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Abstract

It is significantly important to search for exact soliton solutions to nonlinear partial differential

equations (PDEs) of mathematical physics. Transforming nonlinear PDEs into bilinear forms using

the Hirota differential operators enables us to apply the Wronskian and Pfaffian techniques to search

for exact solutions for a (3+1)-dimensional generalized Kadomtsev-Petviashvili (KP) equation with

not only constant coefficients but also variable coefficients under a certain constraint

(ut + α1(t)uxxy + 3α2(t)uxuy)x + α3(t)uty − α4(t)uzz + α5(t)(ux + α3(t)uy) = 0.

However, bilinear equations are the nearest neighbors to linear equations, and expected to have

some properties similar to those of linear equations. We have explored a key feature of the linear su-

perposition principle, which linear differential equations have, for Hirota bilinear equations, while

intending to construct a particular sub-class of N-soliton solutions formed by linear combinations

of exponential traveling waves. Applications are given for the (3+1) dimensional KP, Jimbo-Miwa

(JM) and BKP equations, thereby presenting their particular N-wave solutions. An opposite ques-

tion is also raised and discussed about generating Hirota bilinear equations possessing the indicated

N-wave solutions, and two illustrative examples are presented.

Using the Pfaffianization procedure, we have extended the generalized KP equation to a gener-

alized KP system of nonlinear PDEs. Wronskian-type Pfaffian and Gramm-type Pfaffian solutions

of the resulting Pfaffianized system have been presented. Our results and computations basically

depend on Pfaffian identities given by Hirota and Ohta. The Plücker relation and the Jaccobi iden-

tity for determinants have also been employed.

A (3+1)-dimensional JM equation has been considered as another important example in soliton

theory,

uyt − uxxxy − 3(uxuy)x + 3uxz = 0.

iv



Three kinds of exact soliton solutions have been given: Wronskian, Grammian and Pfaffian solu-

tions. The Pfaffianization procedure has been used to extend this equation as well.

Within Wronskian and Pfaffian formulations, soliton solutions and rational solutions are usually

expressed as some kind of logarithmic derivatives of Wronskian and Pfaffian type determinants and

the determinants involved are made of functions satisfying linear systems of differential equations.

This connection between nonlinear problems and linear ones utilizes linear theories in solving soli-

ton equations.

Bäcklund transformations are another powerful approach to exact solutions of nonlinear equa-

tions. We have computed different classes of solutions for a (3+1)-dimensional generalized KP

equation based on a bilinear Bäcklund transformation consisting of six bilinear equations and con-

taining nine free parameters.

A variable coefficient Boussinesq (vcB) model in the long gravity water waves is one of the

examples that we are investigating,

ut + α1(t)uxy + α2(t)(uw)x + α3(t)vx = 0,

vt + β1(t)(wvx + 2vuy + uvy) + β2(t)(uxwy − (uy)
2) + β3(t)vxy + β4(t)uxyy = 0,

where wx = uy.Double Wronskian type solutions have been constructed for this (2+1)-dimensional

vcB model.
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Chapter 1

Introduction

Nonlinear partial differential equations arise in various subjects of mathematical physics and engi-

neering, including fluid dynamics, plasma physics, quantum field theory, nonlinear wave propaga-

tion and nonlinear fiber optics. Nonlinear wave equations and the soliton concept have introduced

remarkable achievements in the field of applied sciences [1]-[5].

In general, it is a very hard to find exact solutions to nonlinear partial differential equations, in-

cluding soliton equations. Moreover, there is almost no general technique or algorithm that works

for all equations, and usually each particular equation has to be studied as a separate problem.

However, in the past six decades, many powerful and systematic methods have been developed

to obtain exact solutions for nonlinear differential equations, which play an important role in under-

standing various qualitative and quantitative features of nonlinear phenomena, and such methods

include the inverse scattering method, the Darboux transformation, the Bäclund transformation, the

Hirota direct method, the Wronskian and Pfaffian techniques [6]-[21].

In this chapter, we present an overview of soliton theory and its historical background. Then we

outline the organization of the dissertation.

1.1 Historical Perspective

Solitons were first accidently observed by J. Scott Russell in 1834 [22, 23] while he was riding

his horse along a canal near Edinburgh. He did extensive experiments in a laboratory scale wave

tank in order to study this phenomenon more carefully. Included amongst Russell’s results are the

following:

1. He observed solitary waves, which are long, shallow, water waves of permanent shape, and so

he concluded that they exist.

2. The speed of propagation, v, of a solitary wave in a channel of uniform depth h is given by

1



v2 = g(h + η), where η is the amplitude of the wave and g is the force due to gravity. For more

details of his discovery, see [24].

In 1876, J. V. Boussinesq proposed another theory of shallow water waves, which agreed with

what Russell observed [25, 26]; he derived a one dimensional nonlinear evolution equation, which

named after him, in order to obtain his result. The existence of the solitary wave was first cor-

roborated by the equation derived by Dierderik Johannes Korteweg and Gustav de Vries [27], now

known as the KdV equation,

∂η

∂τ
=

3

2

√
g

h

∂

∂ξ

(1

2
η2 +

2

3
αη +

1

3
σ
∂2η

∂ξ2

)
, σ =

1

3
h3 − Th

(ρg)
, (1.1)

where η is the surface elevation of the wave above the equilibrium level h, α is a small arbitrary

constant related to the uniform motion of the liquid, g is the gravitational constant, T is the surface

tension and ρ is the density. Equation (1.1) may be brought into nondimensional form by making

the transformation

t =
1

2

√
g

hσ
τ, x = −σ

−1
2 ξ, u =

1

2
η +

1

3
α.

Hence, we can obtain

ut + 6uux + uxxx = 0. (1.2)

In 1955, Fermi, Pasta and Ulam employed numerical methods to solve Newton’s equations of

motion for a one-dimensional series of similar masses connected by springs [28]. Zabusky and

Kruskal [2] were inspired by those studies and they studied and analyzed the KdV equation which

had been originally arisen from the Fermi, Pasta and Ulam work. They discovered that the solitary

waves preserve their shape and velocity even after collisions. They called such waves ’solitons’.

The first exact soliton solution for the KdV equation was given by Gardner, Greene, Kruskal and

Miura in 1967 [6]. They reduced the nonlinear problem to a well known Sturm-Liouville eigen-

value problem, and then they developed a new method for solving the initial value problem of the

KdV equation, which is well known as the inverse scattering transform (IST) method. The IST is

a well-developed mathematical theory which can be used to solve the initial value problems for a

limited class of evolution equations. However, it is very difficult to establish an appropriate inverse

scattering problem depending on the existence of an infinite number of independent conservation

laws for an evolution equation. A generalization of their results was made by Lax in 1968 [29] and
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he introduced a Lax pair concept.

In 1971, Ryogo Hirota developed an ingenious method for obtaining the exact multisoliton so-

lution of the KdV equation and derived an explicit expression of the N-soliton solution [30]. His

method consisted of transforming a nonlinear evolution equation into a bilinear equation through

the dependent variable transformation [31]. The bilinear equation thus obtained can be solved by

employing a perturbation method, which was shown to be applicable to a large class of nonlin-

ear evolution equations such as the modified Korteweg-de Vries (mKdV) [32], sine-Gordon (sG)

[33, 36], nonlinear Schrödinger (NLS) [34] and Toda lattice (TL) [35] equations.

The Hirota direct method, in 1984, enabled Tajiri to obtain N-soliton solutions of two and three

dimensional nonlinear Klein-Gordon (KG) equations [37] and Higgs field (H) equation [38]. In

1987, Hietarinta published four papers regarding to the searching for integrable partial differential

equations from the bilinear form of KdV, mKdV, sG, and NLS equations. In his investigations, he

used computer algebra software to check the condition for existence of three soliton solutions, and

he discovered many new integrable bilinear equations [39]-[42].

Satsuma discovered that the soliton solutions of the KdV equation could be expressed in terms

of Wronskian determinants in 1979 [43]. Later, in 1983, Freeman and Nimmo found that the

Kadomtsev-Petviashvili (KP) equation in its bilinear form could be written as a determinantal iden-

tity [15]. Following these notable achievements, Wronskian solutions of other equations, for ex-

ample, the Boussinesq [44], sine-Gordon [45], nonlinear Schrödinger [46] and Davey-Stewartson

[46] equations, were subsequently obtained. On the other hand, Nakamura was the first to consider

soliton solutions of the KP equation in Grammian form. He noted that the Grammian determinant

is related to the determinant with integral entries often used in the IST [47].

In 1989, Hirota described some properties of Pfaffians, which can be defined by the property

that the square of a Pfaffian is the determinant of an antisymmetric matrix, and showed that the

derivatives of the Pfaffians of special elements are represented by the sum of the Pfaffians. Using

these properties, he proved that the KP equations, having B-type, can be reduced to the identity of

Pfaffains [48]. In 1991, Hirota and Ohta developed a procedure for generalizing nonlinear evolu-

tion equations from the Kadomtsev-Petviashvili hierarchy to produce coupled systems of equations.

This procedure is now called Pfaffianization [49].

3



1.2 Traveling Waves and Solitons

One of the main interesting properties of the KdV equation is the existence of permanent wave

solutions, including solitary wave solutions.

Definition 1.1 [50] A solitary wave solution of a partial differential equation

L(x, t, u) = 0, (1.3)

where t ∈ R, x ∈ R are temporal and spatial variables and the dependent variable u ∈ R is a

traveling wave solution of the form

u(x, t) = f(x− γt) = f(z), (1.4)

whose transition is from one constant asymptotic state as z → −∞ to (possibly) another constant

asymptotic state as z → ∞. (Note that some definitions of solitary waves require the constant

asymptotic states to be equal, often to zero.)

Definition 1.2 [50] A soliton is a solitary wave which asymptotically preserves its shape and veloc-

ity upon nonlinear interaction with other solitary waves, or more generally, with another (arbitrary)

localized disturbance.

The physical definition of a wave is a disturbance that transmits energy from one place to another.

The simplest wave propagation equation is given by

utt = v2
0uxx, (1.5)

where u(x, t) represents the amplitude of the wave, and v0 is the speed of the wave. The general

d’Alembert’s solution is

u(x, t) = f(x− v0t) + g(x+ v0t), (1.6)

where f and g are arbitrary functions which represent the right and the left propagating waves

respectively. Since the one-dimensional wave equation can be factorized as( ∂
∂t
− v0

∂

∂x

)( ∂
∂t

+ v0
∂

∂x

)
u(x, t) = 0, (1.7)

let us consider the simpler form, ( ∂
∂t

+ v0
∂

∂x

)
u(x, t) = 0, (1.8)
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which has the right moving wave solution,

u(x, t) = f(x− v0t). (1.9)

If we assume that u is periodic, then the most fundamental solution is the plane wave solution,

u(x, t) = exp[i(ωt− kx)]. (1.10)

Substitution this solution in the simple wave equation (1.8), we get the relationship between the

wave number k and the angular frequency ω which is given by ω = v0k. This is called a disper-

sion relation, which, in this case, is linear. Such kind of waves that governed by linear dispersion

relations are called nondispersive waves. The shape of these waves do not change as the wave prop-

agate.

Adding a third order spatial derivative, which is the dispersion term, to the equation (1.8) gives

the linear dispersive equation

ut + v0ux + uxxx = 0. (1.11)

Assuming that the equation (1.11) has the plane wave solution (1.10), then its dispersion relation is

given by the following nonlinear relation in k,

ω = v0k − k3. (1.12)

Therefore, the wave propagates at the velocity

vp(k) =
ω

k
= v0 − k2. (1.13)

Since the velocity varies with k, the wave spreads out as it travels. This shows that linear dis-

persive waves do not preserve their original shape. Now let us consider the following nonlinear

nondispersive wave equation,

ut + v(u)ux = 0. (1.14)

This equation is nonlinear wave equation in which the speed v(u) depends on the amplitude u.

Equation (1.14) has the formal solution

u(x, t) = f(x− v(u)t), (1.15)

and if v = v(u) is an increasing function in u, then this formula tells us that a wave travels faster

as its amplitude increases. This means that the top of the wave will move faster than the base of

5



Figure 1.: Steepening of a solitary wave. A wave which is symmetrical at t = 0 steepens and breaks because

of the dependence of the wave speed on its amplitude.

Figure 2.: Approximation of a solitary wave at its top and base.

the wave, and the wave will steepen (and eventually break). Thus, a non-linear non-dispersive wave

will exhibit steepening and does not remain invariant like a soliton, see Figure 1.

We have seen from the above examples that neither linear dispersive solitary wave nor nonlinear

nondispersive solitary wave can exist. We would like to investigate the influence that nonlinearity

together with dispersion have on the wave behavior. For this end, we consider the well known KdV

equation in its standard form,

ut + 6uux + uxxx = 0. (1.16)

Assume that the solitary wave, shown in Figure 2 , exists and it is symmetrical around the point

of the maximum amplitude A. We can approximate u by the function utop in the neighborhood of

η = 0, which can be a quadratic in η and the dispersion term uxxx will be zero. Therefore, the

6



function utop satisfies the equation (1.14) with v(u) = 6u,

ut + 6uux = 0 (1.17)

On the other hand, at the base of the wave, the nonlinear term can be neglected because u is very

small, and so the approximation of the solution at the base, denoted by ubase, satisfies the linear

differential equation

ut + uxxx = 0. (1.18)

Hence, the phase velocity is given by

vp(k) =
ω

k
= −k2. (1.19)

Therefore, the top and the bottom of the wave do not move at the same speed. But this contradicts

our assumption that the above wave is a solitary wave. This contradiction comes from the nonlin-

earity of the KdV equation and the superposition principle of waves no longer valid. So we need to

express the base of the wave in term of exponentially decaying solutions

u(x, t) = e±η, where η = px− Ωt. (1.20)

From the equation (1.18), we obtain the nonlinear dispersion relation,

Ω = p3. (1.21)

The velocities at the top, vtop, and at the base, vbase, are given by

vtop = 6A, vbase =
Ω

p
= p2. (1.22)

Hence, in order to get a solitary wave that travels without changing its shape, at least, these two

velocities should be coincide, which happens if and only if p and A satisfy the relation

6A = p2. (1.23)

From the above discussion, we can say that a wave equation having soliton solutions has both

nonlinearity and dispersion.

To obtain traveling wave solutions of the KdV equation

ut + 6uux + uxxx = 0, (1.24)
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where u = u(x, t) is a differentiable function and u(x, t) along with its derivatives tends to zero as

|x| → ∞, we seek a solution in the form f(x− γt). By substitution this form in the KdV equation,

then integrating and multiplying by 2f
′
, we get

(f
′
)2 = γf2 + 2f3, (1.25)

which is an ordinary differential equation with an explicit solution

f(z) =
γ

2
sech2

√
γ

2
z, (1.26)

where z = x− γt. Hence the KdV equation has the following one-soliton solution

u(x, t) =
γ

2
sech2

√
γ

2
(x− γt) (1.27)

= 2
∂2

∂x2
log(1 + e

√
γ(x−γt)). (1.28)

One of the restrictions in the application of the KdV equation as a practical model for water

waves, is that the KdV equation is strictly only (1+1)-dimensional, whereas the surface is two-

dimensional. A two dimensional generalization of the KdV equation is the Kadomtsev-Petviashvili

(KP) equation

(ut + 6uux + uxxx)x + 3σ2uyy = 0, (1.29)

where σ2 = ±1. For more details about the physical derivation of the KP equation as a model for

surface water, we refer to [50, 51].

1.3 Dissertation Outline

This dissertation is organized as follows. In Chapter two, we will provide a brief introduction to the

Hirota perturbation method, where we present basic properties of the Hirota differential operators

and their applications in transforming nonlinear partial differential equations into the Hirota bilinear

form. The concrete examples that we will discuss are: the KdV, vcKP and JM equations and the

Boussinesq system. Then we are going to discuss the Ma and Fan superposition principle for bilinear

Hirota equations.

In Chapter three, we will introduce a new generalization for the KP equation with variable co-

efficients. Wronskian and Grammian solutions will be formulated for this generalized equation

8



after transforming it into a bilinear form. Furthermore, we will present an extension of the vcKP

equation that results in a nonlinear system of bilinear differential equations with two kind of so-

lutions: Wronski-type form solutions and Gram-type form solutions. Our results basically depend

on Pfaffian identities provided in the first section of this chapter. In the last section, we use the

bilinear Bäcklund transformation to present exponential and rational traveling wave solutions to the

(3+1)-dimensional generalized KP equation.

The fourth chapter will be about another nonlinear partial differential equation, named after Jimbo

and Miwa. Three kind of solutions will be constructed. Particular solutions will be given along

with their figures in three dimensional plots and two dimensional contour plots. The Pfaffianization

procedure will be used to extend this equation to a nonlinear system with two kind of exact solutions

of Wronski-type and Gram-type. The variable coefficients JM equation will be discussed in the last

section of this chapter.

In Chapter five, a double Wronskian determinant solution will be formulated for a new gener-

alized Boussinesq system with time dependent coefficients. Indeed, we will show that this system

will be transformed into a bilinear system and then we are going to verify that each equation in this

system will be reduced to different forms of the Plücker relation.

Finally, conclusions and remarks will be given in the sixth chapter.
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Chapter 2

Hirota Bilinear Equations

Although the Inverse Scattering Transform (IST) method is one of the powerful tools used to solve

many initial value problems for nonlinear evolution equations, the transform is not easy to deal with

and it needs strong assumptions and difficult analysis. On the other hand, one can find a traveling

wave solution to many equations by a simple substitution, which often reduces the equation to

an ordinary differential equation. The Hirota direct method lies within these two extremes. In

this chapter, we give an introduction to the Hirota method and we are going to discuss a linear

superposition principle applying to Hirota bilinear equations, which recently established by W. X.

Ma and others.

2.1 The Hirota D-Operators

Definition 2.1 Let S be the space of differentiable functions and M ∈ N. Then the Hirota D-

operator D : S × S −→ S is defined by [12]

[Dm1
x1
Dm2
x2
· · ·DmM

xM
]f · g

= (∂x1 − ∂x́1)n1 · · · (∂xM − ∂x́M )nM f(x1, · · · , xM )g(x́1, · · · , x́M )|x́1=x1,··· ,x́M=xM

= ∂n1
x́1
· · · ∂nMx́M f(x1 + x́1, · · · , xM + x́M )g(x1 − x́1, · · · , xM − x́M )|x́1=···x́M=0, (2.1)

where n1, · · · , nM are arbitrary nonnegative integers and x1, · · · , xM are independent variables.
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Let us list the following simple examples

Dxf · g = fxg − fgx, (2.2)

DxDtf · g = fxtg − fxgt − ftgx + fgxt, (2.3)

D2
xf · g = fxxg − 2fxgx + fgxx, (2.4)

D3
xf · g = fxxxg − fxxgx + fxgxx − fgxxx, (2.5)

...

Dn
xf · g =

n∑
k=0

(−1)k
(
n

k

)
∂(n−k)f

∂x(n−k)

∂kg

∂xk
. (2.6)

It is useful to notice that the formulae for the D-operators in terms of derivatives are almost the

same as those for normal derivatives of products. The only difference is that the signs in front of the

terms having an odd degree of derivatives on the second function is negative.

The following properties of the D-operators can be derived from Definition 2.1

Dn
xD

m
t f · g = Dm

t D
n
xf · g = Dn−1

x Dm
t Dxf · g, (2.7)

Dn
xf · 1 =

∂nf

∂xn
, (2.8)

Dn
xf · g = (−1)nDn

xg · f, (2.9)

Dn
xf · f = 0 if n is odd, (2.10)

Dxf · g = 0 if f is scalar multiple of g, (2.11)

Dx(Dxf · g) · h+Dx(Dxh · f) · g +Dx(Dxg · h) · f = 0. (2.12)

Remark 2.2 Writing Dxf · g as [f, g], we see that the identity (2.12) can be written as the Jacobi

identity

[[f, g], h] + [[h, f ], g] + [[g, h], f ] = 0, (2.13)

which indicates one connection between the D-operators and Lie algebras. A deep connection

between bilinear equations written in terms of the D-operators and Lie algebras was discovered by

Sato, Date, Kashiwara, Jimbo and Miwa [52]-[55].
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Let a(x) and b(x) be two arbitrary differentiable functions in all orders in x, and δ be a parameter.

Then, by Taylor expansions of a(x+ δ) and b(x+ δ) with respect to δ, we have

a(x+ δ)b(x− δ) =
( ∞∑
k=0

a(k)(x)δk

k!

)( ∞∑
j=0

b(j)(x)(−δ)j

j!

)
=
∞∑
n=0

n∑
i=0

(−1)i
(
n

i

)
a(n−i)(x)b(n−i)(x)δn

n!

=
∞∑
n=0

δn

n!
Dn
xa(x) · b(x)

= eδDxa(x) · b(x).

Hence, we may define the D-operators by the exponential identity

eδDxa(x) · b(x) = eδ∂x́a(x+ x́) · b(x− x́)|x́=0 (2.14)

= a(x+ δ)b(x− δ). (2.15)

For an exponential function, the relation

Dn
xe
p1x · ep2x = (p1 − p2)ne(p1+p2)x (2.16)

holds, where p1 and p2 are real numbers. In the case of normal derivatives, we have

∂nx (ep1xep2x) = (p1 + p2)ne(p1+p2)x, (2.17)

from which we obtain

Dn
xe
p1x · ep2x =

(p1 − p2

p1 + p2

)
∂nx (ep1xep2x). (2.18)

Generally speaking, if P is a polynomial in Dx1 , · · · , DxM , then

P (Dx1 , · · · , DxM )eη1 · eη2 =
P (p11 − p21, · · · , p1M − p2M )

P (p11 + p21, · · · , p1M + p2M )
P (∂x1 , · · · , ∂xM )eη1+η2 , (2.19)

where ηi = pi1x1 + · · ·+ piMxM , for i = 1, 2. This formula is useful in the expression for the two

soliton solution of the bilinear equation

P (Dx1 , · · · , DxM )f · f = 0. (2.20)

In the next proposition, we formulate a very important identity, called the exchange formula

[12, 10], which is the most useful when deriving Bäcklund transformations, transformation between

solutions of a pair of differential equations, as will be seen in the third chapter of the dissertation.
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Proposition 2.3 [12] Let a, b, c, and d be differentiable functions in x, and let α, β, and γ be

arbitrary parameters. Then the following identity holds

eαDx
[
eβDxa · b

]
·
[
eγDxc · d

]
= e(β−γ

2
)Dx
[
e(α+β+γ

2
)Dxa · d

]
·
[
e(−α+β+γ

2
)Dxc · b

]
. (2.21)

In particular, we have

eδDxab · cd =
(
eδDxa · c

)(
eδDxb · d

)
(2.22)

=
(
eδDxa · d

)(
eδDxb · c

)
. (2.23)

The following formulae can be obtained by equating terms of the same order in δ on both sides of

the above exchange formulae (2.22) and (2.23):

Dxab · c = axbc+ aDxb · c, (2.24)

D2
xab · cd = bdD2

xa · c+ 2(Dxa · c)(Dxb · d) + acD2
xb · d, (2.25)

D3
xac · bc = c2D3

xa · c+ 3(Dxa · b)(Dxc · c), (2.26)

Dn
xe
pxa(x) · epxb(x) = e2pxDn

xa(x) · b(x), (2.27)

where p is a constant parameter. For more properties, details and generalization of the Hirota D-

operators the reader is referred to [12, 10, 56, 57].

2.2 Bilinearization of Nonlinear Partial Differential Equations

In this section, we discuss different types of transformations which map nonlinear PDEs into bi-

linear forms, which is the first step in the Hirota direct method. Then we consider some concrete

examples that will be discussed in details in the coming chapters.

Definition 2.4 We say that a nonlinear partial differential equation has a bilinear form if it can be

written in the form

n∑
i,j=1

Pmij (D)fi · fj = 0, m = 1, · · · , r, (2.28)

for some positive integers n, r and linear operators Pmij (D). Here fk are new dependent variables

and D is vector of the Hirota operators.
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Moreover, it is easy to prove the following proposition by using the properties of the D-operators in

the previous section.

Proposition 2.5 Let P be a polynomial in the Hirota operator D, and f, g are differentiable func-

tions. Then the following hold:

(a) P (D)f · g = P (−D)g · f, (2.29)

(b) P (D)f · 1 = P (∂)f, (2.30)

(c) ifP (D)a · a = 0, where a is any nonzero constant, then P (0, · · · , 0) = 0. (2.31)

Remark 2.6 Since

[Dm1
x1
Dm2
x2
· · ·DmM

xM
]f · f = 0 if

M∑
i=1

mi is an odd number. (2.32)

Hence, we may assume that P is even.

Next we present some examples to describe transformations from nonlinear PDEs to bilinear PDEs.

Example 2.1 Let us start from the KdV equation in its standard form,

ut + 6uux + uxxx = 0. (2.33)

The first transformation defined by

u =
a

b
(2.34)

is called a rational transformation. From (2.15) we can see the identity

eδ
∂
∂x

(a
b

)
=

e(δDx)a · b
cosh(δDx)b · b

. (2.35)

Expanding both sides of (2.35) with respect to the parameter δ and collecting terms in powers of δ,

we obtain the formulae which express derivatives of u = a/b in terms of the D-operators:

∂

∂x

a

b
=
Dxa · b
b2

, (2.36)

∂2

∂x2

a

b
=
D2
xa · b
b2

− a

b

D2
xb · b
b2

, (2.37)

∂3

∂x3

a

b
=
D3
xa · b
b2

− 3
Dxa · b
b2

D2
xb · b
b2

, (2.38)

· · ·
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Setting u = G/F and making use of the above formulae, The KdV equation may be written as

DtG · F
F 2

+ 6
G

F

DxG · F
F 2

+
D3
xG · F
F 2

− 3
DxG · F
F 2

D2
xF · F
F 2

= 0. (2.39)

Multiplying by F 4 on both sides and rearranging the terms, we get

[(Dt +D3
x)G · F ]F 2 + 3[DxG · F ][2GF −D2

xF · F ] = 0. (2.40)

Therefore, if we introduce an arbitrary function λ, the above equation may be decoupled into the

bilinear form

(Dt +D3
x)G · F = 3λDxG · F, (2.41)

D2
xF · F − 2GF = λF 2. (2.42)

An other kind of transformations is the logarithmic one:

u = 2(log f)xx. (2.43)

A fundamental formula related to this transformation is

2 cosh(δ
∂

∂x
) log f(x) = log[cosh(δDx)f(x) · f(x)]. (2.44)

Expanding the above formula with respect to δ and collecting terms in powers of δ, we have

2
∂2

∂x2
log f =

D2
xf · f
f2

, (2.45)

2
∂2

∂x∂t
log f =

DxDtf · f
f2

, (2.46)

2
∂4

∂x4
log f =

D4
xf · f
f2

− 3
(D2

xf · f
f2

)2
, (2.47)

· · ·

The KdV equation may be integrated to give

wt + 3w2
x + wxxx = c, (2.48)

where u = wx and c is a constant of integration. Next, by using the dependent variable transforma-

tion

w = 2(log f)x, which is equivalent to u = 2(log f)xx. (2.49)
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From the above identities, the KdV equation gives

DxDtf · f
f2

+ 3
(D2

xf · f
f2

)2
+
D4
xf · f
f2

− 3
(D2

xf · f
f2

)2
= c, (2.50)

hence the bilinear form of the KdV equation is

Dx(Dt +D3
x)f · f = cf2. (2.51)

In the above expression, the operator Dt + D2
x corresponds to the linear part of the KdV equation

∂t + ∂3
x.

Example 2.2 We consider the (3+1)-dimensional Jimbo-Miwa (JM) equation [54]

uyt − uxxxy − 3(uxuy)x + 3uxz = 0, (2.52)

Through the dependent variable transformation

u = 2(log f)x, (2.53)

and integrating with respect to x, taking the constant of integration to be zero, then use the D-

operator properties, the JM equation gives

DyDtf · f
f2

− D3
xDyf · f
f2

+ 3
(D2

xf · f
f2

)(DxDyf · f
f2

)
− 3
(D2

xf · f
f2

)(DxDyf · f
f2

)
+3

DxDzf · f
f2

= 0. (2.54)

By Multiplying by f2, we get the bilinear form of the JM equation:

DyDtf · f −D3
xDyf · f + 3DxDzf · f = 0. (2.55)

Example 2.3 We consider the following (3+1)-dimensional nonlinear equation:

(ut + α1(t)uxxy + 3α2(t)uxuy)x + α3(t)uty − α4(t)uzz + α5(t)(ux + α3(t)uy) = 0, (2.56)

where αi, 1 ≤ i ≤ 5, are nonzero arbitrary analytic functions in t. When αi ≡ 1 for 1 ≤ i ≤

5, α5 ≡ 0 and x = y, the equation (2.56) is reduced to the KP equation, and so we call it a

generalized vcKP.

Through the dependent variable transformation

u = 2
α1(t)

α2(t)
(ln f)x, (2.57)
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the above (3+1)-dimensional generalized vcKP equation is mapped into a Hirota bilinear equation

(α1(t)D3
xDy +DtDx + α3(t)DtDy − α4(t)D2

z)f · f = 0, (2.58)

under the constraint:

α1(t) = C0α2(t)e−
∫
α5(t)dt, (2.59)

where C0 6= 0 is an arbitrary constant.

Indeed, by transformation (2.57) the vcKP equation (2.56) gives

α1(t)(ln f)xxxxy + 6C0α2(t)e−
∫
α5(t)dt[(ln f)xx(ln f)xy]x + (ln f)txx

+α3(t)(ln f)txy − α4(t)(ln f)xzz = 0. (2.60)

By integrating with respect to x and taking the constant of integration to be zero, we get

α1(t)
D3
xDyf · f

2f2
− 3α1(t)

2
(
D2
xf · f
f2

)(
DxDyf · f

f2
) + 6α1(t)(

D2
xf · f
2f2

)(
DxDyf · f

2f2
)

+
DxDtf · f

2f2
+ α3(t)

DyDtf · f
2f2

− α4(t)
D2
zf · f
2f2

= 0, (2.61)

from which the equation (2.56) can be written in the bilinear form (2.58).

Example 2.4 This example will be the (2+1) Ablowitz-Kaup-Newell-Segur (AKNS) system with

variable coefficients [58]

pt + a(t)(
1

2
pxy − qp2) = 0, (2.62a)

qt − a(t)(
1

2
qxy − pq2) = 0. (2.62b)

Under the following rational transformations,

p =
g

f
, q =

h

f
, (2.63)

the system (2.62) gives

Dtg · f
f2

+
a(t)

2

(DxDyg · f
f2

− g

f

DxDyf · f
f2

)
− a(t)

hg2

f3
= 0, (2.64a)

Dth · f
f2

− a(t)

2

(DxDyh · f
f2

− h

f

DxDyf · f
f2

)
+ a(t)

h2g

f3
= 0. (2.64b)
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From the above system, we can get the bilinear system for the system (2.62)

DxDy(f · f) + 2gh = 0, (2.65a)

(Dt +
1

2
a(t)DxDy)g · f = 0, (2.65b)

(Dt −
1

2
a(t)DxDy)h · f = 0, (2.65c)

2.3 The Hirota Direct Method

The Hirota direct method is a powerful tool for solving a wide class of nonlinear evolution equations.

In this method, nonlinear equations are first transformed into bilinear equations through dependent

variable transformations. These bilinear equations are then used to construct N-soliton solutions by

employing a perturbation method.

Consider the bilinearized KdV equation

Dx(Dt +D3
x)f · f = 0. (2.66)

Expand f with respect to a small parameter ε to obtain

f = 1 +

∞∑
n=1

fnε
n. (2.67)

Substituting the above expansion formulae of f into the bilinear equation and arranging it at each

order of ε, we have

ε : Dx(Dt +D3
x)(f1 · 1 + 1 · f1) = 0, (2.68a)

ε2 : Dx(Dt +D3
x)(f2 · 1 + f1 · f1 + 1 · f2) = 0, (2.68b)

ε3 : Dx(Dt +D3
x)(f3 · 1 + f2 · f1 + f1 · f2 + 1 · f3) = 0, (2.68c)

ε3 : Dx(Dt +D3
x)(f4 · 1 + f3 · f1 + f2 · f2 + f1 · f3 + 1 · f4) = 0, (2.68d)

· · ·

Using (2.8), the equation of order ε is equivalent to

∂

∂x

( ∂
∂t

+
∂3

∂x3

)
f1 = 0. (2.69)
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The solution of the above linear differential equation (2.69) that describes a solitary wave (one-

soliton) is given by

f1 = eη1 , (2.70)

where η1 = k1x+ ω1t+ η0
1, with a constant η0

1 and ω1(k1) = −k3
1.

Hence the one-soliton solution to the KdV equation (2.33) equation is given by

u(x, t) = 2
∂2

∂x2
log(1 + ek1x−k3

1t), (2.71)

which coincides with the solution we computed in section (1.2).

To find the two-soliton solution, which describes the interaction of two single solitons, we choose

the solution to the linear differential equation (2.69) to be

f1 = eη1 + eη2 , (2.72)

where ηi = kix + ωit + η0
i , with a constant η0

i and ωi(ki) = −k3
i for i = 1, 2. The equation of

order ε2 is

2
∂

∂x

( ∂
∂t

+
∂3

∂x3

)
f2 = −Dx(Dt +D3

x)f1 · f1. (2.73)

Substituting (2.72) into the right hand side of (2.73), we have, from the property of the D-operators

(2.19),

Dx(Dt +D3
x)f1 · f1 = Dx(Dt +D3

x)(eη1 + eη2) · (eη1 + eη2)

= 2Dx(Dt +D3
x)eη1 · eη2

= 2(k1 − k2)[ω1 − ω2 + (k1 − k2)3]eη1+η2 . (2.74)

Equation (2.73) has a solution of the form

f2 = a12e
η1+η2 , (2.75)

where, using (2.19), the coefficient a12 is given by

a12 = −2(k1 − k2)[ω1 − ω2 + (k1 − k2)3]

2(k1 + k2)[ω1 + ω2 + (k1 + k2)3]

=
(k1 − k2

k1 + k2

)2
. (2.76)

19



Substitution the expression for f1 and f2 given above into the linear differential equation of order

ε3, we obtain

2
∂

∂x

( ∂
∂t

+
∂3

∂x3

)
f3 = −Dx(Dt +D3

x)(f2 · f1 + f1 · f2)

= −2k2(ω2 + k3
2)e2η1+η2 − 2k1(ω1 + k3

1)eη1+2η2 . (2.77)

The right hand side of the above equation is zero because of the nonlinear dispersion relation

ωi(ki) = −k3
i for i = 1, 2. Hence we may choose f3 = 0. In the same way, we may choose

fn = 0 for n ≥ 4. Substitution fn for n = 1, 2, · · · into the the perturbation expansion of f, we get

f = 1 + ε(eη1 + eη2) + ε2a12e
η1+η2 . (2.78)

Since each ηi is given by

ηi = kix+ ωit+ η0
i , (2.79)

any positive ε can be absorbed into the constants η0
i . Hence

u = 2
∂2

∂x2
log(1 + (eη1 + eη2) + a12e

η1+η2) (2.80)

gives the two-soliton solution to the KdV equation (2.33). In a way similar to the above treatment

and writing

aij = eAij , (2.81)

we obtain the following N-soliton solution to the bilinear KdV equation

f =

′∑
exp

[ N∑
i=1

µiηi +

(N)∑
i<j

Aijµiµj

]
, (2.82)

where the first sum
∑′ means a summation over all possible combinations of µ1 = 0, 1, µ2 =

0, 1, · · · , µN = 0, 1, and the sum
∑(N)

i<j means a summation over all possible pairs (i, j) chosen

from the set {1, 2, · · · , N}, with the condition that i < j.

We next consider a bilinear equation of the form

P (Dx1 , · · · , DxM )f · f = 0, (2.83)
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where P is a polynomial in Dx1 , · · · , DxM and satisfies the condition P (0) = 0. We call this

kind of equations KdV-type bilinear equations. The distinguishing feature of a KdV-type bilinear

equation is that it has just one dependent variable f. Let us introduce the following vector notations,

D = (Dx1 , · · · , DxM ),

x = (x1, · · · , xM ),

ki = (ki1, · · · , kiM ).

For all KdV-type bilinear equations,

P (D)f · f = 0, (2.84)

having N-soliton solutions, the N-soliton solutions f have the form (2.82), where

ηi = ki · x + η0
i , η0

i is constant (2.85)

P (ki) = 0, (2.86)

and the phase shift aij is given by

aij = eAij = −P (ki − kj)

P (ki + kj)
, (2.87)

provided that the following identity holds

′∑
P
( N∑
i=1

ρiki

) (N)∏
i<j

P (ρiki − ρjkj)ρiρj = 0, (2.88)

where the summation
∑′ is taken over all possible combinations of ρ1 = 0, 1, · · · , ρN = 0, 1. This

is called the Hirota condition [39]-[42],[59]-[61].

2.4 Hirota Bilinear Equations with Linear Subspaces of Solutions

We would, in this section, like to explore when Hirota bilinear equations can possess linear sub-

spaces of exponential traveling wave solutions. The involved exponential wave solutions may or

may not satisfy the corresponding dispersion relation. The theory will explore that Hirota bilinear

equations share some common characteristics with linear equations, which explains, to some extent,

why Hirota bilinear equations can be solved analytically. Based on the Hirota bilinear formulation,
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we will present a condition which is both sufficient and necessary for guaranteeing the applicability

of the linear superposition principle for exponential waves [62, 63].

Interestingly, multivariate polynomials whose zeros form a vector space can generate the desired

Hirota bilinear equations which possess given linear subspaces of solutions. However, it is still an

open question to us how to judge when a multivariate polynomial possesses one and only one real

zero point. The (3 + 1)-dimensional KP and BKP equations will be covered as special cases of the

computed illustrative examples. The contents of this section are from the references [62, 63].

2.4.1 Linear Superposition Principle

Let P be a polynomial in M variables satisfying

P (0, · · · , 0) = 0, (2.89)

which means that the constant term of P is zero. The corresponding Hirota bilinear equation reads

P (Dx1 , · · · , DxM )f · f = 0. (2.90)

Using Remark 2.6, we may assume that P is an even polynomial, i.e.,

P (−x1, · · · ,−xM ) = P (x1, · · · , xM ). (2.91)

Let N ∈ N be fixed and introduce the following N wave variables:

ηi = ki1x1 + · · ·+ kiMxM , 1 ≤ i ≤ N, (2.92)

and N exponential wave functions:

fi = eηi = eki1x1+···+kiMxM , 1 ≤ i ≤ N, (2.93)

where the kji’s are all constants. Using the bilinear identity (2.19)

P (Dx1 , · · · , DxM )eηi · eηj = P (k1i − k1j , · · · , kMi − kMj)e
ηi+ηj , (2.94)

it follows directly from (2.89) that every exponential wave functions fi, 1 ≤ i ≤ N, gives a solution

to the introduced Hirota bilinear equation (2.90).

Next, we consider a linear combination

f =
N∑
i=1

εifi =
N∑
i=1

εie
ηi , (2.95)
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where εi for 1 ≤ i ≤ N are all arbitrary constants. A natural question here is when this linear

combination will still tell a solution to the Hirota bilinear equation (2.90).

To answer this question, we make the following computation by using (2.89), (2.91) and (2.94):

P (Dx1 , · · · , DxM )f · f =
N∑

i=1,j=1

εiεjP (Dx1 , · · · , DxM )eηi · eηj

=

N∑
i=1,j=1

εiεjP (k1i − k1j , · · · , kMi − kMj)e
ηi+ηj

=
∑

1≤i<j≤N
εiεj [P (k1i − k1j , · · · , kMi − kMj)

+ P (k1j − k1i, · · · , kMi − kMj)]e
ηi+ηj

=
∑

1≤i<j≤N
2εiεjP (k1i − k1j , · · · , kMi − kMj)e

ηi+ηj .

This computation will play a key role in furnishing the linear superposition principle for the expo-

nential waves eηi , 1 ≤ i ≤ N.

It now follows that a linear combination function f defined by (2.95) solves the Hirota bilinear

equation (2.90) if and only if the condition of

P (k1i − k1j , · · · , kMi − kMj) = 0, 1 ≤ i < j ≤ N, (2.96)

is satisfied. The condition (2.96) gives us a big system of nonlinear algebraic equations on the

wave related numbers kij’s, as soon as the polynomial P is given. We will see that higher dimen-

sional cases have more opportunities for us to get solutions for the variables kij’s, because there are

more parameters to be determined in the resulting system of algebraic equations (2.96). The above

analysis yields to the following criterion for the linear superposition principle.

Theorem 2.7 [63] Let P (x1, · · · , xM ) be an even polynomial which satisfies P (0, · · · , 0) = 0 and

the N wave variables ηi, 1 ≤ i ≤ N, be defined by ηi = ki1x1 + · · ·+ kiMxM , 1 ≤ i ≤ N, where

the kij’s are all constants. Then any linear combination of eηi , 1 ≤ i ≤ N, solves the Hirota

bilinear equation P (Dx1 , · · · , DxM )f · f = 0 if and only if the following condition holds:

P (k1i − k1j , · · · , kMi − kMj) = 0, 1 ≤ i < j ≤ N.
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This theorem informs us exactly when a linear superposition of exponential wave solutions can still

solve a given Hirota bilinear equation, and it describes the interrelation between Hirota bilinear

equations and the linear superposition principle for exponential waves. It also paves a way of con-

structing N-wave solutions to Hirota bilinear equations. The system (2.96) actually is a resonance

condition we need to handle (see [64] for resonance of 2-solitons). Once we obtain a solution of the

wave related numbers kij’s by solving the algebriac system (2.96), we can tell an N-wave solution,

formed by (2.95), to the considered Hirota bilinear equation.

Next we list two (3+1)-dimensional examples with (3+1)-dimensional variables:

ηi = kix+ liy +miz + ωit, 1 ≤ i ≤ N, (2.97)

in order to present a working idea about what kind of related numbers could exist. More general

examples will be created later in Subsection 2.4.2.

Example 2.5 Let P = P (x, y, z, t) be the following polynomial

P (x, y, z, t) = x3y − tx+ ty − z2. (2.98)

The corresponding required condition (2.96) now is

P (ki − kj , li − lj ,mi −mj , ωi − ωj) (2.99)

= k3
i li − k3

i lj − 3k2
i kjli + 3k2

i kjlj + 3kik
2
j li − 3kik

2
j lj − k3

j li + k3
j lj + ωili (2.100)

− ωilj − ωjli + ωjlj − ωiki + ωikj + ωjki − ωjkj −m2
i + 2mimj −m2

j = 0, (2.101)

and the resulting Hirota bilinear equation becomes

(D3
xDy −DtDx +DtDy −D2

z)f · f = 0, (2.102)

namely,

(fxxxy − ftx + fty − fzz)f − 3fxxyfx + 3fxyfxx − fyfxxx + ftfx − ftfy + f2
z = 0. (2.103)

Under the transformation u = (log f)x, this equation is mapped into

uxxxy + 3(uxuy)x − utx + uty − uzz = 0. (2.104)
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Based on the linear superposition principle for exponential waves in Theorem 2.7, solving the above

system on the wave related numbers tells an N-wave solution to the nonlinear equation (2.104):

u = 2(log f)x, f =

N∑
i=1

εifi =

N∑
i=1

εie
kix−(1/3)a2kiy+ak2

i z−4[a2/(a2+3)]k3
i t, (2.105)

where the εi’s and ki’s are all arbitrary constants. Each exponential wave fi in the solution f satisfies

the corresponding nonlinear dispersion relation, i.e., we have

P (ki, li,mi, ωi) = 0, 1 ≤ i ≤ N. (2.106)

Example 2.6 Let P be the following polynomial

P (x, y, z, t) = ty − x3y + 3x2 + 3z2. (2.107)

The corresponding required condition (2.96) now is

P (ki − kj , li − lj ,mi −mj , ωi − ωj) (2.108)

= ωili − ωilj − ωjli + ωjlj − k3
i li + k3

i lj + 3k2
i kjli − 3k2

i kjlj − 3kik
2
j li (2.109)

+ 3kik
2
j lj + k3

j li − k3
j lj + 3m2

i − 6mimj + 3m2
j + 3k2

i − 6kikj + 3k2
j = 0, (2.110)

and the resulting Hirota bilinear equation becomes

(DtDy −D3
xDy + 3D2

x + 3D2
z)f · f = 0, (2.111)

namely,

(fty − fxxxy + 3fxx + 3fzz)f − ftfy + fyfxxx + 3fxxyfx − 3fxyfxx − 3f2
x − 3f2

z = 0.(2.112)

Under the transformation u = (log f)x, this equation is mapped into

uty − uxxxy − 3(uxuy)x + 3uxx + 3uzz = 0. (2.113)

Based on the linear superposition principle for exponential waves in Theorem 2.7, solving the

above system on the wave related numbers engenders an N-wave solution to the nonlinear equa-

tion (2.113):

u = 2(log f)x, f =

N∑
i=1

εifi =
N∑
i=1

εie
kix−(1+a2)k−1

i y+ak2
i z+k

3
i t, (2.114)
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where the εi’s and ki’s are all arbitrary constants. However, each exponential wave fi in the solution

f doesn’t satisfy the corresponding nonlinear dispersion relation, i.e., we have

P (ki, li,mi, ωi) 6= 0, 1 ≤ i ≤ N. (2.115)

It is also direct to prove that

P (Dx, Dy, Dz, Dt)(e
ξf) · (eηg) (2.116)

= eξ+ηP (Dx + k1 − k2, Dy + l1 − l2, Dz +m1 −m2, Dt − ω1 + ω2)f · g, (2.117)

where ξ = k1x + l1y + m1z − ω1t, η = k2x + l2y + m2z − ω2t, and P is a polynomial in the

indicated variables. Taking

ξ = η = η0 = k0x+ l0y +m0z − ω0t,

the above identity yields

P (Dx, Dy, Dz, Dt)(e
η0f) · (eη0g) = e2η0P (Dx, Dy, Dz, Dt)f · g. (2.118)

Therefore, we can get a new class of multiple exponential wave solutions by f ′ = eη0f, where

f is an original multiple exponential wave solution like any one in (2.105) and (2.114); and such

solutions form a new linear subspace of solutions and thus there exist infinitely many subspaces of

solutions.

2.4.2 Bilinear Equations with Given Linear Subspaces of Solutions

Taking one of the wave variables ηi, 1 ≤ i ≤ N, to be a constant, say, taking

ηi0 = εi0 , i.e., kji0 = 0, 1 ≤ j ≤M, (2.119)

where 1 ≤ i0 ≤ N is fixed, the N-wave solution condition (2.96) requires that all other wave related

numbers have to satisfy the dispersion relation of the Hirota bilinear equation (2.90):

P (k1i, · · · , kMi) = 0, 1 ≤ i ≤ N, i 6= i0. (2.120)

The resulting solution presents a specific class of N-soliton solutions by the Hirota perturbation

technique, truncated at the second-order perturbation term.
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Combining the dispersion relation (2.120) with the N-wave solution condition (2.96) leads to the

following sufficient condition on P for the corresponding Hirota bilinear equation (2.90) to satisfy

the linear superposition principle for exponential waves:

P (k) = P (l) = 0 ⇒ P (k− l) = 0, (2.121)

where k and l are two M dimensional vectors. Let us list a property of zeros of such multivariate

polynomials as follows.

Lemma 2.8 [63] Let P (x1, · · · , xM ) be a real (or complex) multivariate polynomial (which could

contain terms of both even and odd degree). Suppose P has at least one zero and satisfies that if

P (k) = P (l) = 0, then P (k− l) = 0.

Then all zeros of the polynomial P form a real (or complex) vector space.

Given an n-dimensional linear subspace Vn of RM , let us introduce a constant matrix A =

(aij)M ′M of rank n for any M ′ ∈ N such that the solution space of a linear system:

Ax = 0, x = (x1, · · · , xM )T , (2.122)

defines the n-dimensional subspace Vn. Let Q(y1, · · · , yM ′) be a multivariate polynomial in y =

(y1, · · · , yM ′)T and posses only one zero: y = y0. Then

P (x1, · · · , xM ) = Q((Ax + y0)T ) (2.123)

presents a multivariate polynomial which obviously satisfies the property (2.121), and the resulting

Hirota bilinear equation possesses the linear subspace of exponential wave solutions determined by

f =

N∑
i=1

εie
k1ix1+···+kMixM , N ≥ 1, (2.124)

where A(k1i−k1j , · · · , kMi−kMj)
T = 0, 1 ≤ i 6= j ≤ N, and the εi’s are all arbitrary constants.

While generating illastrative examples of such Hirota bilinear equations, one remaining question is

how to determine if a multivariate polynomial has one and only one real zero point. This is a more

difficult problem than Hilbert’s 17th problem.

Now we list what we have analyzed in the following theorem.
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Theorem 2.9 [63] Let M,M ′, n ∈ N, and A = (aij)M ′M be a constant matrix of rank n. Suppose

that Q(y1, · · · , yM ′) be a multivariate polynomial in y = (y1, · · · , yM ′)T and posses only one real

zero: y = y0. Then the zeros of the multivariate polynomial

P (x1, · · · , xM ) = Q((Ax + y0)T ), x = (x1, · · · , xM )T (2.125)

form an n-dimensional linear subspace, and the corresponding Hirota bilinear equation

P (Dx1 , · · · , DxM )f · f = Q((ADx + y0)T )f · f = 0 (2.126)

possesses a linear subspace of solutions determined by

f =
N∑
i=1

εie
k1ix1+···+kMixM , N ≥ 1, (2.127)

whereA(k1i−k1j , · · · , kMi−kMj)
T = 0, 1 ≤ i 6= j ≤ N, and the εi’s are all arbitrary constants.

In what follows, we present two illustrative examples to shed light on the algorithm in Theorem

2.9.

Example 2.7 This example has

Q(y1, y2) = y2
1 + y2

2, y0 =

 0

0

 , A =

 −1 0 0 1

0 1 2 0

 , x = (x, y, z, t)T . (2.128)

Then the associated multivariate polynomial reads

P (x, y, z, t) = x2 − 2tx+ t2 + y2 + 4yz + 4z2, (2.129)

and the corresponding Hirota bilinear equation is defined by

(D2
x − 2DxDt +D2

t +D2
y + 4DyDz + 4D2

z)f · f = 0. (2.130)

This bilinear equation possesses the linear subspace of solutions given by

f =
N∑
i=1

εifi = ek0x+l0y+m0z−ω0t
N∑
i=1

εie
−ωix−2miy+miz−ωit, N ≥ 1, (2.131)

where the εi’s, mi’s and ωi’s are all arbitrary constants but k0, l0,m0 and x0 are arbitrary fixed

constants. Evidently, all exponential waves fi in the solution f satisfy the corresponding nonlinear

dispersion relation iff the wave function ek0x+l0y+m0z−ω0t satisfies the corresponding nonlinear

dispersion relation.
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Example 2.8 This example has

Q(y1, y2) = (y1 + 1)2 + y4
2, y0 =

 −1

0

 , A =

 0 1 0 −1

1 0 2 1

 , x = (x, y, z, t)T .(2.132)

Then the associated multivariate polynomial reads

P (x, y, z, t) =y2 − 2yt+ 25t2 + x4 + 8x3z + 4tx3 + 24x2z2 (2.133)

+ 24tx2z + 6t2x2 + 32xz3 + 48txz2,

and the corresponding Hirota bilinear equation is given by

(D2
y − 2DyDt + 25D2

t +D4
x + 8D3

xDz + 4D3
xDt (2.134)

+24D2
xD

2
z + 24DtD

2
xDz + 6D2

xD
2
t + 32DxD

3
z + 48DxDtD

2
z)f · f = 0. (2.135)

This bilinear equation possesses the linear subspace of solutions determined by

f =

N∑
i=1

εifi = ek0x+l0y+m0z−ω0t
N∑
i=1

εie
(ωi−2mi)x−ωiy+miz−ωit, N ≥ 1, (2.136)

where the εi’s, mi’s and ωi’s are all arbitrary constants but k0, l0,m0 and x0 are arbitrary fixed

constants. Evidently, all exponential wave fi in the solution f satisfy the corresponding nonlinear

dispersion relation iff the wave function ek0x+l0y+m0z−ω0t satisfies the corresponding nonlinear

dispersion relation.
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Chapter 3

Wronskian and Pfaffian Solutions to (3+1)-Dimensional Generalized Soliton Equations of KP

Type

Wronskian and Pfaffian formulations are a common feature for soliton equations, and lead to a

powerful tool to construct exact solutions to soliton equations [15]-[21]. The techniques have been

applied to many soliton equations such as the KdV, MKdN, NLS, KP, BKP and sin-Gordon equa-

tions. Within Wronskian and Pfaffian formulations, solitons are usually expressed as some kind

of logarithmic derivatives of Wronskian type and Pfaffian type determinants and the determinants

involved are made of eigenfunctions satisfying linear partial differential equations. This connection

between nonlinear problems and linear ones utilizes linear theories in solving soliton equations.

In this chapter, we would like to study Pfaffians, their relation with determinants, Pfaffian expan-

sion formulae and Pfaffian identities. Then Wronskian and Pfaffian solutions will be formulated

for a (3+1)-dimensional generalized KP equation with variable coefficients. In order to verify our

results we will follow the following procedures: transform a nonlinear partial differential equation

into a bilinear form, then rewrite the bilinear equation using Wronskians and Pfaffians, and finally

confirm that the bilinear equation is nothing but Pfaffian identities.

In the third section, the (3+1)-dimensional generalized KP equation will be extended to a system

of nonlinear partial differential equations. This procedure is called Pfaffianization [65]. Wronski-

type and Gramm-type Pfaffian solutions of the resulting Pfaffianized system will be constructed.

Two kinds of Pfaffian identities are the basis of our analysis.

In the last section, we will consider the constant coefficients case of the considered (3+1)-

dimensional generalized KP equation. A bilinear Bäcklund Transformation will be presented for

a (3+1)-dimensional generalized KP equation, which consists of six bilinear equations and involves

nine arbitrary parameters. Two classes of exponential and rational traveling wave solutions with

arbitrary wave numbers are computed, based on the proposed bilinear Bäcklund transformation

[12, 67, 66].
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3.1 Pfaffians

The determinant of a skew-symmetric matrix A = det(aij)1≤i,j≤m can always be written as the

square of a polynomial in the matrix entries [69]. This polynomial is called the Pfaffian of the

matrix, denoted by Pf(A), The term Pfaffian was introduced by Cayley (1852) who named it after

Johann Friedrich Pfaff [70]. The Pfaffian is nonvanishing only for 2n×2n skew-symmetric matrices,

in which case it is a polynomial of degree n.

We are going to use the following notation for a Pfaffian of order n

Pf(A) = (1, 2, · · · , 2n). (3.1)

For example, for n = 1, ∣∣∣∣∣∣ 0 a12

−a12 0

∣∣∣∣∣∣ = a2
12 ≡ (1, 2)2, (3.2)

∣∣∣∣∣∣∣∣∣∣∣∣

0 a12 a13 a14

−a12 0 a23 a24

−a13 −a23 0 a34

−a14 −a24 −a34 0

∣∣∣∣∣∣∣∣∣∣∣∣
= (a12a34 − a13a24 + a14a23)2 ≡ (1, 2, 3, 4)2. (3.3)

Therefore, a second-order Pfaffian given by (1, 2, 3, 4) is expanded as

(1, 2, 3, 4) = (1, 2)(3, 4)− (1, 3)(2, 4) + (1, 4)(2, 3), (3.4)

where (j, k) = aij for j < k. It should be noted that from the skew-symmetric property akj = −akj ,

we have

(k, j) = −(j, k).

In general, a Pfaffian (1, 2, · · · , 2n) can be expanded as

(1, 2, · · · , 2n) = (1, 2)(3, 4, · · · , 2n)− (1, 3)(2, 4, 5, · · · , 2n)

+(1, 4)(2, 3, 5, · · · , 2n)− · · ·+ (1, 2n)(2, 3, · · · , 2n− 1)

=

2n∑
j=2

(−1)j(1, j)(2, 3, · · · , ĵ, · · · , 2n), (3.5)
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where ĵ means that index j is omitted. Repeating the expansion (3.5), we arrive at the summation

of products of first-order Pfaffians [68]:

(1, 2, · · · , 2n) =

′∑
P

(−1)P (j1, j2)(j3, j4)(j5, j6) · · · (j2n−1, j2n), (3.6)

where the sum notation
∑′

P means the sum over all possible combinations of pairs selected from

{1, 2, · · · , 2n} which satisfy

j1 < j2, j3 < j4, j5 < j6, · · · , j2n−1 < j2n,

j1 < j3 < j5 < · · · < j2n−1,

and (−1)P has the value 1 or −1 if the sequence j1, j2, · · · , j2n is an even or odd permutation

respectively.

3.1.1 Pfaffian Expression for General Determinants and Wronskians

We have already defined the Pfaffian through the determinant of a 2n× 2n skew-symmetric matrix.

Conversely, an nth-order determinant,

B ≡ det(bjk)1≤j,k≤n, (3.7)

can be expressed as an nth-order Pfaffian,

B = (1, 2, · · · , n, n∗, · · · , 2∗, 1∗), (3.8)

where the Pfaffian entries (j, k), (j∗, k∗), (j, k∗) are defined by

(j, k) = 0, (j∗, k∗) = 0, (j, k∗) = bjk. (3.9)

For example, if n = 2, we have ∣∣∣∣∣∣ b11 b12

b21 b22

∣∣∣∣∣∣ = (1, 2, 2∗, 1∗) (3.10)

Now let us consider an nth-order Wronskian determinant W(f1, f2, · · · , fn) which is defined by

W(f1, f2, · · · , fn) ≡ det
( ∂j−1

∂xj−1
fi

)
1≤i,j≤n

. (3.11)

32



It can be expressed as an nth-order Pfaffian [48]:

W(f1, f2, · · · , fn) = (d0, d1, d2, · · · , dn−1, n, · · · , 3, 2, 1), (3.12)

where the Pfaffian entries (i, j), (dk, i), and (dk, dl) are defined by

(i, j) = 0, (dk, i) ≡ f
(k)
i , (dk, dl) ≡ 0, (3.13)

for i, j = 1, 2, · · · , n and k, l = 0, 1, · · · , n − 1, and f (k)
i stands for the k-th derivative of fi with

respect to x.

For example, if n = 2, we have∣∣∣∣∣∣ f
(0)
1 f

(1)
1

f
(0)
2 f

(1)
2

∣∣∣∣∣∣ = (d0, d1, 2, 1) (3.14)

= −(d0, 2)(d1, 1) + (d0, 1)(d1, 2) (3.15)

= f
(0)
1 f

(1)
2 − f (0)

2 f
(1)
1 . (3.16)

3.1.2 Pfaffian Expression of Jacobi Identities for Determinants

The Jacobi identity for determinants is stated in the following proposition [71]

Proposition 3.1 [10] Let D be the determinant of the nth-order matrix A. Then

DD

 i j

k l

 = D

 i

k

D

 i

l

−D
 i

l

D

 j

k

 , i < j, k < l, (3.17)

where

D

 i

k

 is obtained by eliminating jth row and kth column from D, and

D

 i j

k l

 is obtained by eliminating the ith and jth rows and the kth and lth columns from the

determinant D.

For example, take n = 3 and i = k = 1, j = l = 2, we get∣∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣∣
∣∣∣ a33

∣∣∣ =

∣∣∣∣∣∣ a22 a23

a32 a33

∣∣∣∣∣∣
∣∣∣∣∣∣ a11 a13

a31 a33

∣∣∣∣∣∣−
∣∣∣∣∣∣ a21 a23

a31 a33

∣∣∣∣∣∣
∣∣∣∣∣∣ a12 a13

a32 a33

∣∣∣∣∣∣ .
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Employing the Pfaffian expressions given in the previous subsection, the terms of the Jacobi identity

(3.17) can be expressed by

D = (1, 2, · · · , n, n∗, · · · , 2∗, 1∗) (3.18)

D

 i

k

 = (1, 2, · · · , î, · · · , n, n∗, · · · , k̂∗, · · · , 2∗, 1∗) (3.19)

D

 i j

k l

 = (1, 2, · · · , î, · · · , ĵ, · · · , n, n∗, · · · , k̂∗, · · · , l̂∗, · · · , 2∗, 1∗), (3.20)

where the Pfaffian entries are defined by the same way as in (3.9). For more details and the proof

for the Jacobi identity in its determinant and Pfaffian forms, the reader is referred to [10] and [72],

respectively.

3.1.3 Pfaffian Identities and Expansion Formulae

In [73], Y. Ohta introduced a simple proof to the following identity

M∑
j=0

(−1)j(b0, b1, · · · , b̂j , · · · , bM )(bj , c0, c1, · · · , cN )

=

N∑
k=0

(−1)k(b0, b1, · · · , bM , ck)(c0, c1, · · · , ĉk, · · · , cN ), (3.21)

which can be proved by using expansion formula (3.5). Expanding the second Pfaffian on the left

hand side with respect to bj and expanding the first Pfaffian on the right hand side with respect to

ck, we obtain

M∑
j=0

(−1)j
N∑
k=0

(−1)k(b0, b1, · · · , b̂j , · · · , bM )(bj , ck)(c0, c1, · · · , ĉk, · · · , cN )

=
N∑
k=0

(−1)k
M∑
j=0

(−1)j(b0, b1, · · · , b̂j , · · · , bM )(bj , ck)(c0, c1, · · · , ĉk, · · · , cN ). (3.22)

The above equality is easily obtained by interchanging the sums over j and k.

In order to get Pfaffian identities, let us take the following two special cases.

Case I:
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Taking M = 2n, N = 2n+ 2m− 2 (m is odd) and the characters bj , ck as follows

b0 = a1, b1 = 1, b2 = 2, · · · , bM = b2n = 2n,

c0 = a2, c1 = a3, c2 = a4, · · · , c2m−2 = a2m,

c2m−1 = 1, c2m = 2, c2m+1 = 3, · · · , cN = c2n+2m−2 = 2n,

we get the following Pfaffian identity

(1, 2, · · · , 2n)(a1, a2, · · · , a2m, 1, 2, · · · , 2n)

=
2m∑
s=2

(−1)s(a1, as, 1, 2, · · · , 2n)(a2, a3, · · · , âs, · · · , a2m, 1, 2, · · · , 2n). (3.23)

For example, in the case m = 2, the identity (3.23) can be written as

(1, 2, · · · , 2n)(a1, a2, a3, a4, 1, 2, · · · , 2n)

= (a1, a2, 1, 2, · · · , 2n)(a3, a4, 1, 2, · · · , 2n)

−(a1, a3, · · · , 2n)(a2, a4, 1, 2, · · · , 2n)

+(a1, a4, · · · , 2n)(a2, a3, 1, 2, · · · , 2n).

Case II:

Taking M = 2n− 2, N = 2n+m− 1 (m is odd) and the characters bj , ck as follows

b0 = 1, b1 = 2, b2 = 3, · · · , bM = b2n−2 = 2n− 1,

c0 = a1, c1 = a2, c2 = a3, · · · , c2m−1 = am,

cm = 1, cm+1 = 2, cm+2 = 3, · · · , cN = c2n+m−1 = 2n,

we get the following Pfaffian identity

(1, 2, · · · , 2n)(a1, a2, · · · , am, 1, 2, · · · , 2n− 1)

=
m∑
j=1

(−1)j(aj , 1, 2, · · · , 2n− 1)(a1, a2, a3, · · · , âj , · · · , am, 1, 2, · · · , 2n). (3.24)

For example, in the case m = 3, the identity (3.24) can be written as

(1, 2, · · · , 2n)(a1, a2, a3, 1, 2, · · · , 2n− 1)

= (a1, 1, 2, · · · , 2n)(a2, a3, 1, 2, · · · , 2n)

−(a2, · · · , 2n)(a1, a3, 1, 2, · · · , 2n)

+(a3, · · · , 2n)(a1, a2, 1, 2, · · · , 2n).
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The above identities will play a crucial role in our studying the vcKP and JM equations, and we will

prove that the bilinear forms of those equations are nothing but Pfaffian identities.

In order to find the derivative formulae for Pfaffians, we need the following expansion formulae

for Pfaffians [48]:

Proposition 3.2 [48] If (a1, a2) = 0, then the Pfaffian (a1, a2, 1, 2, · · · , 2n) can be extended in two

different ways:

(i) (a1, a2, 1, 2, · · · , 2n) =
∑

1≤j<k≤2n

(−1)j+k−1(a1, a2, j, k)

×(1, 2, · · · , ĵ, · · · , k̂, · · · , 2n), (3.25)

(ii) (a1, a2, 1, 2, · · · , 2n) =

2n∑
j=2

(−1)j [(a1, a2, 1, j)(2, 3, · · · , ĵ, · · · , 2n)

+(1, j)(a1, a2, 2, 3, · · · , ĵ, · · · , 2n)]. (3.26)

Proof :[48] To prove identity (3.25), expanding the Pfaffian (a1, a2, 1, 2, · · · , 2n) with respect to

a1 and then with respect to a2, we get

(a1, a2, 1, 2, · · · , 2n) =

2n∑
j=1

2n∑
k=1

(−1)j+k(a1, j)(a2, k)(1, 2, · · · , ĵ, · · · , k̂, · · · , 2n)

=
∑

1≤j<k≤2n

(−1)j+k[(a1, j)(a2, k)− (a1, k)(a2, j)]

× (1, 2, · · · , ĵ, · · · , k̂, · · · , 2n).

By the condition (a1, a2) = 0, we see that the right hand side of the last equality is equivalent to the

right hand side of (3.25).

To prove the second expansion formula (3.26), we expand the Pfaffian (a1, a2, 1, 2, · · · , 2n) with

respect to 1, and then we get the following

(a1, a2, 1, 2, · · · , 2n) = (1, a1)(a2, 2, · · · , 2n)− (1, a2)(a1, 2, · · · , 2n)

+

2n∑
j=2

(−1)j(1, j)(a1, a2, 2, 3, · · · , ĵ, · · · , 2n).
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Next, we expand the Pfaffians (a1, 2, 3, · · · , 2n) and (a2, 2, 3, · · · , 2n) to get

(a1, a2, 1, 2, · · · , 2n) = (1, a1)

2n∑
j=2

(−1)j(a2, j)(2, 3, · · · , ĵ, · · · , 2n)

− (1, a2)
2n∑
j=2

(−1)j(a1, j)(2, 3, · · · , ĵ, · · · , 2n)

+

2n∑
j=2

(−1)j(1, j)(a1, a2, 2, 3, · · · , ĵ, · · · , 2n).

Using the condition (a1, a2) = 0, the right hand side of the above equality will be

2n∑
j=2

(−1)j [(a1, a2, 1, j)(2, 3, · · · , ĵ, · · · , 2n) + (1, j)(a1, a2, 2, 3, · · · , ĵ, · · · , 2n)], (3.27)

which is the right hand side of (3.25). �

Replacing the Pfaffian (1, 2, · · · , 2n) by (b1, b2, · · · , 2n), the first expansion formula (3.25) can

be generalized to the following

(a1, a2, b1, b2, 1, 2, · · · , 2n) =

2n∑
j=1

2n∑
k=j+1

(−1)j + k − 1(a1, a2, j, k)

× (b1, b2, 1, 2, · · · , ĵ, · · · , k̂, · · · , 2n), (3.28)

where (aj , bk) = 0 for j, k = 1, 2.

Lemma 3.3 [10] If the x-derivative of a Pfaffian entry (i, j) is expressed as follows

∂

∂x
(i, j) = (a0, b0, i, j), (a0, b0) = 0, (3.29)

then (3.30)
∂

∂x
(1, 2, · · · , 2n) = (a0, b0, 1, 2, · · · , 2n). (3.31)

Proof :[10] We proceed by induction. For n = 1, the statement is true by assumption (3.29).

Assume that (3.31) is true for n− 1. Then

∂

∂x
(1, 2, · · · , 2n) =

∂

∂x

2n∑
j=1

(−1)j−1(1, j)(2, 3, · · · , ĵ, · · · , 2n)

=

2n∑
j=1

(−1)j−1
[( ∂
∂x

(1, j)
)
(2, 3, · · · , ĵ, · · · , 2n)

+ (i, j)
∂

∂x
(2, 3, · · · , ĵ, · · · , 2n)

]
,
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Using the condition (3.29) and the induction assumption, the right hand side of the above equality

equals to

2n∑
j=1

(−1)j−1[(a0, b0, 1, j)(2, 3, · · · , ĵ, · · · , 2n)

+ (i, j)(a0, b0, 2, 3, · · · , ĵ, · · · , 2n) = (a0, b0, 1, 2, · · · , 2n),

where the last equality is by the expansion formula (3.26). �

In the next lemma, we are going to give a derivative of the Pfaffian (a0, b0, 1, 2, · · · , 2n) with respect

to another variable y.

Lemma 3.4 [10] If the y-derivative of a Pfaffian entry (i, j) and the Pfaffian (a0, b0, i, j) can be

expressed as follows

∂

∂y
(i, j) ≡ (a1, b1, i, j), (3.32a)

∂

∂y
(a0, b0, i, j) ≡ (a2, b0, i, j) + (a0, b2, i, j), (3.32b)

then

∂

∂y
(a0, b0, 1, 2, · · · , 2n) = (a2, b0, 1, 2, · · · , 2n) + (a0, b2, 1, 2, · · · , 2n)

+(a0, b0, a1, b1, 1, 2, · · · , 2n), (3.33)

where (ai, aj) = (ai, bj) = (bi, bj) = 0 for i, j = 0, 1, 2.

Proof :[10] Using the expansion formula (3.25), we have

∂

∂y
(a0, b0, 1, 2, · · · , 2n) =

∑
1≤i<j≤2n

(−1)i+j−1
[ ∂
∂y

(a0, b0, i, j)

×(1, 2, · · · , î, · · · , ĵ, · · · , 2n) + (a0, b0, i, j)

× ∂

∂y
(1, 2, · · · , î, · · · , ĵ, · · · , 2n)

]
. (3.34)

Using the condition (3.32) and Lemma 3.4, we have

∂

∂y
(a0, b0, 1, 2, · · · , 2n) =

∑
1≤i<j≤2n

(−1)i+j−1
{

[(a2, b0, i, j) + (a0, b2, i, j)]

×(1, 2, · · · , î, · · · , ĵ, · · · , 2n) + (a0, b0, i, j)

×(a1, b1, 1, 2, · · · , î, · · · , ĵ, · · · , 2n)
}
. (3.35)
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Finally, by the expansion formulae (3.25) and (3.28), we can see that the right hand side of the last

equality equals to the right hand side of (3.33), which completes the proof. �

3.2 Determinant Solutions for a (3+1)-Dimensional Generalized KP Equation with Variable

Coefficients

Recently, Wronskian and Grammian solutions, nonsingular and singular soliton solutions and a

Bäcklund transformation in bilinear form to a (3+1)-dimentional generalized KP equation

uxxxy + 3(uxuy)x + utx + uty − uzz = 0

has been presented in [21],[74] and [66], respectively. This equation can be written in the Hirota

bilinear form and reduced to the KP equation if taking y = x, but does not belong to a class of

generalized KP and Boussinesq equations [76]

(ux1x1x1 − 6uux1)x1 +
M∑
i,j=1

aijuxixj = 0, aij = constant, M ∈ N.

In this section, we would like to consider the following generalized KP equation with variable

coefficients (vcKP):

(ut + α1(t)uxxy + 3α2(t)uxuy)x + α3(t)uty − α4(t)uzz + α5(t)(ux + α3(t)uy) = 0,

where αi, i = 1, 2, 3, 4, 5, are nonzero arbitrary analytic functions in t . Under a certain constraint,

we will show that this generalized vcKP equation has a class of Wronskian solutions and a class of

Grammian solutions, with all generating functions for matrix entries satisfying a linear system of

partial differential equations. The Plücker relation and the Jacobi identity for determinants are the

tools to establish the corresponding Wronskian and Grammian formulations .

3.2.1 Wronskian Formulation

Let us introduce the following helpful notation

| ̂N − j − 1, i1, · · · , ij | = |Φ(0),Φ(1), · · · ,Φ(N−j−1),Φ(i1), · · · ,Φ(ij)|

= det(Φ(0),Φ(1), · · · ,Φ(N−j−1),Φ(i1), · · · ,Φ(ij)), 1 ≤ j ≤ N − 1, (3.36)
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where i1, · · · , ij are non-negative integers, and the vectors of functions Φ(j) are defined by

Φ(j) = (φ
(j)
1 , φ

(j)
2 , · · · , φ(j)

N )T , φ
(j)
i =

∂j

∂xj
φi. (3.37)

A Wronskian determinant is given by

W (φ1, φ2, · · · , φN ) = |N̂ − 1|. (3.38)

We also use the assumption for convenience that if i < 0, the column vector Φ(i) does not appear in

the determinant det(· · · ,Φ(i), · · · ).

We consider the following (3+1)-dimensional nonlinear equation:

(ut + α1(t)uxxy + 3α2(t)uxuy)x + α3(t)uty − α4(t)uzz + α5(t)(ux + α3(t)uy) = 0, (3.39)

where αi, i = 1, 2, 3, 4, 5, are nonzero arbitrary analytic functions in t. When αi ≡ 1 for i =

1, 2, 3, 4, α5 ≡ 0 and x = y, the equation (3.39) is reduced to the KP equation, and so we call it a

generalized vcKP equation. The KP equation was also generalized by constructing decomposition

of (2+1)-dimensional equations into (1+1)-dimensional equations [75].

Through the dependent variable transformation

u = 2
α1(t)

α2(t)
(ln f)x, (3.40)

the above (3+1)-dimensional generalized vcKP equation is mapped into a Hirota bilinear equation

(α1(t)D3
xDy +DtDx + α3(t)DtDy − α4(t)D2

z)f · f = 0, (3.41)

under the constraint:

α1(t) = C0α2(t)e−
∫
α5(t)dt, (3.42)

where C0 6= 0 is an arbitrary constant and Dx, Dy, Dz and Dt are Hirota bilinear differential

operators [10, 12].

Equivalently, we have

(α1(t)fxxxy + ftx + α3(t)fty − α4(t)fzz)f − 3α1(t)fxxyfx + 3α1(t)fxyfxx

−α1(t)fyfxxx − ftfx − α3(t)ftfy + α4(t)(fz)
2 = 0. (3.43)
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In the next theorem, we would like to present a system of three linear partial differential equa-

tions for which the N -th order Wronskian determinant solves the generalized Hirota bilinear vcKP

equation (3.41).

Theorem 3.5 Let a set of functions φi = φi(x, y, z, t) satisfy the following linear partial differential

equations:

φi,y = −a
2α4(t)

3α1(t)
φi,x, φi,z = aφi,xx, φi,t = β(t)φi,xxx, (3.44)

with 1 ≤ i ≤ N, and

β(t) =
4a2α1(t)α4(t)

3α1(t)− a2α3(t)α4(t)
,

where a is an arbitrary nonzero constant, α4
α1

is an arbitrary constant and 3
a2α3(t)

does not equal to

the constant α4
α1

for all values of t. Then the Wronskian determinant fN = |N̂ − 1| defined by (3.38)

solves the (3+1)-dimensional generalized bilinear vcKP equation (3.41).

Proof: Using the following equality and (3.44)

N∑
k=1

|A|lk =

N∑
i,j=1

Aij
∂laij
∂xl

,

where A = (aij)N×N , and |A|lk denotes the determinant resulting from |A| with its kth column

differentiated l times with respect to x, whereas Aij denotes the co-factor of aij , we can com-

pute various derivatives of the Wronskian determinant fN = |N̂ − 1| with respect to the variables

x, y, z, t:

fN,x = |N̂ − 2, N |,

fN,xx = |N̂ − 3, N − 1, N |+ |N̂ − 2, N + 1|,

fN,xxx = |N̂ − 4, N − 2, N − 1, N |+ 2|N̂ − 3, N − 1, N + 1|+ |N̂ − 2, N + 2|,

fN,y = −a
2α4(t)

3α1(t)
|N̂ − 2, N |,
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fN,xy = −a
2α4(t)

3α1(t)
(|N̂ − 3, N − 1, N |+ |N̂ − 2, N + 1|),

fN,xxy = −a
2α4(t)

3α1(t)
(|N̂ − 4, N − 2, N − 1, N |+ 2|N̂ − 3, N − 1, N + 1|+ |N̂ − 2, N + 2|),

fN,xxxy = −a
2α4(t)

3α1(t)
(|N̂ − 5, N − 3, N − 2, N − 1, N |+ 3|N̂ − 4, N − 2, N − 1, N + 1|

+ 2|N̂ − 3, N,N + 1|+ 3|N̂ − 3, N − 1, N + 2|+ |N̂ − 2, N + 3|),

fN,z = a(|N̂ − 2, N + 1| − |N̂ − 3, N − 1, N |),

fN,zz = a2(−|N̂ − 4, N − 2, N − 1, N + 1|+ 2|N̂ − 3, N,N + 1|+ |N̂ − 2, N + 3|

+ |N̂ − 5, N − 3, N − 2, N − 1, N | − |N̂ − 3, N − 1, N + 2|),

fN,t = β(t)(|N̂ − 4, N − 2, N − 1, N | − |N̂ − 3, N − 1, N + 1|+ |N̂ − 2, N + 2|),

fN,tx = β(t)(|N̂ − 5, N − 3, N − 2, N − 1, N | − |N̂ − 3, N,N + 1|+ |N̂ − 2, N + 3|),

fN,ty = −a
2α4(t)β(t)

3α1(t)
(|N̂ − 5, N − 3, N − 2, N − 1, N |

− |N̂ − 3, N,N + 1|+ |N̂ − 2, N + 3|).

{ In computing the derivative fN,ty we have used the condition that α4
α1

is an arbitrary constant}.

In the above expressions, the column Φ(N−5) does not appear ifN < 5, as we assumed before since

N − 5 < 0. Therefore, we can now compute that

α1(t)fN,xxxy + fN,tx + α3(t)fN,ty − α4(t)fN,zz = −4a2α4(t)|N̂ − 3, N,N + 1|,

−3α1(t)fN,xxyfN,x − α1(t)fN,yfN,xxx − fN,tfN,x − α3(t)fN,tfN,y =

4a2α4(t)|N̂ − 2, N ||N̂ − 3, N − 1, N + 1|,

3α1(t)fN,xyfN,xx + α4(t)(fN,z)
2 = −4a2α4(t)|N̂ − 3, N − 1, N ||N̂ − 2, N + 1|,

Furthermore, we obtain that

(α1(t)D3
xDy +DtDx + α3(t)DtDy − α4(t)D2

z)fN · fN

= 2(α1(t)fN,xxxy + fN,tx + α3(t)fN,ty − α4(t)fN,zz)fN − α1(t)(6fN,xxyfN,x

−6fN,xyfN,xx + 2fN,yfN,xxx)− 2fN,tfN,x − 2α3(t)fN,tfN,y + 2α4(t)(fN,z)
2

= −8a2α4(t)(|N̂ − 1||N̂ − 3, N,N + 1| − |N̂ − 2, N ||N̂ − 3, N − 1, N + 1|

+|N̂ − 3, N − 1, N ||N̂ − 2, N + 1|) = 0.
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This last equality is nothing but the Plücker relation for determinants:

|B,A1, A2||B,A3, A4| − |B,A1, A3||B,A2, A4|+ |B,A1, A4||B,A2, A3| = 0,

where B denotes an N × (N − 2) matrix, and Ai, 1 ≤ i ≤ 4, are four N -dimensional column

vectors. Therefore, we have shown that f = fN solves the (3+1)-dimensional generalized Hirota

bilinear vcKP equation (3.41), under the condition (3.44). �

The condition (3.44) is a linear system of partial differential equations. It has an exponential-type

function solution:

φi =

p∑
j=1

dije
ηij , ηij = kijx−

a2α4(t)

3α1(t)
kijy + ak2

ijz + k3
ijh(t), (3.45)

where

h(t) =

∫
β(t)dt (3.46)

and dij , kij are free parameters and p is an arbitrary natural number.

3.2.2 Grammian Formulation

Let us now introduce the following Grammian determinant

fN = det(aij)1≤i,j≤N , aij = cij +

∫ x

φiψj dx, cij = constant, (3.47)

with φi and ψj satisfying

φi,y = −a
2α4(t)

3α1(t)
φi,x, φi,z = aφi,xx, φi,t = β(t)φi,xxx, 1 ≤ i ≤ N, (3.48)

ψi,y = −a
2α4(t)

3α1(t)
ψi,x, ψi,z = −aψi,xx, ψi,t = β(t)ψi,xxx, 1 ≤ i ≤ N, (3.49)

where β, α1, α3, α4 and a are as in Theorem 3.5.

Theorem 3.6 Let φi and ψj satisfy (3.48) and (3.49), respectively. Then the Grammian determi-

nant fN = det(aij)1≤i,j≤N defined by (3.47) solves the (3+1)-dimensional generalized bilinear

vcKP equation (3.41).
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Proof: Let us express the Grammian determinant fN by means of a Pfaffian as

fN = (1, 2, · · · , N,N∗, · · · , 2∗, 1∗), (3.50)

where (i, j∗) = aij and (i, j) = (i∗, j∗) = 0.

To compute derivatives of the entries aij and the Grammian fN , we introduce new Pfaffian entries

(dn, j
∗) =

∂n

∂xn
ψj , (d∗n, i) =

∂n

∂xn
φi, (dm, d

∗
n) = (dn, i) = (d∗m, j

∗) = 0, m, n ≥ 0, (3.51)

as usual. In terms of these new entries, derivatives of the entries aij = (i, j∗) are given, upon using

(3.48) and (3.49), by

∂

∂x
aij = φiψj = (d0, d

∗
0, i, j

∗),

∂

∂y
aij =

∫ x

(φi,yψj + φiψj,y)dx

= −a
2α4(t)

3α1(t)

∫ x

(φi,xψj + φiψj,x)dx

= −a
2α4(t)

3α1(t)
φiψj

= −a
2α4(t)

3α1(t)
(d0, d

∗
0, i, j

∗),

∂

∂z
aij =

∫ x

(φi,zψj + φiψj,z)dx

= a

∫ x

(φi,xxψj − φiψj,xx)dx

= a(φi,xψj − φiψj,x)

= a[−(d1, d
∗
0, i, j

∗) + (d0, d
∗
1, i, j

∗)],

∂

∂t
aij =

∫ x

(φi,tψj + φiψj,t)dx

= β(t)

∫ x

(φi,xxxψj + φiψj,xxx)dx

= β(t)(φi,xxψj − φi,xψj,x + φiψj,xx)

= β(t)[(d2, d
∗
0, i, j

∗)− (d1, d
∗
1, i, j

∗) + (d0, d
∗
2, i, j

∗)].
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Then we can develop differential rules for Pfaffians as in [10], and compute various derivatives

of the Grammian determinant fN = det(aij) with respect to the variables x, y, z, t as follows:

fN,x = (d0, d
∗
0, •),

fN,xx = (d1, d
∗
0, •) + (d0, d

∗
1, •),

fN,xxx = (d2, d
∗
0, •) + 2(d1, d

∗
1, •)) + (d0, d

∗
2, •),

fN,y = −a
2α4(t)

3α1(t)
(d0, d

∗
0, •),

fN,xy = −a
2α4(t)

3α1(t)
[(d1, d

∗
0, •) + (d0, d

∗
1, •)],

fN,xxy = −a
2α4(t)

3α1(t)
[(d2, d

∗
0, •) + 2(d1, d

∗
1, •)) + (d0, d

∗
2, •)],

fN,xxxy = −a
2α4(t)

3α1(t)
[(d3, d

∗
0, •) + 3(d2, d

∗
1, •) + 2(d0, d

∗
0, d1, d

∗
1, •) + 3(d1, d

∗
2, •) + (d0, d

∗
3, •)],

fN,z = a[−(d1, d
∗
0, •) + (d0, d

∗
1, •)],

fN,zz = a2[(d3, d
∗
0, •)− (d2, d

∗
1, •) + 2(d0, d

∗
0, d1, d

∗
1, •)− (d1, d

∗
2, •) + (d0, d

∗
3, •)],

fN,t = β(t)[(d2, d
∗
0, •)− (d1, d

∗
1, •) + (d0, d

∗
2, •)],

fN,tx = β(t)[(d3, d
∗
0, •)− (d0, d

∗
0, d1, d

∗
1, •) + (d0, d

∗
3, •)],

fN,ty = −a
2α4(t)β(t)

3α1(t)
[(d3, d

∗
0, •)− (d0, d

∗
0, d1, d

∗
1, •) + (d0, d

∗
3, •)],

where the abbreviated notation • denotes the list of indices 1, 2, · · · , N,N∗, · · · , 2∗, 1∗ common to

each Pfaffian. Under the conditions on α1, α3, α4 and a, we can now compute that

α1(t)fN,xxxy + fN,tx + α3(t)fN,ty − α4(t)fN,zz = −4a2α4(t)(d0, d
∗
0, d1, d

∗
1, •),

− 3α1(t)fN,xxyfN,x − α1(t)fN,yfN,xxx − fN,tfN,x − α3(t)fN,tfN,y =

4a2α4(t)(d0, d
∗
0, •)(d1, d

∗
1, •),

3α1(t)fN,xyfN,xx + α4(t)(fN,z)
2 = −4a2α4(t)(d1, d

∗
0, •)(d0, d

∗
1, •),

and further obtain that

(α1(t)D3
xDy +DtDx + α3(t)DtDy − α4(t)D2

z)fN · fN

= 2(α1(t)fN,xxxy + fN,tx + α3(t)fN,ty − α4(t)fN,zz)fN − 2α1(t)(3fN,xxyfN,x

− 3fN,xyfN,xx + fN,yfN,xxx)− 2fN,tfN,x − 2α3(t)fN,tfN,y + 2α4(t)(fN,z)
2

= −8a2α4(t)[(•)(d0, d
∗
0, d1, d

∗
1, •)− (d0, d

∗
0, •)(d1, d

∗
1, •) + (d1, d

∗
0, •)(d0, d

∗
1, •)] = 0.
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This last equality is nothing but the Jacobi identity for determinants. Therefore, we have shown that

fN = det(aij)1≤i,j≤N defined by (3.47) solves the (3+1)-dimensional generalized Hirota bilinear

vcKP equation (3.41) under the condition of (3.48) and (3.49). �

The systems (3.48) and (3.49) have solutions

φi =

p∑
j=1

dije
ηij , ηij = kijx−

a2α4(t)

3α1(t)
kijy + ak2

ijz + k3
ijh(t), (3.52)

ψj =

q∑
i=1

ejie
ζji , ζji = ljix−

a2α4(t)

3α1(t)
ljiy − al2jiz + l3jih(t), (3.53)

where

h(t) =

∫
β(t)dt, (3.54)

dij , eji, kij and lji are free parameters and p, q are two arbitrary natural numbers.

3.3 Pfaffian Solutions to a Generalized KP System with Variable Coefficients

Since Pfaffians generalize determinants, it is natural to ask if there exists Pfaffian solutions comple-

menting Wronskian and Grammian solutions. The answer is very positive. Pfaffian solutions to the

BKP equation were constructed for the first time by Hirota [48]. However, Pfaffians may not solve

given nonlinear equations, and so, one needs to generalize the given equations to some coupled

equations. The procedure for doing this [65] is now called Pfaffianization [77]-[79], and two kinds

of Pfaffian solutions, Wronski-type and Gramm-type Pfaffian solutions, can be often constructed

while doing Pfaffianization [80]-[83].

In this section, we would like to apply the Pfaffianization procedure to the (3+1)-dimensional

generalized vcKP equation (3.39). Our construction for Wronski-type and Gramm-type Pfaffian

solutions are totally based on two Pfaffian identities (3.24) and (3.25).

3.3.1 Pfaffianization and Wronski-type Pfaffian Solutions

Let us consider again the (3+1)-dimensional generalized KP equation with variable coefficients:

(ut + α1(t)uxxy + 3α2(t)uxuy)x + α3(t)uty − α4(t)uzz + α5(t)(ux + α3(t)uy) = 0. (3.55)

Through the dependent variable transformation

u = 2
α1(t)

α2(t)
(ln f)x, (3.56)

46



the above (3+1)-dimensional generalized vcKP equation is mapped into a Hirota bilinear equation

(α1(t)D3
xDy +DtDx + α3(t)DtDy − α4(t)D2

z)f · f = 0, (3.57)

under the constraint:

α1(t) = C0α2(t)e−
∫
α5(t)dt, (3.58)

where C0 6= 0 is an arbitrary constant and Dx, Dy, Dz and Dt are Hirota bilinear differential

operators [10, 12]. The equation (3.57) precisely presents

(α1(t)fxxxy + ftx + α3(t)fty − α4(t)fzz)f − 3α1(t)fxxyfx + 3α1(t)fxyfxx

−α1(t)fyfxxx − ftfx − α3(t)ftfy + α4(t)(fz)
2 = 0. (3.59)

Now consider Wronski-type Pfaffian solution

fN = (1, 2, · · · , 2N),

whose Pfaffian entries satisfy the following linear condition:

∂

∂x
(i, j) = (i+ 1, j) + (i, j + 1), (3.60a)

∂

∂y
(i, j) = −a

2α4(t)

3α1(t)
[(i+ 1, j) + (i, j + 1)], (3.60b)

∂

∂z
(i, j) = a[(i+ 2, j) + (i, j + 2)], (3.60c)

∂

∂t
(i, j) = β(t)[(i+ 3, j) + (i, j + 3)], (3.60d)

where

β(t) =
4a2α1(t)α4(t)

3α1(t)− a2α3(t)α4(t)
, (3.61)

and a could be any real number which satisfies

3α1(t)− a2α3(t)α4(t) 6= 0, for all values of t. (3.62)

We deduce the following differential rules for the Wronski-type Pfaffian under the condition
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(3.60):

∂

∂x
(i1, i2, · · · , i2N ) =

2N∑
k=1

(i1, i2, · · · , ik + 1, · · · , i2N ), (3.63a)

∂

∂y
(i1, i2, · · · , i2N ) = −a

2α4(t)

3α1(t)

2N∑
k=1

(i1, i2, · · · , ik + 1, · · · , i2N ), (3.63b)

∂

∂z
(i1, i2, · · · , i2N ) = a

2N∑
k=1

(i1, i2, · · · , ik + 2, · · · , i2N ), (3.63c)

∂

∂t
(i1, i2, · · · , i2N ) = β(t)

2N∑
k=1

(i1, i2, · · · , ik + 3, · · · , i2N ). (3.63d)

In the next theorem, we present a Wronski-type Pfaffian solution to a coupled system for the

generalized vcKP equation under a certain condition on the variable coefficients.

Theorem 3.7 Let a and α1, α2 satisfy the conditions (3.62) and (3.58), respectively. If the Pfaffian

entries (i, j) satisfy the conditions (3.60), and α4
α1

is an arbitrary constant, then

u = 2
α1(t)

α2(t)
(ln f)x, v = g/f, w = h/f, (3.64)

where

f = fN = (1, 2, · · · , 2N),

g = gN = (1, 2, · · · , 2N − 2),

h = hN = (1, 2, · · · , 2N + 2),

solve the following system of nonlinear equations

(ut + α1(t)uxxy + 3α2(t)uxuy)x + α3(t)uty − α4(t)uzz

+ α5(t)(ux + α3(t)uy) = −8a2α4(t)α1(t)

α2(t)
(vw)x, (3.65a)

2

β(t)
vt + 3

α2(t)

α1(t)
uxvx + vxxx +

3

a
(vxz +

α2(t)

α1(t)
vuz) = 0, (3.65b)

2

β(t)
wt + 3

α2(t)

α1(t)
uxwx + wxxx −

3

a
(wxz +

α2(t)

α1(t)
wuz) = 0. (3.65c)
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Proof: Under the dependent variable transformation given in (3.64), the system (3.65) can be

mapped into the following system of bilinear equations:

(α1(t)D3
xDy +DtDx + α3(t)DtDy − α4(t)D2

z)f · f = −8a2α4(t)gh, (3.66a)

(D3
x +

2

β(t)
Dt +

3

a
DxDz)g · f = 0, (3.66b)

(D3
x +

2

β(t)
Dt −

3

a
DxDz)h · f = 0. (3.66c)

Based on the differential rules in (3.63), we can compute various derivatives of the Pfaffian fN =

(1, 2, · · · , 2N) with respect to the variables x, y, z and t:

fN,x = (1, 2 · · · , 2N − 1, 2N + 1),

fN,xx = (1, 2, · · · , 2N − 1, 2N + 2) + (1, 2, · · · , 2N − 2, 2N, 2N + 1),

fN,xxx = (1, 2, · · · , 2N − 1, 2N + 3) + 2(1, 2, · · · , 2N − 2, 2N, 2N + 2)

+ (1, 2, · · · , 2N − 3, 2N − 1, 2N, 2N + 1),

fN,y = −a
2α4(t)

3α1(t)
(1, 2 · · · , 2N − 1, 2N + 1),

fN,xy = −a
2α4(t)

3α1(t)
[(1, 2, · · · , 2N − 1, 2N + 2) + (1, 2, · · · , 2N − 2, 2N, 2N + 1)],

fN,xxy = −a
2α4(t)

3α1(t)
[(1, 2, · · · , 2N − 1, 2N + 3) + 2(1, 2, · · · , 2N − 2, 2N, 2N + 2)

+ (1, 2, · · · , 2N − 3, 2N − 1, 2N, 2N + 1)],

fN,xxxy = −a
2α4(t)

3α1(t)
[(1, 2, · · · , 2N − 1, 2N + 4) + 2(1, 2, · · · , 2N − 2, 2N + 1, 2N + 2)

+ 3(1, 2, · · · , 2N − 2, 2N, 2N + 3) + 3(1, 2, · · · , 2N − 3, 2N − 1, 2N, 2N + 2)

+ (1, 2, · · · , 2N − 4, 2N − 2, 2N − 1, 2N, 2N + 1)],

fN,z = a[(1, 2, · · · , 2N − 1, 2N + 2)− (1, 2, · · · , 2N − 2, 2N, 2N + 1)],

fN,zz = a2[(1, 2, · · · , 2N − 1, 2N + 4) + 2(1, 2, · · · , 2N − 2, 2N + 1, 2N + 2)

− (1, 2, · · · , 2N − 3, 2N − 1, 2N, 2N + 2)− (1, 2, · · · , 2N − 2, 2N, 2N + 3)

+ (1, 2, · · · , 2N − 4, 2N − 2, 2N − 1, 2N, 2N + 1)],

fN,t = β(t)[(1, 2, · · · , 2N − 1, 2N + 3)− (1, 2, · · · , 2N − 2, 2N, 2N + 2)

+ (1, 2, · · · , 2N − 3, 2N − 1, 2N, 2N + 1)],
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fN,tx = β(t)[(1, 2, · · · , 2N − 1, 2N + 4)− (1, 2, · · · , 2N − 2, 2N + 1, 2N + 2)

+ (1, 2, · · · , 2N − 4, 2N − 2, 2N − 1, 2N, 2N + 1)],

fN,ty = −a
2α4(t)β(t)

3α1(t)
[(1, 2, · · · , 2N − 1, 2N + 4)

− (1, 2, · · · , 2N − 2, 2N + 1, 2N + 2)

+ (1, 2, · · · , 2N − 4, 2N − 2, 2N − 1, 2N, 2N + 1)].

{ In the last derivative we used the condition that α4
α1

is an arbitrary constant}.

It is easy to verify the following relations:

α1(t)(
−a2α4(t)

3α1(t)
) + β(t) + α3(t)(

−a2α4(t)β(t)

3α1(t)
)− a2α4(t) = 0, (3.67a)

3α1(t)(
−a2α4(t)

3α1(t)
) + a2α4(t) = 0. (3.67b)

Therefore, using the relations (3.67), we have

α1(t)fN,xxxy + fN,tx + α3(t)fN,ty − α4(t)fN,zz

= −4a2α4(t)(1, 2, · · · , 2N − 2, 2N + 1, 2N + 2),

−3α1(t)fN,xxyfN,x − α1(t)fN,yfN,xxx − fN,tfN,x − α3(t)fN,tfN,y

= 4a2α4(t)(1, 2 · · · , 2N − 1, 2N + 1)(1, 2, · · · , 2N − 2, 2N, 2N + 2),

3α1(t)fN,xyfN,xx + α4(t)(fN,z)
2

= −4a2α4(t)(1, 2, · · · , 2N − 1, 2N + 2)(1, 2, · · · , 2N − 2, 2N, 2N + 1),

and further obtain

(α1(t)D3
xDy +DtDx + α3(t)DtDy − α4(t)D2

z)fN · fN

= 2(α1(t)fN,xxxy + fN,tx + α3(t)fN,ty − α4(t)fN,zz)fN − α1(t)(6fN,xxyfN,x

−6fN,xyfN,xx + 2fN,yfN,xxx)− 2fN,tfN,x − 2α3(t)fN,tfN,y + 2α4(t)(fN,z)
2

= −8a2α4(t)[(1, 2, · · · , 2N)(1, 2, · · · , 2N − 2, 2N + 1, 2N + 2)

−(1, 2, · · · , 2N − 1, 2N + 1)(1, 2, · · · , 2N − 2, 2N, 2N + 2)

+(1, 2, · · · , 2N − 1, 2N + 2)(1, 2, · · · , 2N − 2, 2N, 2N + 1)]

= −8a2α4(t)(1, 2, · · · , 2N − 2)(1, 2, · · · , 2N + 2).
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The last equality is gotten by employing a Pfaffian identity of type (3.24).

But the second equation in the bilinear system (3.66) is equivalent to the Pfaffian identity of type

(3.25), indeed:

(D3
x +

2

β(t)
Dt +

3

a
DxDz)gN · fN

= (gN,xxx +
2

β(t)
gN,t +

3

a
gN,xz)fN − (3gN,xx +

3

a
gN,z)fN,x

+gN,x(3fN,xx −
3

a
fN,z)− gN (fN,xxx +

2

β(t)
fN,t −

3

a
fN,xz)

= 6[(1, 2, · · · , 2N − 3, 2N + 1)(1, 2, · · · , 2N − 3, 2N − 2, 2N − 1, 2N)

−(1, 2, · · · , 2N − 3, 2N)(1, 2, · · · , 2N − 3, 2N − 2, 2N − 1, 2N + 1)

+(1, 2, · · · , 2N − 3, 2N − 1)(1, 2, · · · , 2N − 3, 2N − 2, 2N, 2N + 1)

−(1, 2, · · · , 2N − 3, 2N − 2)(1, 2, · · · , 2N − 3, 2N − 1, 2N, 2N + 1)]

= 0. (3.68)

Similarly, the Pfaffian identity of type (3.24) gives:

(1, 2, · · · , 2N − 1, 2N + 3)(1, 2, · · · , 2N − 1, 2N, 2N + 1, 2N + 2)

−(1, 2, · · · , 2N − 1, 2N + 2)(1, 2, · · · , 2N − 1, 2N, 2N + 1, 2N + 3)

+(1, 2, · · · , 2N − 1, 2N + 1)(1, 2, · · · , 2N − 1, 2N, 2N + 2, 2N + 3)

−(1, 2, · · · , 2N − 1, 2N)(1, 2, · · · , 2N − 1, 2N + 1, 2N + 2, 2N + 3)

= 0, (3.69)

which is equivalent to

(D3
x +

2

β(t)
Dt −

3

a
DxDz)hN · fN = 0.

Therefore we have shown that f = fN , g = gN and h = hN solve the system (3.66) under the

conditions (3.62), (3.60) and α4
α1

is an arbitrary constant, which implies that u, v, and w solve the

system of nonlinear differential equations (3.65) and this completes the proof of the theorem. �

In particular, one can choose the following Pfaffian entries

(i, j) =

M∑
k=1

(φ
(i)
k ψ

(j)
k − φ

(j)
k ψ

(i)
k ), (3.70)
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with M ∈ N being arbitrary and φk and ψk satisfying

φk,y = −a
2α4(t)

3α1(t)
φ

(1)
k , φk,z = aφ

(2)
k , φk,t = β(t)φ

(3)
k , (3.71)

ψk,y = −a
2α4(t)

3α1(t)
ψ

(1)
k , ψk,z = aψ

(2)
k , ψk,t = β(t)ψ

(3)
k , (3.72)

where φ(i) and ψ(i) are the i-th derivatives of φ and ψ with respect to x, respectively. It is easy

to see that all (i, j) satisfy the condition (3.60). Examples of the functions φk and ψk can be the

following:

φi =

p∑
j=1

dije
ηij , ηij = kijx−

a2α4(t)

3α1(t)
kijy + ak2

ijz + k3
ijh(t), (3.73)

ψj =

q∑
i=1

ejie
ζji , ζji = ljix−

a2α4(t)

3α1(t)
ljiy + al2jiz + l3jih(t), (3.74)

where

h(t) =

∫
β(t)dt, (3.75)

and dij , eji, kij and lji are free parameters, and p, q are two arbitrary natural numbers.

3.3.2 Gramm-type Pfaffian Solutions

In this section, we would like to discuss another class of Pfaffian solutions, Gramm-type Pfaffian

solutions, for the Pfaffianized (3+1)-dimentional generalized vcKP system (3.66), which could be

introduced as

f = fN = (1, 2, · · · , 2N), (3.76a)

g = gN = (c1, c0, 1, 2, · · · , 2N), (3.76b)

h = hN = (d0, d1, 1, 2, · · · , 2N), (3.76c)

where the Pfaffian entries are defined by
(i, j) = cij +

∫ x
(φiψj − φjψi)dx, cij = −cji, cij = constants,

(dn, i) = ∂n

∂xnφi, (cn, i) = ∂n

∂xnψi,

(dm, dn) = (cm, cn) = (cm, dn) = 0,

(3.77)

where the lower limit in the above integration is chosen so that the functions φi, ψi and their deriva-

tives are zero at the lower limit.
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Theorem 3.8 Let φi and ψi satisfy the following condition

φi,y = −a
2α4(t)

3α1(t)
φi,x, φi,z = aφi,xx, φi,t = β(t)φi,xxx, (3.78a)

ψi,y = −a
2α4(t)

3α1(t)
ψi,x, ψi,z = −aψi,xx, ψi,t = β(t)ψk,xxx, (3.78b)

where the constant a satisfies the condition (3.62) and α4
α1

is an arbitrary constant. Then fN , gN

and hN defined by (3.76) and (3.77) solve the Pfaffianized system (3.66).

Proof: Based on the Pfaffian entries defined by (3.77) and the condition (3.78), we can compute the

derivatives of the Pfaffian entries with respect to x, y, z, t:

∂

∂x
(i, j) = φiψj − φjψi = (c0, d0, i, j),

∂

∂y
(i, j) =

∫ x

(φi,yψj + φiψj,y − φj,yψi − φjψi,y)dx

= −a
2α4(t)

3α1(t)

∫ x

(φi,xψj + φiψj,x − φj,xψi − φjψi,x)dx

= −a
2α4(t)

3α1(t)
(φiψj − φjψi)

= −a
2α4(t)

3α1(t)
(c0, d0, i, j),

∂

∂z
(i, j) =

∫ x

(φi,zψj + φiψj,z − φj,zψi − φjψi,z)dx

= a

∫ x

(φi,xxψj + φiψj,xx − φj,xxψi − φjψi,xx)dx

= a(φi,xψj − φiψj,x − φj,xψi + φjψi,x)

= a[(c0, d1, i, j)− (c1, d0, i, j)],

∂

∂t
(i, j) =

∫ x

(φi,tψj + φiψj,t − φj,tψi − φjψi,t)dx

= β(t)

∫ x

(φi,xxxψj + φiψj,xxx − φj,xxxψi − φjψi,xxx)dx

= β(t)(φi,xxψj − φj,xxψi − φi,xψj,x + φj,xψi,x + φiψj,xx − φjψi,xx)

= β(t)[(c0, d2, i, j)− (c1, d1, i, j) + (c2, d0, i, j)].
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Now we can develop differential rules for Pfaffians, and compute various derivatives of the

Gramm-type Pfaffians fN = (1, 2, · · · , 2N) with respect to the variables x, y, z, t as follows:

fN,x = (c0, d0, •),

fN,xx = (c0, d1, •) + (c1, d0, •),

fN,xxx = (c0, d2, •) + 2(c1, d1, •) + (c2, d0, •),

fN,y = −a
2α4(t)

3α1(t)
(c0, d0, •),

fN,xy = −a
2α4(t)

3α1(t)
[(c0, d1, •) + (c1, d0, •)],

fN,xxy = −a
2α4(t)

3α1(t)
[(c0, d2, •) + 2(c1, d1, •) + (c2, d0, •)],

fN,xxxy = −a
2α4(t)

3α1(t)
[(c0, d3, •) + 3(c1, d2, •) + 2(c0, d0, c1, d1, •) + 3(c2, d1, •)

+ (c3, d0, •)],

fN,z = a[(c0, d1, •)− (c1, d0, •)],

fN,zz = a2[(c0, d3, •)− (c1, d2, •) + 2(c0, d0, c1, d1, •)− (c2, d1, •) + (c3, d0, •)],

fN,t = β(t)[(c0, d2, •)− (c1, d1, •) + (c2, d0, •)],

fN,tx = β(t)[(c0, d3, •)− (c0, d0, c1, d1, •) + (c3, d0, •)],

fN,ty = −a
2α4(t)

3α1(t)
β(t)[(c0, d3, •)− (c0, d0, c1, d1, •) + (c3, d0, •)],

where the abbreviated notation • denotes the list of indices 1, 2, · · · , 2N common to each Pfaffian.

Using the relations (3.67), we can compute

α1(t)fN,xxxy + fN,tx + α3(t)fN,ty − α4(t)fN,zz = −4a2α4(t)(c0, d0, c1, d1, •),

−3α1(t)fN,xxyfN,x − α1(t)fN,yfN,xxx − fN,tfN,x − α3(t)fN,tfN,y

= 4a2α4(t)(c0, d0, •)(c1, d1, •),

3α1(t)fN,xyfN,xx + α4(t)(fN,z)
2 = −4a2α4(t)(c1, d0, •)(c0, d1, •),
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and further obtain

(α1(t)D3
xDy +DtDx + α3(t)DtDy − α4(t)D2

z)fN · fN

= 2(α1(t)fN,xxxy + fN,tx + α3(t)fN,ty − α4(t)fN,zz)fN − α1(t)(6fN,xxyfN,x

−6fN,xyfN,xx + 2fN,yfN,xxx)− 2fN,tfN,x − 2α3(t)fN,tfN,y + 2α4(t)(fN,z)
2

= −8a2α4(t)[(•)(c0, d0, c1, d1, •)− (c0, d0, •)(c1, d1, •) + (c1, d0, •)(c0, d1, •)]

= 8a2α4(t)(c0, c1, •)(d0, d1, •).

The last equality is gotten by employing a Pfaffian identity of type (3.24).

Similarly, one can show that

(D3
x +

2

β(t)
Dt +

3

a
DxDz)gN · fN

= (gN,xxx +
2

β(t)
gN,t +

3

a
gN,xz)fN − (3gN,xx +

3

a
gN,z)fN,x

+gN,x(3fN,xx −
3

a
fN,z)− gN (fN,xxx +

2

β(t)
fN,t −

3

a
fN,xz)

= 6[(•)(c2, c1, c0, d0, •)− (c2, c1, •)(c0, d0, •)

+(c2, c0, •)(c1, d0, •)− (c1, c0, •)(c2, d0, •)]

= 0.

The last equality is nothing but the Pfaffian identity of type (3.24). By interchanging c and d in the

above equation, we can verify that fN , hN solve the third equation in the system (3.66).

Therefore, we have shown that fN , gN and hN defined by (3.76) solve the Pfaffianized (3+1)-

dimensional bilinear generalized vcKP system (3.66) under the conditions in the theorem. �

Since the system (3.78) is linear, examples of generating functions for the Pfaffian entries can be

easily computed as follows:

φi =

p∑
j=1

dije
ηij , ηij = kijx−

a2α4(t)

3α1(t)
kijy + ak2

ijz + k3
ijh(t), (3.79)

ψj =

q∑
i=1

ejie
ζji , ζji = ljix−

a2α4(t)

3α1(t)
ljiy + al2jiz + l3jih(t), (3.80)

where

h(t) =

∫
β(t)dt (3.81)

and dij , eji, kij and lji are free parameters and p, q are two arbitrary natural numbers.
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3.4 Bilinear Bäcklund Transformation of a (3+1)-Dimensional Generalized KP Equation

Bäcklund transformations are another powerful approach to solutions of nonlinear equations, and

they can be written in the Hirota bilinear form when an equation under consideration has a bilinear

form [12, 67]. For example, the KdV equation

ut + 6uux + uxxx = 0, (3.82)

which can be written as

Dx(Dt +D3
x)f · f = 0, (3.83)

under u = 2(ln f)xx, Dr being a Hirota bilinear operator [10], has the bilinear Bäcklund transfor-

mation [12]: 
(D2

x − λ)f ′ · f = 0,

(Dt + 3λDx +D3
x)f ′ · f = 0.

(3.84)

This means that f solves the bilinear KdV equation (3.83) if and only if f ′ solves the bilinear KdV

equation (3.83). The (2+1)-dimensional generalized KdV equation, i.e., the KP equation

(−4ut + uxxx + 6uux)x + 3uyy = 0, (3.85)

which can be written as

(−4DxDt + 3D2
y +D4

x)f · f = 0, (3.86)

under u = 2(ln f)xx, has the bilinear Bäcklund transformation [10, 84]:
(Dy −D2

x)f ′ · f = 0,

(3DyDx − 4Dt +D3
x)f ′ · f = 0.

(3.87)

Such bilinear Bäcklund transformations also connect with Lax pairs and generate the modified soli-

ton equations [84, 85].

In this section, we would like to study the (3+1)-dimensional generalized KP equation [62]:

uxxxy + 3(uxuy)x + utx + uty − uzz = 0,

which can be written in the Hirota bilinear form

(D3
xDy +DtDx +DtDy −D2

z)f · f = 0,
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under u = 2(ln f)x. This equation was discussed for the first time in a study on the linear superpo-

sition principle for exponential waves [62].

We will generate a bilinear Bäcklund transformation for the above (3+1)-dimensional generalized

KP equation, which consists of six equations and contains nine arbitrary parameters. The exchange

formula for Hirota bilinear operators are the basis for manipulating the necessary interchanges in de-

riving the bilinear Bäcklund transformation. Exponential and rational traveling wave solutions with

arbitrary wave numbers are computed by applying the proposed bilinear Bäcklund transformation.

3.4.1 Bilinear Bäcklund Transformation

We consider the following (3+1)-dimensional generalized KP equation:

uxxxy + 3(uxuy)x + utx + uty − uzz = 0. (3.88)

Under the dependent variable transformation

u = 2(ln f)x, (3.89)

the above (3+1)-dimensional nonlinear equation is put into a Hirota bilinear equation

(D3
xDy +DtDx +DtDy −D2

z)f · f = 0, (3.90)

where Dx, Dy, Dz and Dt are Hirota bilinear differential operators [10, 12]. This exactly gives

(fxxxy + ftx + fty − fzz)f − 3fxxyfx + 3fxyfxx − fyfxxx − ftfx − ftfy + (fz)
2 = 0.

We would like to generate a bilinear Bäcklund transformation for the (3+1)-dimensional general-

ized bilinear KP equation (3.90).

Let us assume that we have another solution f ′ to the generalized bilinear KP equation (3.90):

(D3
xDy +DtDx +DtDy −D2

z)f
′ · f ′ = 0, (3.91)

and introduce a key function

P = [(D3
xDy +DtDx+DtDy−D2

z)f
′ ·f ′]f2− [(D3

xDy +DtDx+DtDy−D2
z)f ·f ]f

′2. (3.92)

If P = 0, then f solves the generalized bilinear KP equation (3.90) if and only if f ′ solves the

generalized bilinear KP equation (3.90). Therefore, if we can obtain, from P = 0 by interchanging
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the dependent variables f and f ′, a system of bilinear equations that guarantees P = 0:

Bi(Dt, Dx, Dy, Dz)f
′ · f = 0, 1 ≤ i ≤M,

where the Bi’s are polynomials in the indicated variables and M is a natural number depending on

the complexity of the equation, then this system gives us a bilinear Bäcklund transformation for the

generalize bilinear KP equation (3.90).

Let us now start to explore what those bilinear equations could be. First we want to list three

exchange identities for Hirota bilinear operators:

(DtDxa · a)b2 − (DtDxb · b)a2 = 2Dx(Dta · b) · ba, (3.93)

(DtDya · a)b2 − (DtDyb · b)a2 = 2Dy(Dta · b) · ba, (3.94)

2(D3
xDya · a)b2 − 2(D3

xDyb · b)a2

= Dx[(3D2
xDya · b) · ba+ (3D2

xa · b) · (Dyb · a) + (6DxDya · b) · (Dxb · a)]

+Dy[(D
3
xa · b) · ba+ (3D3

xa · b) · (Dxb · a)]. (3.95)

The first and second identities can be found in [10], and the third one can be obtained from the

coefficient of ε1, while taking the independent variable transformation Dx → Dx + εDy for

(D4
xa · a)b2 − (D4

xb · b)a2 = 2Dx[(D3
xa · b) · ba+ (3D2

xa · b) · (Dxb · a)],

which is the known identity in [10]. All these identities come from the general exchange formula

(see [10] for details). Now from the first identity (3.93) or the second identity (3.94), we can easily

obtain

(D2
za · a)b2 − (D2

zb · b)a2 = 2Dz(Dza · b) · ba, (3.96)

Dr(Dsa · b) · ba = Ds(Dra · b) · ba, (3.97)

by taking x = t = z and noting DrDsg · g = DsDrg · g.
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Then, it can be proved that P = 0 if we take

B1f
′ · f ≡ (3D2

xDy + 4Dt + λ1Dy + 4λ8Dz + λ2)f ′ · f = 0,

B2f
′ · f ≡ (D3

x + 4Dt − λ1Dx + 4λ9Dz + λ3)f ′ · f = 0,

B3f
′ · f ≡ (3D2

x + λ4Dy + λ6)f ′ · f = 0,

B4f
′ · f ≡ (3D2

x + λ5Dx − λ6)f ′ · f = 0,

B5f
′ · f ≡ (DxDy + λ7Dx)f ′ · f = 0,

B6f
′ · f ≡ (Dz + λ8Dx + λ9Dy)f

′ · f = 0,

(3.98)

where nine arbitrary parameters have been introduced successfully. This system presents a bilinear

Bäcklund transformation for the (3+1)-dimensional generalized KP equation (3.90).

Actually, by using the exchange identities (3.93)-(3.96), we can carry out the following conver-

sion:

2P = [2(D3
xDyf

′ · f ′)f2 − 2(D3
xDyf · f)f

′2] + [2(DtDxf
′ · f ′)f2 − 2(DtDxf · f)f

′2]

+[2(DtDyf
′ · f ′)f2 − 2(DtDyf · f)f

′2]− [2(D2
zf
′ · f ′)f2 − 2(D2

zf · f)f
′2]

=
{
Dx[(3D2

xDyf
′ · f) · ff ′ + (3D2

xf
′ · f) · (Dyf · f ′) + (6DxDyf

′ · f) · (Dxf · f ′)]

+ Dy[(D
3
xf
′ · f) · ff ′ + (3D2

xf
′ · f) · (Dxf · f ′)]

}
+4Dx(Dtf

′ · f) · ff ′ + 4Dy(Dtf
′ · f) · ff ′ − 4Dz(Dzf

′ · f) · ff ′

= Dx(3D2
xDyf

′ · f + λ1Dyf
′ · f + λ2f

′f) · ff ′

+Dx(3D2
xf
′ · f + λ4Dyf

′ · f + λ6f
′f) · (Dyf · f ′)

+Dx(6DxDyf
′ · f + 6λ7Dxf

′ · f) · (Dxf · f ′)

+Dy(D
3
xf
′ · f − λ1Dxf

′ · f + λ3f
′f) · ff ′

+Dy(3D
2
xf
′ · f + λ5Dxf

′ · f − λ6f
′f) · (Dxf · f ′)

+4Dx(Dtf
′ · f) · ff ′ + 4Dy(Dtf

′ · f) · ff ′

−4Dz(Dzf
′ · f + λ8Dxf

′ · f + λ9Dyf
′ · f) · ff ′

+4Dx(λ8Dzf
′ · f) · ff ′ + 4Dy(λ9Dzf

′ · f) · ff ′

= Dx(B1f
′ · f) · ff ′ +Dy(B2f

′ · f) · ff ′ +Dx(B3f
′ · f) · (Dyf · f ′)

+Dy(B4f
′ · f) · (Dxf · f ′) + 6Dx(B5f

′ · f) · (Dxf · f ′)− 4Dz(B6f
′ · f) · ff ′.
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In the above deduction, the coefficients of λ2, λ3, λ4, λ5 and λ7 are zero because ofDrg ·g = 0, and

the coefficients of λ1, λ6, λ8 and λ9 are zero because of (3.97). This shows that (3.98) provides a

bilinear Bäcklund transformation for the (3+1)-dimensional generalized bilinear KP equation (3.90).

3.4.2 Traveling Wave Solutions

Let us take a simple solution f = 1 to the (3+1)-dimensional generalized KP equation (3.90), which

is transformed into the original variable u as u = 2(ln f)x = 0. Noting that

Dn
r g · 1 =

∂n

∂rn
g, n ≥ 1,

the bilinear Bäcklund transformation (3.98) associated with f = 1 gives rise to a system of linear

partial differential equations

3f ′xxy + 4f ′t + λ1f
′
y + 4λ8f

′
z + λ2f

′ = 0,

f ′xxx + 4f ′t − λ1f
′
x + 4λ9f

′
z + λ3f

′ = 0,

3f ′xx + λ4f
′
y + λ6f

′ = 0,

3f ′xx + λ5f
′
x − λ6f

′ = 0,

f ′xy + λ7f
′
x = 0,

f ′z + λ8f
′
x + λ9f

′
y = 0.

(3.99)

Let us first consider a class of exponential wave solutions

f ′ = 1 + εekx+ly+mz−ωt, (3.100)

where ε, k, l,m and ω are constants to be determined. Upon selecting

λ2 = 0, λ3 = 0, λ6 = 0, (3.101)

a direct computation yields

m = −(λ8k + λ9l), ω =
k3l − (λ8k + λ9l)

2

k + l
, (3.102)

and

λ1 =
k3 − 3k2l + 4λ2

8k − 4λ8λ9(k − l)− 4λ2
9l

k + l
, λ4 = −3k2

l
, λ5 = −3k, λ7 = −l. (3.103)
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Therefore, we obtain a class of exponential wave solutions to the (3+1)-dimensional generalized

bilinear KP equation (3.90):

f ′ = 1 + ε exp[kx+ ly − (λ8k + λ9l)z −
k3l − (λ8k + λ9l)

2

k + l
t], (3.104)

where ε, k, l, λ8 and λ9 are arbitrary constants; and u = 2(ln f ′)x solves the (3+1)-dimensional

generalized KP equation (3.88).

Let us second consider a class of first-order polynomial solutions

f ′ = kx+ ly +mz − ωt, (3.105)

where ε, k, l,m and ω are constants to be determined. Similarly upon selecting

λi = 0, 2 ≤ i ≤ 7, (3.106)

a direct computation tells that the system (3.99) becomes
lλ1 + 4mλ8 − 4ω = 0,

−kλ1 + 4mλ9 − 4ω = 0,

kλ8 + lλ9 +m = 0.

(3.107)

Evidently, this system needs a necessary but not sufficient (see the last chapter for a counterexample)

condition

(k + l)ω +m2 = 0 (3.108)

for the existence of λ1, λ8 and λ9. Under this condition (3.108), it is direct to check that f ′ defined

by (3.105) solves the (3+1)-dimensional generalized bilinear KP equation (3.90), and so,

u = 2(ln f ′)x =
2k

kx+ ly +mz − ωt
(3.109)

presents a class of rational solutions to the (3+1)-dimensional generalized KP equation (3.88).
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Chapter 4

Wronskian and Pfaffian Solutions to a (3+1)-Dimensional Generalized Jimbo-Miwa Equation

In 1983, Jimbo and Miwa introduced and studied the following nonlinear partial differential equa-

tion [54]:

uxxxy + 3(uxuy)x − uyt − 3uxz = 0, (4.1)

which describes a (3+1)-dimensional wave in physics. Interestingly, this equation has Wronskian,

Grammian and Pfaffian solutions. In this chapter, we will not only formulate these solutions, but

also extend this equation to a system of nonlinear partial differential equations by applying what we

called the Pfaffianization procedure. Finally, we are going to generalize this equation to an equation

with time dependent coefficients.

4.1 Wronskian Formulation

Under the dependent variable transformation

u = 2(ln f)x, (4.2)

the above (3+1)-dimensional generalized JM equation (4.1)is mapped into a Hirota bilinear equation

(D3
xDy −DtDy − 3DxDz)f · f = 0, (4.3)

where Dx, Dy, Dz and Dt are Hirota bilinear differential operators [10, 12]. Equivalently, we have

(fty − fxxxy + 3fxz)f − ftfy + fxxxfy + 3fxxyfx − 3fxxfxy − 3fxfz = 0.

In the next theorem, we present a sufficient condition under which the Wronskian determinant solves

the bilinear generalized JM equation (4.3).
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Theorem 4.1 Let a set of functions φi = φi(x, y, z, t) satisfy the following condition:

φi,y = φi,xx, φi,t = −2φi,xxx, φi,z = φi,xxxx, 1 ≤ i ≤ N. (4.4)

Then the Wronskian determinant fN = |N̂ − 1| defined by (3.38) solves the (3+1)-dimensional

bilinear generalized JM equation (4.3).

Proof : Under the condition (4.4), we can compute various derivatives of the Wronskian determi-

nant fN = |N̂ − 1| with respect to the variables x, y, z, t.

It is not hard to obtain that

fN,x = |N̂ − 2, N |,

fN,xx = |N̂ − 3, N − 1, N |+ |N̂ − 2, N + 1|,

fN,xxx = |N̂ − 4, N − 2, N − 1, N |+ 2|N̂ − 3, N − 1, N + 1|+ |N̂ − 2, N + 2|,

fN,y = |N̂ − 2, N + 1| − |N̂ − 3, N − 1, N |,

fN,t = −2(|N̂ − 2, N + 2| − |N̂ − 3, N − 1, N + 1|+ |N̂ − 4, N − 2, N − 1, N |),

fN,z = −|N̂ − 5, N − 3, N − 2, N − 1, N |+ |N̂ − 2, N + 3|

+ |N̂ − 4, N − 2, N − 1, N + 1| − |N̂ − 3, N − 1, N + 2|,

fN,xy = |N̂ − 2, N + 2| − |N̂ − 4, N − 2, N − 1, N |,

fN,xz = −|N̂ − 6, N − 4, N − 3, N − 2, N − 1, N |+ |N̂ − 4, N − 2, N,N + 1|

− |N̂ − 3, N,N + 2|+ |N̂ − 2, N + 4|,

fN,yt = −2(|N̂ − 5, N − 3, N − 2, N − 1, N + 1| − |N̂ − 4, N − 2, N,N + 1|

+ |N̂ − 2, N + 4|+ |N̂ − 3, N,N + 2| − |N̂ − 3, N − 1, N + 3|

− |N̂ − 6, N − 4, N − 3, N − 2, N − 1, N |),

fN,xxy = |N̂ − 3, N − 1, N + 2|+ |N̂ − 2, N + 3| − |N̂ − 4, N − 2, N − 1, N + 1|

− |N̂ − 5, N − 3, N − 2, N − 1, N |,

fN,xxxy = −2|N̂ − 5, N − 3, N − 2, N − 1, N + 1|+ |N̂ − 3, N,N + 2|+ |N̂ − 2, N + 4|

− |N̂ − 4, N − 2, N,N + 1|+ |N̂ − 6, N − 4, N − 3, N − 2, N − 1, N |.
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So we can compute now

(D3
xDy −DtDy − 3DxDz)fN · fN = 12[|N̂ − 4, N − 2, N,N + 1||N̂ − 1|

− |N̂ − 4, N − 2, N − 1, N + 1||N̂ − 4, N − 3, N − 2, N |

+ |N̂ − 4, N − 2, N − 1, N ||N̂ − 4, N − 3, N − 2, N + 1|]

− 12[|N̂ − 3, N,N + 2||N̂ − 3, N − 2, N − 1|

− |N̂ − 3, N − 1, N + 2||N̂ − 3, N − 2, N |

+ |N̂ − 3, N − 2, N + 2||N̂ − 3, N − 1, N |] = 0.

The last equality is nothing but the Plücker relation for determinants. Therefore, we have shown that

f = fN solves the (3+1)-dimensional bilinear generalized JM equation (4.3), under the condition

(4.4). �

The condition (4.4) is a linear system of partial differential equations. It has an exponential-type

function solution:

φi =

p∑
j=1

dije
ηij , ηij = kijx− 2k2

ijy + k4
ijz + k3

ijt, (4.5)

where dij and kij are free parameters and p is an arbitrary natural number.

4.2 Grammian Formulation

Let us now introduce the following Grammian determinant

fN = det(aij)1≤i,j≤N , aij = cij +

∫ x

φiψj dx, cij = constant, (4.6)

with φi and ψj satisfying

φi,y = φi,xx, φi,z = φi,xxxx, φi,t = −2φi,xxx, 1 ≤ i ≤ N, (4.7)

ψi,y = −ψi,xx, ψi,z = −ψi,xxxx, ψi,t = −2ψj,xxx, 1 ≤ j ≤ N. (4.8)

Theorem 4.2 Let φi and ψj satisfy (4.7) and (4.8), respectively. Then the Grammian determinant

fN = det(aij)1≤i,j≤N defined by (4.6) solves the (3+1)-dimensional bilinear generalized JM equa-

tion (4.3).
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Proof: Let the Grammian determinant fN be written by means of a Pfaffian as

fN = (1, 2, · · · , N,N∗, · · · , 2∗, 1∗), (4.9)

where (i, j∗) = aij and (i, j) = (i∗, j∗) = 0.

To compute derivatives of the entries aij and the Grammian fN , we introduce new Pfaffian entries

(dn, j
∗) =

∂n

∂xn
ψj , (d∗n, i) =

∂n

∂xn
φi, (dm, d

∗
n) = (dn, i) = (d∗m, j

∗) = 0, m, n ≥ 0, (4.10)

as usual. In terms of these new entries, derivatives of the entries aij = (i, j∗) are given, upon using

(4.7) and (4.8), by

∂

∂x
aij = (d0, d

∗
0, i, j

∗),

∂

∂y
aij = −(d1, d

∗
0, i, j∗) + (d0, d

∗
1, i, j∗),

∂

∂t
aij = (d2, d

∗
0, i, j

∗)− (d1, d
∗
1, i, j

∗) + (d0, d
∗
2, i, j

∗),

∂

∂z
aij = (d0, d

∗
3, i, j

∗)− (d3, d
∗
0, i, j

∗) + (d2, d
∗
1, i, j

∗)− (d1, d
∗
2, i, j

∗).

By using Lemmas 3.3 and 3.4, we can develop differential rules for Pfaffians, and compute the

required derivatives of the Grammian determinant fN = det(aij) with respect to the variables

x, y, z, t as follows:

fN,x = (d0, d
∗
0, •),

fN,xx = (d1, d
∗
0, •) + (d0, d

∗
1, •),

fN,xxx = (d2, d
∗
0, •) + 2(d1, d

∗
1, •)) + (d0, d

∗
2, •),

fN,y = −(d1, d
∗
0, •) + (d0, d

∗
1, •),

fN,t = −2[(d2, d
∗
0, •)− (d1, d

∗
1, •) + (d0, d

∗
2, •)],

fN,z = (d0, d
∗
3, •)− (d3, d

∗
0, •)) + (d2, d

∗
1, •)− (d1, d

∗
2, •),
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fN,xy = (d0, d
∗
2, •)− (d2, d

∗
0, •),

fN,xxy = (d0, d
∗
3, •)− (d3, d

∗
0, •) + (d1, d

∗
2, •)− (d2, d

∗
1, •),

fN,xz = (d0, d
∗
4, •)− (d4, d

∗
0, •) + (d2, d

∗
1, d0, d

∗
0, •)− (d1, d

∗
2, d0, d

∗
0, •),

fN,yt = −2[(d0, d
∗
4, •)− (d4, d

∗
0, •) + (d3, d

∗
1, •)− (d1, d

∗
3, •)

+(d2, d
∗
0, d0, d

∗
1, •)− (d0, d

∗
2, d1, d

∗
0, •)],

fN,xxxy = (d0, d
∗
4, •)− (d4, d

∗
0, •)− 2(d3, d

∗
1, •) + 2(d1, d

∗
3, •)

−(d0, d
∗
2, d1, d

∗
0, •) + (d2, d

∗
0, d0, d

∗
1, •),

where the abbreviated notation • denotes the list of indices 1, 2, · · · , N,N∗, · · · , 2∗, 1∗ common to

each Pfaffian.

By substituting fN into the left hand side of the bilinear equation (4.3) and utilizing the above

derivatives, we get

(D3
xDy −DtDy − 3DxDz)fN · fN = 12[(d0, d

∗
0, d2, d

∗
1, •)(•)

− (d0, d
∗
0, •)(d2, d

∗
1, •) + (d0, d

∗
1, •)(d2, d

∗
0, •)]

− 12[(d0, d
∗
0, d1, d

∗
2, •)(•)

− (d0, d
∗
0, •)(d1, d

∗
2, •) + (d0, d

∗
2, •)(d1, d

∗
0, •)] = 0.

The last equality comes by the Jacobi identity for determinants. Therefore, we have shown that

fN = det(aij)1≤i,j≤N defined by (4.6) solves the (3+1)-dimensional bilinear generalized JM equa-

tion (4.3), under the condition of (4.7) and (4.8). �

The systems (4.7) and (4.8) have solutions

φi =

p∑
j=1

dije
ηij , ηij = kijx+ k2

ijy + k4
ijz − 2k3

ijt, (4.11)

ψj =

q∑
i=1

ejie
ζji , ζji = ljix+ l2jiy + l4jiz − 2l3jit, (4.12)

where dij , eji, kij and lji are free parameters and p, q are two arbitrary natural numbers.
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4.3 Pfaffian Formulation

Let us introduce the following Pfaffian

fN = (1, 2, · · · , 2N), (4.13)

with Pfaffian entries

(i, j) = cij +

∫ x

−∞
Dxφi · φjdx, i, j = 1, 2, · · · , 2N, (4.14)

where cij(= −cji for i 6= j) are constants, Dx is the Hirota D-operator and all φi, 1 ≤ i ≤ 2N,

satisfy the following linear system of differential equations

φi,y = a

∫ x

−∞
φi(x)dx, φi,z = aφi,x, φi,t = φi,xxx, 1 ≤ i ≤ 2N, (4.15)

where a is nonzero parameter.

Theorem 4.3 Let φi(x, y, z, t), 1 ≤ i ≤ 2N, satisfy (4.15). Then the Pfaffian defined by (4.13)

solves the bilinear generalized JM equation (4.3) and the function u = 2(ln fN )x solves the (3+1)-

dimensional generalized JM equation (4.1).

Proof : In order to compute derivatives of the Pfaffian entries (i, j) and the Pfaffian fN ,we introduce

the following new Pfaffian entries

(dn, i) =
∂nφi
∂xn

, (d−n, i) =
∂nφi
∂xn−1

, forn ≥ 0, (4.16)

where
∂nφi
∂xn−1

=

x∫
−∞

x∫
−∞

· · ·
x∫

−∞

φi(x)dxdx · · · dx. (4.17)

By using the definition of the Pfaffian entries (4.14) and the linear condition (4.15), we have

∂

∂x
(i, j) = φjφi,x − φiφj,x = (d0, d1, i, j),

∂

∂y
(i, j) =

∂

∂x−1

x∫
−∞

φjφi,x − φiφj,x

= a[φiφj,x−1 − φjφi,x−1 ] = a(d−1, d0, i, j∗),

∂

∂z
(i, j) = a(d0, d1, i, j),

∂

∂t
(i, j) = φjφi,xxx − φiφj,xxx − 2(φj,xφi,xx − φi,xφj,xx)

= (d0, d3, i, j)− 2(d1, d2, i, j).
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By using Lemmas 3.3 and 3.4, we can develop differential rules for Pfaffians, and compute the

required derivatives of the Pfaffian fN = (1, 2, · · · , 2N) defined by (4.13) with respect to the

variables x, y, z, t as follows:

fN,x = (d0, d1, •), (4.18)

fN,xx = (d0, d2, •), (4.19)

fN,xxx = (d1, d2, •) + (d0, d3, •)), (4.20)

fN,y = a(d−1, d0, •), (4.21)

fN,t = (d0, d3, •)− 2(d1, d2, •), (4.22)

fN,z = a(d0, d1, •), (4.23)

fN,xy = a(d−1, d1, •), (4.24)

fN,xz = a(d0, d2, •), (4.25)

fN,xxy = a[(d−1, d2, •) + (d0, d1, •)], (4.26)

fN,yt = a[(d−1, d3, •)− (d0, d2, •)− 2(d−1, d0, d1, d2, •)], (4.27)

fN,xxxy = a[(d−1, d3, •) + 2(d0, d2, •) + (d−1, d0, d1, d2, •)], (4.28)

where the abbreviated notation • denotes the list of indices 1, 2, · · · , 2N common to each Pfaffian.

Using the above derivatives, we can see

(fN,yt − fN,yxxx + 3fN,xz)fN = −3a(d−1, d0, d1, d2, •)(•), (4.29)

fN,xxxfN,y − fN,tfN,y = 3a(d−1, d0, •)(d1, d2, •) (4.30)

−3fN,xxfN,yx = −3a(d0, d2, •)(d−1, d1, •) (4.31)

3fN,yxxfN,x − 3fxfz = 3a(d0, d1, •)(d−1, d2, •). (4.32)

By substituting fN into the left hand side of the bilinear generalized JM equation (4.3), we get

(D3
xDy −DtDy − 3DxDz)fN · fN = −6[(d−1, d0, d1, d2, •)(•)

− (d−1, d0, •)(d1, d2, •)

+ (d0, d2, •)(d−1, d1, •)]

+ (d0, d1, •)(d−1, d2, •)] = 0.
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The last equality is nothing but the Pfaffian identity (3.24). Therefore we have shown that the Pfaf-

fian fN defined by (4.13) satisfying the condition (4.15) solves the bilinear generalized JM equation

(4.3). �

The system (4.15) has solutions in the form

φi =

p∑
j=1

dije
ηij , ηij = kijx+ ak2

ijy + ak4
ijz − 2k3

ijt+ η0
ij , (4.33)

where dij , kij and η0
ij are free parameters and p is arbitrary natural number. In particular, we have

the following specific solutions

φi = eηi , ηi = kix+ ak2
i y + ak4

i z − 2k3
i t+ η0

i , (4.34)

where ki and η0
i are free parameters and a is arbitrary nonzero parameter. Hence we obtain

(i, j) = cij +
ki − kj
ki + kj

φiφj . (4.35)

Let us consider the two-soliton and three soliton solutions for the bilinear generalized JM equation

(4.3). For the two-soliton solution, we may choose c12 = c34 = 1, c13 = c14 = c23 = c24 = 0.

Then we have

f2 = (1 2)(3 4)− (1 3)(2 4) + (1 4)(2 3)

= 1 +
k1 − k2

k1 + k2
eη1+η2 +

k3 − k4

k3 + k4
eη3+η4

+
(k1 − k2)(k1 − k3)(k1 − k4)(k2 − k3)(k2 − k4)(k3 − k4)

(k1 + k2)(k1 + k3)(k1 + k4)(k2 + k3)(k2 + k4)(k3 + k4)
eη1+η2+η3+η4 .

Setting

θi = ηi + ηi+1 + δi, where eδi =
ki − ki+1

ki + ki+1
, (4.36)

we can write f2 as

f2 = 1 + eθ1 + eθ3 + k34
12e

θ1+θ3 , (4.37)

where

klmij =
(ki − kl)(ki − km)(kj − kl)(kj − km)

(ki + kl)(ki + km)(kj + kl)(kj + km)
. (4.38)
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Similarly, we can write the three-soliton solution for the bilinear generalized JM equation (4.3). Let

us choose c12 = c34 = c56 = 1, otherwise cij = 0, then we can rewrite f3 as

f2 = 1 + eθ1 + eθ3 + eθ3 + k34
12e

θ1+θ3 + k56
12e

θ1+θ5 + k56
34e

θ3+θ5 + k456
123e

θ1+θ3+θ5 , (4.39)

where

klmnijp = kplijk
mn
ij kmnpl . (4.40)

Now putting klmij = eK
lm
ij , we get the following formula for the N-soliton solution to the bilinear

generalized JM equation (4.3):

fN =
′∑
e(

∑N
i=1 µ2i−1θ2i−1+

∑(2N)
i<j<l<mKlm

ij µiµl), (4.41)

where
∑′ is the sum taken over all possible combinations of µ1 = 0, 1, µ2 = 0, 1, · · · , µ2N = 0, 1,

and
∑(2N)

i<j<l<m is the sum taken over all i, j, l,m (i < j < l < m) chosen from {1, 2, · · · , 2N}.

Furthermore, the (3+1)-dimensional generalized JM equation (4.1) has the N-soliton solution

u = (ln fN )x. (4.42)

The following three Figures of three dimensional plots and two dimensional contour plots show

the Pfaffian solutions defined by (4.42) on the indicated specified regions, with certain values chosen

for the parameters. In the contour plots, we can see the interaction regions of the involved soliton

solutions.
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Figure 3.: Three-soliton solution : k1 = 2, k2 = 3, k3 = 4, k4 = 7, k5 = 1, k6 = −5, a = 1
5 , x = 4, t = 3.

Figure 4.: Three-soliton solution : k1 = 1, k2 = 2, k3 = 3, k4 = 4, k5 = 5, k6 = 6, a = −1
5 , x = 5, t = 7.
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Figure 5.: Three-soliton solution : k1 = −5, k2 = −4, k3 = −3, k4 = −2, k5 = 1, k6 = −6, a = −5
12 , x =

−2, z = 3.

4.4 Pfaffian Solutions to a (3+1)-Dimensional Pfaffianized Jimbo-Miwa System

In this section, we would like to apply Pfaffianization procedure to the bilinear generalized JM

equation (4.3) which is similar to what we did for the generalized vcKP equation in the previous

chapter. Wronski-type and Grammian type Pfaffian solutions will be formulated and both of these

solutions are totally based on the two Pfaffian identities (3.24) and (3.25).

4.4.1 Pfaffianization and Wronski-type Pfaffian Solutions

Consider a Wronski-type Pfaffian solutions

fN = (1, 2, · · · , 2N),

whose Pfaffian entries satisfy the following linear condition:

∂

∂x
(i, j) = (i+ 1, j) + (i, j + 1), (4.43a)

∂

∂y
(i, j) = (i+ 2, j) + (i, j + 2), (4.43b)

∂

∂t
(i, j) = −2[(i+ 3, j) + (i, j + 3)], (4.43c)

∂

∂z
(i, j) = (i+ 4, j) + (i, j + 4). (4.43d)
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We deduce the following differential rules for the Wronski-type Pfaffian under the condition

(4.43):

∂

∂x
(i1, i2, · · · , i2N ) =

2N∑
k=1

(i1, i2, · · · , ik + 1, · · · , i2N ), (4.44a)

∂

∂y
(i1, i2, · · · , i2N ) =

2N∑
k=1

(i1, i2, · · · , ik + 2, · · · , i2N ), (4.44b)

∂

∂t
(i1, i2, · · · , i2N ) = −2

2N∑
k=1

(i1, i2, · · · , ik + 3, · · · , i2N ), (4.44c)

∂

∂z
(i1, i2, · · · , i2N ) =

2N∑
k=1

(i1, i2, · · · , ik + 4, · · · , i2N ). (4.44d)

In the next theorem, we present a Wronski-type Pfaffian solution to a coupled system for the

(3+1)-dimensional generalized JM equation under the sufficient condition (4.43).

Theorem 4.4 Let the Pfaffian entries (i, j) satisfy the conditions (4.43). Then

u = 2(ln f)x, v = g/f, w = h/f, (4.45)

where

f = fN = (1, 2, · · · , 2N), (4.46)

g = gN = (1, 2, · · · , 2N − 2), (4.47)

h = hN = (1, 2, · · · , 2N + 2), (4.48)

solve the following Pfaffianized JM system of nonlinear equations

uxxy + 3uxxuy + 3uxuxy − uyt − 3uxz + 12(wvx − vwx)x = 0, (4.49a)

− vt + 3uxvx + vxxx + 3vxy + 3vuy = 0, (4.49b)

− wt + 3uxwx + wxxx − 3wxy − 3wuy = 0. (4.49c)
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Proof: Under the dependent variable transformation given by (4.45), the Pfaffianized JM system

(4.49) can be mapped into the following system of bilinear equations:

(D3
xDy −DyDt − 3DxDz)f · f + 12Dxg · h = 0, (4.50a)

(D3
x −Dt + 3DxDy)g · f = 0, (4.50b)

(D3
x −Dt − 3DxDy)h · f = 0. (4.50c)

Based on the differential rules (4.44), we can compute various derivatives of the Pfaffian fN =

(1, 2, · · · , 2N) with respect to the variables x, y, z and t:

fN,x = (1, 2 · · · , 2N − 1, 2N + 1),

fN,xx = (1, 2, · · · , 2N − 1, 2N + 2) + (1, 2, · · · , 2N − 2, 2N, 2N + 1),

fN,xxx = (1, 2, · · · , 2N − 1, 2N + 3) + 2(1, 2, · · · , 2N − 2, 2N, 2N + 2)

+(1, 2, · · · , 2N − 3, 2N − 1, 2N, 2N + 1),

fN,y = (1, 2, · · · , 2N − 1, 2N + 2)− (1, 2, · · · , 2N − 2, 2N, 2N + 1),

fN,t = −2[(1, 2, · · · , 2N − 1, 2N + 3)− (1, 2, · · · , 2N − 2, 2N, 2N + 2)

+(1, 2, · · · , 2N − 3, 2N − 1, 2N, 2N + 1)],

fz = −(1, 2, · · · , 2N − 4, 2N − 2, 2N − 1, 2N, 2N + 1) + (1, 2, · · · , 2N − 1, 2N + 4)

+(1, 2, · · · , 2N − 3, 2N − 1, 2N, 2N + 2)− (1, 2, · · · , 2N − 2, 2N, 2N + 3),

fxy = (1, 2, · · · , 2N − 1, 2N + 3)− (1, 2, · · · , 2N − 3, 2N − 1, 2N, 2N + 1),

fxz = −(1, 2, · · · , 2N − 5, 2N − 3, 2N − 2, 2N − 1, 2N, 2N + 1)

+(1, 2, · · · , 2N − 3, 2N − 1, 2N + 1, 2N + 2)

+(1, 2, · · · , 2N − 2, 2N + 1, 2N + 3) + (1, 2, · · · , 2N − 1, 2N + 5),

fyt = −2[(1, 2, · · · , 2N − 4, 2N − 2, 2N − 1, 2N, 2N + 2)

−(1, 2, · · · , 2N − 3, 2N − 1, 2N + 1, 2N + 2) + (1, 2, · · · , 2N − 1, 2N + 5)

+(1, 2, · · · , 2N − 2, 2N + 1, 2N + 3)− (1, 2, · · · , 2N − 2, 2N, 2N + 4)

−(1, 2, · · · , 2N − 5, 2N − 3, 2N + 1)],
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fxxy = (1, 2, · · · , 2N − 2, 2N, 2N + 3) + (1, 2, · · · , 2N − 1, 2N + 4)

−(1, 2, · · · , 2N − 4, 2N − 2, 2N − 1, 2N, 2N + 1)

+(1, 2, · · · , 2N − 3, 2N − 1, 2N, 2N + 2),

fxxxy = (1, 2, · · · , 2N − 5, 2N − 3, 2N + 1)

+(1, 2, · · · , 2N − 2, 2N + 1, 2N + 3) + (1, 2, · · · , 2N − 1, 2N + 5)

−(1, 2, · · · , 2N − 3, 2N − 1, 2N + 1, 2N + 2)

−2(1, 2, · · · , 2N − 4, 2N − 2, 2N − 1, 2N, 2N + 2).

Therefore, by substituting the above derivatives in the left hand side of the first equation in the

bilinear Pfaffianized JM system (4.50), we obtain

(D3
xDy −DyDt − 3DxDz)f · f + 12Dxg · h =

−12[(1, 2, · · · , 2N − 3, 2N − 1, 2N + 1, 2N + 2)(1, 2, · · · , 2N)

−(1, 2, · · · , 2N − 3, 2N − 1, 2N, 2N + 2)((1, 2, · · · , 2N − 1, 2N + 1)

+(1, 2, · · · , 2N − 3, 2N − 1, 2N, 2N + 1)(1, 2, · · · , 2N − 1, 2N + 2)

−(1, 2, · · · , 2N + 2)((1, 2, · · · , 2N − 3, 2N − 1)]

−12[(1, 2, · · · , 2N − 2, 2N + 1, 2N + 3)(1, 2, · · · , 2N)

−(1, 2, · · · , 2N − 2, 2N, 2N + 3)((1, 2, · · · , 2N − 1, 2N + 1)

+(1, 2, · · · , 2N − 1, 2N + 3)(1, 2, · · · , 2N − 2, 2N, 2N + 1)

−(1, 2, · · · , 2N − 2)((1, 2, · · · , 2N + 1, 2N + 3)] = 0.

The last equality is gotten by employing the Pfaffian identity of type (3.24).

But the second equation in the bilinear Pfaffianized JM system (4.50) is equivalent to the Pfaffian

identity of type (3.25), indeed:

(D3
x −Dt + 3DxDy)gN · fN

= (gN,xxx − gN,t + 3gN,xy)fN − (3gN,xx + 3gN,y)fN,x

+gN,x(3fN,xx − 3fN,y)− gN (fN,xxx − fN,t − 3fN,xy)
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= 6[(1, 2, · · · , 2N − 3, 2N + 1)(1, 2, · · · , 2N − 3, 2N − 2, 2N − 1, 2N)

−(1, 2, · · · , 2N − 3, 2N)(1, 2, · · · , 2N − 3, 2N − 2, 2N − 1, 2N + 1)

+(1, 2, · · · , 2N − 3, 2N − 1)(1, 2, · · · , 2N − 3, 2N − 2, 2N, 2N + 1)

−(1, 2, · · · , 2N − 3, 2N − 2)(1, 2, · · · , 2N − 3, 2N − 1, 2N, 2N + 1)] = 0.

Similarly, the Pfaffian identity of type (3.25) gives

(1, 2, · · · , 2N − 1, 2N + 3)(1, 2, · · · , 2N − 1, 2N, 2N + 1, 2N + 2)

−(1, 2, · · · , 2N − 1, 2N + 2)(1, 2, · · · , 2N − 1, 2N, 2N + 1, 2N + 3)

+(1, 2, · · · , 2N − 1, 2N + 1)(1, 2, · · · , 2N − 1, 2N, 2N + 2, 2N + 3)

−(1, 2, · · · , 2N − 1, 2N)(1, 2, · · · , 2N − 1, 2N + 1, 2N + 2, 2N + 3) = 0,

which is equivalent to

(D3
x −Dt − 3DxDy)hN · fN = 0.

Therefore we have shown that f = fN , g = gN and h = hN solve the bilinear Pfaffianized JM

system (4.50) under the condition (4.43), which implies that u, v, and w solve the Pfaffianized JM

system of nonlinear differential equations (4.49), and this completes the proof of the theorem. �

In particular, one can choose the following Pfaffian entries

(i, j) =
M∑
k=1

(φ
(i)
k ψ

(j)
k − φ

(j)
k ψ

(i)
k ), (4.51)

with M ∈ N being arbitrary and φk and ψk satisfying

φk,y = φ
(2)
k , φk,t = −2φ

(3)
k , φk,z = φ

(4)
k , (4.52)

ψk,y = ψ
(2)
k , ψk,t = −2ψ

(3)
k , ψk,z = ψ

(4)
k , (4.53)

where φ(i)
k and ψ(i)

k are the i-th derivatives of φk and ψk with respect to x respectively. It is easy

to see that all (i, j) satisfy the condition (4.43). Examples of such functions φk and ψk can be the

following:

φi =

p∑
j=1

dije
ηij , ηij = kijx+ k2

ijy + ak4
ijz − 2k3

ijt, (4.54)
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ψj =

q∑
i=1

ejie
ζji , ζji = ljix+ l2jiy + al4jiz − 2l3jit, (4.55)

where dij , eji , kij and lji are free parameters and p, q are two arbitrary natural numbers.

4.4.2 Gramm-type Pfaffian Solutions

In this section, we would like to discuss another class of Pfaffian solutions, Gramm-type Pfaffian

solutions for the (3+1)-dimentional Pfaffianized JM system (4.49), which could be introduced as

f = fN = (1, 2, · · · , 2N), (4.56a)

g = gN = (c1, c0, 1, 2, · · · , 2N), (4.56b)

h = hN = (d0, d1, 1, 2, · · · , 2N), (4.56c)

with the Pfaffian entries being defined by


(i, j) = cij +

∫ x
(φiψj − φjψi)dx, cij = −cji, cij = constants,

(dn, i) = ∂n

∂xnφi, (cn, i) = ∂n

∂xnψi,

(dm, dn) = (cm, cn) = (cm, dn) = 0,

(4.57)

where the lower limit in the above integration is chosen so that the functions φi, ψi and their deriva-

tives are zero at the lower limit.

Theorem 4.5 Let φi, ψi satisfy the following condition

φi,y = φi,xx, φi,z = φi,xxxx, φi,t = −2φi,xxx, (4.58a)

ψi,y = −ψi,xx, ψi,z = −ψi,xxxx, ψi,t = −2ψk,xxx. (4.58b)

Then fN , gN and hN defined by (4.56) and (4.66) solve the (3+1)-dimensional bilinear Pfaffianized

JM system (4.50).
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Proof: Based on the Pfaffian entries defined by (4.66) and the condition (4.58), we compute deriva-

tives of the Pfaffian entries with respect to x, y, z, t:

∂

∂x
(i, j) = φiψj − φjψi = (c0, d0, i, j),

∂

∂y
(i, j) =

∫ x

(φi,yψj + φiψj,y − φj,yψi − φjψi,y)dx

=

∫ x

(φi,xxψj + φiψj,xx − φj,xxψi − φjψi,xx)dx

= φi,xψj − φiψj,x − φj,xψi + φjψi,x

= (c0, d1, i, j)− (c1, d0, i, j),

∂

∂t
(i, j) =

∫ x

(φi,tψj + φiψj,t − φj,tψi − φjψi,t)dx

= −2

∫ x

(φi,xxxψj + φiψj,xxx − φj,xxxψi − φjψi,xxx)dx

== −2[φi,xxψj − φj,xxψi − φi,xψj,x + φj,xψi,x + φiψj,xx − φjψi,xx]

= −2[(c0, d2, i, j)− (c1, d1, i, j) + (c2, d0, i, j)],

∂

∂z
(i, j) =

∫ x

(φi,zψj + φiψj,z − φj,zψi − φjψi,z)dx

=

∫ x

(φi,xxxxψj + φiψj,xxxx − φj,xxxxψi − φjψi,xxxx)dx

= φi,xxxψj − φj,xxxψi − φiψj,xxx + φjψi,xxx + φi,xψj,xx − φj,xψi,xx

+φj,xxψi,x − φi,xxψj,x

= (c0, d3, i, j)− (c3, d0, i, j) + (c2, d1, i, j)− (c1, d2, i, j).

Now we can develop differential rules for the Pfaffians, and compute various derivatives of the

Gramm-type Pfaffians fN = (1, 2, · · · , 2N) with respect to the variables x, y, z, t as follows:

fN,x = (c0, d0, •),

fN,xx = (c0, d1, •) + (c1, d0, •),

fN,xxx = (c0, d2, •) + 2(c1, d1, •) + (c2, d0, •),

fN,y = (c0, d1, •)− (c1, d0, •),

fN,t = −2[(c0, d2, •)− (c1, d1, •) + (c2, d0, •)],
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fN,z = (c0, d3, •)− (c3, d0, •) + (c2, d1, •)− (c1, d0, •),

fN,ty = −2[(c0, d4, •)− (c4, d0, •) + (c3, d1, •)− (c1, d3, •)

+(c2, d0, c0, d1, •)− (c0, d1, c1, d0, •)],

fN,xy = (c0, d2, •)− (c2, d0, •),

fN,xz = (c0, d4, •)− (c4, d0, •) + (c2, d1, c0, d0, •)− (c1, d2, c0, d0, •),

fN,xxy = (c0, d3, •)− (c3, d0, •) + (c1, d2, •)− (c2, d1, •),

fN,xxxy = (c0, d4, •)− (c4, d0, •)− 2(c3, d1, •) + 2(c1, d3, •)

−(c0, d2, c1, d0, •) + (c2, d0, c0, d1, •),

where the abbreviated notation • denotes the list of indices 1, 2, · · · , 2N common to each Pfaf-

fian. By substituting the above derivatives in the left hand side of the first equation in the bilinear

Pfaffianized JM system (4.50), we can compute

(D3
xDy + 2DyDt − 3DxDz)f · f + 12Dxg · h =

12[(c0, d0, c2, d1, •)(•)− (c0, d0, •)(c2, d1, •)

+(c0, c2, •)(d0, d1, •)− (c0, d1, •)(d0, c2, •)]

−12[(c0, d0, c1, d2, •)(•)− (c0, d0, •)(c1, d2, •)

+(c0, c1, •)(d0, d2, •)− (c0, d2, •)(d0, c1, •)] = 0.

The last equality is gotten by employing the Pfaffian identity of type (3.24).

Similarly, one can show that

(D3
x −Dt + 3DxDy)gN · fN

= (gN,xxx − gN,t + 3gN,xz)fN − (3gN,xx + 3gN,z)fN,x

+gN,x(3fN,xx − 3fN,z)− gN (fN,xxx − fN,t − 3fN,xz)

= 6[(•)(c2, c1, c0, d0, •)− (c2, c1, •)(c0, d0, •)

+(c2, c0, •)(c1, d0, •)− (c1, c0, •)(c2, d0, •)] = 0.

The last equality is nothing but the Pfaffian identity of type (3.24). By interchanging c and d in the

above equation, we can verify that fN and hN solve the third equation in the bilinear Pfaffianized

JM system (4.50).
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Therefore, we have shown that fN , gN and hN defined by (4.56) solve the (3+1)-dimensional

bilinear Pfaffianized JM system (4.50) under the conditions in the theorem. �

Since the system (4.58) is linear, examples of the generating functions for the Pfaffian entries can

be easily computed as follows:

φi =

p∑
j=1

dije
ηij , ηij = kijx+ k2

ijy + k4
ijz − 2k3

ijt, (4.59)

ψj =

q∑
i=1

ejie
ζji , ζji = ljix− l2jiy − l4jiz − 2l3jit, (4.60)

where dij , eji , kij and lji are free parameters and p, q are two arbitrary natural numbers.

4.4.3 Jimbo-Miwa Equation with Variable Coefficients

In this section, we are going to consider the following Jimbo-Miwa (JM) equation with variable

coefficients

α1(t)uxxxy + 3α2(t)(uxuy)x − uyt − 3α3(t)uxz + 2α4(t)uy = 0, (4.61)

where αi, i = 1, 2, 3, 4, are nonzero arbitrary smooth functions. Through the dependent variable

transformation

u = 2
α1(t)

α2(t)
(ln f)x, (4.62)

the above (3+1)-dimensional equation is mapped into a Hirota bilinear equation

(α1(t)D3
xDy −DyDt − 3α3(t)DxDz)f · f = 0, (4.63)

under the constraint:

α1(t) = C0α2(t)e−
∫
α4(t)dt, (4.64)

where C0 6= 0 is an arbitrary constant. The equation (4.63) can be extended to the following system

(α1(t)D3
xDy −DyDt − 3α3(t)DxDz)f · f + 12aα3(t)Dxg · h = 0, (4.65a)

(D3
x −

1

α1(t)
Dt +

3

a
DxDy)g · f = 0, (4.65b)

(D3
x −

1

α1(t)
Dt −

3

a
DxDy)h · f = 0. (4.65c)
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As in Theorem 4.4, it can be verified that the above Pfaffianized system has the following Wronski-

type Pfaffian solutions

fN = (1, 2, · · · , 2N), gN = (1, 2, · · · , 2N − 2), hN = (1, 2, · · · , 2N + 2),

whose Pfaffian entries satisfy

∂

∂x
(i, j) = (i+ 1, j) + (i, j + 1),

∂

∂y
(i, j) =

aα3(t)

α1(t)
[(i+ 2, j) + (i, j + 2)],

∂

∂t
(i, j) = −2α1(t)[(i+ 3, j) + (i, j + 3)],

∂

∂z
(i, j) = a[(i+ 4, j) + (i, j + 4)],

where a is an arbitrary nonzero constant.

Similarly, as in Theorem 4.5, one can prove that the above bilinear Pfaffianized system has the

following Gramm-type Pfaffian solutions

fN = (1, 2, · · · , 2N), gN = (c1, c0, 1, 2, · · · , 2N), hN = (d0, d1, 1, 2, · · · , 2N),

where the Pfaffian entries are defined by
(i, j) = cij +

∫ x
(φiψj − φjψi)dx, cij = −cji, cij = constants,

(dn, i) = ∂n

∂xnφi, (cn, i) = ∂n

∂xnψi,

(dm, dn) = (cm, cn) = (cm, dn) = 0,

(4.66)

where the lower limit in the above integration is chosen so that the functions φi, ψi and their deriva-

tives are zero at the lower limit, with φi and ψi satisfying

φi,y =
aα3(t)

α1(t)
φi,xx, φi,t = −2α1(t)φi,xxx, φi,z = aφi,xxxx, (4.67a)

ψi,y = −aα3(t)

α1(t)
ψi,x, ψi,t = −2α1(t)ψi,xxx, ψi,z = −aψk,xxxx. (4.67b)

Examples of such Wronski-type and Gramm-type Pfaffian entries have been given as in the previous

sections.
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Chapter 5

Double Wronskian Solutions for a (2+1)-Dimensional Boussinesq System with Variable

Coefficients

The Wronskian technique has been applied to many soliton equations such as the KdV, MKdV, NLS,

derivative NLS, KP, sine-Gordon and sinh-Gordon equations. Within Wronskian formulations, soli-

ton solutions and rational solutions are usually expressed as some kind of logarithmic derivatives

of Wronskian type determinants and the determinants involved are made of eigenfunctions satis-

fying linear systems of differential equations. This connection between nonlinear problems and

linear ones utilizes linear theories in solving soliton equations. In Refs.[86] and [46], the notion of

double Wronskians was presented. In 1983, Nimmo proved that the NLS equation has the double

Wronskian solution [16].

In view of some variants of Boussinesq systems studied in [87] and [88], we consider, in this

chapter, the following (2+1)-dimensional system of nonlinear equations:

ut + α1(t)uxy + α2(t)(uw)x + α3(t)vx = 0, (5.1a)

vt + β1(t)(wvx + 2vuy + uvy) + β2(t)(uxwy − (uy)
2) + β3(t)vxy + β4(t)uxyy = 0, (5.1b)

wherewx = uy and construct double Wronskian solutions under a certain constraint on the variable

coefficients.

When y = x, the system (5.1) is reduced to the following variable coefficients variant Boussinesq

model in the long gravity water waves:

ut + α1(t)uxx + α2(t)(u2)x + α3(t)vx = 0, (5.2a)

vt + 2β1(t)(uv)x + β3(t)vxx + β4(t)uxxx = 0, (5.2b)

In [91], the authors applied the symmetry method based on the Fréchet derivative of the differential

operators to deduce Lie symmetries of the reduced system (5.2). In their investigation, the authors
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of [88] used the double Wronskian technique in order to explore multi solitonic solutions for the

reduced system (5.2).

Model (5.2) has been derived for describing the nonlinear and dispersive long gravity waves

traveling in two horizontal directions in shallow water with varying depth [89]. Yao and Li [90]

used a direct algebraic method to construct some traveling wave solutions for the reduced system

(5.2) with α3 = 2α2 = 2β1 ≡ 1 and α1, β3, β4 are arbitrary constants. In [92], Zhang used the

homogeneous balance method to deduce the multi solitary wave solutions when 2α2 = α3 = 2β1 =

β4 ≡ 1, and α1 = β3 ≡ 0. The Kupershmidt equations [92, 93] and Levi equations and Whitham-

Broer-Kaup shallow water model [94]-[96] are also special cases of model (5.2). Multiple soliton-

like solutions for the following (2+1)-dimensional dispersive long wave equations were constructed

in [97]

uty + vxx + uxuy + uuxy = 0, (5.3a)

vt + (uv + u+ uxy)x = 0. (5.3b)

In our investigation, we are going to use the double Wronskian technique to explore an exact

N-soliton solution for the (2+1)-dimensional variable coefficients system (5.1) after transforming

the general system into a bilinear form using the Hirota D-operators.

5.1 Transformations and Bilinear Form

Under the following dependent variable transformations:

u = −1

2
(ln p)x, (5.4a)

v =
1

2
b(ln p)xy − pq, (5.4b)

the general system (5.1) can be transformed into the system

pt + a(t)(
1

2
pxy − qp2) = 0, (5.5a)

qt − a(t)(
1

2
qxy − pq2) = 0. (5.5b)
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It is not hard to verify that if p and q are solutions for the system (5.5), then u and v defined by

(5.4) are solutions for the general system (5.1) under the following constraint:

β1(t) = α2(t) = 2α3(t) = −a(t), β2(t) = ba(t),

α1(t) = −β3(t) = a(t)
2 (1− b), β4(t) = ba(t)

2 (b− 2), (5.6)

where a(t) is an arbitrary smooth function and b is a nonzero arbitrary constant.

Under the following rational transformations,

p =
g

f
, q =

h

f
, (5.7)

the system (5.5) is transformed into the following bilinear form,

DxDyf · f + 2gh = 0, (5.8a)

(Dt +
1

2
a(t)DxDy)g · f = 0, (5.8b)

(Dt −
1

2
a(t)DxDy)h · f = 0, (5.8c)

where Dx, Dy and Dt are Hirota bilinear differential operators.

5.2 Double Wronskian Solutions

For the sake of convenience, we adopt Freeman and Nimmo’s notation for the double Wronskian

determinant [15, 16],

WN+1,M+1(φ;ψ) = det(φ, ∂φ, · · · , ∂Nφ;ψ, ∂ψ, · · · , ∂Mψ) = |N̂ ; M̂ |,

where φ = (φ1(x), φ2(x), · · · , φN+M+2)T and ψ = (ψ1(x), ψ2(x), · · · , ψN+M+2)T .

In the next theorem, we present a double Wronskian solution for the bilinear system (5.8) under

a sufficient condition defined by a system of linear parial differential equations.

Theorem 5.1 Let φ and ψ satisfy the following linear system

φx = −Kφ, φy = φx, φt = −A(t)φxx, (5.9a)

ψx = Kφ, ψy = ψx, ψt = B(t)ψxx, (5.9b)
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where K = (kij)(N+M+2)×(N+M+2) is a matrix with arbitrary constant entries kij , A(t) =

(aij(t))(N+M+2)×(N+M+2) is a matrix with arbitrary smooth function entries and
∑N+M+2

i=1 aii(t) =

a(t), but B(t) = (bij(t))(N+M+2)×(N+M+2) is a matrix with entries defined to be

bij(t) =

 aij(t), if i = j,

−aij(t), if i 6= j.

Then the following double Wronskian determinants

f = WN+1,M+1(φ;ψ), g = 2WN+2,M (φ;ψ) and h = −2WN,M+2(φ;ψ)

solve the bilinear system (5.8).

In order to prove this theorem, we need the following lemmas [98].

Lemma 5.2 Let B be an N × (N − 2) matrix, and a, b, c and d represent N-dimensional column

vectors. Then

|B, a, b||B, c, d| − |B, a, c||B, b, d|+ |B, a, d||B, c, b| = 0. (5.10)

Lemma 5.3 Suppose Ξ is an N × N matrix with the column vector set of Ξj ,Ω is an N × N

operator matrix with the column vector set of Ωj where each entry Ωjs is an operator. Then we

have
N∑
j=1

|Ωj ∗ Ξ| =
N∑
j=1

|(ΩT )j ∗ ΞT |, (5.11)

where for any N−dimensional column vectors Aj and Bj , we define

Aj ◦Bj = (A1jB1j , A2jB2j , · · · , ANjBNj)T , (5.12)

and

|Aj ∗ Ξ| = |Ξ1, · · · ,Ξj−1, Aj ◦ Ξj ,Ξj+1, · · · ,ΞN |. (5.13)

Let φ and ψ satisfy the conditions (5.9) and set

Ξ = WN+1,M+1(φ;ψ), Ω = (Ωij)(N+M+2)×(N+M+2), (5.14)

where

Ωij =

 −∂x if 1 ≤ i ≤ N +M + 2; 1 ≤ j ≤ N + 1

∂x if 1 ≤ i ≤ N +M + 2;N + 2 ≤ j ≤ N +M + 2.
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Then, by Lemma 5.3, we have

N+M+2∑
j=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1 · · · ∂Nx φ1;ψ1 · · · ∂Mx ψ1

...
. . .

...
. . .

...

−∂xφj · · · −∂N+1
x φj ; ∂xψj · · · ∂M+1

x ψj
...

. . .
...

. . .
...

φN+M+2 · · · ∂Nx φN+M+2;ψN+M+2 · · · ∂Mx ψN+M+2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −|N̂ − 1, N + 1; M̂ |+ |N̂ ; M̂ − 1,M + 1|.

(5.15)

By the conditions (5.9), the left hand side of the above equality is equal to

N+M+2∑
j=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1 · · · ∂Nx φ1;ψ1 · · · ∂Mx ψ1

...
. . .

...
. . .

...
N+M+2∑
l=1

kjlφl · · ·
N+M+2∑
l=1

kjl∂
N
x φl;

N+M+2∑
l=1

kjlψl · · ·
N+M+2∑
l=1

kjl∂
M
x ψj

...
. . .

...
. . .

...

φN+M+2 · · · ∂Nx φN+M+2;ψN+M+2 · · · ∂Mx ψN+M+2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

N+M+2∑
j=1

kjj |N̂ ; M̂ |.

Hence, we have the following identity

trK|N̂ ; M̂ | = −|N̂ − 1, N + 1; M̂ |+ |N̂ ; M̂ − 1,M + 1|. (5.16)

In order to simplify the notations and save space, we are going to use the following notations for

86



Wronskian determinants:

d1 := |N̂ ; M̂ |, d2 := |N̂ − 1, N + 1; M̂ |, d3 := |N̂ ; M̂ − 1,M + 1|,

d4 := |N̂ − 2, N,N + 1; M̂ |, d5 := |N̂ − 1, N + 2; M̂ |,

d6 := |N̂ − 1, N + 1; M̂ − 1,M + 1|, d7 := |N̂ ; M̂ − 2,M,M + 1|,

d8 := |N̂ ; M̂ − 1,M + 2|, d9 := |N̂ + 1; M̂ − 1|,

d10 := |N̂ ,N + 2; M̂ − 1|, d11 := |N̂ + 1; M̂ − 2,M |,

d12 := |N̂ − 1, N + 1, N + 2; M̂ − 1|, d13 := |N̂ ,N + 3; M̂ − 1|,

d14 := |N̂ ,N + 2; M̂ − 2,M |, d15 := |N̂ + 1; M̂ − 3,M − 1,M |,

d16 := |N̂ + 1; M̂ − 2,M + 1|, d17 := |N̂ − 1; M̂ + 1|.

Noticing the following

|N̂ ; M̂ |(trK)2|N̂ ; M̂ | =
(
trK|N̂ ; M̂ |

)2
,

(trK)2|N̂ + 1; M̂ − 1||N̂ ; M̂ | = trK|N̂ + 1; M̂ − 1|trK|N̂ ; M̂ |,

(trK)2|N̂ ; M̂ ||N̂ + 1; M̂ − 1| = trK|N̂ + 1; M̂ − 1|trK|N̂ ; M̂ |,

and using the identity (5.16), we get the following three identities:

(d4 + d5 − 2d6 + d7 + d8)d1 = (d2 − d3)2, (5.17)

(d12 + d13 − 2d14 + d15 + d16)d1 = (d10 − d11)(d2 − d3), (5.18)

(d4 + d5 − 2d6 + d7 + d8)d9 = (d2 − d3)(d10 − d11). (5.19)

Now we are ready to prove Theorem 5.1.

Proof of Theorem 5.1: Under the linear conditions (5.9) we can compute the following derivatives

fx = d2 + d3 , fxy = d4 + d5 + 2d6 + d7 + d8 , gx = 2d10 + 2d11

ft = −a(t)(−d4 + d5 + d7 − d8) , gt = 2a(t)(d12 − d13 − d15 − d16)

gxy = 2d12 + 2d13 + 4d14 + 2d15 + 2d16.

Using the identity (5.17) and Lemma 5.2, we can verify the first equation in the bilinear system

87



(5.8), indeed:

DxDy(f · f) + 2gh = 2ffxy − 2fxfy + 2gh

= 2d1(d4 + d5 + 2d6 + d7 + d8)− 2(d2 + d3)2 − 8d9d17

= 2(d2 − d3)2 + 8d1d6 − 2(d2 + d3)2 − 8d9d17

= −8(d2d3 − d1d6 + d9d17) = 0.

In order to prove the second equation in the bilinear system (5.8), we need to employ the identities

(5.18) and (5.19) to compute that

(gt +
1

2
a(t)gxx)f = a(t)d1(3d12 − d13 − d15 + 3d16 + 2d14)

= 4a(t)d1(d12 + d16)− a(t)(d12 + d13 + d15 + d16 − 2d14)

= 4a(t)d1(d12 + d16)− a(t)(d10 − d11)(d2 − d3),

(
1

2
a(t)fxx − ft)g = a(t)d9(−d4 + 3d5 + 2d6 + 3d7 − d8)

= 4a(t)d9(d5 + d7)− a(t)d9(d4 + d5 − 2d6 + d7 + d8)

= 4a(t)d9(d5 + d7)− a(t)(d10 − d11)(d2 − d3).

Hence the second equation in (5.8) reduces to

(Dt +
1

2
a(t)DxDy)g · f = 4a(t)([d1d12 − d2d12 + d9d5] + [d1d16 − d3d11 + d9d7]),

and again by Lemma 5.2 the right hand side of the above equality is zero. Similarly the third

equation in (5.8) can be verified. Therefore, we have shown that the double Wronskian determinants

f, g and h solve the bilinear system (5.8) under the linear condition (5.9). �

5.3 Soliton Solutions in Double Wronskian Form

In this section, we are going to give soliton solutions obtained from the double Wronskian solutions.

The linear system (5.9), given in Theorem 5.1, has the following solution

φ = e−(Kx+Ky+K2
∫
A(t)dt)C, ψ = eKx+Ky+K2

∫
B(t)dtD, (5.20)

where CT = (C1, C2, . . . , CN+M+2) and DT = (D1, D2, . . . , DN+M+2) are arbitrary real con-

stant vectors.
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If K = diag(k1, k2, . . . , kN+M+2) and A(t) = diag(a1(t), a2(t), . . . , aN+M+2(t)), then we have

φj = Cje
−ηj , ψj = Dje

η
j , j = 1, 2, . . . , N +M + 2, (5.21)

where ηj = kjx+ kjy + k2
j

∫
aj(t)dt.

Taking N = M = 0, C1 = D1 = D2 = 1 and C2 = −1, we have the one-soliton solution

u = −1

2

(
ln

(k2 − k1)e−(η1+η2)

cosh(η2 − η1)

)
x
,

v =
1

2
b
(

ln
k2 − k1)e−(η1+η2)

cosh(η2 − η1)

)
xy
− (k2 − k1)2 sech2(η2 − η1).

By taking M = 1, N = 0 and Ci = Di = 1, i = 1, 2, 3, we get the two-soliton solution

u = −1

2

(
ln

(k2 − k3)eη1−η2−η3 − (k1 − k3)e−η1+η2−η3 + (k1 − k2)e−η1−η2+η3

(k3 − k2)e−η1+η2+η3 − (k3 − k1)eη1−η2+η3 + (k2 − k1)eη1+η2−η3

)
x
,

v =
1

2
b
(

ln
(k2 − k3)eη1−η2−η3 − (k1 − k3)e−η1+η2−η3 + (k1 − k2)e−η1−η2+η3

(k3 − k2)e−η1+η2+η3 − (k3 − k1)eη1−η2+η3 + (k2 − k1)eη1+η2−η3

)
xy

+ 4κ
(k2 − k3)e2η1 − (k1 − k3)e2η2 + (k1 − k2)e2η3(

(k3 − k2)e−η1+η2+η3 − (k3 − k1)eη1−η2+η3 + (k2 − k1)eη1+η2−η3

)2 ,

where κ =
∏

1≤i<j≤3

(kj − ki).

89



Chapter 6

Conclusions and Remarks

In this dissertation, we have used the Wronskian and Pfaffian techniques to formulate exact solutions

to a few generalized soliton equations. In order to give more general results, we have extended the

well known equations and systems like the KP and JM equations and Boussinesq system to higher

dimensions with variable coefficients. Besides that, we have also extended the first two equations

to nonlinear Pfaffianized systems by using the Pfaffianization procedure and gave different types of

Pfaffian solutions.

Under a certain constraint on the variable coefficients, we have verified that the (3+1)-dimensional

generalized vcKP equation

(ut + α1(t)uxxy + 3α2(t)uxuy)x + α3(t)uty − α4(t)uzz + α5(t)(ux + α3(t)uy) = 0

has two classes of exact determinant solutions. One has been formulated in Wronskian determinant

form and the other, in Grammian determinant form. Indeed, we have shown that the above vcKP

equation was reduced to the Plücker relation for determinants and the Jacobi identity for determi-

nants in the cases of the obtained Wronskian and Grammian determinant solutions. In our solutions,

there is a free parameter a which satisfies

3α1(t)− a2α3(t)α4(t) 6= 0, for all values of t.

Theorems 3.5 and 3.6 present the main results on these Pfaffian solutions.

We remark that in order to get more solutions to the above generalized vcKP equation, we have

tried to replace arbitrary constants with arbitrary functions in t. But we faced a problem with a

compatibility condition of the system of the linear differential equations (3.44). It is unavoidable

that α4
α1

must be a constant. Actually, while computing the derivative fN,ty without this condition,

the term

a2

3

d

dt
(
α4

α1
)|N̂ − 2, N |
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would appear and the vcKP equation could not be reduced to the Plücker relation for determinants

or the Jacobi identity for determinants, not only that but also fN,ty 6= fN,yt.

In particular, if we put α1 = α2 = α3 = α4 ≡ 1 and α5 ≡ 0, then we will get an equivalent

solution to the one given in Theorem 2.1 in [21] with a condition on the parameter a, which accepts

any real number except ±
√

3 for a.

On the other hand, if we choose α1 = α2 = α3 = α4 ≡ −1 and α5 ≡ 0, then we will have the

equation

uxxxy + 3(uxuy)x − utx + uty − uzz = 0.

Note here that the coefficient of the term utx is −1. Using Theorem 3.5, one can get the following

Wronskian solution

u = 2(ln fN )x, fN = W (φ1, φ2, · · · , φN ),

where

φi =

p∑
j=1

dije
ηij , ηij = kijx−

1

3
a2kijy + ak2

ijz −
4a2

a2 + 3
k3
ijt,

dij and kij are free parameters, and p is an arbitrary natural number. There are not any restrictions

on our parameter a here.

The (3+1)-dimensional generalized vcKP has been extended to the following system of nonlinear

differential equations:

(ut + α1(t)uxxy + 3α2(t)uxuy)x + α3(t)uty − α4(t)uzz

+α5(t)(ux + α3(t)uy) = −8a2α4(t)α1(t)

α2(t)
(vw)x,

2

β(t)
vt + 3

α2(t)

α1(t)
uxvx + vxxx +

3

a
(vxz +

α2(t)

α1(t)
vuz) = 0,

2

β(t)
wt + 3

α2(t)

α1(t)
uxwx + wxxx −

3

a
(wxz +

α2(t)

α1(t)
wuz) = 0,

which we call the Pfaffianized (3+1)-dimensional vcKP system. Through the dependent variable

transformation

u = 2
α1(t)

α2(t)
(ln f)x, v = g/f, w = h/f,
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and under the constraint:

α1(t) = C0α2(t)e−
∫
α5(t)dt,

this extension has been mapped into the following bilinear Pfaffianized form:

(α1(t)D3
xDy +DtDx + α3(t)DtDy − α4(t)D2

z)f · f = −8a2α4(t)gh,

(D3
x +

2

β(t)
Dt +

3

a
DxDz)g · f = 0,

(D3
x +

2

β(t)
Dt −

3

a
DxDz)h · f = 0.

Theorem 3.7 presents the following Wronski-type Pfaffian solutions for the above bilinear Pfaf-

fianized system:

fN = (1, 2, · · · , 2N), gN = (1, 2, · · · , 2N − 2), hN = (1, 2, · · · , 2N + 2),

whose Pfaffian entries satisfy

∂

∂x
(i, j) = (i+ 1, j) + (i, j + 1),

∂

∂y
(i, j) = −a

2α4(t)

3α1(t)
[(i+ 1, j) + (i, j + 1)],

∂

∂z
(i, j) = a[(i+ 2, j) + (i, j + 2)],

∂

∂t
(i, j) = β(t)[(i+ 3, j) + (i, j + 3)],

where

β(t) =
4a2α1(t)α4(t)

3α1(t)− a2α3(t)α4(t)
.

Another type of Pfaffian solutions, called Gramm-type Pfaffian solutions, has been given in The-

orem 3.8 as follows

fN = (1, 2, · · · , 2N), gN = (c1, c0, 1, 2, · · · , 2N), hN = (d0, d1, 1, 2, · · · , 2N),

where the Pfaffian entries are defined by

(i, j) = cij +

∫ x

(φiψj − φjψi)dx, cij = −cji, cij = constants,

(dn, i) =
∂n

∂xn
φi, (cn, i) =

∂n

∂xn
ψi,

(dm, dn) = (cm, cn) = (cm, dn) = 0,
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with φi and ψi satisfying

φi,y = −a
2α4(t)

3α1(t)
φi,x, φi,z = aφi,xx, φi,t = β(t)φi,xxx,

ψi,y = −a
2α4(t)

3α1(t)
ψi,x, ψi,z = −aψi,xx, ψi,t = β(t)ψk,xxx.

Examples of such Wronski-type and Gramm-type Pfaffian entries have been presented.

In both results, Theorem 3.7 and Theorem 3.8, it is unavoidable that α4
α1

must be constant. Actu-

ally, without this condition we will get fN,ty 6= fN,yt.

We remark that the resulting system contains a free parameter and this characteristic implies that

Pfaffianization does not have the uniqueness property.

Since the Pfaffianization procedure depends on the the two kinds of Pfaffian identities mentioned

in the first section of chapter three, an interesting question for us is whether there exist other kinds

of Pfaffian identities which can be used to formulate new kinds of Pfaffian solutions for nonlinear

partial differential equations.

We have computed a bilinear Bäcklund transformation for the (3+1)-dimensional generalized KP

equation

uxxxy + 3(uxuy)x + utx + uty − uzz = 0.

The facts used in our construction are the exchange identities for Hirota bilinear operators. The

obtained bilinear Bäcklund transformation consists of six bilinear equations and involves nine arbi-

trary parameters. It is therefore a pretty large system, which in turn implies that the above (3+1)-

dimensional generalized KP equation should have diverse solutions. Indeed, two classes of expo-

nential and rational traveling wave solutions with arbitrary wave numbers have been constructed

from the proposed bilinear Bäcklund transformation.

It is interesting to note that the condition (3.108) has a solution

k = l = m = 0, ω 6= 0,

but this makes it impossible to solve (3.107). Therefore, the corresponding function

f ′ = −ωt
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provides a solution for the generalized bilinear KP equation (3.90), but it is not generated from the

bilinear Bäcklund transformation (3.98) associated with f = 1. It is actually a limit solution of the

presented polynomial solutions.

We remark that the above (3+1)-dimensional generalized KP equation possesses linear subspaces

of exponential wave solutions [62, 63]. This shows a nice integrability property that nonlinear

equations normally do not possess. One can also get some nonlinear superposition formulas of

solutions generated from the proposed bilinear Bäcklund transformation [84, 99], but it is hard to

prove that the resulting functions are solutions due to a large number of different equations involved

in the Bäcklund transformation. To overcome this complexity, one should find a bilinear Bäcklund

transformation consisting of a small number of bilinear equations. However, it is a very difficult

challenge for us to get a bilinear Bäcklund transformation defined by a system of less than six equa-

tions, for example, two or three equations for the above (3+1)-dimensional generalized KP equation.

Some new specific exchange identities must be developed for use in merging terms resulted from

P = 0. There might also be other equations different from P = 0 which one can begin with to

formulate bilinear Bäcklund transformations.

Similar to what have been done in Chapter 4, we have computed Wronskian and Grammian

solutions to the (3+1)-dimensional nonlinear equation of Jimbo-Miwa (JM) type

uxxxy + 3(uxuy)x − uyt − 3uxz = 0.

These solutions have been presented in Theorems 4.1and 4.2. Interestingly this equation has also

Pfaffian solutions, presented in Theorem 4.3, which says that

u = 2(ln fN )x, fN = (1, 2, · · · , 2N),

where the entries of the Pfaffian fN are defined by

(i, j) = (i, j) = cij +

∫ x

−∞
Dxφi · φjdx, i, j = 1, 2, · · · , 2N,

with cij(= −cji for i 6= j) are constants, Dx is the Hirota D-operator and all φi, 1 ≤ i ≤ 2N,

satisfy the following linear system of differential equations

φi,y = a

∫ x

−∞
φi(x)dx, φi,z = aφi,x, φi,t = φi,xxx,

where a is a nonzero parameter, solves the above (3+1)-dimensional JM equation. Examples of the

Pfaffian solutions were made, along with a few plots of particular solutions.
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We have also made the following extension

uxxy + 3uxxuy + 3uxuxy − uyt − 3uxz + 12(wvx − vwx)x = 0,

− vt + 3uxvx + vxxx + 3vxy + 3vuy = 0,

− wt + 3uxwx + wxxx − 3wxy − 3wuy = 0,

for the above (3+1)-dimensional JM equation by using the Pfaffianization procedure [48]. In The-

orem 4.4 we have presented our main result on Wronski-type Pfaffian solutions, which says that the

above (3+1)-dimensional JM system of nonlinear equations has the following solutions

u = 2(ln f)x, v = g/f, w = h/f,

where

f = fN = (1, 2, · · · , 2N),

g = gN = (1, 2, · · · , 2N − 2),

h = hN = (1, 2, · · · , 2N + 2),

with the Pfaffian entries (i, j) satisfy the conditions

∂

∂x
(i, j) = (i+ 1, j) + (i, j + 1),

∂

∂y
(i, j) = (i+ 2, j) + (i, j + 2),

∂

∂t
(i, j) = −2[(i+ 3, j) + (i, j + 3)],

∂

∂z
(i, j) = (i+ 4, j) + (i, j + 4).

The second result has been presented in Theorem 4.5, which says that the above (3+1)-dimensional

JM system of nonlinear equations has the following Gram-type Pfaffian solutions

u = 2(ln f)x, v = g/f, w = h/f,

where

f = fN = (1, 2, · · · , 2N),

g = gN = (c1, c0, 1, 2, · · · , 2N),

h = hN = (d0, d1, 1, 2, · · · , 2N),
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and the Pfaffian entries are defined by

(i, j) = cij +

∫ x

(φiψj − φjψi)dx, cij = −cji, cij = constants,

(dn, i) =
∂n

∂xn
φi, (cn, i) =

∂n

∂xn
ψi,

(dm, dn) = (cm, cn) = (cm, dn) = 0,

where φis and ψis satisfy the following linear conditions

φi,y = φi,xx, φi,z = φi,xxxx, φi,t = −2φi,xxx,

ψi,y = −ψi,xx, ψi,z = −ψi,xxxx, ψi,t = −2ψk,xxx.

On the other hand, the (3+1)-dimensional vcJM equation

α1(t)uxxxy + 3α2(t)(uxuy)x − uyt − 3α3(t)uxz + 2α4(t)uy = 0

has been transformed into the following bilinear form

(α1(t)D3
xDy −DyDt − 3α3(t)DxDz)f · f = 0,

under the constraint:

α1(t) = C0α2(t)e−
∫
α4(t)dt,

where C0 6= 0 is an arbitrary constant. This equation is extended to the following Pfaffianized JM

system

(α1(t)D3
xDy −DyDt − 3α3(t)DxDz)f · f + 12aα3(t)Dxg · h = 0,

(D3
x −

1

α1(t)
Dt +

3

a
DxDy)g · f = 0,

(D3
x −

1

α1(t)
Dt −

3

a
DxDy)h · f = 0.

Wronski-type and Gramm-type Pfaffian solutions have been given to the above bilinear Pfaffian-

ized JM system as we did for the constant coefficient JM equation.

The last result in this dissertation is given in Theorem 5.1, in which we introduced the following

new system of nonlinear partial differential equations which could be considered as a generalization

of a well known Boussinesq system:

ut + α1(t)uxy + α2(t)(uw)x + α3(t)vx = 0,

vt + β1(t)(wvx + 2vuy + uvy) + β2(t)(uxwy − (uy)
2) + β3(t)vxy + β4(t)uxyy = 0,

96



where wx = uy. Under the following dependent variable transformations:

u = −1

2
(ln p)x,

v =
1

2
b(ln p)xy − pq,

the above (2+1)-dimensional Boussinesq system is transformed into the (2+1)-dimensional AKNS

system

pt + a(t)(
1

2
pxy − qp2) = 0,

qt − a(t)(
1

2
qxy − pq2) = 0,

under the following constraint:

β1(t) = α2(t) = 2α3(t) = −a(t), β2(t) = ba(t),

α1(t) = −β3(t) = a(t)
2 (1− b), β4(t) = ba(t)

2 (b− 2),

where a(t) is an arbitrary smooth function and b is a nonzero arbitrary constant.

Under the following rational transformations,

p =
g

f
, q =

h

f
,

the above AKNS system has been transformed into the following bilinear form

DxDy(f · f) + 2gh = 0,

(Dt +
1

2
a(t)DxDy)g · f = 0,

(Dt −
1

2
a(t)DxDy)h · f = 0,

where Dx, Dy and Dt are Hirota bilinear differential operators. A double Wronskian exact solution

has been formulated for the above bilinear system given by

f = WN+1,M+1(φ;ψ), g = 2WN+2,M (φ;ψ) and h = −2WN,M+2(φ;ψ),

where φ and ψ satisfy the following linear system

φx = −Kφ, φy = φx, φt = −A(t)φxx,

ψx = Kφ, ψy = ψx, ψt = B(t)ψxx,
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with K = (kij)(N+M+2)×(N+M+2) being a matrix with arbitrary constant entries kij ,

A(t) = (aij(t))(N+M+2)×(N+M+2) is a matrix with arbitrary smooth function entries and∑N+M+2
i=1 aii(t) = a(t), but B(t) = (bij(t))(N+M+2)×(N+M+2) whose entries defined to be

bij(t) =

 aij(t), if i = j,

−aij(t), if i 6= j.
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Generalized KP Equation, Appl. Math. Lett., (2012), In press.
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