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Fabrication and Analysis of Poly(3-hexylthiophene)  Interfaces Using Electrospray 
Deposition and Photoemission Spectroscopy 

 
James Lyon 

 
ABSTRACT 

 
 P3HT (Poly(3-hexylthiophene)) is an organic polymer that shows promise as an 

active material in semiconducting electronics.  It is important to study the electronic 

properties of this material in order to determine its efficacy in such devices.  However, 

many current studies of thiophene only examine the oligomer, since it is a simpler 

material to investigate.   

In this study, several P3HT interfaces were analyzed to determine their electronic 

properties.  The P3HT was deposited on Au, highly-ordered pyrolitic graphite (HOPG), 

and indium tin oxide (ITO) substrates via electrospray deposition.  The depositions were 

performed in several steps, with x-ray photoemission spectroscopy (XPS) and ultraviolet 

photoemission spectroscopy (UPS) measurements taken between each step without 

breaking the vacuum.  The resulting series of spectra allowed orbital line-up diagrams to 

be generated for each interface, giving detailed analysis of the interfacial properties, 

including the charge injection barriers and interface dipoles.  The results, when compared 

to similar oligomer-based investigations, show a difference in the orbital line-up between 

oligomeric and polymeric P3HT junctions. 
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Introduction 
 
 The last decade has seen increased interest in the fabrication of polymer 

electronics.  Organic/inorganic interfaces have promising potential application in so-

called “plastic electronics,” thanks to their material properties and low cost.  The 

conjugated polymer poly(3-hexylthiophene) (P3HT) is a promising organic material for 

these devices, due to its relatively high drift mobility and semiconducting properties.  

Recent devices utilizing P3HT interfaces include organic solar cells [1, 2] and field-effect 

transistors [3, 4]. 

 Electronic devices typically rely on material interfaces for operation.  These 

interfaces create an asymmetric junction which drives current in a particular direction.  

Different materials create interfaces with differing properties.  It is necessary to 

investigate the properties of these junctions to determine which materials are optimal for 

a particular device.  These investigations are frequently performed using Photoemission 

Spectroscopy. 

 Photoemission spectroscopy (PES), which includes x-ray PES (XPS) and 

ultraviolet PES (UPS), is a surface science technique that provides information about the 

surface of a sample.  XPS shows the chemical interactions of the interface and of the 

individual molecules themselves, while UPS allows determination of the many of the 

interface properties, including charge injection barriers and interface dipoles.  It is a 

surface sensitive technique and is not sensitive to the bulk of the substrate, thus giving a 
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view only of the surface and the newly created interface.  Its high surface sensitivity 

requires performance of the measurements in UHV to avoid contamination issues. 

 Interfacial investigations using PES were first carried out by Waldrop and Grant 

on inorganic interfaces [5].  As organic materials began to be considered for use in 

electronic devices, this method was expanded to organic interfaces, such as 

polymer/metal junctions [6]. 

 Polymeric interfaces, including ones utilizing P3HT, are difficult to fabricate, 

mainly due to the fragility of the polymers.  Evaporation of the polymer in vacuum is 

ruled out because of the high molecular weight of polymers, making them nonvolatile 

even at high temperatures.  Many investigators have taken to creating polymeric films ex-

situ through the use of spin coating.  Such a process was carried out by Salaneck et al. in 

their investigation of organic-metal interfaces via UPS [6], and by Atreya et al. in a 

similar study that examined the interactions between evaporated metals and the polymer 

MEH-PPV [7].  Ex-situ creation of polymeric films, however, exposes the polymeric 

substrate to ambient conditions, introducing environmental contaminants.  Evaporation of 

metal onto a polymeric substrate in-vacuum is a possibility, but the evaporated, highly-

energetic metals atoms may damage the polymer film.  To allow for in-situ evaporation 

of organic materials for interfacial investigations, some researchers substituted the 

oligomer for the polymer when investigating the properties of organic interfaces, basing 

their actions on the apparent similarities between the oligomers and polymers of organic 

materials.  Oligomers have a lower molecular weight than their polymeric counterparts, 

and as such are easier to evaporate.  However, assumptions about the similarities between 

oligomers and polymers may create challenges in the interpretation of the nature of the 
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polymeric junctions.  Fujimoto et al. and Chandekar and Whitten have both investigated 

the differences in electronic structure between short and long-chain oligomer films [8, 9].  

Other researchers have focused on other non-vacuum techniques to investigate these 

interfaces, such as I/V curves. 

 Electrospray thin film deposition is a fabrication process that eliminates these 

preparatory constraints.  Electrospray allows the direct injection of macromolecules from 

solution into high vacuum.  It has been primarily used in the past to introduce large 

molecules into mass spectrometry devices, and has only recently been considered for thin 

film deposition in vacuum [10-12].  The injected polymers can be deposited on various 

substrates in several steps without breaking the vacuum and without damage to the 

polymer.  This multi-step deposition process permits x-ray photoemission spectroscopy 

(XPS) and ultraviolet photoemission spectroscopy (UPS) measurements in between 

deposition steps.  The thin films produced by electrospray deposition allow XPS and UPS 

to clearly characterize the resulting interface. 

 Several previous investigations of P3HT interfaces examined only the finished 

interface, without examining its properties as it was grown [6, 7].  The studies presented 

here, in contrast, use the multi-step deposition technique in which the interface was 

analyzed at each step of deposition, allowing a detailed characterization of the junction 

during its formation.  Clean samples were exposed to the deposition process and then sent 

in-situ to an analysis chamber, where PES was performed.  The process was then 

repeated several times, each deposition step longer than the previous one. 

 This multi-step process allowed evaluation of the electronic interface, detection of 

charging and other measurement-related phenomenon, and a view of the subtle growth of 
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interface characteristics such as band bending.  The combination of electrospray 

deposition to grow actual polymeric interfaces, the multi-step deposition process, and in-

situ characterization makes these sets of experiments unique in their ability to probe the 

exact details of the growth of these interfaces and their precise device characteristics. 
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Materials 
 
 Au (gold) is a transition metal element, so called because of its partially filled d-

sub-shell.  D-orbital electrons have a high likelihood of delocalizing within the metal 

lattice, and this gives gold and other transition metals a number of properties, such as 

high tensile strength, density, melting and boiling points, and its characteristic color.  

Because of its high conductivity and resistance to corrosion, gold is frequently used as 

electrical contacts for various solid state devices. 

 As a solid, gold forms a continuum of energy levels to create a valence band, as 

with other solids.  The d-bands of gold contain more energy levels than its s and p 

orbitals within a narrower range [13].  This leads to high electron density levels at the 

energy levels where the d-bands lie, and consequently high, sharp peaks in gold’s valence 

band energy spectra.  This feature can be clearly seen in Figure 19.  The large peaks in 

the gold sample’s valence band correspond to density spikes from the element’s d-bands. 

 Most metals possess a cloud of electron gas about their surface, creating a dipole 

that increases the work function of the metal [14].  When an organic material is deposited 

onto the metal, the cloud of electrons is “pushed back” into the surface of the metal, 

reducing the work function.  It is the pushing back of the electronic cloud which results in 

the large interface dipoles found between gold and P3HT in this experiment. 
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HOPG 

 HOPG (highly ordered pyrolitic graphite) is one of the allotropes of carbon.  It 

consists of sheets of hexagonally ordered carbons.  HOPG has a relatively high electrical 

conductivity compared to diamond.  This is due to the presence of delocalized pi orbital 

electrons across the hexagonal lattices of the graphite sheets.  The hybridized sp2 orbitals 

form covalent bonds between the carbon atoms within a single sheet, while the sheets are 

held together by much weaker van der Waals forces, making layers easy to shear off one 

another and permitting the cleaving of HOPG sample in situ to achieve a contamination-

free surface. 

 Partially due to its lack of d-orbital electrons, HOPG has relatively weak valence 

band emissions.  This makes it an ideal substrate for investigating the formation of P3HT 

valence band emissions as the P3HT is deposited.  The HOMO cutoff position of P3HT is 

more easily seen on HOPG substrates.  Consequently, a more accurate P3HT ionization 

energy can be obtained, which can be used for the evaluation of experiments on more 

challenging substrates 

 HOPG creates only weak interface dipoles with organic materials, due to the lack 

of primary bonding between the HOPG and the polymer.  The organic material adheres to 

the HOPG only through van der Waals forces, circumventing the usual processes for 

creating dipoles. 

ITO 

 Indium Tin Oxide (In2O3:Sn or ITO) is a mixture of indium oxide and tin oxide.  

Transparent and colorless, its high electrical conductivity makes it an ideal electrode for 

many devices, especially the transparent layer of solar cells. 
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 Since ITO is a degenerately n-doped material [15], its Fermi level can be expected 

to lie within the conduction band, and not in the bandgap, as found in moderately doped 

semiconductors.  However, the surface of the ITO contains a higher concentration of 

oxygen, due to the ITO’s treatment in ambient conditions.  This excess of oxygen reduces 

the degeneration of the ITO, lowering its Fermi level to inside the band gap and thus 

increasing its work function.  The high work function of such an ITO sample makes it a 

promising anode for electronic devices.  Figure 1 shows a comparison between ITO films 

with a 0% and 10% oxygen content. 

 

Figure 1: Band Diagram for Two ITO Films With Differing Oxygen Contents (from 
Reference [15]) 

 

Polythiophene 

 Polythiophene is an organic semiconducting polymer.  Semiconducting polymers 

are a relatively recent phenomenon, having been discovered at the end of the 1970’s by 

Heeger and MacDiarmid, who synthesized a polyacetylene chain with a 12 orders of 

magnitude increase in conductivity upon charge-transfer oxidative doping [16].  Their 

conductivity is highly anisotropic, mainly along the chain of the polymer.  Work on 
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conducting polymers (CP) began to accelerate, with many new suitable organic materials 

researched.  Researchers were interested in CP because of their advantages over 

traditional semiconducting materials: low cost, ease of processing, light weight, and 

resistance to corrosion. 

 Thiophene is an aromatic, heterocyclic compound.  The non carbon element in the 

compound is sulfur, which forms one node of a ring of alternating single and double 

bonds with four atoms of carbon.  The single bonds are formed by sigma bonding 

between electrons in the plane of the carbon nuclei.  The double bonds are formed via a 

sigma bond and a pi bond formed by an overlap of p-orbitals above and below the plane 

of the ring.  These orbitals, since they are out of the plane of the nuclei, are free to 

interact and move as they wish, and hence become delocalized.  In addition to these 

electrons in the pi bonds, the lone electron pairs on the sulfur atom also participate 

significantly, giving thiophene a high charge mobility and its semiconducting properties.  

This type of system is known as a conjugate system: the single and double bonds 

delocalize the pi electrons to lower the overall energy of the molecule and increase 

stability.  Figure 2 displays a diagram of a P3HT molecule. 

 

 

Figure 2: Diagram of a Monomer in a Poly(3-hexylthiophene) Chain (from 
Reference [16]) 
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Interfaces 

Metal-Metal Interfaces 

In a metal, energy states are filled to the Fermi level of the sample, there is a 

charge transfer that occurs from the lower work function metal to the higher work 

function.  Figure 3 shows two metals before and after contact.  This happens because the 

electrons in the lower work function metal possess a higher energy than those in the 

lower work function metal.  Upon contact, the lower work function’s electron tunnel over 

to the lower available energy states in the higher work function metal.  This electron 

transfer reduces the total energy of the dual system, but at the same time negatively the 

higher work function metal with regard to the lower work function metal.  This charge 

imbalance creates a contact voltage (or potential difference) between the two metals [14]. 

 

 

Figure 3: Two Metals Before and After Contact 

 

 

 9



Metal-Semiconductor Interfaces: Schottky Barriers 

When a metal and a semiconductor are brought into contact, there is the 

possibility of the formation of a Schottky barrier.  A Schottky barrier is an interface with 

rectifying properties; that is, charge is able to flow easily in one direction, but is impeded 

when attempting to flow in the other direction.  Figure 4 shows a metal and 

semiconductor before and after contact. 

In the Schottky barrier model, we assume that Φm > Φn, the work function of the 

smaller is greater than that of a p-type semiconductor (the doping type of P3HT).  This 

impels the holes in the VB of the semiconductor to tunnel to the higher energy states 

available in the metal.  This creates a contact (built-in) potential, as with metal-metal 

contacts.  This potential eventually becomes strong until to impede the further flow of 

charge, and the Fermi levels within the materials equilibrate.  This charge transfer creates 

a depletion region in the semiconductor near to the metal.  Since this region has been 

depleted of charge carriers, it constitutes a space charge layer (SCL), or a non-uniform 

internal field directed away from the surface of the metal.  This space charge layer causes 

the bands of the semiconductor to bend, because the charges within the semiconductor 

are not free to move and redistribute the charge to keep the bands in the SC flat.  Figure 4 

shows a typical metal-semiconductor contact.  The PE barrier for charge moving from the 

metal to the semiconductor is known as the Schottky barrier height Φb.  When the 

junction is biased so that the metal is connected to the negative terminal and the 

semiconductor is connected to the positive terminal, a voltage drop occurs at the 

depletion region.  This causes the bands of the semiconductor to shift downwards, while 

keeping Φb the same.  The decrease in the steepness of the VB permits holes to overcome 

the potential barrier and move to the metal, creating a current. 

 10



Reversing the bias causes the SC bands to shift further upward.  The holes in the 

metal cannot overcome the Schottky barrier height to reach the SC, and so no current 

flows. 

 

 

Figure 4: A Metal and a Semiconductor Before and After Contact 
 

Interface Dipoles 

 In both metal-metal and metal-semiconductor interfaces, a common vacuum level 

(VL) is usually assumed.  However, this is generally not the case for most metal-organic 

contacts.  Generally, a surface dipole exists at the interface between the metal and the 

organic material [14]. 

 Around the surface of a metal, the electrons are free enough to form an “electron 

cloud.”  This creates a surface dipole, since the area around the metal has become 

negatively charged by the electron cloud, and the consequent lack of electrons inside the 

surface makes the bulk side positive.  When a molecule comes into contact with the metal, 

a dipole forms between the two materials.  This can be due to interfacial charge transfer, 

redistribution of the metal’s electron cloud, an interfacial chemical reaction, and other 
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localized charge rearrangements.  The pushing of the metal’s electrons back into its 

surface reduces the free metal dipole, thus reducing the work function of the metal at the 

interface.  This is displayed as an asymmetry in the vacuum level between the metal and 

the organic layer.  Figure 5 shows the formation of a dipole between a metal and an 

organic layer after contact, while Figure 6 shows the various ways such a dipole could 

form. 

 Such interface dipoles are important to consider when investigating the properties 

of an interface, as they have strong repercussions on the properties of the junction.  A 

misalignment of the vacuum level between the metal and the organic material reduces the 

band bending at the organic material’s surface, changing the injection barriers of the 

interface and thus altering the interface’s performance when used in electronic devices.  

Figure 7 shows a comparison of a metal-organic junction with and without an interfacial 

dipole, comparing the effects of the dipole on its band structure. 

 

Metal-Polymer Interfaces 

 Polymeric materials differ in their electronic structures from semiconductors.  

Organic polymers are composed of polymeric chains held together by weak van der 

Waals attraction.  This means that their core atomic orbitals (AOs) are still localized, but 

their valence levels interact to form delocalized molecular orbitals (MOs).  The density of 

these orbital levels can be fine-grained or more spaced apart, depending on the number of 

atoms in the polymer chain [14].  The highest MO in an organic polymer is known as the 

highest occupied molecular orbital, or HOMO, and the lowest energy level in the 

conduction band is known as the lowest unoccupied molecular orbital, or LUMO.  
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Electrons in the valence band and lower conduction bands of a polymeric material are 

localized and can only travel along the path of the one dimensional polymeric chain, 

whereas those in the higher conduction band levels become delocalized and can freely 

travel from chain to chain.   

 

 

Figure 5: Formation of a Dipole Between a Metal and an Organic Layer(from 
Reference [14]) 
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Figure 6: Possible Factors Forming and Affecting Interfacial Dipole Layers (from 
Reference [14]) 

 

 

Figure 7: Comparison of a Metal-Organic Interface a) With and b) Without the 
Shift in Vacuum Level (VL) Corresponding to a Dipole (from Reference [14]) 
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Electrospray 
 

 Electrospray is a method which allows direct injection of macromolecules into 

high vacuum.  It is useful for processes such as mass spectrometry and thin film 

depositions on substrates. 

 Growing organic thin films can be a challenging process.  Organic materials 

cannot be deposited by evaporation, because their high molecular weight makes them 

difficult to evaporate, and the fragility of the polymers is increased by the heat.  Spin 

coating is a popular method, but must be done in ambient conditions, exposing the 

subsequent film to environmental contaminants. 

Figure 8 shows a schematic of the Electrospray process.  Electrospray works by 

creating small ionized droplets by application of an external electric field between a 

capillary and a counter electrode.  The charged molecules within the solution move from 

liquid phase to gas phase during the process, where they are directed for use in a mass 

spectrometer or for thin film growth.  During the process, an inert or nebulizing gas is 

sometimes used to increase flow rates and permits use of solvents with higher surface 

tensions. 
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Figure 8: Process of Electrospray Deposition Technique (from Reference [17]) 

 

Historical Background 

 The first known reference to the electrospray phenomenon was by W. Gilbert in 

the year 1600, in his book “De Magnete,” where he discussed the most recent discoveries 

in the then nascent fields of electricity and magnetism [18].  Nearly 200 years later, G.M. 

Bose [19] and L’abbe J. – A. Nollet [20] both noted a possible existence of electrospray 

in their experiments, the former while applying electric potential to a glass capillary and 

the latter while experimenting with human blood and electricity. 

 Until the 1960’s, electrospray was mainly utilized as a painting technique, the 

process being described by Burton and Weigand.  During the 1960’s,  the Taylor cone 

was first discovered by Sir Geoffrey Ingram Taylor [21].  In the 1980’s, the groups of 
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Fenn [22, 23] and Alexandrov [24] independently used electrospray to generate gas phase 

ions for mass spectrometry successfully for the first time.  In 1987, Bruins et al. used a 

process known as pneumatically assisted electrospray, or Ionspray, which first used a 

nebulizing, inert gas to assist in charge aerosol formation [25].  In 1988, Fenn et al. [26] 

achieved multiple charging, making it possible to analyze large molecules on mass spec 

machines with limited mass range, and greatly increasing interest in electrospray.  A 

technique called Nanospray was developed by Wilm and Mann in the mid 1990’s to 

generate electrospray using low flow rates (nl min-1) [27]. 

 

Physical Basis 

The process of ESI can be broken down into three steps: 

1. Charge droplet formation at the capillary tip. 

The charge is induced by an external applied electric field between the 

capillary tip and a counter electrode.  Charge separation occurs, the charge 

depending on the bias of the capillary, and if the field is strong enough, a 

Taylor cone will develop and protrude from the capillary, as well as a thin 

liquid jet, where small, charged droplets are generated in a fine mist. 

 During the charge droplet formation stage the Taylor cone can be 

observed.  This cone is created by the rearrangement of charge produced by 

the external field.  If the solution is conductive enough, the solution’s cations 

will (in positive mode) move towards the field’s strongest point, the tip of the 

capillary, while the anions will migrate away from the surface.  The 

counteracting of this electric force with the surface tension of the liquid will 
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create a cone (the Taylor cone) at the capillary tip.  When the external 

potential becomes high enough, a liquid jet will emerge from the cone, 

ejecting charged droplets. The potential needed to generate a stable 

electrospray and the subsequent Taylor cone can be generated with this 

equation [28]: 

   Von = A1(2γrccos(θ)/ε0)1/2ln(4d/rc) 

Where Von is the electrospray onset voltage (V), A1 is the dimensionless 

constant ~0.5-0.7, γ is the surface tension (Nm-1), rc is the capillary radius (m), 

θ is the half angle of the Taylor cone apex, ε0 is the electrical permittivity in 

vacuum (C2N-1m-2), and d is the spray needle – counter electrode distance 

(m) 

 

2. Evaporation of solvent from the droplets. 

As the charged droplets are impelled forward by the external field, their radius 

will decrease as the solvent evaporates and is pumped out by vacuum pumps.  

At a point known as the Rayleigh limit, the Coulombic forces will overcome 

the liquid’s surface tension and the droplet will undergo fission, separating 

into several smaller droplets.  This process can repeat, creating even smaller 

and more densely charged droplets. 

 

3. Formation of gas phase ions. 

At a certain point in the electrospray process, the solvated ions transfer to gas 

phase ions.   Two main theories have been proposed for this process: the 
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charged residue mechanism (CRM) and the ion evaporation mechanism (IEM).  

It has been suggested that both these processes can occur, but for differing 

analyte types.  The two methods of gas phase ion formation have been debated 

since the 1960’s.  The Charged Residue Model (CRM), by Dole et al. [29], 

reasons that the droplets keep undergoing fission into smaller and smaller 

droplets until only one macromolecule per drop remained.  The evaporation of 

the rest of the solvent leaves the macromolecule intact and isolated.  The Ion 

Evaporation Model (IEM) by Iribane and Thomson [30] proposed that when 

the droplets have shrunk to a certain size, the ionic macromolecules would be 

emitted directly from the droplets. 
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Photoemission Spectroscopy 
 
 Photoemission (or photoelectron) spectroscopy (PES) is an analysis procedure 

whereby monochromatic photons impinge upon a sample, ionizing electrons.  This 

process of ionization, known as the photoelectric effect, allows a detailed investigation of 

a material’s electronic properties and chemical composition.  The emitted electrons have 

a kinetic energy equal to the energy of the photons minus the energy required to ionize 

them.  The electrons are collected in an analyzer, where a count of the number of 

electrons with a particular kinetic energy is performed.  This produces a spectrum which 

can be used to characterize a sample. 

 Two types of PES were used in these experiments: x-ray photoemission 

spectroscopy (XPS) and ultraviolet photoemission spectroscopy (UPS).  The soft x-rays 

used for XPS are in the 200-2000 eV range and can be used to examine the core energy 

levels of a sample, while UPS, using narrow line width UV light in the 10-45 eV range, is 

used to examine the valence bands with high resolution. 

 

Physical Basis 

 The photoelectric effect was first observed by Alexandre Edmond Becquerel in 

1839, by exposing an electrode in a conductive solution to light.  Despite this, Heinrich 

Hertz is generally recognized to be the discoverer of the phenomenon (giving the effect a 

third, though obsolete nomenclature: The Hertz effect).  His experiment consisted of two 

arcs, a driving and secondary one.  The secondary arc was observed to be more 
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pronounced when it was not shielded from the driving arc by a pane of glass.  

Substituting the glass shield for a quartz one produced no noticeable difference in the arc.  

Hertz concluded that ultraviolet light from the driving arc increased the arc length by 

assisting the electrons in jumping across the gap.  The glass pane absorbed the UV and 

hence reduced the arc length, while the quartz, which does not absorb UV, did not affect 

it.  Hertz made no further effort to explain the results. 

 It was Einstein who first proposed an explanation of the effect, using the newly 

formulated rules of quantum mechanics.  It was observed that higher intensity light 

increased the current of the emitted electrons, whereas higher energy did not.  Einstein’s 

explanation of the photoelectric effect in 1905 [31] was part of his annus mirabilis burst 

of papers, during which he also revealed special relativity and the equivalence of matter 

and energy. 

 When a photon impinges on an electron, it imparts all its energy to the electron 

(Einstein concluded definitely that a photon is not able to transfer a portion of its energy).  

If the energy received by the electron is greater than the work function of the material the 

electron resides in, the electron is ionized and ejected out from the material.  The energy 

of the photon striking the electron is 

 E = hυ          (1.) 

where E is the energy, h is planck’s constant, and υ is the frequency of light.  The binding 

energy, BE, of the electron is the energy required to move an electron from its initial 

position to the Fermi level of the solid.  The Fermi level is located in between the high 

occupied molecular orbital (HOMO) and the vacuum level.  The work function, Φ, of the 

material is the energy difference between the Fermi level and the vacuum level.  When a 
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photon impinges on an electron, the electron must overcome first its BE and then the 

material’s Φ in order to escape into vacuum.  If it manages to ionize, the remaining 

energy of the photon is considered to be the electron’s kinetic energy, KE.  Thus,  

 KE = hυ – BE – Φ        (2.) 

 

 

Figure 9: Photoelectric Effect for a Model Atom 

 

 Figure 9 shows the photoelectric effect schematically.  In this presentation, the 

work function of the material is included in the binding energy.  The loss of the electron 

produces a positively charged hole is represented by a white circle.  The KE of the 

ionized electron is shown on the right to be the photonic energy after the loss of the 

energy required to ionize the electron. 
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Figure 10: Photoelectric Effect for a Model Atom at 2p Orbital 
 

 Figure 10 displays the photon striking a lower BE electron, this one in the 2p 

orbital.  Since the electron has a lower BE, more of the energy of the photon is 

transformed into the ionized electron KE. 

 When an electron is emitted from a sample, it leaves a hole behind in its orbital.  

This hole may be filled by another electron dropping down from a lower BE.  The 

lowering of this secondary electron’s energy causes the electron to emit a photon, which 

in turn may impinge upon another electron and ionize it.  This emitted electron is known 

as an Auger electron.  Since the Auger electron receives its energy from another electron, 

its energy is independent of the original photon energy, and instead depends on the 
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difference in energy between the secondary electron’s BE before and after dropping to a 

lower orbital. 

 Figure 11 shows the process of Auger electron creation.  Line A shows an 

electron dropping from its initial state to the orbital of a previously ionized electron.  Its 

release of energy upon dropping has the effect of ionizing a second electron into the 

vacuum level, line B.  Since Auger electrons are referenced by the orbitals involved in 

the process, the electron would be called a KL23L23, or KLL electron. 

 

 

Figure 11: Auger Effect for a Model Atom 
 

PES Equipment 

 PES equipment consists of a fixed energy radiation source, a sample, an analyzer, 

an electron detector, and a high vacuum environment.  The radiation source varies 

depending on the type of PES used.  Other devices may be used to enhance analysis, such 
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as an electron gun and a voltage generator to bias the sample and improve electron 

collection.  Figure 12 shows an example schematic of a PES system. 

 The photon source is typically an X-ray gun for XPS or an ultraviolet (UV) gas 

discharge lamp for UPS.  The x-rays produced by the x-ray gun in this study came from 

Mg (hυ = 1235.6 eV).  The UV source produced He I (hυ = 21.22 eV) photons. 

 The analyzer acts as a band pass filter, allowing only electrons of a certain energy 

range through.  This is done via tunable magnetic or electrics fields.  Those outside the 

set range will be deflected and absorbed by the analyzer walls. 

 The analyzer used in these experiments was a spherical deflection analyzer (SDA).  

It consists of two concentric hemispheres, as shown in Figure 12.  The analyzer is 

arranged to be able to collect the electron released from the sample by the photoelectric 

effect.  The analyzer is preset to allow the desired electrons in.  Before reaching the 

analyzer, the electrons must first pass through a physical aperture.  This is settable to 

different sizes.  The smaller the aperture size, the lower the intensity of the electrons that 

reaches the analyzer.  While the resolution is higher, the aperture is typically set to a low 

setting for UPS, due to the high intensity of UV produced by the discharge lamp, which 

in turn generates a large number of ionized electrons.  A too high intensity of electrons 

can damage the analyzer.  XPS can be safely used with higher aperture settings. 

 The electrons must pass another barrier before final entry into the analyzer: the 

retardation stage.  This retardation is essentially a high pass filter, removing low energy 

electrons which tend to increase noise.  The retardation energy for the electrons is 

constantly adjusted to allow electrons of different energies through and produce a full 

spectrum of energy levels.   
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 Now the electrons enter the hemispherical analyzer, where they are transported 

and filtered via the application of an electric field between the two plates.  This voltage is 

kept at a user-defined constant to determine the variance of electron energies that are 

permitted through, and hence adjusts the resolution of the scan. 

 An electron detector on the other side of the analyzer then measures the intensity 

of the electrons at each energy level.  The electron detector used in this study is an 

electron multiplier tube, although micro-channel detectors are also common in PES 

systems.  The electron detector creates a cascade of electrons produced by the initial 

electrons exiting the analyzer.  This is accomplished by a voltage applied in the detector, 

giving the initial electrons additional energy.  These electrons strike the detector wall, 

creating several more electrons for each initial electron.  The process repeats until a 

cascade of electrons has been created, which reach the end of the detector and are 

measured. 

 It should be noted that the work function of the sample is not needed to determine 

the binding energy of the emitted electrons.  Due to a common ground connection, the 

Fermi levels of the sample and spectrometer are equilibrated, their equilibration 

confirmed via calibration.  Thus, the measured electrons have a binding energy given by: 

 KE = hυ – BE – Φs. 

where Φs is the work function of the spectrometer. 
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Figure 12: Photoemission Spectroscopy Equipment Schematic (from Reference [33]) 

 

 The sample is grounded via contact with a sample holder to prevent charging.  

Lack of grounding of the sample will prevent replacement of the electrons emitted during 

the emission process, and will leave the sample positively charged, thus ostensibly 

increasing the binding energy of the electrons as exposure time increases.  This ground is 
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also used as a reference level for the Fermi equilibration of the sample and spectrometer, 

as described above. 

 The spectroscopy process is performed in a high vacuum environment to sustain 

the integrity of a sample’s surface composition during measurements.  A high vacuum 

environment will allow the sample to remain contamination-free for up to several days if 

the pressure is low enough.  By contrast, even a few seconds spent in ambient conditions 

will cause the sample to accumulate contaminants on its surface that will significantly 

affect the measurements. 

 

X-ray Photoelectron Spectroscopy 

 X-rays are ideal for probing the core levels of the molecules in a sample due to 

their high energies.  Each element contains electrons at characteristic binding energies 

that can be measured.  Evaluation of the full range of electron energies emitted by the x-

rays allows a detailed spectrum of these characteristic energies, and allows a 

determination of which elements are present in the sample, depending on the orbital 

peaks present.  Given similar ionization cross sections, a higher peak implies a greater 

number of the element within the sample.  Only electrons with binding energies smaller 

than the x-rays’ energy value can be probed, as those with higher binding energies will 

not receive enough energy to leave the sample. 

 Figure 13 shows an example of a cleanly sputtered Au sample characterized by 

XPS.  The resulting peaks are all characteristic of Au. 

 Electrons within the same orbital may produce different binding energies, 

depending on the configuration of the electrons.   These configurations are not equally 
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probable, and so the result is a cluster of peaks within the same general area which are 

not symmetric to each other and have differing intensity.  The split configuration is 

always the same for each orbital in an element.  One of gold’s spin doublets can be seen 

in Figure 13 between 300 and 400 eV. 

 

Figure 13: XPS Example, Spectrum of a Clean Gold Sample (from Reference [33]) 
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 Changes to a sample’s molecular properties can be determined by noting the 

alterations occurring to the sample’s peaks, including shifts to lower or higher binding 

energies and changes in peak intensity.  Figure 14 shows an example of a O1s peak shift 

and lowering of intensity. 

 

 

Figure 14: Peak Shift Example, Lowering of O1s Binding Energy After Exposure to 
X-ray Radiation (from Reference [33]) 

 

 A secondary technique utilizing XPS is low intensity XPS (LIXPS).  LIXPS is a 

measurement procedure utilizing a greatly reduced photon flux from standard XPS (1.2% 

of standard XPS photon flux) [34].  LIXPS is used to measure the secondary edges of 

samples.  Since the high intensity of UPS may lead to charging of the sample while 

measuring secondary edges, LIXPS is performed before and after each UPS measurement 

to determine whether charging occurred during UPS operation.  LIXPS may also be used 
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in lieu of standard UPS on light-sensitive samples, such as ITO.  A bias voltage is 

typically applied to separate analyzer and sample secondary edges and to collect emitted 

electrons more efficiently.   

 

Ultraviolet Photoemission Spectroscopy 

 Ultraviolet photoemission spectroscopy is used to analyze the valence bands of a 

sample and determine its work function through analysis of the secondary edge.  The gas 

discharge lamp typically used for UPS provides a narrow line width of radiation to the 

gas’s discrete energy structure, and also allows a large photon flux, permitting the 

process a high resolution and a high ration of signal to noise.  He I α is the typical photon 

used, with an energy of 21.22 eV.  UPS is generally used to investigate such properties as 

the highest occupied molecular orbital (HOMO) and charge injection barriers of a sample.  

Because of the source of the photons from UPS is a gas, the atoms  emit photons in a 

narrow band of energies, increasing resolution of the resulting spectra and narrowing the 

peak widths.  A bias voltage is typically used in conjunction with UPS to increase the 

magnitude of the secondary edge and to separate analyzer and sample secondary edges. 

 Figure 15 shows the UPS spectra of the P3HT/Au interface.  The bottom spectra 

of each of the panels show bare Au, with each successive layer representing a deposition 

step of P3HT.  The center panel displays the complete UPS spectra.  The left panel shows 

the normalized secondary edge of the sample.  The large shift after the first deposition is 

most likely related to the formation of an interface dipole, while the later, more gradual 

shifts can be attributed to either band bending or charging of the sample.  The rightmost 

panel shows the valence bands of the sample.  For the bare Au, large peaks can be seen 
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which represent the d-bands of the gold.  As more P3HT is deposited, these peaks 

attenuate and P3HT-related characteristic emission arise. 

 

 

Figure 15: UPS Spectra of the P3HT/Au Interface 
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Experimental 
 
 Three main experiments were performed to investigate the electronic properties of 

various P3HT interfaces.  P3HT was deposited on three substrates: Au, HOPG, and ITO.  

The ITO experiment was performed differently from the others due to special 

consideration of the ITO substrate. These experiments will be discussed at length in the 

following sections, with the ITO experiment explained in detail following the first two. 

 

Experimental Method 

 All experiments were performed in an ultra high vacuum (UHV) system, shown 

in Figure X.  The system was composed of four chambers: a fast entry lock, a preparation 

chamber, a deposition chamber, and an analysis chamber.  The system was acquired from 

SPECS (Berlin, Germany).  The base pressures of the chambers were 1x10-10 for the 

analysis chamber, 1x10-8 for the preparation chamber, and 1x10-7 for the entry and 

deposition chambers.  The system was pumped with turbomolecular/rotary pumps in 

combination with ion pumps.  The preparation chamber contained a SPECS IQE 11/35 

ion source for Ar+ ion sputtering.  The analysis chamber was equipped with a SPECS 

non-monochromated XR 50 dual x-ray gun for XPS, a SPECS UVS 10/35 ultraviolet 

source for UPS, and a SPECS Phoibos 100 hemispherical analyzer.  Igor Pro software 

(Wavemetrics, Inc.) was used for all evaluation, graphing, and curve fitting. 

 The P3HT was prepared in a toluene solution at 0.1 mg/ml and kept wrapped in 

an aluminum cover to avoid exposure to light.  The P3HT had a weight-average 
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molecular weight (Mw) of 19 398 with a polydispersity index (Mw/Mn) of 1.59 as 

determined by gel permeation chromatography (GPC) based on polystyrene standards.  

100nm thick Au films were created via thermal evaporation on Si wafers.  The ITO and 

HOPG substrates were purchased from Mikromasch USA (“ZYA” quality), and X, 

respectively.  A 5 V bias was applied to the samples during UPS and LIXPS to separate 

the analyzer and sample secondary edges.  Mg Kα (hυ = 1235.6 eV) radiation was used 

for the XPS measurements, and He I (hυ = 21.22 eV) for the UPS measurements.  The 

PES measurements were analyzed via a SPECS Phoibos 100 hemispherical analyzer.  

Peaks were fit using a Gauss-Lorentzian profile, as outlined by Kojima and Kurahashi 

[35].  Work function and HOMO cutoffs were determined by fitting a line tangent to the 

curve of the cutoff and evaluating its intersection with the energy axis of the spectra.  

Analyzer broadening was corrected by adding 0.1 eV to the fitted cutoff values. 

 

Sample Preparation 

 For each experiment, the substrates were sonicated in acetone, iso-propanol, and 

methanol, and then dried.  The substrates were then mounted onto a sample holder using 

conductive silver epoxy.  For the Au and ITO samples, a small spot of silver epoxy 

provided an electrical contact between the sample and the holder to allow a path to 

ground.  Once inside the UHV system, the HOPG sample was cleaved to provide a 

contamination-free surface. 
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Au and HOPG Analysis Procedure 

 Each sample was placed into the fast entry load lock.  After stabilization of 

pressure, the sample was moved to the preparation chamber, where it was sputtered with 

Ar+ ions for 30-60 minutes.  The sample was then transferred to the analysis chamber.  

LIXPS was performed on the sample, followed by UPS and then another LIXPS 

investigation.  The LIXPS experiments were performed to ensure no charging occurred 

during the high intensity UPS investigation.  Following this, XPS was performed, first as 

a survey scan on the entire energy range available to XPS, and then as intense, focused 

investigations on orbital peaks of particular importance to the analysis of the sample and 

the eventual P3HT deposition. 

 After this initial analysis, the sample was transferred to the deposition chamber, 

where it was prepped for deposition of P3HT.  A laser crosshair was utilized for correct 

positioning of the sample. 

 A syringe filled with P3HT solution was placed onto a syringe pump, where it 

was injected into the electrospray chamber through a capillary.  The injection rates were 

10 ml/h for the Au and HOPG samples and 4 ml/h for the ITO sample.  The electrospray 

capillary was biased at -3.5 kV relative to the grounded chamber.  N2 gas was pumped 

into the electrospray enclosure around the orifice to prevent exposure to ambient 

contamination. 

 After initial deposition, the sample was transferred back to the analysis chamber, 

where the previous PES steps were again performed.  This procedure was performed 

several times, with seven depositions of P3HT solution on the Au substrate (for a total of 

6.35 ml) and five depositions on the HOPG substrate (for a total of 3.15 ml). 
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ITO Analysis Procedure 

 It has been observed that high intensity UV and x-rays significantly reduce the 

work function of ITO substrates [34, 36].  Due to this limitation, only LIXPS was 

performed on the ITO substrate during P3HT deposition.  The substrate also was not 

sputter cleaned, as this procedure also affects changes in the work function.  Upon first 

loading and after each deposition, LIXPS was performed on the sample.  These were 

done as quickly as possible to prevent unnecessary exposure to x-rays.  A total of seven 

depositions were performed, resulting in a total of 6.45 ml of P3HT solution injected into 

the electrospray chamber.  After the final LIXPS measurement, UPS was performed to 

examine the effects of high intensity UV light on the ITO work function. 

 To measure the effects of x-ray exposure on ITO, two more ITO substrates were 

examined.  The first was exposed to LIXPS 24 times, the measurements being performed 

as the exposure took place.  The second was exposed to high intensity x-rays.  Each 

exposure time was double the previous one, with the first exposure time set to 30 seconds.  

A total of six exposures were performed, with LIXPS performed between each exposure 

to evaluate the secondary edge shifts that occurred during exposures. 
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Results and Discussion 

P3HT/HOPG Results 

Figure 15 shows the S2p core level spectra of the P3HT/HOPG thin film.  From 

first to last P3HT deposition, the S2p doublet shifts from a starting position of 163.88 eV 

to 164.0 eV, a total of 0.12 eV, most likely related to band bending at the interface.  The 

magnitude of the peak also increases as P3HT is deposited, from the sulfur atom present 

inside the chain of a thiophene monomer. 

 Figure 16 displays the UPS spectra of the P3HT/HOPG junction.  The center 

panel displays the complete UPS spectra.  The rightmost panel shows a normalized close 

up of the secondary cutoff.  The secondary edge shifts from 16.60 eV (vacuum-cleaved 

HOPG) to 16.77 eV, indicating a reduction in the work function 0.17 eV, most likely 

related to band bending and a small interface dipole (small due to the stable nature of 

HOPG).  The rightmost UPS panel shows the valence band spectra of the interface, with 

background removed.  A transition from HOPG to P3HT-dominant emissions reveals a 

weak P3HT HOMO shoulder of 0.41 eV. 
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Figure 16: S2p XPS Core Level Spectra for P3HT/HOPG Interface 
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Figure 17: UPS Spectra for P3HT/HOPG Interface 

 

P3HT/HOPG Discussion 

 The UPS and XPS data of the P3HT/HOPG interface can be analyzed to construct 

an orbital lineup diagram of the junction.  The UPS data in Figure 16 show the shift in the 

secondary edge as P3HT is deposited.  A very gradual shift throughout the deposition 

process implies a lack of strong charging and a small or negligible interface dipole.  Since 

the weak emission of the S 2p peak makes it an unreliable benchmark for band bending, 

the secondary edge shift is used to determine the amount of band bending, showing a 

shift of 0.17 eV from first to last deposition.  This shift includes both band bending and 
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interface dipole, however.  The dipole can be estimated by taking the work function of 

the pristine HOPG (ΨHOPG = 4.61 eV) and comparing it to the work functions of the first 

two depositions, which yielded values of 4.57 and 4.53 eV.  This implies an interface 

dipole of between 0.04 and 0.08 eV, which when subtracted from the total work function 

shift of 0.17 eV yields band bending values of 0.09-0.14 eV.  The average of these values 

(0.12 eV) is in perfect agreement with the shift of the S 2p peak. 

 The ionization energy of the P3HT was determined by adding the work function 

of the 3.15 ml layer with the HOMO cutoff position (0.41 eV), yielding a value of 

 4.44 eV + 0.41 eV = 4.85 eV 

This is in reasonable agreement with the ionization energy value found in the P3HT/Au 

experiment.  This value was used for the ionization energy of the P3HT/ITO experiment, 

because of the difficulty in evaluating the ionization energy in the ITO experiment. 

 The hole injection barrier at the interface can be determined by subtracting the 

band bending (0.12 eV) from the HOMO cutoff position (0.41 eV), yielding a value of 

0.29 eV.  The electron injection  barrier Φe = 1.41 was determined by subtracting the hole 

injection barrier from a previously discovered optical band gap of Eg = 1.7 eV, 

determined by UV-visible spectroscopy [X].  This should be taken as a lower limit for the 

electron injection barrier, as the optical band gap (by the exciton binding energy) is 

smaller than the polaron band gap, which should be used for the band gap.  The resulting 

data gathered and analyzed was used to construct an orbital lineup diagram of the 

interface, Figure 17. 
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Figure 18: Orbital Lineup of the P3HT/HOPG Interface Constructed from the UPS 
and XPS Data Set 

 

P3HT/Au Results 

 Figure 18 shows the XPS spectra of the P3HT/Au interface core levels.  The 

bottom spectra represent the bare, sputtered Au substrate.  Each of the following spectra 

was measured after each P3HT deposition step.  The graph shows the C1s, S2p, and Au4f 

core levels, from left to right.  A small carbon peak can be seen in the C1s spectrum 

before deposition.  This is most likely related to contamination of hydrocarbons that 

failed to be removed during sputtering.  After the first deposition, two peaks emerge.  

One is the initial carbon peak of the nascent P3HT thin film.  The other appears to be 

residual toluene solvent adsorbed onto the substrate during the deposition sequence.  

 41



During the last three depositions, the C1s peak shifts to the left 0.11 eV (determined by 

peak fitting), which may be an indication of band bending.  The S2p and Au4f show 

similar shifts.  The Au4f peaks also attenuate during deposition as the gold is covered by 

the P3HT film. 

 Figure 19 shows the UPS spectra of the P3HT/Au interface.  The central panel 

shows the spectra in their entirety.  To the left, a normalized close up of the interface 

secondary edge is presented.  A strong shift is present after the first deposition, which is 

most likely related to an electric dipole formed from the compression of the electron 

cloud around the metal surface.  After this initial jump, a slower shift to the right can be 

seen, more likely due to band bending rather than charging because the shift saturates as 

more P3HT is deposited.  The rightmost panel displays the valence bands spectra.  The 

sharp peaks visible in the valence band are the Au sample’s d-orbitals.  As the P3HT thin 

film grows, the Au valence band features attenuate and P3HT HOMO features arise.  The 

HOMO cutoff of the final P3HT thin film is measured to be 0.7 eV. 
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Figure 19: XPS Core Level Spectra for P3HT/Au Interface 
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Figure 20: UPS Spectra for P3HT/Au Interface 

 

P3HT/Au Discussion 

 Evaluation of the P3HT/Au photoemission spectroscopy measurements gives us a 

detailed look at the electronic properties of the interface.  The UPS spectra, shown in 

Figure 19, display the work function and the HOMO value of the junction before and 

after each deposition.  The spectrum of the sputtered Au (bottom spectrum) is 

characteristic of Au UPS emissions, with prominent peaks representing the d-bands of the 

Au.  New features arise on top of the gold peaks as the P3HT is deposited.  These 
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features have been related earlier to bonding orbitals of the alkyl ligands (bands >5 eV), 

sulfur related localized states (peak at ~3.8 eV), and backbone related localized states 

(shoulder at ~1 eV) [37, 38].  

 After the first deposition, the secondary edge of the interface experiences a strong 

shift to the left.  This shift is most likely related to an interface dipole, caused by the 

electron gas surrounding the metal being pushed into the metal surface by the P3HT 

overlayer and thus reducing the metal work function [39].  

 The XPS spectra shown in Figure 18 show the C1s, S2p, and Au4f peaks of the 

interface during P3HT deposition.  The bottom C1s spectrum shows a weak signal 

present before P3HT deposition, probably related to ambient contamination missed by the 

sputter cleaning.  After the first deposition (0.15 ml), a two component peak arises, the 

lower energy peak corresponding to a small amount of Toluene solvent coadsorbed 

during deposition.  The P3HT C1s peak continues to strengthen after each deposition, and 

shifts slightly during the last three depositions a total of 0.11 eV.  This is due to the 

occurrence of band bending as the Fermi levels of the polymer layer and substrate 

equilibrate.  A similar shift is seen for the S2p peak.  Charging is ruled out because the 

shifting saturates instead of accelerates, and no similar shift is seen in the UP spectra, 

where much higher magnitudes of photon intensity are used.  No x-ray damage is 

presumed because none of the XPS peaks show typical shape degradation after severe x-

ray exposure [40]. 

 Using the information garnered from the XPS and UPS spectra, an electronic 

interface diagram can be constructed.  Figure X shows a summary of the evaluation.  The 

hole injection barrier Фh was determined by subtracting the band bending of the polymer 

 45



at the interface Vb from the fitted HOMO cutoff of the 6.35 ml spectrum, giving an 

injection barrier of  

 Фh = 0.7 eV – 0.11 eV = 0.59 eV 

 This evaluated barrier is considerably larger than previously reported studies of 

the P3HT/Au interface [41], which determined a barrier of 0.3 eV.  This difference may 

result from different preparation methods or the presence of ambient contamination at the 

interface [42].  The secondary cutoff of the 6.35 ml spectrum was determined to be at 

17.02 eV (corrected for analyzer broadening), yielding an ionization energy Eion of 4.90 

eV.  This was generated by finding the work function from the secondary edge and 

adding the HOMO cutoff value to it. 

 The electron injection barrier was Фe determined using a previously calculated 

optical energy gap of 1.7 eV [43].  Subtracting the hole injection barrier from this value 

yielded the result 

 Фe = Eg - Фh = 1.7 eV – 0.59 eV = 1.11 eV 

This is a lower limit for the electron injection barrier since the optical gap is typically 

smaller than the polaron gap, which is the correct gap to use to account for the exciton 

binding energy.  The interface dipole eD was calculated by subtracting the hole injection 

barrier from the ionization energy of the polymer and then subtracting this total from the 

work function of the Au.  Thus,  

 eD = ΨAu – (Eion – Фh) = 5.31 eV – (4.89 eV – 0.59 eV) = 1.01 eV 

This is a sizable interface dipole, and shows a strong chemical reaction between the Au 

and the P3HT. 
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 Comparison of these data with similar oligomer-based thiophene/Au 

investigations yields interesting conclusions.  A paper by Fujimoto et al. analyzes the 

results of HOMO density of state changes with changes in oligomer chain length [44].  

Comparison with their UP data on octithiophene bears a close similarity with our 

polymer measurements, the primary difference being a more spread out HOMO cutoff on 

the polythiophene, suggesting a stronger dispersion of the HOMO band due to its longer 

chain length.  Chandekar and Whitten [8] have reported an inverse relationship between 

the oligothiophene chain length and the hole injection barrier values, i.e. a higher chain 

length results in a smaller injection barrier.  Their data on the sexithiophene oligomer 

show a hole injection barrier of 1.1 eV, significantly larger than the measured 0.7 eV of 

the final deposition step in the polymer experiments.  They also report an ionization 

energy of 5.2 eV, a difference of 0.6 eV from our reported ionization energy.  This 

suggests a symmetrical increase in their hole and electron barriers from ours.

 Another study done by Schwieger et al. [45] reports a more significant difference 

between the the oligomer and polymer interfaces structures, reporting a 1.2 eV work 

function shift during deposition of a sexithiophene overlayer, suggesting a larger 

interface dipole.  Their data shows a hole injection barrier of 1 eV, a measurement similar 

to the one in reference 8.   
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Figure 21: Orbital Lineup of the P3HT/Au Interface Constructed from the UPS and 
XPS Data Set 

 

P3HT/ITO Results 

 Figure 21 shows the results of the ITO work function shifts when exposed to 

LIXPS.  A total of 24 measurements were performed, in succession and as quickly as 

possible to keep the time between measurements consistent.  The work function of the 

ITO was reduced by 0.18 eV during the course of the experiment.   

 Figure 22 displays the ITO work function shifts when exposed to standard 

intensity x-rays, as measured by LIXPS.  Seven measurements were performed, each one 

after a period of x-ray exposure double the previous time, beginning with a 30 second 

exposure.  The leftmost panel shows the shift of the secondary edge caused by the x-ray 

exposure, while the right panel shows a graph of x-ray exposure time versus work 
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function of the ITO sample.  A total shift of 0.53 eV was observed over the course of the 

exposures. 

 Figure 23 shows the results of LIXPS measurements performed on an ITO sample 

upon which P3HT was deposited.  A total of seven depositions were performed, between 

which LIXPS measurements were carried out.  After the final LIXPS measurement, a 

UPS measurement was performed.  The leftmost panel shows the secondary shift of the 

sample as the P3HT was deposited.  A total shift of 0.17 eV was detected between the 

first and last LIXPS measurement.  The UPS measurement reduced the work function an 

additional 0.59 eV.  The middle panel shows the UPS spectra measured after the final 

LIXPS measurement.  The rightmost panel shows the HOMO region of the ITO sample 

after the final UPS exposure, pinning the HOMO cutoff at 0.81 eV (middle panel inset).   

 

 

Figure 22: ITO Work Function After Light Intensity X-ray Exposure 

 

 49



 

Figure 23: LIXPS Measurements of ITO Sample After Exposure to Standard 
Intensity X-rays 
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Figure 24: LIXPS and UPS Spectra for P3HT/ITO Interface 

 

P3HT/ITO Discussion 

Given the data on ITO work function alteration from repeated x-ray exposure, it 

was determined that LIXPS measurements would not change the work function 

significantly.  Over the course of 18 consecutive LIXPS measurements, the work function 

of the ITO decreased 0.18 eV.  Since only eight LIXPS measurements were planned for 

the P3HT/ITO experiment, the work function change during the first eight LIXPS 

measurements was also recorded.  As seen in Figure 21, the alteration in work function 

during the first 10 scans is much less than in the subsequent 14, suggesting that reliable 

measurements could be obtained if the number of LIXPS scans was kept below 10.   
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 A similar experiment to determine the reliability of standard XPS measurements 

found a shift of 0.53 eV after only six steps, an unacceptable deviation, and so standard 

XPS was ruled out for the measurement of the P3HT/ITO interface.  A substantial 

deviation in ITO work function caused by a single UPS measurement also ruled out the 

use of UPS as a mechanism to further examine the interface, leaving LIXPS as the only 

viable option. 

  Given the data available gathered from LIXPS measurements of the emerging 

P3HT overlayer, the orbital band lineup of the interface could be constructed.  The 

valence band minimum (VBM) and conduction minimum (CBM) needed to be 

determined first.  We calculated the VBM relative to the Fermi level by using the In 3d5/2 

peak located at 445.04 eV, since the VBM could not be determined by valence band 

spectra due to superimposed P3HT emissions.  The known energy difference between the 

X peak and the VBM [15] is 441.8 eV, giving a VBM of 3.24 eV, which is in agreement 

with recent results [46].  Using an optical gap of 3.6 eV [15], the CBM was determined to 

be 0.36 eV.    

We used the previously measured ionization energy from the HOPG experiment 

of 4.85 eV for constructing the P3HT/ITO lineup, because of the difficulty in analyzing 

the ionization energy from the ITO data. Using this and other data, the interfacial orbital 

lineup was constructed, shown in Figure 24.  The work function of the sample decreases 

0.17 eV from the bare ITO to the last P3HT deposition.  This shift probably contains a 

LIXPS induced work function reduction of 0.05 eV corresponding to 8 LIXPS scans 

(Figure 21).  This gives a total of 0.12 eV work function reduction, which is most likely 

due to a weak interface dipole eD.  Using the P3HT ionization energy and aligning the 
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ITO and P3HT vacuum levels (taking the dipole into account), we determined the HOMO 

cutoff of the P3HT layer to be 0.25 eV below the Fermi level.  Subtracting the HOMO 

cutoff position from the ITO VBM (3.24 eV), a VBM to HOMO offset of 2.99 eV was 

determined.  The lowest occupied molecular orbital (LUMO) of the P3HT was calculated 

to be 1.45 eV above the Fermi level by using the P3HT optical gap of Eg = 1.7 eV as 

determined by UV-vis absorption [43].  The ITO CBM to P3HT LUMO distance was 

calculated to be Φe = 1.09 eV, a lower estimate since optical band gap measurements 

include excitonic features, resulting in generally smaller band gaps than those actually 

encountered by charge carriers. 

The UPS measurement performed after the final LIXPS measurement further 

altered the configuration of the interface, as seen in Figure 24.  UV exposure reduced the 

ITO work function 0.59 eV, for a total reduction of 3.96 eV.  This implies a new interface 

dipole eD = 0.76 eV.  Band bending is ruled out as an explanation, as earlier 

investigations [34] showed no shifts in core levels during XPS core level measurements.  

The new HOMO level after UPS measuring was determined to be 0.81 eV (Figure 24, 

insert).  This implied a new ionization energy of 4.77 eV for the P3HT layer, a small 

change from the earlier 4.85 eV [47].  This deviation possibly results from weak charging 

artifacts, since small work function areas dominate secondary edge measurements, while 

primary peaks represent a true average over all areas of a sample.  Figure 24 Shows the 

new orbital band lineup diagram after UV exposure.  The larger interface dipole shifted 

the features of the interface down to approximately 0.6 eV lower binding energies. 
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Figure 25: Orbital Lineup of the P3HT/ITO Interface Before and After UPS 
Exposure 
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Conclusion 

P3HT/Au 

 In this experiment P3HT was deposited onto a clean Au surface in several steps, 

with x-ray and ultraviolet photoemission spectroscopy performed between each step.  The 

measurements were performed in situ in an ultra high vacuum environment.  Once a 

suitable layer of P3HT was grown, the data were analyzed using Igor Pro software and an 

orbital band lineup diagram was created.  Several of the properties of the interface were 

measured, including the HOMO, charge injection barriers, and the presence of absence of 

interface dipoles.  The P3HT interface was found to have slightly modified electronic 

properties from similar oligomeric interfaces. 

 

P3HT/HOPG 

 In this experiment P3HT was deposited onto a cleaved HOPG surface in several 

steps, with x-ray and ultraviolet photoemission spectroscopy performed between each 

step.  The measurements were performed in situ in an ultra high vacuum environment.  

Once a suitable layer of P3HT was grown, the data were analyzed using Igor Pro 

software and an orbital band lineup diagram was created.  Several of the properties of the 

interface were measured, including the HOMO, charge injection barriers, and the 

presence of absence of interface dipoles.   
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P3HT/ITO 

 In this experiment bare ITO was exposed to light and standard intensity x-rays to 

determine their effect on the ITO’s work function.  P3HT was deposited onto a second 

ITO substrate in several steps, with light intensity x-ray spectroscopy performed between 

each step.  The measurements were performed in situ in an ultra high vacuum 

environment.  Once a suitable layer of P3HT was grown, the data were analyzed using 

Igor Pro software and an orbital band lineup diagram was created.  Several of the 

properties of the interface were measured, including the HOMO, charge injection barriers, 

and the presence of absence of interface dipoles. 
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