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moment of inertia (MoI) and observable planetary features to create approximate two-layer interior 
structure models. The moment inertia of a uniform sphere, hollow sphere, and a sphere with a shell are 
derived to calculate the radius and density variables that identify the relationship between the different 
radii and densities of the two layers. A two-layer model of the planet’s interior can then be formulated 
based on the radius, density, known MoI factor and the surface density or the assumed composition 
density of the planet. The models created for Jupiter and Neptune are compared to Earth’s model and 
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models of planetary interiors confirm the results produced from the two-layer models in this paper. 
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PROBLEM STATEMENT 

One of the challenges in the field of geophysics is trying to analyze the internal structure and 

distribution of mass within planetary bodies using information based solely on observations 

gathered from satellites. Although density is useful in describing the relationship between a 

planet’s mass and the volume of space taken up, it does not describe how the mass is distributed. 

However, a planet’s mass, average radius, and oblateness can be used to calculate the moment of 

inertia, which can be used to help identify the distribution of mass about a rotating axis.  

MOTIVATION 

The moment of inertia (MoI) is a measure of an object’s resistance to rotational change, or in this 

case, being spun upwards or downwards (Nimmo, 2010). Because density is limited by only 

providing the amount of mass per volume, a planet’s moment of inertia can be used to provide 

more information about the differentiation of a planet’s mass. Particularly, the MoI factor can be 

used to identify if the planet has the internal shape of a uniform sphere, spherical shell, or a 

sphere and shell. This information can be useful in identifying whether the planet has large 

structural variations that can represent the composition, such as a dense, rocky core, and the 

radial proportion of the core to the total size. Additionally, the mass and density distribution can 

help identify the potential composition of the planetary interiors, which increases our 

understanding of a planet’s chemical composition. Using this information to create conceptual 

models of planetary composition also provides additional insight into material and mass 

distribution within our solar system and the processes that led to its formation.  

MATHEMATICAL DESCRIPTION AND SOLUTION APPROACH 

Earth has the unique advantage over other planetary bodies in our Solar System of being able to 

be more rigorously studied through satellite and ground-based observations, such as seismology. 

Seismology uses the observations of how surface waves and pressure waves traverse through 

material. The speed of seismic waves is based on the physical properties of the material, such as 

density, bulk modulus, and shear modulus, which are correlated to the composition and 

temperature of the material it is transmitted through. Extensive studies of seismic waves and the 

application of Snell’s Law, which determines ray-path trajectory of waves, provides an internal 

seismic wave-speed and density model of Earth. The model for the internal structure of the Earth 

is represented by the preliminary reference Earth model (PREM; Dziewonski & Anderson, 

1981).  

Kimball: Using Moment of Inertia and Observable Planetary Features to Appr

Produced by The Berkeley Electronic Press, 2019



2 

 

Graph 1: Earth’s Density vs Radius 

 

 

 

 

 

 

 

 

 

 

(modified from PREM (Prézeau, 2015)) 

Graph (1) above shows the model of Earth’s internal density structure based on the 

PREM. Earth’s internal density structure has large incremental increases associated with 

compositional variation, which shows clear distinctions between Earth’s mantle, outer core, 

and inner core. The gradual density transitions are due to increasing pressure and 

temperature with depth.  

Unfortunately, seismic data from other planets is unavailable or sparse due to physical 

limitations such as extensive surface temperature (Venus), or lack of solid surfaces (Jupiter and 

Saturn). Instead of using seismic data, the mass distribution can be approximated using 

observations from satellites to calculate the planet’s mass, radius, gravity field and other various 

orbital parameters. Observational data can also be used to compute the various rotational 

parameters of a planet, such as spin state, spin axis, and longitudinal displacement to calculate 

the internal structure (Margot et al., 2012). If a planet has natural satellites, such as moons, then 

the orbital period and semi-major axis of the orbit can be determined to find the mass (Cook, 

1975). Then using the observations described above and Newton’s Gravitational Constant (G), 

the mass can be identified using Kepler’s Third Law, where a is the semi-major axis and P is the 

orbital period:    𝑀 =
4𝜋

𝐺𝑃2 𝑎3. 

With the mass identified, the radius can be calculated by using G, and the gravitational 

acceleration or the orbital period. Once the mass and radius are calculated, the moment of inertia 

is used to identify the relationship between the radii and densities of the various layers. However, 

Undergraduate Journal of Mathematical Modeling: One + Two, Vol. 10, Iss. 1 [2019], Art. 2

https://digitalcommons.usf.edu/ujmm/vol10/iss1/2
DOI: https://doi.org/10.5038/2326-3652.10.1.4907



3 

 

because of the lack of seismic data, we have to assume that other planets are similar to Earth or 

simplified to only two layers and thus only have two different radii and densities for their 

internal structure. Furthermore, the mantle density has to be assumed based on the surface 

density or the known average density of the planet’s composition. For example, Jupiter’s mantle 

density is assumed based on the average density of its composition: metallic hydrogen.  

As an object is rotating or spinning, it begins to flatten dependent on the speed of rotation, thus 

planets will have different MoI based on its speed of rotation and how the internal mass is 

beginning to flatten which is dependent on how the mass is distributed within the planet. Using 

Earth as a primary model and deriving the moment of inertia of a uniform sphere, hollow sphere, 

and sphere with a shell, the internal structure of any planet can be determined. A two layer model 

is used to compare and contrast Earth’s interior structure with that of Neptune and Jupiter.  

 

Uniform Sphere 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Model of Uniform Sphere 
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Figure (1) shows a uniform sphere in both polar and Cartesian coordinates rotating 

about the y-axis, where R is the full radius, z is the distance from the center of the sphere, dz 

is the disk thickness, and r is the disc radius.  

The moment of inertia (I) of a solid cylinder is shown below, where r is the radius and dm is the 

differential of the mass M, that equals the density  multiplied by the volume V:  

                                             𝐼 =
1

2
𝑀𝑅2 ⟹

𝑑𝐼

𝑑𝑚
=

1

2
𝑟2, 

     𝑑𝐼 =
1

2
𝑟2𝑑𝑚    (eq.1)  

The differential dV = r2dz is implemented into the equation with respect to dz, the distance of 

thickness. The simplified equation of MoI becomes: 

𝑑𝐼 =
1

2
𝜋𝑟4𝑑𝑧   (eq.2) 

 

Using the Pythagorean Theorem, r4 can be rewritten in terms of R, the full radius, and z, the 

distance of thickness from the center of the sphere:  𝑟4 = (𝑅2 − 𝑧2)2. 

When expanded and added to the equation, the result is: 𝑑𝐼 =
1

2
𝜋(𝑅2 − 𝑧2)2 dz.  

The integral is from -R to R because the positive and negative values of the Cartesian coordinate 

system need to be considered to compute the full sphere. However, since it is an even function, it 

can be rewritten from 0 to R: 

𝐼 = 𝜋 ∫ (𝑅2 − 𝑧2)2𝑅

0
dz   (eq.3) 

 

After expanding and simplifying, equation (3) can be integrated: 

𝐼 = 𝜋𝜌 ∫ (𝑧4 − 2𝑅2𝑧2 + 𝑅4)𝑑𝑧 =  𝜋𝜌 (
𝑅

0

𝑧5

5
−

2𝑅2𝑧3

3
+ 𝑅4𝑧) 𝑓𝑟𝑜𝑚 0 𝑡𝑜 𝑅, 

= 𝜋𝜌 (
𝑅5

5
−

2𝑅5

3
+ 𝑅5) =  𝜋𝜌

8𝑅5

15
   (sol.1)   

 

The equation then has to be converted in terms of density and volume. Since M = V, then dm = 

dV. The volume of a sphere and its integration are shown below, with dm equaling the integral 

of density and volume. The solution for mass is used in later calculations:  
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𝑀 = ∫ 𝜌4𝜋𝑟2𝑑𝑟 ⇒
𝑅

0
  𝑀 = 𝜌

4𝜋𝑅3

3
    (eq.4) 

The mass equation above can be rewritten as an expression of density and then substituted into 

the solution for moment of inertia. The equation for the moment of inertia of a uniform sphere 

becomes: 

𝐼 = (𝜌
4

3
𝜋𝑅3) (

8𝑅2

15
) (

3

4
) =

2

5
𝑀𝑅2  (sol.2) 

 

Model of Hollow Sphere. From solution (2), it can be derived that a planet with the internal 

structure of an uniform sphere has a MoI of 0.40 or close to that value because 
𝐼

𝑀𝑅2 will indicate 

how much greater the core density is compared to the mantle (Cook, 1975). 

 

Hollow Sphere 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Model of Hollow Sphere 
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Figure (2) shows a hollow sphere in both polar and Cartesian coordinate systems 

rotating about the y-axis, where the red sphere is a hollow area where no mass can exist, 

R is the radius of the entire sphere and r is the radius of the hollow sphere.  

To calculate the MoI of a hollow sphere, the following equation has to be used, where the total I 

is the I of a sphere (sol.1) subtracted from the I of the hollow sphere.  

𝐼𝑡𝑜𝑡𝑎𝑙 = 𝐼𝑠𝑝ℎ𝑒𝑟𝑒 {
𝑅
0

− 𝐼𝑠𝑝ℎ𝑒𝑟𝑒 {
𝑟
0

    (eq.5) 

𝐼𝑡𝑜𝑡𝑎𝑙 = 𝜋 ∫ 𝜌(𝑅2 − 𝑧2)2𝑑𝑧 − 𝜋 ∫ 𝜌(𝑟2 − 𝑧2)2𝑑𝑧
𝑟

0

𝑅

0

 

𝐼𝑡𝑜𝑡𝑎𝑙 = 𝜋𝜌 (
8𝑅5

15
) − 𝜋𝜌 (

8𝑟5

15
) 

𝐼𝑡𝑜𝑡𝑎𝑙 = 𝜋𝜌
8

15
(𝑅5 − 𝑟5)              (eq.6) 

The total mass of the hollow sphere can be written as MR - Mr = M, thus the integral for the mass 

is from r to R: 

𝑀 = ∫ 4𝜋𝑟2𝜌
𝑅

𝑟

 𝑑𝑟 ⇒  𝑀 =  
4

3
𝜋𝜌(𝑅3 − 𝑟3) 

The equation can then be rearranged to isolate density. Additionally, r can be rewritten to be 

related to the total radius, R, by some constant a, which needs to be between 0 and 1.  

𝜌 =
3

4𝜋
𝑀 (

1

𝑅3−(𝑎𝑅)3)    (eq.7) 

The moment of inertia can then be computed by multiplying equations (6) and (7): 

𝐼 = 𝜋
8

15
(𝑅5 − (𝑎𝑅)5) ∙ 𝑀

3𝜋

4
(

1

𝑅3 − (𝑎𝑅)3
) 

𝐼 =
2

5
𝑀 (

𝑅5−(𝑎𝑅)5

𝑅3−(𝑎𝑅)3)  (eq.8) 

The indeterminate form can be expanded and L’Hospital’s rule or elementary algebra can be 

applied to find the limit as 𝑎𝑅 = 𝑟 → 𝑅. We have 

𝑅5−(𝑎𝑅)5

𝑅3−(𝑎𝑅)3
=

(𝑅−𝑎𝑅)(𝑅4+𝑅3𝑎𝑅+𝑅2(𝑎𝑅)2+𝑅(𝑎𝑅)3+(𝑎𝑅)4)

(𝑅−𝑎𝑅)(𝑅2+𝑅𝑎𝑅+𝑅(𝑎𝑅)2)
  and 

𝑙𝑖𝑚𝑎𝑅=𝑟→𝑅  
𝑅5−(𝑎𝑅)5

𝑅3−(𝑎𝑅)3 = 𝑙𝑖𝑚

𝑎𝑅=𝑟→𝑅

(𝑅4+𝑅3𝑟+𝑅2𝑟2+𝑅𝑟3+𝑟4)

(𝑅2+𝑅𝑟+𝑅𝑟2)
=

5𝑅2

3
 .  
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So the MoI can be identified for 𝑎 ≤ 1 by simplifying equation (8) such that:  

𝐼 =
2

5
𝑀𝑅2 (1−𝑎5)

(1−𝑎3)
 , if 𝑎 < 1, and  𝐼 =

2

3
𝑀𝑅2, if 𝑎 = 1  (sol.3) 

 

Sphere and Shell 

 

 

 

 

 

 

 

 

 

 

 

 

                             

                                      Figure 3. Model of a Sphere and Shell 

 

Figure (3) shows a sphere with a shell of different density and radius. The sphere is 

in both polar and Cartesian coordinate systems rotating about the y-axis, where the red 

sphere has density 2 and radius r, and the blue sphere has density 1 with R radius.  

The total moment of inertia for a sphere with a shell is the MoI of a sphere and shell, which are 

calculated in the previous section, but the shell is now in terms of a second density.  

𝐼𝑇𝑜𝑡𝑎𝑙 = 𝐼𝑠𝑝ℎ𝑒𝑟𝑒({
𝑟
0

, 𝜌1) + 𝐼𝑠𝑝ℎ𝑒𝑟𝑒({
𝑅
0

, 𝜌2) − 𝐼𝑠ℎ𝑒𝑙𝑙({
𝑟
0

, 𝜌2) 
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 To calculate the MoI of a sphere with different densities and radii, first the following 

relationships have to be considered for the total mass, radius, and density of the sphere. The total 

mass of the sphere is the mass of the smaller sphere plus the mass of the larger sphere: 

M = M1+M2 

The smaller radius can be presented in terms of R: r = aR, where 𝑎 < 1 is some constant.       

The same relationship can be applied to the density and it can be rewritten with the constant b, 

where 2 is the density of the core (red sphere) and 1 is the density of the mantle (blue sphere): 

2 = b1 and 1 =  

Then the MoI can be integrated with the above considerations and simplified to: 

𝐼𝑇 =
8𝜋

15
(𝜌(𝑎𝑅)5 + 𝑏𝜌(𝑅5 − (𝑎𝑅)5)) 

𝐼𝑇 =
8𝜋

15
(𝑎5 + 𝑏 − 𝑏𝑎5)𝜌𝑅5   (eq.9) 

Then the mass of the entire sphere can be calculated as: 

𝑀𝑇 = ∫ 4𝜋𝑟2𝜌𝑑𝑟 + ∫ 4𝜋𝑟2𝑏𝜌𝑑𝑟
𝑅

𝑎𝑅

𝑎𝑅

0

 

=
4𝜋

3
(𝜌(𝑎𝑅)3 + 𝑏𝜌(𝑅3 − (𝑎𝑅)3) 

When the above equation is expanded and reduced, it becomes: 

𝑀 =
4𝜋

3
(𝑎3 + 𝑏 − 𝑏𝑎3)𝜌𝑅3    (eq.10) 

 The solution should then be written in terms of density to plug into equation (9). 

𝜌 = (
3𝑀

4𝜋
) (

1

𝑎3+𝑏−𝑏𝑎3) (
1

𝑅3)    (eq.11) 

 Equations (9) and (11) are combined to get the moment of inertia for a sphere and shell: 

𝐼 = (
8𝜋

15
) (

3𝑀

4𝜋
) (

𝑎5 + 𝑏 − 𝑏𝑎5

𝑎3 + 𝑏 − 𝑏𝑎3
) (

𝑅5

𝑅3
) 

When reduced I becomes: 𝐼 =
2

5
𝑀𝑅2 (

𝑎5+𝑏−𝑏𝑎5

𝑎3+𝑏−𝑏𝑎3)    (sol.4) 

 To identify the relationship between the radius and density, which provides how the mass 

is distributed within the planet, the constants a and b have to be solved for. The mass and 

moment of inertia can be rewritten and replaced with general constants to simplify the 
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calculations. For the constant b, the relationship between the different densities, the moment of 

inertia and mass can be used. Then using the solution for b, the constant a can be solved for, 

which represents the relationship between the radii.  

For moment of inertia, the constants a and b are isolated by inversing the remaining components 

and equaling them: 

∝ = (
5

2
) (

𝐼

𝑀𝑅2
) =

𝑏𝑎5 + 1 − 𝑎5

𝑏𝑎3 + 1 − 𝑎3
 

The constant a can be taken out and then cross multiplied: 

∝ =
𝑎5(𝑏 − 1) + 1

𝑎3(𝑏 − 1) + 1
⟹∝ 𝑎3(𝑏 − 1)+∝ = 𝑎5(𝑏 − 1) + 1 

 By getting the constant b to one side of the equation, such that: 

−𝑎5(𝑏 − 1)+∝ 𝑎3(𝑏 − 1) = 1−∝ 

⟹ 𝑏 − 1 =
1−∝

∝ 𝑎3 − 𝑎5
 

 The constant b as it pertains to moment of inertia will equal: 

𝑏 =
1−∝

∝𝑎3−𝑎5 +1       (sol.5) 

For the mass, the same procedure can be followed to isolate the constant b: 

𝛽

𝜌
=

3𝑀

4𝜋𝑅3𝜌
= 𝑏𝑎3 + 1 − 𝑎3 

𝛽

𝜌
= 𝑏𝑎3 + 1 − 𝑎3 ⟹

𝛽

𝜌
− 1 = 𝑎3(𝑏 − 1) 

⟹
𝛽 − 𝜌

𝑎3𝜌
= 𝑏 − 1 

The constant b as it pertains to mass is shown below, where 𝜌 is the assumed density of the 

mantle. 

𝑏 = 1 +
𝛽−𝜌

𝑎3𝜌
     (sol.6) 

Solutions (5) and (6) can be used to solve for the constant a by equaling them and solving for a: 

1−∝

∝ 𝑎3 − 𝑎5
+ 1 = 1 +

𝛽 − 𝜌

𝑎3𝜌
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 1 and a3 can be canceled out, simplifying the equation to: 

1−∝

∝ −𝑎2
=

𝛽 − 𝜌

𝜌
 

 Both sides of the equation are flipped and a is further isolated: 

∝ −𝑎2

1−∝
=

𝜌

𝛽 − 𝜌
⟹ ∝ −𝑎2 =

𝜌

𝛽 − 𝜌
(1−∝) 

 The sign of a is changed so it is not negative: 

𝑎2−∝=
𝜌

𝛽 − 𝜌
(∝ −1) 

𝑎2 =
𝜌

𝛽 − 𝜌
(∝ −1)+∝ 

 The equation can be further simplified to: 

𝑎2 =
∝ 𝜌 − 𝜌

𝛽 − 𝜌
+∝ (

𝛽 − 𝜌

𝛽 − 𝜌
) ⟹

∝ 𝜌 − 𝜌+∝ 𝛽−∝ 𝜌

𝛽 − 𝜌
 

𝑎2 =
∝𝛽−𝜌

𝛽−𝜌
      (sol.7) 

 Solutions (6) and (7) are used along with the data in table (1) to identify the mass 

distribution within Earth, Neptune, and Jupiter. For Neptune, the composition density is based on 

the density of ice, 1000 kg/m3 and for Jupiter, the composition density is based on metallic 

hydrogen, 600 kg/m3 (Nellis, 2001). Using Excel Spreadsheet, the solutions can be inserted to 

create a two-layer model based on the radii and density of the surface and composition.  

Table 1: MoI, Mass, and Radius of Earth, Neptune, and Jupiter 

Planet MoI Mass (1024 kg) Radius (km) Surface Density (kg/m3) 

Earth 0.3308 5.9723 6,371 -** 

Neptune 0.26* 102.413 24,622 0.45 

Jupiter 0.254 1,898.19 69,911 0.16 

Data collected from Williams (2018) 

 *Data from Cook (1975) 

 **Density of crust and mantle will be used 
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DISCUSSION 

The two-layer model for Earth (Appendix, Model 1) created using the known density of the 

crust, 2850 kg/m3, is representative of Earth’s rocky, silica-rich composition. As the density 

increases to 4000 kg/m3, the composition begins to include denser materials like iron metals. The 

model shows how Earth’s mass distribution is concentrated towards the center and dense 

materials decrease closer to the surface. The two-layer model generated for Jupiter (Appendix, 

Model 2) based on composition shows a core density similar to that of Earth’s crust and mantle. 

It can be inferred that Jupiter may have similar materials as Earth within its core, such as a core 

composition of rocky, silica-rich materials. Comparing the models of Earth and Jupiter, provides 

an approximate core density and composition of Jupiter. Because Neptune has a denser 

atmosphere than Jupiter, the model depicts a core that is denser than a probable one. The two-

layer model for Neptune (Appendix, Model 3) is inadequate because it creates an extremely 

dense core. It is more likely that the interior composition of Neptune has more complicated 

layers and more than one material within its core to adjust for the large density.  

The surface radius, or the crust of a planet is best represented by using the surface density of the 

planet for the model, however, the data provide a poor estimate of the radius and density for the 

core and mantle. Using the composition of the planet’s interior can provide a better density 

distribution based on the core, however, the crust and mantle become obscured in the model. A 

two-layer model helps to identify the general composition and structure of a planet but it 

assumes that density does not change with depth and does not provide a detailed representation 

of the compositional variation dependent on depth. Guillot & Gautier (2015) published a 

research paper that created three-layer models of planetary interiors comparing the gas and ice 

giants. By comparing the two and three-layer models created by Guillot & Gautier (Appendix, 

Figures 1-2), the two-layer models can be confirmed and are nearly comparable to the three layer 

model created for Earth and Jupiter. 

CONCLUSION AND RECOMMENDATIONS 

 A two-layer model is sufficient for identifying the density and radii distribution of a 

spherical body that has a moment of inertia. However, due to the lack of seismic data and 

terrestrial surfaces, as is the case of Neptune, models can still be limited and obscure. As 

technology advances and additional data are collected, two and three layer models of planetary 

interiors can be enhanced to further the identification of interior planetary compositions and 

density distributions.  
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NOMENCLATURE 

MoI/I Moment of inertia 

G Newton’s Gravitational Constant 

 Density (kg/m3) 

M Mass (kg) 

PREM Preliminary Reference Earth Model 

R Total radius of sphere (km) 

r Radius of core (km) 

z Distance from the center of the sphere to disc 

General Constants:  

a Total radius as it relates to radius of core 

b  Total density as it relates to density of core 

∝ Moment of inertia (solution 4) 

𝛽 Mass (equation 10) 
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                                                                 APPENDIX 

 

 

 

 

 

 

 

 

 

 

Model 1: Earth’s core density and radius based on crust density verses mantle density 

 

 

 

 

 

 

 

 

Model 2: Jupiter’s core density and radius based on composition verses surface density 

 

 

 

Undergraduate Journal of Mathematical Modeling: One + Two, Vol. 10, Iss. 1 [2019], Art. 2

https://digitalcommons.usf.edu/ujmm/vol10/iss1/2
DOI: https://doi.org/10.5038/2326-3652.10.1.4907



15 

 

                                                            

                                                                                                                                                                              

 

Model 3: Neptune’s core density and radius based on composition verses surface density 

 

 

 

                                                                                                                                                                                                                                                

 

 

 

Figure 1: Three-layer model of Jupiter and Saturn, where Y is the mass ratio (Guillot &Gautier, 
2015)  

                                                                                                                                                                                                                                                                          

 

 

 

 

 

 

 

Figure 2: Three-layer model of Neptune and Uranus (Guillot & Gautier, 2015)    

Kimball: Using Moment of Inertia and Observable Planetary Features to Appr

Produced by The Berkeley Electronic Press, 2019


	Using Moment of Inertia and Observable Planetary Features to Approximate the Two-Layer Structure of Earth, Jupiter, and Neptune
	Recommended Citation

	Using Moment of Inertia and Observable Planetary Features to Approximate the Two-Layer Structure of Earth, Jupiter, and Neptune
	Abstract
	Keywords
	Creative Commons License

	tmp.1559659366.pdf.tkVeX

