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ABSTRACT

We present a formal description of ‘Face Fundamental Transver-

sals’ on the faces of the Complexes of polyhedra (meaning three-

dimensional polytopes). A Complex of a polyhedron is the collec-

tion of the vertex points of the polyhedron, line segment edges and

polygonal faces of the polyhedron. We will prove that for the faces

of any 3-dimensional complex of a polyhedron under face adjacency

relations, that a ‘Face Fundamental Transversal’ exists, and it is a

union of the connected orbits of faces that are intersected exactly

once. While exploring the problem of finding a face fundamental

transversal, we have found a partial result for edges that are inci-

dent to faces in a face fundamental transversal. Therefore we will

present this partial result, as The Edge Transversal Proposition 1.

We will also discuss a few conjectures that arose out this proposition.

In order to reach our approaches we will first discuss some history

of polyhedra, group theory, and incorporate a little crystallography,

as this will appeal to various audiences.
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1 INTRODUCTION

Polyhedra have been an interest of humans for over 4,000 years,

and it is a fast growing research field. Right now, you may be asking

yourself, “Why is studying polyhedra important?” Studying poly-

hedra is of great importance, whether it is for the admiration of

their aesthetical beauty, the understanding of their structures, or

the knowledge to educate others and ourselves to think more ab-

stractly. Certainly most polyhedra are aesthetically beautiful, and

some people have studied polyhedra just for this reason alone. For

example, some people collect polyhedral figures because they are

enthralled with the beauty of the shapes. The importance of under-

standing their structures is that it can be used for designing bridges

and buildings that stay up i.e, polyhedral stability [16].

From the aesthetical point of view of polyhedra, symmetry is nat-

urally a link that is related to it. This is because the most commonly

known polyhedra are proportionally balanced, and this reflects their

beauty. While observing polyhedral objects that are symmetrically

beautiful, humans may be curious to know why and how the object
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became what it is. Symmetry is a tool or a guide when searching or

discovering new kinds of polyhedra [16]. For example, Archimedes

most likely used symmetrical variations when he discovered his solids

[16]. This can be understood by the fact that eleven of his solids can

be obtained from the Platonic solids by truncating symmetrically

[16]. We study the symmetries of polyhedra to help us understand

their structures. In order to study the symmetries of polyhedra, we

should first go through some of the background information that is

needed.

This thesis is about 3-dimensional polyhedra. In two dimensions,

a polygon′s boundary consists of finitely many line segments, which

are it’s edges.

Figure 1.1: An Edge of a Polygon

In three dimensions it is a polyhedron denoted as P , which is a

region, whose boundary consists of finitely many polygons, which

are the faces of the polyhedron.
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Figure 1.2: A Face of a Polyhedron.

When two faces of the polyhedron meet, the shared boundary of

these two faces forms an edge of a polyhedron.

Figure 1.3: An Edge of a Polyhedron

A point of intersection of three or more edges or faces of a poly-

hedron is known as a vertex [9].

Figure 1.4: A Vertex of a Polyhedron

In Part I of this thesis, we will present a brief historical time

line of polyhedra, starting with the first archaeological evidence of it

dating 4,000 years ago, up to present day polyhedra, including plenty

of pictures. Within the time line, we will include other aspects such
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as group theory, and a little crystallography. For instance, using

group theory and geometry, we find that isometries of polyhedra

provide a way to look at the transformations of polyhedra. In this

thesis we will concentrate on isometries. An isometry is a point to

point transformation of the entire space onto itself that preserves

distances. This leads us into further discussion of how symmetries

became a way to study polyhedra [3].

We will be using the word symmetry in a nonstandard way in

this thesis. We will say that a symmetry on a polyhedron is an

isometry that maps the polyhedron to itself, and can include trans-

formations like rotations, reflections, and inversions. A symmetry is

an isometry on a polyhedron which leaves the polyhedron invariant.

A polyhedron P is the maximal cell in the complex of P , so the sym-

metry group is denoted as Sym(P ). Sym(P ) induces permutations

of the cells of the complex of P , and this permutation group will be

denoted as G. Notice that G is isomorphic to Sym(P ), and in the

theoretical section, we will only discuss G.

The orbit of a face F in F 1 is the set of elements of F to which

F can be moved by the elements of G. The orbit of F under G is

denoted by G(F ) = {g(F )|g ∈ G}. This definition is also applied

to the edges also with a slight difference. Where we let E be the set

of all edges with coradjacency relations of the complex of P .

1F is the set of all faces with adjacency relations of the complex of P.
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A coradjacency relation occurs when two edges share a common

face in the face fundamental transversal. These are generic repre-

sentations of the orbits of faces, edges, as there may be ones that are

labeled differently. We will see this later on in the thesis. While using

geometric group theoretic methods as a group acts transitively on a

polyhedron, the orbits of these cells mentioned above are invariant

subsets of the polyhedron.

In Part II of this thesis we will explore a generalization of [5]’s

concept of a ‘fundamental transversal’ on the faces of a complex of

P . Where mentioned in Proposition 1.2.6 [5], they describe a fun-

damental transversal as a G - transversal in a set X is a subset S,

which meets or intersects each orbit of vertices and edges of a con-

nected graph exactly once and there is a bijective mapping from this

subset which is contained in X to the quotient X/ G. Generalizing

[5]’s concept of a transversal, we will use their concept in regard to

a connected complex of a Polyhedron. The only part that we don’t

consider is the quotient space, but there is a bijective mapping from

the subset contained in the complex to the complex itself.

The CW- Complex was introduced by J.H.C Whitehead. In this

thesis we will use a variant concept of this and apply it to what

we call complexes. A complex is defined as the vertex points of

the polyhedron, line segment edges and polygonal faces. It may be
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obtained by defining the k-skeleton,2 inductively as follows. We start

with the 0-dimensional cells (vertices), then add the 1-dimensional

cells (edges), and then the 2-dimensional cells (faces).

The following is an example of how a complex of a Cube is ob-

tained. We begin with the 0-dimensional cells, which are the vertices.

Figure 1.5: The 0-dimensional k-skeleton of the Cube, denoted as skel0(Cube).

Next we start to add the 1-dimensional cells (edges) to the 0-

dimensional cells.

Figure 1.6: Starting to add the 1-dimensional cells (edges) that are incident to the
0-dimensional cells, denoted as skel1(Cube).

Notice in the next figure, that we are adding the edges that con-

nect all of the vertices.

2In geometry, a k-skeleton of polyhedron P (represented as skelk(P )) consists of all polyhedral
cells in its boundary of dimension up to k [17].
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Figure 1.7: Adding the rest of the 1-dimensional cells (edges) that are incident to
the 0-dimensional cells.

Now we have all of the edges connected to the vertices.

Figure 1.8: The skel1(Cube)

Last we attach the 2-dimensional cells (faces) to the 1-dimensional

cells, and we obtain the faces of the Cube.

Figure 1.9: The skel2(Cube) and complex of a Cube, where the faces are colored
yellow.

In this thesis following Dicks and Dunwoody’s [5] proposition, 3

we will call a connected sub-complex intersecting each orbit exactly

once a ‘fundamental transversal’. We will have several types of fun-

3If G is a graph, where G = <V,E>, and G is connected, then there exists a subset S (of
edges and vertices) contained in G such that S is a transversal in G and S induces a connected
subgraph of G that intersects each orbit of vertices and edges exactly once.
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damental transversals, such as ‘face fundamental transversals’ on the

faces of complexes of polyhedra. We have also found a partial result

of an edge fundamental transversal that is incident to faces in the

face fundamental transversal and is connected under coradjacency 4

relations denoted as CRH.

Lastly, we will conclude the thesis with a chapter on the concept of

a ‘fundamental transversal domain’, where a fundamental transversal

domain is a set, such that every orbit of a cell of the complex of P

is intersected exactly once, and induces a connected subgraph of the

complex of P . We will present two conjectures, where in the second

conjecture the idea of a ‘flag’ is used in a slightly different manner.

In the last section we will show some crystal net images courtesy of

Micheal O’Keefe, and their fundamental transversal domains.

4A Coradjacency relation occurs when two edges share a common face in the face fundamental
transversal.
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PART I POLYHEDRA AND PICTURES
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2 HISTORY AND BACKGROUND

Geometry is derived from the Greek word “geometria”, which

means “to measure the earth.” Human beings have been using the

concepts of geometry since civilization began. The earliest known

polyhedra are carved stone spheres that are approximately three

inches in diameter dating back to 2000 BC, which have been found

in Scotland. Some are carved with lines corresponding to the edges

of regular polyhedra [6]. Half of them have 6 knobs, while others

range from 3 to 160 knobs.

Figure 2.1: The Neolithic Polyhedra, The Five Regular Solids. Image Courtesy of
George W. Hart

None of the solids in the figure above have 12 bumps, so none of

them can be a dodecahedron [6]. Well over 400 of these stone balls

are known, and their material varies from easily carved sandstone
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and serpentine to difficult hard granite and quartzite [2]. We don’t

know what their function was, but they may have been symbols of

authority, or for use in fortune telling [2].

Near the year 2900 BC, the first Egyptian Pyramid may have

been constructed. Knowledge of geometry was very important for

the Egyptians to build pyramids, which then consisted of a square

base and triangular faces [12]. Today, what we know from the

Egyptian geometry came from two sources, which are the Rhind

Mathematical Papyrus, and the Moscow Mathematical Papyrus

[9]. The first known milestone in polyhedra’s history is the “Vol-

ume of the Truncated Pyramid”, which came from the Moscow

Mathematical Papyrus. The second milestone in polyhedra’s his-

tory is the “Volume of a Pyramid”. Because of length and time, we

will only mention the two Egyptian milestones, without investigating

their full details.

Before the Greeks knew of polyhedra, the Etruscans knew of some

of the regular polyhedra, which can be defined as polyhedra whose

faces are congruent regular polygons which are assembled in the same

way around each vertex [1]. Let us turn to the time of Greek Antiq-

uity, where the regular polyhedra had a considerable influence on the

Greeks. The Greeks were great geometers, inventors, and discover-

ers of the most popular known polyhedra. For instance, the famous

Pythagoras of Samos who was, according to legend, the inventor of

11



the regular dodecahedron. The next Greek mathematician Theaete-

tus of Athena (415 - 369 BC), discovered the regular octahedron

and icosahedron, also some argue that he was the first to construct

the five regular polyhedra [13]. Theaetetus, may have looked at the

collection of solids not as isolated objects, but as seeing them as

part of a theory [9]. One very important Greek geometer, Euclid, is

sometimes known as “the father of modern geometry,” because of his

book The Elements, in which he described the regular polyhedra,

and he proved that there can’t exist more than five of these solids

[13].

Around 350 BC the Greek philosopher Plato wrote Timaeus,

which presents the elements earth, fire, air, and water as a math-

ematical construction in which the cube, tetrahedron, octahedron,

and icosahedron are represented as the shapes of the atoms of the

elements [1]. The last Platonic solid, otherwise known as the dodec-

ahedron, was considered Plato’s model for the whole universe [1].

Figure 2.2: The Five Platonic Solids. Image Courtesy of Steve Dutch.
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Archimedes of Syracuse (about 287 - 212 BC) was a Greek mathe-

matician who was responsible for the geometric solids that are named

after him, the Archimedean Solids. A Greek mathematician, Pappus

of Alexandria, wrote a book called Synagoge or Collection, which

has the first known mention of the thirteen Archimedean Solids, in

which Pappus attributes them to Archimedes. The Archimedean

solids are described in Pappus’s narration,

“Although many solid figures having all kinds of surfaces

can be conceived, those which appear to be regulary formed

are most deserving of attention. Those include not only

the godlike Plato, that is the tetrahedron, cube, octahe-

dron, icosahedron and fifthly the dodecahedron, but also

the solids, thirteen in number, which were discovered by

Archimedes and are contained by equilateral and equian-

gular, but not similar polygons [15].”

In today’s description, an Archimedean solid is a highly symmet-

ric, semi− regular convex polyhedron, i.e, it’s faces are all regular

polygons and the vertices they meet are identical. They are dis-

tinct from the Platonic solids, which are composed of only one type

of polygon meeting in identical vertices [15]. There are seven of the

thirteen Archimedean solids that are derived from the Platonic solids

by a process known as truncation. Truncation is an operation, where
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one cuts off the corners of the polyhedron, thus creating a new face

in place of each vertex that was cut off. All of the solids with the

name “truncated” in front of them have been derived from cutting

the corners of the Platonic solids; there are five of them. The other

two are the Snubs.

The thirteen Archimedean solids are as follows: Top Row: Trun-

cated Cube, Cuboctahedron, Truncated Octahedron, Great Rhom-

bicuboctahedron, Lesser Rhombicuboctahedron. Second Row: Trun-

cated Dodecahedron, Icosidodecahedron, Truncated Icosahedron, Great

Rhombicosidodecahedron, Lesser Rhombicosidodecahedron. Third

Row: Snub Cube, Snub Dodecahedron, Truncated Tetrahedron.

Figure 2.3: The Archimedean Solids. Image Courtesy of Steve Dutch.

There were different types and kinds of polyhedral objects that

were made during the time that Archimedes lived, up through the

time of Pappus [9]. The exact origins of the objects are not known.

The solids may be dated from the Roman period [9].
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There is no known account of polyhedra from the time of Pappus

until the Renaissance. During the Renaissance, Albrecht Dürer (1471

- 1528), although most know him as a painter, invented the notion

of the net of a polyhedron [9]. Commonly people think of nets, as

being made by unfolding a planar piece of cardboard along lines and

joining the edges of the figure, then the ‘net’ becomes a polyhedron

[9].

The next mathematician we will discuss is Johannes Kepler (1571

- 1630). Kepler may have been the next person after Pappus to write

about the Archimedean solids, in his book Harmonices Mundi.

Kepler cleaned up Pappus’s loose definition of the solids and gave

a proof that there are precisely thirteen of them (Book Two, De

Congruentia F igurarum Harmonicarum, proposition XXXVII).

He also provided the solids with their modern names [15]. Kepler

also realized that star polygons could be used to build star polyhe-

dra, which have pentagrams as faces.

Kepler discovered two star polyhedra, which were the small stel-

lated dodecahedron and the great stellated dodecahedron, and whose

regularity (pentagrammic faces) escaped him [13]. In 1619, he gave

the first example of facetting, which is the process of removing parts

of a polygon, polyhedron or polytope, without creating any new ver-

tices. Moreover, any two vertices may be joined by a line. Typically,

this line will be contained inside the polyhedron. If several such lines
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connect in a planar circuit, they form a complete polygon, or facet,

inside the polyhedron. Again, several such facets may connect to

form a complete polyhedron inside the original one. The original is

the base polyhedron, and the new one is a facetting [7].

Kepler’s first example of facetting was the stella octangula. He

was also responsible for defining the prisms, anti-prisms, and the

non-convex solids [7]. A non-convex solid is defined as a solid that

has non-convex faces, meaning that the faces, which are polygons,

are non-convex. A convex polygon is a polygon that if any line

segment joining any two points on the polygon stays inside itself.

During the Contemporary Age (1789 to the present), there were

a few mathematicians who made significant contributions to study-

ing both polyhedra and group theory. We will now intertwine both

the history of polyhedra and group theory. The first mathematician

whom we will discuss is Louis Poinsot (1777 - 1859), who wrote

an important work on polyhedra in 1809 entitled Polygons and

Polyhedra. Poinsot discovered four new non-Platonic regular poly-

hedra,two of which appear in Kepler’s work of 1619, but Poinsot was

unaware of this. He also discovered the non-convex regular polyhe-

dra, where the last two are duals of Kepler’s polyhedra [15]. The

following two figures are the Kepler-Poinsot Polyhedra.
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Figure 2.4: The Kepler-Poinsot Solids Part 1. Image Courtesy of Steve Dutch.

Figure 2.5: The Kepler-Poinsot Solids Part 2. Image Courtesy of Steve Dutch.

Moving further ahead, we will now discuss some of the history of

group theory and how some mathematicians used group theory to

explore polyhedra and the birth of crystallography. There are three

known historical roots of group theory and they are: the theory

of algebraic equations, number theory, and lastly geometry. There

were three mathematicians who are considered the early researchers

in group theory. They were Joseph-Louis Lagrange (January 25,

1736 - April 10, 1813), Niels Henrik Abel (August 5, 1802 - April 6,

1829), and Evariste Galois (October 25, 1811 - May 31, 1832). Abel

and Galois’s work in early group theory was more directed towards

solving polynomials of degree four or higher.
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In the late 18th century, the earliest study of groups possibly be-

gan with the work of an Italian-born mathematician named Joseph-

Louis Lagrange (January 25, 1736 - April 10, 1813). Lagrange’s

work may have been somewhat isolated, so then publications by Ga-

lois and another mathematician Baron Augustin-Louis Cauchy (1789

- 1857), in 1846, are probably referred to as the beginning of group

theory. Which brings us to the next mathematician we will discuss.

Baron Augustin-Louis Cauchy (1789 - 1857), a French mathemati-

cian, defined the concept of regularity for a polyhedron in terms of

the equivalence of its faces and edges. He also proved there exist

only four non-convex regular polyhedra (Kepler-Poinsot) and there

are only nine regular polyhedra1 [9].

In 1849 Auguste Bravais (1811 - 1863), was a French naval officer

and scientist, published his Memoire sur les polyedres de forme

symetrique, which was very close to Cauchy’s work [8]. In this work

he represented a Polyhedron by a finite set of points in space (its ver-

tices), and he defined the symmetry elements of the rotation axis,

reflection plane and center of inversion in terms of the spatial ar-

rangement of the points, and he derived all possible combinations of

these elements [8]. Cauchy, who was one of the early group theorists,

presented Bravais’s work to the French Academy Of Sciences, but

he did not mention that the analogy between combinations of sym-

1The nine regular polyhedra are the five Platonic Solids and the four Kepler-Poinsot Polyhe-
dra.
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metries and the groups of substitutions that were being studied [8].

It was another French mathematician, Camille Jordan (1838-1922),

who was aware of this and used Bravais’ work for his fundamental

Memoire sur les groupes de mouvements [8].

According to [8],

“In his paper Jordan considered both continuous and dis-

crete groups of ‘proper’ motions (abstractly, rather than

in terms of their action on sets of points) by examining

the possible combinations of rotations, screw rotations and

translations.”

Jordan’s work was the basic foundation for the later derivation of

the space groups, where a space group is a group of isometries on a

Euclidean space.

With the use of groups in geometry, that is the underlying group

of symmetries, an influential program known as the “Erlangen Pro-

gram”, was introduced by Felix Klein (April 25, 1849 - June 22,

1925) a German mathematician. Klein was at Erlangen at the time

the Erlangen Program was developed. In 1872 the Erlangen Program

was introduced; the program is a way to classify geometries by their

underlying symmetry groups. The Erlangen Program includes sym-

metry groups of symmetries besides isometries. It had a huge impact

and influence on the mathematics at that time. For instance, Klein
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suggested to the German mathematician Arthur Morton Schoen-

flies (1853-1928), that by studying transformation groups, he could

extend Jordan’s work by adding improper motions to the discrete

groups of proper motions [8]. Schoenflies also proved that a ‘group

of motions in three-dimensional space, which maps a regular system

of points onto itself necessarily contains a subgroup generated by

three independent translations [8].’

E.S. Fedorov (1853-1919), a mineralogist and crystallographer,

was responsible for the completion of the enumeration of groups of

motions in three dimensions [8]. Fedorov was responsible for deriving

the space groups ab initio, where he had adapted a form of analytic

geometry to the study of regular systems of points [8]. Fedorov’s

results helped to lay the theoretical foundations for modern crystal-

lography. Fedorov wrote a two-part paper, Symmetry of Regular

Systems of F igures, which was published in 1891. In this paper he

proved that there are exactly 17 distinct wallpaper groups, where a

wallpaper group is a two-dimensional symmetry group [4].

The wallpaper groups could also be described as the Euclidean

plane isometries. A Euclidean plane isometry is obtained in a man-

ner of transforming the plane so that it preserves distance. Now

there are four different types of Euclidean plane isometries such as:

translations, rotations, reflections, and glide reflections. The set of

Euclidean plane isometries form a group under composition, such as,
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the Euclidean group in two dimensions, which is generated by reflec-

tions so that every element of the Euclidean group can be composed

of at most three distinct reflections.

In this thesis, we are mainly sticking to three-dimensional poly-

hedra, and as we are reading along, we can see that the derivation of

the wallpaper groups also helped to classify the space groups much

better. Space groups are the symmetry groups that are relevant in

a crystal lattice 2 along with a translation element. There exists 230

space groups in three-dimensions, with 11 pairs of mirror images.

The German mathematician, Ludwig Georg Elias Moses Bieber-

bach (December 4, 1886 - September 1, 1982) proved that every

three-dimensional space group that fills space (i.e., that admits a

finite fundamental region) contains a subgroup generated by three

independent translations (where every translation of that finite fun-

damental region intersects the orbit of the origin) [8]. His theorem

generalized the modern approach to space groups in any dimension

[8].

Since a space group is a group of isometries on a Euclidean space,

we can easily see that dealing with our three-dimensional polyhedra

in this thesis there is a connection between them. What is the con-

nection? The connection is that a symmetry group of a polyhedron is

2A simple three-dimensional network of three sets of evenly spaced parallel lines whose points
of intersection are called the crystal lattice, or space lattice [17].
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a point group, where a point group 3 is a group of isometries leaving a

point fixed. In this thesis we are dealing with the three-dimensional

point groups.

We will resume our polyhedra historical time line. In 1858, Joseph

Bertrand (March 11, 1822 - April 5, 1900), a French mathematician,

derived the regular star polyhedra by facetting the icosahedron and

dodecahedron [7]. Bertrand used the term etoile, which means starry

or stellated, to give the star polyhedra their names. One year later

in 1859, Arthur Cayley translated etoile to stellated, to give the

Kepler-Poinsot polyhedra the names by which they are generally

known today [7].

The Catalan Solids are named after Eugene Charles Catalan (May

30, 1814 - February 14, 1894), a French and Belgian mathematician.

The Catalan solids were first described in 1865. They were all convex

and are face transitive (lie in the same symmetry orbit), but not ver-

tex transitive (there is only one orbit of vertices). Their duals which

are the Archimedean solids, are vertex transitive but not face transi-

tive. More formally, a dual of a polyhedron P being the polyhedron

resulting from choosing a vertex in each face of P and using the ver-

tices to define the dual polyhedron. The faces of Catalan solids are

not regular polygons, whereas the Platonic and Archimedean solid

faces are.

3The meaning of a point group varies throughout literature, and in this thesis we will refer to
a point group as defined above.
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The following solids are the Archimedean solids with their corre-

sponding dual Catalan solids.

• Archimedean Solids: cuboctahedron, great rhombicosidodeca-

hedron, great rhombicuboctahedron, icosidodecahedron, small

rhombicosidodecahedron, small rhombicuboctahedron, snub cube

(laevo), snub dodecahedron (laevo), truncated cube, truncated

dodecahedron, truncated icosahedron, truncated octahedron,

truncated tetrahedron.

• Catalan Dual Solids: rhombic dodecahedron, disdyakis triacon-

tahedron, disdyakis dodecahedron, rhombic triacontahedron, del-

toidal hexecontahedron, deltoidal icositetrahedron, pentagonal

icositetrahedron (dextro), pentagonal hexecontahedron (dextro),

small triakis octahedron, triakis icosahedron, pentakis dodeca-

hedron, tetrakis hexahedron, triakis tetrahedron

Ludwig Schläfli (January 15, 1814-1895), a Swiss geometer, was

one of the key figures in developing the notion of higher dimen-

sional spaces. He wrote Theorie der vielfachen Kontinuitat, in

which he defined what he called ‘polyschemes’, which are now called

polytopes. Polytopes are basically higher dimensional analogues to

polygons and polyhedra. Schläfl developed their theory, and also

the higher dimensional version of Euler’s formula. He described the

regular polytopes, and found that there are six in dimension four
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and three in all the higher dimensions. He invented a combinatory

notation for polyhedra and discovered polytopes, although the name

polytopes was given by a woman named Alicia Boole Scott (June 8,

1860 - December 17, 1940). Victor Schlegel (1843-1905), a German

mathematician invented what is known as a Schlegel diagram. A

Schlegel diagram is a projection of a polyhedron on a plane, and is

a visual assistance to comprehend the connectivity of the edges. For

example, the following figure represents what a Schlegal Diagram of

a Square Pyramid looks like.

Figure 2.6: The 5-Wheel Graph, the projection of the Square Pyramid on a Plane.

Ernst Steinitz (June 13, 1871 - September 29, 1928) was a Ger-

man mathematician who in 1916 developed a combinatorial charac-

terization of convex three-dimensional polyhedra [18]. He is respon-

sible for Steinitz’s Theorem, which was published as a 1934 book,

V orlesungen uber die Theorie der Polyeder unter Einschluss der

Elemente der Topologie, by Hans Rademacher. Steinitz’s theo-

rem for polyhedra states that every convex polyhedron forms a 3-
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connected planar graph, and every 3-connected planar graph can be

represented as the graph of a convex polyhedron [18]. This theorem

is a very important result for 3-polytopes. In geometry, a k-skeleton

of a polyhedron P (represented as skelk(P )) consists of all polyhedral

cells in its boundary of dimension up to k [17]. Thus the 1-skeletons

of convex polyhedra are exactly the 3-connected planar graphs.

Let us turn quickly to mention a mathematician whose notion

of a CW-Complex follows from an attempt to generalize the notion

of a simplicial complex. J.H.C Whitehead (November 11, 1904 -

May 8, 1904), a British mathematician, was one of the founders of

homotopy theory. Whitehead used his concept of a CW-Complex,

which is defined as a type of topological space, to meet the needs of

homotopy theory. We will not discuss homotopy theory here, yet we

will use his idea of a CW-Complex in the generic sense of a structure

of one. There are some geometers who have picked up on this notion

of a complex, and have adapted it.

In this thesis our definition of a complex is a variant of the ge-

ometer’s definition. The k-skeleton of a complex is the union of the

cells whose dimension is at most k.4 A complex of a polyhedron,

denoted as C(P ), is a poset, which consists of the vertices, edges,

faces, and interior of P , ordered by inclusion. A complex can be

4Notice the slight difference in the definition of a k-skeleton mentioned on the previous page
versus here. Essentially they are similar, but here we are discussing the k-skeleton of a complex
of P.
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found by defining the k-skeleton inductively. We start with the 0-

dimensional cells (vertices), then add the 1-dimensional cells (edges),

and then the 2-dimensional cells (faces). Hence complexes provide a

rather practical use and representation of the building blocks (cells)

of polytopes.

We continue on with our polyhedra history timeline. Patrick du

Val (1903 -1987) was a British mathematician who invented a nota-

tion for the stellations of a polytope [13] where, according to Cox-

eter, “in order to stellate a polytope, we have to extend its faces

symmetrically until they again form a polyhedron. To investigate

all possibilities, we consider the set of lines in which the plane of

a particular face would be cut by all the other faces (sufficiently

extended), and try to select regular polygons bounded by sets of

these lines.” Mathematician Jeffery C.P. Miller established the rules

which define a stellation. He along with H.S.M. Coxeter discovered

the twelve last non-convex semi-regular polytopes [13].

Which brings us to a mathematician who made a major contribu-

tion to the study of polytopes, H.S.M Coxeter. Coxeter (1907-2003),

is was one of the foremost mathematicians of his generation, he is

noted for his study of polytopes, which inspired the drawings of M.C.

Escher and influenced the architecture of R. Buckminster Fuller [14].

He was best known for his work on regular polytopes and higher-

dimensional geometries. Regular Polytopes was originally written
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in 1947, but it was updated and then republished in 1963 and in

1973. In Regular Polytopes, Coxeter also named the nine regu-

lar polytopes as the five platonic solids and the four Kepler-Poinsot

polytopes. Coxeter made important contributions to non-Euclidean

geometry, discrete groups, and combinatorial theory [14]. Coxeter

also combined some algebra with geometric techniques in what is

know as ‘polyhedral group theory’, that also led to many results

that are in several branches of mathematics as well [9].

After H.S.M. Coxeter, there were a few mathematicians who made

contributions to studying polytopes. One of these mathematicians

was Norman W. Johnson, who was a student of Coxeter’s. John-

son described and cataloged the Johnson solids in 1966. There are

ninety-two Johnson solids, which are any convex polytopes with reg-

ular faces that is not a platonic, Archimedean solid, or a prism or

anti-prisms [3]. In other words, there is no requirement that each

of the faces is the same polygon, or that they meet at a common

vertex. Since there are 92 of these solids, we have an image of all of

them on the next page.
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Figure 2.7: The 92 Johnson Solids. Image Courtesy of Vladimir Bulatov.

We will now discuss a person who has made considerable con-

tributions to polyhedra as well as other areas related to it. Branko

Grünbaum (born 1929) is a Croatian-born mathematician. He brought

the work of Steinitz back to life in 1962 after he realized that he could

render Steinitz’s work in graph theory. He made it possible to use

combinatorial theory on all of the three-dimensional polytopes of

the plane [9]. In 1967 he published Convex Polytopes, which is a

long account of the combinatorial theory of polytopes [9]. In 1977

he published an article Regular Polyhedra − Old and New, where

he extended the work of Coxeter. In the article he presented a very

general way to examine regular polyhedra [9].
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Lastly we will conclude this historical timeline with an area of

mathematics known as Geometric Group Theory, that evolved from

group theoretic concepts and the study of geometric objects. These

geometric objects in this thesis will be polyhedra, more specifically

finite polyhedra. For the last twenty years or more, Geometric Group

Theory has become a new area of mathematics that studies the con-

nections of both algebraic and geometric spaces in which finitely

generated groups act on [17]. When groups act on polyhedra, there

is an algebraic and geometric connection between the geometric ob-

jects and the algebraic groups.5

Two concepts that we have noticed, have come out of the area of

Geometric Group Theory. These concepts are at the foundation of

the ideas that we have expanded upon. The first concept is discussed

in Warren Dicks and M.J. Dunwoody’s 1989 book Groups Acting

on Graphs. They discuss combinatorial graphs or two-dimensional

graphs in their book, but their nomenclature is a little different than

the nomenclature in this thesis. We will not use Dicks and Dun-

woody’s nomenclature, but describe it as it pertains to our expanded

ideas. Dicks and Dunwoody’s approach says that there is a connected

set of the orbits of edges and vertices of G, such that it has a span-

ning tree, and intersects every orbit exactly once. They let these con-

nected sets be called G transversals, where G is a group of symme-

5Geometric Group Theory is very related to computational group theory, algebraic topology,
and many more areas of mathematics.
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tries of a graph G. To further explain their approach, first there exists

some symmetry of G that acts on G, then a G-transversal, induces

a spanning tree of G and intersects each orbit exactly once. Nat-

urally, this G-transversal is a subset of G. Dick’s and Dunwoody’s

proposition 1.2.6 can be found in [5] for additional reading.

The next concept is from John Meier’s Groups, Graphs, and

Trees [11]. He proceeds similarly as Dicks and Dunwoody did, ex-

cept he calls these connected sets of orbits ‘fundamental domains’.

Note, the use of the word fundamental domain, is not the usual

definition that most mathematicians are commonly familiar with.

Meier’s approach is also a constructive one. He denotes his funda-

mental domain F , as a subset of a connected graph G, where a group

G acts on G.6 His approach is an inductive process, which is starting

with a single vertex and F0={single− vertex}.

Then keep adding distinct vertices to F until it is large enough,

so that its image under the action of G covers the entire graph, so

we get F= union of all the Fn’s. This just means that you start with

a single vertex, when you find another distinct vertex is a different

orbit, you then add that vertex, and the edges that are shared by

these vertices are also part of F . You would keep adding distinct

vertices and edges until you found a large enough subset F , that will

cover the graph. Meier’s method is very similar to that of Coxeter’s

6Here G is in isolation, meaning it’s not acting on the underlying space. It is purely a group
of permutations of cells of the complex that preserves the structure of the complex.
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for finding fundamental regions in a polytope.7 The similarity is that

both of these men, only use the midpoint of an edge, not the whole

edge in part of their constructions.

7In Coxeter’s Regular Polytopes book.
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PART II FUNDAMENTAL TRANSVERSALS
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3 FACE FUNDAMENTAL TRANSVERSALS

In this part of the thesis, using the polyhedra that we have shown

and discussed, we will show our developed ideas that have come from

the concepts of Dicks and Dunwoody [5], John Meier [11] 1, and use

what Gregory L. McColm has done in [10]. In the chapter 3 we

intend to show that a face fundamental transversal is an adjacency

connected set of the orbits of faces of the C(P ) that intersects each

orbit of a face exactly once. In chapter 4 we explore an extension of

the face fundamental transversal, to incorporate edges. In chapter 5

we will discuss our concept of a fundamental transversal domain on

the complexes of polyhedra. Also, we will discuss a few conjectures

that have been developed. In chapter 5 the concept of a fundamental

transversal domain will be applied to some crystal nets, where visual

examples are provided.

1The only concept from Meier we will be using is a similar inductive process.
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We now formally define the terms we used more colloquially in

the previous sections.

Definition 3.0.1. We define the d-dimensional polytopes as follows,

for d=0,1,2,3. When d=0 it is a point or a vertex. When d=1, it is

a line segment or an edge, whose boundary consists of two endpoints

or vertices. When d=2, it is a polygon, which is a bounded region in

a plane whose boundary consists of finitely many 1-polytopes, which

are its edges. When d=3 it is a polyhedron P , which is a region whose

boundary consists of finitely many polygons, which are the faces of

the polyhedron.

Definition 3.0.2. Given a polytope P , the complex of P , denoted

as C(P ), is the poset whose elements are P and the elements of

complexes of polytopes whose union is the boundary of P , ordered by

inclusion. These elements are called the cells of P .

To show visually what a C(P ) looks like and how it is formed by

the elements of complexes of polytopes whose union is the boundary

of P , we have provided two figures on the next page that will clear

up any confusion in our definitions. The polyhedron we will use for

an example is the Cube.
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The following two figures show how a complex of a Cube is the

poset of the cells of the Cube.

Figure 3.1: The vertices, edges, and faces of a Cube.

Figure 3.2: The Poset of the Cube.

Notice in the above figure that the vertices are connected to edges

and the edges are connected to the faces. The figure above shows

that a vertice is the boundary of an edge, and likewise an edge is a

boundary of a face.
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Definition 3.0.3. An adjacency relation, denoted as H, is defined

to be a relation between two adjacent cells of dimension d, when their

intersection is a cell of dimension d− 1.

Definition 3.0.4. A coadjacency relation, denoted as CH, is de-

fined to be a relation between two cells of the same dimension d,

when they both are subsets of the boundary of a cell of dimension

d+ 1.

Definition 3.0.5. An automorphism is an isomorphism under ad-

jacency and coadjacency relations, from C(P ) to itself. The group

of symmetries of the underlying space of C(P ), whose restrictions

are automorphisms, is denoted as G, mapping the complex to itself

while preserving its structure. Recall from the introduction section

that we decided to have Sym(P ) be isomorphic to G.

Definition 3.0.6. The orbit of a face F in F , (where F is the set of

all faces under adjacency relations of C(P )), is the set of elements

of F to which F can be moved by the elements of G. The orbit of F

under G is denoted by G(F ) = {g(F )|g ∈ G}.2

Example 3.0.1.

For any of the Platonic solids, we will have one orbit each of faces,

edges and vertices.

2Given a group of automorphisms G on C(P ), if there are faces in C(P ) say F1, F2 ∈ F such
that there exists some h ∈ G with h(F1) = F2. Then write F1 ∼ F2, and we say that F1 is in
the same orbit as F2.

36



Definition 3.0.7. Let G be the group of symmetries of C(P ). A

face fundamental transversal on the faces of C(P ) is a set T such

that:

• T has exactly one face from each orbit of faces, and

• The subgraph of C(P ) induced by T is connected under H.

We will now introduce our first theorem and its proof.

Theorem 1. Every Polyhedron’s Complex contains an H-connected

Face Fundamental Transversal.

Proof. We will follow the construction in [5], and adapt the concepts

of [11] and [10] to prove our Theorem for the faces of a C(P ). Let F

be the set of faces with adjacency relation H. We start by choosing

any F ∈ F . Then let T0={F}, so that T0 intersects G(F ) exactly

once and is connected. Now assume that Tn is contained in F , where

Tn intersects each orbit of faces at most once and is a connected

subgraph of the orbits of faces of the C(P ). If Tn does intersect each

orbit of faces, then we are finished. However, if not, we choose a

face, say F ∗ ∈ G(F ∗) where G(F ∗) ∩ Tn = ∅, such that there exists

a H-path from a face in Tn, say F ∈ Tn to F ∗.

Go down this H-path of faces until we find a face, say F ′, where

F ′ is the first face on this H-path such that G(F ′) ∩ Tn = ∅. So

now denote its predecessor face on that path as pF ′, and pF ′ is in
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an orbit G(pF ′), where G(pF ′) ∩ Tn ̸= ∅. See the figure below for a

visual aid.

Figure 3.3: An H-path from a face F in Tn to F ∗, with F ′ the first face on the
H-path, whose orbit does not intersect Tn.

Since pF ′ is adjacent to F ′ and G(pF ′) ∩ Tn ̸= ∅, then pF ′ will

be equivalent to some other face from the same orbit in Tn; let this

face be pF− ∈ Tn. Hence there will be an automorphism h ∈ G,

such that h(pF ′) = pF−: pF ′ ∼ pF−. Then h(F ′) = Fn+1, for

some Fn+1 in the same orbit as F ′, and Fn+1 is adjacent to pF−.

Thus Fn+1 /∈ Tn, but Fn+1 will be adjacent to pF− ∈ Tn. Therefore,

Fn+1 ∈ ∂Tn+1 and by construction, Fn+1 ∼ F ′.

Since the predecessor face pF− was adjacent to Fn+1 and the only

new addition is a face in a new orbit, then we have that Tn+1 =

Tn ∪ {Fn+1}, which still intersects each orbit at most once and the

subgraph induced by Tn+1 is connected as Tn was. We continue
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until there are no more unrepresented orbits, and with each iteration

T0, Tn, Tn+1,..., T∞, there will be a connected subgraph extended

by adding a face adjacent to it. Thus we will eventually get all

of the faces of C(P ), because with each iteration, we are adding

another face adjacent to the previous iteration, and there are finitely

many orbits. Therefore, the polyhedron’s complex contains an H-

connected face fundamental transversal, T∞ =
∪

n Tn+1.

Let us look at a few examples so that the concept of a face fun-

damental transversal is clear. The first example is the easiest one to

understand.

Example 3.0.2.

The Cube is one of the Platonic Solids, so it has one orbit of faces.

Figure 3.4: A face fundamental transversal on C(Cube).

The next example is just a slightly more difficult than the first

example.
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Example 3.0.3.

If we look at the Truncated Tetrahedron,3 there are 2 orbits of

faces. So we can start at one of the triangular faces, and denote

this as F , then let T0={F}. Then following the previous proof, we

can assume that T1 is contained in F , where T1 intersects each orbit

of faces at most once and is a connected subgraph of the orbits of

faces of the C(P ). From T1, we get T2, since we already know that

T1 existed. Following the previous proof, we go down a H- relation

path until we come to a face in an unrepresented orbit, so here that

would be one of the hexagonal faces. We know the predecessor face

is in an orbit already represented, so this new face must be added,

and we get T2 where T2 = T1∪{F2}. Hence we have an H-connected

face fundamental transversal.

The last two examples we will show each have 2 orbits of faces.

The face fundamental transversal of these examples is not that dif-

ficult to find by hand. The construction in the proof should provide

all the tools that are necessary.

3This is a Archimedean Solid.
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Example 3.0.4.

This next example is the Truncated Cube. The Truncated Cube

has 2 orbits of faces.

Figure 3.5: A face fundamental transversal on C(Truncated Cube). Image from
Wikipedia Commons, licensed under Creative Commons, Attribution - ShareAlike
License.

Example 3.0.5.

The last example is the Quartz Crystal. The Quartz Crystal has

2 orbits of faces.

Figure 3.6: A face fundamental transversal on C(Quartz Crystal). Image Courtesy
of Gregory L. McColm. Spring 2010
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4 EDGE FUNDAMENTAL TRANSVERSALS

Recall from the last chapter that we defined an automorphism

as an isomorphism under the adjacency and coadjacency relations,

from C(P ) to itself. The group of symmetries of the underlying space

of C(P ), whose restrictions are automorphisms of C(P ), is denoted

G. In this chapter we are using the notion of coadjacency with a

restriction. Here the restriction is that the two cells of dimension

d will be the edges and they are the shared boundary of a cell of

dimension d+1, which is a face in the face fundamental transversal.

So the definition of coadjacency is now used for the cells that are the

shared boundary of a cell in a face fundamental transversal and so

we will change it a little for our partial result.

Two edges are called coradjacent if they share a common face

in the face fundamental transversal. It is required that every edge

we obtain in the transversal be incident to two faces in different

orbits in the face fundamental transversal. We will define this more

formally in this section. To obtain this edge fundamental transversal,
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we begin by choosing an edge.1 If there is only one orbit of edges,

then we are done. On the other hand, if there is more than one

orbit of edges, then we would keep collecting edges until we find our

edge fundamental transversal. We need to describe the two types

of edges that are required to find the rest of the edges for our edge

fundamental transversal.

We define the type of an edge in a represented orbit to be a

predecessor edge. Naturally, from our assumption above this edge

will be coradjacent to another edge. This edge that is coradjacent

to the predecessor edge will be an edge that is in an unrepresented

orbit. We define this edge to be the successor of the predecessor

edge, so we will call it a successor edge. We are looking for these

edges to be coradjacent to one another and connected. By connected,

we mean that there will be a path between each pair of edges. Thus

every successor edge shares a face with the predecessor edge, and the

edges will be coradjacent to each another. In exploring this partial

result, we have found that this works for many the Johnson solids,

and especially the types of solids that do not have another face from

the same orbit adjacent to it. Let us define a few things to describe

the concept we are trying to express.

1Every edge is in an orbit.
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Definition 4.0.8. A coradjacency relation, denoted as CRH, is

a relation between two edges that share a common face in the face

fundamental transversal.

Definition 4.0.9. The orbit of an edge E in E 2 is the set of elements

of E to which E can be moved by the elements of G. The orbit of E

under G is denoted by G(E) = {g(E)|g ∈ G}.

Definition 4.0.10. A CRH-path is a path along the coradjacent

edges of C(P ), where each edge is coradjacent to its successor.

Definition 4.0.11. An interior edge is an edge that is incident to

two faces in T .

Definition 4.0.12. A CRH-connected relation is a relation between

each edge that is incident to two different faces in the face fundamen-

tal transversal, is coradjacent to another edge in a different orbit, and

there exists a path from one edge to another that share a common

face in the face fundamental transversal.

2E is the set of all edges of the C(P ) with coradjacency relation CRH.
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Definition 4.0.13. A edge fundamental transversal of the edges

of C(P ), incident to faces in the face fundamental transversal, is a

set Q such that:

• Q has exactly one edge from each orbit of edges, and each edge

is interior.

• Each edge is intersected exactly once.

• The subgraph of C(P ) induced by Q is contained in the boundary

of the face fundamental transversal, and is connected.

We can now introduce our edge transversal proposition 1.

The Edge Transversal Proposition 1. If an H-connected face

fundamental transversal T has a set of interior edges that intersects

each orbit at least once, then there exists a CRH-connected edge fun-

damental transversal whose edges are incident to the faces in the face

fundamental transversal.

Proof. Let E be the set of all edges with coradjacency relation CRH.

Given an H-connected face fundamental transversal T that has a set

of interior edges incident to all of it’s faces, we let an edge E ∈ E be

incident to two faces in the face fundamental transversal T . Start

by choosing this edge E ∈ E , where E is incident to say Fw, F v ∈ T ,

then we let Q0={E}. Q0 is the first iteration of the edge fundamental

transversal.
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Assume that Qn intersects each orbit of edges at most once, and

each edge is incident to two faces in T , and Qn is CRH-connected.

If Qn intersects each orbit of edges that are incident to at least two

faces in T , and is CRH-connected, then we are done. However, if Qn

does not then we continue in the following manner. For some orbit

of edges, we would choose an edge incident to two faces in T and

is an interior edge, say E∗ ∈ E , where G(E∗) ∩ Qn = ∅, such that

there exists an CRH-path from E to E∗ along the face fundamental

transversal T .

Go down this CRH-path from E to E∗ until we find an edge

say E ′, where E ′ is the first edge on this CRH-path, such that

G(E ′)∩Tn = ∅. E ′’s predecessor edge pE ′ is in an orbit intersecting

Qn : G(pE ′) ∩ Qn ̸= ∅. Hence, since pE ′ is an interior edge, this

means that there does not exist another edge in the same orbit as

pE ′ that is contained in T . So we have that pE ′ ∈ Qn. Let the

two faces (with any generic representation, here we will call it F d

and F u), be incident to E ′, such that F d, F u ∈ T , and let F u be

the face that is incident to both E ′ and pE ′. Since E ′ /∈ Qn, then

E ′ ∈ ∂Qn+1. Thus the only addition is E ′, which is an edge in a new

orbit so we must have that Qn+1 = Qn ∪ {E ′}. Qn+1 still intersects

each orbit at most once, and the coradjacency subgraph induced by

it, is CRH-connected as Qn was.

Therefore, we continue until there are no more unrepresented or-
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bits of edges that are coradjacent to one another along T . In each

iteration, Q0, Qn, Qn+1,..., Q∞, along T , there will be a CRH-

connected subgraph of edges extended by adding a coradjacent edge

to it, that is incident to two faces in T . Hence we will obtain all of

the edges, since each edge in an iteration is incident to at least two

faces in the face fundamental transversal, and each edge is corad-

jacent to another edge in another iteration. Therefore, there exists

a CRH-connected edge fundamental transversal Q∞ =
∪

nQn+1 of

edges that are incident to the faces of T .

Next we will show some examples of the types of polyhedra that

hold for the edge transversal proposition. These are all solids from

the Johnson solids. The first five examples are from the Cupola

family. The last example will be a type of prism. Note that in

the Cupolas, that we will be including either the back face or the

bottom face in the face fundamental transversal. In each example it

will be noted that either the back or the bottom face is included. For

instance, in the first example we will present the Triangular Cupola,

and we will include the back face in the face fundamental transversal.
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Example 4.0.6.

The first example is the Triangular Cupola. It has 4 orbits of

faces and 4 orbits of edges. We are including the back face.

Figure 4.1: The Triangular Cupola. Image from Wikipedia Commons, licensed
under Creative Commons, Attribution - ShareAlike License.

Notice in the following figure that every orbit of an edge is incident

to 2 different faces in the face fundamental transversal. The back

face is in the face fundamental transversal.

Figure 4.2: A edge fundamental transversal incident to a face fundamental
transversal on C(Triangular Cupola). Image from Wikipedia Commons, licensed
under Creative Commons, Attribution - ShareAlike License.

48



Example 4.0.7.

The next example is the Square Cupola. It also has 4 orbits of

faces and 4 orbits of edges. Here we are including the bottom face.

Figure 4.3: The Square Cupola. Image from Wikipedia Commons, licensed under
Creative Commons, Attribution - ShareAlike License.

Notice here the bottom face is a face in the face fundamental

transversal.

Figure 4.4: A edge fundamental transversal incident to a face fundamental
transversal on C(Square Cupola). Image from Wikipedia Commons, licensed un-
der Creative Commons, Attribution - ShareAlike License.
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Example 4.0.8.

The Pentagonal Cupola. This solid also has 4 orbits of faces and

4 orbits of edges.

Figure 4.5: The Pentagonal Cupola. Image from Wikipedia Commons, licensed
under Creative Commons, Attribution - ShareAlike License.

Again, the bottom face is in the face fundamental transversal.

Figure 4.6: An edge fundamental transversal incident to a face fundamental
transversal on C(Pentagonal Cupola). Image from Wikipedia Commons, licensed
under Creative Commons, Attribution - ShareAlike License.
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Example 4.0.9.

The Elongated Pentagonal Cupola. This solid has 6 orbits of faces

and 7 orbits of edges.

Figure 4.7: Elongated Pentagonal Cupola. Image from Wikipedia Commons,
licensed under Creative Commons, Attribution - ShareAlike License.

As before, the bottom face is in the face fundamental transversal.

Figure 4.8: An edge fundamental transversal incident to a face fundamental
transversal on C(Elongated Pentagonal Cupola). Image from Wikipedia Com-
mons, licensed under Creative Commons, Attribution - ShareAlike License.
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Example 4.0.10.

The Elongated Triangular Cupola. This solid also has 6 orbits of

faces and 7 orbits of edges.

Figure 4.9: Elongated Triangular Cupola. Image from Wikipedia Commons, li-
censed under Creative Commons, Attribution - ShareAlike License.

As in the other cupolas, the bottom face is in the face fundamental

transversal.

Figure 4.10: An edge fundamental transversal incident to a face fundamental
transversal on C(Elongated Triangular Cupola). Image from Wikipedia Com-
mons, licensed under Creative Commons, Attribution - ShareAlike License.
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Example 4.0.11.

The Augmented Pentagonal Prism. This solid has 5 orbits of faces

and 6 orbits of edges.

Figure 4.11: Augmented Pentagonal Prism. Image from Wikipedia Commons,
licensed under Creative Commons, Attribution - ShareAlike License.

Notice here that the edge fundamental transversal is half of the

solid.

Figure 4.12: An edge fundamental transversal incident to a face fundamental
transversal on C(Augmented Pentagonal Prism). Image from Wikipedia Com-
mons, licensed under Creative Commons, Attribution - ShareAlike License.
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Next, we will present some examples of polyhedra that don’t sat-

isfy the conditions for the proposition.

Example 4.0.12.

If we take the Archimedian solids, the Rhombicuboctahedron and

the Truncated Cuboctahedron, then the first solid has three orbits of

faces, and three orbits of edges. So the face fundamental transversal

will consist of the three different orbits of faces, connected under H-

relations. If we start with choosing one of the edges, say the one in

between the two square faces, then an edge that is coradjacent to it,

then the proposition holds, but we don’t get all of the orbits of edges.

For instance, since we started with choosing the edge that is between

the two square faces, where this edge is incident to at least 2 different

faces in the face fundamental transversal, then we choose an edge

that is coradjacent to it, say the one between the triangular face and

square face, then after this the next edge we choose is not incident to

at least 2 different faces in the face fundamental transversal. So we

see that we don’t get all of the orbits of edges, thus the proposition

doesn’t hold.

The same idea is applied to the Truncated Cuboctahedron. The

Truncated Cuboctahedron has two different orbits of faces and edges,

so the face fundamental transversal will consist of the two different

orbits of faces, connected underH. Again, let us start by choosing an
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Figure 4.13: Examples of Polyhedra, where the edge proposition doesn’t hold, i.e,
the Rhombicuboctahedron and the Truncated Cuboctahedron. Image courtesy of
Gregory L. McColm Spring 2009.

edge, say the edge that is between the two larger faces. Then, already

we can see that the proposition doesn’t hold, because the edge we

chose is not incident to at least 2 faces in the face fundamental

transversal. Notice in the figure that the edges that are outlined

show why the proposition doesn’t hold, i.e, every edge isn’t incident

to 2 different faces in the face fundamental transversal.

Next, we will present a few more examples of polyhedra that do

not satisfy the proposition.
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The following polyhedron was created during the spring semester

of 2010. The Caramel.

Example 4.0.13.

The following figure is a polyhedron that was created, while eat-

ing a sundae. It has 6 orbits of faces, 6 orbits of edges, and 4 orbits

of vertices. If you wish to include the interior faces, then this poly-

hedron will have 7 orbits of faces, 6 orbits of edges, and 4 orbits of

vertices.

Figure 4.14: The Caramel. Image Courtesy of Gregory L. McColm.

On the next page we will show what the edge fundamental transver-

sal will look like on the C(Caramel).
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The following figure shows what the edge fundamental transversal

looks like on the C(Caramel). Notice that every edge is not incident

to at least 2 different faces in the face fundamental transversal. Thus

the proposition doesn’t hold for this polyhedron.

Figure 4.15: A edge fundamental transversal on C(Caramel). Image is a combi-
nation of Gregory L. McColm’s previous picture and Joy D’Andrea’s.

Our next example is a solid that is part of the Dipyramid family

of the Johnson Solids. Every edge is not incident to 2 faces in the

face fundamental transversal, and there are some faces adjacent to

other faces in the same orbit.
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Example 4.0.14.

The Elongated Triangular Dipyramid. It has 4 orbits of faces and

6 orbits of edges.

Figure 4.16: The Elongated Triangular Dipyramid. Image from Wikipedia Com-
mons, licensed under Creative Commons, Attribution - ShareAlike License.

Example 4.0.15.

The Pentagonal Pyramid. It has 2 orbits of faces and 2 orbits of

edges.3

Figure 4.17: The Pentagonal Pyramid. Image from Wikipedia Commons, licensed
under Creative Commons, Attribution - ShareAlike License.

3We are including the back face.
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The last example is a polyhedron called Sorcha. This was made in

the spring of 2010. The name was given to this polyhedron because

it is similar in resemblance of the Helmet worn by Sorcha in the

movie Willow. Sorcha has a lot of symmetry about itself.

Example 4.0.16.

Sorcha. It has 10 orbits of faces, 15 orbits of edges, and 6 orbits

of vertices. If you would like to include the interior faces, then there

will be 13 orbits of faces, 15 orbits of edges, and 6 orbits of vertices.

Figure 4.18: Sorcha

Sorcha’s face and edge fundamental transversal’s are exactly half

of the entire solid. We will see this in the next figure.
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The next image is of the edge fundamental transversal on C(Sorcha).

It appears to hold for the proposition, but notice the edge at the very

top, it is the only edge that isn’t incident to two different faces in

the face fundamental transversal.

Figure 4.19: A edge fundamental transversal on C(Sorcha)
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5 FUNDAMENTAL TRANSVERSAL DOMAINS

We have come to a critical chapter of the thesis, although this

is a small chapter. Everything from the previous chapters made

it possible to get here. Throughout the thesis we did not address

certain issues, such as an edge fundamental transversal being CH-

connected, or incident to vertices of C(P ). We didn’t discuss whether

or not the vertices were incident to the faces in the face fundamental

transversal, or that there exists a vertex fundamental transversal.

Let’s start off by describing what we would like to happen. We are

looking to obtain a connected set of representatives of the orbits of

the cells of C(P ). The cells we will be referring to are the faces, edges,

and vertices of C(P ). Recall in the face fundamental transversal

chapter that we defined a face fundamental transversal as follows.

Definition 5.0.14. Let G be the group of symmetries of C(P ). A

face fundamental transversal on the faces of C(P ) is a set T such

that:

• T has exactly one face from each orbit of faces, and

• The subgraph of C(P ) induced by T is connected under H.
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In this chapter we define an edge fundamental transversal as.

Definition 5.0.15. Let G be the group of symmetries of C(P ). A

edge fundamental transversal on the edges of C(P ) is a set Q such

that:

• Q has exactly one edge from each orbit of edges, and

• The subgraph of C(P ) induced by Q is connected under CH.

This definition is the same for a vertex fundamental transversal

except we replace Q with L, and edges with vertices.

Definition 5.0.16. A Fundamental Transversal Domain is a con-

nected union of the face, edge, and vertex fundamental transversals

of C(P ).

Determining the existence of these fundamental transversal do-

mains was originally the problem we were trying to solve for this

thesis. However, this idea may be more difficult than we thought.

We found many counterexamples to the formal description we were

trying to present. What we have discovered is two conjectures for

a fundamental transversal domain. The first conjecture is using the

concepts of a H-connected face fundamental transversal, and CH-

connected edge and vertex fundamental transversals.
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Conjecture 1. For every polyhedron’s complex, there exists a H-

connected face, CH-connected edge, and CH-connected vertex fun-

damental transversals, such that each intersected orbit of a vertex is

incident to an intersected orbit of an edge, and each intersected orbit

of an edge is incident to a intersected orbit of a face.

We need to define a few things to approach our next conjecture.

In the face fundamental transversal section, we defined a complex of

a polyhedron C(P ), as a poset of cells of P . We define a flag in a

complex as a subset of a fundamental transversal domain, where a

flag is a maximal chain of the poset. A flag consists of a vertex, that

is contained in an edge, and that edge is contained in a face from the

C(P ). We can find a flag by choosing a vertex, then an edge that is

incident to the vertex, and then a face that is incident to that edge.

We are looking to find all flags such that a fundamental transver-

sal domain is a union of these flags. This seemed like a good ap-

proach at first, but what happens, when the Complex is huge or

infinite, how do we find all of the flags then? This idea may still

work, but it will require some computer applications, such as Maple,

SAGE, Mathematica, and so on.

Conjecture 2. There exists a connected fundamental transversal

domain that is the union of flags of C(P ).
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We close the thesis with fundamental transversal domains on what

we call related objects. Here related objects are things such as ‘nets’

of different crystals, or more simple, crystal nets. The crystal nets

shown here are as follows; PCU, DIA, HEX and AST. The images

are courtesy of Reticular Chemistry Structure Resource, initiated by

Micheal O’Keefe. Some of these crystal nets have 1 orbit of a cell in

each dimension, and some have 2 orbits of faces. Notice in the nets

that what appears to look like a face is actually the central cell. The

faces are clear in these nets. We will color the faces in, to show what

they are in our fundamental transversal domains. Also, we will line

draw the central cell, shade in the orbits of vertices, and outline the

orbits of edges.

The first crystal net we will show is PCU. PCU has 1 orbit of

faces, edges, and vertices, and also a central cell orbit. Thus it’s

fundamental transversal domain will be easy to find and connect.

Figure 5.1: PCU. Image Courtesy of Micheal O’Keefe.
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The next figure depicts what a fundamental transversal domain

on PCU will look like. Here we start with the central cell, connect

it to the 1 orbit of vertices, then connect the 1 orbit of vertices to

the 1 orbit of edges, and lastly, connect the 1 orbit of edges to the

1 orbit of faces. Hence, we have our visually connected fundamental

transversal domain on PCU.

Figure 5.2: A Fundamental Transversal Domain on PCU. Image Courtesy of
Micheal O’Keefe.

The next crystal net we will show is DIA. DIA is an interesting

looking crystal net, with its energetic color and its intriguing design.

It has 1 orbit of faces, 1 orbit of edges and vertices, and a central cell

orbit. Here again, a fundamental transversal domain on DIA will be

easy to find and connect.
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Figure 5.3: DIA. Image Courtesy of Micheal O’Keefe.

The next figure depicts what a fundamental transversal domain

on DIA will look like. Here we start with the central cell, connect

it to the 1 orbit of faces, then connect the 1 orbit of faces to the

1 orbit of edges, and lastly, connect the 1 orbit of edges to the 1

orbit of vertices. Hence, we have our visually connected fundamental

transversal domain on DIA.

Figure 5.4: A Fundamental Transversal Domain on DIA. Image Courtesy of
Micheal O’Keefe

Next, we will look at some crystal nets that may have more than

1 orbit of faces, edges, and vertices. The following crystal net we will

show of this nature is Hex. It has 2 orbits of faces and edges, and 1
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orbit of vertices, and a central cell orbit. It’s fundamental transversal

domain, shouldn’t be that hard to figure out and connect.

Figure 5.5: HEX. Image Courtesy of Micheal O’Keefe.

The next figure shows what a fundamental transversal domain on

Hex will look like. Following the previous directions, we perform the

same process. We start off by finding the central cell, connect it to

both orbits of faces, which are the square and triangular face. Then

connect the orbits of faces to the orbits of edges, say the one on the

left of the square face, and the one that intersects the 2 orbits of

faces, lastly connect the orbits of edges to the 1 orbit of vertices,

on the left. Hence we have our visually represented fundamental

transversal domain on HEX on the next page.
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Figure 5.6: A Fundamental Transversal Domain on HEX. Image Courtesy of
Micheal O’Keefe.

The last example we will present is a crystal net of AST. AST has

2 orbits of faces, edges, and vertices, and a central cell orbit. The

fundamental transversal domain should be just a little more slightly

harder to find.

Figure 5.7: AST. Image Courtesy of Micheal O’Keefe.

The figure on the next page depicts what a fundamental funda-

mental transversal on AST, will look like. Like before, we start with

the central cell, connect it to the 2 orbits of faces, say the hexagonal

face and the square face. Then connect the orbits of faces to the 2

orbits of edges, here that will be the edge that intersects the 2 orbits
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of faces, and the other edge is incident to the square face. The last

thing we do, is connect the orbits of edges to the 2 orbits of vertices,

which are the vertex that is incident to both faces, and the other one

is incident to the square face and adjacent to the other vertex.

Notice in the following figure that every orbit of a cell is connected

to each other and to the central cell. Thus we have obtained our

visually represented fundamental transversal domain on AST. It may

be hard to see the fundamental transversal domain on AST right

away. Look to the far right side at the top of AST, this is where the

fundamental transversal domain is.

Figure 5.8: A Fundamental Transversal Domain on AST. Image Courtesy of
Micheal O’Keefe.
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