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A STUDY ON THE CORRELATION BETWEEN A
STAR’S RAYLEIGH-TAYLOR CHARACTERISTIC
TIMESCALE AND STELLAR WIND ACTIVITY

FIONA KLETT

Abstract. In this paper, we investigate the correlations between
a star’s internal dynamics due to the Rayleigh-Taylor instability
and episodes of stellar wind activity, using both a theoretical model
and observational data from the NOAA.Besides its relevance as an
astrophysics problem, this study is also informative for models of
climate change which include secular perturbations in the Sun’s
internal dynamics, as a potential source of solar activity variability.
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1. Introduction

In this article, we explore the hypothesis under which the stellar
wind activity is mainly due to fluctuations in the star’s density distri-
bution associated with the Rayleigh-Taylor instability. A fundamen-
tal mechanism characterizing the unstable distribution of fluid density
where gravitational attraction allows for denser strata to sit atop less
dense fluid layers, the Rayleigh-Taylor instability is a plausible univer-
sal model for the stellar wind flares and matter ejection. We review
the classical mechanics model for planetary motion and relate it to a
two-layer Rayleigh-Taylor star model, in order to test the hypothesis
that the latter could be a primary cause for the former.
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2 FIONA KLETT

2. An overview of planetary dynamics and stability
analysis of the Rayleigh-Taylor instability

2.1. Kepler’s laws and planetary dynamics. Following Newton,
we show that Kepler’s laws (derived empirically from observations of
planetary motion made over decades by Danish astronomer Tycho
Brahe) can be derived using only two postulates: Newton’s Second
Law of mechanics and (independently) his Universal Attraction Law:

(2.1) −G
mM

r3
r⃗ = F⃗ = ma⃗,

where F⃗ is the force of gravitational attraction exerted on a point
mass m, of position r⃗ and acceleration a⃗, by another mass M , fixed for
convenience at the origin, and G is the Newton gravitational constant.

Remark 2.1. This set-up ignores Newton’s 3rd law, according to which
the second mass M would feel a reaction force −F⃗ (hence it cannot
be stationary); this is a minor detail in the sense that any two-body
system m,M can be reduced to the simplified version above, when the
origin is set at the center of mass of the system. In the limit m/M → 0
(relevant for the case of planets (m) and Sun (M) in our system, or
stellar mass ejected by solar winds (m) and star (M)), the center of
mass can be approximated by the position of the large mass M .

Denote by r⃗, v⃗ = dr⃗
dt

the position and velocity vectors of the point
mass m (“planet”) and note that, since the force between the two

points (planet and Sun) is central, ma⃗ = F⃗ ∥ r⃗, the angular momentum

L⃗ = mr⃗ × v⃗ is conserved:

(2.2)
˙⃗
L = m ˙⃗r × v⃗ + r⃗ × F⃗ = mv⃗ × v⃗ + r⃗ × F⃗ = 0.

But this means that the plane of motion (determined at all times by
the vectors v⃗, a⃗ ∥ r⃗), is fixed in time. Therefore, the motion is a planar
curve, taking place in a fixed plane of motion (of normal direction given

by L⃗(t = 0)). We have therefore obtained the following result:

Theorem 2.1 (Kepler’s third law). From the formula for planar area
swept by the position vector and Eq. (2.2), we find that the rate at which
the area is swpt, dA/dt = L/2m is a constant for any body in planetary
motion.

Switching now to polar coordinates in the plane of motion, r⃗ =
r[cos(θ)̂ı+ sin(θ)ȷ̂], and introducing the moving frame unit vectors

êr = cos(θ)̂ı+ sin(θ)ȷ̂, êθ = − sin(θ)̂ı+ cos(θ)ȷ̂,
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ON THE RAYLEIGH-TAYLOR INSTABILITY AND STELLAR WINDS 3

we can write the velocity and acceleration vectors as

v⃗ = ṙêr + rθ̇êθ, a⃗ = [r̈ − rθ̇2]êr + [2ṙθ̇ + rθ̈]êθ.

In this notation, the angular momentum becomes

L⃗ = mr2θ̇(êr × êθ), ||L⃗|| ≡ L0 = mr2θ̇ = const.

Therefore, we obtain that

0 = L̇0 = r(2ṙθ̇ + rθ̈),

which yields for the acceleration a⃗ = [r̈ − rθ̇2]êr, consistent with the
assumption a⃗ ∥ r⃗ of Eq. (2.1). We also note the useful (chain rule)
identities

(2.3) θ̇ =
L0

r2
,

d

dt
=

L0

r2
d

dθ
,

dr

dt
= −L0

d(1/r)

dθ
.

2.1.1. Dynamics. Using Newton’s Law of Universal Attraction, the
planet’s radial acceleration can be expressed as

−GM

r2
= r̈ − L2

0

m2r3
,

leading to (by using the equation (2.3))

d2

dθ2

(
1

r

)
+

1

r
=

(
m

L0

)2

GM.

When a new variable r0 is introduced, by defining(
m

L0

)2

GM ≡ 1

r0
,

L2
0

m
= GMmr0,

the final expression for the trajectory of the planet becomes (in polar
coordinates)

(2.4)
1

r
=

1 + e cos θ

r0
, e ∈ R,

which represents a conic section in the plane. Imposing now for the
total energy the bounded-trajectory constraint TE = KE + PE < 0,

mv2

2

∣∣∣
θ=0

=
L2
0

2mr2

∣∣∣
θ=0

=
GMm

r
· 1 + e

2
<

GMm

r

∣∣∣
θ=0

,

it follows that e ∈ [0, 1), therefore any planetary trajectory is an ellipse.
Values of e ≥ 1 correspond to unbounded trajectories (parabola e = 1,
hyperbola e > 1), and therefore describe single-passage comets. Thus,
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4 FIONA KLETT

Theorem 2.2 (Kepler’s first law). From Eq. (2.4), it follows that all
the planetary (i.e., bounded) trajectories are ellipses.

From Kepler’s first law and Eq.(2.4), we have (a, b are the semi-axes)(
πab

T

)2

=

(
L0

2m

)2

=
GMr0

4
⇒ T 2r0

(ab)2
=

(2π)2

GM
,

where T is the period of motion. Since r0 = a(1−e2) and b2 = a2(1−e2):

Theorem 2.3 (Kepler’s second law). For all the planets in the same

solar system (i.e. given solar mass M), T 2

a3
= (2π)2

GM
is the same for all

planets.

2.1.2. Total energy. Now that the trajectory of the planet is known to
be described by an ellipse, the energy in the system must be considered.

To asses the total energy in the system, the position vector character-
izing the trajectory is obtained from the previous calculations describ-
ing the ellipse to produce the square of the velocity v2 = ( L0

mr0
)2(1 +

2e cos θ + e2).
When ( L0

mr0
)2 is substituted for GM

r0
it becomes clear that an interval

of negative values is available for the total energy, because, as the sum
of kinetic and potential energies,

E =
mv2

2
− GMm

r
=

GMm

r0
· (e

2 − 1)

2
, e ∈ [0, 1),

which may take any negative value from the interval

[
−1

2

(
GMm
L0

)2
, 0

)
.

This shows that, given the values of the constants of motion (kinetic
momentum and total energy) and the initial position of the objects,
one can find uniquely the elliptic trajectory that describes planetary
motion in this approximation (two-body problem).

Remark 2.2. In a more general case, if a point is moving on the ellipse

R⃗(θ) = ⟨a cos(θ), b sin(θ)⟩, θ ∈ [0, 2π), a ≥ b > 0,

with (non-constant) speed v = dℓ
dt

in such a way that its acceleration

is a⃗(t) = f(r)êr, where r⃗(t) = r(t)êr is the position vector of the point
relative to a fixed point on the major semi-axis, then the following hold:

i) the angular momentum L⃗ = r⃗ × v⃗ is a constant of motion;
ii) if κ0 denotes the curvature of the ellipse at θ = 0, π, then

f(r) = −κ0L
2

r2
= −aL2

0

b2
· 1

r2
.
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ON THE RAYLEIGH-TAYLOR INSTABILITY AND STELLAR WINDS 5

2.2. Projectile motion beyond the parabolic approximation.

2.2.1. Escape velocity. Modeling a star by a total mass M uniformly
distributed on a spherical solid of radius R, we consider the projec-
tile motion of a point mass m ≪ M , launched from the surface of
the star, with initial speed v0, at an angle θ ∈ [0, π

2
] above the local

tangent plane. Let h be the highest altitude reached along the point’s
trajectory. We will find the first escape velocity for the mass M .

Starting from Newton’s Universal Gravitational Attraction Law,

m¨⃗r = F⃗ = −G
Mm

r2
êr = ∇⃗

(
G
Mm

r

)
where r⃗ = rêr is the position vector of the point mass m relative to the
center of the Earth (this equation already assumes that m/M → 0),
we find

d

dt

(
m|| ˙⃗r||2

2

)
= m¨⃗r · ˙⃗r = F⃗ · ˙⃗r = ∇⃗

(
G
Mm

r

)
· ˙⃗r = d

dt

(
G
Mm

r

)
,

so the point mass will have speed v at some distance r away from the
center of the star, such that

m

2

(
v2 − w2

)
= GMm

(
1

r
− 1

R

)
⇒

w2 − 2GM

R
=

[
v2 − 2GM

r

]
= const.

From §2.1.1, we know that the trajectory never intersects again the
surface of the star when

v2 − 2GM

r
=

GM

r
(e− 1) ≥ 0 ⇒ w2 =

2GM

R
.

Since the force exerted by the star on the object on the surface is given
by

Fg =
GMm

R2
= mg,

we can identify the quantity GM
R2 ≡ g to the star’s the gravitational

acceleration. Therefore, the escape velocity is given by

w2 = 2gR ⇒ w =
√
2gR.
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6 FIONA KLETT

2.2.2. Maximum vertical position. Denoting α = v0
w
and η = h

R
, we will

find η(α, θ) and discuss the special cases α = 1 (escape trajectory),
θ = π

2
(vertical motion), and α ≪ 1.

Using the formula for the escape velocity, we find

α2 =
v20
w2

=
v20
2Rg

=

mv20
2

GMm
R

,

so we conclude that the parameter α2 represents the ratio of kinetic
energy to absolute value of the gravitational potential energy of the
object.

From the general elliptical trajectory solution presented in §2.1.1, we
have the parameters (v∥ is the speed at the highest altitude point)

L0

m
= Rv0 cos θ = Rwα cos θ = (R + h)v∥,

r0 =
(L0/m)2

GM
= 2Rα2 cos2 θ =

v20
g
cos2 θ,

where the polar form of the trajectory, with the center of the Earth at
one of the focal points, is given by

r(φ) =
r0

1− e cosφ
, R = r(φ0) =

r0
1− e cosφ0

, R+h = r(0) =
r0

1− e

Conservation of total energy (found in the previous solution) and
angular momentum (c.f. §2.1.1) yield

v2∥
2

− GM

R + h
=

v20
2

− GM

R
⇒ (1− α2)(η2 + 2η)− η − α2 sin2 θ = 0.

For α ̸= 1, the equation has two real roots, and we choose the positive
one:

η =
−1 + 2α2 +

√
1− 4α2(1− α2) cos2 θ

2(1− α2)
,

1 + η =
1 +

√
1− 4α2(1− α2) cos2 θ

2(1− α2)

The special limits are obtained as η(α, π
2
) = α2

1−α2 , which for small
values α ≪ 1 has the expansion (and correction to the parabolic ap-
proximation)

η = α2 + α4 + α6 + . . . ⇒ h ≃ v20
2g

+
v40

4Rg2
+ . . . ,
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ON THE RAYLEIGH-TAYLOR INSTABILITY AND STELLAR WINDS 7

and for generic values of the launch angle θ,

η(α2 → 1−) =
1

1− α2
− sin2 θ + . . . → ∞,

η(α2 → 0) ≃ α2 sin2 θ =
v20
2gR

sin2 θ.

2.2.3. Eccentricity and degenerate trajectories. For the case of an ellip-
tical (that is, bound) trajectory, we can now compute the eccentricity
e(α, θ) and discuss the special cases α → 1− (escape trajectory) and
θ → π

2
− (vertical motion).

From the previous solution, 1− e = r0
R(1+η)

= 2α2 cos2 θ
1+η

, so

e = 1− 4α2(1− α2) cos2 θ

1 +
√

1− 4α2(1− α2) cos2 θ
=
√

1− 4α2(1− α2) cos2 θ

For both α → 1− (escape trajectory) and θ → π
2
−, we find e → 1−.

In the first case the elliptical trajectory crosses into its parabolic limit,
while in the second it degenerates into the focal segment.

2.2.4. Second focal point. For the case of an elliptical trajectory, we
next find the position of the second focal point of the trajectory (the
center of the star is the other one), by finding its distance to the center
of the star, d(e, η), and the angle φ0 made by the major semi-axis of
the ellipse with the local radial direction at the launch point (Note that
2Rφ0 is the range of the projectile motion).

We compute d = 2ae = 2r0
e

1−e2
= R e

1−α2 = R

√
1−4α2(1−α2) cos2 θ

1−α2 ,
which yields for the position of the second focal point relative to the
surface of the star the altitude

δ = d−R = R

[√
1− 4α2(1− α2) cos2 θ

1− α2
− 1

]
We find that the second focal point is on the surface of the star when

4(1− α2) cos2 θ = 1 cos2 θ − 1

2
= α2

(
cos2 θ − 1

4

)
,

therefore

α2 =
2− 4 cos2 θ

1− 4 cos2 θ
, θ ∈

[
0,

π

4

]
,

or equivalently,

(1− α2) cos2 θ =
1

2
− α2

4
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8 FIONA KLETT

For the angle,

cosφ0 =
1− 2α2 cos2 θ

e
=

1− 2α2 cos2 θ√
1− 4α2(1− α2) cos2 θ

,

so in the limit α ≪ 1 (parabolic approximation), the range is given by

2Rφ0 ≃ 2Rα2 sin(2θ) + . . . ≃ v20
g
sin(2θ)

2.2.5. Trajectory beyond the parabolic approximation. Finally, we find
the first correction to the parabolic solution for the projectile motion.

Around the highest-altitude point, for e → 1, η ≪ 1, the trajectory
in local Cartesian coordinates is given by

x(φ) = Rφ, y(φ) = r(φ)−R =
r0

1− e cos( x
R
)
−R,

y = h− e(R + h)

2(1− e)R2
x2+

e2(R + h)

4(1− e)2R4
x4+ . . . ≃ ypar(x)+

e2(R + h)

4(1− e)2R4
x4,

where the first two terms give the parabolic approximation. The cur-
vature of the trajectory at the highest altitude point is then

κ0 =
e(R + h)

(1− e)R2
=

er0
(1− e)2R2

=
v20 cos

2 θ

R2g

e

(1− e)2

2.3. Linear analysis of the stellar Rayleigh-Taylor instability.
We model the Rayleigh-Taylor instability by two layers of fluids of den-
sities ρ1 < ρ2, where the first layer (of density ρ1) is at the bottom and
the second is at the top, in constant gravitational field of acceleration
g. Assume the top layer, at equilibrium, extends vertically from co-
ordinate y = h1 to y = h1 + h2, and the bottom layer is from y = 0
to y = h1, then introducing the field variable ζ(x, t) = y(x, t) − h1

to represent the interface between the two fluids, we can isolate the
first-order perturbation for the Lagrange function of the system,

L =

∫∫
LdA, L =

[
K

ρ1 + ρ2
2

(
∂ζ

∂t

)2

− (ρ1 − ρ2)g

2
ζ2

]
,

with K a constant that depends on the actual geometry of the set-up.
The Euler-Lagrange equations then become

d

dt

(
∂L
∂ζ̇

)
=

∂L
∂ζ

⇒ K(ρ1 + ρ2)ζ̈ = (ρ2 − ρ1)gζ,
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ON THE RAYLEIGH-TAYLOR INSTABILITY AND STELLAR WINDS 9

which means that the growth of the interface instability is exponential,

ζ(t) ∼ eλt, λ =

√
g

K

ρ2 − ρ1
ρ2 + ρ1

The main conclusion of this analysis is that the Rayleigh-Taylor in-
stability has a characteristic timescale,

τ =
1

λ
∼
√

1

g

ρ2 + ρ1
ρ2 − ρ1

,

which can be related to the analysis in the previous section by noting
that, under the assumption of incompressibility of the fluid layers, the
launching speed at the surface of the star, as result of the growth of
the interface is

ζ̇2 =
e2

t
τ

τ 2

This expression allows now to compare this quantity to the escape
velocity found in §2.2.1 and test the hypothesis that the Rayleigh-
Taylor model of the star is correlated with the observed stellar wind
dynamics.
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