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Abstract

The aim of this work is to use the Pfa¢ an technique, along with the Hirota bilinear

method to construct di¤erent classes of exact solutions to various of generalized inte-

grable nonlinear partial di¤erential equations. Solitons are among the most bene�cial

solutions for science and technology, from ocean waves to transmission of information

through optical �bers or energy transport along protein molecules. The existence of

multi-solitons, especially three-soliton solutions, is essential for information technol-

ogy: it makes possible undisturbed simultaneous propagation of many pulses in both

directions.

The derivation and solutions of integrable nonlinear partial di¤erential equations

in two spatial dimensions have been the holy grail in the �eld of nonlinear science since

the late 1960s. The prestigious Korteweg-de Vries (KdV) and nonlinear Schrödinger

(NLS) equations, as well as the ,Kadomtsev-Petviashvili (KP) and Davey-Stewartson

(DS) equations, are prototypical examples of integrable nonlinear partial di¤erential

equations in (1+1) and (2+1) dimensions, respectively. Do there exist Pfa¢ an and

soliton solutions to generalized integrable nonlinear partial di¤erential equations in

(3+1) dimensions? In this dissertation, I obtained a set of explicit exact Wronskian,

Grammian, Pfa¢ an and N -soliton solutions to the (3+1)-dimensional generalized in-

tegrable nonlinear partial di¤erential equations, including a generalized KP equation,

a generalized B-type KP equation, a generalized modi�ed B-type KP equation, soliton

equations of Jimbo-Miwa type, the nonlinear Ma-Fan equation, and the Jimbo-Miwa

equation. A set of su¢ cient conditions consisting of systems of linear partial di¤er-

ential equations involving free parameters and continuous functions is generated to

guarantee that the Wronskian determinant or the Pfa¢ an solves these generalized

v



equations.

On the other hand, as part of this dissertation, bilinear Bäcklund transformations

are formally derived for the (3+1)-dimensional generalized integrable nonlinear par-

tial di¤erential equations: a generalized B-type KP equation, the nonlinear Ma-Fan

equation, and the Jimbo-Miwa equation. As an application of the obtained Bäck-

lund transformations, a few classes of traveling wave solutions, rational solutions and

Pfa¢ an solutions to the corresponding equations are explicitly computed.

Also, as part of this dissertation, I would like to apply the Pfa¢ anization mecha-

nism of Hirota and Ohta to extend the (3+1)-dimensional variable-coe¢ cient soliton

equation of Jimbo-Miwa type to coupled systems of nonlinear soliton equations, called

Pfa¢ anized systems.

Examples of the Wronskian, Grammian, Pfa¢ an and soliton solutions are explic-

itly computed. The numerical simulations of the obtained solutions are illustrated

and plotted for di¤erent parameters involved in the solutions.

vi



1 Introduction to Hirota�s direct method

The second half of the last century saw a resurgence in the study of classical physics. Math-

ematicians and physicists started paying particular attention to the e¤ects caused by the

nonlinearity in dynamics. This nonlinearity was found to have two gorgeous manifesta-

tions of a di¤erent feature: chaos, that is the apparent randomness in the behavior of fully

deterministic systems, and solitons, that is localized, stable traveling particles scattered

elastically.

On the other hand, integrable nonlinear partial di¤erential equations [15, 16, 17, 18, 19,

20, 21, 22] have attracted much attention of physicists as well as mathematicians for the

last 30 years. The analysis of traveling wave solutions to integrable nonlinear partial di¤er-

ential equations plays a pivotal role in the study of nonlinear physical phenomena. Besides

soliton solutions, another attractive set of multi-exponential wave solutions [28] is a linear

combination of exponential waves. It has been shown that some nonlinear equations can

possess the linear superposition principle [29]. Particular solutions combining exponential

functions and trigonometrical functions are presented and called complexiton solutions (or

brie�y complexitons) [24], and lattice soliton equations have a similar situation [19]. Com-

plexitons are also shown to exist for source soliton equations [56] and soliton equations with

sources [25].

Generally, it is a di¢ cult task to �nd exact solutions of nonlinear partial di¤erential

equations. Moreover, even if one manages to �nd a strategy for solving one particular

nonlinear partial di¤erential equation, in general, such a strategy may not be applicable to

other nonlinear partial di¤erential equations.

A variety of powerful methods has been used to study integrable nonlinear partial dif-

ferential equations, such as the inverse scattering method [26], the dressing method [23], the
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Hietarinta approach [2], the Painlevé analysis [13], the Bäcklund transformation method

[30], the Darboux transformation method [9, 10] and the Jacobi elliptic function expansion

method [12]. These approaches possess powerful features that make it possible to generate

multiple wave solutions for a wide range of integrable nonlinear partial di¤erential equations.

This dissertation is concerned with a particular method used in the study of nonlinear

partial di¤erential equations, including soliton equations. Recently, the Hirota bilinear

method [1, 4, 7] was extended to present exact solutions to many nonlinear partial di¤erential

and soliton equations, for example, the Wronskian determinant solutions and the Grammian

determinant solutions [3, 5, 14, 32], and even used in constructing N -soliton solutions for

integrable couplings by perturbation [27, 52].

In this dissertation, we discuss the structure of generalized integrable nonlinear partial

di¤erential equations from the viewpoint of the Pfa¢ an technique. Now a natural question

arises: what is the essential solution structure common to all integrable nonlinear partial

di¤erential equations, including soliton equations? The answer will be partially provided

in this dissertation: Pfa¢ an solutions to Hirota bilinear equations are nothing but Pfa¢ an

identities. From this viewpoint, as part of this dissertation, we will show how fundamental

generalized integrable nonlinear partial di¤erential equations resolve themselves into Pfa¢ an

identities. Here, we list some of the most celebrated integrable nonlinear partial di¤erential

equations, and in later chapters, we will show how they resolve themselves into Pfa¢ an

identities.

� A (3+1)-dimensional generalized KP equation

uxxxy + 3(uxuy)x + utx + uty � uzz = 0: (1.0.1)

� A (3+1)-dimensional generalized B-type KP equation

uty � uxxxy � 3 (uxuy)x + 3uxx + 3uzz = 0: (1.0.2)

� The (3+1)-dimensional soliton equations of Jimbo-Miwa type

uyt � uxxxy � 3uxxuy � 3uxuyx + 3uxz = 0; (1.0.3)

2



2vyt + vxxxy + 3vxxvy + 3vxvyx � 3vzz = 0: (1.0.4)

� The (3+1)-dimensional nonlinear Jimbo-Miwa equation

uxxxy + 3uxxuy + 3uxuyx + 2uyt � 3uxz = 0: (1.0.5)

� A (3+1)-dimensional variable coe¢ cient soliton equation of Jimbo-Miwa type

�1(t)uxxxy + 3�2(t)(uxuy)x � uyt � 3�3(t)uxz + 2�4(t)uy = 0: (1.0.6)

� The (3+1)-dimensional nonlinear Ma-Fan equation

utz � uxxxy � 3 (uxuy)x + 3uxx = 0: (1.0.7)

� A coupled system of soliton equation of Jimbo-Miwa type

8>>>>>>>>><>>>>>>>>>:

uxxy + 3uxxuy + 3uxuxy � uyt � 3uxz + 12(wvx � vwx)x = 0;

�vt + 3uxvx + vxxx + 3vxy + 3vuy = 0;

�wt + 3uxwx + wxxx � 3wxy � 3wuy = 0:

(1.0.8)

1.1 Hirota�s direct method

The Leibniz rule for normal derivatives is given by

@m

@tm
@n

@xn
�(x; t)�(x; t) =

@m

@sm
@n

@yn
�(x+ y; t+ s)�(x+ y; t+ s) js=0; y=0; (1.1.9)

Similarly, the usual Hirota derivatives (or D-operators) are de�ned by [1]

Dm
t D

n
x�(x; t) � �(x; t) =

@m

@sm
@n

@yn
�(x+ y; t+ s)�(x� y; t� s) js=0; y=0: (1.1.10)

3



or equivelently, by

Dm
t D

n
x�(t; x) � �(t; x) = (@t � @t0)

m (@x � @x0)n �(t; x)�(t0; x0) jt0=t; x0=x: (1.1.11)

Writing out (1.1.10) for the case of one variable, we can obtain Hirota derivatives:

Dn
x�(x) � �(x) =

@n

@yn
�(x+ y)�(x� y) jy=0: (1.1.12)

Further, we get a nice property of D-operators that normal derivatives don�t have:

Dn
x' � ' = 0 for n is odd. (1.1.13)

The following properties are easily seen from the de�nition:

� Dm
� ' � 1 =

@m

@�m
':

� Dm
� ' �  = (�1)mDm

�  � ':

� Dm
� ' � ' = 0 for odd.m.

� Dm
� ' �  = Dm�1

� ('� � ' �):

� Dm
� ' � ' = 2D

m�1
� ('� � ') for odd m.

� D�D�' � ' = 2D�('� � ') = 2D�('� � ').

� D�(' � !) =
@'

@�
 ! + 'D�( � !):

� Dm
� exp(�x) � exp(�x) = (�� �)m exp [(�+ �)x] :

� exp(�D�)(' �  ) = '(x+ �) (x� �):

� exp(�D�)(' � !�) = [exp(�D�)(' � !)] [exp(�D�)( � �)] :

We would like to express integrable nonlinear partial di¤erential equations in the Hirota

Bilinear form as

P (D)' � ' = 0; (1.1.14)

4



where P (D) is a polynomial in D; ' is a new dependent variable for the bilinear form of the

given partial di¤erential equation. We continue this section by constructing the essential

properties of Hirota D-operators. We have

�(x+ y)�(x� y) =
1X

=0

1


!
(D�

x� � �) y�

= exp(yDx)�(x) � �(x): (1.1.15)

We can use (1.1.15) to prove the following useful log-identity [1]:

2 cosh

�
y
@

@x
log'

�
= log [cosh (yDx)' � '] : (1.1.16)

Now, we de�ne the Dz operator as

Dz = (Dt + �Dx); (1.1.17)

and Dn
z ; n � 1; are linear combinations of Hirotas D-operators

(Dt + �Dx)
n� � � = Dt� � � + n�Dn�1

t Dx� � � + :::+ �nDn
x� � �: (1.1.18)

We can use (1.1.18) to compute products of D-operators. For example, 3D2
xDt� � � is the

coe¢ cient of �2 in (Dt + �Dx)
3� � �:

All the previous results for one-variable D-operators will hold for Dz. For example, we

can write (1.1.16) in terms of Dz

2 cosh

�
y
@

@z
log'

�
= log [cosh (yDz)' � '] ; (1.1.19)

where y is a scalar and ' = '(z):

By taking Taylor expansions for each side of (1.1.19) with respect to y and collecting

powers of y, we can derive some fundamental formulae for the log-transform. On the left

hand side of (1.1.19), we have

2 cosh

�
y
@

@z
log'

�
= 2(1 +

y2

2!

@2

@z2
+
y4

4!

@4

@z4
+ :::) log': (1.1.20)
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We will write the Taylor expansion for the right hand side of (1.1.19) in the form

1X
n=0

yn

n!
 (n)(0); (1.1.21)

with

 (y) = log [cosh (yDz)' � '] ; (1.1.22)

where we have made use of
@

@y
log (y) =

 0(y)

 (y)
: (1.1.23)

For example, the �rst few derivatives are

 0(y) =
Dz sinh(yDz)' � '
cosh (yDz)' � '

=)  0(0) = 0; (1.1.24)

 00(y) =
D2
z [cosh (yDz)' � ']2 �D2

z [sinh(yDz)' � ']2

[cosh (yDz)' � ']2
=)  00(0) =

D2
z' � '
'2

: (1.1.25)

Equating the terms with involving the powers of y on each side and using (1.1.17), we have

2
@2

@x2
log' =

D2
x' � '
'2

; (1.1.26)

2
@2

@x@t
log' =

DxDt' � '
'2

; (1.1.27)

2
@4

@x4
log' =

D4
x' � '
'2

� 3
�
D2
x' � '
'2

�2
: (1.1.28)

The �rst step of the Hirota direct method is to develop appropriate transformations

of nonlinear partial di¤erential and di¤erence equations which require that the di¤erential

equations are in quadratic form in dependent variables. For example, let us consider the

KdV equation
@u

@t
+ 6u

@u

@x
+
@3u

@x3
= 0: (1.1.29)

Introducing the following dependent variable transformation:

u = 2(log')xx; (1.1.30)

6



Eq. (1.1.29) becomes

2(log')xt + 3 [2(log')xx]
2 + 2(log')4x = 0: (1.1.31)

The second step of the Hirota direct method is to use Hirota D-operators to �nd the

bilinear form of the considered equation by a polynomial of Hirota D-operator. For example,

we proceed to bilinearise the KdV Eq. (1.1.29). Using Eqs.(1.1.26), (1.1.27) and (1.1.28) in

Eq. (1.1.31), the KdV Eq. (1.1.29) becomes

DxDt' � '
'2

+ 3

�
D2
x' � '
'2

�2
+
D4
x' � '
'2

� 3
�
D2
x' � '
'2

�2
= 0: (1.1.32)

Cancelling the second and fourth terms, this is simpli�ed to

(DxDt +D
4
x)' � ' = 0; (1.1.33)

or equivalently

Dx(Dt +D
3
x)' � ' = 0: (1.1.34)

Eq. (1.1.34) is the Hirota bilinear form of the KdV equation.

The last step of the Hirota direct method is to use the perturbation expansion. Let us

now �nd soliton solutions of the KdV equation in the bilinear form

P (D) � Dx(Dt +D
3
x)� � � = 0: (1.1.35)

As in the standard technique of the perturbation [1], we will expand � as a power series in

a small parameter �:

� = 1 + ��1 + �
2�2 + �

3�3 + :::. (1.1.36)

Substituting (1.1.36) into (1.1.35), we obtain

�
Dx(Dt +D

3
x)
�
(1 + ��1 + �

2�2 + �
3�3 + :::)

�(1 + ��1 + �2�2 + �3�3 + :::) = 0: (1.1.37)
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Matching coe¢ cients of � on the LHS and the RHS of this equation gives

� :
�
Dx(Dt +D

3
x)
�
(�1 � 1 + 1 � �1); (1.1.38)

�2 :
�
Dx(Dt +D

3
x)
�
(�2 � 1 + �1 � �1 + 1 � �2); (1.1.39)

�3 :
�
Dx(Dt +D

3
x)
�
(�3 � 1 + �2 � �1 + �1 � �2 + 1 � �3); (1.1.40)

where the coe¢ cient of �n is
�
Dx(Dt +D

3
x)
�
acting on all combinations of � j ��k terms where

j + k = n for j; k; n 2 Z+.

We want to compute the required derivatives. For the �1 terms, we have

D4
x�n � 1 = D4

x1 � �n = (�n)4x; (1.1.41)

DxDt�n � 1 = DxDt1 � �n = (�n)xt; (1.1.42)

and then the coe¢ cient of �1 is

2DxDt�1 � 1 + 2D4
x�1 � 1 = 0: (1.1.43)

Therefore, using (1.1.41) and (1.1.42), Eq.(1.1.43) becomes

(�1)4x + (�1)xt = 0: (1.1.44)

The solution �1 to this equation is given by

�1 = exp(�1) �1 = p1x+
1t+ �
0
1: (1.1.45)

In a similar way, the coe¢ cient of �2 in (1.1.39) can be written in terms of �1

�
�
Dx(Dt +D

3
x)
�
�1 � �1 =

�
Dx(Dt +D

3
x)
�
(�2 � 1 + 1 � �2)

= 2DxDt�2 � 1 + 2D4
x�2 � 1

= 2(�2)4x + 2(�2)xt:
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We can now obtain

�
�
Dx(Dt +D

3
x)
�
exp(�1) � exp(�1) = 2(�2)4x + 2(�2)xt: (1.1.46)

Now, making use of (1.1.10), it is easy to see that

Dm
x D

n
t exp(�j) � exp(�k) = (pj � pk)m(
j � 
k)n exp(�j + �k); (1.1.47)

where

�i = pix+
it+ �
0
i ; i � 0: (1.1.48)

We note that, when j = k in the equation (1.1.47):

Dm
x D

n
t exp(�j) � exp(�j) = (pj � pj)m(
j � 
j)n exp(�j + �j) = 0: (1.1.49)

Thus, we have

(�2)4x + (�2)xt = 0: (1.1.50)

If we choose �2 = 0, then from the perturbation expansion, we get a nontrivial solution.

The expansion will truncate at �1, providing an exact solution to the KdV equation:

� = 1 + ��1

= 1 + � exp(�1)

= 1 + � exp(p1x+
1t+ �
0
1):

If we choose � = exp(�), and absorb into the constant �01; then, the exact solution � can be

written as

� = 1 + exp(�1): (1.1.51)

Applying the log-transform to the solution (1.1.51), we �nd the 1-soliton solution [1]

u = 2(log �)xx

= 2 [log(1 + exp(�1))]xx

9



=
@�1
@x

2 exp(�1)

[1 + exp(�1)]
2

=
2p21 exp(�1)

[1 + exp(�1)]
2

=
p21
2
sech2(

�1
2
):

In a similar way, we can set

�2 = 1 + exp(�1) + exp(�2) + a12 exp(�1 + �2); (1.1.52)

to obtain the 2-soliton solution, and we can set

�3 = 1 + exp(�1) + exp(�2) + exp(�3)

+a12 exp(�1 + �2) + a13 exp(�1 + �3)

+a23 exp(�2 + �3) + a123 exp(�1 + �3 + �5); (1.1.53)

to obtain the 3-soliton solution, where a123 = a12a13a23.

However, the KdV-type Eq. (1.1.35) has an N -soliton solution that can be written as

[1]

�N =
X8

exp(
NX
i=1

�i�i +

(N)X
i<j

Aij�i�j); (1.1.54)

where
X8

means that the summation over all possible combinations of �1 = 0; 1; �2 =

0; 1; :::; �n = 0; 1; and
P(N)

i<j is the sum over all i; j (i < j) chosen from f1; 2; :::; Ng :

Using the vector notation and setting


i = (
i; Pi; Qi; :::); (1.1.55)

�i = (t; x; y; :::); (1.1.56)

we have, for i; j = 1; 2; 3; :::; N;

�i = 
i � �i + constant, (1.1.57)

P (
i) = 0; (1.1.58)

10



where the phase shift is given by

exp(Aij) = aij =
P (
i �
j)

P (
i +
j)
; P (t; x) = xt+ x4: (1.1.59)

Generally, the polynomial P must satisfy the Hirota condition [1], de�ned by

X
�1;:::;�n=0;1

 
NX
i=1

�i
i

!
(N)Q
i<j

P (�i
i � �j
j)�i�j = 0; (1.1.60)

to have an N -soliton solution to

P (Dt; Dx; Dy; :::)f � f = 0: (1.1.61)

1.2 Pfa¢ ans

Pfa¢ ans, which may be an unfamiliar word, are closely related to determinants. They

are usually de�ned by the property that the square of a Pfa¢ an is the determinant of an

antisymmetric matrix. This feature leads often to the misunderstanding that a Pfa¢ an

is a special case of a determinant. In fact, it is easy to recognise that the Pfa¢ ans are a

generalization of determinants. Therefore, Plücker relations and Jacobi identities, which are

identities for determinants, also hold for Pfa¢ ans.

In this dissertation, we will use Pfa¢ an identities [7] to search for exact solutions to

the nonlinear partial di¤erential equations: (1.0.1), (1.0.2), (1.0.3), (1.0.4), (1.0.5), (1.0.6),

(1.0.7) and (1.0.8).

Let us discuss some basics about the Pfa¢ an [7]. Let A = (�jk)1�j;k�m be a skew-

symmetric matrix, in which �j;k = ��k;j for j; k = 1; 2; :::;m: It is known that det(A) of

odd order vanishes but det(A) of even order m = 2n is the square of a Pfa¢ an, that is

det (A) =

8<: 0; if m is odd,

Pf(�jk)21�j;k�m; if m is even.
(1.2.62)

We can denote this Pfa¢ an Pf(�jk)1�j;k�2n by

Pf(�jk)1�j;k�2n = (1; 2; 3; :::; 2n): (1.2.63)
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Then, we have

������������

0 �12 �13 �14

��12 0 �23 �24

��13 ��23 0 �34

��14 ��24 ��34 0

������������
= [�12�34 � �13�24 + �14�23]2 (1.2.64)

� (1; 2; 3; 4)2: (1.2.65)

Therefore, a second-order (n = 2) Pfa¢ an is given by

(1; 2; 3; 4) = (1; 2)(3; 4)� (1; 3)(2; 4) + (1; 4)(2; 3); (1.2.66)

where

(j; k) = �j;k for j < k: (1.2.67)

Also, it should be noted that from the antisymmetric �j;k = ��k;j ; we have

(j; k) = �(k; j): (1.2.68)

In general, we have an expansion rule for a Pfa¢ an (1; 2; :::; 2n) of order n:

(1; 2; :::; 2n) =
2nX
j=2

(�1)j(1; j)(2; 3; :::;
^
j; :::; 2n); (1.2.69)

where the notation
^
j means that the index j is omitted. An alternative expansion reads

(1; 2; :::; 2n) =
2n�1X
j=1

(�1)j�1(1; 2; :::;
^
j; :::; 2n� 1)(j; 2n): (1.2.70)

Repeating the above expansion, we arrive at the summation of products of �rst-order Pfaf-

�ans [7]:

(1; 2; :::; 2n) =
X0

(�1)P (i1; i2)(i3; i4)(i5; i6):::(i2n�1; i2n); (1.2.71)

where
P0 means the sum over all possible combinations of pairs selected from f1; 2; :::; 2ng
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that satisfy

i1 < i2; i3 < i4; i5 < i6:::; i2n�1 < i2n; i1 < i3 < ::: < i2n�1:

These �rst-order Pfa¢ ans (i; j) are called the entries in the Pfa¢ an. In the above equa-

tion,The factor (�1)P = +1 or �1 if the sequence fikg2nk=1 is an even or odd permutation

of 1; 2; :::; 2n.

Moreover, the Pfa¢ an (i1; i2; :::; i2n) vanishes if il = im for any pair of m and l cho-

sen from 1; 2; :::; 2n. Also, the interchange of labels il and im changes the parity of each

permutation in the sum, and thus, the Pfa¢ an has the skew-symmetric property

(i1; :::; il; :::; im; :::; i2n) = �(i1; :::; im; :::; il; :::; i2n); (1.2.72)

where 1 � l < m � 2n: The Pfa¢ an also is denoted conventionally by [37]

Pf (�i;j)1�i;j�2n =

j �1;2 �1;3 � � � �1;2n

�2;3 � � � �2;2n
. . .

...

�2n�1;2n

������������
; (1.2.73)

and when N = 1; 2; the Pfa¢ an reads

Pf (�i;j)1�i;j�2 = �1;2 = (1; 2);

Pf (�i;j)1�i;j�4 = �1;2�3;4 � �1;3�2;4 + �1;4�2;3 = (1; 2; 3; 4):

Proposition 1.2.1 [1] Let A be a 2n� 2n skew-symmetric matrix. Then

Pf(A) = (1; 2; :::; 2n) =
X

�
sgn(�)

nY
i=1

(�(2i� 1); �(2i)); (1.2.74)

where the summation is taken over all permutations

� =

0@ 1 2 ::: 2n

i1 i2 ::: i2n

1A
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with

i1 < i2; i3 < i4; :::; i2n�1 < i2n; i1 < i3 < ::: < i2n�1;

and sgn(�) = (�1)inv(�):

Recall the Leibniz formula for the determinant.

det(A) =
X

�
sgn(�)

Q
�n�(n): (1.2.75)

A second important identity involving the Pfa¢ an is given in the following proposition.

Proposition 1.2.2 [55] Pf(BABT ) = det(B)Pf(A); where A is a 2n� 2n skew-symmetric

matrix and B is an arbitrary 2n� 2n matrix.

Proposition 1.2.3 [55] For a 2n� 2n skew-symmetric matrix A and a constant c

Pf(cA) = (cn)Pf(A): (1.2.76)

We have de�ned the Pfa¢ an through the determinant of the antisymmetric matrix A.

On the other hand, the determinant of an n� n matrix B is expressed by the Pfa¢ an. Let

(j; k�) = �jk; (j; k) = 0 and (j�; k�) = 0 for j; k = 1; 2; :::; n: (1.2.77)

Then we have

det
�
�jk
�
1�j;k�n = (1; 2; :::; n; n

�; :::; 2�; 1�): (1.2.78)

The superscript � was originally used in connection with creation-annihilation operators [37]

in quantum �eld theory. In this dissertation, however, it is simply used to distinguish j and

j�. For example, if n = 2, we obtain������ �11 �12

�21 �22

������ = (1; 2; 2�; 1�)
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=

vuuuuuuuuut

������������

0 0 �12 �11

0 0 �22 �21

��12 ��22 0 0

��11 ��21 0 0

������������
= ��12�21 + �11�22: (1.2.79)

Below, we introduce Pfa¢ ans which represent derivatives of function fj(x) for j = 1; 2; :::.

Let

(dn; j) =
@n

@xn
fj(x); for n = 0; 1; 2; :::;1; (1.2.80)

(dn; dm) = 0; for n; m = 0; 1; 2; :::;1: (1.2.81)

Therefore, a Wronskian of order n can be de�ned by

W (f1; f2; � � � ; fn) = det
���� @k�1@xk�1

fj(x)

����
1�j;k�n

(1.2.82)

and is expressed by a Pfa¢ an:

W (f1; f2; � � � ; fn) = (d0; d1; :::; dn�1; n; :::; 2; 1): (1.2.83)

For example, if we take n = 2, we have������ f1 @f1=@x

f2 @f2=@x

������ = (d0; d1; 2; 1)

= �(d0; 2)(d1; 1) + (d0; 1)(d1; 2)

= �f2
@f1
@x

+ f1
@f2
@x

: (1.2.84)

Moreover, the Pfa¢ an obeys a general expansion rule

(1; 2; :::; 2n) =
2nX
j=1

(i; j)�(i; j); 1 � i � 2N; (1.2.85)
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Figure 1.1: A Pfa¢ an identity

where the cofactor �(i; j) is de�ned by

�(i; j) = (�1)i+j�1(2; :::;
^
i; :::;

^
j; :::2n); i < j;

�(j; i) = ��(i; j); i < j; �(i; i) = 0:

We have several expansion theorems on the Pfa¢ an. Below we describe two of them,

which are relevant to the present work.

Proposition 1.2.4 [7] Let n be a positive integer. Then

(a1; a2; 1; 2; :::; 2n) =
2nP
j=2
(�1)j [(a1; a2; 1; j) (2; 3; :::;

^
j; :::; 2n)

+ (1; j) (a1; a2; 2; 3; :::;
^
j; :::2n)]� (a1; a2) (a1; a2; 1; 2; :::; 2n) ; (1.2.86)

and

(b1; b2; c1; c2; 1; 2; :::; 2n) =

2nX
j=1

2nX
k=j+1

(�1)j+k�1 (b1; b2; j; k)

�(c1; c2; 1; 2; :::;
^
j; :::;

^
k; :::; 2n); (1.2.87)

provided that

(bj ; ck) = 0, for j; k = 1; 2:

We shall use the equation (1.2.86) and the equation (1.2.87) to express derivatives of
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the Pfa¤ain by the Pfa¢ ans of lower order. Identities for determinants and Pfa¢ ans are

of great interest in many branches of mathematics and physics. Here, we will give two of

the Pfa¢ an identities which correspond to the Jacobi�s determinant identity. A Pfa¢ an

identity can be illustrated as shown in Figure 1.1.

Proposition 1.2.5 [7] Let m and n be positive integers. Then

(a1; a2; :::; a2m; 1; 2; :::; 2n) (1; 2; :::; 2n)

=
2mX
s=2

(�1)s (a1; as; 1; 2; :::; 2n)� (a2; a3; :::;
^
as; :::; a2m; 1; 2; :::; 2n); (1.2.88)

and

(a1; a2; :::; a2m�1; 1; 2; :::; 2n� 1) (1; 2; :::; 2n)

=

2m�1X
s=1

(�1)s�1 (as; 1; 2; :::; 2n� 1)� (a1; a2; :::;
^
as; :::; a2m�1; 1; 2; :::; 2n): (1.2.89)

We shall use the equation (1.2.88) to get the desired identity. For example, if we take

m = 2 in Eqs. (1.2.88) and (1.2.89), we can obtain

(a1; a2; a3; a4; 1; 2; � � � ; 2n)(1; 2; � � � ; 2n)

= (a1; a2; 1; 2; � � � ; 2n)(a3; a4; 1; 2; � � � ; 2n)

�(a1; a3; 1; 2; � � � ; 2n)(a2; a4; 1; 2; � � � ; 2n)

+(a1; a4; 1; 2; � � � ; 2n)(a2; a3; 1; 2; � � � ; 2n); (1.2.90)

and

(a1; 1; 2; � � � ; 2n)(a2; a3; a4; 1; 2; � � � ; 2n)

= (a2; 1; 2; � � � ; 2n)(a1; a3; a4; 1; 2; � � � ; 2n)

�(a3; 1; 2; � � � ; 2n)(a1; a2; a4; 1; 2; � � � ; 2n)

+(a4; 1; 2; � � � ; 2n)(a1; a2; a3; 1; 2; � � � ; 2n): (1.2.91)

Before we proceed to use the above Pfa¢ an identities, let us observe them more carefully. For
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example, let us check the identity (1.2.90) for some special values of the indices a1; a2; a3; a4

and n. Now letting n = 1; the identity (1.2.90) becomes

(a1; a2; a3; a4; 1; 2)(1; 2) = (a1; a2; 1; 2)(a3; a4; 1; 2)

�(a1; a3; 1; 2)(a2; a4; 1; 2) + (a1; a4; 1; 2)(a2; a3; 1; 2);

or equivalently

(1; 2; 3; 4; 5; 6)(5; 6) = (1; 2; 5; 6)(3; 4; 5; 6)

�(1; 3; 5; 6)(2; 4; 5; 6) + (1; 4; 5; 6)(2; 3; 5; 6): (1.2.92)

Eq. (1.2.92) can also be written as

(1; 2; 3; 4; �)(�) = (1; 2; �)(3; 4; �)� (1; 3; �)(2; 4; �) + (1; 4; �)(2; 3; �); (1.2.93)

where we have used the abbreviated notation � = 5; 6: Now let us prove the last identity

(1.2.93). We denote the Pfa¢ an elements as follows:

(i; j) = �ij for 1 � i; j � 6; (1.2.94)

and introduce

�ij = 2i for 1 � i < j � 6: (1.2.95)

Therefore, the RHS of the Eq. (1.2.93) reads

(1; 2; 3; 4; �)(�) =

vuuuuuuuuuuuuuuut

������������������

0 �12 �13 �14 �15 �16

��12 0 �23 �24 �25 �26

��13 ��23 0 �34 �35 �36

��14 ��24 ��34 0 �45 �46

��15 ��25 ��35 ��45 0 �56

��16 ��26 ��36 ��46 ��56 0

������������������
� (5; 6)
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=

vuuuuuuuuuuuuuuut

������������������

0 2 2 2 2 2

�2 0 4 4 4 4

�2 �4 0 6 6 6

�2 �4 �6 0 8 8

�2 �4 �6 �8 0 10

�2 �4 �6 �8 �10 0

������������������
� 10 = 1200: (1.2.96)

In a similar way, we can compute numeric values of the �rst term in the RHS of Eq. (1.2.93):

(1; 2; �)(3; 4; �)

=

vuuuuuuuuut

������������

0 �12 �15 �16

��12 0 �25 �26

��15 ��25 0 �56

��16 ��26 ��56 0

������������
�

vuuuuuuuuut

������������

0 �34 �35 �36

��34 0 �45 �46

��35 ��45 0 �56

��36 ��46 ��56 0

������������

=

vuuuuuuuuut

������������

0 2 2 2

�2 0 4 4

�2 �4 0 10

�2 �4 �10 0

������������
�

vuuuuuuuuut

������������

0 6 6 6

�6 0 8 8

�6 �8 0 10

�6 �8 �10 0

������������
= 1200; (1.2.97)

and the other two terms:

(1; 3; �)(2; 4; �) = 20� 40 = 800:

and

(1; 4; �)(2; 3; �) = 20� 40 = 800:

Now, it is clear to see that

(1; 2; 3; 4; �)(�)� (1; 2; �)(3; 4; �) + (1; 3; �)(2; 4; �)� (1; 4; �)(2; 3; �)

= 1200� 1200 + 800� 800 = 0: (1.2.98)
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Therefore, this shows an example for (1.2.90) with n = 1:

(a1; a2; a3; a4; 1; 2)(1; 2) = (a1; a2; 1; 2)(a3; a4; 1; 2)

�(a1; a3; 1; 2)(a2; a4; 1; 2) + (a1; a4; 1; 2)(a2; a3; 1; 2);

holds.

Another special type of determinants called the Bordered determinants, which play an

important role in proving that the Hirota bilinear equations, can be expressed as Jacobi

identities for determinants.

Let B be an n�n matrix, and let �i;j be the cofactor of B with respect to some matrix

entry �ij : Then it is easy to prove that [54]�������������������

�11 �12 �13 � � � �1n x1

�21 �22 �23 � � � �2n x2

�31 �32 �33 � � � �3n x3
...

...
...

. . .
...

...

�n1 �n2 �n3 � � � �nn xn

y1 y2 y3 � � � yn z

�������������������

= z det
�
�jk
�
1�j;k�n �

nX
i;j=1

�i;jxiyj : (1.2.99)

Thus, if we set z = 1 in (1.2.99), by using the Gaussian elimination we may have

���������������

�11 � x1y1 �12 � x1y2 � � � �1n � x1yn
�21 � x2y1 �22 � x2y2 � � � �2n � x2yn
�31 � x3y1 �32 � x3y2 � � � �3n � x3yn

...
...

. . .
...

�n1 � xny1 �n2 � xny2 � � � �nn � xnyn

���������������
= det

�
�jk
�
1�j;k�n �

nX
i;j=1

�i;jxiyj :

(1.2.100)

If the matrix B is antisymmetric (�ij = ��ji), and xi = yi, then �j;i = ��i;j , and thus we

have
nX

i;j=1

�i;jyiyj = �
nX

i;j=1

�j;iyjyi = �
nX

i;j=1

�i;jyiyj = 0: (1.2.101)
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Thus, if n is an even number, we can get the following identity

���������������

�11 � y1y1 �12 � y1y2 � � � �1n � y1yn
�21 � y2y1 �22 � y2y2 � � � �2n � y2yn
�31 � y3y1 �32 � y3y2 � � � �3n � y3yn

...
...

. . .
...

�n1 � yny1 �n2 � yny2 � � � �nn � ynyn

���������������
= det

�
�jk
�
1�j;k�n

= (1; 2; :::; 2n)2; (1.2.102)

where the entries of the Pfa¢ an are de�ned by (i; j) = �ij .

However, based on the above relationship between a Pfa¢ an and a Bordered deter-

minant, we would like to discuss, in Chapter 6, the relationship between the generalized

(3+1)-dimensional B-type KP equation (GBKP) and the generalized (3+1)-dimensional

KP equation (GKP).

1.3 Bäcklund transformations

A theory of transformations of surfaces initiated by Bäcklund and later developed by

Loewner [40] has, in recent years, proved to be of exceptional importance in the analy-

sis of a wide range of physical phenomena and successful applications of this transformation

theory to nonlinear evolution equations have led to a rekindling of interest in this topic. Fur-

ther researches of Bäcklund [30] led to widespread applications of the theory to problems in

di¤erential geometry. However, a form of the theory that appears to have been introduced

by J. Clairin [31] seems to be slightly more direct in leading to such transformations for

arbitrarily chosen equations.

Perhaps, the simplest example of a Bäcklund transformation is the Cauchy-Riemann

relations. The Cauchy-Riemann system:

@u

@x
=
@v

@y
;

@u

@y
= �@v

@x
;

is the prototypical example of Bäcklund transformations. Thus,here a Bäcklund transfor-

mation of the Laplace equation is just the Cauchy-Riemann relations. The above properties
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imply, more precisely, that the Laplace equations for u and v are just the integrability

conditions for the Cauchy-Riemann system.

On the other hand, Bäcklund transformations of the sine-Gordon equation have gener-

ated results of investment in dislocation theory [41], in the study of long Josephson junctions

[42], and in the investigation of propagation of long optical pulses through a resonant laser

medium [43, 44]. The work by Miura [46] on the Korteweg-de Vries equation has also in-

volved the use of a Bäcklund transformation. In 1950, Loewner [40] introduced a signi�cant

generalization of the concept of Bäcklund transformations. This was in connection with

the reduction to a canonical form of the well-known hodograph equations of gasdynamics,

speci�cally, to the Cauchy-Riemann, Tricomi, and wave equations in subsonic, transonic,

and supersonic �ow. Such a reduction is possiblely subject to the density-speed. Indeed, a

Bäcklund transformation seems to be associated with the applicability of the inverse scat-

tering method itself.

1.4 Pseudospherical surfaces

The classic pseudosphere can be understood by considering a curve, known as a tractrix,

parameterized by t ! (t � tanh t; sech t), 0 � t < 1. Revolving this curve about its

asymptote generates a hyperbolic surface, having many similarities to the traditional sphere.

A sphere has a constant Gaussian curvature K related to its radius R by

K =
1

R2
: (1.4.103)

The characteristic feature of a pseudosphere is that it has a constant negative Gaussian

curvature K which can be ascribed some sort of "radius �" through the relation

K = � 1
�2
: (1.4.104)

It has been shown that such a surface has a surface area A = 4��2 and a volume V = 2
3��

3:

If X : S � <3 is a surface with a constant Gaussian curvature equal to negative one, then

it is known that there exists a patch �!� (u; v) to the surface. If this map is parameterized

by arclength along asymptotic lines, then the �rst fundamental form for the pseudosphere
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Figure 1.2: One-soliton solution (tractroid surface): � = 1, K = �1:

has the form

I = d�!� � d�!� = du2 + 2 cos(�)dudv + dv2; (1.4.105)

and the second fundamental form is

II = (�d�!� ) � (�d�!N ) = 2

�
sin(�)dudv; (1.4.106)

where � is the angle between the u-curves and v-curves (asymptotic lines). The Gauss-

Codazzi equations for S in these coordinates become the sine-Gordon equation

�uv =
1

�2
sin�: (1.4.107)

Fundamental applications of the Bäcklund Theorem concerning pseudospherical surfaces

provide a new technique to �nd pseudospherical surface solutions of the sine-Gordon equa-

tion (1.4.107). We will describe below a little bit of this fundamental theory of di¤erential

geometry.

Let S; S� be surfaces in <3. A di¤eomorphism = : S ! S� is called a pseudospherical

congruence with a constant � if:

� the line connecting p and p� = =(p) is tangent line to S and S�,

� the angle between the normal of the surface S at p and the normal of the surfaces S�
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Figure 1.3: One-soliton solution (Dini surface): � 6= 1, K = �1:

at p� = =(p) is �, and

� the total distance between p to p� is sin� for all p on the surface S.

Theorem 1.4.1 (Bäcklund Theorem [65]) Let S; S� be two surfaces in <3, and = : S ! S�

a pseudospherical congruence with a constant �. Then

� S and S� are pseudospherical surfaces,

� u; v (the Tchebyshef coordinates) on the surface S maps to the Tchebyshef coordinates

on the surface S� under =,

� if � and �� are exact solutions of Eq. (1.4.107) corresponding to S and S� respectively,

then � and �� satisfy 8>>>><>>>>:
��u = �u + 4� sin(

�+ ��

2
);

��v = ��v +
2

�
sin(

�� � �
2

);

(1.4.108)

where � = tan
�

2
:
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Figure 1.4: Periodic two-soliton solution (breather surface): K = �1:

Moreover, given �, the system (1.4.108) is solvable for �� if and only if � is a solution

of Eq. (1.4.107), and the function �� is again a solution of Eq. (1.4.107). In other words,

the system (1.4.108) can be used to generate a solution �� of the sine-Gordon equation a

known solution �, i.e.,

� is a solution of (1.4.107), �� is a solution of (1.4.107):

We will call both the transform from � to �� and = a Bäcklund transformation. This

description of Bäcklund transformations gives us an systematic way for generating classes of

exact solutions of a partial di¤erential equation by solving a system of ordinary di¤erential

equations. Application of this transformation has been found in soliton theory, and it can

be applied to generate an in�nite number of soliton solutions if one is known. Since � = 0 is

a solution to the sine-Gordon Eq. (1.4.107), it can then be used to generate in�nitely many

other solutions [63, 64]. Using � = 0 in the system above yields 1-soliton solutions of the

form with constants m and �:

�soliton(x; t) = 4 arctan exp(m
(x� �t) + �);
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Figure 1.5: Explicit two-soliton solution (Kuen�s surface): K = �1:
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Figure 1.6: Three-soliton solution which is an "algebraic sum" of a 1-soliton and a breather
surfaces K = �1:

expressed in space-time coordinates, where 
 and � satisfy


2 =
1

1� �2 :

The 1-soliton solution for 
 > 0 is called a kink. The 1-soliton solution for 
 < 0 is called

an antikink. Through a continued application of the Bäcklund transformation to 1-soliton

solutions, 2-soliton solutions of the sine-Gordon equation (1.4.107) can be obtained.

Other very intriguing 2-soliton solutions emerge from the possibility of overlap kink-

antikink behavior known as a breather, see Figures 1.2, 1.3, 1.4 and 1.5 (Figures 1.2, 1.4

and 1.5 are by Xah Lee [73, 74], and Figure 1.3 is by Paul Bourke [75] and it appeared on

the cover of the graduate study in mathematics, Western Kentucky University).

The 3-soliton collision between a traveling kink and a standing breather or a traveling

antikink and a standing breather or a traveling kink and a standing breather results in a

phase shift of the standing breather, see Figure 1.6, [73, 74].
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1.5 Bilinear Bäcklund transformations

In this dissertation, we discuss bilinear Bäcklund transformations, which have made im-

portant contributions in the development of soliton theory. Bäcklund transformations in

bilinear form generate

1. Lax pairs used to check the compatibility condition in the inverse scattering method,

2. new integrable systems and soliton equations, and

3. Miura transformations.

A Bäcklund transformation in bilinear form corresponds to an �exchange formula� for

the D-operators. For example, the exchange formula

exp(D1) [exp(D2)a � b] � [exp(D3)c � d]

= exp

�
D2 �D3

2

��
exp(D1 +

D2 +D3
2

)a � d
�
�
�
exp(�D1 +

D2 +D3
2

)c � b
�
;

where

Di = �iDt + �iDx + 
iDy; i = 1; 2; 3; (1.5.109)

can generate a group of useful identities for Hirota bilinear operators. For example, substi-

tuting

D1 = �Dx; D2 = D3 = �Dx; a = d; b = c; (1.5.110)

into the above exchange formula, we obtain

[exp(�Dx + �Dx)a � a] [exp(��Dx + �Dx)b � b]

= exp (�Dx) [exp(�Dx)a � b] � [exp(�Dx)b � a] : (1.5.111)

Expanding the above equation in �, the coe¢ cients of �1 give

[exp(�Dx)Dxa � a] [exp(�Dx)b � b]

� [exp(�Dx)a � a] [exp(�Dx)Dxb � b]

= Dx [exp(�Dx)a � b] � [exp(�Dx)b � a] ; (1.5.112)
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and taking a similar expansion in �, the coe¢ cients of �1 give

b2(D2
xa � a)� (D2

xb � b)a2

= Dx [(Dxa � b) � ba+ ab � (Dxb � a)]

or equivalently

b2(D2
xa � a)� (D2

xb � b)a2 = 2Dx(Dxa � b) � ba: (1.5.113)

Through the independent variable transformation Dx ! Dx+"Dt; the coe¢ cients of "1 give

b2(DxDta � a)� (DxDtb � b)a2 = 2Dx(Dta � b) � ba: (1.5.114)

Finally, the coe¢ cients of �3 in (1.5.112) give

b2(D4
xa � a)� (D4

xb � b)a2

= 2Dx

�
(D3

xa � b) � ba+ 3(D2
xa � b) � (Dxb � a)

�
: (1.5.115)

Note that the above equations (1.5.113)-(1.5.115) are identities for Hirota bilinearD-operators.

We can have the following other useful identities for Hirota bilinear operators:

D�(D�a � b) � ba = D�(D�a � b) � ba; (1.5.116)

D�ab � cd = (D�a � d)cb� ad(D�c � b); (1.5.117)

b2(D2
�a � a)� (D2

�b � b)a2 = 2D�(D�a � b) � ba; (1.5.118)

b2(D�D�a � a)� (D�D�b � b)a2 = 2D�(D�a � b) � ba; (1.5.119)

and

b2(D3
�D�a � a)� (D3

�D�b � b)a2

= 2D�(D
3
�a � b) � ba+ 6D�(D�D�a � b) � (D�b � a): (1.5.120)

For more identities and general exchange formulas, you are referred to reference [1].
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As we mentioned before, a general Bäcklund transformation is a transformation between

a solution u of a given nonlinear di¤erential equation,

z1(u; ut; ux; uy; uxx; uxxx; :::) = 0; (1.5.121)

and a solution v of another given di¤erential equation,

z2(v; vt; vx; vy; vxx; vxxx; :::) = 0; (1.5.122)

which may be the same as, or di¤erent from, z1.

As a simple example, we wanmt to show how to constract a bilinear Bäcklund transfor-

mation for a general KdV-type bilinear equation

z(Dx; Dt) � Dx(Dt + c0Dx +D
3
x)f � f = 0; (1.5.123)

where c0 is a constant. A Bäcklund transformation between a solution f for the general

KdV-type bilinear equation,

z(Dx; Dt)f � f = 0; (1.5.124)

and a solution f 0 for the same bilinear equation,

z(Dx; Dt)f
0 � f 0 = 0; (1.5.125)

can be obtained from the key relation

P �
�
z(Dx; Dt)f

0 � f 0
�
f2 � f 02 [z(Dx; Dt)f � f ] = 0: (1.5.126)

It is follows from P = 0 that

f is a solution of (1.5.124), f 0 is a solution of (1.5.124).

If we can obtain from P = 0 a pair of Hirota bilinear equations

zi(Dx; Dt)f
0 � f = 0; i = 1; 2; (1.5.127)
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Figure 5.5: Three-soliton solution: k1=3, k2=-2, k3=1, k4=-4, k5=5, k6=-6, a=3, y=-2,
t=3.

Figure 5.6: Three-soliton solution: k1=1, k2=2, k3=3, k4=4, k5=-5, k6=-6, a=-8, x=5,
y=2.

5.3 Bilinear Bäcklund transformation

In this section, we would like to present a bilinear Bäcklund transformation for the nonlinear

Ma-Fan equation (5.0.1).

Let us suppose that we have another solution � 0 to the generalized bilinear equation

(5.0.3):

(DtDz �D3
xDy + 3D

2
x)�

0 � � 0 = 0; (5.3.39)

109



and we will introduce the key function

P = [(DtDz �D3
xDy + 3D

2
x)� � � ]� 02

�[(DtDz �D3
xDy + 3D

2
x)�

0 � � 0]�2: (5.3.40)

If P = 0 then

� is a solution of (5:0:3), � 0 is a solution of (5:0:3):

Therefore, if we can obtain, from P = 0 by interchanging the dependent variables � and � 0;

a system of bilinear equations that guarantees P = 0:

F1(Dt; Dx; Dy; Dz)� � � 0 = 0;

F2(Dt; Dx; Dy; Dz)� � � 0 = 0;

...

FM (Dt; Dx; Dy; Dz)� � � 0 = 0;

where the F 0is are polynomials in the indicated variables and M is a natural number de-

pending on the complexity of the equation.

Applying the identities (1.5.116)-(1.5.120) to the equation (5.3.40), we can obtain

� 02(DtDz� � �)� (DtDz�
0 � � 0)�2 = 2Dt(Dz� � � 0) � � 0� ; (5.3.41)

� 02(D2
x� � �)� (D2

x�
0 � � 0)�2 = 2Dx(Dx� � � 0) � � 0� ; (5.3.42)

and

� 02(D3
xDy� � �)� (D3

xDy�
0 � � 0)�2

= 2Dy(D
3
x� � � 0) � � 0� + 6Dx(DxDy� � � 0) � (Dx�

0 � �): (5.3.43)

Substituting the above results into the right-hand side of the equation (5.3.40), we can
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obtain

P = 2Dt(Dz� � � 0) � � 0� � 2Dy(D
3
x� � � 0) � � 0�

�6Dx(DxDy� � � 0) � (Dx�
0 � �) + 6Dx(Dx� � � 0) � � 0� : (5.3.44)

Lemma 5.3.1 Let � and � 0 be arbitrary continuous functions of the independent variables

x; y; z; t: Then

Dx(Dt� � � 0) � (Dx� � � 0) = Dt(D
2
x� � � 0) � �� 0 �Dx(DxDt� � � 0) � �� 0: (5.3.45)

Let us now introduce new arbitrary parameters �; �; �; # and "i; (i = 1; 2; 3); into the

equation (5.3.44) to obtain

P� = 2Dt[(Dz � 3�D2
x � 3�Dy � 3#Dx � "1)� � � 0] � � 0�

�2Dy[(D
3
x � 3�Dx � 3�Dt � "2)� � � 0] � � 0�

�6Dx[(DxDy � �Dt)� � � 0] � (Dx�
0 � �)

+6Dx[(Dx � �DxDt � �Dy � #Dt � "3)� � � 0] � � 0� : (5.3.46)

This is possible because the coe¢ cients of �; �; �; # and "i; (i = 1; 2; 3);

� : �Dx(Dt� � � 0) � (Dx� � � 0)�Dt(D
2
x� � � 0) � �� 0 �Dx(DxDt� � � 0) � �� 0;

� : �6Dy[Dx� � � 0] � � 0� � 6Dx[Dy� � � 0] � � 0� ;

� : �6Dy[Dt� � � 0] � � 0� � 6Dt[Dy� � � 0] � � 0� ;

# : �6Dx[Dt� � � 0] � � 0� � 6Dt[Dx� � � 0] � � 0� ;

"1 : �Dt[��
0] � � 0� ;

"2 : �Dy[��
0] � � 0� ;

"3 : �Dx[��
0] � � 0� ;

are all equal to zero because of the properties (3.4.67)-(3.4.69).

Then P� = 0 if Fi� � � 0 = 0; 1 � i � 4; where F 0is can be found from the equation
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(5.3.46) as follows

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

F1� � � 0 � (Dz � 3�D2
x � 3�Dy � 3#Dx � "1)� � � 0 = 0;

F2� � � 0 � (D3
x � 3�Dx � 3�Dt � "2)� � � 0 = 0;

F3� � � 0 � (DxDy � �Dt)� � � 0 = 0;

F4� � � 0 � (Dx � �DxDt � �Dy � #Dt � "3)� � � 0 = 0:

(5.3.47)

The coe¢ cients of �; �; �; #; "1; "2 and "3 are all equal to zero because of the equations

(3.4.67)-(3.4.69) and Lemma 6.3.1. This shows that the system (5.3.47) presents a bilinear

Bäcklund transformation for the (3+1)-dimensional nonlinear Ma-Fan equation (5.0.1).

5.4 Traveling wave solutions

In what follows, as an application of the bilinear Bäcklund transformation (5.3.47), we

shall construct a new class of solutions to the nonlinear Ma-Fan equation (5.0.1). For this

purpose, we begin with � = 1; which is the trivial solution of the equation (5.0.3) obviously.

Noting that

Dn
�  � 1 =

@n

@�n
 ; n � 1; (5.4.48)

the bilinear Bäcklund transformation (5.3.47) associated with � = 1 becomes a system of

linear partial di¤erential equations

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

� 0z � 3�� 0xx � 3�� 0y � 3#� 0x � "1� 0 = 0;

� 0xxx � 3�� 0x � 3�� 0t � "2� 0 = 0;

� 0xy � �� 0t = 0;

� 0x � �� 0xt � �� 0y � #� 0t � "3� 0 = 0:

(5.4.49)
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Let us consider a class of exponential wave solutions of the form

� 0 = 1 + "ekx+ly+mz�!t+�
0

; �0 = const; (5.4.50)

where "; k; l; m and ! are constants to be determined. Upon selecting

"1 = 0; "2 = 0; "3 = 0; (5.4.51)

and after some tedious but straightforward calculations, we can get8><>:
m� = �

�k(kl � 3)
l

; !� = �
kl

�
;

�� = �1
3

�(k2 � 3�)
l

; #� =
�(k2l + k � �l)

kl
:

(5.4.52)

Therefore, we obtain a class of exponential wave solutions to the bilinear equation (5.0.3):

� 0� = 1 + " exp(kx+ ly �
�k(kl � 3)

l
z � kl

�
t+ �0); (5.4.53)

where "; k; l; � and �0 are arbitrary constants; and

u = 2(ln � 0�)x; (5.4.54)

solves the equation (5.0.1).

Let us second consider a class of �rst-order polynomial solutions

� 0 = kx+ ly +mz � !t; (5.4.55)

where k; l; m and ! are constants to be determined. Similarly, upon selecting

"1 = 0; "2 = 0; "3 = 0; (5.4.56)

a direct computation shows that the system (5.4.49) becomes

8<: m� 3�l � 3#k = 0; �3�k � 3�! = 0;

k � �l � #! = 0; ��! = 0:
(5.4.57)
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Again after straightforward calculations, we get

k� = ��; m� =
3

!
�2; �� = �

�

!
�; (5.4.58)

where � = �l + #!: Therefore, we obtain a class of polynomial solutions to the bilinear

equation (5.0.3):

� 0� = ��x+ ly +
3

!
�2z � !t+ �0; (5.4.59)

where �; l; # and �0 are arbitrary constants; and

u = 2(ln � 0�)x =
2k

��x+ ly + 3
!�

2z � !t+ �0
; (5.4.60)

produces a class of rational solutions to the nonlinear Ma-Fan equation (5.0.1).
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6 Conclusions and remarks

In Chapter 2, we have established one Wronskian formulation and one Grammian formula-

tion for the (3+1)-dimensional generalized KP equation

uxxxy + 3(uxuy)x + utx + uty � uzz = 0: (6.0.1)

The facts used in our construction are the Plücker relation for determinants and the Jacobi

identity for determinants. Theorems 2.1.1 and 2.3.1 present the main results on Wronskian

and Grammian solutions, which say that

u = 2(ln f)x; f = j\N � 1j =W (�1; �2; � � � ; �N ); (6.0.2)

with �i satisfying

�i;y = �
a2

3
�i;x; �i;z = a2�i;xx; �i;t =

4a2

3� a2�i;xxxx; (6.0.3)

and

u = 2(ln f)x; f = det(aij)1�i;j�N ; aij = cij +

Z x

�i jdx; cij = const.; (6.0.4)

with �i and  j satisfying

�i;y = �
a2

3
�i;x; �i;z = a�i;xx; �i;t =

4a2

3� a2�i;xxx; (6.0.5)

 j;y = �
a2

3
 j;x;  j;z = �a j;xx;  i;t =

4a2

3� a2 j;xxx; (6.0.6)
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solve the above (3+1)-dimensional generalized KP equation. Here a can be any real number,

except �
p
3. Examples of Wronskian and Grammian solutions were made, along with a few

plots of particular solutions.

In Theorems 2.1.1 and 2.3.1, we only considered speci�c su¢ cient conditions: (2.1.8),

(2.3.14) and (2.3.15), though there is a free parameter a in the conditions. There should

exist more general conditions involving combined equations for Wronskian and Grammian

solutions. Such conditions were presented for Wronskian solutions of the KdV equation [20],

the Boussinesq equation [51, 15] and the Toda lattice equations [19, 50], and for Grammian

solutions of the KP equation [49]. It should be interesting to �nd such conditions consisting

of combined equations for the (3+1)-dimensional generalized KP equation.

On the other hand, one can consider boundary value problems for the discussed general-

ized (3+1)-dimensional soliton equations. Particularly, the KP equation on half plane and

the nonlinear Schrödinger equation on the circle were studied in references [71] and [72]

respectively.

In Chapter 3, we have built a Pfa¢ an formulation for the (3+1)-dimensional generalized

B-type Kadomtsev-Petviashvili equation:

uty � uxxxy � 3uxxuy � 3uxuxy + 3uxx + 3uzz = 0. (6.0.7)

The facts used in our construction are the Pfa¢ an identities. Theorem 3.2.1 gives the main

results on Pfa¢ an solutions, which says that

u = 2
@

@x
(ln �n); �n = Pf (ai;j)1�i;j�2n; (6.0.8)

where the elements of �n are de�ned by aij = Cij +
xR

�1
Dx fi(x) � fj(x)dx; Cij =const.,

i; j = 1; 2; :::; 2n; with fi satisfying

@fi
@y

= �1
@fi
@x�1

;
@fi
@z

= �2
@fi
@x

;
@fi
@t

=
@3fi
@x3

; (6.0.9)

where �1 and �2 are free parameters de�ned in the equation (3.2.25), solves the above

(3+1)-dimensional generalized B-type Kadomtsev-Petviashvili equation. Examples of Pfaf-
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�an solutions were made, along with a few plots. In Theorem 3.2.1, we considered only a

speci�c set of su¢ cient conditions: (3.2.24), though there are two free parameters �1 and

�2 in the conditions. It would be great to look for other more general conditions involving

combined equations for Pfa¢ an solutions.

However, based on the theory of the Bordered determinants and the relationship be-

tween a Pfa¢ an and a determinant, we would like to discuss the relationship between the

generalized (3+1)-dimensional B-type KP equation (GBKP) and the generalized (3+1)-

dimensional A-type KP equation (GKP). Using integration by parts, each Pfa¢ an entry

(i; j) is

aij = Cij +

xZ
�1

Dx fi(x) � fj(x)dx

= Cij + 2

xZ
�1

@fi
@x

fjdx� fifj : (6.0.10)

Therefore, the square of the N -soliton solution �N can be written as the determinant

�2N =

������Cij + 2
xZ

�1

@fi
@x

fjdx

������
1�i;j�2N

: (6.0.11)

This determinant is nothing but the Grammian solution of the GKP equation, �GKP: Hence,

we have

�GKP = �2GBKP; (6.0.12)

where GKP denotes the generalized A-type Kadomtsev-Petviashvili equation. We choose

a lower limit of the above integrals to be x = �1; but this is not an essential restriction.

The result will be the same for any other choice of the lower limit. In Section 3.4, the

bilinear Bäcklund transformations were constructed for the (3+1)-dimensional generalized

B-type Kadomtsev-Petviashvili equation, based on the existence of exchange identities for

Hirota bilinear operators. In Section 3.5, we constructed a new class of exp-solutions and

a new class of polynomial solutions to the generalized modi�ed B-type KP equation and

we created a new class of exact wave solutions and a new class of rational solutions to the
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generalized B-type KP equation of the form

u = 2
@

@x
(ln � 0�): (6.0.13)

In Section 3.5, we have seen that the Bäcklund transformations (3.5.88) is more general

than the one obtained in the equation (3.4.70). In Theorem 3.6.1, we have built a Pfa¢ an

formulation for the modi�ed generalized B-type Kadomtsev-Petviashvili equation (3.6.110),

where �1 and �2 are free parameters de�ned in the equation (3.2.25). Therefore, the function

u de�ned by

u = 2
@

@x
(ln � 0n); �

0
n = Pf (ai;j)1�i;j�2n+1; (6.0.14)

is another solution in the Pfa¢ an form to the generalized B-type Kadomtsev-Petviashvili

equation.

In Chapter 4, we have built an Pfa¢ an formulation for the (3+1) dimensional soliton

equations of Jimbo-Miwa type:

uyt � uxxxy � 3uxxuy � 3uxuyx + 3uxz = 0; (6.0.15)

2vyt + vxxxy + 3vxxvy + 3vxvyx � 3vzz = 0: (6.0.16)

The facts used in our construction are the Pfa¢ an identities. Theorems 4.1.1 and 4.1.2

present the main results on Pfa¢ an solutions, which say that

u = 2
@

@x
(ln �n); (6.0.17)

where

�n = Pf (�i;j)1�i;j�2n; (6.0.18)

and

v = 2
@

@x
(ln!n); (6.0.19)

where

!n = Pf (�i;j)1�i;j�2n; (6.0.20)
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where the elements of �n and !n are de�ned by

�ij = Cij +

xZ
�1

Dx  i(x) �  j(x)dx;

�ij = Cij +

xZ
�1

Dx �i(x) � �j(x)dx;

with Cij =const., i; j = 1; 2; :::; 2n; and  i and �i; 1 � i � 2n; satisfying

 i;y = ��1
xZ

�1

 i(x)dx,  i;z = ��1 i;x,  i;t =  i;xxx; (6.0.21)

�i;y = 2�
2

xZ
�1

�i(x)dx, �i;z =
p
2��i;x, �i;t = �

1

2
�i;xxx; (6.0.22)

where � is an arbitrary nonzero parameter, solve the above (3+1) dimensional soliton equa-

tions of Jimbo-Miwa type. Examples of the Pfa¢ an solutions were made, along with a

few plots of particular solutions. In Theorems 4.1.1 and 4.1.2, we only considered speci�c

su¢ cient conditions, though there is a free parameter � in the conditions. It would be great

to look for more general conditions involving combined equations for Pfa¢ an solutions.

We have also made an extension8>>>>>>>>><>>>>>>>>>:

uxxy + 3uxxuy + 3uxuxy � uyt � 3uxz + 12(wvx � vwx)x = 0;

�vt + 3uxvx + vxxx + 3vxy + 3vuy = 0;

�wt + 3uxwx + wxxx � 3wxy � 3wuy = 0:

(6.0.23)

for the (3+1) dimensional soliton equation of Jimbo-Miwa type

uyt � uxxxy � 3uxxuy � 3uxuyx + 3uxz = 0;

by using the Pfa¢ an identities. In Theorems 4.3.1, we presented the main results on Gramm-
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type Pfa¢ an solutions. The �rst result is that the above Pfa¢ anized system of (3+1)

dimensional soliton equation of Jimbo-Miwa type has the following Gramm-type Pfa¢ an

solutions

�N = (1; 2; � � � ; 2N); (6.0.24)

�N = (c1; c0; 1; 2; � � � ; 2N); (6.0.25)

�N = (d0; d1; 1; 2; � � � ; 2N); (6.0.26)

whose Pfa¢ an entries satisfy (4.3.66). On the other hand, the (3+1) dimensional vc-soliton

equation of Jimbo-Miwa type

�1(t)uxxxy + 3�2(t)(uxuy)x � uyt � 3�3(t)uxz + 2�4(t)uy = 0;

has been extended to the Pfa¢ anized system

(�1D
3
xDy �DyDt � 3�3DxDz)� � � = �12a�3Dx� � �; (6.0.27a)

(6.0.27b)

(D3
x � ��11 Dt + 3a

�1DxDy)� � � = 0; (6.0.27c)

(6.0.27d)

(D3
x � ��11 Dt � 3a�1DxDy)� � � = 0: (6.0.27e)

through the dependent variable transformation

u = 2
�1(t)

�2(t)
(ln�)x; (6.0.28)

v = �=�; (6.0.29)

w = �=�; (6.0.30)

and under the constraint:

�1(t) = C0�2(t)e
�
R
�4(t)dt; (6.0.31)
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where �4 = c�1 for some constant c, and whose Pfa¢ an entries satisfy8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

@

@x
(i; j) = (i+ 1; j) + (i; j + 1);

@

@y
(i; j) =

a�3(t)

�1(t)
(i+ 2; j) + (i; j + 2);

@

@t
(i; j) = �2�1(t)(i+ 3; j) + (i; j + 3);

@

@z
(i; j) = a [(i+ 4; j) + (i; j + 4)] :

(6.0.32)

where a is an arbitrary nonzero parameter. Similarly, as in Theorem 4.3.1, one can prove

that the above bilinear system has the following Gramm-type Pfa¢ an solution:

8>>><>>>:
� = �N = (1; 2; � � � ; 2N);

� = �N = (c1; c0; 1; 2; � � � ; 2N);

� = �N = (d0; d1; 1; 2; � � � ; 2N);

(6.0.33)

where the Pfa¢ an entries are de�ned by8>>>>>>>>>><>>>>>>>>>>:

(i; j) = cij +
R x
(figj � fjgi)dx; cij = �cji; cij = constants;

(dn; i) =
@n

@xn
fi; (cn; i) =

@n

@xn
gi;

(dm; dn) = (cm; cn) = (cm; dn) = 0;

(6.0.34)

with fi and gi satisfying

fi;y =
a�3(t)

�1(t)
fi;xx; fi;z = afi;xxxx; fi;t = �2�1(t)fi;xxx;

gi;y = �
a�3(t)

�1(t)
gi;xx; gi;z = �agi;xxxx; gi;t = �2�1(t)gk;xxx:

(6.0.35)
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Following a similar procedure, we can have vc-Jimbo-Miwa type equation for the equation

(4.0.2) and its Pfa¢ anized system, too.

In Section 4.5, we have built an extended Grammian formulation for the (3+1)-dimensional

nonlinear Jimbo-Miwa equation:

uxxxy + 3uxxuy + 3uxuyx + 2uyt � 3uxz = 0;

The facts used in our construction are the Jacobi identity for determinants. Theorem 4.5.1

presents the main results on Grammian solutions, which says that

u = 2
@

@x
(ln fN ); fN = det(aij)1�i;j�N ;

where the elements of fN are de�ned by aij = �ij+
xR
�i jdx; i; j = 1; 2; :::; N; with �i and  j

satisfying

�i;y = 2��
(2)
i ; �i;z = 2��

(4)
i +

NP
k=1

�ik�k; �i;t = �
(3)
i +

NP
k=1

�ik�k;

 j;y = �2� 
(2)
j ;  j;z = �2� 

(4)
j +

NP
l=1

�jl l;  j;t =  
(3)
j +

NP
l=1

�jl l;

where �; �; �; � and � are an arbitrary di¤erentiable functions in t, solves the above (3+1)-

dimensional nonlinear partial di¤erential equation. In Section 4.6, we constructed some

solutions for the representative systems in the su¢ cient conditions (4.5.82).

A bilinear Bäcklund transformation was furnished for the (3+1)-dimensional nonlinear

partial di¤erential equation (4.4.76). In Section 4.8, we constructed a new class of exact

wave solutions and a new class of rational solutions to the above (3+1)-dimensional nonlinear

partial di¤erential equation (4.4.76) of the form

u = 2
@

@x
(ln f 0�):

In Chapter 5, we have built a Pfa¢ an formulation for the (3+1)-dimensional nonlinear

Ma-Fan equation:

@2u

@z@t
� @4u

@x3@y
� 3 @

@x

�
@u

@x

@u

@y

�
+ 3

@2u

@x2
= 0:
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The facts used in our construction are the Pfa¢ an identities. Theorem 5.1.1 gives the main

results on the Pfa¢ an solutions, which says that

u = 2
@

@x
(ln�n); �n = Pf (ai;j)1�i;j�2n;

where the elements of �n are de�ned by aij = Cij +
xR

�1
Dx �i(x) � �j(x)dx; Cij =const.,

i; j = 1; 2; :::; 2n; with �i satisfying

@ i
@y

=

xZ
�1

 i(x)dx,
@ i
@z

= �(t)

xZ
�1

 i(x)dx,
@ i
@t

= �(t)
@3 i
@x3

;

where � is an arbitrary nonzero continuous function in t; and the function � by de�ned in the

equation (5.1.8), solves the above (3+1)-dimensional nonlinear Ma-Fan equation. Examples

of Pfa¢ an solutions were made, along with a few plots.

In Section 5.3, the bilinear Bäcklund transformations were furnished for the (3+1)-

dimensional nonlinear Ma-Fan equation, based on the existence of exchange identities for

Hirota bilinear operators. In Section 5.4, we constructed a new class of exp-solutions and

a new class of polynomial solutions to the generalized modi�ed nonlinear Ma-Fan equation

and we created a new class of exact wave solutions and a new class of rational solutions of

the form

u = 2
@

@x
(ln � 0�):

to the (3+1)-dimensional nonlinear Ma-Fan.
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