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Locating Centers of Mass with Image Processing Locating Centers of Mass with Image Processing 

Abstract Abstract 
The center of mass of a rigid body is a unique point that represents the mean position of all matter that 
composes it. Allowing representing complex bodies as a single point, this concept is underlying the basis 
of all essential mechanical calculations, and is therefore a crucial consideration in engineering. The paper 
shows how to devise a fast and convenient way of locating the centroid of planar objects of different 
shapes. For several shapes that can be represented as regions bounded by graphs of functions, this point 
can be found by using integral calculus. However, solving for the center of mass by hand is not only quite 
tedious, but also inapplicable to objects of arbitrary shape. Thus, it is decided to write a Python-based 
program that would implement computer vision techniques to scan through images depicting different 
objects and locate their centroids. For geometric bodies, the results produced by the program are aligned 
with those predicted by integral calculations. Moreover, the program is also able to successfully mark the 
centroids of arbitrary shapes, meaning that it is applicable to any possible planar object. The results are 
then proven experimentally by balancing the analyzed objects about the identified point. 
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PROBLEM STATEMENT 

The center of mass of a rigid body is a hypothetical point that represents the mean 

position of all mass distributed within that body. It presents a crucial reference point in 

mechanical calculations, and consequently, a highly important consideration in different fields of 

engineering. It is also known as the application point of any uniform force like gravity. The 

purpose of this paper is to develop a fast and efficient way of locating the centroids of planar 

objects of different shapes. The first approach is based on manual solving through integration, 

though it only applies to geometric shapes represented as regions bounded by graphs of 

functions. The second method, on the other hand, exploits the power of computers, as they can 

perform similar calculations in a discrete manner. This paper includes a program that locates the 

centroids of planar objects by implementing image processing and Python programming 

techniques. The program also has a wider application range, being able to analyze not only 

geometric bodies, but also objects of any arbitrary shape. The results for both methods are then  

compared and tested experimentally by balancing 3-D printed objects about the identified points. 

Arbitrary shapes are also tested experimentally by means of the plumb line test.   
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MOTIVATION 

The centroid of a rigid body is the point of concentration of all its mass, or the weighted 

average position of all the parts that compose it. This highly useful concept allowing to represent 

complex bodies as particles plays a large role in simplifying mechanical calculations. For 

example, Newton’s laws of motion, the laws of conservation of mechanical energy, and many 

other fundamental equations are inapplicable to masses distributed in space. The centroid giving 

a valid representation of extended objects as point masses allows to analyze them.  

The center of mass is also referred to as the center of gravity, since it is the point about 

which uniform forces produce no torque. Thus, an object pivoted about the centroid is ideally 

balanced, since gravitational force is concentrated uniquely at that point. It also determines the 

maximum angle at which an object can be tilted before toppling, since a body is stable only as 

long as the centroid is directly above the area of support. In short, the use of the center of mass in 

mechanics and physics is innumerable: it is impossible to calculate linear and angular momenta, 

define inertial frames, or analyze orbital motion without referencing this point.  

Locating the center of mass is particularly important within the field of engineering, 

which heavily relies on mechanical calculations in design and testing. In civil engineering, for 

example, the center of mass allows to balance structures with minimum stress, since the load that 

an object exerts on a structure acts straight below this point. In tilt-slab construction, it is highly 

important to carefully consider the center of mass when lifting concrete walls to prevent them 

from cracking (Fig 1).   
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Figure 1: Tilt-slab construction requires careful consideration of the center of mass (source – 

intmath.com) 

The centroid is especially crucial in aeronautics, since it significantly affects the stability 

of an aircraft. Operation safety can be ensured only if the center of mass falls within specific 

limits: ahead of the forward limit makes the vessel less maneuverable, while behind the aft limit 

reduces stability. Meanwhile for helicopters, the center of mass should always be located directly 

under the rotor. In biomechanics, the center of mass helps experts in analyzing human 

locomotion to design better treatments for balance impaired patients. In mechanical engineering, 

car manufacturers strive to keep the centroid of a vehicle as low as possible to make it more 

stable in taking turns, which prevents many accidents.  

With all these points in mind, one can conclude that the centroid has a wide range of real-

life applications and provides useful means of simplifying complex phenomena. Therefore, 

exploring different ways of locating this point bears significance for many different subfields of 

engineering 
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MATHEMATICAL DESCRIPTION AND SOLUTION APPROACH 

To gain a deeper understanding of what the centroid is, it is useful to first analyze a simple 

case known as Archimedes Law of the Lever. In this situation, two-point masses 𝑚1 and 𝑚2 are 

attached to the ends of a thin rod of negligible mass (Fig 2). It can then be experimentally 

determined that the rod balances about a point for which the following equation holds true: 

1. 𝑚1𝑑1 = 𝑚2𝑑2                            

 

Figure 2: Archimedes Law of the Lever (source – math.libretexts.org) 

 

 

Figure 3: Law of the Lever along a coordinate axis (source – math.libretexts.org) 

 

To translate this finding into a definite coordinate system (Fig 3), one can assume that 𝑚1 

lies at the point 𝑥1 along the x axis, 𝑚2 at the point 𝑥2, and the center of mass at the point 𝑥̅. 

Relating this to the previous statement, we can see that 𝑑1 =  𝑥̅ − 𝑥1 and 𝑑2 =  𝑥2 −  𝑥̅. 

Substituting for d in equation (1) gives:  

2. 𝑚1( 𝑥̅ −  𝑥1) = 𝑚2(𝑥2 −  𝑥̅) 

3. 𝑚1 𝑥̅ + 𝑚2 𝑥̅ =  𝑚1𝑥1 + 𝑚2𝑥2 

4. 𝑥̅ =
𝑚1𝑥1+𝑚2𝑥2

𝑚1+𝑚2
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To generalize this finding, the center of mass of a system consisting of particles 

𝑚1, 𝑚2, . . . , 𝑚𝑛 with coordinates 𝑥1, 𝑥2 , . . . 𝑥𝑛 can be represented as equation (5). The quantities 

𝑚1𝑥1, …, 𝑚𝑛𝑥𝑛 are the moments of individual masses with respect to the origin. The system’s 

total moment 𝑀𝑦 is equal to the sum of individual moments of each particle. The center of mass 

itself can be found by dividing the total moment of the system by its total mass (eq. 6). Thus, if 

all mass were concentrated at the centroid 𝑥̅, its moment would have been equal to that of the 

entire system: 

5. 𝑥̅=
∑ 𝑚𝑖𝑥𝑖

𝑛

𝑖=1

∑ 𝑚𝑖
𝑛

𝑖=1

 

6. 𝑥 =
𝑀𝑦

𝑚
 

For a more general case of a system of particles with two-dimensional 

coordinates (𝑥1, 𝑦1). . . (𝑥𝑛, 𝑦𝑛), it is also necessary to account for the moments about the y-axis 

(Fig 4). In physical terms, the total moments 𝑀𝑥 and 𝑀𝑦 would measure the tendency of the 

system to rotate about the y and the x axes respectively. Analogously with the previous case, the 

moment of the system about the y-axis is equal to the sum of products of individual masses and 

their distances from the y-axis:  

7. 𝑀𝑥 = ∑ 𝑚𝑖𝑦𝑖
𝑛
𝑖=1  

8. 𝑀𝑦 = ∑ 𝑚𝑖𝑥𝑖
𝑛
𝑖=1  

Consequently, the center of mass of a two-dimensional system of particles has to be represented 

by a pair of coordinates 𝑥 and 𝑦 . Just like in the previous case, the product of the centroid 

coordinates (𝑥, 𝑦 ) and system’s total mass gives the total moment about the each of the axes: 

9.  𝑥 =
𝑀𝑦

𝑚
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10.    𝑦 =
𝑀𝑥

𝑚
 

 

Figure 4: The center of mass of a system of particles in two dimensions (source – math.libretexts.org) 

 Figure 5: Centroids of common geometric shapes that lie on the symmetry axes (source – 

khanacademy.org) 

 

When it comes to continuous rigid bodies, however, the approach should differ, since the 

more complex the object is, the harder to calculate its centroid. While the centers of mass of a 

few elementary shapes simply correspond to the point of intersection of their symmetry axes (Fig 

5), most objects are impossible to analyze with simple algebra. Nevertheless, the same general 

idea persists: it is still necessary to compute the objects’ moments about different axes and their 

total masses. This can be accomplished by subdividing the object into an “infinite” number of 

smaller particles and summing them by the means of integral calculus. 

The following case considers a lamina, which is an arbitrarily-shaped effectively two-

dimensional object with uniform mass distribution. Laminae can be described by the area of the 

region R (Fig 6) that they occupy in the x-y coordinate system, and their areal density (mass per 

unit area) 𝜌. Considering that the density of the object is constant, the location of the centroid 

solely depends on the shape of planar region R.  
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Figure 6: Region R under the graph of function y=f(x) on the interval [a.b] (source – math.libretexts.org) 

 

Figure 7: Approximating rectangles with centroids at (𝑥𝑖,
1

2
𝑓(𝑥𝑖)) (source – math.libretexts.org) 

First, let us consider the region under a continuous function f(x) bounded by vertical lines   

x = a and x = b. This continuous region can be subdivided into a number of approximating 

rectangles of equal width ∆𝑥 with endpoints 𝑥0, 𝑥1, . . . . 𝑥𝑛. The point 𝑥𝑖
∗ is the midpoint of each 

subinterval, defined as 𝑥𝑖
∗ =

(𝑥𝑖−1+𝑥𝑖)

2
. Thus, the center of mass of each rectangle lies at its center 

of symmetry at the point (𝑥𝑖,
1

2
𝑓(𝑥𝑖)). The mass of each piece is equal to its area times the 

object’s density, that is: 

11. m = 𝜌 𝑓(𝑥𝑖)∆𝑥 

The moment of each rectangle about the y axis is then equal to its mass times the distance from 

its centroid to the axis (𝑥𝑖): 

12. 𝑀𝑦 = [𝜌 𝑓(𝑥𝑖)∆𝑥] 𝑥𝑖 = 𝜌𝑥𝑖 𝑓(𝑥𝑖)∆𝑥 
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Taking the limit as n goes to infinity of the Riemann sum of individual moments, we obtain the 

moment of the entire region about the y axis: 

13. 𝑀𝑦 = lim
𝑛→∞

∑ 𝜌𝑥𝑖  𝑓(𝑥𝑖)∆𝑥
𝑛

𝑖=1
= 𝜌 ∫ 𝑥𝑓(𝑥)𝑑𝑥

𝑏

𝑎
 

Similarly, for finding the moment of the region about the x-axis, we substitute 𝑥𝑖 with  
1

2
𝑓(𝑥𝑖), 

which corresponds to the distance from the rectangles’ centroids to the axis: 

14. 𝑀𝑥 = [𝜌 𝑓(𝑥𝑖)∆𝑥] 
1

2
𝑓(𝑥𝑖) = 𝜌

1

2
[𝑓(𝑥𝑖)]2∆𝑥 

Once again, taking the limit of the Riemann sum gives the following expression: 

15. 𝑀𝑥 = lim
𝑛→∞

∑ 𝜌
1

2
[𝑓(𝑥𝑖)]2∆𝑥

𝑛

𝑖=1
= 𝜌 ∫

1

2
[𝑓(𝑥𝑖)]2𝑑𝑥

𝑏

𝑎

 

Just like in the case for a system of particles, the coordinates of the object’s centroid are equal to 

respective moments divided by the total mass. The mass of an effectively two-dimensional object 

is equal to the product of its density and planar area. Recalling that the area of a region bounded 

by a graph of function on a closed interval is equal is to the function’s definite integral over that 

interval, the mass of a lamina can be expressed as the following: 

16. 𝑚 =  𝜌𝐴 =  𝜌 ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 

Thus, expanding equations (9) and (10) results in the following expressions for coordinates (𝑥, 𝑦) 

of the center of mass of a planar object. It’s important to note that density is canceled in the 

equation, confirming that the centroid of a lamina depends on its shape only:   

17. 𝑥 =
𝑀𝑦

𝑚
=

𝜌 ∫ 𝑥𝑓(𝑥)𝑑𝑥
𝑏

𝑎

𝜌 ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

=
∫ 𝑥𝑓(𝑥)𝑑𝑥

𝑏
𝑎

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

 

18. 𝑦 =
𝑀𝑥

𝑚
=

𝜌 ∫
1

2
[𝑓(𝑥)]2𝑑𝑥

𝑏

𝑎

𝜌 ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

=
∫

1

2
[𝑓(𝑥)]2𝑑𝑥

𝑏

𝑎

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
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Figure 8: A lamina represented by a region bounded between two curves f(x) and g(x) (source – 

math.libretexts.org) 

 

Now, let us consider a region bounded by two intersecting curves f(x) and g(x), where f(x)>g(x) 

on the given interval [a,b] (Fig 8 ). Using the same reasoning as in the previous case, we can 

transform equations (17) and (18) as follows:  

19. 𝑦 =
1

𝐴
∫

1

2
{[𝑓(x)]2 −  [𝑔(x)]2}𝑑𝑥

𝑏

𝑎

 

20. 𝑥 =
1

𝐴
∫ 𝑥[𝑓(𝑥) − 𝑔(𝑥)]𝑑𝑥

𝑏

𝑎
 

Equations (17-20) present an accurate way of finding the exact location of the center of 

mass of any planar object of uniform density that can be represented as a region bounded by 

graphs of integrable functions. However, this method is powerless when it comes to planar 

objects of arbitrary shape that cannot be approximated by functions. Another issue with this 

approach is that calculating centroids by hand might be quite tedious and error-prone. The 

objective of this paper is to account for objects of arbitrary shape and explore more efficient 

alternatives to performing such calculations. This would require relying on the brute force of 

computers, since they are capable of iterating over thousands of instructions in a matter of mere 

seconds.  

Our approach is to write a code that would analyze an image of a planar object pixel by 

pixel using for-loop iterations to find the weighted average of the positions of pixels of the same 

Gahramanova: Locating Centers of Mass with Image Processing

Produced by The Berkeley Electronic Press, 2019



10 

 

color. In theory, these coordinates should correspond to those of the object’s center of mass. The 

script is written in Python, a high-level programming language that is frequently used to 

facilitate data analysis in scientific applications. Image processing is performed using Simple 

CV, an open source framework for building computer vision applications. Computer vision is a 

programming field that focuses on training computers to analyze and interpret different visuals 

like images and videos. In this case, the objective is to program a computer in a way that makes 

it locate the centroid of an arbitrary object captured on a photo and mark it in red.  

It would be useful to firstly provide some background on image processing. Digital 

images can be thought of as giant grids made of numerous small blocks called pixels. The 

resolution of an image indicates the number of rows and columns in the pixel grid. A resolution 

of 800×650, for example, indicates that there are 800 columns, 650 rows, and 800 × 650 

=520,000 pixels in total. Each pixel is defined by a set of three numbers – its RGB values, or the 

color depth. These numbers usually range from 0 to 255 and indicate the maximum amount of a 

specific color (red, blue, or green) that would be used within a pixel. For example, a pixel with 

values (100, 100, 0) would have some red, some blue, and no green. A perfectly white pixel 

would be defined as (255,255,255), and pitch black – as (0,0,0). 

When a picture contains a region of pixels that share a common RGB value (in other 

words, roughly the same color), it is referred to as a blob (binary large object). It is relatively 

easy for computers to detect such areas and analyze their dimensions, such as length and width. 

Thus, if a picture contains an arbitrarily shaped object of uniform color, the computer would be 

able to treat it as a number of small pieces (pixels) and perform different measurements that 

would have otherwise been hard to accomplish. This process is similar to integration in the sense 

that it analyzes larger entities by splitting them into small, simple components.  
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With that in mind, it is reasonable to assume that computer vision would be able to locate 

the centroids of objects captured on digital images, given that the color of the object is different 

from that of the surroundings (so that the computer can distinguish it as a blob). By using a for 

loop that iterates through each row and column of the image, it would be possible to calculate the 

moments of each pixel about the x and y axes. Dividing the moments by the total number of 

pixels in the blob would give the coordinates of the center of mass, which is then marked by a 

red dot.  

DISCUSSION 

 

The first method of locating the centroid explored in this paper uses conventional 

integration formulae described earlier. Let us examine the region bounded by the graph of 

function y=2sin (2x) and the x-axis on the interval [0, 
π

2
 ] (Fig 9). Plugging the necessary values 

into equation (17) results in the point (
π

4
, 

𝜋

4
), which is approximately equal to (0.785, 0.785). 

21. 𝑥 =
∫ 2𝑥sin(2𝑥)𝑑𝑥

π
2

0

∫ 2 sin(2𝑥)𝑑𝑥

π
2

0

=
−𝑥cos(2𝑥)|

π

2
0

−∫ − cos(2𝑥)𝑑𝑥

π
2

0

− cos(2𝑥)|
π

2
0

=
1

2
sin(2𝑥)−𝑥cos(2𝑥)

− cos(2𝑥)
|

π

2

0
  

=

1
2 sin(π) −

π
2 cos(π) −

1
2 sin(0) + 0 × cos(0)

−cos(π) + cos(0)
=

π

4
≈ 0.785 

 

22. 𝑦 =
∫ 2sin2(2𝑥)𝑑𝑥

π
2

0

∫ 2 sin(2𝑥)
π
2

0
𝑑𝑥

=
∫ (1−cos(4𝑥))

π
2

0
𝑑𝑥

− cos(2𝑥)|
π

2
0

=
𝑥−

1

4
sin(4𝑥)

− cos(2𝑥)
|

π

2

0
 

=

𝜋
2 −

1
4 sin(2𝜋) − 0 −

1
4 sin(0)

−cos(𝜋) + cos(0)
=

𝜋

4
≈ 0.785 
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Figure 9: The region bounded by the graph of function f(x)=2sin2x and the x-axis (right) and the region 

bounded between the graphs of functions 𝑓(𝑥) = √𝑥 and 𝑔(𝑥) =  𝑥3(left). 

 

The second investigated lamina (Fig 9) can be represented by the region bounded by the 

curves 𝑓(𝑥) = √𝑥 and 𝑔(𝑥) =  𝑥3on the interval [0, 1]. Substituting for these values in equation 

(18) shows that the center of mass of this object should be located around the point            

(0,480, 0.476). 

 

23. 𝑥 =
∫ 𝑥(√𝑥−𝑥3)𝑑𝑥

1

0

∫ (√𝑥−𝑥3)𝑑𝑥
1

0

=
∫ (

1
0 𝑥

3
2−𝑥4)𝑑𝑥

∫ (𝑥
1
2−𝑥3)𝑑𝑥

1

0

=
2

5
𝑥

5
2−

1

5
𝑥5

2

3
𝑥

3
2−

1

4
𝑥4

|
1
0

=
1

5
5

12

=
12

25
= 0.480 

24. 𝑦 =
∫ (√𝑥−𝑥3)2𝑑𝑥

1

0

∫ (√𝑥−𝑥3)𝑑𝑥
1

0

=
∫ (

1
0

𝑥−2𝑥
7
2+𝑥6)𝑑𝑥

∫ (𝑥
1
2−𝑥3)𝑑𝑥

1

0

=
𝑥2

2
−

4

9
𝑥

9
2+

1

7
𝑥7

2

3
𝑥

3
2−

1

4
𝑥4

|
1
0

=
25

126
5

12

=
10

21
≈ 0.476 

After obtaining the mathematical values, it is possible to move on to creating a program that 

would yield identical results momentarily just by analyzing a picture capturing the objects. For 

this purpose, it is decided to 3-D print physical representations of the shapes of interest, capture 

f(x)= √𝑥 

g(x)=𝑥3 

f(x)=2sin(2x) 
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them against a dark background, and then run the image processing code upon those pictures 

(Fig 10). The object on the right is a physical model of the region bounded by the x-axis and the 

graph of function f(x) =2sin2x, while the other one represents the region between the curves  

𝑓(𝑥) = √𝑥 and 𝑔(𝑥) =  𝑥3: 

 

Figure 10: The 3-D printed models of geometric regions bounded by 𝑓(𝑥) = √𝑥 with 𝑔(𝑥) =  𝑥3(1) and 

f(x) =2sin2x (2) 

 

  The program itself is written within a Python IDES (integrated development environment 

software) and makes use of a computer vision library named Simple CV. The full source code 

for this program can be found in the Appendix. The first lines of the script are meant to import 

the Simple CV library, which allows for the access and modification of image files. It is 

necessary to use the file’s exact name when assigning an image to the variable in line 3. The 

fourth line sets the resolution of the imported image to 250×250, although any other value could 

be used if it is consistent with the boundaries of the for-loops. In this particular example, the 

resolution is set to 250×250, meaning that there are 250 rows, 250 columns, and 62,500 pixels in 

total.  
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1) from SimpleCV import Image 
 

3) img = Image("object1.jpg") 
 

4) img = img.scale(250,250) 

 

Line 9 indicates the beginning of a nested for loop, which iterates over the columns from 

0 to 250 (since this is the number defined by the resolution). The inner loop starts on line 9 b and 

iterates over all the 250 rows presented. The next lines of the loop’s code analyze each pixel for 

its RGB values. If a pixel’s RGB values lie within the white range (i.e. R>225, G>225, B>225), 

the program recognizes it as a part of the object, and executes the next four lines of code.  

 
9) for x in range(0,250): 

 

a. (R,G,B) = img[x,y] 
 

b. if (R >= 225 and G >= 225 and B >= 225): 

 

Lines i and ii are effectively equivalent to the conventional calculus formulas of finding 

moments about the x and y axes. Since every image is composed of a set of horizontal units and 

a set of vertical units, the rows and columns are indexed as a Cartesian coordinate system. Thus, 

each pixel has a specific pair of coordinates assigned to it, with the x value representing the row, 

and y – the column. We can think of each pixel as of a point mass; therefore, summing the x and 

y (row and column) coordinates of each white pixel is identical to adding the moments of each 

“particle” (white pixel). 

i. momentx = momentx + x 
 

ii. momenty = momenty + y 
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Line iii is the equivalent of the formula for the total mass of the system; each time the 

program detects a white pixel, it increments the value of the counter, meaning that in the end, it 

would yield the total number of particles in the object. Line iv is responsible for changing the 

color of each detected white pixel to blue for making the object more protruding on the resulting 

image. 

iii. count = count + 1 

iv. img[x,y] = (0,0,255) 

Lines 12 and 13 calculate the coordinates of the center of mass, dividing the sum of 

individual moments of each point mass within the object by the total number of point masses. In 

basic terms, this formula yields the weighted average of all white pixels in the picture. Finally, 

line 14 sets the color of the pixel located at the center of mass to red, so that it can be visually 

detected on the image.  

12) centx = centx / count 

13) centy = centy / count 

14) img[centx,centy] = (255,0,0) 

The program successfully processed the images, marking the location of the center of mass 

for each object (Fig 11). Coordinate axes are then put over the images to compare the results to 

those yielded from mathematical calculations. 
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Figure 11: Images after being processed by the program (centroid marked in red). 

 

Figure 12: Same images in a coordinate system. 

 

The program locates the centroid of the first object at approximately (0.78, 0.78), which 

is essentially the same as what is predicted in the earlier mathematical analysis. For the second 

object, the centroid is laid around the point with coordinates (0.48, 0.48), again consistently with 

previous calculations (Fig 12). 

To test the applicability of these results in real life, it is decided to balance 3-D printed 

models of these shapes about the points identified above. Since the dimensions of physical 

objects are not always equivalent to those of graphs, centroid positions are represented as 

fractions of the objects’ transverse and longitudinal dimensions. The centroid of the first shape 

(2sin2x) is laid at (0.500w, 0.393h), where w and h stand for width and height respectively. For 

the second region (𝑓(𝑥) = √𝑥 and 𝑔(𝑥) =  𝑥3), this point is located at (0.480w, 0.476h), where 

h and w correspond to the transverse and longitudinal dimensions of the diagonally placed 

object. Measuring the first object shows that it is 180mm high and 142 mm wide, meaning that 

its centroid is laid at (71.0mm, 70.7mm). The w and h of the second one are equal to159mm and 
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147mm respectively, meaning that the centroid is located at approximately (76.3mm, 70.0mm) as 

measured from the object’s lower left corner (Fig 13).  

 

Figure 13: Transferring the obtained centroid coordinated onto physical objects. It can be assumed that 

the lower left corner represents the origin.  

 

To confirm the findings experimentally, the objects are then pivoted about the marked 

centroid location. Just as expected, they remain perfectly stable, which means that gravity 

produces no torque and the center of mass is determined correctly (Fig14). 

 

 

Figure 14: 3-D printed objects balancing about their centroids, further confirming our results. 
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The program is then run on images of two arbitrarily shaped objects, the centroids of 

which cannot be calculated with conventional integration formulae. Figure (15) shows the output 

produced by the program, which once again successfully marks the objects’ centroids. 

 

 

Figure 15: Program’s analysis of arbitrary objects, with centroids marked in red. 

 

The validity of these results is then confirmed experimentally by means of the plumb line 

test. For this purpose, the objects are pinned about a random point and allowed to suspend freely. 

Due to gravity acting on their centers of mass, the objects rotate until reaching a stable point. 

There is no torque due to gravity at this equilibrium position, meaning that the centroid must be 

located right beneath the pin. After a plumb line going down from the pin is drawn, the pin is 

relocated and the procedure is repeated. The point of intersection of the two lines marks the 

location of the centroid (Fig 16). The experimental results are consisted with those returned by 

the program (Fig 15), which further confirms its effectiveness even when it comes to non-

geometric shapes.    
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Figure 16: The plumb line test, which allows to experimentally locate the center of mass of arbitrary flat 

objects. 

 

CONCLUSION AND RECOMMENDATIONS 

 

 In summary, we come up with a fast and effective way of calculating the centroids of 

different planar objects regardless of their shape. This is accomplished by writing a Python-based 

computer vision program that analyzes digital images depicting the objects of interest. The first 

step is to calculate the centroids of several geometrically representable shapes using integral 

calculus. The next step is to physically replicate those shapes, as well as some other arbitrarily 

shaped objects. 

Afterwards we develop a script for a computer program that momentarily analyzes these 

objects and locates their centroids. The program uses for-loop iterations to scan through the 
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image, detects the pixels comprising the object based on their color, and performs the necessary 

calculations. For the first two objects, the results yielded by the program are compared to those 

obtained from mathematical calculations. Just as expected, the points marked by the computer 

are close to those found by integration (Fig 13). Most importantly, the program also manages to 

accurately detect the centroids of arbitrary shapes that are too challenging to analyze with regular 

calculus tools (Fig 15). 

Lastly, the validity of results is tested experimentally for both the geometric 3-D-printed 

models and arbitrary shapes. The geometric objects are pivoted about the centroids obtained 

from the program and calculations. Just as expected, the object remains perfectly stable, which 

further reassures us in our measurements (Fig 14).  Meanwhile, arbitrary shapes are analyzed 

using the plumb-line test, in which they are suspended freely about a random point. Comparing 

experimental results to those returned by the program, it is clear that the points are aligned 

closely, once again confirming our assumptions (Fig 16).  

Thus, it can be concluded that both integration and computer vision are effective in 

accurately determining the centroids of real-life planar objects. The program has several 

advantages over the conventional method, being more time-efficient and less error-prone. It also 

has a much wider range of application, since it is not restricted to geometrically representable 

shapes only and it can be applied to any planar object of uniform density. In both cases, 

calculated centroids are applicable to real life objects, allowing to balance them about the 

identified point. 

All slight deviations between mathematically derived centroids and those yielded by the 

program can be explained by the fact that the 3-D printed objects are not an impeccable 

representation of geometric curves, partially because of the difference in dimensions. The 
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methodology proposed in this project can be improved by coming up with a more precise way of 

switching between the pixel, coordinate axes, and physical dimensions, without having to 

manually put coordinate axes over the images. Another way to improve the program is to expand 

it to objects with varying density, perhaps by adding more weight to pixels with deeper intensity 

in the calculations.    
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NOMENCLATURE 

Symbol Description Unit 

𝜌 Areal density 𝑘𝑔/𝑚2 

𝑚 Mass 𝑘𝑔 

𝐴 Area 𝑚2 

𝑀𝑥 Moment about the x axis 𝑘𝑔 × 𝑚 

𝑀𝑦 Moment about the y axis 𝑘𝑔 × 𝑚 

𝑥 x-coordinate of the centroid − 

𝑦 y-coordinate of the centroid − 
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APPENDIX  

from SimpleCV import Image 

 

 

print "Program Begin" 

 

a = 2*8  

 

img = Image("object1.jpg") 

 

img = img.scale(250,250) 

 

#img.show() 

 

momentx = 0 

 

momenty = 0 

 

count = 0 

 

for y in range(0,250): 

 

for x in range(0,250): 

 

(R,G,B) = img[x,y] 

 

if (R >= 225 and G >= 225 and B >= 225): 

momentx = momentx + x 

momenty = momenty + y 

count = count + 1 

img[x,y] = (0,0,255) 

 

centx = centx / count 

centy = centy / count 

 

count = 0 

 

img[centx,centy] = (255,0,0) 

 

 

print "Program Complete" 
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