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ABSTRACT 

This dissertation presents LAISYC, a modular location-aware architecture for intelligent 

real-time mobile applications that is fully-implementable by third party mobile app 

developers and supports high-precision and high-accuracy positioning systems such as 

GPS.  LAISYC significantly improves device battery life, provides location data 

authenticity, ensures security of location data, and significantly reduces the amount of 

data transferred between the phone and server.  The design, implementation, and 

evaluation of LAISYC using real mobile phones include the following modules:  the GPS 

Auto-Sleep module saves battery energy when using GPS, maintaining acceptable 

movement tracking (approximately 89% accuracy) with an approximate average doubling 

of battery life. The Location Data Signing module adds energy-efficient data authenticity 

to this architecture that is missing in other architectures, with an average approximate 

battery life decrease of only 7%.  The Session Management and Adaptive Location Data 

Buffering modules also contribute to battery life savings by providing energy-efficient 

real-time data communication between a mobile phone and server, increasing the average 

battery life for application data transfer by approximately 28% and reducing the average 

energy cost for location data transfer by approximately 38%.  The Critical Point 

Algorithm module further reduces battery energy expenditures and the amount of data 

transferred between the mobile phone and server by eliminating non-essential GPS data 

(an average 77% reduction), with an average doubling of battery life as the interval of 
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time between location data transmissions is doubled.  The Location Data Encryption 

module ensures the security of the location data being transferred, with only a slight 

impact on battery life (i.e., a decrease of 4.9%).  The LAISYC architecture was validated 

in two innovative mobile apps that would not be possible without LAISYC due to energy 

and data transfer constraints.  The first mobile app, TRAC-IT, is a multi-modal travel 

behavior data collection tool that can provide simultaneous real-time location-based 

services.  In TRAC-IT, the GPS Auto-Sleep, Session Management, Adaptive Location 

Data Buffering, Critical Point algorithm, and the Session Management modules all 

contribute energy savings that enable the phone’s battery to last an entire day during real-

time high-resolution GPS tracking.  High-resolution real-time GPS tracking is critical to 

TRAC-IT for reconstructing detailed travel path information, including distance traveled, 

as well as providing predictive, personalized traffic alerts based on historical and real-

time data.  The Location Data Signing module allows transportation analysts to trust 

information that is recorded by the application, while the Location Data Encryption 

module protects the privacy of users’ location information.  The Session Management, 

Adaptive Location Data Buffering, and Critical Point algorithm modules allow TRAC-IT 

to avoid data overage costs on phones with limited data plans while still supporting real-

time location data communication.  The Adaptive Location Data Buffering module 

prevents tracking data from being lost when the user is outside network coverage or is on 

a voice call for networks that do not support simultaneous voice and data 

communications.  The second mobile app, the Travel Assistance Device (TAD), assists 

transit riders with intellectual disabilities by prompting them when to exit the bus as well 

as tracking the rider in real-time and alerting caregivers if they are lost.  In the most 
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recent group of TAD field tests in Tampa, Florida, TAD provided the alert in the ideal 

location to transit riders in 100% (n = 33) of tests.  In TAD, the GPS Auto-Sleep, Session 

Management, Adaptive Location Data Buffering, Critical Point algorithm, and the 

Session Management modules all contribute energy savings that enable the phone’s 

battery to last an entire day during real-time high-resolution GPS tracking.  High-

resolution GPS tracking is critical to TAD for providing accurate instructions to the 

transit rider when to exit the bus as well as tracking an accurate location of the traveler so 

that caregivers can be alerted if the rider becomes lost.  The Location Data Encryption 

module protects the privacy of the transit rider while they are being tracked.  The Session 

Management, Adaptive Location Data Buffering, and Critical Point algorithm modules 

allow TAD to avoid data overage costs on phones with limited data plans while still 

supporting real-time location data communication for the TAD tracking alert features.  

Adaptive Location Data Buffering module prevents transit rider location data from being 

lost when the user is outside network coverage or is on a voice call for networks that do 

not support simultaneous voice and data communications.



1 

 

 
 
 
 
 
 

CHAPTER 1:  INTRODUCTION 

Mobile phones have become one of the most ubiquitous computing devices in modern 

history.  As a result of mass production, cellular carrier subsidies, and decreasing 

technology costs, more people have access to mobile phones today than any other time in 

world history.  As of late 2011, there were an estimated 5.9 billion mobile-cellular 

subscriptions worldwide yielding a global penetration rate of 87%, with a 79% 

penetration rate in developing countries [1].   

In developed countries such as the United States, mobile phones are becoming so 

common that wireless penetration is reaching the point of saturation with only a small 

percentage of the population not owning mobile phones.  For example, in the United 

States as of June 2011 there are 322.9 million mobile subscriptions with a penetration 

rate of 102.4%, indicating that a large number of individuals have multiple subscriptions 

[2].  A contributing factor to this growth is that many individuals are giving up their 

landline telephones in favor of mobile phones.  In April 2011, 26.6% of U.S. households 

were wireless–only, meaning that they use only a cell phone instead of a landline 

telephone to make calls [3].  As a result of increasing penetration and reliance on cell 

phones for a variety of everyday tasks, mobile phones have become important devices to 

many individuals around the world.  A 2009 survey indicates that 82% of Americans 

never leave their house without their phone, while 42% stated “they cannot live without 

their phone” [4].  
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1.1 Mobile Applications 

Cell phones have become immensely popular not only for their ability to make phone 

calls, but also for their ability to perform general computing tasks that previously 

required expensive personal computers.  Perhaps one of the most popular features of 

modern smart phones is the ability to execute mobile applications.  Mobile applications, 

or “apps,” are software products that are typically developed by a third-party that does 

not have a direct relationship with the device manufacturer (e.g., HTC, Samsung, 

Motorola, Apple, Research in Motion), cellular carrier (e.g., Sprint-Nextel, AT&T, 

Verizon Wireless), or operating system vendor (e.g., Google, Microsoft).  Instead, the 

mobile app is created by software engineers and then directly sold and distributed to the 

customer, often through online software vending services such as the Google Android 

Market [5], Apple AppStore for the iPhone [6], Blackberry AppWorld [7], Amazon 

AppStore for Android [8], and GetJar for Java Micro Edition and Android [9].  As a 

result of these vending services and an increasing availability of smart phones, the 

number of mobile apps downloaded has proliferated over the last few years.  An 

estimated 29 billion apps were downloaded worldwide in 2011 [10], an astounding 

increase of 20 billion downloads since 2010 [10].  Revenues for app developers are 

expected to increase rapidly over the next few years, with an estimated global app 

revenue of $7.3 billion in 2011 and $36.7 billion by 2015 [11]. 

1.2 Positioning Technologies 

One key difference between mobile phones and desktop computers is that mobile phones 

constantly change geographic location, unlike desktop computers, which are tethered to a 

single physical location for months or years.  Even laptops do not have the level of 
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mobility that cell phones offer.  Laptops can be moved from one place to another, but 

typically they are in operation for only several hours at a time and then shut down before 

being moved.  In contrast, mobile phones typically remain on during the entire day and 

can be actively used when the user is in motion. 

During the emergence of cell phones in the late 1990s, the U.S. Federal Communication 

Commission (FCC) became concerned that extreme mobility of cell phones could cause 

problems for emergency responders attempting to locate a mobile 911 caller, since, 

unlike a landline phone that is associated with a street address, little is known about the 

real-time location of a mobile phone.  Even if the 911 operator knows what cellular tower 

a mobile phone is communicating with, this information is of little help to responders 

since the coverage area of a single cell tower can be several square miles.  As a result of 

the lack of positional knowledge for mobile 911 callers, the FCC issued the E911 

mandate, requiring cellular carriers to implement technologies that could accurately 

locate mobile 911 callers within 50 to 300 meters, depending on the underlying 

technology [12].  U.S. carriers tested a wide variety of positioning technologies for their 

networks.  Global System for Mobile Communication (GSM)-based U.S. carriers such as 

AT&T and T-Mobile chose network-based Uplink Time Difference of Arrival (U-

TDOA) to support E911 position requests [13].  Code Division Multiple Access 

(CDMA)-based U.S. carriers such as Sprint and Verizon chose handset-based Global 

Positioning System (GPS) solutions for devices on their networks because GPS 

technology was already integrated into the network as a time reference for CDMA-based 

wireless communications [13, 14].   
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Since U.S. cellular carriers were mandated to invest a significant amount of time, effort, 

and funds into positioning technology implementations, carriers immediately began to 

investigate commercial applications of these technologies for mobile phone users so they 

could recover a portion of their investments through user fees.  Early deployments of 

these technologies for commercial purposes become known as location-based services 

(LBS), which are a general class of services that provide users with some type of 

information based on their real-time or historical location. 

Of the positioning technologies implemented for E911 purposes, GPS-based solutions are 

by far the most accurate, with an estimated 3-5 meters of positional accuracy under ideal 

conditions [15-19].  Since this level of accuracy is also sufficient to provide commercial 

services such as real-time driving directions to mobile phone users, GPS became an 

attractive technology not only for E911 purposes but also for general consumer LBS.  As 

a result, U.S. T-Mobile and AT&T have since implemented GPS-based positioning 

technologies in their handsets in order to provide commercial services based on the 

technology [14].  Global trends of GPS penetration in handsets to support commercial 

services have also surged upwards, with 79.9% of cell phones shipped in the fourth 

quarter of 2011 (318.3M) having integrated GPS [20]. 

1.3 Location-Aware Mobile Applications 

With the availability of positioning technologies such as GPS in mobile phones, and the 

advent of apps, third-party application developers became interested in utilizing location 

information within their applications. There were two major developments in mobile 

phones that made widely deployable location-aware mobile applications possible:  the 
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emergence of cross-platform application environments for mobile phones such as Java 2 

Micro Edition, now referred to as Java Micro Edition (Java ME), and the ability to run 

applications in the background (i.e., a Multitasking Virtual Machine).  Both 

developments are discussed below. 

1.3.1 Cross-Platform Application Environments 

The diversity and rapid evolution of mobile phone hardware creates a significant 

challenge for application developers.  If the developer were to design and implement 

software that directly interfaced with the hardware and operating system for each phone, 

they would be forced to redesign the application for nearly every single mobile phone 

model that is released by each manufacturer, an extremely costly task.  To ease the 

burden on developers and create a sustainable mobile application ecosystem, applications 

platforms that hide some of the lower-level detail of the hardware and operating system 

(OS) implementation have emerged.  Instead of directly accessing these hardware and OS 

components, application instead interact with interfaces that abstract the underlying 

implementation details.  This design allows the underlying hardware or OS to change and 

evolve without modifying the higher-level interfaces.  Applications can therefore 

indirectly interact with the underlying hardware without the burden of rapidly 

redesigning their applications for every new mobile phone model.   

Java ME, designed after the cross-platform Java virtual machines initially created for 

portability of desktop and server applications, was the first cross-platform application 

environment to emerge for mobile phones.  Google’s Android is a newer cross-platform 

environment for smart phones that has recently emerged, although in this dissertation the 
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majority of focus is on Java ME since at the time of this research Java ME was the 

primary cross-platform environment that was widely accepted in the telecommunications 

industry [21, 22]. 

One drawback to the standardization of high-level application programming interfaces 

across multiple hardware and operating system platforms is that there must be consensus 

in the industry for how this interface is designed, and this can take time to develop.  For 

example, the introduction of positioning technologies in mobile phones for E911 

purposes in the late 1990s and early 2000s did not mean that this technology was 

immediately available to third-party application developers.  In fact, a location 

application programming  interface (API) was not standardized for Java ME until 

September 2003 [23].  The Java Specification Request (JSR) 179 Location API for Java 

ME, and the subsequent JSR 293 Location API 2.0, defined a set of functions that a 

mobile application developer could use to access location information on a Java ME 

handset that implemented the JSR 179 or JSR 293 standards [22-24].  For the first time, 

an application developer could develop a location-aware application that accessed 

positioning technologies such as GPS and could work on devices from many different 

manufacturers and cellular carriers without significant modification, a critical 

development in the emergence of location-aware mobile apps. 

1.3.2 Multitasking Virtual Machines 

The second major development in the emergence of location-aware mobile applications 

was the ability to run applications in the background.  Many of the first Java ME mobile 

phones released in the early 2000s did not have Multitasking Virtual Machines (MVMs), 
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which prevented applications from being executed in the background while the user 

performed a different task (e.g., phone call, web browsing, phone in standby mode) in the 

foreground.  In other words, only a single application could be executed at a time, and 

that application could not be executed in the background.  This limitation prevented an 

application from monitoring the location of the phone unless the user was actively using 

the application, which severely restricted the scope of location-aware mobile applications 

that could be implemented by third party software developers. MVMs for Java ME were 

introduced in Motorola iDEN phones circa 2004 [25], which opened up opportunities for 

a new breed of location-aware applications that could monitor and act upon a user’s 

geographic location, even if the user was not actively using the phone. 

1.4 Problem Statement 

The ubiquity of mobile phones, the availability of positioning systems to application 

developers, and the popularity of cross-platform mobile apps creates an environment rich 

for innovation in the area of location-aware applications.  However, while location-aware 

applications have been implementable since the mid-2000s, there have been few popular 

real-time commercial mobile applications that are based primarily on high-precision and 

high-accuracy positioning systems (e.g., GPS).  The lack of evolution of location-aware 

apps can be attributed to several key limitations in current commercial applications: 

1) Commercial location-aware apps are a “black box” 

2) Commercial location-aware apps require active user management of location 

features due to impact on device resources (e.g., battery life) 

3) Commercial location-aware apps are often limited to “locate->send” functionality 
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4) Commercial location-aware apps are often lacking device-based intelligence 

These limitations are discussed in the context of existing mobile applications in Chapter 2 

of this dissertation. 

Typically, architectures discussed in academic literature would gradually address the 

difficulties faced by location-aware apps and provide solutions that could help advance 

the industry.  However, there has also been little evolution of the capabilities of location-

aware architectures over the last 10 years.  Due to the potential negative impact of some 

hybrid positioning technologies (e.g., assisted GPS) on the cellular network, cellular 

carriers have limited access to Location APIs on Java ME devices to industry partners 

[22].  Limited access to Location APIs, as well as the significant financial costs of mobile 

devices and data service plans, have largely reduced academic experimentation to the use 

of software emulators or laptops as proxies for cell phones.  Emulators and laptops are 

simplistic models of logical program execution for mobile applications and do not 

appropriately model real-world conditions such as energy consumption of positioning 

technologies or wireless communication.   

Lack of sufficient real-world experimentation with actual mobile devices has produced 

four primary shortfalls in known location-aware architectures: 

1) Battery energy limitations are not addressed.  Many architectures are designed 

without acknowledging that mobile devices have a finite energy supply, and that 

positioning systems such as GPS, wireless communications, and use of the CPU 

to execute the architecture components all have a significant impact on battery 

energy levels.  Recent research [26-38] confirms that battery life is a significant 
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limiting factor for mobile applications running on modern mobile devices, and 

that GPS is a significant consumer of energy [28, 29, 32, 33, 35, 36, 38, 39].  

Currently, only two existing location-aware architectures [32, 33] even directly 

address battery life. Comparison between these two architectures and our research 

is provided in Chapter 2. 

2) Cellular data transfer limitations are not addressed.  Many architectures are 

designed without consideration of constrained cellular network bandwidth and 

potential financial charges to the end-user for excessive data traffic. 

3) Lack of integration with existing platforms on commercially-available devices 

(e.g., Java Micro Edition, Android).  Many existing location-aware architectures 

presented in literature utilize custom operating systems or protocols which are not 

readily available on commercially-available mobile phones, and therefore cannot 

be widely deployed as mobile apps to existing phones. 

4) Lack of evaluation of efficacy of location-aware architectures.  Few location-

aware architectures have actually been evaluated on real mobile devices, and as a 

result there is little quantifiable evidence of these architectures’ efficacy with real 

devices.  Only one existing location-aware architecture performs experiments 

with actual mobile devices [33], and we compare this location-aware architecture 

to our research in Chapter 2.   

As a result, there is a demand for a new location-aware architecture that meets following 

needs: 
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 Need #1:  Intelligently manage limited device and network resources.  The 

architecture must acknowledge that location-aware apps can deplete significant 

device and network resources, and the architecture must demonstrate features that 

conserve these resources. 

 Need #2:  Support real-time applications.  A significant portion of the architecture 

must be implemented on the mobile device to allow software to immediately act 

upon new data in real-time and immediately interact with the mobile user. 

 Need #3:  Support high-precision and high-accuracy positioning systems.  

Positioning technologies such as high-sensitivity assisted GPS must be usable 

within the architecture to support the most innovative types of location-aware 

apps that require highly accurate and precise location information. 

 Need #4:  Is fully implementable by third party mobile app developers.  The 

architecture must take into account the availability of application programming 

interfaces (APIs) in existing cross-platform application environments such as Java 

Micro Edition or Android and ensure that the architecture can be implemented on 

such devices. 

However, there are many challenges that must be addressed when creating a new 

architecture that meets these needs.  Challenges can be categorized into the following key 

areas: 

1) Collecting and acting on real-time data consume limited device resources.  When 

an application is executed to record and process data, this requires use of CPU 
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and memory resources, which in turn use battery energy, and, if communicating 

with a server, increases network data traffic 

2) Using high-precision and high-accuracy positioning systems consume limited 

device resources.  GPS is the most accurate and precise positioning system widely 

available on mobile phones.  However, it is also one of the highest consumers of 

battery energy, and for assisted or hybrid GPS solutions, network bandwidth. 

3) Balancing tradeoffs between real-time app requirements and limited device 

resources is not trivial.  Since monitoring and reacting to information also 

consumes the same limited device resources the software is trying to preserve, 

there are no simple solutions for highly accurate and precise location-aware 

applications that are always active. 

4) Mobile hardware is proprietary and rapidly changing.  Hardware and operating 

system functionality is abstracted by high-level software layers APIs (e.g., 

Android, Java ME), which limit control of underlying hardware 

1.5 Contributions 

This dissertation presents the Location-Aware Information SYstems Client (LAISYC), a 

modular mobile software architecture that meets the needs of intelligent real-time mobile 

applications and is fully implementable by third party mobile application developers.   

Table 1 shows the relationship between each LAISYC module and the needs of 

intelligent real-time mobile applications that it addresses.   

  



12 

 

Table 1 - The Location-Aware Information SYstems Client (LAISYC) modules are 
designed to meet the various critical needs of intelligent real-time mobile 
applications in Location-Based Services 

LAISYC 
Modules 

Need #1: 

Intelligently 
manages 
limited 
device/network 
resources 

Need #2: 

Still 
supports 
real-time 
applications?

Need #3: 

Supports high-
precision and 
high-accuracy 
positioning 
systems 

Need #4:  

Fully 
implementable 
by 3rd party 
mobile app 
developer 

Session 
Management 

X X  X* 

GPS Auto-
Sleep 

X X X X* 

Critical 
Point 
Algorithm 

X X X X 

Adaptive 
Location 
Buffering 

X X  X* 

Location 
Data 
Encryption 

X X  X 

Location 
Data Signing 

X X  X 

*Interacts directly with the mobile device platform via Application Programming 
Interfaces (APIs) 

We reference the needs listed in Table 1 throughout this dissertation as we discuss 

specific examples of how LAISYC meets each need. 

Each module in LAISYC has been implemented and tested on mobile devices in Java 

Micro Edition as part of our research to demonstrate that each module is fully 

implementable by third party mobile application developers (Need #4).  This prototype 

testing is especially important for the Session Management, GPS Auto-Sleep, and 

Adaptive Location Buffering modules because they interact with and depend upon 

features implemented in the mobile device platform.  While we discuss the characteristics 
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of each module in detail in Chapter 3, the following paragraphs briefly state how each 

module meets the needs, as shown in Table 1. 

The general communication framework between the mobile device and server is 

implemented in the Session Management module using a strategic combination of the 

HyperText Transfer Protocol (HTTP) [40], used for occasional transfer of application 

data, and the User Datagram Protocol (UDP) [41], a lightweight connectionless protocol 

used to transport real-time location data.  Chapter 4 of this dissertation presents 

experiments showing that by using UDP as the main location data transfer protocol 

instead of the Transmission Control Protocol (TCP) [42], the impact on mobile device 

battery life is reduced (Need #1) while still supporting real-time location services (Need 

#2).  The Location Data Buffering module supports efficient real-time communication 

(Needs #2 and #4) by increasing the probability of UDP location data being successfully 

received by the server via an occasional verification of an open data connection using 

TCP. 

The GPS Auto-Sleep module intelligently adjusts the frequency of GPS recalculations 

(Need #3) based on the real-time and historical movement of the user (Need #2).  This 

allows high-resolution tracking of the user using GPS when moving with a gradual 

transition to less frequent GPS fixes when the user stops moving, thereby conserving 

battery life and network traffic to transfer this data back to the server (Need #1).  The 

Critical Point Algorithm filters a real-time stream of location data points (Need #4) and 

eliminates redundant points to produce a smaller data set that still accurately represents 

the path of the mobile device (Need #3).  By reducing the amount of data required to send 



14 

 

a device’s path from a mobile device to a server, the Critical Point Algorithm reduces the 

impact of path data transfer on the mobile device battery as well as the amount of 

information sent over the cellular network (Need #1). 

To meet the security and data authentication needs of real-time mobile applications (Need 

#2), our research also presents the implementation of Location Data Encryption and 

Location Data Signing modules (Need #4) and evaluates the impact of these technologies 

on mobile device resources (Need #1). 

1.6 Structure of Dissertation 

The remainder of this dissertation is organized as follows:  Chapter 2 provides a detailed 

review of known LBS architectures discussed in literature and compares existing 

literature to our work.  Chapter 3 presents the proposed LAISYC architecture that is the 

main subject of this dissertation, and Chapter 4 presents an evaluation of the key 

LAISYC architecture components as well as two innovative real-time mobile apps, 

TRAC-IT and the Travel Assistance Device (TAD), that use LAISYC.  Chapter 5 

concludes the dissertation with an overview of the contributions and future research 

directions related to LAISYC. 
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CHAPTER 2:  KNOWN LBS ARCHITECTURES 

This chapter reviews existing commercial LBS applications and known LBS system 

architectures, and explains the current limitations of these technologies. 

2.1 Commercial LBS Applications 

There are a number of LBS applications that are commercially available as of 2011, 

which can be organized into the following categories: 

 Location data recording:  These apps, such as My Tracks [43], records GPS trails and 

generates statistics/maps based on the path of the user as the user is biking or hiking.  

These applications typically store GPS data locally on devices, and can execute a bulk 

upload of data to online data stores such as Google Docs after an entire track has been 

recorded. 

 Navigation, mapping, and real-time traffic information:  Apps such as Google Maps 

[44], Google Navigation [45], Telenav [46], and INRIX [47] provide directions to the 

user for businesses and other locations and provide real-time turn-by-turn directions 

and/or real-time or predicted traffic information.  These apps typically use GPS for 

navigation, cell network/Wi-Fi/GPS for location. 

 Social location apps:  Foursquare [48], Facebook [49], and Google Latitude [50] are 

all examples of applications that allow the user to manually “check in,” which 

indicates to their friends in their social network that they have arrived at a location.  
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Some apps, such as AT&T FamilyMap [51] and Sprint Family Locator [52], are 

designed to allow parents to see where a child is, based on the location of their child’s 

phone. 

 Location-based search catalogs:  WHERE [53] and Poynt [54] are examples of 

location-based search engines that allow a social search of places based on the user’s 

friends’ ratings.  They can also provide electronic coupons, local gas prices, and local 

weather information.  WeatherBug [55] also provides local weather information. 

 Phone finders:  Apps such as Find My iPhone [56] and Where’s My Droid [57] 

provide low-resolution or on-demand tracking capabilities that are designed to locate 

a lost phone from a website interface. 

While providing a variety of services to the user, these apps and other apps that fall into 

the same general categories are all subject to the same limitations: 

1) Commercial location-aware apps are a “black box.”  The design of the application 

and underlying functionality is not publically available and cannot be used to 

integrate with or improve other applications (an exception is MyTracks [43], 

which is open-source, but is a stand-alone mobile app without an active 

connection to a server).  Therefore, each location app developer must start from 

scratch in implementing location-aware functionality in an application. 

2) Commercial location-aware apps require active user management of location 

features due to the impact on device resources (e.g., battery life).  Users are 

responsible for turning location-aware functionality on and off, which burdens the 

user whenever location-aware features are used.  For example, if a user leaves the 



17 

 

MyTracks app on in order to record the phone’s location using GPS, the mobile 

phone battery will die within a few hours.  Instead, the user must repeatedly turn 

the MyTracks app on when traveling, and turn the MyTracks app off when they 

get to the destination.  This effectively prevents a convenient 24/7 tracking 

application from being possible, given the energy demands of GPS. 

3) Commercial location-aware apps are often limited to “locate->send” functionality.  

Phones are often simply used to access the positioning technology in the device 

and send this information to a server, and the primary application features are 

available via desktop or web apps, not the mobile app.  In other words, the 

software simply runs in the background and occasionally reports the rough 

location of the device to a server. 

4) Commercial location-aware apps are often lacking device-based intelligence.  

Location information is not often processed locally on the device, which limits the 

abilities of the app to intelligently manage constrained device resources while 

using positioning systems and wireless communication.  This lack of on-board 

intelligence limits the frequency of use of GPS as well as the frequency of 

location reporting to a server to a large static interval (e.g., 10 minutes) to avoid 

having a severe impact on device battery life and cellular network data traffic. 

The next section discusses known location-aware architectures and their limitations for 

supporting further innovation beyond today’s location-aware features.   
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2.2 Known Location-Aware Architectures 

Since the E911 mandate in the late 1990s, many location based services architectures 

have been presented in academic literature. 

Some of the initial papers following the E911 mandate targeted the implementation of 

positioning technologies by cellular carriers.  Zhao [13], Kupper [16], Barnes [58], and 

Rao et al. [59] provide a survey of the different technologies and standards under 

consideration for implementation by carriers, while Porcino [15] and Sunay [60] provide 

evaluations of various positioning technologies.  In this dissertation we are concerned 

primarily with device-based (i.e., mobile terminal (MT)-based, mobile station (MS)-

based) assisted GPS, since it is the most accurate and precise positioning technology 

widely available on mobile phones [13, 15-19] and is also the positioning technology 

typically exposed to application developers via APIs [18].  Soliman et al. [61], Ashjaee 

[62], Langley [63], Richton et al. [19], and Liu [64] all discuss the implementation details 

of first-generation assisted GPS systems for mobile phones which utilize both assistance 

information from the cell network as well as GPS hardware in the mobile phone.  A 

weakness of first-generation GPS is that it could not acquire a positional fix indoors [65].  

Subsequent evolutions of GPS technology, termed “high-sensitivity” or “indoor” GPS, 

are aided by a new hardware design that enables the GPS hardware to detect satellite 

signals and compute a position even in highly obstructed environments, such as indoors.  

Van Diggelen discusses the design, implementation, and testing of high-sensitivity GPS 

in his work [66-69].  Vittorini et al. [70], Lachapelle [71, 72], Zhang et al. [73, 74], 

Beauregard [75], and DeSalas et al. [76] all discuss further improvements to general 

high-sensitivity GPS design for additional accuracy and availability of position and 
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velocity measurements.  Ballantyne et al. discuss integrated circuit (IC) designs within 

the mobile phone that can help reduce the amount of energy an individual GPS fix 

consumes [77].  Zandbergen et al. provide empirical accuracy evaluations of GPS data 

from mobile phones [17, 18], while Blunck et al. provide an analysis of the impact of 

body of the user on GPS signal reception in phones [78].  Other publications [79-85] 

examine issues related to increasing the precision and accuracy of indoor tracking via 

other technologies such as WiFi, ultrawideband, and Radio Frequency IDentifiers 

(RFID), although these techniques are not currently available positioning options for 

mobile application developers, and therefore are beyond the scope of this research. 

While these papers on the intimate details of positioning systems served a critical role in 

the development of positioning systems for mobile phones, they are of greatest use to the 

engineers implementing these positioning systems in cellular networks and do not 

provide guidance to applications developers, other than to provide a rough order-of-

magnitude analysis of the accuracy and precision of the underlying positioning 

technologies.  These works discuss technologies which are largely hidden beneath 

application platform APIs, and therefore application developers do not directly interface 

with these technologies. 

Once positioning technologies for cellular devices had matured and were implemented in 

cellular networks, the focus of many academic works turned to the realization of location-

based services based on these positioning technologies.  Mintz-Habib et al. [86] present a 

Voice over Internet Protocol (VoIP) emergency services architecture and prototype which 

is aimed at providing location information to public safety answering points (PSAPs) 
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when a mobile user calls 911.  Jose et al. [87] present an architecture based on the 

Service Location Protocol (SLP) [88], but this work is designed for relative location 

between entities in the Internet and is not designed for high-accuracy or high-precision 

GPS-based devices. 

Since the business model and cellular carriers’ ultimate role in providing commercial 

LBS was initially uncertain, several papers presented architectures that could be 

implemented by cellular carriers or a commercial partner of the carrier.  These 

architectures are either tightly coupled to the cellular infrastructure or maintain a 

centralized location data store and interface for all location-aware mobile applications 

running on the network.  Zundt et al. present a peer-to-peer location architecture that is 

tightly-integrated with GSM networks [89], and Taheri et al. present a network location 

management scheme to enhance the efficiency of base station handoffs for GSM 

networks by using Hopfield Neural Networks [90].  Spanoudakis et al. [91], Kupper et al. 

[92, 93], and Treu et al. [94] all present architectures that enforce centralized control over 

all location-aware applications for mobile phone users, as the architecture serves as the 

location gateway for connecting applications.  These architectures all assume that the 

carrier or commercial partner of the carrier has total control over the location-based 

services that are offered to cellular users on their network.  In other words, application 

developers must enter into an agreement with the carrier or commercial partner to 

provide services to mobile phone users.  This dissertation instead focuses on a location-

aware architecture that can be fully-implemented at the application level by third party 

application developers and does not require a commercial relationship or programmatic 

interaction with a centralized system which controls all LBS for a cellular network. 
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Some location architectures provide conceptual models for location exchange between 

entities in a system, but do not define the exact protocols for the exchange of the location 

information and do not evaluate the impact of the architecture on important mobile 

device characteristics such as battery life or amount of data transfer over the cell network.  

Spanoudakis et al. [91] present their PoLoS Kernel server, which is designed to receive 

location information from cell phones using the Extensible Markup Language (XML)-

based Simple Object Access Protocol (SOAP) [95] and share this information with 

Internet clients via a “Services Deployer.”  Leonhardi et al. [96, 97] describe the 

conceptual exchange of XML-formatted documents between hierarchical entities in a 

location system that was implemented using a wearable computing system prior to GPS 

being available in mobile phones.  Nord et al. [98] describe an architecture that has a 

primary purpose of abstracting positioning technologies used by a mobile device to 

network servers that wish to discover the location of the device using an XML-based 

“General Positioning Protocol.”  Wu et al. [99] proposes a location architecture in which 

device positions are only sent on-demand to a server when a viewer requests to see the 

device’s position.  The PoSIM system presented by Bellavista et al. [100] multiplexes 

between positioning technologies based on a rules defined by the software developer at 

compile time and asserted at runtime by a rule engine, and exchanges XML-based 

messages within the system.  Chen et al. [101, 102] propose an XML-based “location 

operating reference model (LORE),” designed primarily for location-based messaging 

based on client subscriptions (e.g., user is subscribed to receive e-coupons to a store 

when they are in proximity of the store).  For user privacy, Chen [101] also proposes that 

instead of sending location updates from the device to the server, the server sends all geo-
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stamped XML-based subscription messages to all devices.  Each device then compares 

the message’s location area to its own location and determines if the message should be 

shown to the user.  Ananthanarayanan et al. [103] propose StarTrack, a server-focused 

framework for abstracting spatial database operations on recorded user tracks to a set of 

conceptual primitives, alleviating the application developer from needing to understand 

low-level spatial database functionality. 

In all these architectures, the impact of position updates (a function of both the frequency 

of GPS recalculations and the frequency of the data being sent to a server) on mobile 

device battery life is not directly considered.  For architectures that use XML, 

experiments in Chapter 4 of this dissertation illustrate the drawbacks of using a verbose 

formatting scheme such as XML and SOAP for the transfer of location data between 

mobile phones and a server, as such a scheme has a significant impact on mobile device 

battery life due to the large amount of overhead data exchanged. 

Several past LBS architectures have focused on the use of the Session Initiation Protocol 

(SIP), an application-layer protocol that is often used in the context of VoIP applications 

[86, 89, 104-109].  However, none of these SIP-based architectures were designed for 

GPS-enabled mobile phones in the Java ME environment.  The optional SIP API for Java 

ME has not been widely implemented in mobile devices and therefore typically is not an 

available protocol for mobile developers to use in an application [110].  In fact, in the 

roadmap for the Java ME platform defined by the Mobile Services Architecture (MSA) 

specifications, the SIP API is only required to be supported in the high-end device 

segment, such as Personal Digital Assistants, in order for the device to be MSA-
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compliant [111, 112].  Therefore, location-aware architectures targeting the majority of 

Java ME devices should not require support for SIP. 

Some location-aware architectures have focused on the routing of location data between 

servers as part of a distributed system.  In these systems, the mobile devices connect to a 

server on the periphery of the distributed system network, and then the server acts as a 

proxy for the mobile device to contact other entities in the distributed system, retrieve 

data, and relay that data back to the mobile device.  Zhang et al. [113] present their 

GeoGrid architecture which maps the location of servers in the topography network to the 

actual geographic position of the servers, and provides routing algorithms for load-

balancing and redundancy.  Perez et al. [114] present Geotella, a peer-to-peer routing 

protocol modeled after Gnutella, as part of their scalable G-Sense global architecture to 

link location information from wireless sensor networks and mobile devices.  These 

systems have the advantage of scaling to a larger number of simultaneous global users 

than traditional client-server architecture with a single centralized server.  However, 

neither of these architectures directly considers the connection between the mobile device 

and server, which still must be a client-server architecture, and neither evaluates the 

impact of this exchange of location information on the mobile device’s limited resources.  

In fact, Perez et al. [114] cites our research as the client-server architecture used in their 

system to exchange data between the mobile device and the server. 

Out of the many location-aware architectures that have been presented in literature, only 

two have been designed with awareness of the negative impact that location-based 
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services can have on limited mobile device resources.  The difference between our 

research and these existing location-aware architectures is presented below. 

Kjaergaard et al. [33, 36, 37] presents Entracked, a software system for the Nokia N95 

and N96 smart phones running the Symbian operating system that adjust the GPS 

recalculation frequency and position reporting frequency based on a software model of 

power consumption.  The power consumption model is generated and updated via data 

from a power-sampling API on the device at the rate of 4Hz, and also samples GPS at a 

rate of 1Hz and an embedded accelerometer at a rate of 30Hz.  However, the Entracked 

system is designed to deliver location information to network applications, not mobile 

applications.  In other words, network applications query the Entracked server, which in 

turn queries the Entracked mobile software for the device position, and then relays this 

position information back to the network application.  Therefore, Entracked does not 

support mobile real-time location-aware applications, which is the focus of our research.  

Also, since Entracked relies primarily on the accelerometer to decide when to turn GPS 

on and turn off, this software model cannot be used on devices that do not have 

embedded accelerometers.  Entracked assumes that even when sampling GPS positions at 

large intervals (e.g., every 200 seconds) the GPS hardware would still need to remain 

constantly powered on (i.e., the hardware could not enter a low-power state in between 

samples).  While this assumption is true for older GPS devices, for modern cell phones 

with high-sensitivity GPS even modest adjustments of sampling intervals (e.g., four 

seconds) in the app can yield significant energy savings, as we show in Chapter 4.  This 

savings is produced by the internal GPS quickly acquiring a positional fix and then 

powering down between samples.  Our research leverages these observations and 
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presents a power-saving technique, GPS Auto-Sleep, which does not require embedded 

accelerometers and therefore can function on even severely resource-constrained devices 

that have only embedded GPS.  Another difference between Entracked and our work is 

that Entracked uses the Transmission Control Protocol (TCP) [42] to transfer location 

data between the device and the server.  In Chapter 4, we demonstrate that the User 

Datagram Protocol (UDP) [41] is preferable for real-time location data transfer, and 

therefore UDP was chosen for our architecture.  Langdal et al. [115] reimplement the 

features of Entracked in their modular graph-based PerPos middleware.  However, the 

limitations discussed above also apply to the PerPos implementation of Entracked. 

Farrell et al. [32] present an Early Distance-Based Reporting (EDBR) algorithm, a 

position reporting method which considers both the energy used by positioning sensors 

such as GPS as well as the energy used in the wireless transmission of this information.  

However, this method was designed primarily for reporting positions to a server for 

network-based applications, and not in the context of real-time mobile applications.  The 

focus on network applications, and the tight coupling of the positioning sensor refresh 

interval and interval between location updates to a server, creates several limitations for 

real-time mobile applications.  For example, Farrell et al. support only a distance-based 

reporting method, which will not produce any location updates to a server if the device 

does not move.  Therefore, distance-based reporting does not support the use-case of a 

mobile application that is required to report a position to a server at a minimum time 

interval, regardless of movement.  Also, since distance-based reporting sends a position 

to the server after a certain distance is exceeded, it can produce needless updates if the 

user is traveling in a straight line for an extended period of time (e.g., driving on a 
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highway). Our research presented in the next chapter de-couples the position reporting 

method (i.e., the Critical Point Algorithm) from the method used to refresh the 

positioning sensor (i.e., GPS Auto-Sleep) in order to support independent operations of 

each method, thus modularizing the system and extending the use cases for various 

positioning sensing refresh and position update reporting intervals. This allows our 

LAISYC framework to support various types of position update methods in the Critical 

Point Algorithm without changing the positioning sensor refresh rate.  Additionally, the 

positioning sensor refresh rate can then be adjusted based on logic other than detecting 

movement for server updates.  One example of alternate refresh logic is the manipulation 

of the refresh rate for a mobile navigation application that wants to only occasionally 

refresh a position when a large distance from the goal, but then needs to increase the 

refresh rate when getting closer to the goal.  By reducing the GPS refresh rate and only 

updating the location occasionally when miles from a goal, the application can produce 

significant battery life savings, as we demonstrate in Chapter 4. 

Farrell et al. also do not evaluate their algorithm on actual mobile devices; instead, they 

synthesize random positions from a simulator, with the assumption that objects move 

linearly and in a uniform manner, and use this data to evaluate their algorithm.  Synthetic 

path data generated in this manner is problematic from several perspectives.  Farrell et al. 

do not consider the uncertainty and error of a GPS position when evaluating their 

algorithm.  As we show in Chapter 4, even with high-sensitivity GPS indoor position 

tracking produces a significant amount of errors in position that do not reflect the true 

geographic position of the device due to environmental noise [17, 18].  When a GPS 

device calculates a position repeatedly in the same geographic location, the error in 
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position creates a normal distribution [116].  Therefore, Farrell et al.’s assumption that 

the change in GPS positions while a user is stationary will be uniform is invalid.  In our 

work, the LAISYC architecture is evaluated while it executes on actual mobile devices 

with real assisted GPS data, therefore removing the assumptions and limitations 

discussed above. 

Our past research has investigated location-aware architectures in the context of  

bidirectional, multimedia, location-based messaging [117].  That architecture focuses 

primarily on a messaging infrastructure which piggy-backs location data in Multimedia 

Messaging Service (MMS) messages sent through a cellular carrier’s publicly-accessible 

messaging gateway, thus avoiding the use of short-codes and messaging aggregators. 

However, the use cases for this architecture are the occasional exchange of messages, and 

therefore only occasional use of GPS.  Since GPS is not used in an ongoing manner, this 

messaging architecture does not consider the impact of GPS on mobile device battery 

life, or the amount of data being sent over the cellular network. 

This dissertation presents LAISYC, an architecture that supports real-time mobile 

applications that are “always-on” and in continuous communication with a server, as in 

traditional IP-based networks.  LAISYC focuses primarily on the intelligent device-based 

modules but also discusses the structure of communication with the server and server-

side components that support the overall framework.  Unlike the other known 

architectures discussed in this chapter, LAISYC meets the needs of intelligent real-time 

mobile applications in Location-based Services as discussed in Chapter 1.  Our research 

presents the results of field tests in Chapter 4 which evaluate key LAISYC modules in 
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order to quantitatively assess their impact on mobile device battery life in the context of 

the presented architecture.  Our work on LAISYC is also summarized in publications in 

IEEE Pervasive Computing [118], Proceedings of IEEE UBICOMM Conference [119], 

the Transportation Research Record: Journal of the Transportation Research Board [120], 

Proceedings of the Intelligent Transportation Systems World Congress [121], the Journal 

of Navigation [18], and several issued [122-126] and pending patents [127-129].  

LAISYC has been used to enable several real-time location-aware applications as part of 

research projects, including the Travel Assistance Device (TAD) mobile application that 

assists transit riders with intellectual disabilities in using public transportation through 

real-time navigation instructions [130], as well as TRAC-IT, a mobile app that supports 

simultaneous travel behavior data collection and real-time location-based services [131, 

132].  TAD and TRAC-IT’s relationship with LAISYC is discussed in detail in Chapter 4 

as a demonstration of innovative location-aware applications implemented using 

LAISYC. 
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