<n, I
(S;)?
My, = max il
002 1<rg<M,q#n,1<I<n, (I;q)2
0 rq
= max 1+,
00 I<rg<Mgtri<i<n, 1
000 urq
000 1<nq.u<M, q;ér 1<l,a<ng ail
000 urq
v = max 4
000 1<rqusM.q#ri<lasng, “!
00 o0 §0 70 500 40
(p00706078 )d()v zOva) = max (p{;,oca,S" dZ? ;gvpa)v (3.3.35)
1<ru<m,1<a<n
Then there exists K > 0 such that
5 M n. M n, M n, Sru
dv(xgo) <Kdr+) 3 3} ) ) ( - ) Vi ladwiy (3.3.36)
r=li=lu=1la=1v=1b=1 Iia

Proof:
For nu € I(1,M), i € I'(1,n,) and a € I(1,n,), under the assumptions of Lemma 3.3.2, and the
definitions of S, I and R, the function defined in (3.3.33) belongs to V € C?! (]Ri”2 xR, R,).

a’ ia

Moreover, we rewrite (3.3.33) as
00 &
V(xp) = Z

M n,
= Z A { xOO ZV” xOO + Z Z Vru xOO } (3337)

ai u#ra=1
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where
V”‘(xoo) (S —1—1ogS) + (II¥ — 1 —logll}) + (R¥ — 1 — logR). (3.3.38)

From (3.3.37) and (3.3.38), it follows that

M n,
V(x00) =YY {dV” (x00) + Zdvrr X00) + Z Z dv' (x } , (3.3.39)

r=1i=1 a#i u#ra=1
where
ru 1 ru 1 ru\2 1 Tu 1 ru\2
dV (XOO) = 1- Sru dS 2(S;ju)2 (dsza) + 1— IW dliu + 2(];’14)2 (dlia )
1 1
1- dR" dR)?| . 3.3.40

In the following, by considering positive differential of # (0 < Az & dt), using the nature of the rate
coefficients of (3.2.15)-(3.2.17) and definitions (3.3.35), we carefully estimate the three terms in the
righthand side of (3.3.40). This is achieved by the usage of nested argument process.

Site level: the estimates on terms in the righthand side of (3.3.40) for the case of u =r, and a =i

(T

M n,
{BWZP" ”JrZZPfZ i +Nili + 0 Rif + (Y +0; + 8 +dj)
v#rb=

M n,
1-87) ZZV{;; dwly | (3.3.41)

M n, M n,
+Y Y Bin+ 5 ZZ VI ( }dH—

v=1b=1 v 1b=

1 1
1— Irr drr 2
K 1”> 4 2(1,-7)2( i) ]

M n, M n, SrrIvr
{ZpZZ%ZZpM (PF+mi+ + o7 +8+d)+ ), ). Bif i
v#rb=1 v=1b= i
rr 2 M & rrv rr S{lr M < rrv vr rrv
2(, 5(S7) Zu,z A }dr+ <Sii _1> ; ; "I wiib] . (3.3.42)
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and

1 rr rr rr M S A A rr r r r r
(1—R,,>dR,-i < [Zp +ZZp,Z i+l + (Y +of + o] + 87 +df) | dt.

i v#£rb=1
(3.3.43)

Regional Level: The estimated on terms in the righthand side of (3.3.40) for the case of u = r and

a#i

< rr 1 rr & rr rry ryrr r prr u 3 rr r
¥ |(1- g )asir+ smtasiy?] < Z{ ST+ R+ Y, Y B
a#i a#i v=1b=1
+(cf’+6’+d’)
M n,
ZZ Vi) ( dt
v=1b=
(1S ZZv;;; ;;;}, (3.3.44)
v=1b=
ny 1 1 ) ny M n,
¥ | (1- g o+ sgtaize| < L4 o+ X ¥ prmsi
a#i ia a#i v=1b=1
+ (Pa M+ Pig + 8, +dg)
Srr 2 M n,
Irr 2 ZZ Z’IFL dt
la v=1b=
rr M n,
(s;: ) X X vz | |
v=1b=1
(3.3.45)
and
ny 1
¥ (1 g JaRE < Y IGLRT+pU+ G +ol S+l (3346)
a#i ia a#i
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Interregional Level: the estimate on terms in the righthand side of (3.3.40) for the case of u # r,

acl(l,n,):
M ny 1 1 M ny
Y3 |(1- g st grasiy?] < X B (bresyening -y
u#ra=1 ( ia) u#ra=
+(Pig + 8, +dy)
M ny, M n,
L LRy | L L 0GR )
v=1b= v=1b=1
M n,
+ (1-S) ZZVZ?ZIZZ Waily ¢
v=1b=
M ny 1 5 M ny M n,
ZZKI ,m>d1’”+2(,m)2(d1,-’a”)] < BN [ XY B
u#ra=1 ia u#ra= v=1b=1
+ Mo +Patpig+8;+dy)
(Sru M n,
g | L X0’ ) a
v=1b=
Sru M n,
+ (sm- ,m)zlb): R b
a \%
and
M ny M ny
ZZ <1R’“) dR”’<ZZ Ve R, +puliy + (Pl +ouydly +dyy )] dr.
u#ra=1

u#ra=
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From (3.3.40) and (3.3.41)-(3.3.43), the first term in the righthand side of (3.3.37) can be estimated
as follows:

M n,

Y e = Y E{[(1- g ) st gty

r=1li= r=1li=
+[<1 1)d1”+ 1 (d[’-r)z}
Ir 2(Ilrlr)2 u
+K1 1>th?+ ! (dR”)]}
R )i T (R
M n, M n,
- {B’Jer LR+ Y R
r=1i=1 b#rb=1

+(p; +m; + o) (S + I +R)+3(y; +0; + o + 8 +d))

Srr M n,
# (1435 ) & L pimesi g+ R)
i v=1b=
1 (Srr 2 M n,
w3 (14 ) & L 0P+ + R
v=1b=1
S\ | Mo
+(1-2) | £ vz
i / |v=1b=1
M n. M n,
ZZB’+9 Y YN Y Sy +RY)
r=1i= r=1li=1v=1b=1
0,0, 0%V & & o
+(po+Mo+00) Y. Y (Si + 1 +Ri) +3ZZ (0 + 09+ ad + 83 + dY)
r=1i=1 r=1i=
B - O o
OOOZZZZ pi +1pi +Rpi)
r=li=1v=1b=1
000 T & o 2
Mo, (v000) ZZZZ (Spi + 1y +Rp;)” | dt
r=1li=1v=1b=1
M n, Srr M n,
+ZZ( ,rr> Y Y vinhidwiy (33.50)
r=1i=1 v=1b=1

From Lemma 3.3.2, (3.3.50) becomes

M n, B M n, Srr M n,
ZZdV” <Kidt+Y ) (1— > [Z Y vivnid {[;] : (3.3.51)
l

r=1i= r=1i=1 i v=1b=
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where

M n, M n,
& {[zmpm 3D ITRRRRILS 3
r=1i ey | M2 =
+3ZZ (Yo + 60 + 0 + 80 +d0 ) + Mo, 8881 ZZBV
r=li= M=
M n, 2
+ Mo (vo00) ‘U<Z ZBr> > 0. (3.3.52)
r=1i¢

Similarly from (3.3.40) and (3.3.44)-(3.3.46) the second term in the righthand side of (3.3.37) is

estimated as

M n, n,
Y)Y Vil =
r=li=1a#i
f . i |:< ) Srr 1 Srr :| Z |:< > I+ 1 (dl_rr)Z
r=li=1a#i Srr (SlraD ai Irr “ 2(11";;)2 “
rr 1 rry\2
2 [(1- g ) i sgagetanay’
M n, n,
< Y Y Y GRS + 1+ RE) + (G + 04+ p0) (ST +1id +RE)
r=li=1a#i
M n,
+BoooNoo 3. Z (Sha Riv)
v=1b=
MOO VOOO M n,
+3(pgo + Po -+ M0 + 0 + 89 +dg) + 002 u0o) [Z (She + Iy + Ry ) }df
v=1b=1
M n, ny Srr
PR (1) | X B v
r=1i=1ati ia /| v=1b=1
M n, n, M n, n,
= {GOOZZZ ST+IT+R) +m+og+p0) Y Y Y (Si 4177 +RY)
r=li=1a#i r=li=1a#i
OOO 00 M n, n, M ny M n, n, 0
BoooNoo 2 2.2 Y Y (Sha+ 1 Z)+Z,1.ZI§3 PR+ pd+1I + ad + 83+ d)
r=1i=1a#i

r=li=la#iv=1b=1

MOO VOOO 2 M n, n, M n,
002 OOO ZZZ[ZZ ZZ"" )2 }dt
r=li=la#i | v=1b=1
M n, n, Srr M n,
+ZZZ(1—£?) Y Y vindadw| - (3.3.53)
r=1li=1la#i Iia y=1b=1
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Again from and Lemma 3.3.2, the above random differential inequality reduces to

M n, n, 5 M n, n, ST M n,
YY Y avr < szz+222( —1) [Z Y vinnid ;;g]. (3.3.54)

r=li=1a#i r=li=1a#i v=1b=
where
5 001 M n, M n, 000 M n,
K, = GOOIEZZ + (N9 + 0 + pg) — ZZBH‘BOOO ZZBr
r=1i=1 g | g

2
M n, n, 00 0 0 0 0 0 M882(v888 M n, .
* ;;;_3(900+Po+ﬂo+%+50+d0)+77 2"123

(3.3.55)

Finally from (3.3.37), (3.3.40) and (3.3.47)-(3.3.49), the third term in (3.3.37) is estimated as below

we get
1y

M
Y Yavy=

r=1li=1lu#ra=1
M M ny 1 > 1
17 Sru ( S}"Ll) }
EEL L | () o5t s
L 1 1 5
ru ru
+) [(1 - 1> dr; +W(d1m) }

Y Yy y[(i-5 :
+ 1— ) AR + o (dRY) ]
r=1li=lu#ra=1 R;g “ 2(Rm)
M n. M ny
<y¥yy Z{Yfa (Si +1i +Rii) + Mg+ 0 +py) (Sig + 1y’ + Rig)
r=li=1luz#ra=
+3(Mg + P+ g + i + 8, +dy)
M n,
+ (1+54) ZZ aib (Spa T Ipa + Rpg)
v=1b=
1 Sru M n,
3 (14 D) Y 3o+ R
v=1b=1
M n. M n, ny
+ZIZI§ZZZ<1 o) intanty
r=li=lu#ra=1v=1b=1
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M n. M ny

M n. M ny
< { 02, Y Y Y (SE+IF+RE)+Mo+og+p0) Y. ) ) Y (S +1 +Riy)
r=li=1lus#ra=1 r=li=1lus#ra=1

M n, M ny
+Y Y% Y 30+ pd+ o+ pgo + 85 + )

r=1li=1u#ra=1
M n M n, M n,

B . 3 X X X X (Shi+ i+ Rii)

r=li=lu#ra=1v=1b=
OOOZMn,MnuMn‘ }
dt

OO
M002 vOOO Z Z Z Z Z Z Zz_i_ll\;z_i_Rvu)

r=li=lu#ra=1v=1b=
Waib (3.3.56)

M n. M n, M n, Sru
+ZZZZZZ< Iru> Z:’II ba Waib -

r=li=lu#ra=1v=1b=1

By using Lemma 3.3.2, differential inequality (3.3.57) becomes

M n. M ny, B M n. M n, M n Sru
YIY Yy < R XYY YY Y (1-58 )i 645
u#r =1b=1

r=li=lu#ra=1 r=1i=1 a=1

where
M n,

Z + (N9 + 0 +pg) — ZZBr
=1

|M§

H.20=

M n M ny,
ZZZ Z (Mo + PY + 0 + pog + 80 -+ do)
r=1i=1 7£ a=1

000l ¥ - M882(V888 VS
ZZ —0= 00 ZZB (3.3.58)

_l’_

00 000
r=1i=

Hence, from (3.3.51), (3.3.54) and (3.3.57), we arrive at the following stochastic differential in-

equality
B 5 5 M n, Srr M n,
dv(xg(t)) < (K1+K2+K3)dt+zz< rr) ZZV{[;F’ Wiy
r=1i=1 Iu v=1b=
M n, n Srr M ny
¢ LYY (1-58) | L X vinn
r=li=1a#i
M n. M n, M n, Sru
+ X ZZZZ< W)%%mﬂ (3.3.59)
r=li=lu#ra=1v=1b=1
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Therefore choosing K=K +K +K;>0,and combining the last three summations, concludes the
proof of the theorem. We now show the existence of a unique solution of the system (3.2.15)-(3.2.17)

in the following theorem.

Theorem 3.3.4 Given any initial condition xgg () € Ri"z under the assumptions of Lemma 3.4.1,

there is a unique solution process of the system (3.2.15)-(3.2.17) in R‘i”z, fort > ty, almost surely.

Proof:
Given that the rate functions of the system are locally Lipschitz continuous in x88, it follows that for
any initial value x88(t0) € R3 there is a unique local solution of the system (3.2.15)-(3.2.17) xgg (1),
fort € (to,.), where at t = ¢, is the first exit time of xgg. Therefore to show the solution process of
the system exists for all # > 1y, it suffices to show that ¢, = oo.
Let k2 € R”. From (3.2.20) and (3.2.21), we have
k|| = max KA, kOmin = min kY (3.3.60)

¢ ia l» ; ia |+
1<ru<M,1<i<n,,1<a<n, 1<rusM 1<i<n,,1<a<n,

We denote

k=ky . . (3.3.61)

We choose kggo € ]R’f with each component &7“, sufficiently large such that

1 U 1 *ru
frru +kia K i
ia

St(t0), I (1), R (1) € [ﬁ,k;‘a’”‘] = B(-« 5 ~4>—),fori € I(1,n,),a € I(1,n,), and r,u €

»M1a

I(1,M). In other words, from (3.2.18),

M M i u 1 1 1 _
88(00) € T2, T TT T2 e i) e ki) [ K27, From (B361) let ko = ki

u=1 a=1

Let kJ) € R’f be an arbitrary vector whose components k2 satisfy kY > ki Vi € I(1,n;),a €

I(1,n,), and r,u € I(1,M)). And let the local solution xJ)(¢) € TI)L, T4, T, TTo [ Ki2] %

[ﬁ,kl’;‘] X [k%,,ki’a”], fort € (0,2,) where 1, is the first hitting time of the solution process. For r <1,,

it follows that S7“(¢),I:(t),R7(t) € [, k90, . ], for all i € I(1,n,),a € I(1,n,),r,u € I(1,M).

) Yia IE I

Using (3.3.61), define a stoping time for the process as follows

1
= 1 . : i ru ru <
* mf{t CO): | B, <oy, Sia ) B (1), Ria (1)) < JLsi{|=
ru U ru >
e (SO0 R W) 2 k] and (3362
w(t) = min{t,w}, for t>1y. (3.3.63)
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where k is defined in (3.3.61). Furthermore, we set inf< = . It follows from (3.3.63) that T;

increases as k — oo. We let T, = limy_yo Tg. From (3.3.63) it implies that
T <1, a.s. (3.3.64)

Therefore to show #, = oo, we only show that T.. = o0 a.s.

On the contrary suppose T < o, then 37 > 0, such that fora given0 < e < I, P(T. < T) > €.
This means that {7} is a finite sequence. Moreover, from the definition of a finite sequence there
exists a vector koo0 € ]R” with k(l)go min = K1 = ko, ( where k| = kég?nm is defined by (3.3.61) and
(3.3.60),)

P(tww<T)>e¢, (3.3.65)

whenever k > k. From (3.3.38), (3.3.37) can be rewritten as

M n. M n,
Vi) = Y Y Y Y (S5 —1—logSy)+ (I — 1 —logly)
r=li=lu=1a=1
+(Rig — 1 —logRiy)]. (3.3.66)

From Lemma 3.3.2& 3.3.3, the stopped solution process (3.2.15)-(3.2.17) satisfies the following

stochastic inequality for some K > 0.

M n. M ny

M ny, Sru
Vo) kit y Y Y YY) ( ,) Vais o dWai (3.3.67)

r=li=lu=1a=1

Furthermore, for V#; < T, integrating both sides of (3.3.67) on [ty,#; A Ty], and taking the expected

values of both sides, it implies that

E(V(xpo(h Aw))) < V(xo(to)) +K(tr Ate)

< V(xgo(to)) +KT (3.3.68)

Given that k > k;, we set Ex = {Tx < T'}. Then from (3.3.65), we see that P(E}) > €. If ® € E}, then

o is an event at the stopping time where at least one of S (T, ), I/¥(t, ®), or R4 (T, ®) whenever
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rnuel(1,M),i€I(1,n,) and a € I(1,n,) is or k = kyin. This implies from (3.3.66) that

|\k°°||w
V (x0 (T, @) > [kin — 1 — Loghkoin] A [HkOOH —1—log||kY| yw} Vo € Ey. (3.3.69)
It follows from (3.3.68) and (3.3.69) that

V(xip (o) + KT

v

E (15, (0)V (x00 (T, )
1
> 8{[kmin_1_logkmin] |:Hk0 H l_log’|k88”°°:|}7

(3.3.70)

where If, () is the indicator function of Ej.
Hence as k = kyi, — 0, (3.3.70) implies that V(x00 (to))+ KT — o which leads to a contradiction
to the existence of a local solution. Therefore, we must have T., = oo, and the rest of the proof

follows.

Remark 3.3.3 Forany r € I(1,M) and i € I(1,n,), Lemmas 3.3.1, 3.3.2, 3.3.3 and Theorem 3.3.4

show that there exists a positive self-invariant set for system (3.2.15)-(3.2.17) given by

nMs

ru pru pru UM 1 i
(Stavltolea) yia( )>0 and ZZZZ)) ;l Z (3371)
r=lu=li=la= i=1

whenever u € I"(1,M) and a € I/ (1,n,). We shall denote

‘:\'—‘

M n,
; ;B; (3.3.72)

3.4 Existence and Asymptotic Behavior of Disease Free Equilibrium

In this section, we study the existence and the asymptotic behavior of the disease free equilibrium
state of the system (3.2.15)-(3.2.17). The disease free equilibrium is obtained by solving the system
of algebraic equations obtained by setting the drift and the diffusion parts of the system of stochastic
differential equations to zero. In addition, conditions that / = R = O in the event when there is no

disease in the population. We summarize the results as follows.
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Forany nu € I(1,M), i€ I(1,n,) and a € I(1,n,), let

et M ny rrafgu
D ,Yr+c +6r Z PisO VYia“ia _ZZ pzaryr

3.4.73
=1 prr + 8r uz#ra=1 pm +5u ( )

Furthermore, let (S/%*, 1", R/**), be the equilibrium state of the system (3.2.15)-(3.2.17). One can

a ’a

see that the disease free equilibrium state is given by E¥ = (Si2*,0,0), where

B! .
D—‘{, for u=ra=i,

T

rux B] O - .
Sia = H%p;;+5;) fOf' l/t—l",(/l?él,

By
oypmisy for uFT

(3.4.74)

The asymptotic stability property of E; will be established by verifying the conditions of the
stochastic version of the Lyapunov second method given in [[34],Theorem 2.4],[59], and [[34],Theorem
4.41,[59] respectively. In order to study the qualitative properties of (3.2.15)-(3.2.17) with respect
to the equilibrium state (S7%*,0,0), first, we use the change of variable. For this purpose, we use the

following transformation:

Ui Sia —Sia"
v e (3.4.75)
Wa' = Ry

By employing this transformation, system (3.2.15)-(3.2.17) is transformed into the following forms

[ rrUrr+nrvrr+arWrr

(Pl + 3,77

(g Xali PiaUid +MVE + o Wi

—( + 0] + U — Xaly Koy B (S + Uf )Vt | dt
— [T D Vi (ST UV dwiit (0] for q=rl=i

11;/1:1 ZZM: rru (Srr* 4 Urr)vur] dt

duj = i i
— (X X V(ST UV dw (o >] for q=rl=jj#i
ViU +nivyt +ofw? — (pif +8])U;
— X X Bl Si Lt — [ Xl X Vi (Si + UV dwiiy' ()],
for q#r,

(3.4.76)



[ oL PV — () 4P} + Y, +Of + & +d) )W
X X B (S + U )Vl dr
X0 X Vi (ST U Vardwiit (1)) for g =rl=i
a7~ [OF Vi — () + 9+ P} 8+ d) Vi + Xoly Xy Bl (ST + UV |
DD ZfZ(S”*+U”)V"’dWS$Z( ), for q=rl=j,j#i,
[erqvurr ;! +p] +p; +8 +d} )V,
umt Loy Bl (S + U Vel ldr + [ X0l Xt v (S + U)WV dwiy' (1)),
| for a#n
(3.4.77)
and

[ Xty P Wi iV — (Y +of +of +8)Wi']dr, for q=rl=i
AW, = [GITWST + phVIT — (pLF 4+ o+ 8WT |dt, for q=rl=j,j#i

(VWi + iVt — (pif +of + 81 YW, dt, for q#r
(3.4.78)

We state and prove the following lemmas that would be useful in the proofs of the stability results.

Lemma 3.4.1 Let V : R¥ x R+ — R, be a function defined by

M M n, n,
Y Y Y Y v (3.4.79)
r=lu=li=1la=1
where,
V() = (S —Sur+ 1) + () + (RE)? (3.4.80)
X0 = (UL Vi W)t and ey > 0.
ThenV € C>! (R3”2 x Ry, R}), and it satisfies
b(lIRoll) < V(EGo(1) < a(|l560]]) (3.4.81)
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where

o M M n, ny 5 5 )
_ : ia ru U U
ZOEET N SR =39 3 39 W WA U LY
r=lu=li=la=1
M M n, ny 5 5 5
_ ru ru U U
(||XOOH) - lér,uSMJHSl?gnr,lSaénu {Cm +2},; u;l i=1a=1 [(Um ) - (Vla ) - (VVM ) ] ‘

(3.4.82)
Proof: From (3.4.78), (3.4.79) can be written as

VEg) = (U + Vi) + (Vi) + (W)

a

= (U +205 Vi + (el + D)(Via) + (Wig)?

1 c
= (U (G DV +2 N (\/1+’2“V,~2“> s
1+ ia
1 ru\2 Czrclll ru ru\2 ru\2
= _1+;5+1 (Uia)+ - 1+7 +cia+1 (Via)—i_(vvia)
2

1 c
+ WUZZM + 1+ ’7“‘/,-2”

Therefore, by nothing the fact that min{1 — —m, % 71} we have
1+

Cru

V) = g (U + (Vi) + (Wi)’] (3.4.83)
a
Hence from (3.4.83) we have
00 M M n. ny, 5
VED = Y XYY 5 [ G )]
r=lu=1li=1a=1 Cia
> b(|lolD)- (3.4.84)
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On the other hand, it follows from (3.4.79) that

V) = (U +2U5 Vi 4+ (i + 1) (Vi) + (Wit
< 2(URY A+ (c +2) (Vi) + (Wi)?
< (+2) (U + (Ve + (Wi (3.4.85)

Thus, from (3.4.83) and (3.4.85) we have

M M n, ny
V@) < XYY Y (i +2) [(UZ) + (Ve + (Wi)?]
r=lu=1i=1a=1
< a(ll%olh) (3.4.86)

Therefore from (3.4.79), (3.4.84) and (3.4.86), we establish the desired inequality.

Remark 3.4.1 Lemma 3.4.1 shows that the Lyapunov function V defined in (3.4.79) is positive
definite((3.4.84)), decrescent and radially unbounded ((3.4.86)) function[34, 59].

We now state the following lemma

Lemma 3.4.2 Assume that the hypothesis of Lemma 3.4.1 are satisfied. For each r,u,v € I(1,M),
i€l(l,n,),a€l(l,n,)and b€ I(1,n,), let

M ny VU B2 ,
= Y 3 it B+ 2+ oo 872 G487

vu
v=1b= ba ba

for some positive numbers ci}j. Furthermore, let

)2
ZZM IZZ“ lyzrzlz""_zxérzzr 1 ,u” +Za7£1 Hrr +g lrlr:|

T3 for u=ri=a

( Vr) 3
uru — l% + trzr+2 Z . (3488)
la ’W,]‘br u:r,a;él
- ua
ru
O i+
(p:‘(;t_;'_Su ’for u # r7

Lol oty s+ X0y Yoty 5By (S i)+ 5 dif — iy =
PO+ ] for a=iu=r
L rr rrV ( QI rr rr
ru + SE )+ L dl .
mia — 2 M Zv &r%p}jpﬂ[fs;c;dfm) 2%ai ’for a # u=r (3489)
aPa ia

BRI T RO A

NG+Ps+piq +05+di ’
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and

2
ny (Y;a ) O‘r
a=1 "7 T

: .
DOV VIVHERIVEES W SRS Y ¥
' (Vo]0 +3])

(" 2 , 2
wru — % ’L“rlr> +%,U,(,-r+ lra+( o)
ia - for u=ra#i

(prr-i-(l' +6r) 9 I I
(1 op? (o )

T +2'ulrl Zluza+ :|
or u#r
ey Jor u#

,for u=ra=i,

(3.4.90)

7#

for some suitably defined positive number (", depending on 8, for all r,u € I'(1,M), i € I(1,n)
and a € I (1,n,). Assume that A" < 1, B < 1 and Wi < 1. There exist positive numbers ¢},
Vi and @} such that the differential operator LV associated with Ito-Doob type stochastic system

(3.2.15)-(3.2.17 )satisfies the following inequality

M n,
V(i) < ZZ FUE? i (Vi) + off (W]

r=1i=

Y U WV g W)

a#i
M ny
S WCAUARR AU AR (3.491)
u#ra=
Moreover,
LV(E)) < —cV(Z)) (3.4.92)

where a positive constant c is defined by

mln] <rusM,1<i<n,,1<a<n, ((I)l,g’ Wer:? (p;(lj) (3 4 93)
Max|<ru<m,i<i<n,i<a<n, {Cig +2}

Proof:
The computation of differential operator[59, 34] applied to the Lyapunov function V in (3.4.79) with

respect to the large-scale system of Ito-Doob type stochastic differential equation (3.2.15)-(3.2.17)
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is as follows:

(s =

un

ZLV

a#i

Ms

<
Il
_
Q
Il
—

M ny,
Fr\ STUYTU rr TUTTIU rr ruysru rr ruy rruysIr
2 Z Z 1+C zaVla Vll pla Um Ull psza U p Uza Vu
u=1la=1

+Pia Wi Wi’ ] + 20 Ui Wi +2( 0 + pi ) Vi Wii"
=2[p +dj +2(v; + 0] + &) Vi Ui = 2(; + o] + &) (UF)?

=2[eimi +2(ci + 1)(p] +¥; +0f + 8] +dl)|(Vi")? —2(v; + 0 + o +8)) (Wir")?
M ny M ny

42 Z Z crr lrlrau Srr* Urr VWV”—FCZr Z Z Zlu Srr* U[_Gr)Z(Vauir)Z7
u=la= u=la=
for u=ra=i (3.4.94)

= Z {2(14¢ig)0iaVia Vii' +203,Uig Ui 4203, Vi Uii” +203,Uig Vi
a#r
+263, Wiy Wi
—2[cpmy,+2(cis + )P0 + P + SNV )* = 2(pi +8,) (UL)?
2P+ ) W+ 26U 200 oV

ny
= 2[pg +dg +2(pi + ) Vig Ui } +2 ) Z Z CiaPain(Sia +Uia )VoaVia

a#trv=1b=
ny M n,
+Y Y Z VIV (SIF L U (VE?  for u=r1, a#i (3.4.95)
a#r v=1b=1
ny
Z 2{2 (L+cig Wi Via Viim + 2% Ui Ui+ 2Y Vi Uil + 244 Ui Vi
u=la=

20 Wi Wi = 2[ciami +2(cfy + 1) (pa + Pl + 85 +di)| (Vig')?
~2(pia +83) (U")?
~2(pig + ot + 80) (W) + 206W Uis' + 20t + o) Vi Wi

= 2[pg+dg +2(pig +8)]Via' Ui
2 g Y & ru urv ru* Ur\yruyrt
+ZZZZC alb +i)ba ia
=la=1lv=1b=
r M ny

M
+Y Y Y Y« VIRV (ST L U2 (V2 for u#r (3.4.96)

u=1a=1 v=1b=1
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By using (3.3.71) and the algebraic inequality

2ab < a—z +b%g(c)
~ g(c)

(3.4.97)

where a,b,c € R, and the function g is such that g(c) > 0. The sixth term in (3.4.94), (3.4.95) and

(3.4.96) is estimated as follows:

M n,
22 Z :’lr Z};/(Srr*_‘_Urr)vaerl;’r
v=1b=1

<Y Y B (S8l (8)) +gf () (Vi)

gl rrRIrv S{zr* BZ \2
3 i WAVAY
+Z}§1€” iib < r(sr)+g;(8:~)> ( bz)

8i\0;

ny M n,
).2) ZC" aibSia +Uia Vo Vid
a#r v=1b=

n M n, )
<L X X b (s ei (8 + &l (30) (Vi)

a;érv 1b=

o Srr* BZ .
33 ¥ () + o) 0
gi( a)

a#rv=1b= z

and
M n, M n,

22 Z Z Zcru Z:’Z ru*+Uiru) bv; IZM
u=la=1lv=1b=

M

)y

M ny ny
yryda

u#ra=1v=1b=1

& & r urv Sm* B2 vu\2
+ i + < | (Vo'
DRI <gl<6) )

a=1
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From (3.4.94), (3.4.95) and repeated usage of inequality (3.4.97) and (3.4.98) coupled with algebraic

manipulations and simplifications, we have the following inequality

M n, M n, M n, u
LV (%50) < ZZ“ZZ Z,u + 3] +2Z +2ZZ

r=1i=1 u=la= a#i ll aF#ra= ll
=20 + o + &) (UF)?
S (P7)?  (pi+d)?

(Y, +o! +8)2
2 + Crr ,U + ‘u(( + + + 4 i i i
le ey i i

2 + rr 7\2
—2[emy + (e + 1)(p} +, + 0 + & +d)] +Zi%)
a#r i

M n,
Z Z (ST T + )

M n, 2+Cru( u

TLL

u#ra=1 'ull
M ny,

PN pey el y g

u=1la= ll a#i u a#ra=li ‘ull
—2(Y, + 0 +of + )] (Wi")?

< PZ)z r rr\2 rr (PZ)z
+Z ,U +2:u +3‘Ll (pla+8) (Uia) + (2+Cii) Iurr

(vVii")?

u

a#i la ia
radr 2
(@4 e~ 2lefm+ (1 ) (s + pig 8+ )+ Pt )
ia
Py + 3, R
Mwwcg):): (ST 4+ 427) | (V)2
‘ula v=1b=
rr 2(o)?
[ B g+ 2 oo ) v
ia za
M ny, pm)Z )
+ 3 5 { O oy a2+ i
u#ra=1 ‘ula
rr (plr(;t )2 ruy, I FUaU ru u u u u
+ (24 e + (24 cig )i —2[cigMg + (1 +cig) (Mg +Pig + 85 +dg)]
ia
P+ d P+ 8% vV :
( . ru ) +4( lalu”'i (1) +y{g+c{gZZBerg e lum +Iulll) (thzu)
ia ia v=1b=
2(0(“)2

ru\2
+ |:(pza) +lelr+ {g—"_

a za

2<pfsocz+sz>} o2}
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M M n, Sy BZ 5
1939 010 W IR R UARCAR M I

il ii

S quwwmmkmf

ny |: Srr* BZ
rry
aib
lula Hig

M n. M ny M ny Sru* BZ )
FE Y Py ¥ PR + 0B (7 3499
r=li=lu#ra=1 =1b=1 luia Hiq

where ulY = g7 (8%), g/ is appropriately defined by (3.4.97).
For each ,u € I(1,M), i € I(1,n,), and a € I(1,n,), using algebraic manipulations and (3.4.88),
(3.4.89) and (3.4.90), the coefficients of (U*)?, (VI*)? and (W/*)? in (3.4.99) defined by ¢7“,

and @;/ respectively:

2(Y +oi +8) (1 —Ug), for u=ra=i
i« = 2(pf + 8, +8,) (1 —Ufy), for u=ra#i (3.4.100)
(P18 + &) (1 — UM, for u#r,

2ci (1 =B7)(n} +pf + ¥ + 0] +8] +d) — €]
+2(pi+vi+0;+08/ +dl), for u=ra=i
[2¢5 (1 =BZ) (g +pg + Pl + 8 +dg) — €7
+2(pL+pll+ 08, +d)), for u=ra#i
2¢g (1 =030) (MG + P +pig + 83 +dg) — €]
F2(pU 4P+ 84 +dY), for uFr

ru __
Wia -

and
2(y+ ol + ol + &) (1 — W), for u=ra=i,

0 = 207 4+8)(1—20™),  foru=r,a#1i, (3.4.101)
2(pz +05)(1 —2033), for u#r
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where

¢ , 2 ridr)? & (24 (of)?
|:2Z 122L l‘uzit_i_‘u;‘lr_i_ﬁ_i_ (p[;:_r’_rl) +4(’Yr+‘u(i+ i +Za?£r%
2 Ju M 7 -
+ ngr an (M) + le;&z Cbzdﬂ + ZV?ér Zb 1 Cl‘;zrdtrlr] )
for u=ra=i,
— rr ia rr atdy
¢ = 2+ ) O + G 4 oygr 4 Gt
o rr rr Jrr r Jrr /
+4 (pml;,: g + Ui +Zb75l Cbadla +Zv75r Zb ICZadia Jor u=ra#i,
rr (pm) (p“)z 4 M
(2 + C ) ru + + 2 ,u:[Ll‘
ru 6“
1At % ARTIRS z#, c;,zd{;’ T Loy Chadia u #

\

Under the assumptions on 7*, 0" and 20%”, it is clear that ¢}, y!" and @;} are positive for suitable

choice of cj; defined in (3.4.80). We substitute (3.4.87), (3.4.100), (3.4.101) and (3.4.102) into
(3.4.99). Thus inequality (3.4.99) can be rewritten as

M n,
< LY Albrwi +winviry
r=1i=
o (Wir)?) Z (UL + Wi (Vi)
a#r

M ny
+oh (W) +ZZ (UL i (Vi)

u#ra=1
+ o (W)} (3.4.102)

This proves the inequality (3.4.91). Now, the validity of (3.4.92) follows from (3.4.91), that is,

min ) R A . A
where ¢ = Mii<rsiizicnr. <oz (g Vg @) This establishes the result.
MaX | <ru<,i<i<nr1<a<n, { Cl+2}

We now formally state the stochastic stability theorems for the disease free equilibria.

Theorem 3.4.3 Givenr,uc I(1,M), i € I(1,n,) and a € I(1,n,). Let us assume that the hypotheses

of Lemma 3.4.2 are satisfied. Then the disease free solutions E!", are asymptotically stable in the

a’

large. Moreover, the solutions E] are exponentially mean square stable.

Proof:

From the application of comparison result[34, 59], the proof of stochastic asymptotic stability fol-
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lows immediately Moreover, the disease free equilibrium state is exponentially mean square stable.

We now consider the following corollary to Theorem 3.4.3.

Corollary 3.4.4 Let r € I(1,M) and i € I(1,n,). Assume that 6; =7 =0, for all r € I(1,M) and

ie€l(l,n,).
[C9) .
@) for u=ri=a
S E—
zzil l):a 1”1(1+%H11
Wy = B for u=ra#i (3.4.103)
]
(5a
or u T,
['u’rlr+pru] 7f # ’
M u Uy M rrv Srr*+ 1 drr
Tair Loty sHE+ T leS]thb( Hif)+3dj; for a=iu=r
n;+p;+0; +d; )
ru __ "+ M rry Sr)*+ 41 drr
e = . '%’ii&féﬁ(ﬁr ML for aiu=r (3.4.104)
1, rr M urv ( Qruk ru 1 gru
ST YL X (S )+ 5 d]
207ii V= nbu_;’l_pzz_ilgu_;rdu 2"ia for M;é 7
and
( (@)
[t e+ S+ b '
(o7 +8)) for u=ra=i
D)k M+ 2#”+<“ Q) 34105
“ Wafor u=ra#i, (3.4.105)
b+ baty S |
W,for u 75 r

The equilibrium state Ej/ is stochastically asymptotically stable provided that L}, 207} <1 and
Pt <1, forallueI"(1,M) and a € I (1,n,).

Proof: Follows immediately from the hypotheses of Lemma 3.4.2,( letting 6} = v; = 0), the conclu-

sion of Theorem 3.4.3 and some algebraic manipulations.

Remark 3.4.2 The presented results about the two-level large scale SIRS disease dynamic model
depend on the underlying system parameters. In particular, the sufficient conditions are alge-
braically simple, computationally attractive and explicit in terms of the rate parameters. As a result
of this, several scenarios can be discussed and exhibit practical course of action to control the dis-
ease. For simplicity, we present an illustration as follows: the conditions of 6 =7, = 0,Vr,i in
Corollary 3.4.4 signify that the arbitrary site s} is a sink[28, 29] for all other sites in the inter and
intra-regional accessible domain. This scenario is displayed in Figure 7.1. The condition U} <1

exhibits that the average infectious period is smaller than the joint average life span of individuals
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in the intra and inter-regional accessible domain of site s;. Furthermore, the condition *0; <1 sig-
nifies that the magnitude of disease inhibitory processes for example, the magnitude of the recovery
process is greater than the disease transmission process. A future detailed study of the disease dy-

namics in the two scale network dynamic structure for many real life scenarios using the presented

two level large-scale SIRS disease dynamic model will appear elsewhere.

() (3
e}“‘@

Figure 3.3: Shows that residents of site s} are present only at their home site s;. Hence they isolate
every site from their inter and intra reginal accessible domain C(s7). Site s} is a ’sink’ in the context
of the compartmental system[28, 29]. The arrows represent a transport network between any two
sites and regions. Furthermore, the dotted lines and arrows indicate connection with other sites and

regions.

3.5 Conclusion

The recent high technological changes and scientific developments have led to many)\ variant struc-
ture types inter-patch connections interactions in the global human population. This has further
afforded efficient mass flow of human beings, animals, goods and equipments between patches
thereby causing the appearance of new disease strains and infectious agents at non-endemic zones.
The two-scale network disease dynamic model formulation characterizes the dynamics of an SIRS
epidemic in a population with various scale levels created by the heterogeneities in the population.
Moreover, the disease dynamics is subject to random environmental perturbations at the disease
transmission stage of the disease. Furthermore, the SIRS epidemic has a proportional transfer to the

susceptible class immediately after the infectiousness.
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This work provides a mathematical and probabilistic algorithmic tool to develop different levels
nested type disease transmission rates as well as the variability in the transmission process in the
framework of the network-centric Ito-Doob type dynamic equations.

The model validation results are developed and a positively self invariant set for the dynamic
model is defined. Moreover, the globalization of the solution process existence is obtained via the
construction of the two-scale dynamic structure motivated Lypunov function. The detailed stochas-
tic asymptotic stability results of the disease free equilibrium are also exhibited in this chapter.
Moreover, the system parameter dependent threshold values controlling the stochastic asymptotic
stability of the disease free equilibrium are also defined. The presented analysis of Chapter 3 are
illustrated in a simple real life scenario.

We note that the disease dynamics is subject to random environmental perturbations from other
related processes such as the mobility, recovery, birth and death processes. The presented stochas-
tic epidemic dynamic model will be extended to the variability in the mobility, recovery and birth
and death processes in our further work. A further detailed study of the oscillation of the epidemic
process about the ideal endemic equilibrium of the dynamic epidemic model will also appear else

where.
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4 SIMULATION RESULTS FOR A TWO-SCALE STOCHASTIC NETWORK
SIR INFLUENZA EPIDEMIC DYNAMIC MODEL

4.1 The Two-Scale Hierarchic Population Structure and Special SIR Epidemic

Dynamic Process

By using the two scale human mobility model and the underlying human mobility dynamic structure
determined by the respective intra and interregional mobility data recorded in Tables 1& 2 in the
example of Chapter 2, and also the influenza pandemic simulation model in [35], we develop a two-
scale SIR influenza epidemic dynamic model. The compartmental framework for the SIR epidemic
model is exhibited in Figure 3.2 in Chapter 3 with the restrictions N/ = of = 0,Vr € I(1,M),i €
I(1,n,). Furthermore, the diagram illustrating the inter-patch connections in the example for two
scale dynamic epidemic model represented in this example is shown in Figure 2.1 in Chapter 2.
In the absence of intra and interregional mobility return rates, based on the mobility structure and
the probabilistic formulation of the mobility process, we simulate intra and interregional mobility
return rates. We display the intra and inter-regional mobility return rates in Table 4.1 and Table 4.2

respectively.
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Table 4.1: The intra-regional return rates of residents of sites in the two scale network of spatial
patches illustrated in Figure 2.1 are simulated based on the special human mobility pattern and the

probabilistic formulation for the mobility process. (cf.Chapter 1 or [30]).

pll pll oIl 11y 1 (0.000092504,0.000177496,0.164327,0.0001173)
Pil.Ph) (0.013230408,0.001305838)
02,022, p2 022 | (0.000092504,0.000177496,0.164327,0.0001173)
p2,p2) (,0.013230408,0.001305838)
03,033,033, p3) | (0.000092504,0.000177496,0.164327,0.0001173)

p31 p32) (0.013230408,0.001305838)

(
(
(
(
(
(
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Table 4.2: The inter-regional return rates of residents of sites in the two scale network of spatial
patches illustrated in Figure 2.1 are simulated based on the mobility structure and the probabilistic

formulation for the mobility process. (cf. Chapter 1 or [30]).

(p12,p13,p1213,p1221,p1222) | (0.1995,0.035,0.0985,0.007892,0.02748)
(P1223,p1231,p1232,p1233) | (0.075824,0.04256,0.009616,0.028628)
(p31,p12,p2113,p2121,p2122) | (0.002096896,0.00175424,0.003460864,
0.00043856, 0.0001664)
(p2123,p2151,p2132,p2133) | (0.00071504, 0.001944052,0.00119788,
0.0001713912)

(p%,p%3,02313,p2321,p232) | (0.018512, 0.03290368,0.0272192,0.04883712,

0.00151648)

(p2323,p2331,p2332,p2333) (0.0219232, 0.00383316,0.0025404,

0.000414644)

(3,31, p313,p3121,p3122) | (0.001285712,0.00085328,0.001725008,

0.0004380944,0.000379536)
(p3123,p3131,p3132,p3133) (0.0005991696 ,0.000000371428,0.00000026332,
0.000000281252)

(p32,p33,p3213,p3221,p3122) | (0.0003230096,0.00036224,0.0004619664,

0.00043146104,0.0003741576)

(p3223,p3231,p3232,p3233) (0.00059126136, 0.000498339428,0.00042838332,

0.000070993252)

The following assumptions are made concerning the influenza epidemic process represented in

this example:

(a1) The population structure and influenza transmission process at every site sj,r = 1,2,3,i =
1,2,3 in region C,,r = 1,2,3 is similar to the population structure and the influenza trans-
mission process represented in the simulation model of [35]. That is, we assume that every
person in site s; belongs to one age dependent stratum (ages> 0). In addition, each individual
belongs to three mixing or contact groups z;, j = 1,2, 3, for example, household, marketplace,

and the community. In each day, a susceptible person, A, has contacts with other individ-
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uals in his or her contact zones. The probability of acquiring infection depends on (a) the
number of different persons A has contacts within the contact group, (b) the time duration,
in minutes, of all contacts (c) the rate of infection transmission per-minute if the contacted
person is infectious (see [35]). We assume that in a given day, a susceptible person makes
three contacts in mixing group zj, ten contacts in mixing group z, and three contacts in
mixing group z3. In addition, each contacted person is infectious. Furthermore, the time
duration d and the per minute influenza transmission rate A per contact in all contact zones
are [ zone z;: d =~ 92 minutes, A = 0.00062], [zone z;: d =~ 120 minutes, A = 0.00061] and
[zone z3: d =~ 51 minutes, A = 0.00061]. Furthermore, we assume that the number and du-
ration of contacts are the same on weekdays and weekend days. We utilize the probability
model 1 —exp(—Ad) for the influenza transmission occurring during a contact of d minutes
and a transmission rate A (see [35]) to find the infection probability B4/, of the two-scale SIRS
epidemic dynamic model. It is easy to see that the infection probability per day for a sus-
ceptible person at site s; is B =1 — Pr(No disease transmission in zones zj, 2z, 23)=

1 — exp(—3(92)(0.00062) — 10(120)(0.00061) — 3(51)(0.00061)) ~ 0.6277.

(az) In the absence of data for the recovery and disease related death processes, we take the recov-
ery and disease mortality rate to be p; = 0.05067 and d = 0.01838,u =1,2,3;a,i =1,2,3

respectively.

(a3) The population in this example assumed to be remote and lacking the high technological facil-
ities found in the developed world. Furthermore, we assume that influenza is highly endemic
in this population. As a result, we can assume that the time duration of the epidemic is com-
parable with the average life span of individuals in the population. In the absence of data
concerning average birth rates, we use the yearly birth rate data from [36] for the people of

births __ 22.39

the Dominican republic, B = %555 = 5555 as an estimate. Furthermore, we assume this birth

rate is the same for all residents of sites in the population. That is, the constant birth rate is

BZ:I’]igf)}g:%per year, for u=1,2,3;a,i=1,2,3.
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(as4) In addition, using the average life span of the people of Dominican Republic [37], the natural
death rate of the residents at all sites and regions are the same and is calculated as the re-
ciprocal of the average life span of individuals in the population, that is, 8% = 7115]%7” =

1,2,3;a,i=1,2,3 per day.

(as) The effects of the fluctuating environment on the dynamics of the influenza epidemic is as-
sumed to be the same at all sites and regions. We take the standard deviation of the environ-

mental fluctuations to be vi)' = 0.5, r,u,v=1,2,3;a,b,i=1,2,3.

4.2 Mathematical Algorithm and Simulation Results

We use the standard Euler-Maruyama method stochastic approximation scheme[38] to generate the
trajectories for the residents of sites s{, s% and s? in regions C;, C; and C3 respectively, for the
different population disease classifications (S,/,R), and current locations at some sites in the intra
and inter-regional accessible domain of the sites. Given a scalar autonomous stochastic differential
equation

dX(1) = f(X(1))dt +g(X(1)dW (t), X(0)=Xo, Ty<t<T, “2.1)

let To =79 <71 <Tp <... <1, =T, be aregular partition of [Ty, T], where At =1; —T;_| = %

T;=To+jAt, j=1,...,LandLisapositive integer. The Euler-Maruyama method takes the form
X(tj) =X (vj1) + (X (1) Ar+g(X(tj-0)) (W(T)) = W(tj0)), j=1,....L. (422

Using (4.2.1) as a general representation of the system (3.2.15)-(3.2.17) in the context of the scenario
considered in this example (see Section 4.1), the algorithm to execute the Euler-Maruyama method

to finding the solution process of (4.2.1) consists of the following steps:

Step one: Parameter Specification: The system rate parameters for the epidemic model (3.2.15)-
(3.2.17) represented in this example are specified in Section 4.1. Further the following conve-

nient initial conditions are used for the simulation process: for r,u € I(1,3),i,a € I(1,3),

9,for r=ui=a
Sia(0) =19 8. for r=u,i#a
7, for r#u,
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Step Two:

Step Three:

6,for r=u,i=a
L/0) =19 4, for r=ui#a
3,for r#u
and R%(0) =2,Vr,u,i,a € I(1,3). Furthermore, the trajectories were generated over the time

interval ¢ € [0, 1].

Generate Brownian Path: Given that W (r) is a standard Brownian motion or Wierner pro-
cess over the time interval [Tp, T], then (1) W(0) =0, (2) for Ty < s < ¢ < T, the increments
W (t) — W (s)Vs,t are independent and have normal distribution with mean equal to 0 and vari-
ance equal to # —s. In other words, W (1) — W (s) ~ v/t —sN(0, 1), where N(0, 1) represents
the normally distributed random variable with zero mean and unit variance. From conditions
(1)&(2), we discretize the Brownian motion as follows: welet Ty =10 <t <5, <...<t,=T,
be a regular partition of [Ty, 7’|, where &t =t; —t;_| = %, ti=To+jot, j=1,...,Nand
N is a positive integer. The Brownian path is generated as the solution to the following differ-

ence equation

(4.2.3)
W(lj):W(lj,1)+dW(tj), j=1,...,N.

We simulated 1000 sample points for the Brownian motion over the interval [0, 1].

Generate Solution Path for the Susceptible, Infectious and Removal Populations: Using
(4.2.1) as a general representation of each equation in the system (3.2.15)-(3.2.17), we use the
discretization (4.2.2) to find solutions path for each equation in the system. For convenience,
we choose AT = Rdt,[38], where the positive integer R > 1. Moreover, from (4.2.2), it follows
that
JjR
W(t;)—W(tj1) =W(RS)—W((j—1RS&) = )  dW, 4.2.4)
k=jR—R+1

where dW; is given by the Brownian path (4.2.3). We choose R = 1 for this example. More-
over, from (4.2.2), (4.2.3), and (4.2.4), we obtain trajectories for susceptible, infectious and
removal populations of residents of sites s}, s% and s? in regions Cj, C; and C3 over the time

interval [0, 1]. The trajectories for the residents of sites s}, s? and s in regions Cy, C; and C;

are exhibited in Figure 4.1, Figure 4.2 and Figure 4.3 respectively.

84



Solution for SM{11}_{11} Solution for "{11}_{11} Solution for RM{11}_{11}

3
— o b
= o« RN
- oS o o
E g £
h o < @ & o
o © Sl
00 02 04 06 08 10 00 02 04 06 08 1.0 00 02 04 06 08 1.0
t t t
Solution for SM{11}_{12} Solution for I"{11}_{12} Solution for R*M{11}_{12}
©
& © o 2 T
= o 24w
| T ~
DU ~
= o SN
o~ < o g o
o < 2
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0
t t t
Solution for SM{12}_{11} Solution for I"{12}_{11} Solution for R*{12}_{11}
N
o™
©
g g 2 E
DU e o
g ] 3o
5 oo g o E S
o ¥ o
N
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0

t t t

Figure 4.1: Trajectories of the disease classification (S,7,R) for residents of site s} in region C;
at their home site and the current location in the two-scale spatial patch dynamic structure. See

Remark 4.2.1 for more comments on this figure.

Remark 4.2.1 From Figure 4.1, we observe that Figures (a),(b) & (c) represent the trajectories
of the different disease classes of residents of site s% at home. Figures (d),(e) & (f) represent the
trajectories of the different disease classes of residents of site s} visiting site sé in home region Cj.
These two groups of figures are representative of the disease dynamics of influenza affecting the
residents of site s% at the intra-regional level. Figures (g),(h) & (i) represent the trajectories of the
different disease classes of residents of site s} visiting site s% in region C,. These figures reflect the

behavior of the disease affecting the residents of site s% at the inter-regional level.
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Furthermore, we observe that the trajectories of the susceptible (S) and infectious(I) populations
saturate to their equilibrium states. We further note that the trajectory paths are random in character

but because of the scale of the pictures presented in this figure, they appear to be smooth.
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Figure 4.2: Trajectories of the disease classification (S,7,R) for residents of site s% in region C, at
their home site and at their current locations in the two-scale spatial patch dynamic structure. See

Remark 4.2.2 for more comments on this figure.

Remark 4.2.2 From Figure 4.2, we observe that Figures (a),(b) & (c) represent the trajectories
of the different disease classes of residents of site s% at home. Figures (d),(e) & (f) represent the
trajectories of the different disease classes of residents of site s% visiting site s% in home region
C,. These two groups of figures are representative of the disease dynamics of influenza affecting
the residents of site s% at the intra-regional level. Figures (g),(h) & (i) represent the trajectories of

the different disease classes of residents of site s% visiting site s% in region Cj. Figures (j),(k) & (1)
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represent the trajectories of the different disease classes of residents of site s% visiting site s? in region
C3. These last two groups of figures reflect the behavior of the disease affecting the residence of site
s% at the inter-regional level. Furthermore, we observe that the trajectories of the susceptible (S)
and infectious(I) populations saturate to their equilibrium states. We further note that the trajectory
paths are random in character but because of the scale of the pictures presented in this figure, they

appear to be smooth.
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Figure 4.3: Trajectories of the disease classification (S,/,R) for residents of site s? in region C3 at
their current location in the two-scale spatial patch dynamic structure. See Remark 4.2.3 for more

comments on this figure.

Remark 4.2.3 From Figure 4.3, we observe that Figures (a),(b) & (c) represent the trajectories
of the different disease classes of residents of site s? at home. Figures (d),(e) & (f) represent the

trajectories of the different disease classes of residents of site s? visiting site sg in home region
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C3. These two groups of figures are representative of the disease dynamics of influenza affecting
the residents of site s? at the intra-regional level. Figures (g),(h) & (i) represent the trajectories of
the different disease classes of residents of site s? visiting site s] in region Cy. Figures (j),(k) &
(1) represent the trajectories of the different disease classes of residents of site s? visiting site s% in
region C>. The last two groups of figures reflect the behavior of the disease affecting the residence of
site s? at the inter-regional level. Furthermore, we observe that the trajectories of the susceptible (S)
and infectious(I) populations saturate to their equilibrium states. We further note that the trajectory
paths are random in character but because of the scale of the pictures presented in this figure, they

appear to be smooth.

4.3 Conclusion

An influenza stochastic epidemic dynamic model in a two-scale population structure with specific
model parameters is implicitly defined in the framework of the epidemic dynamic model studied
in Chapter 3. The influenza transmission process at the site level is elaborated. In addition, a
suitable disease transmission rate function developed in [35] is modified and computed in the context
of the influenza transmission scenario presented in this example. The Euler-Maruyama stochastic
simulation scheme and application process is developed for the two-scale network centric Ito-Doob
system of stochastic differential equations. Furthermore, simulated trajectories for the different
state processes (susceptible, infective, removal) of residents of some sites in the three regions with
respect to the current locations in the intra and interregional levels are developed and presented. The
simulated findings reveal comparative evolution patterns for the different state processes and current

locations over time.
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5 GLOBAL PROPERTIES OF A TWO-SCALE NETWORK STOCHASTIC
DELAYED HUMAN EPIDEMIC DYNAMIC MODEL

5.1 Introduction

Delay epidemic dynamic models are more realistic than ordinary epidemic dynamic models because
they represent finer aspects of the disease process such as the hereditary features of the disease.
There are generally two sources of the time delay in most epidemic processes namely:- disease
latency and immunity. Disease latency is the time lapse between acquisition of the infectious agent
and infectiousness. On the other hand, disease immunity is conferred to the endangered population
in two general ways namely:- artificial immunity through vaccination of the susceptible individuals
or natural immunity (infection acquired immunity) conferred by the disease infection after recovery
from the disease. Most often the effectiveness of natural or artificial immunity wanes after a period
of time due to low disease exposure and therefore require boosting. For diseases such as measles,
vaccinated individuals are less immune than those with natural immunity[84]; for pertussis, the
immunity declines 6-12 years after the last disease episode or booster dose[63]. Several studies
representing the effects of disease latency or immunity of the epidemic process into the epidemic
dynamic model have been done[67, 68, 71, 72, 73, 74, T7].

Some of the main issues addressed in the study of mathematical delay epidemic dynamic models
include: model validation (existence and uniqueness of positive solution) and the stability of the
disease free equilibrium. The global positive solution existence is establish using an extension
criterion of a local solution. This approach is exhibited in [65, 68]. Moreover, the extension of

the local solution is exhibited in [68] by applying a Lyapunov energy function method.
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The global asymptotic stability of disease free equilibrium for delay epidemic dynamic models
is established by applying the Lyapunov functional approach [76, 50, 51, 61, 62, 68]. Furthermore,
the disease free equilibrium for SIRS[75, 57] and SIR[56] single-group delay epidemic models are
studied.

In this chapter we extend the stochastic epidemic dynamic model studied in Chapter 3 by incor-
porating the temporary immunity delay period of the disease. We consider an infectious disease that
confers natural immunity to all recovered individuals immediately after infectiousness. This work
is organized as follows. In Section 5.2, we derive the natural or infection-acquired immunity delay
part of the epidemic process. In Section 5.3, we present the model validation results. In Section 5.4,

we show the stochastic asymptotic stability of the disease free equilibrium.

5.2 Derivation of the SIR Delayed Stochastic dynamic Model

We assume that the epidemic represented in this chapter is an SIR(susceptible-infective-removal)
satisfying all assumptions for the population structure, human mobility process, and disease dy-
namics described in Chapter 3. Furthermore, all removals (R) are those who have acquired natural
immunity against the disease. For an exclusive SIR epidemic process with no fractional transfer
from the infectious to the susceptible states, the conditions for the recovery rates of the disease 1
and o, Vu € I(1,M) and Va € I(1,n,) represented in the SIRS epidemic model (3.2.9)-(3.2.11)
reduce to N4 = o =0, Vu € I(1,M) and Va € I(1,n,). Furthermore, we assume that for each
reI(1,M), and i € I(1,n,), an infectious (/') resident of site s/ in region C, visiting site s¥ in
region C, recovers from the disease and acquires temporary natural or infection-acquired immunity
against the disease immediately after recovery. The recovered individual further looses immunity
against the disease and becomes susceptible to the disease after a period of time 7;". We assume that
the natural immunity period 7} is constant for all naturally immune residents of site s} present at
their home site and at all visiting sites s in region C,,,Vu € I(1,M) and Va € I(1,n,) in the large
scale two level dynamic structure. We incorporate the natural or infection acquired immunity into

the epidemic dynamic model (3.2.9)-(3.2.11) by introducing the term pil*(t — T, )e*SZTir, where

a‘ia

¢~%T is the probability that an individual has survived from natural death during the immunity pe-

riod 7}, before becoming susceptible again[67]. The two level large scale stochastic SIR delayed
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epidemic dynamic model that is under the influence of human mobility process is as follows:

R

[Br + Zk 1 p’kS;Z + Z"Hér Za 1 pta Srq + plrllrr( T;'r)e_&TI
— (o &)ST XM Y RS d
(XM Y VST AW (1) ] u = roa = i

a=1"VYiia Xii Lai iia
dSiy = [orySy + i (=T )e 5 — (pif +3)Sy;
— XL T Byl — (KU e VS0 u = ra = j,j # i
Sy + oI (= T7)e T — (pjf -+ 8)s)

L S — [ Kl S 0] = g = L £ 1
(5.2.1)

[Zk 1 p:’lglz};: +Z:q7rér Za 1 nglz’;? pflrr
—(V O]+ 8 +dNI + il Yow B S 1L di
[ IZ rruSrrIurdWrm( )] u=ra= i

a=1 Viia Pii Lai iia
dlif =3 [orrnr —phIr — (pr 48+ d) I + wy ST dr

+ [ Xal X VSl dwia (0] u=ra=j,j #1,

Wfl{f —pfr! — (pif + 8] +dI!

it Za Biia Sif L |dt + [Xals Xaoy Vi Sit Lt dwiiy (0] u = g,a = Lg # 1,
(5.2.2)

[ PR+ T, X0 PR 4 LT — I (1 — T )e 3
—(Yf-f—Gf—FSf)Rfir]dt,u =ra=i

[OFiRY +Piif — Py (=T )e T .
—(p V—i—S’-)RV]dt u=ra=j,j#i,

IRy + ot o~ e T

— (P + 3R ]dt,u=q,a=1,q#r,

ru __
Ria -

\
where all parameters are previously defined. Furthermore, for each r € I(1,M), and i € I(1,n,), we

have the following initial conditions

(Sia (£, W), 1 (8, w), Rig (£,w)) = (@i (1), @iz (1), Pia3 (1)), 1 € [T, 10],
QO € C([-T/,10],Ry), Yk =1,2,3,Vr,q € I(1,M),a € I(1,n,),i € I(1,n,),

Q" (10) > 0,Yk = 1,2,3, (5.2.4)
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where C([—T;,1], R4 ) is the space of continuous functions with the supremum norm

@] = Sup 17 <14, |0(2)], (5.2.5)

P =t

and w is a Wierner process. Furthermore, the random continuous functions @;7 .k = 1,2,3 are
[ o — measurable, or independent of w(t) for all # > 0.

We utilize (3.2.18) to express the state of system (5.2.1)-(5.2.3) in vector form. Furthermore,
using the expression (3.3.25), it follows from (5.2.1)-(5.2.3) that for each i € I(1,n,),l € I/ (1,n,),r €
I(1,M)and g € I"'(1,M),

[BY 4 X Pt vik + Ly L PiaVia — (Vo + 07 + 80y —dil |dt, for q=rl=i
dyy = [l — (P +&)ylh —di I |dt, forg=r,a=j and i# j,

Yiyi = (pif +8))yif = ]Iy ]de, for g # 1,y (t0) 20,
(5.2.6)

5.3 Model Validation Results

In the following we state and prove a positive solution process existence theorem for the delayed
system (5.2.1)-(5.2.3). We utilize the Lyapunov energy function method[68] to establish the results
of this theorem. We observe from (5.2.1)-(5.2.3) that (5.2.3) decouples from the first two equations
in the system. Therefore, it suffices to prove the existence of positive solution process for (Si, I7%).

We utilize the notations (3.2.18) and keep in mind that X/ = (S%, 17T,

ia’’ia

Theorem 5.3.1 Let nu € I(1,M), i € I(1,n,) and a € I(1,n,). Given any initial conditions (5.2.4)
and (5.2.5), there exists a unique solution process X" (t,w) = (S%(t,w), 11" (t,w))T satisfying (5.2.1)

and (5.2.2), for all t > ty. Moreover, the solution process is positive for all t > ty a.s. That is,

S, w) >0, >0,V > 19 a.s.

*ia(t,w)

Proof:
It is easy to see that the coefficients of (5.2.1) and (5.2.2) satisfy the local Lipschitz condition for
the given initial data (5.2.4). Therefore there exist a unique maximal local solution X" (z,w) ont €

—T7,7.(w)], where T.(w) is the first hitting time or the explosion time . We show subsequent
T h is the first hitting ti he explosi ime[34]. We sh bseq ly
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that S7%(¢,w), Il¥(t,w) > O for all r € [T}, 7.(w)] almost surely. We define the stopping time

»Ta

Ty = sup{t € (t0,Te(w)) : Sitlip.) >0 and I7}];, > 0}, (53.7)

(1) = min(t,ty), for t>ty.

and we show that T (r) = T.(w) a.s. Suppose on the contrary that P(t,(f) < T,(w)) > 0. Let

w e {14(t) <7Te(w)},and 7 € [t9,T4(¢)). Define

V(X(%)): ]rwzlgl;l y:lZZ”:1V(XiZM)a

(5.3.8)
V(X*) = In(S2) 4+ In(1), ¥Vt <ty (t).
We rewrite (5.3.8) as follows
M n, M 14
vixe) =Y Z V(X + ZV XNH+Y Y v (5.3.9)
r=1i=1 JF#i q#ri=1
And (5.3.9) further implies that
M n, M ng
Z Z dv (Xj') + ZdV XN+ Y Y avixy (5.3.10)
r=li=1 J#i g#ri=1

where dV is the Ito-Doob differential operator with respect to the system (5.2.1)-(5.2.3). We express

the terms of the right-hand-side of (5.3.10) in the following:

Site Level: From (5.3.8) the terms of the right-hand-side of (5.3.10) for the case of u = r,a =i

Br ny Srr M g . prIrr(t_Tr)
av (x;) S,,+przs;';+zzpl,fﬁ+ S
ki q;érl: i
1 M n,
—(¥i +0; +8;) - ZZBZZ”IZ‘,’—*ZZ ViR ()
u=1la= u la=
I M ng
"
Zp{k’gfﬁZZp,ZS’f, — (Y +0{+8 +df)
ki q#ri=
M n M n
u Srr 1 u { Srr)
= X VB g X Y O iy |
u=la= u=la= )
M ny
—Z ZVZZ”IQ‘I dwi () + ) Z Via Ii’rlé‘f dwiig (1) (5.3.11)
u=la= u=la=
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Intra-regional Level: From (5.3.8) the terms of the right-hand-side of (5.3.10) for the case

ofu=ra=j,j#i

—&"T"
Srr prllrr( T}r)e il
V(X = |o2i g TS
(Xi7) [”S”+ 57
M ny
+ sr Z Z Brrulur _ Z Z rru Iur
pl] Jataj ]la
u=1la= u la=
I
ot =P 0+ 8
rru ;..]r ur 1 LT rr” (Srr)z Iur d
+Z]Z Jlalrr a]_lez Jla Irr aj) t
u=la= u=la=
. o rri pur g rru o rru lrjrlurd rru 53.12
Z Zv]la aj W]la + Z Zvjla Irr aj W]za(t) ( o )
u=1la= u=la=

Regional Level: From (5.3.8) the terms of the right-hand-side of (5.3.10) for the case of

u=gq,q#rnra=l,

: St —T)e
dv (X lﬂl) — lq ii L7l i
AL A

i~ £ S o3 $ o]
u=la= u=1la=

rr

I r
+ [ = : —p] —(pyf +8 +df)

Itl
l 1 M ny, rq)2 )
qru uq qru uq
+ Z Z Blla I;(] al — » Z Z lla ( ) al ) dt
u=la= u la= il
Ty M n, l
qru uq qru qru uq qru
B Z Viia al dw lm + Z Z Viia I;l'q al dw Wiia ( ) (5.3.13)
u=la=
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It follows from (5.3.11)-(5.3.13), (5.3.10), and (5.3.7) that for r < 1. (¢),

00 00 M n, rIlrr t_ Tr r LA rruyur
V(XOO( )) - V(XOO (t0)> Z / Srr (’Yr +G + 6 Z Z Bua Iat
r= lz 171 u=la=
1 M ny, M n,
—*ZZ Vi 2(1er)? ds+ZZ/ —pi— (Y +o + 8 +d))
u la= r=1i=1
Ty 1 M n, (S’.'.”)z
-y ¥ B =5 X Y O i 2 as
u=la=1 u=1la=1 il

M n M ny,
SYY XY [

r=li=lu=1a=1

M n M ny
+YYYY [ ;’;,;;Iz::d Wi (s)
0

r=li=lu=1a=1

M ny n,/ p;lrr t_Tr Tr
r= lt 1]761 fo SW
M ny 1 M ny,
—(pij +8)) - ZZBSZ‘IZI—*ZZ Vi) (L)
u=la= u=la=
M n, n, M ny Srr)
FXL LY [ w8 -5 X Y 0 e 2 4
r=1li=1j#i’10 u=1la=

M n, n, M ny
SYY YY) [

r=li=1 j#iu=1a=1

M n. n. M n, !
XYYy Y [ ,,1 awie(s)

r=1i=1 j#iu=1a=1
M n M ng qyrq r 75" M n,
piL (t—T e
CEEEE [P - £ B
r=1i 0 il u=1a=1

=1i=1g#ri=1"1
t
ast XYY [ ol o8 )

r=li=1g#ri=1"1

ny
ru
Z (vlqla al

a=1

<
I
—_

N =
M=

S

S
| 4

M=
g

N =

(Via )

i
R
N
[
~

M=

S
<

M:

My
qru uq qru
/ Viia ald lia )

5
Ms

7

T

)

S
s T
ﬁ[\’]a ﬁms

_|_
(NS

nu
l
Y [t (5:3.14)

\
Il
—_
Il
—_
)
I
=

Taking the limit on (5.3.14) as t — t.(¢), it follows from (5.3.8) and (5.3.7) that V(X{0(¢)) —

V(X®(t0)) < —oo. This contradicts the finiteness of the right-hand-side of the inequality (5.3.14).
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Hence 1. (¢) = t.(w) a.s. We show subsequently that T,(w) = . Let k > 0 be a positive integer
such that H(p |1 < k, where the vector of initial values (p00 = (") 1<rusm1<i<n,1<a<n, € R27 is
defined in (5.2.4). Furthermore, ||.||; is the p-sum norm (3.2.19) for the case of p = 1. We define

the stopping time

T = sup{t € [to,T.) : ||X0(s)||1 < k,s € [0,¢
= suplt € 0.3 [XE(5) |1 < ks € 0.1 5315

’Ek(l‘) = min(t,'ck).

where from (3.2.19),
M M n, ny

@Wh=X Y)Y Z (SH(s) +I2(s)).- (5.3.16)

r=lu=1i=1a=
It is easy to see that as k — oo, T¢ () increases. Set limy_se0 Tx(f) = Teo. Then Te < T, a.s. We show in
the following that: (1.) Te = Tew @.5. < P(T, # Te) =0, (2.) Tww =  a.5. & P(Teo = 0) = 1.
Suppose on the contrary that P(T. < T,) > 0. Let w € {Tw < T, } and f < To.. In the same structure

line as (5.3.8) and (5.3.10), define

VIEXSS) = X X Tl X V(X),
Vi(X[) = &% (S 4 17), Y < (1),

(5.3.17)

From (5.3.17), using the expression (5.3.10), the Ito-Doob differential dV; with respect to the system
(5.2.1)-(5.2.3) is given as follows:

Site Level: From (5.3.17), the terms of the right-hand-side of (5.3.10) for the case of u =

ra=i

Tq
avi(x;) = & | B+ Z PISH + Z Z IS 4 pr LT (1 — T )e T
ki q#ri=
— (¥} +07)Sy] dt + ™ ZP% fk”rz ZP,ZI,”] pilii
ki q#ril=
— (Y, + 0!+ dt (5.3.18)

Intra-regional Level: From (5.3.17), the terms of the right-hand-side of (5.3.10) for the case

ofu=ra=j,j#i

AIX[) = e oSy pifT (e =T e T — ppisiy ] dr
+e [Sf I + i — (pff +d))IT] dt (5.3.19)
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Regional Level: From (5.3.17), the terms of the right-hand-side of (5.3.10) for the case of

u=gq,q7ra=I1

v, (Xj’;q) _ 8 t [YqSlrlr_'_qurCI( Tir)efﬁg’Ti plrqulV;I}

+e8 [T + L — (P +d)1 ] d (5.3.20)

From (5.3.18)-(5.3.20), (5.3.10), integrating (5.3.10) over [fy,T] leads to the following

Vi(Xg0 (7))
00 & [* i oT
7 _8'Tr
= V1<Xoo<f0))+ZZ/ |+ Yopn ”+22p,35,3+p;1"z—r)e i
r=1i=1710 ki gtri=
M n, T Ny
~(+opslds+ Y Y [ e Zp:z;:+zzp,zlﬂ pily
r=1i=171 ki q#ri=
—(v; +o; +d)I;i ]ds
M n, n, T &
B[ o e g
r=1li=1 j#i
M n, n,
L EE [ ooy oty
r=li=1 j#i
M n, n, N4 -
+ LY LY [ s trita—10e I —plisi]ds
r=1i=1qg#rl=1
M n, ny Ng T Bq
y rr T 14 1
+2121§Z/ e I — I — (0 +d] )] ds (5321)
r=1i=1gq#rl=1

From (5.3.21), we let T = 7;(¢), where 1;(¢) is defined in (5.3.15). It is easy to see from (5.3.21),
(5.3.15), (5.3.16), and (5.3.17) that

= |1X56 (T ()11 < Vi (Xe0 (i (1)) (5.3.22)

Taking the limit on (5.3.22) as k — o leads to a contradiction because the left-hand-side of the
inequality (5.3.22) is infinite, and the right-hand-side is finite. Hence T, = T a.s. In the following,

we show that T, = T, = > a.s.
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We let w € {1, < e}. Applying some algebraic manipulations and simplifications to (5.3.21),

we have the following

Iz, <} Vi (X0 (7))
M n, Br
= I{r <oo}V1 (Xoo (t0)) +I{te<°°} Z Z 5r -1
r=1li=1

M n M Y 95 t F I
+I{Te<°°} Z Z Z Z |:pl / ] ‘1 51Ads — p? /TT.’.]ilq(s)e51Ade|

r=1li=1qg=1I1=1

M
o Z Z/ [GreBIs ofre® &

r=li=1 J;Ez

(Srr Irr)ds

M n, g
_I{te<oo} Z Z [y’e Z Z,Yrq 6 § Sr.r—i-lirir)ds
r=1i=1 q=1l=
M n,
1{@@}):251’ / 7% ds
r=1i=
M n, n, .
ey Y. Y Y / 17¢% ds
r=li=1 j#i fo -
M n. M N4 T "
e LY Y Yo [ 1eas,
r=1i=1q#rl=1 fo

(5.3.23)

where I4 is the indicator function of the set A.
We recall [30], o] = X7, 077 and ¥ = Y2, ¥, 7. Hence the fourth and fifth terms on the
right-hand-side of (5.3.23) are such that |o/e%* — X7, 677e™"| > 0,8 > 8, j # i and
Ve — M, z;’;lﬁeéﬂ > 0,V8 > 87,q # rl €1(1,n,). We now let T =14 (¢) AT in (5.3.23),

3T > 0, where T¢(¢) is defined in (5.3.15). The expected value of (5.3.23) is estimated as follows
E [Iir,<}Vi (X00 (T (£) A 7)) < Vi(X 0 (t0)) + Z i
l

M on Mg 10 T &
+2 YY) {P?/Tr o7 (s)e zSds]

r=li=1qg=1I[=1 -
(5.3.24)

98



Furthermore, from (5.3.16), (5.3.17) and the definition of the indicator function I, it follows that

Iz <o) <1} 1X00 (e (D)1 < T,y Vi (X0 (Te(1) A T)) (5.3.25)

It follows from (5.3.24), (5.3.25) and (5.3.15) that

P({te <o, (1) STHk = E [z, <o)<} 1X50 (%) |11]

E Iz, <o}V (X0 (%(1) AT))]

IN

00 < Bi s
Vi(Xoo (lo))+28%€ i
i=1 9

M M to &
XYY [p? / T_,~<sz<s>eﬂds}

r=li=lg=11

IN

g

)}

1

1y

(5.3.26)

It follows immediately from (5.3.26) that P({T, < ,Te < T'}) — 0 as k — oo. Furthermore, since
T < o is arbitrary, we conclude that P({T, < o0, T < oo}) =0.

Finally, by the total probability principle,

P({te <o) = P({Te <o0,Tw = o0}) + P({Te < 00,Teo < o0})
< P({Te # T }) + P({Te <00, Te < 0})

— 0. (5.3.27)

Thus from (5.3.27), T. = Te = o0 a.s. as was required to show.

Remark 5.3.1 Foranyr € I1(1,M) and i € I(1,n,), Theorem 5.3.1 signifies that the number of res-
idents of site s; of all categories present at home site s}, or visiting intra and inter-regional sites

s and sf’ respectively, are nonnegative. This implies that the total population of residents of site

L
J
r

st present at home and also visiting sites in regions in their intra and inter-regional accessible

i
domains[66], given by the sum NJj(t) = 22’121 Y. Vi is nonnegative. Moreover, the total effective
population[66], defined by ef f(Ni7)(t) = X2, Y |y, at any site s\ in region C, is also nonneg-

a=1

ative at all time t > ty.

The following result defines an upper bound for the solution process of the system (5.2.1)-(5.2.3).

We use of Theorem 5.3.1 to establish this result.
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Theorem 5.3.2 Suppose the hypotheses of Theorem 5.3.1 is satisfied. Let u=minj<,<pm,1<a<n, (0%).

If M M n, n, M n,
Yy y Zym fo) Z ZB (5.3.28)
r=lu=1li=1la=1
then
M M n, ny 1 M n,
YY Y Yk <=YY.B, for t>unas. (5.3.29)
r=lu=1li=1a=1 H,. =m0
Proof:

See Lemma 3.3.2.

Remark 5.3.2 From Theorem 5.3.1 and Theorem 5.3.2, we conclude that a closed ball ‘B R (6, r)
in R¥ under the sum norm ||| centered at the origin 0 € R with radius r = l% M.y B
is self-invariant with regard to a two-scale network dynamics of human epidemic process (5.2.1)-

(5.2.3) that is under the influence of human mobility process[30]. That is,

M M n. n, 1 M n,
B (0:r) = | (SELL0RE) 500 20 and [l = 12 Y3, 3500 ;,ZZB?
r=lu=li=la= =1i=1
(5.3.30)
is a positive self-invariant set for system (5.2.1)-(5.2.3). We shall denote
1 M n,
B=- Z Z (5.3.31)
[

5.4 Existence and Asymptotic Behavior of Disease Free Equilibrium

In this section, we study the existence and the asymptotic behavior of the disease free equilibrium
state of the system (5.2.1)-(5.2.3). The disease free equilibrium is obtained by solving the system of
algebraic equations obtained by setting the drift and the diffusion parts of the system of stochastic
differential equations to zero. In addition, we utilize the conditions that / = R = 0 in the event
when there is no disease in the population. We summarize the results in the following. For any

rnuel(1,M),i€I(1,n,)anda € I(1,n,), let

p o!" M ny prr,Yru
D; +0; +98; — e — — A= > 0. 5.4.32
- azlp,%ﬁz ;Z‘l T ( :
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Furthermore, let (S/4*, I, R/**), be the equilibrium state of the delayed system (5.2.1)-(5.2.3). One

a ’via

can see that the disease free equilibrium state is given by E/ = (57*,0,0), where

B o .
D for u=ra=i,
rux B! 0{; .
Sia = i, for u=ra#i, (5.4.33)

D} p+3

B Y
Dr P45 for u 7é r.
1 a

The asymptotic stability property of E; will be established by verifying the conditions of the
stochastic version of the Lyapunov second method given in [[34],Theorem 2.4], and [[34],Theorem
4.41,[59] respectively. In order to study the qualitative properties of (5.2.1)-(5.2.3) with respect to
the equilibrium state (S74*,0,0), first, we use the change of variable that shifts the equilibrium to the

origin. For this purpose, we use the following transformation:

Ut = Su-Su"
v = (5.4.34)
Wit = Ry

By employing this transformation, system (5.2.1)-(5.2.3) is transformed into the following forms

( —
(XM Yol iU+ pVE (e — T )e ¥

—(Y 0] + ) UF — Xl Yo B (S + UV dr
[ -1 Za v VIS + UL VA dwil(t )] JJor g=rl=i
dUi?q — [ ;‘JrUgr + prvrr( ) 75.,~T (prr +6r)Urr 1:[:1 ZZu:l B;;’Z (Srr* + Urr)Vur]d

— [0 X V(ST UV awi (1)), for g =rl=j,j#1,
U+ eV (e = T)e 5T — (i + 81U

=Xt Ko B il L 1t = [Eal Yot Vi (S + U Vo' dwii (0] for - a #r,
(5.4.35)
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(XM X PVl — (pF 4+, + O + 8] +d )Wy
+ X0l Yo B (S + UV dr
XM V(ST UV AW (1)), for q=rl=i
dvi’q_ [ :’]}’Vl;’r (p]+prr+8r+dr)vrr+z IZ ;;‘au(Srr*+Urr)Vur]dt
=
l +[XM X, SfZ(S”*+U”)V“’dWS$Z( )],for g=nrl=j,j#Ii,
[yrqu”rr_ Pz +pil +8q+dq)
w1 Ly Bl (Si UV de + [ X0l Xy v (Si7 + UVt dwi' (n)],
for q#r,
\
(5.4.36)
and
[z L P W pIVET — PV (1 — T )e 5T — (v + o + &)Wy dt,
for gq=rl=i
aw;i =

(LW + iV — iVt (¢ — T e 51 — (i + &)W ]dt, for q=rl=j,j#i
YW+ pfvil — iV (e — T )e ST — (pif + 81)W ! dt, for q#r

(5.4.37)

We state and prove the following lemmas that would be useful in the proofs of the stability results.

Lemma 5.4.1 LetV; : R37 x Ry — R, be a function defined by

Vl(xoo) = 12 12 Zn" ( )
Vi(®Y) = (SE =SSm0+ e (1) + (RY)? (5.4.38)
Xia = (U Vg, W)t and ¢yt > 0.

Then V; € C*! (R3”2 x Ry, Ry), and it satisfies

b(lIol) < Va(E60(r)) < alllzgol]) (5.4.39)

102



where

o M M n, ny 5 5 )
_ : ia ru U U
ZOEET N SR =39 3 39 W WA U LY
r=lu=li=la=1
M M n, ny 5 5 5
_ ru ru U U
(||XOOH) - lér,uSMJHSl?gnr,lSaénu {Cm +2},; u;l i=1a=1 [(Um ) - (Vla ) - (VVM ) ] ‘

(5.4.40)

Proof: See Lemma 3.4.1.

Remark 5.4.1 Lemma 5.4.1 shows that the Lyapunov function V defined in (5.4.38) is positive
definite((5.4.39)), decrescent and radially unbounded ((5.4.39)) function[34, 59].

We now state the following lemma

Lemma 5.4.2 Assume that the hypothesis of Lemma 5.4.1 is satisfied. Define a Lyapunov functional

V=V +V, (5.4.41)

where V) is defined by (5.4.38), and

M n. M ny u\2 t
Va=3 Z Z Z ; [(pgz eaznr] /,_T.’(Vizuw))zde’ (5.4.42)

Suppose that

(¥ + 07 +87) > max (£ X ly,’;‘JrZ#, ;f +EM T U 4 ),

1 yM u r 1 rr _ _ .
(i u:]ZZ ]lum ZZu#rZu 1 ‘u 22@5, /11 >),f0r u=ra=iI1,
(pf£+52)>max<<(p’“) +H,r,r+uia>7<%(2jl?g) +§,Uf,~r+éﬂz>>,f0r u=ra#i,

ruy2
(s +84) > max (85w +ut ) (3B + L+ Ly ) for ut
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Furthermore, let

1 ui
max 5 IOg ] I N ] r:[ (672 I B (Y2 5 )
' 2 <(’Y; +61r+81r) - |: u=1 ail :u;z?+za;i ,ig’ +Za;‘»r ZarZI ;:i’ + E'u;ir )

3 log gl ; ;
i ) (ct) ’
P\ e(erroran- [t m et i, S )

for u=ri=a

rr
Hig

o §r (pzrzg)z FE_ T
2 (pia+ a)_ '“Z +/Jii +/Jia

)

1
max | g log

ru __
mia - 1 Iu(r
& log = 2 )
6“ 2 s l(p:c:) L,ygr 1,r
(pia+ tz)_ 2 #Z +§,U[[+§:uig
for u=ra#i
1 Mig
max | 5 log e : )
2 (prron- | S e
1 1 Mig
<z 10 -
65 g 2 e Su l(p;z:)z L,rry 1, ru ’
(pia+ a)_ 2 ﬂf,’f f:uii—"_iluia
for u#r,
and
LR R N BT
pI+Y +o;+08/+d! ) ’
1, rr 1 yM ny FIV(QITR T | T 1 grr
EYTARSE S Yl v (SIS d .
Q]’,‘u = 2Mii +2£L—1£b—l azb( ia Mia ia 2%ai — 5443
ia SR Jfor a#iu=r ( )
2+ T o B S ) o, e
Pl pI Ol ’ '

for some suitably defined positive number ", depending on 8%, for all r,u € I'(1,M), i € I(1,n)
and a € I (1,n,). Assume that B < 1 and T/ > maxi<,u<m,i1<i<n, 1<a<n,(INL). There exist posi-
ru

tive numbers 0}, V! and Q) such that the differential operator LV associated with Ito-Doob type

stochastic system (5.2.1)-(5.2.3)satisfies the following inequality
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M n,
LV (%p9) < ZZ[ FUE? v (V2 + o (W)

r=1li=

—Z (U Wi (Vi) + @i (Wil )?)

a#i
M ny
-y Z (UL + Wi (Vi) + @ (W) | - (5.4.44)
u#ra=
Moreover,
V() < —cVi(x)) (5.4.45)

where a positive constant c is defined by

1 ru ru ru
c= mlnlSn”SM’lSignnlSHSnu{q)ia 7\|Iia ) (Pia } (5446)

Maxi <ru<m,1<i<n,,1<a<n, {Cly +2}

Proof:
The computation of differential operator[34, 59] applied to the Lyapunov function V; in (5.4.38) with

respect to the large-scale system of Ito-Doob type stochastic differential equation (5.2.1)-(5.2.3) is

as follows:
M n, M ny
vi(5) = Y. Y |Ivi (%7 +ZLV1 B+ ) ZLV1 ) | (5.4.47)
r=1i=1 JF#i u#ra=
where,
M ny,
&) = 2) Z [(1+CipiaVia' Vi +PiaUia Ui +PiaVia Ui +Pia Ui Vi
u=la=

LW+ 2[ VY (1~ TUL e T 4 200V (1 — T VT I
RV~ THWTe T 20w

=2((pf +df) +2(4; + o] + SV U = 2(; + 0] +8) (U} )?

=2[(cif +1)pf +2(cH + 1) (¥ + 0] + 8 +d])|(Vi")* = 2(¥; + o] + o + &) (Wyi")?

M ny, M ny
+2Crr Z Z Blrl;;lu Srr* +Urr VurVrr+crr Z Z :‘li;lu Srr* +Urr) (Val,;r)Z7
u=la= u=la=
for u=ra=i (5.4.48)
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rrvrrVrr+26rrUrrUrr+20rrVrrUrr_’_2GrrUlzrV”rr+20rrWrrWrr

ZLVI ~rr = 2{2 1+crr iaVia Vii iaVia
a#i a#r
2PV (1 = T YU e 5T 200V (1 — T Vi e,

—2p Vil (¢ =T )W e™ %1 = 2]y + 1)pl +2(cly + 1) (Ph +8)](Viy )

—2(pj +8,) (UL —2(p + 8,) (Wi ) +2p,Viy Wiy
ny M ny

—2(pg +dg) +2(piz +8,)Vig Uig } +2 ) cig ZZ aib(Sia +Uia WVoaVia
a#i  v=1lb=
ny M ny
+) . cia Y, Z v (St A UL (Van)?  for u=r, a#i (5.4.49)
a#ti  v=1b=
M n,
) ZLVl (%ia) Z Z {201+ cig Wi Vi Vi + 2% Uid' Uii” + 2¥ia Vi Uii” + 2 Ui Vi
u#ra= u#ra=

FRLWLWT 4+ 208V~ T YU ST 4 2pAV i — T )Vite T

—2p4Vi (= TWite™ %1 —2[(cf + 1)pls+2(chi + 1) (i + 84+ i) (Via')?
—2(pi +85) (Ui = 2(pl + ot +85) (Wi )* + 2p Vi Wiy
M ny M n,

—2[(pg +dg) +2(p% + 80) V' Uia' } +2. ) Z D) Z Bai (Sia™ + Ui WVeaVia'
u#ra= v=1b=
M n, M n,
+Y Y i X Y ) (et + UL (Va2 for ur (5.4.50)
u#ra=1 v=1b=1
By using (5.3.31) and the algebraic inequality
a>
2ab < 2@ +b?*g(c) (5.4.51)

where a,b,c € R, and the function g is such that g(c¢) > 0. The sixth term in (5.4.48)-(5.4.50) is

estimated as follows:
,’ i (S gl (87) + &7 (8) (Vii")?

ny
ny Srr* EZ
Z o ,22:( ; ) vy

& (%) = &()

22 Z cii Biip (Sii "+ UiV Vi" <
v=1b=

3
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1y n. M n,
22 Z Z r (rl;l*\b) Srr* Urr)vvr T S Z Z Z rr 2};; Srr* Sr)_|_g1 (Sr))(vlzr)Z
aFrv=1b= a#rv=1b=1
+ "zf"z 2B (it + B )
o =T = A AP
and
M n, M n, M n, M n,
2L XL Y b (S +Ua vt < X X b b (Sl (80) + g (B0 (Vi)®
u#ra=lv=1b= u#ra=1lv=1b=
M n, M n ruk p2
u v , . S B
e LYY Y (s )
u#ra=1lv=1b= 8i 8i\0q

(5.4.52)

From (5.4.48-(5.4.52), (5.4.47) and repeated usage of (5.3.31)and inequality (5.4.51) coupled with

some algebraic manipulations and simplifications, we have the following inequality

M n, M ny, M n, u ,
LVi(z) < Zz{lzzzy +2Z +2ZZ +3,u” + e O

r=1i=1 u=la= ai ll u#ra=1 ll

—2(v/ +o] +8)] (UF)?

M ny, rr M ny, (,Ym)
2_|_Crr ZZ;U ZZ+crr ZZ 2+Cru ia _'_,u:’lr =o/T”

u=la=1 a#r u=1a=1 ‘ull
i o8 <p’> 2
— +4 1 lrr 1 Cr rrv Vr*# +#rr)
! ! ,Ll” lv:”;] tzb ii ii
~2e z-’+1><p:+vf+c*+6*+d-f>] v
+ Z Z O 4 gemsim iy
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(5.4.53)

where ([ = g7(8%), g/ is appropriately defined by (5.4.51). For each r,u € I(1,M), i € I(1,n,) and

a € 1(1,n,), we define the constants d/, ¢7¥, W% and @} as follows:

a’ via’

M n, Sl‘;u* —|—32 M n, i
ur VU QUVF uvr vu
dai = cha abi ( alu ) ZZC abz +B)
b

v=1b= v=I1b=

for some positive numbers ¢, for all ,u € I"(1,M), i € I(1,n) and a € I/ (1,n,).

a’

20 +ol +08))(1 -, for u=ra=i
a = z(plrg+8r)(1_ulr(llt)’f0r u=ra#i
2(pjy +85) (1 =), for u#r,

2(pi 4+ +ol +8 +d) [cf{(l—‘l]{{)—l—( —%Qf{i’)] Jfor u=ra=i

Vig = 2(pL 4+ +8,+d:) [ (1—00) + (1— S€N)]  for u=ra#i
2(pls+p + 8 +di) [cfa (1= 0) + (1 — €] for ur
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(5.4.54)

(5.4.55)

(5.4.56)



and

2(Y + 07 + &) (1 =), for u=ra=i,
2(pj +8,) (1 —W),  foru=ra#i,
2(pia +8) (1 —255), for  us#r

'

Gia = (5.4.57)

where 0" is given in (5.4.43),

ru __
uia -

ia

and

e —

a

\

(Y_Vu)Z
+Za7ﬁr an ;,?[’

(v +0i+8})
-1y

VTY

i
):u 1 Xt 1:“1';“‘22;1 i Suf+yule”
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u=ri=a

[ (o2
—— +:u[r[r+lutrt§+2“m

a
= or
A S
(pm) urr
b e

(P7 +57)

(5.4.58)

u=ra#i

,for uzr,

< )2

=&trr
a%t ,u t

2 Zu 1 Za llu:tl:+ Zu#r an

e 1 rr
+aMi taMie

, for

(y{+c;+5;) u=ra=i,

R kT

2 ‘u:‘; +§[J“ 2#%*2,“
] (P "+52)
1 Ty

2:“11
(Pia +5Z)

, for

u=ra#i,

1(,)2
12 g

m 1, ru *ng-r
Hiq + 2Hig€ !

,for uzr

(5.4.59)

ST
e ST

Z =1 ZZ“ 1 lutrcltl +,u”

Za#r(2+clrz§) u 1 nu (2+Lm
(P;+Yf+0f 5?‘*“1{)

32
) ;Ila

(pf+d’ (v +of +6’) CH )2

2
T +4= u! +—r +3(r) _B;T’r

_j’_ IJH ll r /‘:Il ' H
(pI+Yi+ol+8/+d!)

, for

u=ra=i,

2+ 25 "2

rr (Pa*dzﬁ (P +8)
Hii 4 ”a Hig

(p;+p,’£ +0,+d})

,for u=ra#i,
)2

it 2
(2+¢) (pza 2+ (Pa*da) +4 (pm+ ) +3 (Zbrlz): T

a ia

( +p”‘+5“+d")

,for ur

From (5.4.41), (5.4.42), (5.4.53), (5.4.54), the differential operator LV [34, 59] applied to the Lya-

punov functional (5.4.41), and some further algebraic manipulations we have the following inequal-
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M
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r=1i
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(Pzz ‘/V;r Z ia Urr +Wza(Vzrr)

a#r
M ny
+(pm err + Z Z ia Um +W1a (Vzm)
u#ra=1
+ @l (W21} (5.4.60)

Under the assumption on 77, it follows that 47 <1 and 0% < 1,Vu € I(1,M),a € I(1,n,). More-

over, under the assumption on U7, it is clear that ¢/, y;} and @;; are positive for suitable choices of

ia’

the constants ¢;; > 0. Thus this proves the inequality (5.4.44). Now, the validity of (5.4.45) follows
from (5.4.44) and (5.4.39), that is,

LV (%0) < —cVi (T00),

m1n1<ru<M 1<i<ny, ]<a<Vlu{¢za ‘Vza (plr(‘;}
maxlSwSM.IStSnnlSaSnu{ 142}

stochastic stability theorems for the disease free equilibria.

where ¢ = . This completes the proof. We now formally state the

Theorem 5.4.3 Givenr,u € I(1,M), i € I(1,n,) and a € I(1,n,). Let us assume that the hypotheses

ru

o, are asymptotically stable in the

of Lemma 5.4.2 are satisfied. Then the disease free solutions E!

large. Moreover, the solutions E}}' are exponentially mean square stable.

Proof:
From the application of comparison result[34, 59], the proof of stochastic asymptotic stability fol-
lows immediately. Moreover, the disease free equilibrium state is exponentially mean square stable.

We now consider the following corollary to Theorem 5.4.3.

Corollary 5.4.4 Let r € I(1,M) and i € I(1,n,). Assume that 6} =, =0, for all r € I(1,M) and

i € I(1,n,). Suppose that

8 > max ((Lul Xty sy + 54 ) - (3 Eal Xty i + 5467)) o for  u=ra=i,
(pf;+84) > max ( (S + gy + 7). (j(%‘; b)) for w=rati,
(P4 8%) > max <<(p"r‘u) + i+ gy ) (2 (F;j‘#u) + S+ é,u,’é‘)) JJfor u#r.
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Furthermore, let

1 Hii
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1] My
<7 10, "
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ia
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H(‘L‘
(:;u)z Y
2((oiz-+00)—| 2+
1

ia

1
max | & log

1 Hig
gzlog ru 1 l(’:'z;zl)2 Lorr 1, ru ’
2{ (pig+8)—| 2 Wi T oM Tl
for u##r,
and
1M 1 v M , ,
LR e T S B ST o gy
PTHY o] 40, +d] ) ;
1r 1yM ny FrV (Qrrk, rr rr
o __ 2 +5 Yot Lot Brip (St i +1157) . 5.4.61
RUH oS Jfor a#iu=r (5.4.61)
1, r 1 vM ny ury ( Qrux , ru ru
M +5 Yvm1 Yoy Brip (i g +uiig)
i O+ Jor ur

for some suitably defined positive number i, depending on 8%, for all ryu € I'(1,M), i € I(1,n) and
a €I/ (1,n,). The equilibrium state E| is stochastically asymptotically stable provided that G < 1
and T;" > maxi<ru<m.i<i<n,1<a<n,(Mg)-

Proof: Follows immediately from the hypotheses of Lemma 5.4.2,( letting 6} = y; = 0), the conclu-

sion of Theorem 5.4.3 and some algebraic manipulations.

Remark 5.4.2 The presented results about the two-level large scale delayed SIR disease dynamic
model depend on the underlying system parameters. In particular, the sufficient conditions are al-
gebraically simple, computationally attractive and explicit in terms of the rate parameters. As a
result of this, several scenarios can be discussed and exhibit practical course of action to control the
disease. For simplicity, we present an illustration as follows: the conditions of 6 =, = 0,Vr,i

in Corollary 5.4.4 signify that the arbitrary site s; is a ’sink’ in the context of compartmental
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systems[28, 29] for all other sites in the inter and intra-regional accessible domain. This scenario is
displayed in Figure 7.1. The condition T > maxi<,y<m,1<i<n, 1<a<n, (i) is a threshold condition
for the immunity delay period of residents of site s; in region C,, controlling the stochastic asymp-
totic stability of the disease free equilibrium. Furthermore, the condition *0}! < 1 signifies that the
magnitude of disease inhibitory processes for example, the magnitude of the recovery process is
greater than the disease transmission process. A future detailed study of the disease dynamics in
the two scale network dynamic structure for many real life scenarios using the presented two level

large-scale delay SIR disease dynamic model will appear elsewhere.

() (3
e}“‘@

Figure 5.1: Shows that residents of site s} are present only at their home site s;. Hence they isolate
every site from their inter and intra regional accessible domain C(s}). Site s/ is a ’sink’ in the context
of the compartmental system[28, 29]. The arrows represent a transport network between any two
sites and regions. Furthermore, the dotted lines and arrows indicate connection with other sites and

regions.

5.5 Conclusion

The formulated two-scale network delayed epidemic dynamic model characterizes the dynamics
of an SIR epidemic in a population with various scale levels created by the heterogeneities in the
population. Moreover, the disease dynamics is subject to random environmental perturbations at the
disease transmission stage of the disease. Furthermore, the SIR epidemic confers temporary natural
immunity to recovered individuals immediately after recovery. This work provides a mathematical
and probabilistic algorithmic tool to develop different levels nested type disease transmission rates as
well as the variability in the disease diseases transmission process in the framework of the network-

centric Ito-Doob type dynamic equations. In addition, the concept of temporary natural immunity

112



delay of human epidemics is developed for the first time in the context of scale-structured human
meta-populations.

The model validation results are exhibited and a positively self-invariant set for the dynamic
model is defined. Moreover, the globalization of the solution existence is obtained by applying
the Lyapunov energy function technique. In addition, using the Lyapunov functional technique, the
detailed stochastic asymptotic stability results of the disease free equilibria are also exhibited. More-
over, the system parameter dependent and also temporary delay time threshold values controlling
the stochastic asymptotic stability of the disease free equilibrium are also defined. Furthermore, the
analysis of the general stochastic delayed dynamic model are exhibited in a controlled quarantine
strategy.

The stochastic delayed epidemic dynamic model will be extended to the variability in the mobil-
ity, recovery and birth and death processes. A further detailed study of the oscillation of the epidemic
process about the ideal endemic equilibrium of the dynamic epidemic model will also appear else

where.
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6 SIMULATION RESULTS FOR A TWO-SCALE STOCHASTIC NETWORK
SIR TEMPORARY DELAYED INFLUENZA EPIDEMIC DYNAMIC MODEL

6.1 Introduction

In this chapter, we extend the influenza stochastic epidemic model studied in Chapter 4 by incorpo-
rating the natural immunity delay period of the naturally immune population. Influenza has a short
lived and strain-dependent immunity[78]. The population hierarchic structure, the human mobility
process, the influenza transmission process, the birth and death processes of the previous example in
Chapter 4 are preserved in this example. Moreover, the respective parametric specifications defined
in Chapter 4 are also valid in this example. In the following, we describe the influenza recovery pro-
cess and the acquisition of temporary immunity. We refer the reader to Chapter 4 for the influenza
scenario that is presented in this example.

We assume that residents of site s% in region C, recover from the disease and acquire temporary
natural immunity to the specific influenza strain. In the absence of data for the recovery and disease
related death processes, we take the recovery and disease mortality rate to be p’ = 0.05067 and
d} =0.01838,u=1,2,3;a,i = 1,2, 3 respectively. Furthermore, we assume that the average natural
immunity period of recovered residents of all sites in the two scale population structure is the same.
In this example, for all residents of site s} in region C, present at any sites in the intra-regional and

interregional accessible domain, we set the natural immunity period 7" = 1,Vr=1,2,3,Vi=1,2,3.

6.2 Mathematical Algorithm and Simulation Results

We apply the standard Euler-Maruyama method stochastic approximation scheme[69, 70] to gener-
ate the trajectories for the residents of sites s{, s% and s? in regions C;, C; and Cs respectively, for

the different population disease classification (S,1,R), and current locations at some sites in the intra
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and inter-regional accessible domain of the sites. We summarize the Euler-Maruyama method steps
to obtain strong solution approximations to a system of stochastic delay differential equations in the

following. Given a scalar autonomous stochastic delay differential equation

dX(t) = f(X(),X(—1))dr+g(X(1),X (1 =1))dW(t), To<t<T,

X(t) = @), te[lh—r,To). (6.2.1)

where @p(7) is a measurable random variable on C([Ty —T,7p],R) and Ty, 7 > 0. Let Ty =19 <11 <
nh <...<t, =T, be aregular partition of [T, T|, where h =t; —t;_; = %, ti=To+jh, j=
0,...,N and N is a positive integer. Furthermore, suppose there exist a positive integer N, such that

the delay parameter T = N;h. The Euler-Maruyama method takes the form

X(tji-n) = @oltj—71), j—N:<0,
X(tj1) = X(t)+hf(X (1), X (tj-n.)) +8(X (1), X (1;-n))AW (211),

j=0,1,....N—1, (6.2.2)

where AW (tj11) = (W(tj41)—W(t;)),j=0,...,N —1 are an independent Gaussian N (0, ) random
variables. Using (6.2.1) as a general form of the equations in the system (5.2.1)-(5.2.3) in the context
of this example, the algorithm to execute the Euler-Maruyama method to find the solution process

of (6.2.1) consists of the following steps:

Step one: Parameter Specification: The system rate parameters for the epidemic model (5.2.1)-(5.2.3)

represented in this example are specified in Section 4.1.

Step two: Initial Conditions: The initial solutions are approximated using X (t;_n,) = @o(t; — 1), Jj=
0,...Ng, X € {Si}, I'* R}, In this example, we sett=T =1,Vr=1,2,3, i=1,23,T)=
0 and T = 1. This implies from the definition of T and Ny in (6.2.2) that N; = N. Furthermore,
from (5.2.4) and (6.2.1), the following convenient initial conditions are used for the simulation

process: for r,u € I(1,3),i,a € I(1,3), ¢/4. € C([-1,0],R, ), k=1,2,3

9,for r=uji=a
S ) =91 (1) =1 8,for r=uji#a
7,for r#u,Vte|[—1,0]
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Step Three:

Step Four:

6,for r=u,i=a
I () =@ip(t) =< 4, for r=ujita
3,for r#uVre[—1,0]

and R (1) = @in(t) =2,Vt € [-1,0],Vru,i,a € I(1,3).

Generate Brownian Path: The standard Brownian motion or normalized Wierner process
W (t) is generated over the time interval [Ty, T]. Thatis, weletTp =19 <1 <1, < ... <71, =
T, be a regular partition of [T, T], where 8t =141 —T; = %, tj=Tp+jot, j=0,...,N
and N is a positive integer. The Brownian motion is generated as the solution to the following

difference equation

W (0) =0,
W(‘Cj+1>:W(‘Cj>+ dW(‘Cj+1), j=0,....,N—1.

(6.2.3)

where dW(t;11), j=0,...,N—1 are the independent VOIN (0,1) Gaussian random vari-
ables. Furthermore, for this example given that 7o = 0 and T = 1, we simulated 500 sample

points for the Brownian motion over the interval [0, 1].

Generate Solution Path for the Susceptible, Infectious and Removal Populations(States):
Using (6.2.1) as a general representation of each equation in the system (5.2.1)-(5.2.3), we
use the discretization (6.2.2) to find solutions path for each equation in the system. For con-
venience, we choose & = R7t,[38], where the positive integer R > 1 and 97 is defined in Step
Three. Moreover, from (6.2.2), it follows that
JR+R—1
AW (tj+1) =W (tj1) —W(t;) = W(To+ (j+ 1)R8T) — W(Tp + jRT) = Z dWi1,

o (6.2.4)
where dWj.y; is given by the Brownian path (6.2.3). We choose R =1 for this example.
Moreover, from (6.2.2), (6.2.3), and (6.2.4), we obtain trajectories for susceptible, infectious
and removal populations of residents of sites si, s? and s} in regions Cy, C, and C3 over the

time interval [0, 1]. The trajectories for the residents of sites s}, s? and s? inregions Cy, C; and

C3 are exhibited in Figure 6.1, Figure 6.2 and Figure 6.3 respectively.
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Figure 6.1: Trajectories of the disease classification (S,/,R) for residents of site s} in region C; at

their current location in the two-scale spatial patch dynamic structure. See Remark 6.2.1 for more

comments on this figure.

Remark 6.2.1 From Figure 6.1, the Figures (a),(b) & (c) represent the trajectories of the different
disease classes of residents of site s{ at home. Figures (d),(e) & (f) represent the trajectories of the
different disease classes of residents of site s} visiting site sé in home region Cj. These two groups
of figures are representative of the disease dynamics of influenza affecting the residents of site s{ at
the intra-regional level. Figures (g),(h) & (i) represent the trajectories of the different disease classes
of residents of site s} visiting site s% in region C;. These figures reflect the behavior of the disease

affecting the residents of site s] at the inter-regional level.
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Furthermore, we observe that the trajectories of the susceptible (S) and infectious(I) populations
saturate to their equilibrium states. We further note that the trajectory paths are random in character

but because of the scale of the pictures presented in this figure, they appear to be smooth.
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Figure 6.2: Trajectories of the disease classification (S,7,R) for residents of site s% in region C, at
their current location in the two-scale spatial patch dynamic structure. See Remark 6.2.1 for more

comments on this figure.

Remark 6.2.2 From Figure 6.2, we note that Figures (a),(b) & (c) represent the trajectories of the
different disease classes of residents of site s% at home. Figures (d),(e) & (f) represent the trajectories
of the different disease classes of residents of site s% visiting site s% in home region C,. These two
groups of figures are representative of the disease dynamics of influenza affecting the residents of
site s% at the intra-regional level. Figures (g),(h) & (i) represent the trajectories of the different

disease classes of residents of site s% visiting site s% in region C;. Figures (j),(k) & (1) represent
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the trajectories of the different disease classes of residents of site s% visiting site s? in region Cs.
These last two groups of figures reflect the behavior of the disease affecting the residence of site 57
at the inter-regional level. Furthermore, we observe that the trajectories of the susceptible (S) and
infectious(I) populations saturate to their equilibrium states. We further note that the trajectory paths
are random in character but because of the scale of the pictures presented in this figure, they appear

to be smooth.
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Figure 6.3: Trajectories of the disease classification (S,1,R) for residents of site s? in region C;3 at
their current location in the two-scale spatial patch dynamic structure. See Remark 6.2.3 for more

comments on this figure.

Remark 6.2.3 From Figure 6.3, we note that Figures (a),(b) & (c) represent the trajectories of the
different disease classes of residents of site s? at home. Figures (d),(e) & (f) represent the trajectories

of the different disease classes of residents of site s? visiting site s% in home region C3. These two
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groups of figures are representative of the disease dynamics of influenza affecting the residents of
site s? at the intra-regional level. Figures (g),(h) & (i) represent the trajectories of the different
disease classes of residents of site s? visiting site s% in region C;. Figures (j),(k) & (1) represent
the trajectories of the different disease classes of residents of site s? visiting site s% in region C,.
The last two groups of figures reflect the behavior of the disease affecting the residence of site s?
at the inter-regional level. Furthermore, we observe that the trajectories of the susceptible (S) and
infectious(I) populations saturate to their equilibrium states. We further note that the trajectory paths
are random in character but because of the scale of the pictures presented in this figure, they appear

to be smooth.

We make the following comparative remark on the trends in the trajectories of the naturally immune
populations represented in Figure 6.1, Figure 6.2 and Figure 6.3, and on the trends of the naturally

immune populations represented in Figure 4.1, Figure 4.2 and Figure 4.3

Remark 6.2.4 We observe significant differences between the trajectories of the naturally immune
populations RH in Figure 6.1, Rﬁ in Figure 6.2 and Rﬁ in Figure 6.3, and the corresponding
trajectories ofRH in [Figure 4.1,[66]], Rﬁ in [Figure 4.2,[66]] and Rﬁ in [Figure 4.3,[66]]. The
trajectories of the naturally immune populations R}l in Figure 6.1, Rﬁ in Figure 6.2 and Rﬁ in
Figure 6.3, exhibit a growth trend in the naturally immune population that initially decreases from
the initial state, and finally increases over time. This further exhibit the fact that natural immunity
and the fluctuating environment influence the growth trends of the endemic population. Moreover,

the trajectory of the naturally immune populations RH in Figure 6.1 indicates a periodic solution

over time with period equal to the length of the immunity period.

6.3 Conclusion

An influenza stochastic temporary delayed epidemic dynamic model in a two-scale population struc-
ture with specific model parameters is implicitly defined as an extension of the influenza epidemic
dynamic model studied in Chapter 5. The influenza transmission process at the site level is elabo-
rated. In addition, the Euler-Maruyama stochastic simulation scheme and application process for the
two-scale network centric Ito-Doob system of delay stochastic differential equations is explained.

Furthermore, simulated trajectories for the different state processes (susceptible, infective, removal)

120



of residents of some sites in the three regions with respect to the current locations in the intra and
interregional levels are developed and presented. The simulated findings reveal comparative evolu-
tion patterns for the different state processes and current locations over time. Furthermore, there is
an oscillatory effect in the trajectory of the naturally immune population. Moreover, the oscillations

are more significant at the homesite.
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7 GLOBAL ANALYSIS OF A STOCHASTIC TWO-SCALE NETWORK
HUMAN EPIDEMIC DYNAMIC MODEL WITH VARYING IMMUNITY
PERIOD

7.1 Introduction

In this chapter we extend the epidemic dynamic model with temporary immunity delay studied in
Chapter 5 into a more realistic epidemic dynamic model with varying immunity period delay. Gen-
erally, the length of the natural immunity period after recovery from the disease varies within the
immune population and also for different diseases. This variation is accounted for by the varia-
tions in strengths of the immune system of individuals recovering from diseases, and also because
individuals in the population exhibit varying immunity responses to different antigens produced by
different diseases. Some diseases confer almost life long immunity, and others give only a tempo-
rary immunity after recovery. For instance, those who recover from measles acquire life long natural
immunity [84]. Influenza has a temporary immunity to the particular disease strain after recovery to
the disease.

The epidemic dynamic processes in populations exhibiting varying time disease latency or im-
munity delay periods are represented by differential equation models with distributed time delays.
Several studies[79, 81, 82, 83, 56] incorporating distributed delays describing the effects of disease
latency or immunity in the dynamics of human infectious diseases have been done. A mathematical
SIR (susceptible-infective-removal) epidemic dynamic model with distributed time delays repre-
senting the varying time temporal immunity period in the immune population class is studied by
Blyuss and Kyrychko[83]. In their study, the existence of positive solution is exhibited. Further-
more, the global asymptotic stability of the disease free and endemic equilibria are shown by using
Lyapunov functional technique. Moreover, they presented numerical simulation results for a special

case SIR epidemic with temporal immunity.
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The temporal immunity was represented in the epidemic dynamic model by letting the Dirac delta-
function be the integral kernel or the probability density function of the distributed time delay.
Stochastic models with distributed time delays offer a much better representation of the reality.
In [56], a stochastic SIR epidemic dynamic model with distributed time delay is studied. Moreover,
the stochastic asymptotic stability of the disease free equilibrium is exhibited by applying the Lya-
punov functional technique. Furthermore, in [68, 80] the existence of positive solution process for
the stochastic epidemic model is exhibited by applying a Lyapunov energy function method. This
work is organized as follows. In Section 7.2, we derive the distributed time acquired immunity delay
epidemic dynamic model. In Section 7.3, we present the model validation results of the epidemic

model. In Section 7.4, we show the stochastic asymptotic stability of the disease free equilibrium.

7.2 Derivation of the SIR Delayed Stochastic dynamic Model

We assume that for each r € I(1,M), and i € I(1,n,), infectious (1) residents of site s} in region C,
visiting site s% in region C, recover from the disease and acquire immunity against the disease im-
mediately after recovery. The recovered individuals further loose immunity and become susceptible
to the disease after a period of time s € [0,e0), where the immunity period s is an infinite random
variable. Using ideas from [83], we incorporate the varying acquired immunity time delay into
the epidemic dynamic model (5.2.1)-(5.2.3), by introducing the term p [5* I“(t — 5) f*(s)e~%ds,

U
where ¢ %5

is the probability that an individual who recovered from disease at an earlier time ¢ — s is
still alive at time ¢. Furthermore, f7(s) is the integral kernel[83] representing the probability density
of the time s to loose acquired immunity by residents of site s in region C,. The naturally immune
individuals were previously infectious at their visiting site s in region C,, and the have recovered

from disease acquiring temporal natural immunity. Moreover, [;° f/*(s)ds = 1, and f]* > 0. The

two level large scale stochastic SIR delayed epidemic dynamic model with varying immunity period
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delay is as follows:

asp =

dli} =

ru __
Ria —

[Br +Zk 1 p’kS;Z +Z"1¢"Za 1 ptaSrq + pz fO Irr(t - S) ( )e_S{SdS
—(Y ol +8)ST XMy s d
— (Ll X Vi SH L dwi (1)) ju = ra =i

a=1"Viia Qii lai iia
(o5t + 07 o 17 (1 = )11 (s)e™ 5 ds — (pf7 + 8})S
~ LUK Bl (S i VS i) = ra = o £
(S +pf oI (¢ — 5) £ (s)e~%ds — (piff + 1) 87

L S — [ Kl S 0] = g = L £ 1
(7.2.1)

[Zk 1 p:’lglz};: +Z:q7rér Za 1 nglz’;? pflrr
—(V O]+ 8 +dNI + Xuly Yow B S 1L di
[ IZ rruSrrIurdWrm( )] u=ra= i

a=1 Viia Qii Lai iia
oY ryrr rr r T4 rru Qrr yur
[ l]Ill p]Il] (pij +6+d )I B]taSl]Ia/]

_’_[ M Znu rruSrrIurdWrru( )] U=T1d= j,J 75 i

a=1 ]m ijtaj Jia
Wfl{f—p,l’q (pif + 81 +dI}
vt Yo Bl St de + [ Yol X v S L dwiy (1) ,u = g,a = 1,q #r,

lia il “al a=1"Vlia Pil Lal lia
(7.2.2)
(X, iRy X X PR A T — pr o I (1 — 5) £ (s)e ¥ ds
—(Yf-l—cf—i—S;)RV]dt,u:r,a:i
5
[ l/RZr+p511rJr pJfO Irr(t_s> lj( )6 ’ds (7.2.3)

— (P + )R] dt,u=ra=j,j#i,
Vi Ri +pi Ly — ] 5 I (e = 5).f3 (s)e “ds
_(pil +6?)R?;]]dtvu:q7a:l7Q7érv

where all parameters are previously defined. Furthermore, for each r € I(1,M), and i € I(1,n,), we

have the following initial conditions

(Siq (1) 1ig' (1), Rig (2)) = (@i (1), @iap (1), @3 (1)), 1 € [—o0,00),

Qi € C([—oo,t0],Ry), Yk =1,2,3,Vr,q € I(1,M),a € I(1,n,),i € I(1,n,),

Qo (to) > 0,Vk=1,2,3, (7.2.4)
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where C([—e0,1)],IR; ) is the space of continuous functions with the supremum norm

[@l]e0 = Sttp—cocr<sy|[9(2)]- (7.2.5)

and w is a Wierner process. Furthermore, the random continuous functions @;7 .k = 1,2,3 are
I o — measurable, or independent of w(t) for all r > 1.

It follows from (3.2.18) and the system (7.2.1)-(7.2.3) that for i € I(1,n,),l € I'(1,n,),r €
I(1,M) and g € I"(1,M),

(B} + i Pyt + Lagr Eal PiaYia — (Vi + 07 + )il —di I ], for q=r1=i
dyy = Oy — (PF +8})yif —djIif|de, for q=ra=] and i# ],

Yilyi = (pi +81)yif —dfL]dt, for g #ry{ (1) >0,
(7.2.6)

7.3 Model Validation Results

In the following we state and prove a positive solution process existence theorem for the delayed

system (7.2.1)-(7.2.3). We utilize the Lyapunov energy function method[68] to establish the results

of this theorem. We observe from (7.2.1)-(7.2.3) that (7.2.3) decouples from the first two equations

in the system. Therefore, it suffices to prove the existence of positive solution process for (Si¥, I7).
T,

We utilize the notations (3.2.18) and keep in mind that X" = (S}*

a’

Theorem 7.3.1 Let r,u € I(1,M), i € I(1,n,) and a € I(1,n,). Given any initial conditions (7.2.4)
and (7.2.5), there exists a unique solution process X[*(t,w) = (St(t,w), Il (t,w))7 satisfying (7.2.1)
and (7.2.2), for all t > ty. Moreover, the solution process is positive for all t > to a.s. That is,

S (t,w) > O,Il.’a“(m) > 0,Vt > 1y a.s.

Proof:

It is easy to see that the coefficients of (7.2.1) and (7.2.2) satisfy the local Lipschitz condition for
the given initial data (7.2.4). Therefore there exist a unique maximal local solution X/*(¢,w) ont €
[—o0, T, (W)], where T,(w) is the first hitting time or the explosion time[34]. We show subsequently

that S7(z,w),I/"(t,w) > 0 for all t € [—co,T,(w)] almost surely. We define the following stopping

Y 1a
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time

T = sup{t € (to,Te(w)) : Si¥jyn >0 and L' >0},
+ p{t € (t0,%e(w)) : i3 19,1 o] > 0} (7.3.7)
(1) = min(t,ty), for t>t.

and we show that T (r) = T.(w) a.s. Suppose on the contrary that P(t,(f) < T,(w)) > 0. Let

w e {14(t) <Te(w)}, and € [19,T4(¢)). Define

V(X(%)): IrVI:lZ?;l y:lZZ”:1V(Xi2”)a

(7.3.8)
V(X)) =1In(S2) 4+ In(1), ¥Vt <ty (t).
We rewrite (7.3.8) as follows
M n, M 14
VX)) =Y Z V(X)) + Zv XNH+Y Y v (7.3.9)
r=1li=1 JF#i q#ri=1
And (7.3.9) further implies that
M n, ny M nq
= Z Z dv(Xi)+Y avx;H+ Y, Y av(x)) (7.3.10)
r=1i=1 J#I q#ri=1

where dV is the Ito-Doob differential operator with respect to the system (7.2.1)-(7.2.3). We express

the terms on the right-hand-side of (7.3.10) in the following:

Site Level: From (7.3.8) the terms on the right-hand-side of (7.3.10) for the case of u =r,a =i

Br r]: g rq p &
LIS s ’wZZ oS PL [ ) 1 )
Y- AT ¥

av(Xi') =

(,YV_"_G _"_67' % ﬁﬁrmlur_lf nZu rru Iur ]
la ~at ll(l

u=la= u=la=
I M ng
"
sz’;fsffﬁzzpzﬁﬁ— — (Y 4o+ +d)
ki q#ri=
M n M n
u Srr 1 u Srr)
S wet - % Fowr S
u=la= u=la=
M ny M ny
-Y ZVZZ”IZ,’ dwi () + Y Z Viia IZIZT dwiig (1) (7.3.11)
u=la= u=la=
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Intra-regional Level: From (7.3.8) the terms on the right-hand-side of (7.3.10) for the case

ofu=ra=j,j#i

ST p 5
av(xjy) = [Glrj’S‘r’r—i—S/r/ L7 (t—s)fif (s)e”%ds
M ny, 1 M ny,
—(pi+8) - ) Z Blialii —5 X Z Vi1
u=la= u la=
I
1 e (01] 8]
Ny ;‘]}" My (Srr)z
rru ) rru ur
+uzlaz jia Irr u] _7’421(12 ]la Irr) I ) dt
M ny, M ny
rri r rr rru 1 r rr
-y Z Vi Lardw (6) + Y Z Vi I/, Lidwi (1) (7.3.12)
u=1la= u=1la=

Regional Level: From (7.3.8) the terms on the right-hand-side of (7.3.10) for the case of

u=gq,qFra=1,

T St p T -7
av(x;’) = [ i 51 +S—,lq / (e —s) £ (s)e O ds
iq il /0
q qru uq | L qru
+6 ZZ lia 01_7212 lta dt
u=la=1 u=la
‘Iltrlr rq 4, 14
T\ Vi 7 —p/ = (pi/ +8/ +df)
il
Y qru l WI 1 LT qru 1)2 uq 2
l i
+ Z Z Blla Irq al Y Z Z lta ) al ) dt
u=la= u la=
M ny M n, lq
ru g ru ru & ru
-X ZVZa Lfawii' (t) + Y Z v i Mawl™@)  (7.3.13)
u=la= u=la=
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It follows from (7.3.11)-(7.3.13), (7.3.10), and (7.3.7) that for r < 1. (¢),

00/,\\ 00 " —s) efﬁfsds_ / L&
Vo) Vo) > L3 [ [ [Ca-asmoe - oo+ a)

M ny, M ny,
-y Z Biia Lai — Z Z Vi) 2 (1)
u=la= u: a=1
M ny !
+ 2 [ e - o8+ d)
r=1i=1"10
MSr M & < M Srr)z
- Z Z Biia Iﬁ’r L — Z Z Vi) e Qi )| ds
u=la= =la=1 (11)

M n. M n,
SY YY) [

r=li=lu=1la=1

M n. M ny,
DWW W WS

r=li=lu=1a=1

M n, ny &
/ S”/ L7 (t—s)fij (s)e”*’ds

r= ll 1]7&1
1 M n,
—(pij +87) — ZZBZZIZ—*ZZ ViR (Iah)?
u=1la= u la=
M n, n,
+zzz/ o — (pll + 8+ ")
r=li=1 j#£i’ 10

1 ¥ rru (S"r) ur
_Euglax(vjia) (Irr) (I )]ds
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SY XYY Y [ o)

r=1i=1 j#iu=la=1"1
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FEYYYY [ R R
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M n M T4 t 5
CEERY [ [ e o e it

r=li=lqg#ri=

M ruu 1 M ru
3 S 15 o ]ds

u=1a=1 u la=
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1533030 ) NETRIEE A
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Taking the limit on (7.3.14) as t — t(¢), it follows from (7.3.8) and (7.3.7) that the left-hand-
side V(XJ () — V(X3 (t0)) < —oo (since from (7.3.8) and (7.3.7), V(X[ (t4(t))) = InS% (T (1)) +
In*(t4 (1)) = —oo). This contradicts the finiteness of the right-hand-side of the inequality (7.3.14).
Hence t (1) = 7.(w) a.s. We show subsequently that T,(w) = eo.

Let k > 0 be a positive integer such that ||@%0||; < k, where the vector of initial values @) =

2 2.
(95)1<rusm.1<i<n, 1<a<n, € R™"

for the case of p = 1. We define the stopping time
v = supft € io,.) < [IX () 1 < kos € [0,1]}

(7.3.15)
’Ek(t) = min(t,’ck).

where from (3.2.19),
M M n, n,

OWh=Y Y)Y Z (S (s) +14(s)). (7.3.16)

r=lu=li=la=

It is easy to see that as k — oo, Ty increases. Set limg_,eo T¢ () = Too. Then T < T, a.s. We show in

the following that: (1.) T, =Tee  a.5. < P(Te # Te) =0, (2.) Tw =0 a.5. < P(Teo =) = 1.
Suppose on the contrary that P(T. < T,) > 0. Let w € {Te < 7T, } and < T... In the same structure

form as (7.3.8) and (7.3.10), define

VI(X(())O):ZQ;Z?Q e Lo V(X,

; (7.3.17)
VA(X[) = % (Spi + 1) Ve < ().

From (7.3.17), using the expression (7.3.10), the Ito-Doob differential dV; with respect to the system
(7.2.1)-(7.2.3) is given as follows:

Site Level: From (7.3.17), the terms of the right-hand-side of (7.3.10) for the case of u =

rna=1i

LI .
dvi(Xir) = & B’+Zp” ”+22p,’35{3+p1/ 7 (t—s)fi (s)e” % ds

k#i q#ri=

g
—(¥; +07)Sif]dt + & ZPZZ i+ Z prZIZ’ piLi
ki q#ril=
— (Vv +oF +dDITdt (7.3.18)
1 1 1 121
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Intra-regional Level: From (7.3.17), the terms of the right-hand-side of (7.3.10) for the case

ofu=ra=j,j#i

anox) = o ogsy+e; [ a0 Tas— ol d
+e%" o7 + Pl — (pff +dr)1”}d (7.3.19)

Regional Level: From (7.3.17), the terms of the right-hand-side of (7.3.10) for the case of

u=gq,q#ra=1

) = sy ep! oo Pas— s ar

10 [erqlzrzr q,;q _ (P,-l +dlq)lirlq} dt (7.3.20)

From (7.3.18)-(7.3.20), (7.3.10), integrating (7.3.10) over [fo, ] leads to the following

Vi (Xg0 (7))
M n,

Xeoto)+ Y, Z/ﬁf

r=1i=1

M ng )
Br+2p” ”+ZZpl§S’q+p,/ I (t—s) i (s)e % ds
k#i q#ri=

M ny g
_(rY;’_|_G Srr ds+ZZ/t() [7& rr rr_}_zzpz‘gl;q_ :’Il;;r
ki

r=1li=1 q#rl=
—(¥; +0; +dj)I;i |ds

M n, ny T
+ZZZ : ef)is|: lr]rS:'lr_’_p;/o Irr(t_s) z]( )e*S.f“ds plrrSrr:|

ne ny
L EE [ ooy oty
r=1i=1 j#i
R 5 “ T By 1O iFe
X 38T [ o i s sy a
r=li=1qg#ri=1"10

M n, n. g

P LY VY [ = tr i+t ds (7321

r=1li=1qg#ri=1

From (7.3.21), we let T = T;(¢), where T, (¢) is defined in (7.3.15). It is easy to see from (7.3.21),

(7.3.15), (7.3.16), and (7.3.17) that

k= 1X00 (t(0))1l < Vi (Xg0 (t(2))) (7.3.22)
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Taking the limit on (7.3.22) as k — o leads to a contradiction because the left-hand-side of the
inequality (7.3.22) is infinite, and the right-hand-side is finite. Hence T, = T a.s. In the following,
we show that T, = T., = o0 a.s.

We let w € {1, < e}. Applying some algebraic manipulations and simplifications to (7.3.21),

we have the following

Iz, <} VI (X0 (7))
M n, B’

= <}V (XOO (to)) + g, <o) Z Z 8; t—1)

r=1i=1"i

M n. M n o0
TS 353 %) /0 fil(e [Pz / 17 (s)e* ds — pf / (s S?Scls]dt

r=1li=1qg=1I=1

M n,
Mz} 1 ) [Gres’s Y oire® | (S + 1 )ds
r=1i=1 J;ét
M n,
. ZZ ,Yesls Z,YVQ &ls Sr-r—i-ﬂ-r)ds
{Te<eo} ii
r=1i=1 g=1I=
_I UG dr TIVV S’rsd
{te<e} Z Z i€ as
r=1i=
M n, n, .
e} Y Y Zd’/ Ii’j’eé-fsds
r=1i=1 j#i fo
M n, M N4 T rg &
e L LY Y [ reas
r=1li=lqg=11= 1

(7.3.23)

where I4 is the indicator function of the set A.

We recall [30], o] = X7, 077 and ¥, = Y, ¥,%, 7. Hence the fourth and fifth terms on the
right-hand-side of (7.3.23) are such that [(5’ sy 200 esfs} >0,Vd] > 8%, j#iand
(e — L 1 e ] > 0,987 > 8,9 # 1l € 1(1,n,). We now let T =T(r) AT in (7.3.23),
3T > 0, where T¢(¢) is defined in (7.3.15). The expected value of (7.3.23) is estimated as follows

E [Iiz,copVi(X00 (() AT))] < Vi(X55 (t0) +Zsl N0

M

LR rq 84
$583 Lol

r=1li=1g=1I=1

(7.3.24)
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Furthermore, from (7.3.16), (7.3.17) and the definition of the indicator function I, it follows that

Iz <o) <1} 1X00 (e (D)1 < T,y Vi (X0 (Te(1) A T)) (7.3.25)

It follows from (7.3.24), (7.3.25) and (7.3.15) that

P({t, <oo,mi(r) <T})k E Iz, <oy (1)< |1X00 (T (£))]]1]
[I{re<°°}V(X(())(())(Tk( )AT))]
tO ‘I‘ Z 81 5 T

M n. M ng 5
+Z;;l§/o fi( [Pl/ P (s ds]

r=1i=

IN

IN

(7.3.26)

It follows immediately from (7.3.26) that P({T, < ,Te < T'}) — 0 as k — oo. Furthermore, since
T < o is arbitrary, we conclude that P({T, < 0, T, < oo}) =

Finally, by the total probability principle,

P({te <o) = P({Te <o0,Tw = o0}) + P({Te < 00,Teo < o0})
< P({Te # T }) + P({Te <00, Te < 0})

— 0. (7.3.27)

Thus from (7.3.27), T. = T« = o0 a.s. as was required to show.

Remark 7.3.1 Foranyr € I(1,M) and i € I(1,n,), Theorem 7.3.1 signifies that the number of res-
idents of site s; of all categories present at home site s}, or visiting intra and inter-regional sites
sy and sf’ respectively, are nonnegative. This implies that the total number of residents of site s}
present at home site and also visiting sites in regions in their intra and inter-regional accessible
domains[66], given by the sum NJj(t) = ):u VLo Vit is nonnegative. Moreover, the total effective
population[66], defined by ef f(Ni7)(t) = X2, Y |y, at any site s\ in region C, is also nonneg-

ative at all time t > ty.

The following result defines an upper bound for the solution process of the system (7.2.1)-(7.2.3).

We utilize Theorem 7.3.1 to establish this result.
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Theorem 7.3.2 Suppose the hypotheses of Theorem 7.3.1 is satisfied. Let u = minj<y<m,1<a<n, (0%).

If M M n, ny M n,
YY) ) Viw) Z ZB (7.3.28)
r=lu=1li=1a=1
then
M M n, ny 1 M n,
YY Y Y ) <=-Y Y B, for t>1 as. (7.3.29)
r=lu=1li=1la=1 | L |

Proof: See [[66],Lemma 3.2]

Remark 7.3.2 From Theorem 7.3.1 and Theorem 7.3.2, we conclude that a closed ball B R ( r)
in R¥ under the sum norm ||.||, centered at the origin 0 € R¥, with radius r = i Y B
is self-invariant with regard to a two-scale network dynamics of human epidemic process (7.2.1)-

(7.2.3) that is under the influence of human mobility process[30]. That is,

. . . . M M n, n, 1M ny .
B o (057) = {(Sfa,IL,Rl’a) Yia (1) >0 and HXS8H1=ZZZZM ;ZZBi
r=lu=li=la=1 r=1i=1
(7.3:30)

is a positive self-invariant set for system (7.2.1)-(7.2.3). We shall denote

R

nMa

i (7.3.31)

7.4 Existence and Asymptotic Behavior of Disease Free Equilibrium

In this section, we study the existence and the asymptotic behavior of the disease free equilibrium
state of the system (7.2.1)-(7.2.3). The disease free equilibrium is obtained by solving the system of
algebraic equations obtained by setting the drift and the diffusion parts of the system of stochastic
differential equations to zero. In addition, we utilize the conditions that / = R = 0 in the event
when there is no disease in the population. We summarize the results in the following. For any

rnucl(1,M),i€I(l,n,)anda € I(1,n,), let

, PlCia  y§ PiYa
Dl =Y +0]+8] - gprw& ;Z} SRR (7.4.32)
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Furthermore, let (S/4*, I, R/**), be the equilibrium state of the delayed system (7.2.1)-(7.2.3). One

a ’via

can see that the disease free equilibrium state is given by E/ = (57*,0,0), where

B o .
D for u=ra=i,
rux B! 0{; .
Sia = i, for u=ra#i, (7.4.33)

D} p+3

B Y
Dr P45 for u 7é r.
1 a

The asymptotic stability property of E; will be established by verifying the conditions of the
stochastic version of the Lyapunov second method given in [[34],Theorem 2.4],[59],

and [[34],Theorem 4.4], respectively. In order to study the qualitative properties of (7.2.1)-(7.2.3)
with respect to the equilibrium state (S7*,0,0), first, we use the change of variable that shifts the

equilibrium to the origin. For this purpose, we use the following transformation:

Ut = Su-Su"
v = (7.4.34)
Wit = Ry

By employing this transformation, system (7.2.1)-(7.2.3) is transformed into the following forms

;

(X0 S0 DU+ 0 i Vi (e =) £ (s)e s
_('Y?+G~ +8’~’)Ui§r_zu lznu rru(srr*_’_Ui?r)Vauir]dt

ua

[Zu LYo V(ST L UV AT (1 )] Jfor qg=rl=i

a=1"Viia

A g r rr —&"s rr r\NyTIT
[ l]Ull +p]f0 Vii (l’—S) z]( )e Jqu_(pl]—f_S])Ul‘]

dUi?q - ny rru ’ rrx rr ur
Z IZ ]m(S +U1)Va]dt
—[xi ZZ” V(ST UV AwE ()], for  q=rl=],j #1,

qurr‘FPz Jo V(e —s) £ (s )e_s?sds—(Pfq‘FS?)Ulrzq

e B e [ Kl S+ UV 0] for
(7.4.35)
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vy =

and

aw;1=

(X051 Xal PV — (PF ¥, + 07 +8f +d))Wi"
+Zu lznu rru( Srr* + Ui?r)vauir} dt

ua

+ [ Xals Xoty Vil (SH + UVl dwiii (1)) for  q=rl=i

a=1"Viia
[GIIV — (94 LT+ 8+ d5) Vi + T T (ST 4+ U V] di
+ Xl e ;,rZ(S”*JrU”)V"’dW;fZ( )]afor q=nrl=j,j#1i,
[yrqu”rr_ Pz +pil +8q+dq)

uet L Biia (S5 + U)WV Jdt + [Eal Kot vig (37 + Uy )Va'dwi (1)),

lia

for q#r,
(7.4.36)

[Ea Xy 0 Wi PV = pf Jo™ Vi (¢ = 8) f7 (s)e % ds — (] + of + 8))W"] dr,
for gq=rl=i

[G?}W’”rP’V” O Vi (e = 9)f17 (s)e % ds — (pff + 8, W] dt,

for =rl=j,j#i

[Y?Z’W”+p§’VJ‘f—pz Jo Vit =) £ (s)e Ssds — (pif + &)W, ]dt, for q#r
(7.4.37)

We state and prove the following lemmas that would be useful in the proofs of the stability results.

Lemma 7.4.1 LetV; : R x R, — R, be a function defined by

Vl(f88) = yX .y LX L V(E),
Vi) = (S S I e (R (7.43%
00 = (U VW and - ¢y > 0.

Then 'V € Cz’l(R3"2 x R4, Ry), and it satisfies

where

b(|I%6011)

b(IIK0I) < Vi(E30(1) < a(|I£3011) (7.4.39)

min o
1<rus<M,1<i<n,,1<a<n, | 2+ ci}
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and
M M n, ny

a(|lioll) = reruep XA 2 )IDIDY Z (U + (Vi) +

r=lu=li=la=

Proof: See [(Chapter3,Lemma 7.4.1) or ([66], Lemma 4.1)].

+(Wa)?]-

(7.4.40)

Remark 7.4.1 Lemma 7.4.1 shows that the Lyapunov function V defined in (7.4.38) is positive def-

inite, decrescent and radially unbounded ((7.4.39)) function[34, 59].

We now state the following lemma

Lemma 7.4.2 Assume that the hypothesis of Lemma 7.4.1 is satisfied. Define a Lyapunov functional

V=VI+V,

where V| is defined by (7.4.38), and

M n M n oo . t
B [ (e [ wireae) ).
,Um 0 t—s

nSLLLL

Furthermore, let

( (Y 2
Zu 122" l'um Za%z ,u +Za#r2nr ;1?'[,’ +24 :| .
e for u=ri=a
[(prr)?
uru — lgr +:utr1r+2:uta
= | e o .
fW,for u=ra#i
'(pru)Z 3
T{;‘ i 2y
ey ofor u#

1 yvM ny ru M rrv (Qrrx rr rr rr
2 =1 g=1 Z 12 llb( Hij ) i ,fOr a= l u=r

p,’ +Y; +6’+6’+d’
Lrr 1yM ny FIV ((QITH T | T rr
ru *,U--+’Z: Z: (S H +,Ll ) d
Dy M +5 X 1pf+p[f$5’+d'ta a for a#iu=r
'uyr+ ZM ' Z urv (S(_u*'u(u_,'_‘uru>+ dwr
MR G for
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(7.4.42)

(7.4.43)

(7.4.44)



and

[ (g o2
SR T e o T, .
- (Y+Gr+8r> 7f0r M:r,a:l,
[1 (o1)?
e — 5yt 4 (7.4.45)
ta — s, Jor u=ra#i o
e AR az
l(plrt;‘) +l 1T
2 7 oM T g #
— s L, JOor u r
( CrE

for some suitably defined positive number (", depending on 8, for all r,u € I'(1,M), i € I(1,n)

and a € I (1,n,). Assume that {7 <1, B < 1 and WY < 1. There exist positive numbers ¢l

ia’

Vi and @} such that the differential operator LV associated with Ito-Doob type stochastic system
(7.2.1)-(7.2.3)satisfies the following inequality

M n,
V(i) < ZZ FUE? i (Vi) + off (W]

r=1i=

Y U WV g W)

a#i
M ny
S WCAUARR AU AR (7.4.46)
u#ra=
Moreover,
LV(ER) < —cVi(&) (7.4.47)

where a positive constant c is defined by

MiN| < y<p,1<i<n,,1<a<n, { O, Wit , P }

¢ = ——=retlsizn, 1ses (7.4.48)

Max <pu<m,i<i<n,1<a<n, \Cis +2}

Proof:
The computation of differential operator[34, 59] applied to the Lyapunov function V; in (7.4.38) with

respect to the large-scale system of Ito-Doob type stochastic differential equation (7.2.1)-(7.2.3) is

as follows:
M n, M ny
w0 =Y Y [ —|—ZLV1 —|—ZZLV1 v | (7.4.49)
r=1li=1 J#i u#ra=1
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where,

(%) = 2{ nZ 1+Ci)pigVia' Vi +PiaUid' Uii” +0iaVia' Uii” +Pia Ui Vi
i=la=1
+pia Wi Wi +2prU”/ Vi (t—s) )efsf.sds—i-Zp,rV””/ VI (t—s) [l (s)e % ds
_zerrr/ VI (1 —5) £ (s)e 5 ds — 201V W
=2[(p} +d) +2(v + 0] + Vi Ui = 2(%; + 0] +8)) (U)?
=2[(cff +1)pf +2(ci + 1) + 0] +8 +d])|(Vi")* = 2(¥; +0f + 0 +8)) (Wii")?

M n, M ny
+2crr Z Z zrlizu Srr* Urr VurVrr+Clrlr Z Z :’lrau Srr* Uiiljr)Z(VaL;r)Z,
u=la= u=la=
for u=ra=i (7.4.50)
ny
ZLVI ~rr — 2{2(1+Ci Zvlzrvlrr_|_2GrrUrrUrr+2GrrvrrUrr+26rrUlzer;r+2GrrWrrWrr
a#i a#r
L2000 [ V=) ) Bds+ 20057 [ V=) fiT e s

—2pWid / Vil (e =) fi (s)e ™ ds —2[(cfy + 1)py +2(cy + 1) (phs +8,) (Vi) )?
~2(pj% +80) (Ui)? = 2(pfs +8,) (Wiy)? +2Pan’W”

—2[(PZ+d2)+2(PZ+52)]‘GZ'U”}+ZZC Z Z aib(Sia” +Uia WVpaVid

a#i v=1b=
ny ny,
+cia Z Y RS+ ULV for u=r, a#i (7.4.51)
aF#i v=1b=1
M n, M ny
Z ZLV1 ~ru Z Z {2 1+Cru VruVrrJrz uUruUrr+2,eravruUrr+2,YgtUiqui;jr
u#ra= u#ra=

+2YiaWia Wii" + 2PV /0 Vi (6 =) fia'(s)e~ % ds
—|—2p"V”‘/ Vit —s) fi (s )e*Ssts "W”‘/ Vit —s) fi (s )efszsds
=2[(cf + 1)pa+2(cig +1)(pia + 8 +di)|(Via')* = 2(piz +8) (Ui

~2(pfg + 0t + &) (Wi )? +2paVia Wit — 2[(pg + ) + 2Pl +80)IVia Uit

a’a
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ba Via

th

fi
u#ra=1

ﬁMa

ny

urv ru* ru ru
Z (St -+ U VsV,
1b=1

M n,
ZZ V(ST 4 U (VE?, for T (7.4.52)

v

By using (7.3.31) and the algebraic inequality

2
a 2
2ab < 0 +b°g(c) (7.4.53)

where a,b,c € R, and the function g is such that g(c¢) > 0. The fourteenth term in (7.4.50)-(7.4.52)

is estimated as follows:

M n, M n,
2y, ZC” (ST UV < Y Y el Bl (Si gl (8)) + 87 (8) (Vii")?
v=1b= v=1b=1

=

_|_
M=

S B2 5
0 (e * ) )
l 1 l ]

CiaBib (Sia" 85 (8,) + 87 (8,) (Vi )?

<
Il
—_
T
—_

S
S

IN
M=

=
<

333 Z B (S + UV

aF#rv=1b= aF#rv=1b=1
n M n * 2
r v SI’I' B
¢ EE o (e ) oo
aaérv:Zlbzl ANV ACARACA '
and
M n, M n, M n, M ny
2y Y Y Z Bl S UV < Y Y Y Z Bl (i 7 (81) + g7 (84)) (Vir)?
u#ra=lv=1b= uF#ra=1lv=1b=
$5 5§ am (S5 P Yo
+ ru urg( + >(V[;/u)
u#ra=1lv=1b= “ gz( ) gzr(SZ) “

(7.4.54)

Furthermore, by using Cauchy — Swartz and Hdolder inequalities and (7.4.53), the sixth, seventh and

eighth terms in (7.4.50)-(7.4.52) are estimated as follows:

2ol [ Vi) e s < P [ s)e s a7,

a

Vru € I(1,M),i € I(1,n,),a € I(1,n,),Al" € {U", V" Wi}

wa o ia a

(7.4.55)
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From (7.4.50)-(7.4.54), (7.4.49), repeated usage of (7.3.31) and inequality (7.4.53) coupled with

some algebraic manipulations and simplifications, we have the following inequality

M n, M ny, M n, u
mioty < EE{RE S 88 af £ U0y

r=1i=1 u=la a#i ll u#ra= ll

=20/ +o] +8)] (U)?

y 3 T 3 ()’
(2+ci) Zz,u Z (2+c)) —1—22 2+ +ul!
u=1a=1 a#r u=la= luu
pi+d))? (Y +0]+38 p M \
+( i - ) +4(1 zrr 1) ( lrz +c:’erZ lrlzv Srr,u” +,U”)
ii Hij Hij v=1b=
—2(cji + 1)(pf+y*+c*+8f+d-’)} (Vf’)
M nu r
| S 3Oy § O oo orean | oy
u=1la=1 a#i ll u#ra=li 11

M n, n, rr
#3585 [P BEE oy v 2000480 0

r=li=1a#i ia

rr\2 Ty 2 gy 2
[(2 Feny Pl o gy Pt da)” | P H )
/“lla Hiq ia
M n, 5
e Y Z Baip (Sia Hia + Hia) — 2(ciq + 1) (pa +Pia + 8, +dg) | (Vi)
v=1b=

N [(p?f’r)

ia

+uf{+2uf;—z<pf;+sz>] <W,-;f>2}

M n. M ny ru
A {[ e, rr+3u;g—z<p;;+sz>] Uy
ur

r=li=1uz#ra=1 ia

ru\2 u u\2 ru u\2
+d g
N [(2 Loy ®) o gy PAT D" P
Hig Hig Hiq
M n,
+Cf522 i (St iy + ) = 2(cli + 1) (Pl + pli + 85 +di) | (Vi)
v=1b=

(pzrfl;)z rr U u )2
+ + i+ 2u —2(piy +04) | (W)

M n. M ny, u

Hyyyy e

r=li=lu=1a=1 ‘ula

/ Vm (t - S))2 i;u (s)67263sds
0
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M M n, Srr* BZ
+Y Yy [ ZZ”(HW + =)+ (Viiy)*(Si + B) ] (Vi )?

il ii

b=1
M n, n, M n, SIr* BZ
Y Y BUR () + ()2 (S + B)?
r=li=laZi  |[v=1b=I Miq ia

(Via)?

M n,

Yy Y

r=li=lu#ra=1

n rux p2
Lo ST B

Y B (Sl 4+ =)+ (Vi) (S + B)?
b=1 Hiq Mig

(Via)?,

EME

(7.4.56)

where 't = g7(8%), g/ is appropriately defined by (7.4.53). For each r,u € I(1,M), i € I(1,n,) and
a € 1(1,n,), using (7.4.43), (7.4.44) and (7.4.45), we define the constants d/, ¢/%, Y/ and @} as

ai’ a’

follows:
M n, Svux +BZ M n,
dr = YY) LY qomre 87 (s
v=1b=1 ba v=1b=1

for some positive numbers ¢}, for all nu € I"(1,M), i € I(1,n) and a € I’ (1,n,).

a’

2(v +o; +6)) (1 —U), for u=ra=i
ia = 2(pir +0,) (1 —=L%), for u=ra#i (7.4.58)
2(pj+84) (1 —82), for u+r,

2(Pf +¥f +0f + 8 +df) [cff (1 =B) + (1= 3€1)]  for u=ra=i
Vi = 2(p 4P+ 8+ dl) [er(1 =T+ (1 - L&) for u=ra#i (7.4.59)
2(ps -+l + 8+ dy) [cfi (1= Tp) + (1 — 3€)]  for ur
and
2(vi +oi+0))(1 =20%), for u=ra=i,
Qg = 207 4+8)(1—20™),  foru=r,a#1i, (7.4.60)
2(pig +85)(1 —203), for u#r
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where L7, 207 057 are given in (7.4.43), (7.4.44), (7.4.45) and

a’ a’

( (2

22Xl Yot M+ e, (24 ,’5) +Zﬁ4 1 Xy (2efy) b i
(p{+y’+o*+8{+d;)
)2 I ol +87)2 2 N2 ot
(plyr.rl) 4l T 2 +7(Z'r.3 +3 (Z'r_l J5 i (s)e > ds )
_|_ il i i ii ,for l/t:r,a:l,

(pI+Yi+0l+8/+d!)
ru
eia -

(2+C") (p'?r) +2u rr+(Pa+dg) +4 (P,a ) +/J"+’; p% fo f,f{( ) —28s g .
= (p;+p,’;+6’+dr) Jfor u=ra#i

Hig

P+ )

,for ur

) ru 5u 2 oo -~
[(2+c;,-'>< G oy S g Oy 3O o e Zagxdkv]
a

From (7.4.41), (7.4.42), (7.4.56), (7.4.57), the differential operator LV [34, 59] applied to the Lya-

punov functional (7.4.41), and some further algebraic manipulations we have the following inequal-

ity
M n,
ZZ {lo5f U +wiH) (Vi)
r=1i=
o (Wir)?) Z (UL + Wi (Vi)
a#r

M n,
+ol (W) +ZZ (UL + Wi (Vi)?

u#ra=1
+ ol (W)} (7.4.61)

Under the assumptions on (), 20" and 207

a’ a’

it is clear that ¢;}, y;/ and @} are positive for suitable
choices of the constants ¢;; > 0. Thus this proves the inequality (7.4.46). Now, the validity of

(7.4.47) follows from (7.4.46) and (7.4.39), that is,

LV (500) < —cVi(300),

n'urll<ru<M A<i<np,1<a<ny {¢ ia 7“’{57(‘)”‘}

maxi<,u<m,1<i<nr,1<a<ny { +2}

We now formally state the stochastic stability theorems for the disease free equilibria.

. This completes the proof.

where ¢ =

Theorem 7.4.3 Givenr,uc I(1,M), i € I(1,n,) and a € I(1,n,). Let us assume that the hypotheses
of Lemma 7.4.2 are satisfied. Then the disease free solutions E}!', are asymptotically stable in the

large. Moreover, the solutions E; are exponentially mean square stable.
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Proof:
From the application of comparison result[34, 59], the proof of stochastic asymptotic stability fol-
lows immediately. Moreover, the disease free equilibrium state is exponentially mean square stable.

We now consider the following corollary to Theorem 7.4.3.

Corollary 7.4.4 Let r € I(1,M) and i € I(1,n,). Assume that 6} =+ =0, for all r € I(1,M) and
iel(l,n,).

¥ :
; for u=ri=a
[EA ot i 2u]
(plrar)2+ i
W = wlr THiE T2 Hia . (7.4.62)
’W,f{)r u:r,a#l
(pz%t)z_i_ rr+§ ru
T THi T 2Hia
ey Jor u#n

1 yvM ny o ru 1M Ny REFV(QIrk, ;Y| rr 1 grr
3 Yumt Ly Mg +5 Yom1 Xy Biip (Si"wiif +uif )+ 5 dif

,for a=iu=r

PO, df
1,rr 1 vM ny rrV(Qrrs, rr rr 1 grr
u ST YV YT B (ST T )+ 5 dT .
uy = S Db B Sl W) 20 for g ot fu=r (7.4.63)
a a a a
Ly 1 : , L our
b+ AT BT i) A
Pi+Piy +04+dy ’ )
and
o .
i ,for u=ra=i,
1
|3 Xy oy st
ru 1 (o 3Tt
Wi, = |2y 20T ¥ . vy (7.4.64)
 (p+oy) Jor u=rnazt,
l(p;g)z_,’_l 1T
2 7 T T
ey for u#r

The equilibrium state Ej| is stochastically asymptotically stable provided that L}, 207} <1 and
P <1, forallu e I"(1,M) and a € I (1,n,).

Proof: Follows immediately from the hypotheses of Lemma 7.4.2,( letting 6} = v; = 0), the conclu-

sion of Theorem 7.4.3 and some algebraic manipulations.

Remark 7.4.2 The presented results about the two-level large scale delayed SIR disease dynamic
model depend on the underlying system parameters. In particular, the sufficient conditions are al-
gebraically simple, computationally attractive and explicit in terms of the rate parameters. As a
result of this, several scenarios can be discussed and exhibit practical course of action to control the
disease. For simplicity, we present an illustration as follows: the conditions of 6 =, = 0,Vr,i

in Corollary 7.4.4 signify that the arbitrary site s; is a ’sink’ in the context of compartmental
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systems[28, 29] for all other sites in the inter and intra-regional accessible domain. This sce-
nario is displayed in Figure 7.1. The conditions U}/ <1 and 20}/ < 1 exhibit that the average
life span is smaller than the joint average life span of individuals in the intra and inter-regional
accessible domain of site si. Furthermore, the conditions 07" < 1,VYu € I(1,M),a € I(1,n,), and
U <1, < IVu=ra+#i, and Yu#raclI(l,n,), signify that the magnitude of disease
inhibitory processes for example, the magnitude of the recovery process is greater than the disease
transmission process. A future detailed study of the disease dynamics in the two scale network dy-
namic structure for many real life scenarios using the presented two level large-scale delay SIR

disease dynamic model will appear elsewhere.

() ()
e}“b

Figure 7.1: Shows that residents of site s; are present only at their home site s;. Hence they isolate
every site from their inter and intra regional accessible domain C(s7). Site s/ is a ’sink’ in the context
of the compartmental system[28, 29]. The arrows represent a transport network between any two
sites and regions. Furthermore, the dotted lines and arrows indicate connection with other sites and

regions.

Remark 7.4.3 The stochastic delayed epidemic model (7.2.1)-(7.2.3) is a general representation
of infection acquired immunity delay in a two-scale network population structure. The stochastic
delayed epidemic model with temporary immunity period (5.2.1)-(5.2.3) studied in Chapter 5 is a
special case of (7.2.1)-(7.2.3) when we let the probability density function of the immunity period,
"(s)=08(s—T),Vruecl(1,3),Yi,a € I(1,3), where 8 is the Dirac d-function[83].

ia
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7.5 Conclusion

The developed two-scale network delayed epidemic dynamic model characterizes the dynamics of
an SIR epidemic in a population with various scale levels created by the heterogeneities in the
population. Moreover, the disease dynamics is subject to random environmental perturbations at
the disease transmission stage of the disease. Furthermore, the SIR epidemic confers varying time
acquired immunity to recovered individuals immediately after recovery. This work provides a math-
ematical and probabilistic algorithmic tool to develop different levels nested type disease transmis-
sion rates, the variability in the disease transmission process as well as the distributed time delay
in the framework of the network-centric Ito-Doob type dynamic equations. In addition, the concept
of distributed natural immunity time delay is explored for the first time in the context of complex
scale-structured type human meta-populations.

The model validation results are developed and a positively self-invariant set for the dynamic
model is defined. Moreover, the globalization of the positive solution process existence is estab-
lished by applying an energy function method. In addition, using the Lyapunov functional technique,
the detailed stochastic asymptotic stability results of the disease free equilibria are also exhibited in
this Chapter. Moreover, the system parameter dependent threshold values controlling the stochastic
asymptotic stability of the disease free equilibrium are also defined. Furthermore, the analysis of the
general stochastic dynamic model are illustrated in a controlled quarantine strategy. We note, further
detail study of the stochastic SIR human epidemic dynamic model with varying immunity period for
two scale network dynamic populations with underlying different real life human mobility patterns

will appear in our future study.
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