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plus a single distal outcome. We assume iY  are continuous and are linearly related to an 

underlying latent factor iη , that is, iY  retains the conventional linear factor analysis model 

structure and the latent variable model is identifiable. In preparation for the new work on this 

dissertation, we do not require the response iZ  to be normally distributed or to be linearly related 

to iη , but we will always assume that iY  and iZ  are independent given iη . With iY  and iZ

conditionally independent, we can decompose the LV model into two independent joint 

conditional likelihood functions: 
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 (2.11) 

where y  and z  are distinct set of parameters in .  The first component of the LV model then 

represents a simple confirmatory factor analysis (CFA) model consisting of a system of p linear 

regression equations while the second component is simply a regression model of the distal 

outcome on the latent factor. To convert the LV into ALV we simply represent the second 

component as a GAM of a distal outcome Z where Z can be a continuous, categorical or count 

variable. 

2.3 ML Estimation of ALV Model via the EM Algorithm 

 We adopt a likelihood based approach to parameter estimation. It is anticipated that 

eventually when we fully specify the two component density functions constituting the ALV 

model, performing direct maximization of the observed data likelihood will be complicated by the 

presence of non-linear relationship between the variables and the associated parameters and the 

intractable integrals that may result. Therefore we choose to implement maximum likelihood 



17 

 

estimation using the Expectation-Maximization (EM) algorithm (Dempster, Laird, & Rubin, 

1977). The EM algorithm is a general and easily adaptable approach for finding the maximum 

likelihood estimates (mle’s) of the underlying parameters in a given data when the data are 

incomplete or have missing values. In our case the observed data{ ,z}y depend on a latent factor 

η  which is unobservable. So we consider the situation as a missing data problem, where η  is 

treated as missing at random (Rubin, 1976). Our specifications of the EM algorithm will be based 

on regarding η  as a random N-vector of missing data within the SEM model framework. We then 

treat the observed { ,z}y  as incomplete data while { ,z,η}y  constitute complete data in which the 

rows are independently and identically distributed (Dempster, Laird, & Rubin, 1977). We will 

develop an EM procedure for parameter estimation that allows for a non-linear regression of Z on 

the latent factor η via a smooth function.  

 The complete-data likelihood is expressed as 

 com

y z

L ( ) p( , z,η; )

p( | η; ) p(z|η; ) p(η; )


  

y

y

 
  

 (2.12) 

where the random η is unknown and, given a factor analytic model framework, its marginal 

distribution is fixed as standard normal for model identification purpose (see equation (2.10)). 

The maximum likelihood estimates of will be computed from the complete data with the above 

specifications and restrictions.  

Consider that if η  were observed, then we have a simple distribution for the ‘complete’ data 

where mle’s for   can be obtained by the usual least square method based on the sums, sums of 

squares and sums of cross-products (Dempster, Laird, & Rubin, 1977). Normally, when η  is not 

observed, we would obtain the mle’s of the parameters by integrating the complete-data 
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likelihood ( , z,η; )p y   with respect to η  and maximizing the results with respect to . However 

the approach to estimation taken by the EM algorithm is to alternate between computation of the 

expectation of the complete data log-likelihood (E-step) and the maximization of this expectation 

with respect to   (M-step). The idea is to fill in a set of values for the ‘missing’ η (E-step) and 

solve the problem, i.e. find mle’s for   (M-step); the repeat the two steps to find better values of 

η to fill in (Rubin,1991).  Because η is unknown, draws from its conditional distribution

p(η | , z; )y   will be taken to simulate η . Let ( )Q( , )k  be defined as the kth iterative expected 

complete data log-likelihood given the observed data and current values of ( )k , which is given 

by 

 
( ) η ( )

com

η ( )

Q( , ) E [log L ( ) | ,z, ]

E [logp( ,z,η; ) | ,z, ]
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k k

k

y

y y

   

 
 (2.13) 

Each repetition of the two steps yields a new set of mle’s for   by numerically increasing the 

value of quantity ( )Q( , )k   and the iteration continues until convergence. One important 

property of the EM algorithm is that a (k+1)th iteration causes ( )Q( , )k   to increase over its kth 

value (Dempster, Laird, & Rubin, 1977). 

Briefly,   contains the parameters to be optimized as ( )Q( , )k   increases; with a current value

( )k , iteration k of the EM Algorithm is implemented in the following sequences: 

1. Draw from the conditional distribution ( )p(η | , z; )ky  , (i.e. evaluate it at the current 

parameter estimates ( )k ); supply initial values if k=0. 
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2. E-step: Evaluate ( )Q( , )k   using updates from (1), that is taking the expectation of the 

complete data log-likelihood with respect to the conditional distribution ( )p(η | , z; )ky  . 

3. M-step: Maximize ( )Q( , )k   over   to obtain a revised ( 1)k .  That is, solve 

( 1) ( )

Ω
max Q( , ) k k    

4. Check for convergence, if none, set ( ) ( 1)k k   and return to (1).  

2.3.1 The Expectation Step of EM 

 The E-step at the kth iteration computes the expected value of the complete data log-

likelihood over η given the observed data and current values of ( )k . This step is more formally 

defined as  

 

( ) ( )

( )

Q( , ) log p( ,z,η; ) p(η; )dη

log p( ,z,η; ) p(η | , z; )dη

 

 



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k

y

y y

   

 
 (2.14) 

where the complete data likelihood derives its randomness solely from being a function of 

random variable η  that is governed by its conditional predictive distribution given the observed 

data: ( )f(η | , z; )ky  .  The complete data log-likelihood function is not tractable analytically 

because we do not have a fully known parametric form for the joint distribution p( ,z,η; )y  , 

therefore we require an alternative method to direct integration in the E-step. 

Markov Chain Monte Carlo (MCMC) Method 

Whenever the computations involved in the integration (E-step) and /or optimization (M-

step) are intractable, numerical methods or Monte Carlo methods may be indicated (Wei & 
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Tanner, 1990; McLachlan & Krishnan, 2008). Our choice here, the Monte Carlo method, 

computes integrals using random number generation, and it is preferred to numerical quadrature 

methods when the dimension of integral may be large or the functions may not be smooth 

(McLachlan & Krishnan, 2008). For simplicity we illustrate with an example of a complex 

integral I(y) f (y | x)p(x)dx  which can be expressed as an expectation of f (y | x)  over the 

continuous density p(x) . To use the classical Monte Carlo integration (McLachlan & Krishnan, 

2008; Walsh, 2004), a sufficiently large number 1 c Cx ,.., x ,.., x of random sample are drawn from 

the density p(x) (which must be completely known) and the integral is approximated by 

 
C

c
c 1

1
Î(y) f (y | x )

C 

   (2.15) 

The estimated variance of the Monte Carlo estimate is given by 

  
C 2

c
c 1

1 1ˆ ˆˆvar[I(y)] f (y | x ) I(y)
C C 1 

 
   

  

If the target distribution ( )p x  itself is complex and is indirectly or incompletely specified, then a 

more complex Monte Carlo method will be required (McLachlan & Krishnan, 2008). For 

example when ( )p x  is uniquely defined but does not have a standard form that is amenable to 

direct sampling, Markov chain Monte Carlo (MCMC) methods are commonly used to draw 

samples indirectly from these distributions (McLachlan & Krishnan, 2008; Lee & Song, 2007; 

Wei & Tanner, 1990).  

A Markov chain is a stochastic process that characterizes sequences of random variables, 

where “the transition probabilities between different values in the state space depend only on the 

random variable’s current state” (Walsh, 2004; Gamerman & Lopes, 2006). The most critical 
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feature that defines a particular Markov chain is the transition kernel (transition probabilities) 

which is the limiting distribution of the chain. The aim therefore is to construct a Markov chain 

such that its limiting distribution equals the target distribution we wish to simulate.  

Let the transition kernel be defined as (c) (c 1)q(x , x ) which is the probability of transition 

of a process from an earlier state (c)x to the next state (c 1)x  in a single step (Walsh, 2004). To 

draw a random sample from distribution p(x) via Markov chains, the transition kernel must be 

chosen such that the stationary distribution of the chain is p(x)  (Gamerman & Lopes, 2006), and 

q(, ) must satisfy 

 

(c) (c) (c 1) (c 1) (c 1) (c) (c) (c 1)

(c) (c 1) (c)

(c 1) (c) (c 1)

p(x )q(x ,x ) p(x )q(x ,x ) , (x , x )

p(x ) q(x , x )
i.e. .

p(x ) q(x ,x )

   



 

 


 (2.16) 

This is the basis for the Metropolis-Hastings Algorithm which we will discuss next. 

Metropolis-Hastings Algorithm 

 The Metropolis-Hastings (M-H) Algorithm is a very widely applicable MCMC method 

for simulating a complex nonstandard multivariate distribution; the Gibbs sampler (Geman & 

Geman, 1984) is a special case of the M-H algorithm (Walsh, 2004). The mechanism of the M-H 

algorithm as outlined in Gamerman & Lopes (2006) and Walsh (2004) will be described briefly 

here. Note from the q ratio above that it is sufficient to be able to express a qualifying stationary 

distribution p(x) up to the normalizing constant, since any constant factor cancels out when 

calculating the transition kernel. Suppose we wish to draw samples from 1 dp(x) : x (x ,..., x ) of 

which direct sampling is complicated. If f (x) is an approximation up to a constant and is 
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available, such that p(x) f (x) / h  where the normalizing constant h is difficult to compute, we 

can generate a d-dimensional random vector from f (x) using the M-H algorithm. For the M-H 

scheme, first a proposal kernel (density) (c) (c 1)q(x , x ) is chosen so as to be as similar to the target 

density p(x) as possible, to increase acceptance rate.  Note that if the sampling (proposal) kernel 

equals the target distribution (i.e. when the latter is known), then acceptance rate is 100 percent 

and direct draw from the target density itself is possible, as in the classical Monte Carlo 

procedure. Desirable features of a proposal kernel include tunable parameters such as location 

and scale (Chib & Greenberg, 1995; Walsh, 2004). A widely used proposal kernel (or candidate-

generating density) is the multivariate normal.  

 The following steps are carried out in the M-H scheme: (I) choose arbitrary initial values 

0x satisfying 0f (x ) 0 , (II) evaluate the proposal (or jumping) distribution (c) (c 1)q(x , x ) at the 

current 0x values, and then sample a candidate point *x from (c) (c 1)q(x , x ) , (III)  define an 

acceptance probability of a move of the chain from current value (c)x to a new value (c 1)x  as the 

ratio of the densities at the proposal point *x and current point (c)x :  

 
* * *

c c c

p(x ) f (x ) h f (x )

p(x ) f (x ) h f (x )
     (2.17) 

If 1  , a move to the new proposal point increases the density and so is allowed, else the move 

is allowed with a probability of  . The basis for allowable move can be summarized as 

 
* c *

c *
c * c

f (x )q(x ,x )
(x ,x ) min 1,

f (x )q(x ,x )

 
   

 
. (2.18) 
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(IV) To introduce randomness a quantity u is generated from an independent uniform distribution 

U(0,1) , then the proposal point is accepted as the current value * (c 1)x x  if u  , else it is 

rejected and no change takes place, i.e. * (c)x x . Steps II to IV are iterated until convergence. 

The above Metropolis-Hastings algorithm is a generalization of the original Metropolis algorithm 

(McLachlan & Krishnan, 2008; Walsh, 2004). The original algorithm requires that the proposal 

density be symmetric (e.g. normal distributions):    c * * cq x ,x q x ,x so that c *(x , x ) reduces to  

 
*

c *
c

f (x )
(x ,x ) min 1,

f (x )

 
   

 
 (2.19) 

Expectation of Complete Data Log-likelihood 

 To reiterate we are adopting a method similar to the Monte Carlo EM algorithm (MCEM) 

(Wei & Tanner, 1990) whereby the Monte Carlo integration of the log-likelihood is approximated 

by drawing a sufficiently large number C of observations from the predictive conditional 

distribution ( )p(η | , z; )ky 
 
evaluated at the current values ( )k .  Upon generating the random 

observations (c)
i{η ,c=1,...,C,i=1,...,N}by the MH algorithm, there are different ways to use the 

observations in both the E-step and M-step. For the E-step, a popular and straight forward process 

is to plug the expected value of the Markov process generated random observations (or its 

function of some sufficient statistics) directly into the ( )Q( , )k  function (Lee & Zhu, 2000). 

For another example, these random observations were plugged into conditional expectations of 

the complete data approximate sufficient statistics in (Lee & Zhu, 2002) to evaluate the E-step. In 

our case, in the E-step we decided to fill in the entire estimated density of ( )p(η | , z; )ky   into 

( )Q( , )k   so the problem considerably simplifies to that of a C number of simple regression 
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equations with fixed covariates, similar to an example described in McLachlan & Krishnan 

(2008). Note that ( ) k  is already imbedded in the C drawings:    

 ( ) (c)

1

1
Q̂( , ) [logp( ,z,η ; )]

C 

 
C

k

c

y    (2.20) 

 A single scan or generated sequence (-t) (0) (1) (c) (C)
i i i i iη ,...,η ,η ,...,η ,...,η is a Markov chain for 

the ith subject. As c tends to infinity, or with a sufficiently large C , the stationary distribution 

converges in distribution to the target distribution ( )
i ip(η | , z ; )k

iy  . To allow a sufficient amount 

of time for a stationary distribution to be reached, the first set of iterations in the chain 

(-t) (0)
i iη ,...,η  serves as the burn-in segment. This initial set of iterations is discarded while the 

remainder segment of the chain forms the sample of an optimal finite size C to be used in the 

Monte Carlo integration. The usable Markov sample then consists of limiting transition 

probabilities that are no longer dependent on the start values. However, by using successive 

values from a single Markov chain per subject, within-subject autocorrelation does induce chain 

dependence. In order for inference based on the sample to still be valid, higher autocorrelation 

will require a longer chain to run (Gamerman & Lopes, 2006). The authors also noted that 

Markov chains only have first order dependence which decreases with increasing lag between 

iterations, therefore subsample of quasi-independent elements can be formed by storing only 

every jth value post burn-in period. This method is referred to as ‘thinning’ and it also has the 

advantage of requiring relatively shorter chains. With thinning we can achieve independence in 

the final sample with improved optimality and, in addition, reduce storage requirement for 

computer generated data. Furthermore, by generating a Markov sample independently for each 

subject, we are able to make the assumption of both within-subject and between-subject 
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independence for the N Markov samples. Therefore by drawing a sufficiently large sample 

(c)
iη ,c=1,...,C  from ( )p(η | , z; )ky  we can write 

 ( ) (c)
i i

1 1

1
Q̂( , ) [logp( ,z ,η ; )]

C  

 
C N

k
i

c i

y    (2.21) 

 Since we are using Metropolis algorithm to sample from a conditional normally 

distributed η , the selection probability simplifies to *p(η | , z; ) / p(η | , z; )y y   where *η is the 

proposal value. Recall that given η , Y and Z are independent. Therefore for the ith subject in the 

kth EM iterate the conditional distribution can be approximated up to a constant K as follows: 

( )
( ) ( )i i

i i i i( )
i

( ) ( ) ( )
i i i i i i

p(η , , z ; ) 1
p(η | , z ; ) p(η , , z ; );

p( ,z ; ) h

1
p(η | , z ; ) p( | η ; )p(z |η ; )p(η ).

h
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k
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k k k
i i y z

y
y y
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y y


 



  

 (2.22) 

So we have (for normal Z linearly related to  )  

1/2-p/2 1
i

2 -1/2 2
i i i i2

-m/2
i i i

1
f ( | η ; ) (2π) exp ( ) ( ) ,

2

1
f(z |η ; ) (2πσ ) exp - (z -a-βη ) ,

2σ

1
f(η )=(2π) exp η η .

2

         
    

   

i y i i i i

z

y y y      

  (2.23) 

In the cth MCMC iteration the candidate value *
iη drawn from the univariate normal proposal 

distribution is accepted as the new value (c+1)
iη with the probability ofα : 

* ( ) * ( ) *
i i i i(c) *

i i (c) ( ) (c) ( ) (c)
i i i i

p( | η ; )p(z |η ; )p(η )
α(η ,η )=min 1,

p( | η ; )p(z |η ; )p(η )

  
 
  

k k
i y z

k k
i y z

y

y

 

 
 (2.24) 



26 

 

Note that h has cancelled out in the ratio (c) *
i iα(η ,η ) . From (2.23) the ratio therefore simplifies to 

 
 

* 1 * -2 * 2 * *
i i i i i i

(c) 1 (c) -2 (c) 2 (c) (c)
i i i i i i

1
exp ( η ) ( η ) σ (z -a- bη ) η η

2
min 1,

1
exp ( η ) ( η ) σ (z -a- bη ) η η

2





            
 

            

i i

i i

y y

y y

    

    
 (2.25) 

If u   where u has a random uniform distribution, the transition jump (c) (c+1)
i iη η is allowed, 

otherwise the jump does not occur and the current value is retained in the Markov chain position.  

 We chose for our proposal density a normal distribution centered on the current value (c)
iη

. The scale and spread of the proposal density are important factors controlling the acceptance or 

rejection rate and the sample space region covered by the chain. For accuracy it is desirable that 

the density be sampled mostly around its mode. If the variance of the density is too large some 

generated candidates will be too far from the mode and so have relatively low acceptance 

probability. On the other hand if the variance is too small, it will prolong the time required by the 

process to sufficiently traverse the sampling space supported by the density, leading to under-

sampling of the low probability regions. To achieve a delicate balance an approximate acceptance 

rate of 0.45 is recommended when dealing with one-dimensional problem like ours where we 

estimate only one ‘parameter’ ( i ) (Chib & Greenberg, 1995). Therefore a proper fine tuning of 

the variance of proposal density is necessary for good mixing and efficient sampling (Chib & 

Greenberg, 1995; Walsh, 2004). As a rough guide, we compute the Empirical Bayes’ variance 

estimate of ( )[η | ; ]ky  for use as a start value. From general multivariate results for factor 

analytic model, the latent factors conditional on the observed indicators are multivariate normal: 

m η| η|[η | , ] ~ N ( , )y yy    . Therefore given a standard normal marginal density of η  (see (2.7) to 

(2.9)), the common conditional variance is computed as follows 
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 1
η| ( )   y I      (2.26) 

2.3.2 The Maximization Step of EM 

 Recall the decomposition of the complete data log-likelihood (see (2.12) and (2.13)) as 

reproduced below: 

( ) ( )

( ) ( )

(c) ( ) (c) ( )
i i i

1 1 1 1

Q( , ) E [log p( | η; ) log p(z|η; ) log p(η)] | , z,

E [log p( | η; ) | , z, ] E [log p(z|η; ) | , z, ] log p(η)

1 1
[log p( | η ; ) | , ] [log p(z |η ; ) | z, ] w

C C

k k
y z

k k
y z

C N C N
k k

i y z
c i c i

y y

y y y

y y



 

    

   

   
   

    
  

   

 (2.27) 

The first two terms on the right of (2.27) on the first line (a factor analytic model and a univariate 

regression model) have their separate distinct parameters, so maximization can be done separately 

(McLachlan & Krishnan, 2008). Note that for the purpose of identification the marginal 

distribution p( ) has 0 mean and unit variance (Dempster, Laird, & Rubin, 1977). Secondly, even 

if we resort to approximating p( ) by its conditional distribution in the M-step, this will not be 

useful since ( )[η | , z; ]ky   can be specified only up to a normalizing constant (see (2.22)) and the 

conditional distribution is proportional to its joint distribution. Therefore the last term is treated 

here as a constant w (2.27) that does not depend on   hence does not contribute to the 

maximization. The EM algorithm hence concerns the finding of 

1. ( 1)k
y    to maximize η ( )E [log p( | η; ) | , ]k

y yy y  , and 

2. ( 1)k
z    to maximize η ( )E [log p(z|η; ) | z, ]k

z z  . 

An alternative approach to maximization is based on the idea of a Stochastic EM algorithm as 

described in (Lee, Song, & Lee, 2003). Here the mean of random observations ( iη̂ ) in the 
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Markov chain for the ith subject is computed, considered as fixed, and simultaneous regression 

model is solved to obtain mle’s. For example, their approach to modeling the Y’s would give: 

( 1) ( ) ( )

C
(c)

i i
c=1

ˆ ˆarg max Q( , ) arg max[log p( | η; ) | , ],

1
η̂ = η , i=1,.....N

C

  



y y

k k k
y y y yy y

 
    

 

However our approach to maximization is slightly different in the sense that we plugged 

(c)
iη directly into the regression model and solve C simultaneous regression equations instead. A 

major consideration in our decision is to avoid bias in our estimation, since the computed 

likelihoods from the two methods are not necessarily equivalent. Our approach requires the 

assumption that the random sample elements in each Markov chain (subject) are independent; 

which we are able to satisfy by using thinning method as necessary to minimize autocorrelation. 

Secondly we can also assume independent observations between subjects since the C Markov 

samples are independently generated for each subject to yield N independent Markov chains. So, 

using the MCMC method, the kth M-step solves 

( 1) ( ) (c) ( )

1

( 1) ( ) (c) ( )

1

1ˆ arg max Q( , ) arg max[log p( | η ; ) | , ]
C

1ˆ arg max Q( , ) arg max[log p(z|η ; ) | z, ]
C









 

 





y y

z z

C
k k k

y y y y
c

C
k k k

z z z z
c

y y
 

 

    

    
 (2.28) 

One notable advantage of the ALV model structure is that with iη available, the two parts 

above have fixed-effects GLM structure and maximum likelihood estimation can be carried out 

separately for them using the existing statistical tools for standard regression models. For the 

future ALV model extensions, all that is required of either part is for the response variables to 

belong to the exponential family. 
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2.3.3 Standard Errors of Estimates 

In the context of EM algorithm the standard errors of the maximum likelihood estimates 

̂  may be obtained from the inverted Hessian or information matrix based on the observed data 

likelihood function, according to the method of Louis e.g. (Lee & Zhu, 2002; Song & Lee, 2005; 

Law, Taylor, & Sandler, 2002). The Louis method expresses observed information matrix as the 

difference between complete and missing data information matrices, thus   

2
η

com

com

ˆ ˆI( ; ,z) E log L ( ; ,z,η) | ,z,

ˆVar log L ( ; ,z,η) | , z,

 
    

    

y y y

y y

  
 

 


 (2.29) 

where ˆI( ; , z)y is the observed information and the first and second terms on the right represent 

complete and missing data information evaluated at the final parameter maximum likelihood 

estimates ̂ . This approach is chosen because the EM implementation does not generate 

observed data information as a by-product. However since these matrices generally have no 

closed forms, the Louis’ method provides a formula for computing the observed information 

matrix in terms of the expectation of the first and second derivatives of the complete data log 

likelihood function using the MCMC samples (McLachlan & Krishnan, 2008). The missing data 

information formula is written as 

2 (c)
com

1

2
(c) (c)

com com

1 1

ˆlog L ( ; ,z,η | , z, )1ˆI( ; , z)
C
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C C



 




 

     
   



 

C

c

C C

c c

y y
y

y y y y

 


 

   
 

 (2.30) 
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Given the availability of η  and assuming normally distributed response variables, the 

complete-data log likelihood function and related partial derivatives can be easily obtained 

separately for each outcome variable at each point in the Markov chain in the form of a least 

square regression model: 

1 (c) 2
com i

1

com 1 (c)
i

1

com 1 (c)
i i

1

com 1 2 (c) 2
i i

1

1 1 1ˆ ˆ ˆˆ ˆlog L ( ) Nlog(2π) Nlog ( η )
2 2 2

ˆlog L ( ) ˆ ˆˆ( η )
ˆ

ˆlog L ( ) ˆ ˆˆη ( η )
ˆ

ˆlog L ( ) 1 1ˆ ˆ ˆˆN N η ( η )
ˆ 2 2













 



     


  




  




    









N

y i
i

N
y

i
i

N
y

i
i

N
y

i
i

y

y

y

y

    


  




  




   




 (2.31) 

where 1 p 1 p 1 p
ˆ ˆ ˆ ˆˆ ˆ ˆ{υ ,...,υ ,λ ,...,λ ,θ ,...,θ }y is the set of MLE’s associated with p indicator variables. 

The corresponding second partial derivatives are     
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 (2.32) 

Appropriate combinations of the above derivations according to the Louis’ formula will supply 

the approximate ingredients of the observed information matrix with respect to each outcome. 

Similar expression can be derived for the Z variable.  

According to the literature, out of the available different techniques for computation of 

the standard errors within the EM setting, Louis’ method is best suited for adaptation to the 
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From another perspective (Holler, 2005), GLMs may be seen as a special case of GAMs. 

For example consider a regression equation of the form    1 2   1   2  Intercept s x s x    as a 

generic additive model. For a GLM the functions 1s  and 2s  can be polynomial, categorical, or 

transforms e.g. log. In a GAM one or both functions may be represented as non-parametric 

smoothers; in the former case we have the semi parametric type of GAM. The question then is 

how to strike the best balance between the degrees of freedom, amount of data, and functional 

form (Holler, 2005). 

3.3 Baseline-Treatment Interactions using GAM  

As already indicated in the first chapter, additive models (GAM, GAMM) are particularly 

useful for uncovering a potential nonlinear structure between an outcome and each continuous 

covariate (and its interaction with other predictors) that one might otherwise miss. Consider a 

GAM modeling of the dependence of the mean of the outcome Z on treatment Tx 

(intervention=1, control=0), and the smooth functions of the baseline risk covariate  and 

baseline-treatment interaction: 

 i 1 i 2 ig(E[z ]) = α + ( ) +β(Tx ) + ( *Tx )i is s   (3.4) 

In addition to the use of smoothers by the GAM procedure to estimate the dependence in the data 

based on the model, the smoothers are also used to estimate the distribution shapes to enhance the 

visual appearance of the plot of Z against the predictor (Hastie & Tibshirani, 1990), and to 

describe vividly the nature of the treatment-baseline interaction (Brown, 1993; Khoo, 1997; 

Brown, et al., 2008). The usefulness of these models can be best illustrated with hypothetical 

situations such as described in the plots in figure 3.1 which is modified from Khoo (1997) with 

additions.  In the plots, Y is the fitted outcome of a GAM model in which Z is regressed on the 
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treatment variable plus smooth functions of baseline risk and baseline-treatment interaction. On 

the x-axis the level of baseline risk increases from left to right. The dashed curve represents the 

treatment that is designed to reduce outcome Z relative to the control (solid line). Any tangible 

separation between the two curves indicates intervention effects. The length of a vertical arrow 

measures the drop in Z along y-axis, thereby depicting the magnitude of intervention effects at a 

given level of baseline risk. Generally all the plots display a nonlinear increase of the outcome 

with the baseline risk irrespective of the intervention condition.  

In plot A the curves are parallel and the constant length of the arrows indicates constant treatment 

effects across all levels of the baseline risk; hence there is no baseline-treatment interaction. In 

contrast there is a steady or linear increase of group difference (drop arrows) in Z as the baseline 

risk increases in plot B; this signifies a linear baseline-treatment interaction. The higher the 

baseline risk levels of the subject the more effective the intervention. In plot C the Z drop arrow 

length initially increases with baseline then tapers off; that is, the intervention is effective for 

individuals in the lower end of the risk scale but less so for the high risk individuals. The opposite 

occurs in plot D where the intervention is rather effective for only the high risk individuals. Plot E 

describes a rather interesting situation where the intervention impact is most effective in some 

middle region but not at the extremes of risk. Such situations exist whenever too little or too 

much of a baseline characteristic that is the target of intervention is problematic and more 

resistant to modification. For example, either extreme on a parenting scale (too authoritative or 

too permissive) may lead to poorer child outcomes than moderate scores on this scale. Lastly, it is 

not uncommon that program interventions may produce iatrogenic effects. As shown in plot F, 

the intervention is detrimental to low risk individuals but the impact gradually shifts to being 

beneficial as the baseline risk level gets higher.  
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Figure 3.1 The Plots of Distal Outcome versus Baseline Risk  

 

As we can see, analyses that ignore variation in intervention impact may not be telling the 

whole story since all the hypothetical situations depicted on the plots are not implausible. Apart 

from gaining insight as to what works and for whom, we may also uncover unintended 

consequences of a given intervention if there is any. Much of this obtainable extra information is 

contingent on the ability to capture the nonlinear outcome-baseline relationship; this type of 

information may be easily lost if we are limited to linear modeling techniques.  Most importantly, 

while GAM type models are most suitable for exposing such nonlinear dependence in the data, 

they can handle linearity as well. 
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3.4 The Best Smoothing Function 

Motivation 

For a simple illustration consider this time a set of independent bivariate observations consisting 

of outcome Z and predictor , where  i i,  z , i  0,  1,  2, , n    and 0 1 2 na ... b        

. We wish to fit a curve through the data points and plot it on a graph, infer data values between 

the data points and estimate some parameters from the data. Suppose we wish to fit a simple 

function s( ) that can be easily manipulated to the discrete data, such that it matches the data 

points exactly; such a function will be an interpolant. Some families of common interpolant 

functions include polynomials, piecewise polynomials or splines (segments of polynomials joined 

together at data points or knots); trigonometric, exponential and rational functions.  

Polynomials are popular candidates for interpolation because they are continuously 

differentiable up to all orders so that the smoothness can be easily quantified. However, simply 

fitting a single high-degree polynomial function to several data points is plagued with excessive 

oscillations thereby resulting in some misfit. For this reason polynomial bases are not efficient for 

representing s( ) when we are interested in the whole domain of s( )  (Wood, 2006).  A better 

alternative is to employ a piecewise polynomial interpolation (spline bases) which allows for 

fitting low-degree polynomials (e.g. cubics) to interval segments on the   continuum (Heath, 

2005; Wood, 2006; Cheney & Kincaid, 2004). So in terms of fitting a model to sampled data 

from a function, the idea is to create a spline that approximates that data well. Therefore it is 

necessary to determine which of the low order polynomials will be most appropriate for achieving 

optimal smoothness and minimal error. While choosing the best curve fitting function is of 

paramount importance it should not be done arbitrarily (Wood, 2006).  
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Smoothness Property 

If we assume that the data points represent a discrete sample of an underlying continuous 

function, fitting all the observed points exactly may be undesirable because the behavior of the 

function spanning the discrete data points will likely be highly variable. For example the results 

of plotting a candidate function may be unpleasing to the eyes because of excessive oscillations 

or sharp curvatures.  A curvature is a function of the second derivative (rate of change of slope) at 

the given data point. Therefore for s( )  to be the best smoothing interpolant, it must possess the 

minimum magnitude of the integrated squared second derivatives over all data points, that is, 

b 2

a
min [s ''( )]  from among all other interpolating functions (that are differentiable up to 

second derivatives) over the same set of data points. Let  

2
i i i i iz s( ) e , E(e ) 0, Var(e )        , 

We wish to estimate the unknown function s( )  without specifying a form for s  except that s  

belongs to a class of suitably smooth functions. So in terms of data fitting we seek a general 

solution to the penalized least squares criterion (least squares criterion with respect to ‘optimal 

smoothness’), specified as 

 
b2 2

i i a
i

[z s( )] [s ''( )]        (3.5) 

where   is the smoothing parameter. The first term in (3.5)  measures approximation to the data, 

and the second term controls smoothness by penalizing larger curvatures. 
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Theorem (Cheney & Kincaid, 2004; Heath, 2005) 

For a given  , there exists an interpolant s( )  for the set  i i,  z , where, of all twice-

continuously differentiable functions f ( )  that interpolate  i i,  z , s( ) f ( )   is the smoothest 

interpolant, i.e. an explicit, unique minimizer of (3.5) in the sense of having the smallest 

integrated squared second derivative over  i i,  z . Thus we have the following Lemma: 

 
b b2 2

a a
s"( ) f "( )      (3.6)  

Proof 

We need to show that if certain conditions are satisfied, s( )  will qualify as the 

smoothest interpolant. Since s( )  and any other f ( )  are interpolants with knots at all the data 

points in the interval, the functions must be equal at i ; hence it follows that i if ( ) s( )    and 

also 

2 2
i i i i

i i

[z f ( )] [z s( )]      . 

Therefore we let g( ) f ( ) s( ) 0       such that f " s" g"  . By expansion 

 
b b b b2 2 2

a a a a
(f ") (s") 2 s"g" (g")        . 

Note that we are mainly interested in the magnitudes of the integrated squared second derivatives. 

Hence we see that the inequality 
b b2 2

a a
[s"( )] [f "( )]       will be true if the integral

b

a
s"g" 0  , so that  
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b b b b2 2 2 2

a a a a
(f ") (s") (g") (s")          

Therefore, to prove our theorem we next need to show that this integral equals zero under certain 

specified conditions which must be satisfied by s( ) . We set out to accomplish the task by 

integrating by parts. Using the formula u v uv v u     , let s" u, g" v    , then we have 

 
b bb

aa a
s"g" s"g ' | s '''g '     . 

Now, the first set of conditions is: s ''(a) 0  and s ''(b) 0 , that is, the second derivatives at both 

end points 1a x  and nx b  must be set to zero. This done, we will then have 

 
b b

a a
s"g" s '''g '      

If we break the interval [a,b]  into its n-1 segments of component functions joined together at the 

knots, the equation becomes discrete summation over all segments, that is 

 
i 1

i

n 1b b

a a
i 1

s"g" s '''g ' s '''g '


 




        

Next, it is required that s ''' , the 3rd derivative at each unit interval i i 1[ , ]   be a constant, say ic , a 

property of cubic polynomial at each interval, so that we have 

  i 1 i 1 i 1

i i i

k n 1 n 1 n 1x

i i i i 1 ix
i 1 i 1 i 1 i 1

S'''g ' x c g ' c g ' c g( ) g( ) 0
  

   

 
   

             . 

The last term above equals zero because we specify at the beginning that ig( ) 0   for every knot, 

thus the proof.  
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So far we have determined a number of conditions that must be imposed on s( )  for it to 

be the smoothest interpolant: be a cubic spline with knots at the unique values of , and the 

second derivatives at the end points set to zero. By definition, the function that satisfies these 

conditions is a natural cubic spline (Cheney & Kincaid, 2004).  

3.5 Cubic Splines  

There are several types of splines in the literature and the typology may be associated 

with how the splines are represented, the spacing of the knots, and type of other conditions 

imposed. For example, in B-splines basis functions are used for the entire spline, interpolating 

splines require that the splines include some given values, zero second derivatives are enforced at 

the end knots to yield natural splines, and uniform splines have evenly spaced knots; just to 

mention a few. As already shown, the natural cubic splines are the best available curve fitting 

functions (Cheney & Kincaid, 2004; Wood, 2006). 

A k-degree spline function is a function consisting of k-degree polynomial pieces joined 

together and are continuously differentiable k-1 times (Heath, 2005). A cubic spline (k = 3) is a 

twice continuously differentiable piecewise polynomial function. The connection points of the 

polynomial pieces plus the two end points are known as the knots of the spline. The polynomials 

join smoothly at these knots because the cubic spline is continuous up to second derivative across 

the knots (Wood, 2006).  

Supposing an N-vector  (single predictor variable) is divided into n intervals so that  

0 1 2 n.        represent n 1  unique values. Let different cubic polynomials be fitted to 

each interval j j 1, ; j 1,...,n     . In its standard representation the knots of a cubic spline 
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coincide exactly with the unique values of  in the data; and the 1st and 2nd derivatives including 

the values of the cubic spline at the knots are specified to yield a number of equations and 

polynomial coefficients (parameters) to be estimated. Each cubic polynomial piece joins two 

adjacent knots and has four unknown coefficients β's  whose values vary from one piece to the 

other. Given n intervals in the piecewise polynomial, there are n+1 (or q) knots, thus there are n 

different cubics and 4n spline coefficients in all. The estimates of the coefficients are therefore 

simultaneous solutions to a system of linear equations.  To get a unique set of solution, it is 

required that the number of equations and parameters be equal. Thus for a simple standard 

representation of a natural cubic spline to be fitted to the set of n+1 knots, a total number of 4n 

equations is formed with continuity conditions imposed on the cubic polynomials as listed in 

Table 3.1 below (Heath, 2005; Cheney & Kincaid, 2004):  

Table 3.1  Cubic Spline Interpolation 

 

Following an example that is illustrated in (Heath, 2005), suppose we wish to estimate the natural 

cubic spline function that interpolates three data points  j j,  z , j  0,1, 2.   So we have n 2

  Three Continuity Conditions  Number of 

equations 

1  Each cubic to pass through the 2 knots at either end of its interval   j+1, j    2n

2  1st derivatives of adjacent cubics to match at each of n‐1 interior knots  ( 0,n)j j    n‐1

3  2nd  derivatives of adjacent cubics to match at each of n‐1 interior knots  ( 0,n)j j    n‐1

4*  2nd  derivatives of first and last cubics to be fixed at zero at endpoints  0 and  n   2

  Total number of equations 4n

* addition of this specification results in a natural cubic spline function 
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intervals 0 1 1 2( , ), ( , )     with two cubic polynomials joined at the 3 knots to represent the cubic 

spline; and 4n 8 simultaneous equations to estimate 8 parameters a,b  in the two polynomials 

denoted as 

 
2 3

1 1 2 3 4

2 3
2 1 2 3 4

p ( ) a a a a

p ( ) b b b b

      

      
 (3.7) 

The 2n 4 equations satisfying continuity condition 1 in the table 3.1 are specified as follows: 

 

2 3
0 1 2 0 3 0 4 0 0

2 3
1 1 2 1 3 1 4 1 1

2 3
1 1 2 1 3 1 4 1 1

2 3
2 1 2 2 3 2 4 2 2

At : a a a a z

At : a a a a z

At : b b b b z

At : b b b b z

       

       

       

       

 (3.8) 

Condition #2 requires the first derivatives of the two polynomials to match at the lone interior 

point: 

 2 2
1 2 3 1 4 1 2 3 1 4 1At : a 2a 3a b 2b 3b           (3.9) 

Similarly, condition #3 with respect to the second derivatives gives the equation: 

 1 3 4 1 3 4 1At : 2a 6a 2b 6b       (3.10) 

The final two equations satisfying the 4th condition relate to the endpoints: 

 0 3 4 0

2 3 4 2

At : 2a 6a 0

At : 2b 6b 0

   
   

 (3.11) 

The above representations and notations are for the very basic conventional spline where 

the knots coincide exactly with the input data points. Typically less number of knots than data 
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points are chosen and may be evenly spaced over the range of values of  that is constrained to 

between 1 and 0 (Wood, 2006). Alternatively the knots may be placed at the quintiles of unique 

values distribution of . We will revisit how to determine the optimal number of knots later in 

this chapter. 

3.5.1 Representation of Natural Cubic Splines  

A critical objective of GAM fitting is ensuring that the chosen smoothing function is the best 

smoother, as well as fits or summarizes the data well. This property is related to how the smooth 

function is represented. The representation of the smoothing function can take many forms and 

can be very complicated and intimidating especially for those forms that are most suitable for 

computation and general practical use. Therefore, representing the smooth functions and choosing 

how smooth the functions should be are two critical issues of major theoretical importance in 

additive modeling (Hastie & Tibshirani, 1990; Wood, 2006). There is more than one approach to 

representing GAM depending on the method of estimation. The estimation by backfitting 

technique (Hastie & Tibshirani, 1990) iteratively fits each smoothing component to its partial 

residuals until the individual components no longer change (convergence) but automatic 

smoothness selection is very costly (Wood, 2006). Another approach to estimation is penalized 

regression splines; this involves choosing some basis functions defined as the space of functions 

of which the smoothing function is an element (Wood, 2006). Here the degree of smoothness of 

model terms is estimated as part of the GAM algorithm (Wood, 2006), therefore we prefer this 

latter approach for our work. The estimation of degree of smoothness is not integrated into the 

backfitting procedure (Wood, 2006) and the degree has to be chosen by the user. 
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To illustrate the basic principles, we will again use a simple regression model of the 

outcome Z with a smooth function of the single predictor :  

 i i iz s( )     (3.12)  

A proper representation of (3.12) requires that it becomes a linear model. One way to achieve this 

is by choosing for (.)s  some basis functions and treating them as known (Wood, 2006): 

 
L

l l
l 1

s( ) b ( )


     (3.13)  

A basis for ( )s   defines the space of all functions of which ( )s  or its approximation is an 

element. With ( )lb  as the lth basis function and l  the lth parameter, substituting (3.13) into  

(3.12) results in a linear model (Wood, 2006) so that estimation methods for linear model such as 

least square method can be employed. For example, a basis for the space of cubic or less order 

polynomials is 

 2 3
1 2 3 4b ( ) 1, b ( ) , b ( ) , b ( )             

in which case we have 

 2 3
1 2 3 4s( )            (3.14) 

The above representation is for a single 4th degree polynomial fitted to  in its entirety. As 

previously noted, the natural cubic spline is the best smoothing function; in which case we have 

 divided into intervals and we fit a cubic to each segment. For a similar purpose, a modified 

representation of cubic spline function can be made. Let the knot locations be * , and the number 
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of the chosen knots be q, where q therefore represents the dimension or rank of the basis. The 

rather complicated bases for the cubic spline (Wood, 2006) are 

 *
1 2 j 2 jb ( ) 1, b ( ) , b ( ) R( , ), for j 1.....q 2            (3.15) 

where, if we let t represent the jth knot location *
j , 

 
   

   

2 2

4 2

R( , t) t 1 / 2 1 /12 1/ 2 1/12 / 4

t 1 / 2 1 / 2 t 1 / 2 7 / 240 / 24

           
       
 

 (3.16) 

The result is a linear model representation of Z which then allows for model estimation by least 

squares: 

 q 2
*

1 2 j j 2
j 1

z z s( )

s( ) R( , )





        

        

X

 (3.17) 

where  is a q-vector of real valued coefficients and the ith row of model matrix X is 

 * * *
i i i 1 i 2 i q 21, ,R( , ),R( , ),..............R( , )         X  

Further technical details about the cubic spline bases formulation can be found in (Wood, 2006). 

3.5.2 Penalized Regression Cubic Splines 

Once a basis has been chosen for each smooth in the model, next it is necessary to control 

the degree of smoothness. One method for doing this is to fix the basis dimension q (number of 

knots) at a slightly higher level than necessary and add a “wiggleness” penalty to the least square 

fitting criterion  (Wood, 2006). That is, fit model to the data by minimizing  
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  
1

22

0

y s"( ) d     X  (3.18) 

over all twice continuously differentiable functions (.)s having integrable second derivatives. The 

first term in (3.18) measures the goodness-of-fit to the data and from here the wiggleness of the 

function arises; and without a penalty term the model becomes strictly an interpolation of q knots. 

The second term in (3.18) represents quantified “wiggleness” multiplied by . It penalizes the 

first term. The tradeoff between the wiggleness (how closely the data points are tracked) and 

smoothing (for visual pleasing and ease of interpretation) is controlled by the smoothing 

parameter which weights the wiggleness. When s"( ) 0   a constant slope is implied, that is 

s( ) is linear, in which case we have the standard least squares problem. Otherwise, when

s"( ) 0   (and therefore 2[s"( )] is positive), the slope is changing and nonlinearity is present; 

therefore as  approaches infinity the penalty term also approaches infinity. Obviously the 

penalty term then needs to be calibrated. For example 0   implies an un-penalized regression 

estimate (Hastie & Tibshirani, 1990; Wood, 2006). Too low  causes the model to fit the signal 

plus the noise; the resulting excessive tracking or extra variability will lead to poor prediction of 

the missing datum by the model. The idea is to choose the best value for  that will allow a 

candidate additive model to maximally predict data to which it was not fitted. Fortunately there 

are algorithms for finding the optimal value for  including the ordinary cross validation (OCV) 

and the generalized cross validation (GCV); basically both methods find ̂ that minimizes the 

difference between the true function ( )s  and the spline estimate ˆ( )s  :  

 2

1

1
ˆ( ) ( )

n

i i
i

CV s s
n

 


   
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Since we do not know ( )s  , the cross validation (CV) cannot be calculated directly, instead the 

expected squared error in predicting a new variable is derived as 2( )E CV  and worked with in 

slightly different ways in the two methods; details of which can be found in (Wood, 2006). The 

GCV approach has computational advantages over the former; hence GCV is preferred for 

searching for the optimal , that is, selecting the degree of smoothness (Wood, 2006). Whereas 

the approach to model estimation in AM is by penalized least squares, the method of choice for 

estimation in GAM is penalized likelihood maximization which in practice is achieved by 

penalized iterative least squares (Wood, 2006). For detailed information about the cross-

validation techniques and the model estimation methods, please refer to (Wood, 2006). In the 

GAM procedure according to the mgcv package (R Development Core Team, 2008), the effective 

degrees of freedom (edf) is automatically calculated as a mathematical function of  and reported 

in the model output.  A higher edf corresponds to greater nonlinearity. 

3.5.3 Estimation in Penalized Regression Splines  

Expanded details of the estimation process described in this section can be found in 

(Wood, 2006). Briefly the penalty term in (3.18) being linear in the parameters   can be re-

expressed in a quadratic form of  (for cubic splines)  

 

 

 

1
2

0

* *
i 2, j 2 i j

s"( ) dx

S R ,

i, j 1,...,q 2

 

    

   


 

 S

 (3.19) 

where S is a matrix of known coefficients with its first two rows and columns equal to zero. It 

follows that fitting the model reduces to minimizing  
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2

y     X S  (3.20) 

w.r.t.   given  . An optimal smoothing parameter   is chosen using the method of generalized 

cross validation. For an additive model involving two smooth functions, penalized regression 

spline basis is used for each smooth function. Consider two predictors U and with all values 

constrained to lie in[0,1] : 

  

 

1

2

2
i 1 i 2 i i i

q 2
*

1 1 2 j j 2
j 1

q 2
*

2 1 2 j j 2
j 1

y s (u ) s ( ) e ; e i.i.d. N(0, )

s (u) u R u,u

s (v) v R ,











    

     

       







 (3.21) 

where 1q  and 2q  are the number of parameters to be estimated for the corresponding smooth 

function. For identification, either of 1  or 1  is set to zero. The ith row of the model matrix for 

the linear model form  y    X  becomes 

 
1 2

* * * * *
i i i 1 i 2 i q 2 i i 1 i q 21,u ,R(u ,u ),R(u ,u ),...,R(u ,u ), ,R( , ),...,R( , )        X  (3.22) 

To estimate the parameters
1 21 2 q 2 q[ , ,..., , ,..., ]       , we minimize the least square objective 

 
2

1 1 2 2y           X S S  (3.23) 

For non-normal data the Generalized Additive Models (GAMs) are set up as penalized GLMs and 

the model is fitted by penalized likelihood maximization using penalized iterative least square. 

For an example of a model that includes both non-smoothed and smoothed terms including 

interaction term, let *
iX represent the model matrix of the strictly parametric (non-smoothed) 
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component of the model with its associated parameters   while the js are the smooth functions; 

we have 

 

 
j

*
i 1 i 2 i i

q

j j ji ji j
i 1

g E(y) s ( ) s ( ,x ) ...

s ( ) b ( )


      

   

X

 (3.24) 

with g as the known link function. To make the model identifiable, the model matrices for each 

smooth term is mean- or sum-centered at zero, and the model can then be represented as 

 

 
*

1 2

1 2

g E(y)

[X : X : X :...]

[ , , ,...]

 

 
        

X

X  (3.25) 

To suppress the wiggleness contribution from each j js (x )  the likelihood ( )L  of the model is 

penalized to obtain ( )pL  : 

 p j j
j

1
L ( ) L( )

2
       S  (3.26) 

where the smoothing parameters j control the wiggleness and are themselves estimated. For the 

proof and the iterative estimation process the reader is referred to (Wood, 2006). 

3.6 Goodness of Fit and Model Comparison 

For each regression equation in the ALV model we applied the generalized linear model 

(Nelder & Wedderburn, 1972) so that each regression model specification is in terms of the linear 

predictor X . So the deviance is output directly by the standard GLM/GAM procedure, and is 

defined as  
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 sat

2
n p

ˆ ˆD 2[log L( ) log L( )]

D 

    


  

 

 where ˆlog ( )satL  is the maximized log likelihood of the saturated model, n is number of 

observations, p is number of identifiable parameters, and the scale parameter 1  for the Normal 

and Binomial distributions used in the development of the ALV model. Note that there are C 

columns of N-vectorgenerated in each EM cycle as MCMC samples (N and C are number and 

length of MCMC chains respectively). For p response variables there are p univariate regression 

models fitted for each N-vector  repeatedly across C columns, to yield a p C matrix of each 

element of the model fit results. One of these elements is the deviance D directly estimated by 

each regression model. Then the average deviance is computed over the C columns to produce a 

set of average values 1 p{D ,...,D } for the p sub-models. So there are C univariate regression model 

fits yielding C deviances w.r.t. each response variable. These p deviances are then summed for 

the system of regression equations to give a total deviance D  which indicates the overall log 

likelihood of the ALV model. So, to compare nested ALV models 1 and 2 we can perform the 

likelihood ratio test, where with hypothesis testing based on large sample limit we have 

approximately 

 
2 1

2
p pD1 D2    

Non-nested ALV models can also be compared on the Bayesian information criterion (BIC) and 

Akaike information criterion (AIC) also which we are able to compute as follows: 

 
AIC D 2* p

BIC D (log n) * p

 

 
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The better fitting of the two ALV models will produce lower values of either statistic. We 

considered computing the BIC and AIC also at the sub-model levels and finding the average as 

done for the deviance, however we believe that more simulation studies will be required 

specifically to investigate which approach should be better, and this should be a subject of future 

study.  
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CHAPTER 4 

COMPUTATIONAL DEVELOPMENT OF ALV MODEL  

4.1 Computation Steps 

The proposed ALV model was developed and written entirely in R language using the R 

2.8.1 statistical application (R Development Core Team, 2008). The latent ηvector was simulated 

using a random walk Metropolis algorithm available within the Markov Chain Monte Carlo 

Package (MCMCpack version 0.9-4) written by Martin, Quinn, & Park (2009) in R. To simulate 

the random vector η  we employed the R function MCMCmetrop1 available from the 

MCMCpack to construct a Markov sample from user-defined conditional distribution of η , using 

a random walk Metropolis algorithm. For diagnostic purpose the output of the MCMC 

simulations is analyzed with the CODA (Convergence Diagnostics and Output Analysis) package 

(Plummer, Best, Cowles, & Vines, 2006) that comes with the MCMCpack. 

The steps involved in the extended MCEM computations are graphically displayed in 

Figures 4.1a-c reflecting summaries of the equations (2.20) to (2.28) . For the kth MCEM 

iteration, a single chain Markov sample of size C was drawn from the conditional distribution of 

η for the ith subject in the E-step via the Metropolis algorithm (Figure 4.1b). This yields for all 

subjects N independent Markov samples stored in an N×C matrix. Each column of this matrix 

constitutes independent observations and was plugged into the Q function one column at a time to 

substitute for η , given the current (kth) parameter estimates. The availability of estimated N- 

vector η  as a predictor variable then allows for the new (k+1)th MLE’s and their standard errors 
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to be obtained at the M-step as direct outputs by fitting standard regression models including 

GAM (Figure 4.1c). 

The ALV model at this stage accepts continuous indicator variables (Y’s), one 

continuous or binary distal outcome (Z), and a two-category group or treatment variable (GRP). 

In addition it can also accept a cluster variable as a random effect; however in its current form he 

ALV model can optionally include the cluster variable in its analysis only at the final EM 

iteration. That is, the Additive component will switch from GAM to GAMM in the final EM 

iteration to accommodate the the clustering factor in the data. Technically the GAMM analysis 

procedure combines Linear Mixed Model (LME) with GAM within its algorithm (Wood, 2006). 

Figure 4.1a  ALV Algorithm Flow Chart: Overview of  EM Setup 
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Figure 4.1b  ALV Algorithm Flow Chart: Implementing the E-Step via MCMC Process 

( )
( )

( )

( )

( ) ( )

( , , ; )
( | , ; )

( , ; )

( , , ; ) /

( | ; ) ( | ; ) ( ) /

k
k i i i

i i i k
i i

k
i i i

k k
i i y i i z i

p y z
p y z

p y z

p y z h

p y p z p h

  


 

    







1/2/2 1

2 1/2 2
2

/2

1
( | ; ) (2π) exp ( ) ( ) ,

2

1
( | ; ) (2π ) exp ( ) ,

2

1
( ) (2π) exp .

2

p
i i y i i i i

i i z i i

m
i i i

f y y y

f z z a

f

 





        
      

    

       

   


  

* ( ) * ( ) *
( ) *

( ) ( ) ( ) ( ) ( )

( | ; ) ( | ; ) ( )
( , ) min 1,

( | ; ) ( | ; ) ( )

k k
i i y i i z ic

i i c k c k c
i i y i i z i

p y p z p

p y p z p

    
  

    
  

    

 
 

* 1 * 2 * 2 * *

( ) 1 ( ) 2 ( ) 2 ( ) ( )

1
exp ( ) ( ) ( )

2
min 1,

1
exp ( ) ( ) ( )

2

i i i i i i i i

c c c c c
i i i i i i i i

y y z a b

y y z a b

 

 

              
 

              

        

        

 

 

 

 

 



57 

 

Figure 4.1c  ALV Algorithm Flow Chart: Summary of the MCEM Implementation 
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The main parameters to be estimated require start values. We adopt the following scheme 

to facilitate fast convergence and efficiency of the AVL algorithm. The calculated sample means 

and variances of the Y’s are employed as start values for the Y-intercepts   and measurement 

error variances   while Y-slopes   are arbitrarily assigned start values, e.g. 1.0. For the GAM 

component, Z is regressed on GRP and Y’s to obtain a start value for the Z intercept , but the 

initial error variance 2 is also obtained from the sample variance. The above first line start 
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values are then used to compute the empirical Bayes’ (EB) estimates to serve as start values for 

the N-vector η . Alternatively, a standard normal random sample can be generated as the initial η

vector and we found this to work as well for our simulated data but in general this is not our 

preferred choice. It is important to choose start values that allow the MCMC chain to start as 

close to the center of the target distribution (conditional distribution of η ) as possible (e.g. EB 

estimates, approximate MLE’s) as this will greatly reduce the required burn-in time and facilitate 

a well mixing chain (Walsh, 2004). In a well mixing chain the entire space of the target 

distribution is sufficiently sampled. In a situation where the target distribution has multiple peaks, 

a simulated annealing approach would be an alternative for obtaining start values on a single-

chain such as ours (Walsh, 2004), but our target distribution is uni-modal.  

The ‘pseudocode’ for ALV model is as follows: 

Step 1. Preliminary 

Dataset: Arrange variable columns in the order 1 p{Y ,..., Y , Z, GRP, Cluster} . Remove rows with 

missing values. 

Start values – 

 Parametric coefficients: supply 0 's , compute 2
0 0 0's, 's, 's    

 Generate or compute the initial vector 0   

 Nonparametric coefficients: regress Z on 0  using the GAM function to obtain initial 

MLE’s of 0  and 0 's  

 Use 0  (rescaled to lie in [0,1]) to construct initial GAM model matrix 0Xmat    



59 

 

Step 2. Start EM Loop 

for k = 1 to maximum iteration do until convergence 

 update EM counter, parameters, vector -  to give kth values 

 create matrices for holding results generated in kth iteration 

Metropolis Loop (generates MCMC samples) 

for i = 1 to N do 

 update subject counter 

 input: subject level data:  ith row of (i) dataset (ii) vector (iii) Xmat 

 apply MCMCmetrop1R function to the input data (subject level) 

 output: N C   -matrix; the rows consist of N independent Markov chains of length 

C; each column is an N-vector    

end for  

Regression Loop (produces MLE’s) 

for j = 1 to C do 

 input: (i) N C matrix consisting of columns of   (ii) dataset 

 regression models are plugged into the conditional likelihood functions: 

 fit linear model to each Y-indicator with jth column of  -matrix as a lone predictor  
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 fit GAM to Z (response variable) with jth column of  -matrix + GRP +  2-way 

interaction terms as predictors  

 output: (k+1)th set of (i) mle’s { 's, 's, 's   } (ii) standard errors of mle’s (iii) {

2
0 0's, 's  } computed from residuals of regression equations (iv) deviance estimate 

for each model fit. 

end for  

 A total of C regression equations are fitted per response variable to yield C estimates 

per parameter. Final (k+1)th estimates are the average of C estimates 

Update Xmat  

 Compute the row means of the N C eta-matrix to yield   for N subjects  

 Use N-vector  to generate the (k+1)th Xmat  

Compute convergence errors.  If convergence, stop, else return to step 2.   

End EM Loop 

4.2 Criteria for Convergence of ALV Model 

Convergence issues are addressed at two levels: how to ensure that the Metropolis 

sampler has reached a stationary distribution; and how to diagnose convergence for the E-M 

iterations and ensure that the parameter estimates converge to their true values.  
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4.2.1 Convergence of MCMC  

 There are two main concerns including how to eliminate dependence on start values and 

how to diagnose convergence of the MCMC iterations. Also there are two schools of thought on 

the appropriate approach to address these concerns: generate multiple chains from different start 

values, or simply use one long chain because this is more robust with respect to poor start values 

(McLachlan & Krishnan, 2008). According to the authors, whether one uses one long Markov 

chain or uses multiple short chains, the diagnostic tests of convergence can still be fallible; so the 

focus of MCMC runs should be on the precision of estimation of the expectation(s). Therefore, 

considering the above and the fact that our ALV algorithm involves N number of MCMC runs 

per EM cycle; obviously we prefer the single chain approach. Later in our simulation studies, we 

will place emphasis on the precision of MCMC estimates (compared to true values) in the 

evaluation of convergence of the ALV model. 

 We took advantage of the available diagnostic tests that can be conducted within the MCMCpack 

(Martin, Quinn, & Park, 2009) to confirm that the Markov chain converges sufficiently close to 

its stationary distribution.  Using the R function ‘raftery.diag’ we were able to calculate the 

effects of autocorrelation in a short pilot run of a Markov chain and use the results to determine 

an adequate length required for the chain to achieve a stationary state. If the estimated 

autocorrelation is high (‘dependence factor’ estimate > 5), the required length of chain will be 

large and this can pose computer memory challenge. The memory demand can be reduced by 

thining the output whereby every nth consecutive value after burn-in period is selected and stored 

for use in subsequent analysis (Walsh, 2004). The results of the Raftery diagnosis also included 

the estimated number of ‘burn-in’ iterations to be thrown away at the beginning of the Markov 

chain, as well as plots of the sampler run.  
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4.2.2 Convergence of EM  

The determination of convergence in the Monte Carlo EM extension is not trivial; the 

usual standard approach is not suitable and non-convergence may be compounded by 

implementation or numerical errors (Lee, Song, & Lee, 2003; McLachlan & Krishnan, 2008). 

According to the authors, by approximating the expectation at the E-step with values generated 

from MCMC samples, a Monte Carlo error is introduced and the monotonicity property of the 

EM algorithm is lost. One approach to monitoring of EM convergence therefore is to plot the 

values of parameter estimates ̂ against the index of iteration and conclude that convergence has 

taken place if the process has stabilized with random fluctuations around the estimates (Wei & 

Tanner, 1990; McLachlan & Krishnan, 2008).  When the number of parameters to be estimated is 

large (as in our case) an alternative approach is to monitor changes in a function of ̂ such as the 

log-likelihood function (Meng & Schiling, 1996). It is also known that the log-likelihood function 

can still fluctuate randomly along the EM iterates even in the absence of implementation or 

numerical errors (Lee, Song, & Lee, 2003), however this has been shown to be adequate for the 

purpose of statistical inference (Lee & Zhu, 2002; Meng & Schiling, 1996). Although we 

included both of these methods in our approach, we placed relatively more emphasis the 

monitoring of log-likelihood function.  

A special method is required to monitor convergence of a likelihood function in the EM 

setting. We would be interested specifically in the change in observed data log-likelihoods 

between two consecutive EM iterations (k, k+1), which can be obtained from the logarithm of the 

ratio of the two likelihood values (logLR): 

 
( 1)
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( )

p( , z|η; )
log LR( , ) log

p( ,z|η; )


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k
k k
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y


 


 (4.1) 
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Ideally the ratio will be easy to evaluate if using marginal likelihood after integrating outη . 

However, similar to the experience of Lee, Song, & Lee (2003) the observed likelihood in our 

case is difficult to obtain analytically, so we follow the authors’ approach (bridge sampling 

method) by applying the Meng and Schiling’s approximation formula (Meng & Schiling, 1996) 

based on the complete data likelihood with respect to cth MCMC iterate within the kth EM cycle 

as follows: 

 


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 (4.2) 

where k(c){η , c = 1,....C} are simulated from the conditional distribution of ηevaluated at kth 

estimates. The aim is to claim approximate convergence when the change in consecutive 

likelihoods along EM iterations becomes very small and fluctuates within a desired level, that is, 

the log of the likelihood ratio fluctuates near zero. The approximation is claimed to be sufficient 

for the purpose of statistical inference (Meng & Schiling, 1996; Lee & Zhu, 2002). Similar to the 

monitoring of parameter estimates, approximate convergence is assumed when the estimated 

logLR approaches and fluctuates in the neighborhood of zero.  

Most importantly, once within the region of such steady fluctuation, it is necessary to 

come up with appropriate values of parameter estimates at convergence. Some authors obtained 

the average of all values within the region for the final estimates with respect to individual 

parameters, while some selected the parameters values at arbitrary kth iteration within the region 

as the MLE’s (Lee, Song, & Lee, 2003).  In our case, regression model deviances are also 

available as output using our algorithm. So, in order to establish a more objective criterion for 
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point convergence, we decided to also monitor the ALV model deviance computed as the sum of 

deviances for all regression model fits comprising the ALV model. So, from within the steady 

fluctuation region we choose the parameter values corresponding to the point of minimum 

deviance across the EM iterations i.e. set of parameters that provide the best overall model fit to 

the data. So our strategy for deciding EM convergence is to first monitor the log of the likelihood 

ratio to ensure the region of stable fluctuation around zero is achieved, then choose parameter 

estimates associated with minimal model deviance within the stable region.  
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CHAPTER 5 

APPLICATION TO SIMULATED DATA 

5.1 Simulation Design and Background Information  

A simulation study was carried out to evaluate the properties of the estimation procedure 

of the proposed ALV model. The simulation data structure mimics a randomized control trial 

investigating the variation in impact of treatment G on an outcome Z across the levels of a 

baseline risk ( ); with the additional challenge that  is unobservable and must be inferred from 

five observed variables Y1 to Y5. The Y’s are assumed to be continuous and multivariate 

Normal, G has two levels, and Z may be binary or continuous with a normal distribution. Also, 

the Y’s and Z are conditionally independent given . The ALV model in this case consists of six 

regression sub-models corresponding to five Y’s and one Z. We used different specifications, 

each with 50 replicated datasets, and repeated for each of three sample sizes N = 100, 200, 300 

(see Table 5.1). All simulation datasets were generated in R 2.81 (R Development Core Team, 

2008). Complementary analyses were performed in Mplus version 5.1 (Muthen & Muthen, 2008). 

The simulations were used to assess two major important questions for the model: (1) 

what is the long term behavior of the ALV model (pattern of convergence)? (2) How well does 

the ALV model perform under (a) different study sample sizes and (b) different functional forms 

of the relationship of Z to ? To answer the posed questions we performed simulations under 12 

different scenarios constructed from the combinations of the following data structures (see Table 

5.1): Z-scale (continuous and binary),  -effects (linear and nonlinear), and sample size (100, 
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200, 300). Under each scenario we investigated (i) the optimality requirements for the MCMC 

sampler, (ii) the ALV model convergence characteristics with a single run of the model through 

100 EM iterations, and (iii) the accuracy of the ALV model estimates and their standard errors by 

running 50 replications. Regarding the MCMC sampler optimality conditions, we pilot tested the 

MCMC sampling to (a) fine tune the variance of proposal distribution so as to achieve a 

Metropolis sampling acceptance rate of between 0.43 and 0.47, (b) determine the shortest length 

of Markov chain required to achieve stationarity (burn-ins), (c) assess variance inflation factor I 

of the data,  if 4I  then determine how much thinning is required to reduce the autocorrelation 

in the data to a minimum, (d) determine the optimal size of MCMC samples that is required to 

estimate  accurately and efficiently, i.e. the minimum size that is adequate for the purpose of 

statistical inference.   

Table 5.1  Twelve Simulation Scenarios used to Assess ALV Model Performance 

        Sample size 

Scale of Z Z dependence on ηand η*Z 100 200 300 

 

Continuous Linear 1 2 3 

  Nonlinear 4 5 6 

Binary (logit) Linear 7 8 9 

    Nonlinear   10 11 12 
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If we can assume a joint multivariate normality for all dependent variables (Y’s and Z) 

the ALV model analysis will mimic a simple linear CFA.  However, unlike the conventional 

CFA, in addition to solving linear equations, the ALV model is also able to model complex and 

unknown relationships in the Z sub-model component. So the major difference between a simple 

linear CFA and the proposed ALV model in its current formulation is found in the functional 

form of the regression sub-model of Z (the GAM component).  Therefore for brevity we illustrate 

the results of our simulation study with the report on six representative scenarios that capture the 

span of ALV performance under two standard conditions (simplest & most complex) based on the 

functional form of the Z regression equation. The two functional forms include a continuous Z 

linearly related to both  and G interaction term (1st row of Table 5.1), and a binary Z related 

to both predictor terms in a nonlinear fashion (last row of Table 5.1), and are presented as 

schemes 1 & 2. The first standard condition (1st row, scheme 1) allows for the assessment of ALV 

performance when joint multivariate normality can be assumed for the data (Y’s and Z 

conditioned on ), equivalent to a standard linear CFA. Importantly, the ALV model results in 

this case can be compared to the results of CFA performed by a standard statistical application 

such as Mplus. The second simulated condition (last row, scheme 2) enables us to evaluate the 

ALV model application to more complex data. Such condition includes when Z has a binary 

distribution conditioning on , plus the presence of a complex nonlinear dependence of Z on the 

Y’s indirectly through . The dependence is not fully specified except that the variables are 

conditionally independent. The emphasis in the latter evaluation is therefore on how well the 

ALV model is able to recover the true   and uncover the functional forms used to generate the 

data.  
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 For all simulations, the measurement sub-model component of the ALV model connecting the 

latent and the five observed indicators ,i=1,...Niy is given by 

 i iη ; η N(0,1)i iy       . 

Population values for this component are assigned as 1 5{υ ,...,υ } 0  , 1 5{λ ,...,λ } 1  , and 

1 5diag{θ ,...,θ } 0.5  . A standard normal N-vector was generated first, then the response 

variables Y’s and Z were generated conditioned on . While a linear model is specified for each 

Y, both linear and nonlinear regression models of Z (second component of the ALV model) were 

specified. Nonlinearity is described by inclusion of appropriate higher degree polynomial terms in 

the model.  Let n = N/2 where N is the number of subjects in the sample; separate specification 

for each treatment group G is as follows:  

i=1:n 00 10 i=1:n i=1:n 2
i

i=(n+1):N 01 11 i=(n+1):N i=(n+1):N

2 3
i=1:n 00 10 i=1:n 20 i=1:n 30 i=1:n

i=(n+1):N 01 11 i=(n+1):

G=0: z =β +β η +e
Scheme1(Linear) ; e ~N(0,σ )

G=1: z =β +β η +e

G=0: z =β +β η +β η +β η
Scheme 2 (Nonlinear)

G=1: z =β +β η





2 3
N 21 i=(n+1):N 31 i=(n+1):N+β η +β η





 (5.1) 

For the second scheme we then simulated binary *Z  to have probability

prob(z=1)=1 [1+exp(-z)]  where z is probability on the logit scale.  Model specifications for 

scheme 1 were 00 01β =β =0,  10β =0.2,  11β =0.7,  and σ=0.5.  For the second scheme we specified

00 10β =1,β =-1,  20 30β =-0.5,β =1for group 0; 01β =0,  11β =-3, 21β =0.4, 31β =0.6 for group 1.  
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5.2 Monitoring Convergence 

5.2.1 Convergence Pattern: MCMC loop   

The studies of the MCMC convergence were carried out at the subject level where the 

conditional distribution of  is randomly generated from an inner loop inside an EM iteration 

cycle. Guided by the Raftery diagnostic tests results from several runs in which we looked at the 

times series trace of across number of MCMC iterations,  we found that a relatively shorter 

MCMC chain with 400 iterations after a burn-in period of at least 100 iterations is generally 

sufficient for the purpose of inference with the ALV model. For all our simulated data the 

calculated sample inflation factor due to autocorrelation was generally low at about 0.4 (less than 

0.5) (Chib & Greenberg, 1995), and we found that thinning of the MCMC samples did not change 

our results in any significant way. The acceptance rates for the Metropolis algorithm ranged 

between 0.40 and 0.47 (Lee & Zhu, 2002; Gamerman & Lopes, 2006). 

For a snapshot illustration the results of three Metropolis sampling runs are shown in 

Figure 5.1; the purpose here is to compare the graphical outputs of the Raftery test for three 

different burn-in periods. The dataset used was generated according to scheme 1, and the results 

for the subject sample size N =300 is reported here. Potentially N trace/density plots could be 

generated in each EM cycle for all the subjects in the sample. However each run producing a 

trace plot in the Figure 5.1 occurred in the kth EM cycle and was carried out on the ith subject 

randomly selected from the subjects sample stratified by treatment group. Each plot in the left 

column depicts a trace of accepted i values across 400 random-walk Metropolis samplings.  

Note that by default in R (difficult to override) the ‘N’ in the density plot label (right panels) 

represents MCMC sample size (for the ith subject) and not subject sample size; this confusion 

with use of symbols arises in this instance only. So each density plot depicts the distribution of 
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MCMC samplings from a single run for the ith subject in the kth EM cycle; under different burn-

ins.  For the trace plots (left panels), the horizontal scale starts from the (b+1)th MCMC iteration 

after a burn-in period of length b. Any long flat segment of the trajectory corresponds to iterations 

where all proposed ηvalues were being rejected; this is not desirable. The presence of multiple 

vertical spikes indicates well explored sampling space. We want the Markov chain to be ‘well 

mixing’ and this is achieved when ‘the time series looks like white noise’ (Walsh, 2004). In 

addition, if stationarity has been reached the average value of ηacross the iterations should be 

approximately linear and horizontal; if it appears to be drifting, it may suggest inadequate burn-in 

period. 

The results reported here in Figure 5.1 are representative of our findings for several 

subjects with different sample sizes under the different model specifications we tested. They 

show a fair settling of the traces (linear trend) with good mixing produced with the three choices 

of burn-in, therefore we found the shortest burn-in period of 100 to be most efficient. In addition, 

apart from the relatively greater computation time and memory demand by the longer burn-in 

periods, we did not see any noteworthy difference in the model estimates under burn-in periods of 

100 or more.   
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Figure 5.1  Trace and Density Plots of Markov Samples for Individual Subjects (Scheme 1) 

5.2.2 Convergence Pattern: EM loop   

We report here the results of our investigation of the long term behavior of the ALV 

model estimation process with applications to simulated data.  For each ALV model run we 

monitored across the EM iterations (i) convergence errors, (ii) approximate log of observed 
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likelihood ratio derived by bridge sampling, (iii) total ALV model deviance, and (iv) parameter 

estimates. We calculated convergence errors separately for two sets of parameters, the smoothing 

coefficients and the remainder parametric ML estimates. To compute the convergence error for 

the current EM iteration given P parameters we apply the formula:  

  
P 2

p p
p 1

new error old estimate - new estimate


   (5.2) 

Two representative plots of sequences of convergence errors across 100 EM iterations are 

displayed in Figure 5.2. The two convergence error curves in either plot (dashed line for the 

parametric set of estimates and solid line for the smoothing spline coefficients) show dramatic 

drop before flattening out. The steady portion of each trajectory is fairly linear for the parametric 

set but values of the smoothing coefficients show random fluctuation within a small range. Note 

that the starting convergence error for the parametric set is relatively small for scheme 1 that 

corresponds to linear CFA analysis. This is because we started very close to the true values of 

vector by using the empirical Bayes’ estimates of  as start values in the Metropolis algorithm. 

However such approximation of  is less accurate in scheme 2 where multivariate normality does 

not hold, therefore the corresponding starting convergence error in this particular case is 

expectedly higher. The patterns are otherwise rather similar. 
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Figure 5.2  Convergence Errors versus EM Iteration 

 

In the same ALV model run (scheme 2), the consecutive values of log of likelihood ratios 

and the summed deviances from all six regression sub-model estimations were plotted against the 

index of EM iterations (Figure 5.3). From the top graph we see that the log of likelihood ratios 

curve quickly approaches zero and thereafter continues to fluctuate within a narrow band around 

zero. This pattern is consistent with reports of previous similar studies in which the authors used 

the Monte Carlo EM (MCEM) approach (Lee & Song, 2007; Lee & Zhu, 2000; McLachlan & 

Krishnan, 2008). In the bottom graph of Figure 5.3 the total deviance scores had been rescaled so 

that the minimum value equals zero. The deviance curve reaches a minimum in the 4th iteration 

(vertical dashed line) before stabilizing; based on our criteria for convergence we concluded 

convergence at this point. A trajectory with an early ‘pit’ followed be steadiness has been the 

typical finding from all our simulations results describing the trace of ALV model deviance. 

Therefore we believe that the bottom of the ‘pit’ likely represents a global minimum on the 

trajectory. Although the linear model structure probably indicates this is the case, we cannot 

Scheme 1b:  
Continuous Z, linear model, N = 200 

Scheme 2: 
Binary Z, nonlinear model, N = 200 
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assume this in general. For efficiency, once convergence is decided at this minimum model 

deviance, the ALV algorithm is terminated at a couple of EM iterations afterwards.  

Figure 5.3  Scheme 2: Binary Z, Nonlinear Model, N=200 

 

Just for completeness we also monitored the individual parameters in the parametric set 

of estimates just to explore how these parameters behave as the iterations in EM increase; some 

results are displayed in Figures 5.4 and 5.5 where start values on the Y-axis correspond to zero 

iteration.  From these Figures, the residuals (thetas, sigma^2) and z-intercept (GAM component) 

stabilize rather quickly by the 4th iteration, our decided point of convergence; however the y’s and 

lambdas (measurement intercepts and slopes) show gentle steady increase and only start to 

stabilize as from around the 100th EM iteration.  
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similar patterns are exhibited by the model residuals. Therefore we suspect that the drifting values 

of the y-intercepts and lambdas indicate possible multiple solutions; this may need to be explored 

further in future studies. We believe these findings are further justifications for our approach of 

choosing solutions at the point of minimum model deviance as these solutions will be better than 

if chosen at any other point in the iterations. For these reasons, we did not see the need to extend 

the EM runs beyond 100 iterations just to show where the y-intercepts and lambdas finally 

stabilize. 

Figure 5.4.  Sequences of Parameters (Scheme 1) Across 100 EM Iterations 
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Figure 5.5.  Sequences of Parameters (Scheme 2) Across 100 EM Iterations 

 

5.3 Assessing Performance of ALV Model 
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our consistent findings of an early convex shape (pit) before a prolonged flat trajectory for all the 
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To evaluate the overall accuracy of the ALV model we calculated the following summary 

statistics for each parameter estimate based on 50 replications: 

Bias– This was calculated as the difference between the true value and the computed mean of 

estimates. 

Standard deviation (SD) – This is the empirical standard deviation of the parameter estimates 

across replications. 

Root mean square error (RMSE) – This was calculated as the square root of the sum of the 

variance (of the estimates across replications) and the squared bias. 

Standard error average (SE) – This is the mean of the standard errors estimated by ALV model 

for each parameter estimate across the replications. 

SE/SD – This ratio was used to assess the accuracy of the standard errors estimated by the ALV 

model. If the number of replications is sufficiently large, the empirical SD can be taken as the 

standard error of estimate. Therefore, assuming we have sufficient number of replications, 

correctly estimated SE should closely approximate the empirical SD. However given the 

extensive computations involve in our simulations we have arbitrarily limited our replications to 

50. 

5.3.1 Performance under Scheme 1 

The replication study based on linear models (scheme 1) helps establish that the ALV 

algorithm was set up correctly; and the results are reported in Table 5.2. Overall, the estimates 

produced by the ALV model are close to their true values as evidenced by the very small 

RMSE’s, and the values further reduce (i.e. the performance improves) as the sample size 
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increases.  However, the residual variance estimates (theta’s, sigma^2) show little change across 

the different sample sizes, possibly masked by round-off errors. In addition, the estimated 

residual variances are considerably smaller than the specified values for the error terms (‘true 

values’) used in generating the data, hence the high values of recorded biases.  Alternatively the 

true values of the residual variances may be approximated by replicating OLS regression 

equations with true eta as predictor, but we decided that this is not crucial to our study. While the 

bias associated with the y-intercept estimates declines as sample size increases, no clear pattern is 

seen with respect to the estimated slopes (lambdas). The recorded bias in z-intercept estimation 

appears not to be influenced by sample size. Also, while the SE/SD columns show values close to 

1 for the intercepts and thetas, the values recorded for the lambdas are small. This indicates 

potential bias (or possibly imprecision due to insufficient number of replications) in the ALV 

model estimation of standard errors of estimates for the lambda parameters specifically, although 

there is improvement as sample size increases.  

Based on our simulation findings above we believe that the measurement part of the ALV 

model may not yield unique solutions to the parameter estimates (intercepts and lambdas) under 

the current stopping rule we have adopted for convergence. As previously mentioned in earlier 

section, the potential existence of multiple solutions may be reflected in the delayed stabilization 

seen for the Y-intercepts and lambdas long after the thetas, Z-intercept and sigma^2 have 

stabilized (see Figures 5.4 & 5.5). Based on our stopping rule, convergence is diagnosed at the 

point of minimum deviance on the condition that the approximate observed log-likelihood ratio 

has stabilized (is fluctuating around zero) (see Figure 5.3), even when the Y-intercepts and 

lambdas are yet to. Although thereafter the stable sequence of the model deviance did not change 

considerably from the minimum, it is most efficient to stop the algorithm soon after the minimum 

is crossed. We believe that running the model longer than is allowed by our stopping rule will not 
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yield improvement in the estimation of the latent variableηwhich is our major focus, however 

further studies are needed in this area.  

In addition to the above replication study of ALV model performance we also compared 

its analysis results to those obtained from a standard reference statistical application such as 

Mplus. Both statistical methods were applied however to only one copy of the simulated datasets 

(scheme 1, N = 300), in which a simple confirmatory factor analysis (CFA) was performed in 

Mplus. Although no definitive conclusion can be drawn from the results based on a single 

replication, the following comparison analyses offer a glimpse into some other aspects of the 

performance of ALV model. We found that the results of both analyses (see Table 5.3) are 

similar; although relatively smaller standard errors are recorded for the ALV model, the residual 

variance estimates from both models are close.  

Next we used the results of the same set of analyses (one replication, N=300) to make 

comparisons between (1) the true η , (2)  Empirical Bayes (EB) estimates of η̂obtained from 

Mplus output, and (3) MCMC estimated η̂ from the ALV model. As revealed in Figures 5.6 and 

5.7, the ALV model estimated η̂ is nearly identical in distribution to both true ηand EB 

estimates. This suggests that the ALV algorithm is able to accurately estimate the latentη

(conditional distribution) underlying the outcome variables Y’s and Z in the data. These results 

based on a single dataset are only preliminary; the accuracy of ALV model in estimating the 

latent factor will be examined further with replication studies later under scheme 2.  
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Table 5.2  ALV Model Estimation Performance under Scheme 1 (50 Replications) 

Conditional on η , Y’s are Linearly Related to Z 

 

 

 

           N = 100     N = 200     N = 300 

Parameter    Pop      Bias  SE/SD  RMSE     Bias  SE/SD  RMSE     Bias   SE/SD  RMSE 

Y1 ‐intercept   0  

 

‐ 0.161  0.906  0.026 

 

‐0.085  0.982  0.007 

 

0.012   1.029  0.000 

Y2 ‐intercept   0  

 

‐ 0.159  0.896  0.026 

 

‐0.088  1.071  0.008 

 

0.010   1.066  0.000 

Y3 ‐intercept   0  

 

‐ 0.160  1.003  0.026 

 

‐0.090  0.816  0.008 

 

0.011   1.017  0.000 

Y4 ‐intercept   0  

 

‐ 0.164  1.276  0.027 

 

‐0.090  1.198  0.008 

 

0.011   1.019  0.000 

Y5 ‐intercept   0  

 

‐ 0.160  1.050  0.026 

 

‐0.090  0.934  0.008 

 

0.013   1.094  0.000 

lambda1  1  

 

0.076  0.493  0.007 

 

‐0.118  0.649  0.014 

 

0.091   0.720  0.008 

lambda2  1  

 

0.084  0.518  0.009 

 

‐0.119  0.571  0.014 

 

0.090   0.613  0.008 

lambda3  1  

 

0.085  0.532  0.009 

 

‐0.118  0.604  0.014 

 

0.091   0.651  0.009 

lambda4  1  

 

0.078  0.510  0.008 

 

‐0.116  0.474  0.014 

 

0.093   0.657  0.009 

lambda5  1  

 

0.083  0.487  0.009 

 

‐0.115  0.576  0.014 

 

0.093   0.625  0.009 

theta1   0.25* 

 

‐ 0.218  NA  0.047 

 

‐0.218  NA  0.047 

 

‐ 0.217   NA  0.047 

theta2   0.25* 

 

‐ 0.216  NA  0.047 

 

‐0.217  NA  0.047 

 

‐ 0.217   NA  0.047 

theta3   0.25* 

 

‐ 0.218  NA  0.048 

 

‐0.217  NA  0.047 

 

‐ 0.217   NA  0.047 

theta4   0.25* 

 

‐ 0.216  NA  0.047 

 

‐0.216  NA  0.047 

 

‐ 0.217   NA  0.047 

theta5   0.25* 

 

‐ 0.217  NA  0.047 

 

‐0.218  NA  0.047 

 

‐ 0.217   NA  0.047 

Z ‐ intercept   0  

 

0.002  1.064  0.000 

 

‐0.002  1.188  0.000 

 

0.032   1.009  0.001 

sigma^2   0.25*    ‐ 0.215  NA  0.046     ‐0.211  NA  0.045     ‐ 0.210   NA  0.044 

*    Variance of error term   used in   simulation 
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Table 5.3   Results of ALV and Mplus Analyses of a Single Dataset (Scheme 1, N=300) 

Conditional on η , Y’s are Linearly Related to Z 

 

 

 

 

      MPLUS  ANALYSIS     ALV  ANALYSIS 

Parameter      Estim  S.E.     Estim  S.E. 

Y1‐ intercept  

  

‐0.007  0.061 

 

‐0.014  0.010 

Y2‐ intercept  

  

0.034  0.060 

 

0.027  0.011 

Y3‐ intercept  

  

0.000  0.060 

 

‐0.007  0.012 

Y4‐ intercept  

  

0.009  0.059 

 

0.002  0.010 

Y5‐ intercept  

  

0.029  0.059 

 

0.023  0.010 

lambda1 

  

1.031  0.047 

 

1.104  0.011 

lambda2 

  

1.023  0.047 

 

1.096  0.011 

lambda3 

  

1.014  0.046 

 

1.086  0.012 

lambda4 

  

1.011  0.046 

 

1.082  0.011 

lambda5 

  

1.001  0.046 

 

1.072  0.011 

theta1  

  

0.038  0.004 

 

0.031  NA 

theta2  

  

0.040  0.004 

 

0.033  NA 

theta3  

  

0.047  0.005 

 

0.040  NA 

theta4  

  

0.038  0.004 

 

0.031  NA 

theta5  

  

0.035  0.004 

 

0.029  NA 

Z ‐ intercept  

  

‐0.037  0.019 

 

0.008  0.012 
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Figure 5.6  Boxplots of Eta Produced from Three Sources (Scheme 1, N = 300) 

Conditioned on η , Y’s are Linearly Related to Z 

 

Figure 5.7  Q-Normal Plots of Eta Produced from Three Sources (Scheme 1, N = 300) 

Conditional on η , Y’s are Linearly Related to Z 
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To assess the quality of the fitting process of the GAM component of the ALV model, some 

basic residual plots were produced (Figure 5.8) using the gam.check routine in R (Wood, 2006). 

The closeness of the Q-Q plot to a straight line validates the Gaussian assumption for the model 

and the histogram of the residuals is consistent with normality. The plot of residuals versus linear 

predictors (top right) shows that the assumption of constant variance as the mean increases is not 

violated. The bottom right plot shows a positive linear correlation between the response and fitted 

values. 

Figure 5.8  Model Checking Plots: GAM Component of ALV Model (Scheme 1, N = 300) 

Conditional on η , Y’s are Linearly Related to Z 

 

The same analysis (based on a single dataset) is also used to further illustrate with an 

example of how convergence is decided in a simple run of the ALV algorithm with the results of 

the monitoring displayed in Figure 5.9. Based on our criteria for convergence, the total deviance 
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trajectory reached the minimum at the 3rd iteration (see left panels, bottom plot). Therefore 

convergence was decided after just three iterations and the algorithm was terminated after five 

iterations (two consecutive iterations following the minimum deviance point). It is seen that the 

approximate log of likelihood ratio has already reached the region of zero at the chosen 

convergence point. Similarly the right column shows that the estimates of the residual variances 

and z-intercept stabilized by the 3rd iteration. However the measurement y-intercepts and slopes 

(lambdas) continue to drift slightly in their estimates, as previously noted. Note that the recorded 

values of the log of likelihood ratio start from 2nd iteration (first likelihood ratio being between 

the first two iterations). For the plots in the right panels the recorded values at zero iteration 

correspond to the start values used in the ALV algorithm. 

Figure 5.9  ALV Model Convergence (Scheme 1, N=300)  

Conditional on η , Y’s are Linearly Related to Z 
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5.3.2 Performance under Scheme 2 

As previously stated in section 5.1, the emphasis in the evaluation of ALV performance 

under scheme 2 is on how well the ALV model is able to estimate  conditioned on Y’s and Z 

and uncover an unknown complex relationship between  and Z. Although we were able simulate 

a complex relationship accordingly we did not have a full analytic expression for the conditional 

distribution ofor an appropriate existing standard statistical model for comparison (like in the 

linear case in scheme 1). Therefore for this assessment we compared the ALV model estimate η̂  

to the true η  generated according to scheme 2 specifications based on 50 replications; 

considering that the marginal distribution of true η  is directly proportional to its true conditional 

distribution to be estimated as η̂  by the ALV model. We computed 50 correlation values between 

η  and rη̂ , r=1,...,50  using a sample size N = 300. We believe that the strength of the computed 

correlation indirectly reflects the closeness in values of η̂  (estimated conditional distribution) to 

the unknown true values of the conditional distribution.  Our results show that the correlation 

between η  and η̂  is very high in the range of .973 to .981 with mean of .975. The distribution of 

the calculated correlations is shown in Figure 5.10. This result indicates that the measurement 

component of the ALV model consistently recovers the latent factor η̂underlying the Y’s and  Z 

variables even when the solutions to the measurement parameters (y-intercepts and y-slopes) may 

not be unique. However we are aware that while a high correlation between η  and η̂  is desirable 

it does not necessarily indicate accuracy in the estimation of η̂because a shift of η̂  from its true 

value by a constant (bias) can retain the high correlation. Therefore we took the next step to 

address this concern. 



86 

 

 

Figure 5.10  Correlations between ALV Estimates of Eta and Population Values   

(50 Replications; Scheme 2: Conditional on η , Y’s are Nonlinearly Related to Z (Logit); N = 300) 

 

To further quantify the performance of ALV model in estimating η̂  we considered 

computing the mean square error or MSE which assesses the quality of the estimation in terms of 

its variation and unbiasedness. Ideally we would define 2ˆ ˆMSE( ) E[( ) ]     however this 

definition of MSE is not appropriate here because η̂  is not an estimate of the marginal 

distribution of η , rather it is an estimate of the conditional distribution. Therefore instead we 

compared the MSE we’d get if we used the true η in a regression model (GAM), to the MSE 

obtained by using (1) ALV estimated η̂and (2) * measurement error   where the error term is 

defined as the ratio of the variance of η̂ to the variance of true η . For this comparison three 

different GAM’s were fitted to 50 replicated datasets (N=300) generated under scheme 2. The 

regression models were specified (with variables represented as vectors) as follows: 
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r r r r r r r r r r

* * *
r r r r r i r r r r

logit(Z) ~ s( ) + GRP + s( GRP) + e;

ˆ ˆ ˆlogit(Z ) ~ s( ) + GRP  + s( GRP ) + e ; ( | y ,z ; );

ˆlogit(Z ) ~ s( ) + GRP  + s( GRP ) + e ; [var( ) / var( )];

r 1,.....,50 replications.

  
       

         


 (5.3) 

For each fitted GAM the MSE was computed as the mean of the squared residuals; 

residuals being the difference between the observed and the fitted values of Z. The degree of 

closeness of the computed MSE’s for the different GAMs will reflect the accuracy of the ALV 

model; that is one can assess how comparable is the estimated η̂  to the true η in predicting the Z 

observations. Similar comparison between ηand * will allow us to assess the effects of 

measurement errors (associated with η̂ ) on the quality of prediction of the true η . Since the MSE 

in the context of statistical models depends on data, it is treated as a random variable and the 50 

replicated MSEs then serve as a measure of how well the three models explain the variability in 

the observations. 

As anticipated, the boxplots of MSEs in Figure 5.11 and the related summaries in Table 5.4 show 

that generally there is only a slight increase in the MSEs with respect to the predictor η̂over that 

of η , and on the average the increase in median MSE is less than 1%.  Also, the measurement 

errors arising from the ALV estimation did not affect the quality of model prediction when added 

to the true η in the GAM. In addition the spread of MSE’s for η̂ is slightly smaller than the other 

two.  
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Figure 5.11  Boxplots for the MSE’s of GAM of Z Separately on , ̂and *  

(Scheme 2; N=300, 50 Replications) 

 

Having assessed the performance of the ALV model quantitatively, next we wish to use 

graphical tools to visually demonstrate the primary purpose of the ALV model, which is to assess 

variation in intervention impact across the unobserved baseline ηgiven an unknown complex 

relationship between the outcome Z and the predictors including baseline-treatment interaction (

ηand G). In the following description we again specifically investigated the GAM component of 
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the ALV to determine how well it is able to recover the ‘true’ complex relationships between a 

binary response Z and the predictors. To achieve this we compared two analyses.  

Table 5.4  Percent Change in MSEs: GAMs of Z on ̂and *  Compared to   

(Scheme 2; N=300; 50 Replications) 

      ̂    
*  

Value Change (%) Value Change (%) 

Lower Quartile 1.208 1.231 1.836 1.208 -0.001 

Median 1.238 1.248 0.806 1.238 0.001 

Upper Quartile 1.264   1.269 0.388   1.264 0.000 

      = True (simulated);  ̂= ALV estimate ( | y, z) ; * = ˆvar( ) / var( )    

In the first analysis a stand-alone GAM procedure was performed on the sample data 

using the true η  as known. For the second analysis the ALV model was fitted to the same data 

with η̂  estimated from the data. This pair of analyses was performed on a single sample 

randomly selected from 50 under each sample size N = 100, 200, 300; and the results are 

graphically displayed in Figures 5.12 and 5.13. In the first column of Figure 5.12 the outcome is 

model estimated logit of Z (simulated as binary) and is plotted against the true η that was used to 

generate it. This plot is used to establish the true trajectories according to the simulation model in 

scheme 2. The ALV model performance is evaluated against the true trajectories directly by 

comparing plots in the first and third columns. Also, the trajectories of the fitted values by ALV 

model (column 3) are compared to those of the stand alone GAM (column 2). Each trajectory on 
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a single plot represents members of one arm of treatment. The curves are drawn with points 

corresponding to actual data points (ηand estimated logit of Z). Vertical dashed lines are drawn 

to partition the trajectories along the indicated quantiles of η .  The vertical lines serve as aids in 

the assessment of distribution of fitted values for individual subjects across the baseline; also 

comparison across modalities is made easy. Confidence bounds are constructed at one standard 

error around the estimates for easy comparison on precision of estimates.  

From the patterns of the plots (Figure 5.12), compared to the true trajectories both GAM 

and ALV trajectories reveal some attenuation generally; otherwise the ALV trajectories are nearly 

identical to those of GAM. Note that there are one or two substantial outliers in the observed Z 

(logit transformed) located in the top right corners in column one. The presence of such outliers 

in data has been noted to be problematic in GAM fitting technique (Wood, 2006), apparently the 

outliers were not tracked to any reasonable degree by the trajectories produced by both GAM and 

ALV model. Both methods did not completely capture the true relationship between Z and η , 

however the use of a single dataset as a basis for the comparison prevents any definitive 

conclusion here. Possibly these performances may also be related to the outlier problems.  Single 

replication analyses notwithstanding, the similarity between GAM and ALV models reflects our 

earlier findings (comparisons of MSEs) and suggests that when η  and its relationship Z are 

unknown, the ALV model may perform equivalently to GAM procedure given known η . Also 

graphically there seems an improved performance by both GAM and ALV models (closer 

approximation to the true trajectories) and increased similarities between the two as sample size 

increases (Figure 5.12).  

The convergence pattern of the ALV analysis under scheme 2 is again depicted in Figure 

5.13. For example, the ALV model converged after 4 iterations (left column). On the right 
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column it is seen that the parameter estimates (except for the lambdas) have stabilized before the 

convergence point. These findings are similar to those obtained under scheme 1. 
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CHAPTER 6 

APPLICATION OF ALV MODEL TO ASAPS DATA 

We illustrate the ALV method with an application to data from the Adolescent Substance Abuse 

Prevention Study (ASAPS) (Sloboda, et al., 2008).  This is a cluster randomized field study 

involving 19,200 students in 83 high school clusters (a cluster being a high school and all its 

feeder middle schools) from six metropolitan areas across the U.S. (see chapter 1of this 

dissertation). The study’s main objective was to test an intervention program Take Charge of 

Your Life (TCYL) delivered by selected trained D.A.R.E. officers, on its effectiveness in 

reducing some key behavioral outcomes: use of alcohol, tobacco and other drugs (ATOD). One of 

the major research questions was to investigate who benefits or is harmed by the instituted 

intervention program and how the intervention effects are moderated by the baseline risk factors. 

The original D.A.R.E. curriculum was criticized for focusing on the low risk group, thinking that 

high risk group would be alienated by officers who were “preaching at them”. The new 

curriculum with TCYL program delivered by trained instructors was designed with sensation 

seeking and high risk kids in mind. The aim was to impact intentions to use alcohol, tobacco and 

other drugs (marijuana) by addressing baseline (7th grade pretest) beliefs as to the normative use 

of ATOD; perceptions of the harmful effects of use; and skills necessary to avoid substance use 

(decision making, resistance skills). It was hypothesized that intervention may show different 

effects for low and high risk kids at baseline.  

The 1st wave-data (pretest data) consisted of 53 items that showed significant loadings on 10 

risk constructs in a previous factor analysis performed by the researchers. The item-level response 

scores on Likert scale were coded so that the highest score implies highest risk. As an example of 

the constructs, the five items designed to assess normative beliefs of 11th graders about alcohol, 
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tobacco and other drugs are displayed in Table 6.1.  To illustrate ALV model application these 

constructs (see Table 6.2) formed 10 summary risk variables that served as factor indicators for a 

single latent risk to be estimated by ALV. Some of these summary risk variables are skewed but 

no attempt was made to dichotomize any of them since the ALV model its current form only 

takes continuous measurement variables. In the ALV analysis we examined variation in the 

intervention program effect on only one of the 7th wave-outcomes (substance use in 11th grade), 

(see Table 6.2), across the estimated baseline risk. This illustrative ALV analysis is neither 

complete nor final because of the presence of significant amount of missing data on the outcomes, 

for which no imputation was performed (Table 6.3). The researchers had anticipated 50 percent 

attrition among the student cohort. There was substantial cross mobility of students during 

transition to high school from feeder middle schools. For example some students went into study 

high schools not assigned to their middle schools or to high schools not included in the study. In 

addition, one high school opted out of the study and by the time of the 11th grade survey two 

additional high schools affected by Hurricane Katrina were lost from the study. Therefore, for 

illustrative purpose, we report here on the results of fitting ALV model to incomplete data on risk 

measures in 7th grade and substance use in 11th grade for 2500 males from the ASAPS study (after 

listwise deletion of missing values).  
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Table 6.1  Five Items Used in the ASAPS to Assess Normative Beliefs of 11th Graders  

Item Questions 

In the Last 30 Days, how many 8th graders across the entire U.S. do you think …. 

a) used cocaine or other hard drugs? 

b) drank beer, wine or liquor? 

c) smoked cigarettes? 

d) sniffed glue, inhale gases or a spray to get high? 

e) smoked marijuana (pot, reefer, weed, blunts)? 

Possible Answers Possible Scores 

All or almost all (100%) 

More than half (about 75%) 

About half (50%) 

Less than half (25%)  

None (0%) 

5 

4 

3 

2 

1 
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Table 6.2  Ten Summary Baseline Risk Constructs in ASAPS Data 

 Construct 

 

1 Normative beliefs 

2 Referent others 

3 Consequences of ATOD use on the brain 

4 Personal attitudes towards ATOD use 

5 Negative expectation from ATOD use 

6 Intentions (to use under certain situations) 

7 Intentions (what age ok to initiate risky behave) 

8 Number of best friends using ATOD 

9 Pro-social bonding (school attachment) 

10 Self-reported delinquent behaviors 

   ATOD = alcohol, tobacco and other drugs (marijuana) 
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Table 6.3  Some 11th Grade Outcomes and Missing Data in ASAPS Data 

 

 

 

A key feature of the ALV model lending weight to its appropriateness for analyzing the 

ASAPS data is that it can easily handle complex relationships in the data without requiring the 

knowledge of the relationship beforehand. Nonlinearities arise in the data because of the potential 

variation in impact of the administered behavioral intervention on the individuals with different 

baseline risk experience. It is also important to note that the risk experience was not directly 

observed and has to be inferred from the data as a latent variable; plus, the shape of the 

relationship between the latent risk and the outcome (in this example, marijuana use) is unknown 

and is potentially complex.  These are compelling reasons to specify the effects of the latent 

baseline risk (and its interaction with intervention) nonparametrically. To include the cluster 

effects of school districts in the analysis Generalized Additive Mixed Model (GAMM) was 

specified for the additive part of the ALV algorithm at the final EM iteration after baseline risk 

has been estimated ( ̂ ) from the data, treating the clusters as random effects:  

# Missing Proportion 
Missing

Explanatory Variables

School 0 0

Gender 0 0

Treatment 476 0.03

Outcomes

Used Marijuana in Past 30 Days 7869 0.46

Got Drunk in Past 30 Days 7824 0.46

Binge drinking in Past 30 Days 7758 0.46

Used Cigs in Past 30 Days 7750 0.45

Used Inhalants in Past 30 Days 7826 0.46
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 

i ii 0 1 i i i i

b i

logit(E[z ]) Group s(Risk ) s(Risk *Group ) H b ;

b N(0, ); N(0, ).

       
   

 (5.4) 

Here z is a binary response ‘Marijuana Use’; 's are fixed parameters for the model intercept and 

intervention group variable; s(.) is a smoothing function that estimates the unknown complex 

relationships of the response to the baseline risk and its interaction with treatment; H and b are 

the random effects model matrix and coefficients.  

The partial results (additive part) of ALV model fit to the ASAPS data are reported here 

(Figures 6.1 & 6.2; Tables 6.4 a & b). In the context of the estimates of the nonparametric 

functions, the plots in Figure 6.1 describe the relationships between the smoothing terms in the 

model and the outcome using solid lines/curves within 95% point wise confidence bands (dashed 

lines). Along the bottom of each plot are rug-plots at points corresponding to the covariate values 

for each smooth.  For the whole sample (treatment and control), a smooth curve (top panel) is 

estimated with 2.97 (number in y-axis caption) effective degrees of freedom for the effect of 

baseline risk while the estimated interaction effect (bottom panel) is approximately linear with the 

outcome and so requires only 1 degree of freedom to estimate a slope. The above information 

could be missed if a parametric model with s(.) restricted to be linear were to be fitted to the data; 

although for this particular sample data,  the fit of a quadratic model may be sufficiently close in 

quality to the ALV model fit. 
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Figure 6.1 Estimated Relationship of Probability of Marijuana Use to Baseline Risk. 

ALV Estimated Baseline Risk (top panel) and Baseline-Treatment Interaction (bottom panel) 

 

 

 

Figure 6.2 is a visual display of the variation in intervention impact across the baseline 

risk. The dashed curves represent pointwise 95% confidence intervals around values predicted 

from the results of the fitted GAMM. To compute these values the R function predict() was 

applied to the R object for GAMM fit; the corresponding standard errors were also returned. The 

95% confidence was then constructed around each predicted value as value +/- standard error 

and from these generated values it was possible to draw the upper and lower limits separately 

around the fitted curves. The plot shows a changing direction of intervention effects along the risk 

scale and precisely which levels of risk are associated with higher or lower marijuana use. Note 
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that the uniformly increasing group difference in average probability of marijuana use across 

baseline indicates a linear interaction effect, as revealed by the bottom panel plot in Figure 6.1, 

and previously expounded in this dissertation (refer to Figure 3.1 (B)). For the top 5% of kids on 

the baseline risk scale, the average probability of marijuana use is obviously lower for individuals 

in the intervention group relative to the controls. In contrast, the intervention appears to be 

marginally harmful to the low risk subgroup (below 25 percentile). In summary the effect of the 

intervention is harmful when there is low baseline risk and gets more beneficial with higher risk. 

However only across the percentiles where the 95% confidence intervals show no overlap is 

significant intervention impact implied. There appears to be some degree of overlap across all 

percentiles more marked at the top end of the risk scale. This indicates that the intervention 

effects are not locally significant, that is the intervention has no significant impact on any risk 

subgroup at the 95% confidence level. 
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Figure 6.2 The Effect of Baseline Risk on Probability of Marijuana Use by Group, with 95% 

Pointwise Confidence Bands 

  

Results of the ALV model analysis are also reported in Tables 6.4 a & b. These results 

are from the direct output of the Additive component of the ALV model and are supported by the 

iterpretations derived from Figure 6.1. In Table 6.4a both terms for the baseline risk and the 

interactioe are specified as nonparametric smoothing functions as in (5.4). Under the section on 

Nonlinear Terms the baseline risk (3rd row) shows significant  nonlinearity (p<0.001) in its 

relationship with marijuana use and this effect is estimated as a smooth curve with 2.97 expected 

degrees of freedom (edf). However a straight line corresponding to edf of 1.00 is estimated for its 

interaction effect (4th row)  and the test of nonlinearity for this term is not significant (p=0.07). It 

should be noted here that the p-values of smooth terms are only approximate due to the 

-1 0 1 2 3

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ALV Model of Variation in Intervention Impact on Marijuana   
 Use in 11th Grade Males by Baseline Risk in 7th Grade

Latent Baseline Risk 

P
ro

b
a

b
ili

ty
 o

f  
M

a
ri

ju
a

n
a

 U
se

 in
 P

a
st

 3
0

 D
a

ys

Tx (n =  1355 )
Ctrl (n =  1145 )
Risk Percentile

 2
5

th
 

 5
0

th
 

 7
5

th
 

 9
0

th
 

 9
5

th
 



103 

 

uncertainty in estimating smoothing parameters (Wood, 2006). According to the author, the p-

values are usually safe to rely on only when they give a very clear cut result; when the results are 

around a reject/accept threshold, the tests reject the null too readily and therefore must be treated 

with caution. Given that linear interaction effect is demonstrated in Table 6.4a, we fitted another 

GAMM this time using a fixed parameter for the interaction term; the results (Table 6.4b, 3rd row) 

show a negative linear interaction that is fairly significant (p=0.037) at the 95% confidence level. 

This is in support of the finding of reversal of intervention effects along the baseline 

demonstrated graphically in Figure 6.2; and given the caution required for interpreting p-values, 

the interaction effects are probably not significant. 

 For the parametric terms, we see in the 2nd rows of both tables that no significant main 

effect (p=0.50 ) is demonstrated for the intervention. Finally, there is significant random effect of 

school districts clustering in the data (last rows). Combining all of the findings from Figures 6.1 

& 6.2 and Tables 6.4a&b, in summary there is significant nonlinearity in the relationship of 7th 

grade baseline risk and Marijuana use in 11th grade but no significant intervention effect are 

demonstrated across any baseline risk subgroups.  
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Table 6.4a ALV Model of Marijuana Use Reported by 11th Grade Males (N=2500; 79 High 

School Clusters): Additive Sub-model# Includes Nonlinear Interaction Term 

#GAMM:   i 0 1 i i i ilog it(E[Marijuana Use ]) * Intervention s(Risk ) s(Risk * Intervention )      

 

 

 

 

 

 

Type of Effect Effect Coefficient 
(Logit)

SE z- value p-value

Parametric Terms 

1.  Intercept  -1.521 0.100 - 15.103 <0.001

2 .  Intervention Main
Effect (adjusted ) 

Intervention = 1 vs. 
Controls = 0 0.091 0.135 0.675 0.500

Smooth Terms Functions edf F p-value

3 .  BaselineRisk Smooth (baseline) Smoothing 
coefficients

2.97 27.493 <0.001

4.  Interaction 
Effect 

Smooth 
(interaction)

Smoothing 
coefficients

1.00 2.906 0.070

Random Effects Effect Name SD 95% CI

Cluster School District 0.348 0.219 – 0.555
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Table 6.4b   ALV Model of Marijuana Use Reported by 11th Grade Males (N=2500; 79 High 

School Clusters): Additive Sub-model# Includes Linear Interaction Term 

#GAMM: i 0 1 i i 3 i ilog it(E[Marijuana Use ]) * Intervention s(Risk ) (Risk * Intervention )      

Type of Effect Effect Coefficient 
(Logit)

SE z- value p-value

Parametric Terms

1.  Intercept  -1.552 0.102 -15.168 <0.001

2 . Intervention Main
Effect (adjusted ) 

3 . InteractionEffects 

Intervention = 1 vs.
Controls = 0

Interv-by-Baseline

0.091 

-0.418

0.135

0.200 

0.675

-2.087 

0.500

0.037

Smooth Terms Functions edf F p-value

4 . BaselineRisk Smooth (baseline) Smoothing 
coefficients

2.97 27.480 <0.001

Random Effects Effect Name SD 95% CI

Cluster School District 0.348 0.219 – 0.555
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CHAPTER 7 

DISSCUSSION & RECOMMENDATIONS 

In this dissertation we have considered plausible variations in intervention impact due to 

baseline individual level risk/protective factor characteristics. We also considered the importance 

of modeling these variations in the statistical analyses of behavioral, social and psychological 

research data from randomized field trials in particular, where measurement errors and 

nonlinearity commonly arise and pose statistical challenges. We reviewed the existing statistical 

modeling techniques that have been applied to assess these variations, such as nonlinear 

(polynomial terms) SEM and GAM. We highlighted their limitations including the inefficiency 

associated with the ad hoc approach of stepwise application of these two methods in one analysis 

but on different statistical application platforms.  To address these challenges we have developed 

a new modeling technique, ALV, by integrating the two powerful statistical models (SEM and 

GAM) into one model that runs on one platform and draws strength from both methods.  

We reached the following conclusions from the results of our simulation studies. First, 

the ALV model works well with the tested sample sizes of 100, 200, and 300 with measurement 

errors. Second, this new method was successful in capturing the nonlinear dependence of the 

outcome on a latent variable in the data. Also the method performs nonlinear modeling task 

nearly as well as it does a linear modeling at least in the simulation studies with sample size as 

low as 100.  

Like most existing methods in SEM our proposed ALV model approach is based on the 

assumptions of conditional independence for the baseline factor indicators and distal outcome 

given the underlying latent factor, plus normally distributed errors. However a notable 
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distinguishing feature of the ALV modeling technique is that it makes no assumption about the 

relationship between the latent factor and the distal outcome. The new ALV method is developed 

to simultaneously estimate the latent factor underlying the observed baseline risk variables plus 

the complex relationship between the latent factor and the distal outcome it predicts, without 

requiring a priori specification of a functional form for the unknown relationship. The ALV 

modeling is implemented in Monte Carlo EM environment and it involves the estimation of 

posterior distribution of the latent factor in the E-step via Metropolis algorithm while ML 

estimation of parameters is via standard regression sub-models in the M-step. The EM type 

algorithms are tremendously useful in solving statistical problems involving missing and latent 

data.  

In order to establish a more objective criterion for our stopping rule for convergence in 

the Monte Carlo EM loop within the ALV algorithm, we have taken into account the overall fit of 

the ALV model in addition to the behavior of parameters. Given the typical long term pattern of 

the ALV model deviance trace with respect to EM iterations, we are able to conclude model 

convergence at the point of minimum deviance, which we consider to be probably global within 

the context of our simulations. Our stopping rule is new relative to those proposed in the literature 

for Monte Carlo EM; and from our experience we also found our criteria (including point of 

minimum deviance)  to be very crucial for the efficiency of the ALV algorithm. The criteria allow 

us to decide convergence after single digit number of EM iterations in most instances, because the 

ALM model is largely a linear model.    

Performance-wise, a key emphasis has been on testing the ability of ALV model to 

accurately recover both the latent factor (underlying baseline risk) as well as the complex 

nonlinear relationships between the outcome and the predictors. The results of our simulation 

studies show that the ALV model performs well. While the role of the measurement part is 
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mainly concerned with estimation of the latent factor, for interpretability our focus necessarily 

shifts to the nonparametric (GAM) component, on which the major feature of the ALV model 

depends. Compared to the easily interpretable GLMs, GAMs may be more difficult to interpret 

because of the nonparametric nature of the underlying nonlinearity in the data. However it is 

important to acknowledge that although GAM’s may serve different analytic purposes like 

suitably exploring the data nonparametrically and visualizing the complex relationships, in the 

presence of unknown complex nonlinearity GAM’s are closer to reality and are known to yield a 

better fit than their GLM counterparts. These properties are well illuminated by the results of our 

application of the proposed ALV model to both simulated and real data in this dissertation. In 

practice, because of the flexibility of GAM technique, it is very possible to provide a good fit to 

the data by tracking significant noise in addition to the nonlinear relationships in the predictor 

variables. This happens whenever higher than the appropriate degrees of freedom are used in 

estimating the nonparametric functions of the predictor terms. Although the user is allowed to 

specify degrees of freedom for the cubic spline smoother for each predictor term in a stand-alone 

GAM procedure, the optional feature we adopted in the GAM component of ALV model allows 

for optimal estimates of effective degrees of freedom to be computed directly by the model 

(Wood, 2006). So the potential problems of over fitting (or under fitting) typically associated with 

user-specified degrees of freedom in AM methods are minimized in the ALV method. 

One major limitation was the number of cases we examined in the simulation. This 

limitation with respect to maximum size of 300 was due to practical considerations since each 

simulation required massive computing time. The minimum size of 100 was chosen because 

typically factor analysis is a large sample procedure, and also because the choice is in line with 

similar past studies involving Monte Carlo version of the EM (Lee & Song, 2007; Lee & Zhu, 

2002). However more studies are required to study the stability of ALV model when sample size 
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drops below the minimum of 100 used in the present study. Another major limitation of the ALV 

model in its current form is its listwise deletion approach to missing data problems. Given the 

frequent encounter with missing data in practice and the availability of more effective methods of 

handling this problem, the incorporation of such methods into ALV model will be of considerable 

importance and we are planning to do this in our next stage. As it is currently set up, the nesting 

in the data is accounted for only at the final EM iteration and only in the GAM component of the 

ALV model. Further studies are needed to assess the adequacy of this partial effort compared to 

full multilevel extensions to the ALV model. Although this new approach is computationally 

intensive, given the persistent rapid developments in computer technology, this should not be 

considered a serious limitation. Even though the ALV model consistently estimates the latent 

factor accurately in the measurement part of the model, the associated measurement parameter 

estimates are not stable and this may indicate that the solutions are non-unique. Therefore the 

emphasis of the ALV model application should be on the accurate recovery of unknown complex 

relationships in the data; in its current form it may not be useful for analyzing psychometric 

properties of instruments.  

There are several other ways (than our choice in this dissertation) of defining a cubic 

regression spline basis which may offer some advantages with respect to the interpretability of the 

parameters and appropriateness to the data at hand (Wood, 2006). The ALV method can be 

improved upon therefore by exploring other smoothing spline bases available as options in the R 

package mgcv and determining under what conditions a particular choice would be best within the 

ALV framework. 

Our model can be extended to examine complex nonlinearity between multiple distal 

outcomes and their predictors including multiple latent factors (e.g. multiple-factors solutions to 

observed baseline risk variables) or growth factors in a longitudinal study. In future we intend to 
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also explore the application of ALV method to a wider spectrum of nonlinear structural equation 

modeling involving complex factor-to-factor, factor-to-indicator, and indicator-to-indicator 

relationships, using nonparametric methods. 

In conclusion, the ALV modeling technique allows researchers to assess how an intervention 

affects individuals differently as a function of baseline risk that is itself measured with error, and 

uncover complex relationships in the data that might otherwise be missed. In practice, its users 

are relieved from the need to decide functional forms for the complex relationships before the 

model is run. The ALV program is written in R language and the R software is freely available; 

so general users can apply the new methodology. We expect the ALV model and its extensions to 

have lots of new applications to modeling of behavioral, sociological and psychological data in 

the future. 
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APPENDIX A:  DATA SIMULATION CODES FOR SCHEMES 1 & 2 

#################################################### 

# SIMULATE COPIES OF DATASETS (N=100,200,300): 

# 6 VARIABLES CONDITIONALLY INDEPENDENT GIVEN ETA: 

# {5 CONTINUOUS Y's + 1 CONTINUOUS OR BINARY Z} 

#################################################### 

 

# Define Population parameters  

n <- 150 # half sample size 

J <- 50  # number of datasets 

lambda.1 <- lambda.2 <-lambda.3 <-lambda.4 <-lambda.5 <-1 

sigma.eta <- 1 # s.d. for eta 

sigma.ey <- .5 # s.d. for error term of y  

sigma.ez1 <- .5 # s.d. for error term of z (linear model) 

 

# define f1 , f2 

f1 <- function ( x ) { 1 - x - 0.5 * x^2 + 0.3 * x^3 } 

f2 <- function ( x ) {  - 3 * x + 0.4 * x^2 + 0.6 * x^3} 

# simulate eta, the latent factor 

set.seed ( 1235 ) 

eta <- rnorm ( 2*n, 0, sigma.eta ) 
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# define G (group) 

G <- c ( rep (0, n), rep ( 1, n ) ) 

 

# create arrays to store J number of (2n x 8) datasets for  

# a) ContArray: Z is cont and linearly related to eta 

# b) BinArray: Z is binary and nonlinearly related to eta 

 

# DATASETS do not include eta column 

ContArray <- BinArray <- matrix(NA, nrow=(2*n), ncol=(7*J)) 

dim(ContArray) <- dim(BinArray)  <- c((2*n), 7, J) 

dimnames(ContArray) <- dimnames(BinArray)<- list(NULL, 
c("Y1","Y2","Y3","Y4","Y5","Z","GRP"),1:J ) 

 

# DATASETS include eta column 

ContArray2 <- BinArray2 <- matrix(NA, nrow=(2*n), ncol=(8*J)) 

dim(ContArray2) <- dim(BinArray2)  <- c((2*n), 8, J) 

dimnames(ContArray2) <- dimnames(BinArray2)<- list(NULL, 
c("Y1","Y2","Y3","Y4","Y5","Z","GRP", "ETA"),1:J ) 
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# SIMULATION 

 for (j in 1:J){ 

# simulate y1 to y5 

e1 <- rnorm ( 2*n, 0, sigma.ey ) 

y1 <- lambda.1 * eta + e1 

e2 <- rnorm ( 2*n, 0, sigma.ey ) 

y2 <- lambda.2 * eta + e2 

e3 <- rnorm ( 2*n, 0, sigma.ey ) 

y3 <- lambda.3 * eta + e3 

e4 <- rnorm ( 2*n, 0, sigma.ey ) 

y4 <- lambda.4 * eta + e4 

e5 <- rnorm ( 2*n, 0, sigma.ey ) 

y5 <- lambda.5 * eta + e5 

# define Z (continuous, linear with eta) for group (0,1) 

ez1 <- rnorm ( 2*n, 0, sigma.ez1 ) 

Z <- rep (0, 2*n ) 

Z [1: n] <- 0.2*( eta [1:n] ) + ez1 [1:n]  

Z [(n+1) : (2*n) ] <- 0.7*( eta [(n+1) : (2*n) ] ) + ez1 [(n+1) : (2*n) ] 

ContArray[,,j] <- cbind ( y1, y2, y3, y4, y5, Z, G ) 

ContArray2[,,j] <- cbind ( y1, y2, y3, y4, y5, Z, G, eta ) 
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#---------------------------------------------------------------------- 

# define Z(binary, nonlinear with eta) for group (0,1) 

#----------------------------------------------------------------------- 

 

Z.logit  <- rep (0, 2*n ) 

Zbin   <- rep (0, 2*n ) 

#logit scale  

Z.logit [1: n]    <- f1 ( eta [1:n] )   

Z.logit [(n+1) : (2*n) ]  <- f2 ( eta [(n+1) : (2*n) ] )  

 

# Simulate.1 binary Z to have Prob(Z = 1) = exp(Z.logit)/(1 + exp(Z.logit))  

Z.prob <- exp(Z.logit)/(1 + exp(Z.logit))                                 # convert logit to probability 

Zbin  <- rbinom (2*n, 1, Z.prob ) 

 

BinArray[,,j] <- cbind ( y1, y2, y3, y4, y5, Zbin, G) 

BinArray2[,,j] <- cbind ( y1, y2, y3, y4, y5, Zbin, G, eta ) 

} 
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#============================================= 

#  ANALYZE BINARY Z: Given observed eta 

#============================================= 

 

#------------------------------------------------- 

# establish population characteristics graphically 

#------------------------------------------------- 

plot(density(eta), main="Eta (Population values)") 

### LOGIT SCALE 

Z.logit.true  <- Z.logit 

par(mfrow = c(1, 1)) 

yrange <- range(Z.logit.true) 

xrange <- range(eta) 

plot(eta, Z.logit.true, type="n", xlim=xrange,ylim=yrange, 

  main = "Observed Z vs True Eta", 

  xlab = "eta (true values)", ylab = "Z (logit scale)", 

  sub = "Vertical lines at percentiles of eta") 

points(eta [1:n], Z.logit.true[1:n], pch=19 , col=4) 

points( eta [(n+1) : (2*n) ], Z.logit.true[(n+1) : (2*n) ], col=2) 

Q <- matrix(quantile(eta, c(.10, .25, .50, .75, .90))) 
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segments(Q[1], yrange[1], Q[1], yrange[2], lty = 2) 

segments(Q[2], yrange[1], Q[2], yrange[2], lty = 2) 

segments(Q[3], yrange[1], Q[3], yrange[2], lty = 2) 

segments(Q[4], yrange[1], Q[4], yrange[2], lty = 2) 

segments(Q[5], yrange[1], Q[5], yrange[2], lty = 2) 

 

text( Q[1], yrange[1], " 10th ", , adj = c(0,0), par(srt=90)) 

text( Q[2], yrange[1], " 25th ", , adj = c(0,0), par(srt=90)) 

text( Q[3], yrange[1], " 50th ", , adj = c(0,0), par(srt=90)) 

text( Q[4], yrange[1], " 75th ", , adj = c(0,0), par(srt=90)) 

text( Q[5], yrange[1], " 90th ", , adj = c(0,0), par(srt=90)) 

 

### PROBABILITY SCALE 

# Prob(Z = 1) = 1/[1+exp(- Z.logit.true)] 

Z.prob.true <- 1/(1+exp(- Z.logit.true)) 

par(mfrow = c(1, 1)) 

yrange <- c(-0.1, 1) 

xrange <- range(eta) 
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# plot fixed values with no error term 

 plot(eta, Z.prob.true, type="n", ylim = yrange, 

  xlab = "eta (population values)", ylab = "Probability of Z (population)", 

  sub = "Vertical lines at percentiles of eta") 

points(eta [1:n], Z.prob.true[1:n], pch=19 , col=4) 

points( eta [(n+1) : (2*n) ], Z.prob.true[(n+1) : (2*n) ], col=2) 

Q <- matrix(quantile(eta, c(.10, .25, .50, .75, .90))) 

 

segments(Q[1], yrange[1], Q[1], yrange[2], lty = 2) 

segments(Q[2], yrange[1], Q[2], yrange[2], lty = 2) 

segments(Q[3], yrange[1], Q[3], yrange[2], lty = 2) 

segments(Q[4], yrange[1], Q[4], yrange[2], lty = 2) 

segments(Q[5], yrange[1], Q[5], yrange[2], lty = 2) 

 

text( Q[1], yrange[1], " 10th ", , adj = c(0,0), par(srt=90)) 

text( Q[2], yrange[1], " 25th ", , adj = c(0,0), par(srt=90)) 

text( Q[3], yrange[1], " 50th ", , adj = c(0,0), par(srt=90)) 

text( Q[4], yrange[1], " 75th ", , adj = c(0,0), par(srt=90)) 

text( Q[5], yrange[1], " 90th ", , adj = c(0,0), par(srt=90)) 
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############################################################### 

# SELECT A COPY FROM 50 DATASETS FOR Z-REGRESSION MODEL 

############################################################### 

 

## For Analyses of 1st copy of 50 datasets  

dat.copy <- data.frame(BinArray2[, ,1]) #  1st copy  

names(dat.copy) 

table(dat.copy$GRP) 

table(dat.copy$Z) 

table(dat.copy$GRP, dat.copy$Z) 

# subset dataset for analysis of GAM component of ALV model 

dat.copy2 <- data.frame(dat.copy[,6:8])  

#--------------------------------------------- 

# GAM estimates of Z-population parameters 

#--------------------------------------------- 

etaG <- dat.copy$ETA * dat.copy$GRP 

fitZ0.b1  <- gam(Z ~ s(ETA) + GRP + s(etaG), family=binomial, data = dat.copy) 

summary(fitZ0.b1) 

var(residuals(fitZ0.b1)) 

pred.y <-  predict(fitZ0.b1,  se = TRUE) # predicted values on logit scale  
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#--------------------------------- 

# ANALYTIC PLOTS 

#---------------------------------- 

lwd<-2; lwd2<-1;  

Tx.col<-2; Ctr.col<-4; 

fit <- pred.y$fit 

UL <- pred.y$fit + pred.y$se.fit 

LL <- pred.y$fit - pred.y$se.fit 

 group <- G  

risk <- eta  

ord <- order(risk) 

xrange <- range(risk) 

yrange <- range(fit) 

yrange <- range(Z.logit.true) 

 

plot(risk, fit, type = "n",  

#   main=  paste("Variation in Intervention Impact by Baseline Risk"), 

 sub = "Vertical lines at percentiles of eta",  

   ylim=yrange,  

   xlim=xrange, 

   xlab = " eta (population values)",  
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#   ylab = paste("Probability of Z (GAM fit)"))   # for continous Z 

   ylab = paste("fitted Z (GAM)"))  # for binary Z 

#   ylab = paste("fitted Z (GLM)"))  # for binary Z 

 

 xord  <- risk[ord] 

 fitord  <- fit[ord] 

 Grord1  <- group[ord] 

 ULord <- UL[ord] 

 LLord <- LL[ord] 

 

#lines(xord[Grord1 == 1 ],  fitord[Grord1 == 1 ], lty=1, lwd=lwd, col=Tx.col) 

#lines(xord[Grord1 == 0 ], fitord[Grord1 == 0 ], lty=2, lwd=lwd, col=Ctr.col) 

 

lines(xord[Grord1 == 1 ],  ULord[Grord1 == 1 ], lty=2, col=Tx.col) 

points(xord[Grord1 == 1 ],  fitord[Grord1 == 1 ], col=Tx.col) 

lines(xord[Grord1 == 1 ],  LLord[Grord1 == 1 ], lty=2, col=Tx.col) 

 

lines(xord[Grord1 == 0 ],  ULord[Grord1 == 0 ], lty=2, col=Ctr.col) 

points(xord[Grord1 == 0 ], fitord[Grord1 == 0 ],  pch=19 , col=Ctr.col) 

lines(xord[Grord1 == 0 ],  LLord[Grord1 == 0 ], lty=2, col=Ctr.col) 
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#tx.legend <- paste("Tx (n = ", sum(Grord1), ")") 

#ctrl.legend <- paste("Ctrl (n = ", sum( (Grord1 == 0) ),")") 

#legend(xrange[1],yrange[2], legend = c(tx.legend, ctrl.legend), lty=c(1,2), lwd=c(lwd, lwd), 
col=c(Tx.col, Ctr.col)) 

Q <- matrix(quantile(eta, c(.10, .25, .50, .75, .90))) 

 

segments(Q[1], yrange[1], Q[1], yrange[2], lty = 2) 

segments(Q[2], yrange[1], Q[2], yrange[2], lty = 2) 

segments(Q[3], yrange[1], Q[3], yrange[2], lty = 2) 

segments(Q[4], yrange[1], Q[4], yrange[2], lty = 2) 

segments(Q[5], yrange[1], Q[5], yrange[2], lty = 2) 

 

text( Q[1], yrange[1], " 10th ", , adj = c(0,0), par(srt=90)) 

text( Q[2], yrange[1], " 25th ", , adj = c(0,0), par(srt=90)) 

text( Q[3], yrange[1], " 50th ", , adj = c(0,0), par(srt=90)) 

text( Q[4], yrange[1], " 75th ", , adj = c(0,0), par(srt=90)) 

text( Q[5], yrange[1], " 90th ", , adj = c(0,0), par(srt=90)) 
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#============================================= 

# save simulated datasets for later replication studies 

#============================================= 

 

write.csv(ContArray, file = "C:/.../repDat.N300.ContLin.csv", row.names = FALSE) 

write.csv(BinArray, file = "C:/.../repDat.N300.BinNlin.csv", row.names = FALSE) 

write.csv(ContArray2, file = "C:/.../repDat2.N300.ContLin.csv", row.names = FALSE) 

write.csv(BinArray2, file = "C:/.../repDat2.N300.BinNlin.csv", row.names = FALSE) 
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APPENDIX B:  SELF-WRITTEN R FUNCTIONS CALLED BY ALV MODEL  

######################################################## 

# R-FUNCTIONS FOR THE GAM COMPONENT OF ALV MODEL 

######################################################## 

# LIST OF FUNCTIONS  

#  (1) write R function to define R(x,z)for cubic spline on [0,1] 

#  function name = rk    

#  (2) Use the rk function in a new function that takes a sequence of knots 

#   and an array of x values to produce a model matrix X for cubic spline (p127) 

#  function name = spl.X 

#  (3) write a function to setup a penalized regression spline penalty matrix S 

#  function name = spl.S 

#  (4) write a simple matrix sqrt function to use on S 

#  function name = mat.sqrt  

#  (5) write a function to SET UP a simple additive model   

# with 2 smooth terms + 1 parametric term. This function is modified from the 

# function am.setup(Wood, 2006, p 135) and calls functions (1) to (3). 

#  function name = am.setup2  
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##################################### 

# FOR GAM COMPONENT 

################################### 

 

# SIMPLE CUBIC SPLINE 

# write R function to define R(x,z)for cubic spline on [0,1] 

rk <- function(x,z)    

 { ((z - 0.5)^2 - 1/12)*((x - 0.5)^2 - 1/12)/4 - 

  ((abs(x - z) - 0.5)^4 - (abs(x - z) - 0.5)^2/2 + 7/240)/24 

 } 

# Use the rk function to write a function that takes a sequence of knots 

#  and an array of x values to produce a model matrix X for cubic spline (p127) 

spl.X <- function(x,xk) 

 { q  <- length(xk) + 2  # number of params 

n  <- length(x)  # number of data 

  X  <- matrix(1, n, q) # initialize model matrix 

  X[,2] <- x    # set 2nd column to x 

  X[,3:q] <- outer(x,xk,FUN=rk) # and remaining to R(x,xk) 

  X 

 } 
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# EXTENSION TO PENALIZED CUBIC SPLINE  

 

# Model extension: to fit penalized regression spline to  x, y, data 

# First write a function to setup a penalized regression spline penalty matrix S 

spl.S <- function(xk) # i.e. given a knot sequence xk 

 { 

  q <- length(xk) + 2; S <- matrix(0,q,q) # init S to 0 

  S[3:q, 3:q] <- outer(xk,xk,FUN=rk)  # fill in nonzero part 

  S 

 } 

# need a simple matrix sqrt function to use on S 

mat.sqrt <- function(S) 

 { 

  d <- eigen(S, symmetric = TRUE) 

  rS <- d$vectors%*%diag(d$values^0.5)%*%t(d$vectors) 

 } 
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# EXTENSION TO ADDITIVE MODEL 

# Write a function to SET UP a 3-term simple additive model : 

# function to produce a model matrix X  

# and 2 regression penalty matrices in S for  

# a 2-smooth + 1-parametric terms additive model 

am.setup2 <- function(x, z, g, q = 10) 

 # get X, S_1 and S_2  for a simple 2-term (x & z) AM  

 # including 1 parametric term g 

 {  

  # choose knots 

  xk <- quantile(unique(x), 1:(q-2)/(q-1)) 

  zk <- quantile(unique(z), 1:(q-2)/(q-1)) 

  # get penalty matrices 

  S <- list() 

  S[[1]]  <- S[[2]]  <- matrix(0, 2*q, 2*q) 

  S[[1]][3:(q+1), 3:(q+1)]   <- spl.S(xk)[-1, -1] 

  S[[2]][(q+2):(2*q), (q+2):(2*q)]  <- spl.S(zk)[-1, -1] 

 

  # get model matrix the 2 smooth terms 

  n <- length(x) 

  X1 <- matrix(1, n, 2*q-1) 
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X1[ ,2:q]    <- spl.X(x, xk)[ , -1]  # 1st smooth 

  X1[ ,(q+1):(2*q-1)]  <- spl.X(z, zk)[ , -1]  # 2nd smooth 

 

  # add parametric term to 2nd column of model matrix 

  d <- dim(X1)[2] 

  X <- cbind(X1[,1], g, X1[,2:d]) 

  dimnames(X) <- NULL 

  list(X=X, S=S) 

 } 
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# FOR MCMC ALGORITHM 

# Define the unnormalized log-density of the cond distribution of eta  

# from which to draw a sample.  

# The function accepts data from the ith independent observation. 

 

condETAfun.gam <- function(eta_i, YZ, muY, lambda, theta, beta, sigma.sq, Xmat_i, 
penalty) 

 { 

  Y <- matrix(YZ[c(1:p)], ncol=1) 

  Z <- matrix(YZ[p+1]) 

  # Allow ith eta to alternate btw candidate and current values  

  # so that both values contribute to its condit distrib in turns: 

  # Note - eta is in 3rd column of model matrix 

  Xmat_i[3]  <- eta_i # insert eta value (when eta = canditate/current) 

  # Define cond distrib of eta_i upto a constant 

  logLik <- ( 

                  -0.5 %*% t(Y-muY-lambda%*%eta_i) %*% solve(theta) %*% (Y-muY-
lambda%*%eta_i)  + 

                  -0.5 * 1/sigma.sq * ((Z - t(Xmat_i) %*% beta)^2 )  + 

                  -0.5 * eta_i^2 

                   ) 

 } 
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#$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 

# MUST FIRST RUN ALV FUNCTIONS IN R (APPENDIX B) 

#$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 

# load libraries. 

library(foreign) 

library(mgcv)  

library(nlme) 

library(MASS) 

library(MCMCpack) 

library(numDeriv 

 

# GET SIMULATED DATASETS (50 COPIES STACKED HORIZONTALLY) 

replicData <- read.csv("C:/.../repDat.N300.ContLin.csv", header = TRUE) 

dim(replicData) 

#---------VARIABLE LABELS FOR DATASET---------- 

#  Y1-Y5   = continous scale indicators 

#  Z  = binary/cont distal outcome  

# GRP  = 2-level group  

#------------------------------------------------- 
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### assign GLM family of distribution 

Y1.family  <- gaussian  

Y2.family  <- gaussian 

Y3.family  <- gaussian 

Y4.family <- gaussian 

Y5.family  <- gaussian 

#---- select distribution for  Z ---- 

z.binary <- TRUE 

Z.family <- binomial 

# OR 

z.binary <- FALSE 

Z.family <- gaussian 

#### USE THE 1ST COPY OF REPLIC DATASETS TO INITIATE SOME PARAMETER 
VALUES 

YZdata <- data.frame(replicData[,1:7])  

names(YZdata)  <- c("Y1","Y2","Y3","Y4","Y5","Z","GRP")  

#dim(YZdata) 

N <- nrow(YZdata) 

p <- ncol(YZdata)-2  # let p = dim YZdata less (Z, GRP) -> no of Y variables  

Ydata <- YZdata[ ,1:p] 

Zdata <- YZdata[ ,(p+1)] 

  



137 

 

APPENDIX C:  (CONTINUED) 

 

#----------------------------------------- 

#  TRUE VALUES  

#------------------------------------------- 

# STORE TRUE VALUES (WHERE AVAILABLE) FOR EASY TABULATION 

# Y's 

muY.t   <- matrix(rep(0, p), ncol = 1) 

muY.se.t  <- matrix(rep(NA, p), ncol = 1) 

muY.pval.t  <- matrix(rep(NA, p), ncol = 1) 

Rsq.muY.t  <- matrix(rep(NA, p), ncol = 1) 

 

lambda.t   <- matrix(rep(1, p), ncol = 1) 

lambda.se.t   <- matrix(rep(NA, p), ncol = 1) 

lambda.pval.t  <- matrix(rep(NA, p), ncol = 1) 

 

theta.t    <- diag(rep(0.25,p))  

theta.se.t   <- matrix(rep(NA, p), ncol = 1) 

 

# Z 

muZ.t    <- matrix(0)  

muZ.se.t  <- matrix(NA) 

muZ.pval.t  <- NA 

Rsq.Z.t   <- NA 
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beta.t    <- matrix(NA) 

beta.se.t   <- matrix(NA) 

beta.pval.t  <- NA 

 

sigma.sq.t   <- matrix(0.25) 

sigma.sq.se.t  <- matrix(NA) 

 

grp.interc.t   <- matrix(NA) 

grp.interc.se.t   <- matrix(NA) 

grp.interc.pval.t  <- NA 

 

etaBYgrp.t   <- matrix(NA) 

etaBYgrp0.se.t   <- matrix(NA) 

etaBYgrp0.pval.t <- NA 
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#----------------------------------------- 

#  START VALUES  

#----------------------------------------- 

muY0   <- matrix(apply(YZdata[ ,1:p], 2, mean), ncol = 1) 

muY0.se <- matrix(rep(NA, p), ncol = 1) 

muY0.pval <- matrix(rep(NA, p), ncol = 1) 

Rsq.muY0 <- matrix(rep(NA, p), ncol = 1) 

 

lambda0  <- matrix(rep(0.5,p), ncol = 1) 

lambda0.se  <- matrix(rep(NA, p), ncol = 1) 

lambda0.pval <- matrix(rep(NA, p), ncol = 1) 

 

#theta0   <- diag(rep(1,p)) 

theta0   <- diag(apply(YZdata[ ,1:p], 2, var)) # standard for ALV 

theta0.se  <- matrix(rep(NA, p), ncol = 1) 

 

# obtain approx z-interc when regressed on GRP + Y1 + Y2 + Y3 + Y4 + Y5 

muZ0   <- matrix(glm(Z ~ . ,family = Z.family, data=YZdata)$coefficients[1])  

muZ0.se <- NA 

muZ0.pval <- NA    

Rsq.Z0  <- NA 
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beta0  <- NA # initial spline coefficients to be estimated shortly 

#beta0.se  <- matrix(NA) 

 

#sigma.sq0  <- matrix(1.0) 

sigma.sq0  <- matrix(var(YZdata[ ,(p+1)])) # standard for ALV 

 

etaBYgrp0   <- matrix(0) 

etaBYgrp0.se  <- NA 

etaBYgrp0.pval <- NA 

 

grp.interc0  <-  matrix(1) 

grp.interc0.se  <-  NA 

grp.interc0.pval <-  NA 

 

#-------------------------------- 

### start values for eta 

#-------------------------------- 

# Compute approx var(eta|Y,Z,current params) from the start values 

B <- solve((lambda0 %*% t(lambda0)+ theta0)) 

sigma2.eta0 <- 1 - t(lambda0) %*% B %*% lambda0  

#sigma2.eta0 
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# generate initial N-vector eta from its cond distrib 

eta00 <- matrix(rep(NA, N)) 

for (i in 1:N) 

 { 

  Yi <- matrix(as.numeric(Ydata[i, ], ncol=1)) 

  eta00[i] <- t(lambda0) %*% B %*%(muY0-Yi) 

 } 

#plot(density(eta00)) 

# GENERATE INITIAL PENALIZED REGRESSION SPLINE MODEL MATRIX  

# Scale eta00 to lie in [0,1] 

 x <- eta00 - min(eta00); x <- x/max(x) 

# Next select a rank=30 basis (a set of 28 knots evenly spread over [0,1]; 

 xk  <- 1:28/29  # choose knots 

 q  <- length(xk) + 2 # dimension of basis 

# Call function to produce model matrix 

Xmat0 <- spl.X(x, xk) 

Smat0 <- spl.S(xk) 

# NEXT GENERATE INITIAL ESTIM OF SPLINE COEFF AND PENALTY TERM 

fit  <- gam(Z ~ s(eta00, GRP, k=q) , family=Z.family, data=YZdata) 

#summary(fit) 

beta0 <- matrix(fit$coefficients, ncol=1) 

tau0  <- fit$gcv.ubre  

penalty0  <- tau0 * (t(beta0) %*% Smat0 %*% beta0 ) 
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################################################# 

 #   ALV (MCEM) ALGORITHM 

################################################# 

 

#---------------------------------------------------------------- 

# SET PARAMETERS FOR ALV ALGORITHM 

#---------------------------------------------------------------- 

# NOTE: 

#  SINGLE REPLICATION TO STUDY CONVERGENCE (set bridge = TRUE)  

#   MULTIPLE REPLICATIONS TO STUDY ESTIMATION (set bridge = FALSE) 

 

# Start RUN from here 

 bridge  <- TRUE  

 maxrep <- 50 # of datasets to analyze 

 stop.iter <-  3 # number of EM iterations following min deviance.  

    #(set to 100 for convergence studies) 

maxiter  <- 100 # set maximum EM iterations  

tuneSize  <- 2.5 # rejection/acceptance control 

burninSize <- 100 # Markov samples in burn-in period (to discard) 

mcmcSize <- 100 # Length of MCMC chain retained for analysis 

thinSize <- 1 # for thinning size 

M <- mcmcSize/thinSize  # Effective length of Markov chain used in analysis remains constant 
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######################################################################### 

#=========== START OF ALV MODEL RUN  ============ 

######################################################################### 

## intialize lines as pointers for tracking different stages in the MCEM loop   

line1 <- 0; line2 <- 0; line3 <- 0; line4 <- 0; line5 <- 0; 

line6 <- 0; line7 <- 0; line8 <- 0; line9 <- 0; line10 <- 0 

#---------------------------------------------------------------------------- 

####  Initialize storage matrices for all MCEM replications 

#----------------------------------------------------------------------------- 

etaVectors <- matrix(NA, N, maxrep)  

Z.best.mat <- matrix(NA, N, maxrep) 

 

# means and variances of ESTIMATES 

paramMeans1 <- matrix(NA, (3*p+3), maxrep) # for non-smoothed param est   

paramMeans2 <- matrix(NA, (q+1), maxrep)  # for q spline coeff + 1 column 

paramVars1  <- matrix(NA, (3*p+3), maxrep) 

paramVars2 <- matrix(NA, (q+1), maxrep) 

# means and variances of ESTIMATES 

paramMeans1.se  <- matrix(NA, (3*p+3), maxrep) # for non-smoothed param est   

paramMeans2.se  <- matrix(NA, (q+1), maxrep)  # for spline coeff 

paramVars1.se  <- matrix(NA, (3*p+3), maxrep) 

paramVars2.se <- matrix(NA, (q+1), maxrep) 
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# sub-model deviances 

all.deviances  <- matrix(NA, maxrep, 6) 

 

#--------------------------------------------------------- 

#  START ALV REPLICATIONS: 1ST LOOP  

#----------------------------------------------------------- 

# clock the start of EM iterations 

Start.time <- Sys.time() 

 

replic  <- 0 

while ( maxrep > replic ) 

{ 

 replic <- replic + 1 

# get a copy from 50 replicate datasets stacked horizontally 

#  (7 variable columns per dataset) 

r   <- replic   # for rth dataset; r=1,...,50 

d   <- replicData[ , ((r-1)* 7 + 1):(r * 7)] # select the rth 7 columns for rth dataset 

YZdata  <- data.frame(d) 

Ydata <- YZdata[ ,1:p] 

Zdata <- YZdata[ ,(p+1)] 

names(YZdata)  <- c("Y1","Y2","Y3","Y4","Y5","Z","GRP") 
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#### create storage matrices for kth MCEM iteration 

#  arrays to store calculated MEANS of individual regression parameter values 

 

Y_params   <- matrix(0, nrow=(maxiter+2), ncol=(10*p)) 

dim(Y_params)  <- c((maxiter+2), 10, p) 

 

dimnames(Y_params)<- list(NULL, c("EM-iter","interc","(s.e.)","p.value","lambda","(s.e.)", 

      "p.value","theta","R^2","deviance"), 
names(Ydata)) 

Y_params[ ,1,] <- c("true", "start", c(1:maxiter)) # input EM counter index 

 

Z_params1    <- matrix(0, nrow=(maxiter+2), ncol=13) 

dimnames(Z_params1) <- list(NULL, c("EM-
iter","threshold","(s.e.)","p.value","beta","(s.e.)","p.value", 
"grp","(s.e.)","p.value","sigma^2","dev_explained","deviance")) 

Z_params1[ ,1]  <- c("true", "start", c(1:maxiter)) # input EM counter index 

Z_params2    <- matrix(0, nrow=(maxiter+1), ncol=(q+1)) 

dimnames(Z_params2) <- list(NULL, c("EM-iter","interc",rep("s(eta.grp)", (q-1)))) 

Z_params2[ ,1]  <- c("start", c(1:maxiter)) # input EM counter index 

Z_params3    <- matrix(NA, nrow=(maxiter), ncol=2) 

dimnames(Z_params3) <- list(NULL, c("EM-iter","UBRE score (tau)")) 

Z_params3[ ,1]  <- c(1:maxiter)       # input EM 
counter index 
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#  arrays to store calculated VARIANCES of individual regression parameter values 

Y_parVars   <- matrix(0, nrow=(maxiter+2), ncol=(10*p)) 

dim(Y_parVars)  <- c((maxiter+2), 10, p) 

dimnames(Y_parVars)<- list(NULL, c("EM-iter","interc","(s.e.)","p.value","lambda","(s.e.)", 

"p.value","theta","R^2","deviance"), names(Ydata)) 

Y_parVars[ ,1,] <- c("true", "start", c(1:maxiter)) # input EM counter index 

 

Z_parVars1    <- matrix(0, nrow=(maxiter+2), ncol=13) 

dimnames(Z_parVars1) <- list(NULL, c("EM-
iter","threshold","(s.e.)","p.value","beta","(s.e.)","p.value", 

"grp","(s.e.)","p.value","sigma^2","dev_explained","deviance")) 

Z_parVars1[ ,1]  <- c("true", "start", c(1:maxiter)) # input EM counter index 

 

# RECORD the true values in first row of parameters table 

for (h in 1:p) 

 { 

  Y_params[1 ,c(2:10), h] <- round(cbind(muY.t[h], 
muY.se.t[h],muY.pval.t[h],lambda.t[h],lambda.se.t[h], 

     lambda.pval.t[h], theta.t[h,h], Rsq.muY.t[h], NA), 4) 

 } 

  Z_params1[1, c(2:13)]  <- round(cbind(muZ.t, muZ.se.t, muZ.pval.t, beta.t, beta.se.t, beta.pval.t,  

     grp.interc.t, grp.interc.se.t, grp.interc.pval.t,  

      sigma.sq.t, Rsq.Z.t, NA), 4) 
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# Store initial values in 2nd row of parameters table 

for (h in 1:p) 

 { 

  Y_params[2 ,c(2:10), h] <- round(cbind(muY0[h], muY0.se[h], muY0.pval[h], lambda0[h], 
lambda0.se[h],  

     lambda0.pval[h], theta0[h,h], Rsq.muY0[h], NA), 4) 

 } 

  Z_params1[2, c(2:13)]  <- round(cbind(muZ0, muZ0.se, muZ0.pval, NA, NA, NA, 

     grp.interc0, grp.interc0.se, grp.interc0.pval,  

      sigma.sq0, Rsq.Z0, NA), 4) 

  Z_params1[2, 5]   <- "spline" 

  Z_params2[1, c(2:(q+1))] <- round(as.vector(beta0), 4) 

 

# initialize storage of best MCEM output results 

iter.best   <- 0 

minDeviance  <- 0 

 

#### create a matrix to store deviance & convergence values for MCEM 

convergence   <- data.frame(matrix(NA,nrow=maxiter, ncol=7)) 

convergence[, 1]   <- 1:maxiter 

convergence[, 2]   <- 999999 

names(convergence)  <- c("EM-iter", "SumDeviance", "Conv.Err1",  

     "Conv.Err2", "Conv.Err", "logLR.com", "logLR.obs") 
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log_LR <- matrix(NA, nrow=1, ncol=maxiter) 

 

Y.estim.se <- matrix(0, maxiter*6*p) 

dim(Y.estim.se)  <- c(maxiter, 6, p) 

 

Z.estim.se <- matrix(0, maxiter, 6) 

 

# Matrix to store std error estim by Louis method 

louis.se <- matrix(NA, nrow=20, ncol=maxiter) 

 

#---------------------------------------------------------------------- 

# START MCEM ITERATIONS (2ND LOOP) 

#---------------------------------------------------------------------- 

## Get start values  

muY   <- muY0 

lambda  <- lambda0  

theta  <- theta0  

muZ   <- muZ0 

beta   <- beta0  

sigma.sq  <- sigma.sq0 

Xmat   <- Xmat0 

penalty <- penalty0 
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# supply initial parameter values 

new.params1  <- c(muY, lambda, theta, sigma.sq) 

new.params2  <- c(beta) 

new.params  <- c(muY, lambda, theta, beta, sigma.sq) 

iter   <- 0 

while(  maxiter > iter )  

{   

  iter  <- iter + 1     # update EM counter 

# to store eta statistics for N subjects  

eta.chains  <- matrix(0, nrow=N, ncol= M) # to store N Markov chains 

eta.stat   <- matrix(0, nrow=N, ncol=4) # initialize matrix to store eta statistics 

eta.stat  <- data.frame(eta.stat) 

names(eta.stat)  <- c("Mean", "SD", "Naive SE", "Time-series SE") 

# create matrices to record bridge sampling results 

Lik_aa <- matrix(NA, nrow=N, ncol=M) 

Lik_ab <- matrix(NA, nrow=N, ncol=M) 

Lik_ba <- matrix(NA, nrow=N, ncol=M) 

Lik_bb <- matrix(NA, nrow=N, ncol=M) 

# create matrices to record parameter values to be generated in the current EM iteration 

Yparam.est   <- matrix(0, nrow=M, ncol=(9*p)) 

dim(Yparam.est)  <- c(M, 9, p) 

Zparam.est1  <- matrix(0, nrow = M, ncol=12) 

Zparam.est2  <- matrix(0, nrow = M, ncol=(q+1)) 
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# create an array to record derivatives and calculated stderr to be generated in  

# the current EM iteration using Louis' formula 

 

############ 

# E-step 

############ 

#--------------------------------------------------------- 

#  START M-H ITERATION: 3RD LOOP  

#--------------------------------------------------------- 

old.params1 <- new.params1  # save current parameter values 

old.params2 <- new.params2  

old.params <- new.params  

## Metropolis-Hastings algorithm is performed on each subject 

#  to simulate from p(eta|observed data at current values) 

  line1  <- line1 + 1 

 # sample within GRP level: YZdata is sorted by GRP 

   a <- round(N/2) 

  samp1 <- sample(1:a, 5, replace = FALSE) 

  samp2 <- sample((a+1):N, 5, replace = FALSE) 

  samp  <- c(samp1, samp2) 
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  # SUBJECT loop to run N Markov chains (1 for each subject i = 1:N) 

  i  <- 0   # initialize subject (row) counter 

   while ( N > i ) 

  {  # begin M-H inner loop 

    i <- i + 1 

   YZi   <- as.numeric( YZdata[i, ] )  # select ith observed data row 

 eta_i  <- Xmat[i, 3]    # eta is in 3rd column of model matrix 

 Xmat_i  <- matrix( Xmat[i, ], ncol=1 ) 

       count <- 0 

 repeat 

 { 

 count <- count + 1  

    testrun <- try(MCMCmetrop1R(condETAfun.gam, theta.init= eta_i, Xmat_i=Xmat_i, 
YZ=YZi,  muY=muY, theta=theta,  lambda=lambda, penalty=penalty, beta=beta, 
sigma.sq=sigma.sq, thin=thinSize, mcmc=mcmcSize, burnin=burninSize, tune=tuneSize, 
seed=NA,  optim.method = "BFGS", verbose=0, logfun=TRUE, force.samp = TRUE, 
optim.control = list(fnscale = -1, trace = 0, REPORT = 10, maxit=1000) )) 

  if (class(testrun) != "try-error" || count > 5) break 

 } 

   eta.samp <- testrun 

####   SCRIPT FOR EXAMINING MCMC OPTIMALITY #### 

# plot(eta.samp) 

#  raftery.diag(eta.samp) 
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#raftery <- raftery.diag(eta.samp) 

#ifelse (raftery$resmatrix[1] < 30, burninSize <- 50, burninSize <- 100) 

####   END OF SCRIPT FOR EXAMINING MCMC OPTIMALITY #### 

 

eta.chains[i, ] <- t(eta.samp) 

 eta.stat[i, ]  <- summary(eta.samp)$statistics 

line2 <- line2 + 1 

# store MCMC samples of 5 randomly selected observations (subject) for diagnostics 

 if (i == samp[1]) eta.samp1.1 <- eta.samp 

 if (i == samp[2]) eta.samp1.2 <- eta.samp 

 if (i == samp[3]) eta.samp1.3 <- eta.samp 

 if (i == samp[4]) eta.samp1.4 <- eta.samp 

 if (i == samp[5]) eta.samp1.5 <- eta.samp 

 if (i == samp[6]) eta.samp2.1 <- eta.samp 

 if (i == samp[7]) eta.samp2.2 <- eta.samp 

 if (i == samp[8]) eta.samp2.3 <- eta.samp 

 if (i == samp[9]) eta.samp2.4 <- eta.samp 

 if (i == samp[10]) eta.samp2.5 <- eta.samp 

#------------------------------------------------------ 

#  END M-H ITERATION: 3RD LOOP  

#-------------------------------------------------------- 

}   
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########## 

# M-step:  Estimate new parameters given the expected value of eta 

########## 

#    linear regression of Y's on etaHat 

### Personal note: This loop will be generalized later to accept any number p of regressions  

line3 <- line3 + 1 

for (j in 1:M ) 

 { 

 # FIT Y INDICATORS 

 eta_j   <- as.numeric(eta.chains[ ,j]) 

 fitY1  <- glm(YZdata[ ,1] ~ eta_j, family = Y1.family)    

 fitY2  <- glm(YZdata[ ,2] ~ eta_j, family = Y2.family)    

 fitY3  <- glm(YZdata[ ,3] ~ eta_j, family = Y3.family)   

 fitY4  <- glm(YZdata[ ,4] ~ eta_j, family = Y4.family)    

 fitY5  <- glm(YZdata[ ,5] ~ eta_j, family = Y5.family) 

 

 Yparam.est[j, 1:3, 1]  <- summary(fitY1)$coefficients[1, c(1,2,4)]  # extract interc, 
s.e., p-value  

 Yparam.est[j, 4:6, 1]  <- summary(fitY1)$coefficients[2, c(1,2,4)]  # extract slope, 
s.e., p-value  

 Yparam.est[j, 7, 1]  <- var(residuals(fitY1)) 

 Yparam.est[j, 8, 1]  <- NA # place holder for R-squared 

 Yparam.est[j, 9, 1]  <- fitY1$deviance 
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 Yparam.est[j, 1:3, 2]  <- summary(fitY2)$coefficients[1, c(1,2,4)]  # extract interc, 
s.e., p-value  

 Yparam.est[j, 4:6, 2]  <- summary(fitY2)$coefficients[2, c(1,2,4)]  # extract slope, 
s.e., p-value  

 Yparam.est[j, 7, 2]  <- var(residuals(fitY2)) 

 Yparam.est[j, 8, 2]  <- NA # place holder for R-squared 

 Yparam.est[j, 9, 2]  <- fitY2$deviance 

 

 Yparam.est[j, 1:3, 3]  <- summary(fitY3)$coefficients[1, c(1,2,4)]  # extract interc, 
s.e., p-value  

 Yparam.est[j, 4:6, 3]  <- summary(fitY3)$coefficients[2, c(1,2,4)]  # extract slope, 
s.e., p-value  

 Yparam.est[j, 7, 3]  <- var(residuals(fitY3)) 

 Yparam.est[j, 8, 3]  <- NA # place holder for R-squared 

 Yparam.est[j, 9, 3]  <- fitY3$deviance 

 

 Yparam.est[j, 1:3, 4]  <- summary(fitY4)$coefficients[1, c(1,2,4)]  # extract interc, 
s.e., p-value  

 Yparam.est[j, 4:6, 4]  <- summary(fitY4)$coefficients[2, c(1,2,4)]  # extract slope, 
s.e., p-value  

 Yparam.est[j, 7, 4]  <- var(residuals(fitY4)) 

 Yparam.est[j, 8, 4]  <- NA # place holder for R-squared 

 Yparam.est[j, 9, 4]  <- fitY4$deviance 

 

 Yparam.est[j, 1:3, 5]  <- summary(fitY5)$coefficients[1, c(1,2,4)]  # extract interc, 
s.e., p-value  
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 Yparam.est[j, 4:6, 5]  <- summary(fitY5)$coefficients[2, c(1,2,4)]  # extract slope, 
s.e., p-value  

 Yparam.est[j, 7, 5]  <- var(residuals(fitY5)) 

 Yparam.est[j, 8, 5]  <- NA # place holder for R-squared 

 Yparam.est[j, 9, 5]  <- fitY5$deviance 

 

line4 <- line4 + 1  

 

 # FIT DISTAL OUTCOME Z 

 fitZ  <- gam(Z ~ s(eta_j, GRP, k=q) , family = Z.family, data=YZdata)  

 

 Zparam.est1[j, 1:3]  <- summary(fitZ)$p.table[1 ,c(1,2,4)]  # extract interc, s.e., p-
value 

 Zparam.est1[j, 4:6]  <- c(NA, NA, NA)      # beta's 
not recorded here 

 Zparam.est1[j, 7:9]  <- c(NA, NA, NA)  

 Zparam.est1[j, 10]  <- var(residuals(fitZ)) 

 Zparam.est1[j, 11]  <- summary(fitZ)$dev.expl # extract deviance explained 

 Zparam.est1[j, 12]  <- fitZ$deviance 

 Zparam.est2[j, 1:q]  <- fitZ$coefficients  # extract spline coeff 

 Zparam.est2[j, (q+1)]  <- fitZ$gcv.ubre   # extract estimated smoothing parameter tau 

 } 

 

line5 <- line5 + 1 
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############################################################################## 

### Calculate the means & Monte Carlo std err of parameter estimates for current EM iteration  

############################################################################## 

 

#=============== 

#  parameters for Y 

#================ 

Ymeans <- matrix(NA, nrow = p, ncol = 9) 

Yvars  <- matrix(NA, nrow = p, ncol = 9) 

 

for (k in 1:p) 

 { 

 ## calculate col means/variances of kth array in Yparam.est, form a vector 

 #  store temporarily  

 Ymeans[k, ] <- matrix(apply(Yparam.est[ , , k], 2, mean), nrow=1)   

 Yvars[k, ] <- matrix(apply(Yparam.est[ , , k], 2, var), nrow=1) 

 

 # store results for MEANS permanently in kth array in Y.estim.se 

 Y_params[(iter+2), 2:10, k]  <- round(Ymeans[k, ], 4) 
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 # Record y-interc, lambdas, thetas and calculate their MC std err of estimates  

 Y.estim.se[iter, c(1,3,5), k] <- round(Ymeans[k, c(1,4,7)], 3)  

 Y.estim.se[iter, 2, k] <- round(sqrt((sum((Yparam.est[ , 1, k] - Ymeans[k, 
1])^2))*(1/(M*(M-1)))), 3) 

 Y.estim.se[iter, 4, k] <- round(sqrt((sum((Yparam.est[ , 4, k] - Ymeans[k, 
4])^2))*(1/(M*(M-1)))), 3) 

 Y.estim.se[iter, 6, k] <- round(sqrt((sum((Yparam.est[ , 7, k] - Ymeans[k, 
7])^2))*(1/(M*(M-1)))), 3) 

 } 

 

#====================== 

# 1st set of parameters for Z 

#======================= 

# Record Z-threshold, grp-coef, sigma.sq and calculate their MC std err of estimates 

Zmeans1 <- matrix(apply(Zparam.est1, 2, mean), nrow=1) #  calculate col means 

Zvars1 <- matrix(apply(Zparam.est1, 2, var), nrow=1) #  calculate col variances 

Z.estim.se[iter, c(1,3,5)] <- round(Zmeans1[c(1,7,10)], 3) 

Z.estim.se[iter, 2]  <- round(sqrt((sum((Zparam.est1[ , 1] - 
Zmeans1[1])^2))*(1/(M*(M-1)))), 3) 

Z.estim.se[iter, 4]  <- round(sqrt((sum((Zparam.est1[ , 7] - 
Zmeans1[1])^2))*(1/(M*(M-1)))), 3) 

Z.estim.se[iter, 6]  <- round(sqrt((sum((Zparam.est1[ , 10] - 
Zmeans1[1])^2))*(1/(M*(M-1)))), 3) 

Z_params1[(iter+2), 2:13]  <- round(Zmeans1, 3)  

Z_params1[(iter+2), 5]   <- "spline" 
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#=================================== 

# 2nd set of parameters for Z 

#=================================== 

 

Zmeans2 <- matrix(apply(Zparam.est2, 2, mean), nrow=1) #  calculate col means 

Zvars2 <- matrix(apply(Zparam.est2, 2, var), nrow=1) #  calculate col variances 

Z_params2[(iter+1), 2:(q+1)]  <- round(Zmeans2[1:q], 3)  # extract 20 coeff (less ubre score) 

Z_params3[(iter), 2]   <- round(Zmeans2[(q+1)], 3) # store gcv.ubre score 

 

line6 <- line6 + 1 

 

############################################# 

# UPDATE parameters for next EM round 

############################################# 

#------------------------ 

# Update Y parameters  

#------------------------ 

muY   <- matrix(c(Ymeans[1:p, 1]), ncol=1) 

lambda  <- matrix(c(Ymeans[1:p, 4]), ncol=1) 

theta  <- diag(c(Ymeans[1:p, 7]))  
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#------------------------ 

# Update Z parameters  

#------------------------ 

muZ   <- matrix(Zmeans1[1])    #  threshold/intercept 

sigma.sq <- matrix(Zmeans1[10]) 

beta  <- matrix(Zmeans2[1:q], ncol=1)  # spline coefficients 

 

tau  <- matrix(Zmeans2[(q+1)])  # smoothing parameter  

 

line7 <- line7 + 1 

 

# TO UPDATE  matrices X, S and penalty: first obtain an N-vector eta from MCMC simulations 

eta.vec  <- as.vector(apply(eta.chains, 1, mean))  # get row means (eta Hat for each subject) 

 

# Scale eta.vec to lie in [0,1] 

x2 <- eta.vec - min(eta.vec); x2 <- x2/max(x2) 

# Call function to produce new model and penalty matrices 

Xmat <- spl.X(x2, xk) 

Smat <- spl.S(xk) 

# dim(Smat)   # q x q  penalty matrix for s(eta,grp) 

# dim(Xmat)   # Nxq model matrix 

# dim(beta)   # qx1 penalized least sq estimates of spline coefficients  

# dim(tau)   # scalar : estimate of common smoothing parameter 
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# update current estim of penalty of the penalized least square expression for  

#  (Z|eta, grp, eta*grp) component of (eta|Y,Z,omega(k)). NOTE: This step is not neccssary 

penalty  <- tau * (t(beta) %*% Smat %*% beta ) 

 

line8 <- line8 + 1 

 

#################################### 

#  COMPUTE LOUIS' STD ERRORS 

#################################### 

#------------------------------------------------------------- 

# calculate partial derivatives w.r.t. muY, lambda and theta 

#------------------------------------------------------------- 

louis1  <- matrix(0, nrow=M, ncol=(6*p)) 

dim(louis1) <- c(M, 6, p) 

for (j in 1:M ) 

{ 

eta_j <- as.numeric(eta.chains[ ,j]) 

 for (k in 1:p) 

 { 

mu  <- Yparam.est[j,1,k] 

lam  <- Yparam.est[j,4,k] 

the <- Yparam.est[j,7,k] 

y  <- YZdata[ ,k] 
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## Calculate the gradient/Hessian of a function by numerical approximation using numDeriv-
package functions 

func.mu <- function(mu){ -0.5*N*log(the)-(0.5/the)*(sum( (y - mu - lam*eta_j)^2)) } 

func.lam <- function(lam){ -0.5*N*log(the)-(0.5/the)*(sum( (y - mu - lam*eta_j)^2)) }   

func.the <- function(the){ -0.5*N*log(the)-(0.5/the)*(sum( (y - mu - lam*eta_j)^2)) } 

 

# Store 1st partial derivatives  

louis1[j,1,k] <- grad(func.mu, mu # muY 

louis1[j,2,k] <- grad(func.lam, lam)  # lambda 

louis1[j,3,k] <- grad(func.the, the)  # theta 

 

# 2nd partial derivatives 

louis1[j,4,k] <-  as.double(hessian(func.mu, mu)) # muY 

louis1[j,5,k] <-  as.double(hessian(func.lam, lam))  # lambda 

louis1[j,6,k] <-  as.double(hessian(func.the, the)) # theta  

 } 

} 
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# calculate Louis std err (use NEGATIVE 2nd partial derivatives)  

# Store stacked in a column per EM iter  

 

for (k in 1:p) 

{ 

louis.se[k, iter]  <-  round((mean(( louis1[,1,k] - mean(louis1[,1,k]) )^2) -  mean(louis1[,4,k])), 3) 
# muY  

louis.se[(k+p), iter]  <-  round((mean(( louis1[,2,k] - mean(louis1[,2,k]) )^2) -  
mean(louis1[,5,k])), 3) # lambda 

louis.se[(k+2*p), iter] <-  round((mean(( louis1[,3,k] - mean(louis1[,3,k]) )^2) -  
mean(louis1[,6,k])), 3) # theta 

} 

 

 

############################################## 

# MONITOR CONVERGENCE 1 : STANDARD APPROACH 

############################################## 

# Store new parameters  

new.params1  <- c(muY, lambda, theta, sigma.sq) 

new.params2  <- c(beta) 

new.params   <- c(muY, lambda, theta, beta, sigma.sq) 
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# Calculate and update convergence error 

err1   <- sqrt(sum((old.params1 - new.params1)^2)) 

err2   <- sqrt(sum((old.params2 - new.params2)^2)) 

err   <- sqrt(sum((old.params - new.params)^2)) 

 

# Calculate and update total deviance  

y.dev <- matrix(1:p, nrow=1) 

for (h in 1:p) 

 { y.dev[h] <- as.numeric(Y_params[(iter+2), 10, h]) } 

dev.Z  <- as.numeric(Z_params1[(iter+2), 13]) 

convergence[iter, 1]  <- iter 

convergence[iter, 2]  <- sum(y.dev, dev.Z ) 

convergence[iter, 3]  <- err1 

convergence[iter, 4]  <- err2 

convergence[iter, 5]  <- err 

 

# Record and update model fits & MCMC samples for best EM iteration 

#  based on minimum total deviance 

new.minDeviance  <- min(convergence$SumDeviance) 

best <- convergence[convergence$SumDeviance == new.minDeviance, ] 

  iter.best  <- as.numeric(best[1]) 
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 if ( iter == iter.best ) 

  {  

  eta.chains.best <- eta.chains  

 

  eta.sample1.1 <- eta.samp1.1 

  eta.sample1.2 <- eta.samp1.2 

  eta.sample1.3 <- eta.samp1.3 

  eta.sample1.4 <- eta.samp1.4 

  eta.sample1.5 <- eta.samp1.5 

 

  eta.sample2.1 <- eta.samp2.1 

  eta.sample2.2 <- eta.samp2.2 

  eta.sample2.3 <- eta.samp2.3 

  eta.sample2.4 <- eta.samp2.4 

  eta.sample2.5 <- eta.samp2.5 

 

  eta.vec.best <- eta.vec 

  eta.stat.best <- eta.stat 

  Xmat.best  <- Xmat 

 

  Y_params.best <- Y_params[c(1,2,(iter+2)), -c(4,7,9) , ] 

  Z_params1.best   <- Z_params1[c(1,2,(iter+2)), c(1:3,8,9,11,13)] 

  Z_params2.best   <- Z_params2[iter, 4:21] 
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Ymeans.best <- Ymeans 

  Zmeans1.best <- Zmeans1 

  Zmeans2.best <- Zmeans2 

 

  Yvars.best  <- Yvars 

  Zvars1.best  <- Zvars1 

  Zvars2.best  <- Zvars2 

  } 

 

 #------------------------ 

# MONITOR CONVERGENCE 2 :  

# PERFORM BRIDGE SAMPLING TO APPROX OBSERVED LIKELIHOOD 

#------------------------ 

# record estimates for (k+1)th EM iteration 

muY.b  <- muY 

lambda.b <- lambda 

theta.b <- theta 

muZ.b  <- muZ 

beta.b <- beta 

sigma.sq.b <- sigma.sq 

eta.chains.b <- eta.chains 
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if (bridge == TRUE && iter > 1)    

{ # RUN bridge-sampling loop only when studying convergence 

 #  and start from 2nd EM iteration 

for (m in 1:M) 

  { 

  for (i in 1:N) 

 { 

 Y <- matrix(as.double(Ydata[i, ])) 

 Z <- as.double(Zdata[i]) 

 eta.a <- eta.chains.a[i, m]  

 eta.b <- eta.chains.b[i, m] 

 Xm.a  <- matrix(Xmat[i, ]) 

 Xm.a[3]  <- eta.a 

 Xm.b  <- matrix(Xmat[i, ]) 

 Xm.b[3]  <- eta.b 

 

 Lik_aa[i, m] <- (1/sqrt(det(theta.a))) * (1/sqrt(sigma.sq.a)) * 

  exp( -0.5 * (t(Y-muY.a-lambda.a%*%eta.a) %*% solve(theta.a) %*% (Y-
muY.a-lambda.a%*%eta.a) + 

   1/sigma.sq.a * ((Z - t(Xm.a) %*% beta.a)^2 + penalty) +  eta.a^2 )) 
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 Lik_ab[i, m] <- (1/sqrt(det(theta.b))) * (1/sqrt(sigma.sq.b)) * 

  exp( -0.5 * (t(Y-muY.b-lambda.b%*%eta.a) %*% solve(theta.b) %*% (Y-
muY.b-lambda.b%*%eta.a) + 

   1/sigma.sq.b * ((Z - t(Xm.a) %*% beta.b)^2 + penalty) +  eta.a^2 )) 

 

 Lik_ba[i, m] <- (1/sqrt(det(theta.a))) * (1/sqrt(sigma.sq.a)) * 

  exp( -0.5 * (t(Y-muY.a-lambda.a%*%eta.b) %*% solve(theta.a) %*% (Y-
muY.a-lambda.a%*%eta.b) + 

   1/sigma.sq.a * ((Z - t(Xm.b) %*% beta.a)^2 + penalty) +  eta.b^2 )) 

 

 Lik_bb[i, m] <- (1/sqrt(det(theta.b))) * (1/sqrt(sigma.sq.b)) * 

  exp( -0.5 * (t(Y-muY.b-lambda.b%*%eta.b) %*% solve(theta.b) %*% (Y-
muY.b-lambda.b%*%eta.b) + 

   1/sigma.sq.b * ((Z - t(Xm.b) %*% beta.b)^2 + penalty) +  eta.b^2 )) 

 } 

  } 

num1 <- apply(Lik_ab, 2, sum) 

den1 <- apply(Lik_aa, 2, sum) 

num2 <- apply(Lik_ba, 2, sum) 

den2 <- apply(Lik_bb, 2, sum) 

A <- sqrt(num1/den1) 

B <- sqrt(num2/den2) 

log_LR[iter] <- log(sum(A)) - log(sum(B)) 

} 
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# record estimates for (k)th EM iteration 

muY.a  <- muY.b 

lambda.a <- lambda.b 

theta.a <- theta.b 

muZ.a  <- muZ.b 

beta.a <- beta.b 

sigma.sq.a <- sigma.sq.b 

eta.chains.a <- eta.chains.b 

new.iter.best <- iter.best 

if((iter - iter.best) == stop.iter) 

 { 

 iter.hi <- max(iter.hi, new.iter.best) 

if (iter.hi > new.iter.best) target.replic <- replic # identif replic with highest EM iteration 

  break 

 } 

if (iter==maxiter)  

 { 

  break 

 } 

}  # end EM loop 

#-------------------------------------------------------------------- 

#  END MCEM ITERATION: 2ND LOOP  

#----------------------------------------------------------------------- 
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line9 <- line9 + 1 

#################################################### 

# For the BEST EM iteration in jth replication: 

# Store all parameter estimates 

#################################################### 

# Record and update model fits & MCMC samples for best EM iteration 

#  based on minimum total deviance 

# means and std.dev of ESTIMATES 

 

paramMeans1[1:p, replic]   <- c(Ymeans.best[1:p, 1])  # Y-intercepts 

paramMeans1[(p+1):(2*p), replic]  <- c(Ymeans.best[1:p, 4])  # Y-lambdas 

paramMeans1[(2*p+1):(3*p), replic] <- c(Ymeans.best[1:p, 7])  # Y-thetas 

paramMeans1[(3*p+1), replic]  <- Zmeans1.best[1]   # Z-threshold/intercept 

paramMeans1[(3*p+2), replic]  <- Zmeans1.best[7]   # Z-grp.intercept 

paramMeans1[(3*p+3), replic]  <- Zmeans1.best[10]   # Z-sigma.sq  

 

paramVars1[1:p, replic]   <- sqrt(c(Yvars.best[1:p, 1]))  # Y-intercepts 

paramVars1[(p+1):(2*p), replic]  <- sqrt(c(Yvars.best[1:p, 4]))  # Y-lambdas 

paramVars1[(2*p+1):(3*p), replic] <- sqrt(c(Yvars[1:p, 7]))  # Y-thetas 

paramVars1[(3*p+1), replic]  <- sqrt(Zvars1.best[1])   # Z-threshold/intercept 

paramVars1[(3*p+2), replic]  <- sqrt(Zvars1.best[7])   # Z-grp.intercept 

paramVars1[(3*p+3), replic]  <- sqrt(Zvars1.best[10])  # Z-sigma.sq 
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paramMeans2[ , replic]   <- Zmeans2.best   # q spline coeff + 1 smoothing param (ubre) 

paramVars2[ , replic]   <- Zvars2.best 

 

# means and std.dev of STD ERRORS OF ESTIMATES 

paramMeans1.se[1:p, replic]    <- c(Ymeans.best[1:p, 2])  # Y-intercepts 

paramMeans1.se[(p+1):(2*p), replic]  <- c(Ymeans.best[1:p, 5])  # Y-lambdas 

paramMeans1.se[(2*p+1):(3*p), replic] <- NA      # Y-thetas 

paramMeans1.se[(3*p+1), replic]  <- Zmeans1.best[2]  # Z-threshold/intercept 

paramMeans1.se[(3*p+2), replic]  <- Zmeans1.best[8]  # Z-grp.intercept 

paramMeans1.se[(3*p+3), replic]  <- NA     # Z-sigma.sq  

paramVars1.se[1:p, replic]    <- sqrt(c(Yvars.best[1:p, 2]))  # Y-intercepts 

paramVars1.se[(p+1):(2*p), replic]   <- sqrt(c(Yvars.best[1:p, 5]))  # Y-lambdas 

paramVars1.se[(2*p+1):(3*p), replic] <- NA      # Y-thetas 

paramVars1.se[(3*p+1), replic]  <- sqrt(Zvars1.best[2])   # Z-threshold/intercept 

paramVars1.se[(3*p+2), replic]  <- sqrt(Zvars1.best[8])   # Z-grp.intercept 

paramVars1.se[(3*p+3), replic]  <- NA     # Z-sigma.sq 

 

paramMeans2.se[ , replic]  <- Zmeans2.best   # q spline coeff + 1 smoothing param (ubre) 

paramVars2.se[ , replic]  <- Zvars2.best 

 

etaVectors[ ,replic]  <- eta.vec.best   
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# store sub-model deviances at EM covergence for each replication 

all.deviances[replic, ] <- round(c(Ymeans.best[1:p, 9], Zmeans1.best[12]), 1) 

 

line10 <- line10 + 1 

#if (replic == 3) stop("3rd replication completed") 

} 

 

#--------------------------------------------------- 

#  END REPLICATIONS: 1ST LOOP  

#---------------------------------------------------- 

 

# CLOCK THE END OF EM ITERATIONS 

End.time <- Sys.time() 

Lapsed.time <- difftime(End.time, Start.time) 

Lapsed.time 

 

######################################################################### 

#===========      END OF ALV MODEL RUN   ============ 

######################################################################### 

line1 

line2 

line3 

line4 
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line5 

line6 

line7 

line8 

line9 

line10 

 

#============================================ 

# COMPILE REPLICATION RESULTS 

#============================================ 

 

##### COMPILE TRUE VALUES 

p <- ncol(YZdata)-2  # let p = dim YZdata less (Z, GRP) -> no of Y variables  

Parameter   <- c(rep(c("Y-intercept","lambda","theta"), each=p),  

    "Z-intercept", "group", "sigma^2") 

Index   <- c(rep(1:p, 3), rep(1,3)) 

Pop_param <- c(muY.t, lambda.t, diag(theta.t), muZ.t, grp.interc.t, sigma.sq.t) 

#Pop_se <- c(muY.se.t, lambda.se.t, theta.se.t, muZ.se.t, grp.interc.se.t, sigma.sq.se.t) 

Pop <- data.frame(Parameter, Index, Pop_param) 

Pop 
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####  PARAMETRIC COEFFICIENTS 

L <- replic  

Mean_Dev <- matrix(apply(all.deviances, 2, mean), ncol=1) #  calculate col means of sub-
model deviances 

Mean_Est <- matrix(apply(paramMeans1[,1:L], 1, mean), ncol=1) #  calculate row means of 
param estim 

SD_Est <- matrix(apply(paramMeans1[,1:L], 1, sd), ncol=1) #  calculate row std dev 

v.est <- matrix(apply(paramMeans1[,1:L], 1, var), ncol=1) #  calculate row variance 

 

Mean_SE <- matrix(apply(paramMeans1.se[,1:L], 1, mean), ncol=1) #  calculate row means 
of std.err of estim 

SD_of_SE <- matrix(apply(paramMeans1.se[,1:L], 1, sd), ncol=1) #  calculate row std dev 

SE_by_SD <- Mean_SE/SD_Est 

true <-  Pop[, 3] 

Bias <- Mean_Est - true 

RMS <-  v.est + Bias^2 

 

pc <- data.frame(Pop,  round(data.frame(Mean_Est, SD_Est, Mean_SE, SE_by_SD, Bias, RMS), 
3)) 

pc$Deviance <- round(c(Mean_Dev[1:5], rep(NA, 10), Mean_Dev[6], NA, NA), 1) 

paramCoef  <- tt[-17, ]  # Remove GRP coeff 

paramCoef 
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# Save estimated eta vector for each replication 

write.csv(etaVectors, file = "C:/.../*.csv", row.names = FALSE) 

 

# Save results of replication studies 

write.csv(paramCoef, file = "C:/.../*.csv", row.names = FALSE) 

 

########################################################### 

# WHEN ALV MODEL IS FITTED TO A SINGLE DATASET, 

#   COMPILE RESULTS FOR GAM COMPONENT AS FOLLOWS:  

########################################################### 

#==================================== 

# Plot the fitted curve - GAM  

#===================================== 

# USE THE SELECTED BEST ETA ESTIMATE (AT EM CONVERGENCE) 

data.comp  <- YZdata 

data.comp$eta <- eta.vec.best 

data.comp$eta_by_group <- eta.vec.best * YZdata$GRP 

 fitZ.b  <- gam(Z ~ s(eta) + as.factor(GRP) + s(eta_by_group), family=Z.family, 
data=data.comp) 

summary(fitZ.b) 

# save 

write.csv(data.comp, file = "C:/…/ *.csv", row.names = FALSE) 
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# ANALYTIC PLOT 

lwd<-2; lwd2<-1;  

Tx.col<-2; Ctr.col<-4; 

fit <- fitZ.b$fitted.values  

 group <- data.comp$GRP  

risk <- data.comp$eta  

ord <- order(risk) 

yrange <- range(data.comp$Z) 

xrange <- range(risk) 

 

plot(risk, fit, type = "n", 

#   main=  paste("Variation in Intervention Impact by Baseline Risk"), 

 sub = "Vertical lines at risk percentiles",  

   ylim=yrange,  

   xlim=xrange, 

   xlab = "Baseline Risk (eta)",  

   ylab = paste("Distal Outcome (Z)"))      # for continous Z 

#   ylab = paste("Probability of Distal Outcome (Z)")) # for binary Z 

 

 xord <- risk[ord] 

 fitord <- fit[ord] 

 Grord1 <- group[ord] 
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lines(xord[Grord1 == 1 ],  fitord[Grord1 == 1 ], lty=1, lwd=lwd, col=Tx.col) 

lines(xord[Grord1 == 0 ], fitord[Grord1 == 0 ], lty=2, lwd=lwd, col=Ctr.col) 

 

tx.legend <- paste("Tx (n = ", sum(Grord1), ")") 

ctrl.legend <- paste("Ctrl (n = ", sum( (Grord1 == 0) ),")") 

legend(xrange[1],yrange[2], legend = c(tx.legend, ctrl.legend), lty=c(1,2), lwd=c(lwd, lwd), 
col=c(Tx.col, Ctr.col)) 

 

Q <- matrix(quantile(risk, c(.25, .50, .75, .90, .95))) 

 

segments(Q[1], yrange[1], Q[1], yrange[2], lty = 2) 

segments(Q[2], yrange[1], Q[2], yrange[2], lty = 2) 

segments(Q[3], yrange[1], Q[3], yrange[2], lty = 2) 

segments(Q[4], yrange[1], Q[4], yrange[2], lty = 2) 

segments(Q[5], yrange[1], Q[5], yrange[2], lty = 2) 

 

text( Q[1], yrange[1], " 25th ", , adj = c(0,0), par(srt=90)) 

text( Q[2], yrange[1], " 50th ", , adj = c(0,0), par(srt=90)) 

text( Q[3], yrange[1], " 75th ", , adj = c(0,0), par(srt=90)) 

text( Q[4], yrange[1], " 90th ", , adj = c(0,0), par(srt=90)) 

text( Q[5], yrange[1], " 95th ", , adj = c(0,0), par(srt=90)) 
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#------------------------------------- 

# DIAGNOSTIC PLOTS 

#------------------------------------- 

gam.check(fitZ.b) # residual plots 

plot(fitZ.b,pages=1,residuals=TRUE) 

plot(fitZ.b,pages=1,seWithMean=TRUE, shade=TRUE) 

 

#------------------------------------------------------------------------ 

# MORE ALV MODEL FIT RESULTS FOR REVIEW 

#------------------------------------------------------------------------ 

Y_params.best  

Z_params1.best 

Z_params2.best 

 

Y_params[1:(iter+2),-c(4,7,9) ,] 

Z_params1[1:(iter+2),c(1:3,8,9,11,13)] 

  

paramMeans1[,1:replic] 
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############################################# 

# ALV MODEL CONVERGENCE RESULTS 

############################################# 

 

# OVERAL FOR ALV MODEL 

# record log of observed-data likelihood ratio between 2 consecutive steps 

convergence$logLR.obs <- as.vector(log_LR) 

 

# Create a new variable for total deviance minus its MINIMUM (for graphing purposes) 

convergence$SumDeviance2 <- rep(NA, nrow(convergence)) 

mDev <- min(convergence$SumDeviance[1:iter]) 

convergence$SumDeviance2[1:iter] <- round((convergence$SumDeviance[1:iter] - mDev), 4) 

 

# RECORD convergence data 

convergence[1:iter, c(1:5,7)] 

round(convergence[1:(iter-1), c(1:5)], 4) 

 

# save 

write.csv(convergence, file = "C:/.../*.csv", row.names = FALSE) 
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#--------------------------------------------------------- 

# PLOTS TO MONITOR CONVERGENCE   

#--------------------------------------------------------- 

 

### DEVIANCE PLOTS 

par(mfrow = c(2, 1)) 

 

plot(c(1:iter), convergence$logLR.obs[1:iter], type="l",  

 ylab="Log of likelihood ratio", xlab="Iteration") 

 title(main="Log of Observed-Data Likelihood Ratio   

    Versus EM Iteration from the 2nd Iteration", cex.main=1.1) 

abline( v = iter.best, col = "blue", lty=3) 

 

plot(c(1:iter), convergence$SumDeviance2[1:iter], type="l", 

 ylab="Total deviance", xlab="Iteration") 

  title(main="Scaled Total Deviance Versus EM Iteration", cex.main=1.1) 

abline( v = iter.best, col = "blue", lty=3) 
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### CONVERGENCE ERRORS 

par(mfrow = c(1, 1)) 

plot(convergence[,1], convergence[,3], ylim=c(0,3), xlim=c(0,iter),type="n", 

 ylab="Convergence Errors", xlab="Iteration") 

 title(main="Log of Observed-Data Likelihood Ratio   

    Versus EM Iteration from the 2nd Iteration", cex.main=1.1) 

#abline( v = iter.best, col = "black", lty=3) 

lines(convergence[,1], convergence[,3], lwd=1.9, lty=2, col=1) 

lines(convergence[,1], convergence[,4], lwd=1.9, lty=1, col=1) 

 

err1.legend <- paste("{mu's, lambda's, theta's, sigma^2's}") 

err2.legend <- paste("beta's") 

 

legend("topright", legend = c(err1.legend, err2.legend), lty=c(2, 1),  

  horiz = FALSE, lwd=c(1, 1), col=c(1,1)) 

 

#--------------------------------------------- 

# MONITOR PARAMETER ESTIM  

#----------------------------------------------- 

yp <- Y_params[1:(iter+2),-c(4,7,9) ,] 

zp1 <- Z_params1[1:(iter+2),c(1:3,8,9,11,13)] 

 est1 <- est2 <- est3 <- matrix(NA, ncol=p, nrow=(iter+1)) 
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for (k in 1:p) 

{ 

est1[ , k]  <- as.double(yp[c(2:(iter+2)),2 ,k]) # y-interc 

est2[ , k]  <- as.double(yp[c(2:(iter+2)),4 ,k]) # lambda 

est3[ , k]  <- as.double(yp[c(2:(iter+2)),6 ,k])  # theta 

} 

 

est4 <- matrix(NA, ncol=3, nrow=(iter+1)) 

est4[,1] <- as.double(zp1[c(2:(iter+2)),2]) # z-interc 

est4[,2] <- as.double(zp1[c(2:(iter+2)),4]) #  grp 

est4[,3] <- as.double(zp1[c(2:(iter+2)),6]) # sigma.sq 

estA <- data.frame(cbind(est1, est2, est3, est4)) 

rm(yp) 

rm(zp1) 

names(estA)  <- c("Y1", "Y2", "Y3", "Y4", "Y5", "lam1", "lam2", "lam3", "lam4", "lam5",  

   "the1", "the2", "the3", "the4", "the5", "Z", "grp","sig2")   

 

par(mfrow = c(2, 2)) 

iteration <- 0:iter 
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plot(iteration, estA[,1], ylim=range(estA[,1:5]), ylab="estimate", type="n") 

 title(main="Y-intercepts", cex.main=1.1) 

abline( v = iter.best, lty=3) 

for (j in 1:5)  

{ 

lines(iteration, estA[,j], col=(j+1), lty=(j+1), lwd=2) 

} 

 

plot(iteration, estA[,1], ylim=range(estA[,6:10]), ylab="estimate", type="n") 

 title(main="Lambdas", cex.main=1.1) 

abline( v = iter.best, col = "blue", lty=3) 

for (j in 6:10 ) 

{ 

lines(iteration, estA[,j], col=(j-4), lty=(j-4), lwd=2) 

} 

plot(iteration, estA[,1], ylim=range(estA[,11:15]), ylab="estimate", type="n") 

 title(main="Thetas", cex.main=1.1) 

 

abline( v = iter.best, col = "blue", lty=3) 

for (j in 11:15 ) 

{ 

lines(iteration, estA[,j], col=(j-9), lty=(j-9), lwd=2) 

} 
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 plot(iteration, estA[,1], ylim=range(estA[,c(16,18)]), ylab="estimate", type="n")  

 title(main="Sigma^2 -.-   Z-interc __", cex.main=1.1) 

abline( v = iter.best, col = "blue", lty=3) 

lines(iteration, estA[,16], lwd=2, lty=2) 

#lines(iteration, estA[,17], lwd=2, lty=3) 

lines(iteration, estA[,18], lwd=2, lty=4) 

 

#--------------------------------------------------------------------------------------------- 

# PLOTS to examine MCMC simulations for 5 randomly selected subjects 

#---------------------------------------------------------------------------------------------- 

plot(eta.sample1.1) 

mtext("1st Randomly Selected Subject (GRP=1)", cex = 1.2, side = 3, line = 3) 

 

plot(eta.sample1.2) 

mtext("2nd Randomly Selected Subject (GRP=1)", cex = 1.2, side = 3, line = 3) 

 

plot(eta.sample1.3) 

mtext("3rd Randomly Selected Subject (GRP=1)", cex = 1.2, side = 3, line = 3) 

 

plot(eta.sample1.4) 

mtext("4th Randomly Selected Subject (GRP=1)", cex = 1.2, side = 3, line = 3) 
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plot(eta.sample1.5) 

mtext("5th Randomly Selected Subject (GRP=1)", cex = 1.2, side = 3, line = 3) 

 

plot(eta.sample2.1) 

mtext("1st Randomly Selected Subject (GRP=2)", cex = 1.2, side = 3, line = 3) 

 

plot(eta.sample2.2) 

mtext("2nd Randomly Selected Subject (GRP=2)", cex = 1.2, side = 3, line = 3) 

 

plot(eta.sample2.3) 

mtext("3rd Randomly Selected Subject (GRP=2)", cex = 1.2, side = 3, line = 3) 

 

plot(eta.sample2.4) 

mtext("4th Randomly Selected Subject (GRP=2)", cex = 1.2, side = 3, line = 3) 

 

plot(eta.sample2.5) 

mtext("5th Randomly Selected Subject (GRP=2)", cex = 1.2, side = 3, line = 3) 

 

############################ 

# SAVE WORKSPACE 

############################ 

save.image(file = "C:/…/*.RData") 
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