
University of South Florida University of South Florida

Digital Commons @ University of South Florida Digital Commons @ University of South Florida

Graduate Theses and Dissertations Graduate School

6-15-2012

A Location-Aware Architecture Supporting Intelligent Real-Time A Location-Aware Architecture Supporting Intelligent Real-Time

Mobile Applications Mobile Applications

Sean J. Barbeau
University of South Florida, sjbarbeau@gmail.com

Follow this and additional works at: https://digitalcommons.usf.edu/etd

 Part of the American Studies Commons, Artificial Intelligence and Robotics Commons, and the

Computer Engineering Commons

Scholar Commons Citation Scholar Commons Citation
Barbeau, Sean J., "A Location-Aware Architecture Supporting Intelligent Real-Time Mobile Applications"
(2012). Graduate Theses and Dissertations.
https://digitalcommons.usf.edu/etd/3968

This Dissertation is brought to you for free and open access by the Graduate School at Digital Commons @
University of South Florida. It has been accepted for inclusion in Graduate Theses and Dissertations by an
authorized administrator of Digital Commons @ University of South Florida. For more information, please contact
scholarcommons@usf.edu.

http://scholarcommons.usf.edu/
http://scholarcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/etd
https://digitalcommons.usf.edu/grad
https://digitalcommons.usf.edu/etd?utm_source=digitalcommons.usf.edu%2Fetd%2F3968&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/439?utm_source=digitalcommons.usf.edu%2Fetd%2F3968&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.usf.edu%2Fetd%2F3968&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.usf.edu%2Fetd%2F3968&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu

A Location-Aware Architecture Supporting Intelligent Real-Time Mobile Applications

by

Sean J. Barbeau

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
Department of Computer Science and Engineering

College of Engineering
University of South Florida

Co-Major Professor: Rafael Perez, Ph.D.
Co-Major Professor: Miguel Labrador, Ph.D.

Hyun Kim, Ph.D.
Thomas Weller, Ph.D.
Dewey Rundus, Ph.D.

Date of Approval:
June 15, 2012

Keywords: global positioning systems, location-based services,
 mobile phone, Java Micro Edition, Android

Copyright © 2012, Sean J. Barbeau

DEDICATION

This work is dedicated to my family and friends, especially my wonderful, beautiful,

loving, and supportive wife Carlene. I love you more than you will ever know. This is

also dedicated to Zach, my new son – I hope that this work will inspire you and show that

with hard work, dedication, and the support of loved ones anything is possible

.

ACKNOWLEDGMENTS

I would like to thank my major professors, Dr. Rafael Perez and Dr. Miguel Labrador, for

their mentoring, patience, and guidance throughout my untraditional doctoral journey. I

would also like to acknowledge the feedback from my committee, including Dr. Rafael

Perez, Dr. Miguel Labrador, Dr. Hyun Kim, Dr. Thomas Weller, and Dr. Dewey Rundus,

who helped shape and revise this research.

I would like to thank Phil Winters, my supervisor at the Center for Urban Transportation

Research (CUTR), for his trust and supervision as I built my research career. Thank you

to Nevine Georggi and Ed Hillsman for their partnership on many research projects and

the rest of the CUTR Transportation Demand Management Team for their support and

collaborations. Thank you as well to CUTR Management for their support of the many

research projects that I have been a part of at CUTR. I would also like to thank the many

Research Experience for Undergraduates (REU) and graduate students who have

contributed in many different ways to the research projects I have been a part of

surrounding the work in this dissertation: Alfredo Perez, Isaac Taylor, Marcy Gordon,

Khoa Tran, Leon Augustine, David Aguilar, Josh Kuhn, Ismael Roman, Oscar Lara,

Narin Persad, Dmitry Belov, Jeremy Weinstein, Paola Gonzalez, Tiffany Burrell, Francis

Gelderloos, Joksan Flores, Jorge Castro, Richard Meana, Theo Larkins, Hector Tosado,

and Marcel Munoz.

I would like to thank the organizations that contributed funding to the many research

projects I have worked on, especially the Travel Assistance Device and TRAC-IT

projects that built on my dissertation research, including the National Center for Transit

Research, Florida Department of Transportation, U.S. Department of Transportation

Research and Innovative Technology Administration, Federal Transit Administration,

Transportation Research Board, and National Science Foundation.

I am grateful for the support of Sprint-Nextel’s Application Developer program, and in

particular the assistance of Ryan Wick, Sprint’s Lead Developer Advocate, in providing

access to the Location API on Sprint devices as well as facilitating the donation of

cellular service and devices to USF that supported our research projects.

Last but certainly not least, I would like to thank my family and friends for their love and

moral support throughout my years as a full and part-time student. Thank you to my

wonderful wife Carlene, without whom this dissertation and the rest of my graduate work

never would have been completed – she has put in more hours supporting me than I have

working on my research. Thanks to Zach, my son, for being my inspiration. Thank you

to my loving and supportive Mom and Dad, who provided crucial support and instilled a

love of learning early in my life, and Momma Brown and Matt who have provided love

and support in my college and post-college years. Thank you to my brother Ryan, for his

many years of friendship and humor, and sister-in-law Daphna for her constant moral

support despite juggling med school (Congrats Dr. Daphna!). Thanks to Sugar (I miss

you!) for her companionship during the many hours studying, even if she spent most of it

barking at squirrels.

i

TABLE OF CONTENTS

LIST OF TABLES ... iii

LIST OF FIGURES .. v

ABSTRACT ... xi

CHAPTER 1: INTRODUCTION ... 1
1.1 Mobile Applications.. 2
1.2 Positioning Technologies .. 2
1.3 Location-Aware Mobile Applications .. 4

1.3.1 Cross-Platform Application Environments 5
1.3.2 Multitasking Virtual Machines ... 6

1.4 Problem Statement .. 7
1.5 Contributions... 11
1.6 Structure of Dissertation ... 14

CHAPTER 2: KNOWN LBS ARCHITECTURES .. 15
2.1 Commercial LBS Applications ... 15
2.2 Known Location-Aware Architectures ... 18

CHAPTER 3: PROPOSED ARCHITECTURE – LOCATION-AWARE
INFORMATION SYSTEMS CLIENT (LAISYC) .. 29

3.1 Note to Reader .. 29
3.2 Architecture Overview .. 30
3.3 Mobile Device-Side Components ... 31

3.3.1 Positioning Systems Management Modules 33
3.3.1.1 GPS Auto-Sleep ... 33
3.3.1.2 Location Data Signing .. 49

3.3.2 Communications Management Modules 51
3.3.2.1 Session Management .. 51

3.3.2.1.1 Available Communication Protocols 52
3.3.2.1.2 LAISYC Application Data Transport 54
3.3.2.1.3 LAISYC Location Data Transport 59
3.3.2.1.4 Device-Side Implementation of Session
Management .. 60

3.3.2.2 Adaptive Location Data Buffering 63
3.3.2.3 Critical Point Algorithm ... 70
3.3.2.4 Location Data Encryption .. 79

ii

3.4 Server-Side Components .. 83
3.4.1 Communications Management ... 84

3.4.1.1 Session Management .. 84
3.4.1.2 Adaptive Location Data Buffering 86

3.4.2 Data Analysis .. 86
3.4.2.1 Critical Point Algorithm ... 86
3.4.2.2 Spatial Analysis .. 87

CHAPTER 4: EVALUATION ... 89
4.1 Note to Reader .. 89
4.2 Evaluation Overview .. 90
4.3 LAISYC Component Evaluation .. 90

4.3.1 GPS Auto-Sleep .. 91
4.3.2 Location Data Signing .. 117
4.3.3 Session Management and Adaptive Location Data Buffering 121
4.3.4 Critical Point Algorithm ... 129
4.3.5 Location Data Encryption ... 150

4.4 Innovative Location-Aware Applications Developed Using LAISYC .. 151
4.4.1 TRAC-IT ... 151
4.4.2 Travel Assistance Device (TAD) .. 161

CHAPTER 5: SUMMARY AND CONCLUSIONS .. 179
5.1 Note to Reader .. 179
5.2 Summary of Problem Statement and Needs ... 179
5.3 Summary of Contributions .. 181
5.4 Future Work .. 187

5.4.1 Location-Aware Mobile App Development 187
5.4.2 Potential LAISYC Improvements ... 188

5.4.2.1 GPS Auto-Sleep ... 188
5.4.2.2 Critical Point Algorithm ... 192
5.4.2.3 Location Data Buffering ... 192
5.4.2.4 Position Estimation .. 193
5.4.2.5 Privacy Filter .. 193

LIST OF REFERENCES .. 196

APPENDIX A. REPRINT PERMISSIONS .. 212

ABOUT THE AUTHOR ... END PAGE

iii

LIST OF TABLES

Table 1 - The Location-Aware Information SYstems Client (LAISYC) modules
are designed to meet the various critical needs of intelligent real-time
mobile applications in Location-Based Services ...12

Table 2 - SOAP-encoded messages add a significant amount of overhead to web
service requests, approximately 3.7 times as many characters, as shown
in this example ...56

Table 3 - GPS Auto-Sleep state machine values chosen for experimentation95

Table 4 - Horizontal error statistics for indoor GPS accuracy tests109

Table 5 - While the positional error between the two devices is substantially
different, the error in speed is much less dramatic ..110

Table 6 - When using the 0.1 meters per second min_speed_threshold, the Critical
Point Algorithm is able to produce significant data filtering savings
with only a slight impact on accurate walking paths138

Table 7 - Resulting statistics from a walk and a car trip that were both processed
using the Critical Point Algorithm with different angle thresholds147

Table 8 – The Critical Point Algorithm is able to reduce GPS datasets by more
than 77% on average while maintaining an average distance error
percentage under 10%. ..148

Table 9 - TRAC-IT was used as part of a USDOT-funded research project to
collect over 4 million GPS data points from 30 users over 2 months157

Table 10 - 95% of sessions had less than 3.95% of lost UDP packets157

Table 11 - When TRAC-IT used LAISYC, device battery life nearly doubled
while reducing overall location data packet loss by 2.16% and adding
encryption ..158

Table 12 - Field tests of the TAD app in Tampa, Florida produced ideal prompts
87% of the time at random stops..173

iv

Table 13 - Field tests of TAD with STAGES students were more challenging,
primarily due to close proximity of stops near the USF campus174

Table 14 - The improved bus stop detection algorithm delivered ideally-timed
alerts to riders in 33 of 33 tests ..176

v

LIST OF FIGURES

Figure 1 - The LAISYC architecture consists of software on the mobile device
and web application server, with a database server holding persistent
server-side data ..31

Figure 2 - LAISYC mobile phone-based modules ..32

Figure 3 - High-sensitivity GPS receivers can acquire a GPS position more
rapidly, and with less dependence on the time elapsed since the most
recent GPS fix, than low-sensitivity receivers ...36

Figure 4 - GPS Auto-Sleep uses a state machine with various logic evaluations
that control the transition between states, which represent changes to
the GPS sampling interval values ..39

Figure 5 - Navigation mode for GPS Auto-Sleep controls GPS sampling interval
directly based on a distance-to-goal (e.g., next turn for real-time
driving directions) ..47

Figure 6 - Relationships between HTTP, TCP, UDP, and SOAP as networking
protocols ...53

Figure 7 - The Session Management modules use HTTP for application data and
UDP for location data for communication between the mobile device
and server ...61

Figure 8 - A timeline of Location Data Buffering which shows a TCP failure that
results in a series of buffered location data fixes, which are transmitted
to the server on the next successful TCP transmission67

Figure 9 - Adaptive Location Data Buffering occasionally checks for an open
connection with the server via TCP to increase the probability of
successful UDP transmissions ...69

Figure 10 - The Critical Point Algorithm filters out GPS fixes that are not
necessary to recreate the user's path ..74

vi

Figure 11 - Azimuth calculations are used in the Critical Point Algorithm to
determine change in direction ..75

Figure 12 - The Critical Point Algorithm maintains a reference to three points that
are used to determine whether the second of the three points is a
critical point ...75

Figure 13 - LAISYC uses a hybrid cryptosystem to protect the exchange of the
AES key using HTTPS with SSL, and then uses the AES key to
encrypt the location data sent over UDP..81

Figure 14 - 128bit AES is used to encrypt the location data in the UDP payload,
with the exception of the session ID which is used by the server to
identify the correct symmetric key per device session82

Figure 15 - LAISYC server-side modules ...83

Figure 16 - Even modest increases in the interval between GPS fixes produce
extended battery life on the order of hours ..93

Figure 17 - A growth function for the state[i]interval values was chosen to grow like
an x2 or 2x function until it reaches the middle state, at which point it
quickly accelerates in growth beyond an x3 function97

Figure 18 - Sample GPS Auto-Sleep values are chosen for an exponential growth
in the interval between GPS fixes, while the timeout values have an
upper-bound of 32 seconds; if a GPS fix cannot be acquired, the
interval + timeout line illustrates an upper bound for the total time
elapsed at each state. ..98

Figure 19 - The largest potential loss of beginning travel path is worst-case
scenario when the user travel path is sampled just before they begin
moving, since the next GPS sample occurs max_gps_activitystate[n]

seconds later ...99

Figure 20 – When high-sensitivity GPS is able to acquire a fix, it tends to deliver
this information close to the expected interval value with an average
delay of only 9 seconds. ...102

Figure 21 - Proactive GPS scheduling (left) starts the GPS hardware slightly
before the scheduled interval value expires, while reactive GPS
scheduling (right) waits until the interval period has completely
expired before attempting a GPS fix. ...103

vii

Figure 22 - GPS Auto-Sleep can miss a substantial part of the beginning trip path
if it must transition through all states before starting to record high-
resolution travel behavior ..104

Figure 23 - Speed thresholds for the GPS Auto-Sleep state machine are selected
using observations of speed when stationary and indoors106

Figure 24 - GPS Auto-Sleep can quickly react to real movement using the
high_speed_threshold and rapidly begin sampling GPS via direct
transitions to state[0] to reflect a more accurate travel path107

Figure 25 - Scatter plots of indoor horizontal positional accuracy tests109

Figure 26 - Reliability of accuracy estimates for individual assisted GPS data
points was shown to be poor on the evaluated devices, the Motorola
i580 (left) and Sanyo 7050 (right) ...111

Figure 27 - To evaluate the accuracy of GPS Auto-Sleep, the ground truth state of
traveling was manually coded against the behavior of the state
machine ..113

Figure 28 - GPS Auto-Sleep is able to successfully track the moving or stationary
state of the user with a high degree of accuracy. ...115

Figure 29 - Execution time for key generation using DSA and RSA asymmetric
cryptography ..118

Figure 30 - Signature generation test results show that Location Data Signing
using DSA and RSA is feasible for implementation on real mobile
devices..119

Figure 31 - Estimated battery life with and without Location Data Signing120

Figure 32 - The information exchanged between the mobile device and server for
the HTTP POST vs. XML-based JAX-RPC battery life tests124

Figure 33 - XML-based JAX-RPC mobile device to server communication clearly
has a substantial negative impact on mobile device battery life when
compared to HTTP-POST ..124

Figure 34 - The location data format used for the payload contents of UDP and
TCP packets in the power consumption tests ..126

viii

Figure 35 - (a) While at 4 second transmission intervals TCP and UDP have
similar power consumption, (b) at 10 second transmission intervals it
is evident that TCP consumes approximately 38% more power than
UDP..127

Figure 36 - a) All GPS data points generated from a phone are shown on the left,
while b) only the critical points generated by the Critical Point
Algorithm are shown in the right ...129

Figure 37 - The Critical Point Algorithm can more than triple battery life by
filtering GPS data and transmitting at an interval of 60 seconds instead
of 15 seconds..131

Figure 38 - The Critical Point Algorithm maintains a constant memory
requirement during execution by using at most three location data
pointers ...133

Figure 39 - We observed the GPS speed recorded while a user was casually
walking, which includes some speed values of 0 meters per second.............135

Figure 40 - When comparing a) all points to b) critical points using a
min_speed_threshold of 0.1 meters per second, the general walking
path of the user is preserved, with some filtering at the beginning of
the trip (bottom left of each image). ..136

Figure 41 - Over 97% of the GPS drift shown here at an indoor stationary location
can be filtered out by the Critical Point Algorithm when using a 0.1
meters per second min_speed_threshold ...138

Figure 42 - Sampled GPS data points create an approximated path of the user with
some uncertainty ..139

Figure 43 - The distance of the path generated from Critical Point Algorithm will
always be shorter or equal to the distance of the path using all GPS
data points ..141

Figure 44 - Running the Critical Point Algorithm with increasing angle thresholds
gradually reduces the number of points that represent the line, which
increases the distance error percentage ..143

Figure 45 - As the angle threshold for the Critical Point Algorithm increases, there
is a general trend towards fewer critical points being generated and an
increase in the distance error percentage for both walking and car144

ix

Figure 46 - For car trips, the Critical Point Algorithm is able to dramatically
reduce the full GPS dataset, a), to far fewer critical points , b), with
lower angle_threshold values because of longer straight paths145

Figure 47 - Location Data Encryption using 128-bit AES encryption for UDP
payloads is feasible on mobile devices, although it does have a slight
impact on battery life ...150

Figure 48 - The TRAC-IT mobile application is based on the LAISYC framework
to enable simultaneous travel behavior data collection and real-time
location-based services ..153

Figure 49 - The TRAC-IT mobile application provides a user interface to record
input from the individual for mode of transportation, purpose, and
vehicle occupancy as well as location data ..155

Figure 50 - Path Prediction compares the traveler's real-time location, shown as
yellow push-pin markers, against paths from the traveler’s travel
history, shown as yellow shaded buffers, to predict the immediate
travel path...159

Figure 51 - Path Prediction successfully demonstrated that real-time location-
based messages could be sent to the phone using LAISYC and a
history of the traveler’s behavior ...160

Figure 52 - The Travel Assistance Device mobile application alerts the transit
rider of an upcoming destination bus stop ...162

Figure 53 - TAD was implemented using the LAISYC framework to support real-
time location-aware services ..164

Figure 54 - New transit trip itineraries can be created for the TAD mobile app
user via the TAD website ...165

Figure 55 - Travel Assistance Device mobile app interface that alerts the rider
when to exit the bus ...166

Figure 56 - The initial bus stop detection algorithm for the Pull the Cord Now
alert was defined by a radius surrounding the destination stop167

Figure 57 - The TAD website shows real-time location updates from the LAISYC
framework supporting the TAD mobile and web app170

x

Figure 58 - LAISYC Spatial Analysis module on the server compares the real-
time location of the user against spatial buffers surrounding the rider’s
planned route, to determine if the user has become lost171

Figure 59 - The planned travel path of the bus is used to detect if the rider is lost,
versus an estimated path created by connecting bus stop locations,
since an estimated path can produce false-positive lost alerts172

Figure 60 - Some TAD alerts were given early or late due to incorrectly geocoded
bus stops, where the actual bus stop position (marker "A") differed
from the database location of the bus stop (blue bus icon)174

Figure 61 - An improved algorithm for notifying the user when to exit the bus is
based on detecting the departure from the second-to-last bus stop [126]176

Figure 62 - Battery life issues related to GPS appear to be an even bigger
challenge with smart phones, including Android devices185

Figure 63 - Future work on LAISYC can include the addition of two new
modules: Privacy Filter and Position Estimation ...188

xi

ABSTRACT

This dissertation presents LAISYC, a modular location-aware architecture for intelligent

real-time mobile applications that is fully-implementable by third party mobile app

developers and supports high-precision and high-accuracy positioning systems such as

GPS. LAISYC significantly improves device battery life, provides location data

authenticity, ensures security of location data, and significantly reduces the amount of

data transferred between the phone and server. The design, implementation, and

evaluation of LAISYC using real mobile phones include the following modules: the GPS

Auto-Sleep module saves battery energy when using GPS, maintaining acceptable

movement tracking (approximately 89% accuracy) with an approximate average doubling

of battery life. The Location Data Signing module adds energy-efficient data authenticity

to this architecture that is missing in other architectures, with an average approximate

battery life decrease of only 7%. The Session Management and Adaptive Location Data

Buffering modules also contribute to battery life savings by providing energy-efficient

real-time data communication between a mobile phone and server, increasing the average

battery life for application data transfer by approximately 28% and reducing the average

energy cost for location data transfer by approximately 38%. The Critical Point

Algorithm module further reduces battery energy expenditures and the amount of data

transferred between the mobile phone and server by eliminating non-essential GPS data

(an average 77% reduction), with an average doubling of battery life as the interval of

xii

time between location data transmissions is doubled. The Location Data Encryption

module ensures the security of the location data being transferred, with only a slight

impact on battery life (i.e., a decrease of 4.9%). The LAISYC architecture was validated

in two innovative mobile apps that would not be possible without LAISYC due to energy

and data transfer constraints. The first mobile app, TRAC-IT, is a multi-modal travel

behavior data collection tool that can provide simultaneous real-time location-based

services. In TRAC-IT, the GPS Auto-Sleep, Session Management, Adaptive Location

Data Buffering, Critical Point algorithm, and the Session Management modules all

contribute energy savings that enable the phone’s battery to last an entire day during real-

time high-resolution GPS tracking. High-resolution real-time GPS tracking is critical to

TRAC-IT for reconstructing detailed travel path information, including distance traveled,

as well as providing predictive, personalized traffic alerts based on historical and real-

time data. The Location Data Signing module allows transportation analysts to trust

information that is recorded by the application, while the Location Data Encryption

module protects the privacy of users’ location information. The Session Management,

Adaptive Location Data Buffering, and Critical Point algorithm modules allow TRAC-IT

to avoid data overage costs on phones with limited data plans while still supporting real-

time location data communication. The Adaptive Location Data Buffering module

prevents tracking data from being lost when the user is outside network coverage or is on

a voice call for networks that do not support simultaneous voice and data

communications. The second mobile app, the Travel Assistance Device (TAD), assists

transit riders with intellectual disabilities by prompting them when to exit the bus as well

as tracking the rider in real-time and alerting caregivers if they are lost. In the most

xiii

recent group of TAD field tests in Tampa, Florida, TAD provided the alert in the ideal

location to transit riders in 100% (n = 33) of tests. In TAD, the GPS Auto-Sleep, Session

Management, Adaptive Location Data Buffering, Critical Point algorithm, and the

Session Management modules all contribute energy savings that enable the phone’s

battery to last an entire day during real-time high-resolution GPS tracking. High-

resolution GPS tracking is critical to TAD for providing accurate instructions to the

transit rider when to exit the bus as well as tracking an accurate location of the traveler so

that caregivers can be alerted if the rider becomes lost. The Location Data Encryption

module protects the privacy of the transit rider while they are being tracked. The Session

Management, Adaptive Location Data Buffering, and Critical Point algorithm modules

allow TAD to avoid data overage costs on phones with limited data plans while still

supporting real-time location data communication for the TAD tracking alert features.

Adaptive Location Data Buffering module prevents transit rider location data from being

lost when the user is outside network coverage or is on a voice call for networks that do

not support simultaneous voice and data communications.

1

CHAPTER 1: INTRODUCTION

Mobile phones have become one of the most ubiquitous computing devices in modern

history. As a result of mass production, cellular carrier subsidies, and decreasing

technology costs, more people have access to mobile phones today than any other time in

world history. As of late 2011, there were an estimated 5.9 billion mobile-cellular

subscriptions worldwide yielding a global penetration rate of 87%, with a 79%

penetration rate in developing countries [1].

In developed countries such as the United States, mobile phones are becoming so

common that wireless penetration is reaching the point of saturation with only a small

percentage of the population not owning mobile phones. For example, in the United

States as of June 2011 there are 322.9 million mobile subscriptions with a penetration

rate of 102.4%, indicating that a large number of individuals have multiple subscriptions

[2]. A contributing factor to this growth is that many individuals are giving up their

landline telephones in favor of mobile phones. In April 2011, 26.6% of U.S. households

were wireless–only, meaning that they use only a cell phone instead of a landline

telephone to make calls [3]. As a result of increasing penetration and reliance on cell

phones for a variety of everyday tasks, mobile phones have become important devices to

many individuals around the world. A 2009 survey indicates that 82% of Americans

never leave their house without their phone, while 42% stated “they cannot live without

their phone” [4].

2

1.1 Mobile Applications

Cell phones have become immensely popular not only for their ability to make phone

calls, but also for their ability to perform general computing tasks that previously

required expensive personal computers. Perhaps one of the most popular features of

modern smart phones is the ability to execute mobile applications. Mobile applications,

or “apps,” are software products that are typically developed by a third-party that does

not have a direct relationship with the device manufacturer (e.g., HTC, Samsung,

Motorola, Apple, Research in Motion), cellular carrier (e.g., Sprint-Nextel, AT&T,

Verizon Wireless), or operating system vendor (e.g., Google, Microsoft). Instead, the

mobile app is created by software engineers and then directly sold and distributed to the

customer, often through online software vending services such as the Google Android

Market [5], Apple AppStore for the iPhone [6], Blackberry AppWorld [7], Amazon

AppStore for Android [8], and GetJar for Java Micro Edition and Android [9]. As a

result of these vending services and an increasing availability of smart phones, the

number of mobile apps downloaded has proliferated over the last few years. An

estimated 29 billion apps were downloaded worldwide in 2011 [10], an astounding

increase of 20 billion downloads since 2010 [10]. Revenues for app developers are

expected to increase rapidly over the next few years, with an estimated global app

revenue of $7.3 billion in 2011 and $36.7 billion by 2015 [11].

1.2 Positioning Technologies

One key difference between mobile phones and desktop computers is that mobile phones

constantly change geographic location, unlike desktop computers, which are tethered to a

single physical location for months or years. Even laptops do not have the level of

3

mobility that cell phones offer. Laptops can be moved from one place to another, but

typically they are in operation for only several hours at a time and then shut down before

being moved. In contrast, mobile phones typically remain on during the entire day and

can be actively used when the user is in motion.

During the emergence of cell phones in the late 1990s, the U.S. Federal Communication

Commission (FCC) became concerned that extreme mobility of cell phones could cause

problems for emergency responders attempting to locate a mobile 911 caller, since,

unlike a landline phone that is associated with a street address, little is known about the

real-time location of a mobile phone. Even if the 911 operator knows what cellular tower

a mobile phone is communicating with, this information is of little help to responders

since the coverage area of a single cell tower can be several square miles. As a result of

the lack of positional knowledge for mobile 911 callers, the FCC issued the E911

mandate, requiring cellular carriers to implement technologies that could accurately

locate mobile 911 callers within 50 to 300 meters, depending on the underlying

technology [12]. U.S. carriers tested a wide variety of positioning technologies for their

networks. Global System for Mobile Communication (GSM)-based U.S. carriers such as

AT&T and T-Mobile chose network-based Uplink Time Difference of Arrival (U-

TDOA) to support E911 position requests [13]. Code Division Multiple Access

(CDMA)-based U.S. carriers such as Sprint and Verizon chose handset-based Global

Positioning System (GPS) solutions for devices on their networks because GPS

technology was already integrated into the network as a time reference for CDMA-based

wireless communications [13, 14].

4

Since U.S. cellular carriers were mandated to invest a significant amount of time, effort,

and funds into positioning technology implementations, carriers immediately began to

investigate commercial applications of these technologies for mobile phone users so they

could recover a portion of their investments through user fees. Early deployments of

these technologies for commercial purposes become known as location-based services

(LBS), which are a general class of services that provide users with some type of

information based on their real-time or historical location.

Of the positioning technologies implemented for E911 purposes, GPS-based solutions are

by far the most accurate, with an estimated 3-5 meters of positional accuracy under ideal

conditions [15-19]. Since this level of accuracy is also sufficient to provide commercial

services such as real-time driving directions to mobile phone users, GPS became an

attractive technology not only for E911 purposes but also for general consumer LBS. As

a result, U.S. T-Mobile and AT&T have since implemented GPS-based positioning

technologies in their handsets in order to provide commercial services based on the

technology [14]. Global trends of GPS penetration in handsets to support commercial

services have also surged upwards, with 79.9% of cell phones shipped in the fourth

quarter of 2011 (318.3M) having integrated GPS [20].

1.3 Location-Aware Mobile Applications

With the availability of positioning technologies such as GPS in mobile phones, and the

advent of apps, third-party application developers became interested in utilizing location

information within their applications. There were two major developments in mobile

phones that made widely deployable location-aware mobile applications possible: the

5

emergence of cross-platform application environments for mobile phones such as Java 2

Micro Edition, now referred to as Java Micro Edition (Java ME), and the ability to run

applications in the background (i.e., a Multitasking Virtual Machine). Both

developments are discussed below.

1.3.1 Cross-Platform Application Environments

The diversity and rapid evolution of mobile phone hardware creates a significant

challenge for application developers. If the developer were to design and implement

software that directly interfaced with the hardware and operating system for each phone,

they would be forced to redesign the application for nearly every single mobile phone

model that is released by each manufacturer, an extremely costly task. To ease the

burden on developers and create a sustainable mobile application ecosystem, applications

platforms that hide some of the lower-level detail of the hardware and operating system

(OS) implementation have emerged. Instead of directly accessing these hardware and OS

components, application instead interact with interfaces that abstract the underlying

implementation details. This design allows the underlying hardware or OS to change and

evolve without modifying the higher-level interfaces. Applications can therefore

indirectly interact with the underlying hardware without the burden of rapidly

redesigning their applications for every new mobile phone model.

Java ME, designed after the cross-platform Java virtual machines initially created for

portability of desktop and server applications, was the first cross-platform application

environment to emerge for mobile phones. Google’s Android is a newer cross-platform

environment for smart phones that has recently emerged, although in this dissertation the

6

majority of focus is on Java ME since at the time of this research Java ME was the

primary cross-platform environment that was widely accepted in the telecommunications

industry [21, 22].

One drawback to the standardization of high-level application programming interfaces

across multiple hardware and operating system platforms is that there must be consensus

in the industry for how this interface is designed, and this can take time to develop. For

example, the introduction of positioning technologies in mobile phones for E911

purposes in the late 1990s and early 2000s did not mean that this technology was

immediately available to third-party application developers. In fact, a location

application programming interface (API) was not standardized for Java ME until

September 2003 [23]. The Java Specification Request (JSR) 179 Location API for Java

ME, and the subsequent JSR 293 Location API 2.0, defined a set of functions that a

mobile application developer could use to access location information on a Java ME

handset that implemented the JSR 179 or JSR 293 standards [22-24]. For the first time,

an application developer could develop a location-aware application that accessed

positioning technologies such as GPS and could work on devices from many different

manufacturers and cellular carriers without significant modification, a critical

development in the emergence of location-aware mobile apps.

1.3.2 Multitasking Virtual Machines

The second major development in the emergence of location-aware mobile applications

was the ability to run applications in the background. Many of the first Java ME mobile

phones released in the early 2000s did not have Multitasking Virtual Machines (MVMs),

7

which prevented applications from being executed in the background while the user

performed a different task (e.g., phone call, web browsing, phone in standby mode) in the

foreground. In other words, only a single application could be executed at a time, and

that application could not be executed in the background. This limitation prevented an

application from monitoring the location of the phone unless the user was actively using

the application, which severely restricted the scope of location-aware mobile applications

that could be implemented by third party software developers. MVMs for Java ME were

introduced in Motorola iDEN phones circa 2004 [25], which opened up opportunities for

a new breed of location-aware applications that could monitor and act upon a user’s

geographic location, even if the user was not actively using the phone.

1.4 Problem Statement

The ubiquity of mobile phones, the availability of positioning systems to application

developers, and the popularity of cross-platform mobile apps creates an environment rich

for innovation in the area of location-aware applications. However, while location-aware

applications have been implementable since the mid-2000s, there have been few popular

real-time commercial mobile applications that are based primarily on high-precision and

high-accuracy positioning systems (e.g., GPS). The lack of evolution of location-aware

apps can be attributed to several key limitations in current commercial applications:

1) Commercial location-aware apps are a “black box”

2) Commercial location-aware apps require active user management of location

features due to impact on device resources (e.g., battery life)

3) Commercial location-aware apps are often limited to “locate->send” functionality

8

4) Commercial location-aware apps are often lacking device-based intelligence

These limitations are discussed in the context of existing mobile applications in Chapter 2

of this dissertation.

Typically, architectures discussed in academic literature would gradually address the

difficulties faced by location-aware apps and provide solutions that could help advance

the industry. However, there has also been little evolution of the capabilities of location-

aware architectures over the last 10 years. Due to the potential negative impact of some

hybrid positioning technologies (e.g., assisted GPS) on the cellular network, cellular

carriers have limited access to Location APIs on Java ME devices to industry partners

[22]. Limited access to Location APIs, as well as the significant financial costs of mobile

devices and data service plans, have largely reduced academic experimentation to the use

of software emulators or laptops as proxies for cell phones. Emulators and laptops are

simplistic models of logical program execution for mobile applications and do not

appropriately model real-world conditions such as energy consumption of positioning

technologies or wireless communication.

Lack of sufficient real-world experimentation with actual mobile devices has produced

four primary shortfalls in known location-aware architectures:

1) Battery energy limitations are not addressed. Many architectures are designed

without acknowledging that mobile devices have a finite energy supply, and that

positioning systems such as GPS, wireless communications, and use of the CPU

to execute the architecture components all have a significant impact on battery

energy levels. Recent research [26-38] confirms that battery life is a significant

9

limiting factor for mobile applications running on modern mobile devices, and

that GPS is a significant consumer of energy [28, 29, 32, 33, 35, 36, 38, 39].

Currently, only two existing location-aware architectures [32, 33] even directly

address battery life. Comparison between these two architectures and our research

is provided in Chapter 2.

2) Cellular data transfer limitations are not addressed. Many architectures are

designed without consideration of constrained cellular network bandwidth and

potential financial charges to the end-user for excessive data traffic.

3) Lack of integration with existing platforms on commercially-available devices

(e.g., Java Micro Edition, Android). Many existing location-aware architectures

presented in literature utilize custom operating systems or protocols which are not

readily available on commercially-available mobile phones, and therefore cannot

be widely deployed as mobile apps to existing phones.

4) Lack of evaluation of efficacy of location-aware architectures. Few location-

aware architectures have actually been evaluated on real mobile devices, and as a

result there is little quantifiable evidence of these architectures’ efficacy with real

devices. Only one existing location-aware architecture performs experiments

with actual mobile devices [33], and we compare this location-aware architecture

to our research in Chapter 2.

As a result, there is a demand for a new location-aware architecture that meets following

needs:

10

 Need #1: Intelligently manage limited device and network resources. The

architecture must acknowledge that location-aware apps can deplete significant

device and network resources, and the architecture must demonstrate features that

conserve these resources.

 Need #2: Support real-time applications. A significant portion of the architecture

must be implemented on the mobile device to allow software to immediately act

upon new data in real-time and immediately interact with the mobile user.

 Need #3: Support high-precision and high-accuracy positioning systems.

Positioning technologies such as high-sensitivity assisted GPS must be usable

within the architecture to support the most innovative types of location-aware

apps that require highly accurate and precise location information.

 Need #4: Is fully implementable by third party mobile app developers. The

architecture must take into account the availability of application programming

interfaces (APIs) in existing cross-platform application environments such as Java

Micro Edition or Android and ensure that the architecture can be implemented on

such devices.

However, there are many challenges that must be addressed when creating a new

architecture that meets these needs. Challenges can be categorized into the following key

areas:

1) Collecting and acting on real-time data consume limited device resources. When

an application is executed to record and process data, this requires use of CPU

11

and memory resources, which in turn use battery energy, and, if communicating

with a server, increases network data traffic

2) Using high-precision and high-accuracy positioning systems consume limited

device resources. GPS is the most accurate and precise positioning system widely

available on mobile phones. However, it is also one of the highest consumers of

battery energy, and for assisted or hybrid GPS solutions, network bandwidth.

3) Balancing tradeoffs between real-time app requirements and limited device

resources is not trivial. Since monitoring and reacting to information also

consumes the same limited device resources the software is trying to preserve,

there are no simple solutions for highly accurate and precise location-aware

applications that are always active.

4) Mobile hardware is proprietary and rapidly changing. Hardware and operating

system functionality is abstracted by high-level software layers APIs (e.g.,

Android, Java ME), which limit control of underlying hardware

1.5 Contributions

This dissertation presents the Location-Aware Information SYstems Client (LAISYC), a

modular mobile software architecture that meets the needs of intelligent real-time mobile

applications and is fully implementable by third party mobile application developers.

Table 1 shows the relationship between each LAISYC module and the needs of

intelligent real-time mobile applications that it addresses.

12

Table 1 - The Location-Aware Information SYstems Client (LAISYC) modules are
designed to meet the various critical needs of intelligent real-time mobile
applications in Location-Based Services

LAISYC
Modules

Need #1:

Intelligently
manages
limited
device/network
resources

Need #2:

Still
supports
real-time
applications?

Need #3:

Supports high-
precision and
high-accuracy
positioning
systems

Need #4:

Fully
implementable
by 3rd party
mobile app
developer

Session
Management

X X X*

GPS Auto-
Sleep

X X X X*

Critical
Point
Algorithm

X X X X

Adaptive
Location
Buffering

X X X*

Location
Data
Encryption

X X X

Location
Data Signing

X X X

*Interacts directly with the mobile device platform via Application Programming
Interfaces (APIs)

We reference the needs listed in Table 1 throughout this dissertation as we discuss

specific examples of how LAISYC meets each need.

Each module in LAISYC has been implemented and tested on mobile devices in Java

Micro Edition as part of our research to demonstrate that each module is fully

implementable by third party mobile application developers (Need #4). This prototype

testing is especially important for the Session Management, GPS Auto-Sleep, and

Adaptive Location Buffering modules because they interact with and depend upon

features implemented in the mobile device platform. While we discuss the characteristics

13

of each module in detail in Chapter 3, the following paragraphs briefly state how each

module meets the needs, as shown in Table 1.

The general communication framework between the mobile device and server is

implemented in the Session Management module using a strategic combination of the

HyperText Transfer Protocol (HTTP) [40], used for occasional transfer of application

data, and the User Datagram Protocol (UDP) [41], a lightweight connectionless protocol

used to transport real-time location data. Chapter 4 of this dissertation presents

experiments showing that by using UDP as the main location data transfer protocol

instead of the Transmission Control Protocol (TCP) [42], the impact on mobile device

battery life is reduced (Need #1) while still supporting real-time location services (Need

#2). The Location Data Buffering module supports efficient real-time communication

(Needs #2 and #4) by increasing the probability of UDP location data being successfully

received by the server via an occasional verification of an open data connection using

TCP.

The GPS Auto-Sleep module intelligently adjusts the frequency of GPS recalculations

(Need #3) based on the real-time and historical movement of the user (Need #2). This

allows high-resolution tracking of the user using GPS when moving with a gradual

transition to less frequent GPS fixes when the user stops moving, thereby conserving

battery life and network traffic to transfer this data back to the server (Need #1). The

Critical Point Algorithm filters a real-time stream of location data points (Need #4) and

eliminates redundant points to produce a smaller data set that still accurately represents

the path of the mobile device (Need #3). By reducing the amount of data required to send

14

a device’s path from a mobile device to a server, the Critical Point Algorithm reduces the

impact of path data transfer on the mobile device battery as well as the amount of

information sent over the cellular network (Need #1).

To meet the security and data authentication needs of real-time mobile applications (Need

#2), our research also presents the implementation of Location Data Encryption and

Location Data Signing modules (Need #4) and evaluates the impact of these technologies

on mobile device resources (Need #1).

1.6 Structure of Dissertation

The remainder of this dissertation is organized as follows: Chapter 2 provides a detailed

review of known LBS architectures discussed in literature and compares existing

literature to our work. Chapter 3 presents the proposed LAISYC architecture that is the

main subject of this dissertation, and Chapter 4 presents an evaluation of the key

LAISYC architecture components as well as two innovative real-time mobile apps,

TRAC-IT and the Travel Assistance Device (TAD), that use LAISYC. Chapter 5

concludes the dissertation with an overview of the contributions and future research

directions related to LAISYC.

15

CHAPTER 2: KNOWN LBS ARCHITECTURES

This chapter reviews existing commercial LBS applications and known LBS system

architectures, and explains the current limitations of these technologies.

2.1 Commercial LBS Applications

There are a number of LBS applications that are commercially available as of 2011,

which can be organized into the following categories:

 Location data recording: These apps, such as My Tracks [43], records GPS trails and

generates statistics/maps based on the path of the user as the user is biking or hiking.

These applications typically store GPS data locally on devices, and can execute a bulk

upload of data to online data stores such as Google Docs after an entire track has been

recorded.

 Navigation, mapping, and real-time traffic information: Apps such as Google Maps

[44], Google Navigation [45], Telenav [46], and INRIX [47] provide directions to the

user for businesses and other locations and provide real-time turn-by-turn directions

and/or real-time or predicted traffic information. These apps typically use GPS for

navigation, cell network/Wi-Fi/GPS for location.

 Social location apps: Foursquare [48], Facebook [49], and Google Latitude [50] are

all examples of applications that allow the user to manually “check in,” which

indicates to their friends in their social network that they have arrived at a location.

16

Some apps, such as AT&T FamilyMap [51] and Sprint Family Locator [52], are

designed to allow parents to see where a child is, based on the location of their child’s

phone.

 Location-based search catalogs: WHERE [53] and Poynt [54] are examples of

location-based search engines that allow a social search of places based on the user’s

friends’ ratings. They can also provide electronic coupons, local gas prices, and local

weather information. WeatherBug [55] also provides local weather information.

 Phone finders: Apps such as Find My iPhone [56] and Where’s My Droid [57]

provide low-resolution or on-demand tracking capabilities that are designed to locate

a lost phone from a website interface.

While providing a variety of services to the user, these apps and other apps that fall into

the same general categories are all subject to the same limitations:

1) Commercial location-aware apps are a “black box.” The design of the application

and underlying functionality is not publically available and cannot be used to

integrate with or improve other applications (an exception is MyTracks [43],

which is open-source, but is a stand-alone mobile app without an active

connection to a server). Therefore, each location app developer must start from

scratch in implementing location-aware functionality in an application.

2) Commercial location-aware apps require active user management of location

features due to the impact on device resources (e.g., battery life). Users are

responsible for turning location-aware functionality on and off, which burdens the

user whenever location-aware features are used. For example, if a user leaves the

17

MyTracks app on in order to record the phone’s location using GPS, the mobile

phone battery will die within a few hours. Instead, the user must repeatedly turn

the MyTracks app on when traveling, and turn the MyTracks app off when they

get to the destination. This effectively prevents a convenient 24/7 tracking

application from being possible, given the energy demands of GPS.

3) Commercial location-aware apps are often limited to “locate->send” functionality.

Phones are often simply used to access the positioning technology in the device

and send this information to a server, and the primary application features are

available via desktop or web apps, not the mobile app. In other words, the

software simply runs in the background and occasionally reports the rough

location of the device to a server.

4) Commercial location-aware apps are often lacking device-based intelligence.

Location information is not often processed locally on the device, which limits the

abilities of the app to intelligently manage constrained device resources while

using positioning systems and wireless communication. This lack of on-board

intelligence limits the frequency of use of GPS as well as the frequency of

location reporting to a server to a large static interval (e.g., 10 minutes) to avoid

having a severe impact on device battery life and cellular network data traffic.

The next section discusses known location-aware architectures and their limitations for

supporting further innovation beyond today’s location-aware features.

18

2.2 Known Location-Aware Architectures

Since the E911 mandate in the late 1990s, many location based services architectures

have been presented in academic literature.

Some of the initial papers following the E911 mandate targeted the implementation of

positioning technologies by cellular carriers. Zhao [13], Kupper [16], Barnes [58], and

Rao et al. [59] provide a survey of the different technologies and standards under

consideration for implementation by carriers, while Porcino [15] and Sunay [60] provide

evaluations of various positioning technologies. In this dissertation we are concerned

primarily with device-based (i.e., mobile terminal (MT)-based, mobile station (MS)-

based) assisted GPS, since it is the most accurate and precise positioning technology

widely available on mobile phones [13, 15-19] and is also the positioning technology

typically exposed to application developers via APIs [18]. Soliman et al. [61], Ashjaee

[62], Langley [63], Richton et al. [19], and Liu [64] all discuss the implementation details

of first-generation assisted GPS systems for mobile phones which utilize both assistance

information from the cell network as well as GPS hardware in the mobile phone. A

weakness of first-generation GPS is that it could not acquire a positional fix indoors [65].

Subsequent evolutions of GPS technology, termed “high-sensitivity” or “indoor” GPS,

are aided by a new hardware design that enables the GPS hardware to detect satellite

signals and compute a position even in highly obstructed environments, such as indoors.

Van Diggelen discusses the design, implementation, and testing of high-sensitivity GPS

in his work [66-69]. Vittorini et al. [70], Lachapelle [71, 72], Zhang et al. [73, 74],

Beauregard [75], and DeSalas et al. [76] all discuss further improvements to general

high-sensitivity GPS design for additional accuracy and availability of position and

19

velocity measurements. Ballantyne et al. discuss integrated circuit (IC) designs within

the mobile phone that can help reduce the amount of energy an individual GPS fix

consumes [77]. Zandbergen et al. provide empirical accuracy evaluations of GPS data

from mobile phones [17, 18], while Blunck et al. provide an analysis of the impact of

body of the user on GPS signal reception in phones [78]. Other publications [79-85]

examine issues related to increasing the precision and accuracy of indoor tracking via

other technologies such as WiFi, ultrawideband, and Radio Frequency IDentifiers

(RFID), although these techniques are not currently available positioning options for

mobile application developers, and therefore are beyond the scope of this research.

While these papers on the intimate details of positioning systems served a critical role in

the development of positioning systems for mobile phones, they are of greatest use to the

engineers implementing these positioning systems in cellular networks and do not

provide guidance to applications developers, other than to provide a rough order-of-

magnitude analysis of the accuracy and precision of the underlying positioning

technologies. These works discuss technologies which are largely hidden beneath

application platform APIs, and therefore application developers do not directly interface

with these technologies.

Once positioning technologies for cellular devices had matured and were implemented in

cellular networks, the focus of many academic works turned to the realization of location-

based services based on these positioning technologies. Mintz-Habib et al. [86] present a

Voice over Internet Protocol (VoIP) emergency services architecture and prototype which

is aimed at providing location information to public safety answering points (PSAPs)

20

when a mobile user calls 911. Jose et al. [87] present an architecture based on the

Service Location Protocol (SLP) [88], but this work is designed for relative location

between entities in the Internet and is not designed for high-accuracy or high-precision

GPS-based devices.

Since the business model and cellular carriers’ ultimate role in providing commercial

LBS was initially uncertain, several papers presented architectures that could be

implemented by cellular carriers or a commercial partner of the carrier. These

architectures are either tightly coupled to the cellular infrastructure or maintain a

centralized location data store and interface for all location-aware mobile applications

running on the network. Zundt et al. present a peer-to-peer location architecture that is

tightly-integrated with GSM networks [89], and Taheri et al. present a network location

management scheme to enhance the efficiency of base station handoffs for GSM

networks by using Hopfield Neural Networks [90]. Spanoudakis et al. [91], Kupper et al.

[92, 93], and Treu et al. [94] all present architectures that enforce centralized control over

all location-aware applications for mobile phone users, as the architecture serves as the

location gateway for connecting applications. These architectures all assume that the

carrier or commercial partner of the carrier has total control over the location-based

services that are offered to cellular users on their network. In other words, application

developers must enter into an agreement with the carrier or commercial partner to

provide services to mobile phone users. This dissertation instead focuses on a location-

aware architecture that can be fully-implemented at the application level by third party

application developers and does not require a commercial relationship or programmatic

interaction with a centralized system which controls all LBS for a cellular network.

21

Some location architectures provide conceptual models for location exchange between

entities in a system, but do not define the exact protocols for the exchange of the location

information and do not evaluate the impact of the architecture on important mobile

device characteristics such as battery life or amount of data transfer over the cell network.

Spanoudakis et al. [91] present their PoLoS Kernel server, which is designed to receive

location information from cell phones using the Extensible Markup Language (XML)-

based Simple Object Access Protocol (SOAP) [95] and share this information with

Internet clients via a “Services Deployer.” Leonhardi et al. [96, 97] describe the

conceptual exchange of XML-formatted documents between hierarchical entities in a

location system that was implemented using a wearable computing system prior to GPS

being available in mobile phones. Nord et al. [98] describe an architecture that has a

primary purpose of abstracting positioning technologies used by a mobile device to

network servers that wish to discover the location of the device using an XML-based

“General Positioning Protocol.” Wu et al. [99] proposes a location architecture in which

device positions are only sent on-demand to a server when a viewer requests to see the

device’s position. The PoSIM system presented by Bellavista et al. [100] multiplexes

between positioning technologies based on a rules defined by the software developer at

compile time and asserted at runtime by a rule engine, and exchanges XML-based

messages within the system. Chen et al. [101, 102] propose an XML-based “location

operating reference model (LORE),” designed primarily for location-based messaging

based on client subscriptions (e.g., user is subscribed to receive e-coupons to a store

when they are in proximity of the store). For user privacy, Chen [101] also proposes that

instead of sending location updates from the device to the server, the server sends all geo-

22

stamped XML-based subscription messages to all devices. Each device then compares

the message’s location area to its own location and determines if the message should be

shown to the user. Ananthanarayanan et al. [103] propose StarTrack, a server-focused

framework for abstracting spatial database operations on recorded user tracks to a set of

conceptual primitives, alleviating the application developer from needing to understand

low-level spatial database functionality.

In all these architectures, the impact of position updates (a function of both the frequency

of GPS recalculations and the frequency of the data being sent to a server) on mobile

device battery life is not directly considered. For architectures that use XML,

experiments in Chapter 4 of this dissertation illustrate the drawbacks of using a verbose

formatting scheme such as XML and SOAP for the transfer of location data between

mobile phones and a server, as such a scheme has a significant impact on mobile device

battery life due to the large amount of overhead data exchanged.

Several past LBS architectures have focused on the use of the Session Initiation Protocol

(SIP), an application-layer protocol that is often used in the context of VoIP applications

[86, 89, 104-109]. However, none of these SIP-based architectures were designed for

GPS-enabled mobile phones in the Java ME environment. The optional SIP API for Java

ME has not been widely implemented in mobile devices and therefore typically is not an

available protocol for mobile developers to use in an application [110]. In fact, in the

roadmap for the Java ME platform defined by the Mobile Services Architecture (MSA)

specifications, the SIP API is only required to be supported in the high-end device

segment, such as Personal Digital Assistants, in order for the device to be MSA-

23

compliant [111, 112]. Therefore, location-aware architectures targeting the majority of

Java ME devices should not require support for SIP.

Some location-aware architectures have focused on the routing of location data between

servers as part of a distributed system. In these systems, the mobile devices connect to a

server on the periphery of the distributed system network, and then the server acts as a

proxy for the mobile device to contact other entities in the distributed system, retrieve

data, and relay that data back to the mobile device. Zhang et al. [113] present their

GeoGrid architecture which maps the location of servers in the topography network to the

actual geographic position of the servers, and provides routing algorithms for load-

balancing and redundancy. Perez et al. [114] present Geotella, a peer-to-peer routing

protocol modeled after Gnutella, as part of their scalable G-Sense global architecture to

link location information from wireless sensor networks and mobile devices. These

systems have the advantage of scaling to a larger number of simultaneous global users

than traditional client-server architecture with a single centralized server. However,

neither of these architectures directly considers the connection between the mobile device

and server, which still must be a client-server architecture, and neither evaluates the

impact of this exchange of location information on the mobile device’s limited resources.

In fact, Perez et al. [114] cites our research as the client-server architecture used in their

system to exchange data between the mobile device and the server.

Out of the many location-aware architectures that have been presented in literature, only

two have been designed with awareness of the negative impact that location-based

24

services can have on limited mobile device resources. The difference between our

research and these existing location-aware architectures is presented below.

Kjaergaard et al. [33, 36, 37] presents Entracked, a software system for the Nokia N95

and N96 smart phones running the Symbian operating system that adjust the GPS

recalculation frequency and position reporting frequency based on a software model of

power consumption. The power consumption model is generated and updated via data

from a power-sampling API on the device at the rate of 4Hz, and also samples GPS at a

rate of 1Hz and an embedded accelerometer at a rate of 30Hz. However, the Entracked

system is designed to deliver location information to network applications, not mobile

applications. In other words, network applications query the Entracked server, which in

turn queries the Entracked mobile software for the device position, and then relays this

position information back to the network application. Therefore, Entracked does not

support mobile real-time location-aware applications, which is the focus of our research.

Also, since Entracked relies primarily on the accelerometer to decide when to turn GPS

on and turn off, this software model cannot be used on devices that do not have

embedded accelerometers. Entracked assumes that even when sampling GPS positions at

large intervals (e.g., every 200 seconds) the GPS hardware would still need to remain

constantly powered on (i.e., the hardware could not enter a low-power state in between

samples). While this assumption is true for older GPS devices, for modern cell phones

with high-sensitivity GPS even modest adjustments of sampling intervals (e.g., four

seconds) in the app can yield significant energy savings, as we show in Chapter 4. This

savings is produced by the internal GPS quickly acquiring a positional fix and then

powering down between samples. Our research leverages these observations and

25

presents a power-saving technique, GPS Auto-Sleep, which does not require embedded

accelerometers and therefore can function on even severely resource-constrained devices

that have only embedded GPS. Another difference between Entracked and our work is

that Entracked uses the Transmission Control Protocol (TCP) [42] to transfer location

data between the device and the server. In Chapter 4, we demonstrate that the User

Datagram Protocol (UDP) [41] is preferable for real-time location data transfer, and

therefore UDP was chosen for our architecture. Langdal et al. [115] reimplement the

features of Entracked in their modular graph-based PerPos middleware. However, the

limitations discussed above also apply to the PerPos implementation of Entracked.

Farrell et al. [32] present an Early Distance-Based Reporting (EDBR) algorithm, a

position reporting method which considers both the energy used by positioning sensors

such as GPS as well as the energy used in the wireless transmission of this information.

However, this method was designed primarily for reporting positions to a server for

network-based applications, and not in the context of real-time mobile applications. The

focus on network applications, and the tight coupling of the positioning sensor refresh

interval and interval between location updates to a server, creates several limitations for

real-time mobile applications. For example, Farrell et al. support only a distance-based

reporting method, which will not produce any location updates to a server if the device

does not move. Therefore, distance-based reporting does not support the use-case of a

mobile application that is required to report a position to a server at a minimum time

interval, regardless of movement. Also, since distance-based reporting sends a position

to the server after a certain distance is exceeded, it can produce needless updates if the

user is traveling in a straight line for an extended period of time (e.g., driving on a

26

highway). Our research presented in the next chapter de-couples the position reporting

method (i.e., the Critical Point Algorithm) from the method used to refresh the

positioning sensor (i.e., GPS Auto-Sleep) in order to support independent operations of

each method, thus modularizing the system and extending the use cases for various

positioning sensing refresh and position update reporting intervals. This allows our

LAISYC framework to support various types of position update methods in the Critical

Point Algorithm without changing the positioning sensor refresh rate. Additionally, the

positioning sensor refresh rate can then be adjusted based on logic other than detecting

movement for server updates. One example of alternate refresh logic is the manipulation

of the refresh rate for a mobile navigation application that wants to only occasionally

refresh a position when a large distance from the goal, but then needs to increase the

refresh rate when getting closer to the goal. By reducing the GPS refresh rate and only

updating the location occasionally when miles from a goal, the application can produce

significant battery life savings, as we demonstrate in Chapter 4.

Farrell et al. also do not evaluate their algorithm on actual mobile devices; instead, they

synthesize random positions from a simulator, with the assumption that objects move

linearly and in a uniform manner, and use this data to evaluate their algorithm. Synthetic

path data generated in this manner is problematic from several perspectives. Farrell et al.

do not consider the uncertainty and error of a GPS position when evaluating their

algorithm. As we show in Chapter 4, even with high-sensitivity GPS indoor position

tracking produces a significant amount of errors in position that do not reflect the true

geographic position of the device due to environmental noise [17, 18]. When a GPS

device calculates a position repeatedly in the same geographic location, the error in

27

position creates a normal distribution [116]. Therefore, Farrell et al.’s assumption that

the change in GPS positions while a user is stationary will be uniform is invalid. In our

work, the LAISYC architecture is evaluated while it executes on actual mobile devices

with real assisted GPS data, therefore removing the assumptions and limitations

discussed above.

Our past research has investigated location-aware architectures in the context of

bidirectional, multimedia, location-based messaging [117]. That architecture focuses

primarily on a messaging infrastructure which piggy-backs location data in Multimedia

Messaging Service (MMS) messages sent through a cellular carrier’s publicly-accessible

messaging gateway, thus avoiding the use of short-codes and messaging aggregators.

However, the use cases for this architecture are the occasional exchange of messages, and

therefore only occasional use of GPS. Since GPS is not used in an ongoing manner, this

messaging architecture does not consider the impact of GPS on mobile device battery

life, or the amount of data being sent over the cellular network.

This dissertation presents LAISYC, an architecture that supports real-time mobile

applications that are “always-on” and in continuous communication with a server, as in

traditional IP-based networks. LAISYC focuses primarily on the intelligent device-based

modules but also discusses the structure of communication with the server and server-

side components that support the overall framework. Unlike the other known

architectures discussed in this chapter, LAISYC meets the needs of intelligent real-time

mobile applications in Location-based Services as discussed in Chapter 1. Our research

presents the results of field tests in Chapter 4 which evaluate key LAISYC modules in

28

order to quantitatively assess their impact on mobile device battery life in the context of

the presented architecture. Our work on LAISYC is also summarized in publications in

IEEE Pervasive Computing [118], Proceedings of IEEE UBICOMM Conference [119],

the Transportation Research Record: Journal of the Transportation Research Board [120],

Proceedings of the Intelligent Transportation Systems World Congress [121], the Journal

of Navigation [18], and several issued [122-126] and pending patents [127-129].

LAISYC has been used to enable several real-time location-aware applications as part of

research projects, including the Travel Assistance Device (TAD) mobile application that

assists transit riders with intellectual disabilities in using public transportation through

real-time navigation instructions [130], as well as TRAC-IT, a mobile app that supports

simultaneous travel behavior data collection and real-time location-based services [131,

132]. TAD and TRAC-IT’s relationship with LAISYC is discussed in detail in Chapter 4

as a demonstration of innovative location-aware applications implemented using

LAISYC.

A

APPENDIX A (CONTINNUED)

222

A

APPENDIX A (CONTINNUED)

223

AAPPENDIX A (CONTINNUED)

224

AAPPENDIX A (CONTINNUED)

225

AAPPENDIX A (CONTINNUED)

226

AAPPENDIX A (CONTINNUED)

227

ABOUT THE AUTHOR

Sean J. Barbeau received his B.S. and M.S. in Computer Science from the University of

South Florida (USF) and joined the research faculty of the Center for Urban

Transportation Research at USF in 2004. He has served as the Principal Investigator for

many research projects investigating intelligent software systems and mobile applications

for GPS-enabled mobile phones. Mr. Barbeau’s research interests include intelligent

location-based services, lightweight data communication frameworks for mobile devices,

and mobile application optimization to conserve battery life. He served as a member of

the international Expert Group that developed the Java Micro Edition Location API 2.0.

While a Ph.D. candidate, he produced over 40 peer-reviewed papers and conference

presentations on the topics of intelligent location-based services and mobile applications.

Mr. Barbeau has 6 issued U.S. patents and another 11 patents pending on location-aware

technology. He is a founding faculty member of the USF Location-Aware Information

Systems Laboratory.

