

16

plus a single distal outcome. We assume iY are continuous and are linearly related to an

underlying latent factor iη , that is, iY retains the conventional linear factor analysis model

structure and the latent variable model is identifiable. In preparation for the new work on this

dissertation, we do not require the response iZ to be normally distributed or to be linearly related

to iη , but we will always assume that iY and iZ are independent given iη . With iY and iZ

conditionally independent, we can decompose the LV model into two independent joint

conditional likelihood functions:

i

1

i i i
1

L(; ,z|) p(, | η ;)

p(| η ;) p(z | η ;)







 





N

i i
i

N

i y z
i

y y z

y

  

 
 (2.11)

where y and z are distinct set of parameters in . The first component of the LV model then

represents a simple confirmatory factor analysis (CFA) model consisting of a system of p linear

regression equations while the second component is simply a regression model of the distal

outcome on the latent factor. To convert the LV into ALV we simply represent the second

component as a GAM of a distal outcome Z where Z can be a continuous, categorical or count

variable.

2.3 ML Estimation of ALV Model via the EM Algorithm

 We adopt a likelihood based approach to parameter estimation. It is anticipated that

eventually when we fully specify the two component density functions constituting the ALV

model, performing direct maximization of the observed data likelihood will be complicated by the

presence of non-linear relationship between the variables and the associated parameters and the

intractable integrals that may result. Therefore we choose to implement maximum likelihood

17

estimation using the Expectation-Maximization (EM) algorithm (Dempster, Laird, & Rubin,

1977). The EM algorithm is a general and easily adaptable approach for finding the maximum

likelihood estimates (mle’s) of the underlying parameters in a given data when the data are

incomplete or have missing values. In our case the observed data{ ,z}y depend on a latent factor

η which is unobservable. So we consider the situation as a missing data problem, where η is

treated as missing at random (Rubin, 1976). Our specifications of the EM algorithm will be based

on regarding η as a random N-vector of missing data within the SEM model framework. We then

treat the observed { ,z}y as incomplete data while { ,z,η}y constitute complete data in which the

rows are independently and identically distributed (Dempster, Laird, & Rubin, 1977). We will

develop an EM procedure for parameter estimation that allows for a non-linear regression of Z on

the latent factor η via a smooth function.

 The complete-data likelihood is expressed as

 com

y z

L () p(, z,η;)

p(| η;) p(z|η;) p(η;)


  

y

y

 
  

 (2.12)

where the random η is unknown and, given a factor analytic model framework, its marginal

distribution is fixed as standard normal for model identification purpose (see equation (2.10)).

The maximum likelihood estimates of will be computed from the complete data with the above

specifications and restrictions.

Consider that if η were observed, then we have a simple distribution for the ‘complete’ data

where mle’s for  can be obtained by the usual least square method based on the sums, sums of

squares and sums of cross-products (Dempster, Laird, & Rubin, 1977). Normally, when η is not

observed, we would obtain the mle’s of the parameters by integrating the complete-data

18

likelihood (, z,η;)p y  with respect to η and maximizing the results with respect to . However

the approach to estimation taken by the EM algorithm is to alternate between computation of the

expectation of the complete data log-likelihood (E-step) and the maximization of this expectation

with respect to  (M-step). The idea is to fill in a set of values for the ‘missing’ η (E-step) and

solve the problem, i.e. find mle’s for  (M-step); the repeat the two steps to find better values of

η to fill in (Rubin,1991). Because η is unknown, draws from its conditional distribution

p(η | , z;)y  will be taken to simulate η . Let ()Q(,)k  be defined as the kth iterative expected

complete data log-likelihood given the observed data and current values of ()k , which is given

by

() η ()

com

η ()

Q(,) E [log L () | ,z,]

E [logp(,z,η;) | ,z,]





k k

k

y

y y

   

 
 (2.13)

Each repetition of the two steps yields a new set of mle’s for  by numerically increasing the

value of quantity ()Q(,)k  and the iteration continues until convergence. One important

property of the EM algorithm is that a (k+1)th iteration causes ()Q(,)k  to increase over its kth

value (Dempster, Laird, & Rubin, 1977).

Briefly,  contains the parameters to be optimized as ()Q(,)k  increases; with a current value

()k , iteration k of the EM Algorithm is implemented in the following sequences:

1. Draw from the conditional distribution ()p(η | , z;)ky  , (i.e. evaluate it at the current

parameter estimates ()k); supply initial values if k=0.

19

2. E-step: Evaluate ()Q(,)k  using updates from (1), that is taking the expectation of the

complete data log-likelihood with respect to the conditional distribution ()p(η | , z;)ky  .

3. M-step: Maximize ()Q(,)k  over  to obtain a revised (1)k . That is, solve

(1) ()

Ω
max Q(,) k k  

4. Check for convergence, if none, set () (1)k k  and return to (1).

2.3.1 The Expectation Step of EM

 The E-step at the kth iteration computes the expected value of the complete data log-

likelihood over η given the observed data and current values of ()k . This step is more formally

defined as

() ()

()

Q(,) log p(,z,η;) p(η;)dη

log p(,z,η;) p(η | , z;)dη

 

 




k k

k

y

y y

   

 
 (2.14)

where the complete data likelihood derives its randomness solely from being a function of

random variable η that is governed by its conditional predictive distribution given the observed

data: ()f(η | , z;)ky  . The complete data log-likelihood function is not tractable analytically

because we do not have a fully known parametric form for the joint distribution p(,z,η;)y  ,

therefore we require an alternative method to direct integration in the E-step.

Markov Chain Monte Carlo (MCMC) Method

Whenever the computations involved in the integration (E-step) and /or optimization (M-

step) are intractable, numerical methods or Monte Carlo methods may be indicated (Wei &

20

Tanner, 1990; McLachlan & Krishnan, 2008). Our choice here, the Monte Carlo method,

computes integrals using random number generation, and it is preferred to numerical quadrature

methods when the dimension of integral may be large or the functions may not be smooth

(McLachlan & Krishnan, 2008). For simplicity we illustrate with an example of a complex

integral I(y) f (y | x)p(x)dx  which can be expressed as an expectation of f (y | x) over the

continuous density p(x) . To use the classical Monte Carlo integration (McLachlan & Krishnan,

2008; Walsh, 2004), a sufficiently large number 1 c Cx ,.., x ,.., x of random sample are drawn from

the density p(x) (which must be completely known) and the integral is approximated by

C

c
c 1

1
Î(y) f (y | x)

C 

  (2.15)

The estimated variance of the Monte Carlo estimate is given by

  
C 2

c
c 1

1 1ˆ ˆˆvar[I(y)] f (y | x) I(y)
C C 1 

 
   



If the target distribution ()p x itself is complex and is indirectly or incompletely specified, then a

more complex Monte Carlo method will be required (McLachlan & Krishnan, 2008). For

example when ()p x is uniquely defined but does not have a standard form that is amenable to

direct sampling, Markov chain Monte Carlo (MCMC) methods are commonly used to draw

samples indirectly from these distributions (McLachlan & Krishnan, 2008; Lee & Song, 2007;

Wei & Tanner, 1990).

A Markov chain is a stochastic process that characterizes sequences of random variables,

where “the transition probabilities between different values in the state space depend only on the

random variable’s current state” (Walsh, 2004; Gamerman & Lopes, 2006). The most critical

21

feature that defines a particular Markov chain is the transition kernel (transition probabilities)

which is the limiting distribution of the chain. The aim therefore is to construct a Markov chain

such that its limiting distribution equals the target distribution we wish to simulate.

Let the transition kernel be defined as (c) (c 1)q(x , x) which is the probability of transition

of a process from an earlier state (c)x to the next state (c 1)x  in a single step (Walsh, 2004). To

draw a random sample from distribution p(x) via Markov chains, the transition kernel must be

chosen such that the stationary distribution of the chain is p(x) (Gamerman & Lopes, 2006), and

q(,) must satisfy

(c) (c) (c 1) (c 1) (c 1) (c) (c) (c 1)

(c) (c 1) (c)

(c 1) (c) (c 1)

p(x)q(x ,x) p(x)q(x ,x) , (x , x)

p(x) q(x , x)
i.e. .

p(x) q(x ,x)

   



 

 


 (2.16)

This is the basis for the Metropolis-Hastings Algorithm which we will discuss next.

Metropolis-Hastings Algorithm

 The Metropolis-Hastings (M-H) Algorithm is a very widely applicable MCMC method

for simulating a complex nonstandard multivariate distribution; the Gibbs sampler (Geman &

Geman, 1984) is a special case of the M-H algorithm (Walsh, 2004). The mechanism of the M-H

algorithm as outlined in Gamerman & Lopes (2006) and Walsh (2004) will be described briefly

here. Note from the q ratio above that it is sufficient to be able to express a qualifying stationary

distribution p(x) up to the normalizing constant, since any constant factor cancels out when

calculating the transition kernel. Suppose we wish to draw samples from 1 dp(x) : x (x ,..., x) of

which direct sampling is complicated. If f (x) is an approximation up to a constant and is

22

available, such that p(x) f (x) / h where the normalizing constant h is difficult to compute, we

can generate a d-dimensional random vector from f (x) using the M-H algorithm. For the M-H

scheme, first a proposal kernel (density) (c) (c 1)q(x , x) is chosen so as to be as similar to the target

density p(x) as possible, to increase acceptance rate. Note that if the sampling (proposal) kernel

equals the target distribution (i.e. when the latter is known), then acceptance rate is 100 percent

and direct draw from the target density itself is possible, as in the classical Monte Carlo

procedure. Desirable features of a proposal kernel include tunable parameters such as location

and scale (Chib & Greenberg, 1995; Walsh, 2004). A widely used proposal kernel (or candidate-

generating density) is the multivariate normal.

 The following steps are carried out in the M-H scheme: (I) choose arbitrary initial values

0x satisfying 0f (x) 0 , (II) evaluate the proposal (or jumping) distribution (c) (c 1)q(x , x) at the

current 0x values, and then sample a candidate point *x from (c) (c 1)q(x , x) , (III) define an

acceptance probability of a move of the chain from current value (c)x to a new value (c 1)x  as the

ratio of the densities at the proposal point *x and current point (c)x :

* * *

c c c

p(x) f (x) h f (x)

p(x) f (x) h f (x)
    (2.17)

If 1  , a move to the new proposal point increases the density and so is allowed, else the move

is allowed with a probability of  . The basis for allowable move can be summarized as

* c *

c *
c * c

f (x)q(x ,x)
(x ,x) min 1,

f (x)q(x ,x)

 
   

 
. (2.18)

23

(IV) To introduce randomness a quantity u is generated from an independent uniform distribution

U(0,1) , then the proposal point is accepted as the current value * (c 1)x x  if u  , else it is

rejected and no change takes place, i.e. * (c)x x . Steps II to IV are iterated until convergence.

The above Metropolis-Hastings algorithm is a generalization of the original Metropolis algorithm

(McLachlan & Krishnan, 2008; Walsh, 2004). The original algorithm requires that the proposal

density be symmetric (e.g. normal distributions):    c * * cq x ,x q x ,x so that c *(x , x) reduces to

*

c *
c

f (x)
(x ,x) min 1,

f (x)

 
   

 
 (2.19)

Expectation of Complete Data Log-likelihood

 To reiterate we are adopting a method similar to the Monte Carlo EM algorithm (MCEM)

(Wei & Tanner, 1990) whereby the Monte Carlo integration of the log-likelihood is approximated

by drawing a sufficiently large number C of observations from the predictive conditional

distribution ()p(η | , z;)ky 

evaluated at the current values ()k . Upon generating the random

observations (c)
i{η ,c=1,...,C,i=1,...,N}by the MH algorithm, there are different ways to use the

observations in both the E-step and M-step. For the E-step, a popular and straight forward process

is to plug the expected value of the Markov process generated random observations (or its

function of some sufficient statistics) directly into the ()Q(,)k  function (Lee & Zhu, 2000).

For another example, these random observations were plugged into conditional expectations of

the complete data approximate sufficient statistics in (Lee & Zhu, 2002) to evaluate the E-step. In

our case, in the E-step we decided to fill in the entire estimated density of ()p(η | , z;)ky  into

()Q(,)k  so the problem considerably simplifies to that of a C number of simple regression

24

equations with fixed covariates, similar to an example described in McLachlan & Krishnan

(2008). Note that () k is already imbedded in the C drawings:

 () (c)

1

1
Q̂(,) [logp(,z,η ;)]

C 

 
C

k

c

y   (2.20)

 A single scan or generated sequence (-t) (0) (1) (c) (C)
i i i i iη ,...,η ,η ,...,η ,...,η is a Markov chain for

the ith subject. As c tends to infinity, or with a sufficiently large C , the stationary distribution

converges in distribution to the target distribution ()
i ip(η | , z ;)k

iy  . To allow a sufficient amount

of time for a stationary distribution to be reached, the first set of iterations in the chain

(-t) (0)
i iη ,...,η serves as the burn-in segment. This initial set of iterations is discarded while the

remainder segment of the chain forms the sample of an optimal finite size C to be used in the

Monte Carlo integration. The usable Markov sample then consists of limiting transition

probabilities that are no longer dependent on the start values. However, by using successive

values from a single Markov chain per subject, within-subject autocorrelation does induce chain

dependence. In order for inference based on the sample to still be valid, higher autocorrelation

will require a longer chain to run (Gamerman & Lopes, 2006). The authors also noted that

Markov chains only have first order dependence which decreases with increasing lag between

iterations, therefore subsample of quasi-independent elements can be formed by storing only

every jth value post burn-in period. This method is referred to as ‘thinning’ and it also has the

advantage of requiring relatively shorter chains. With thinning we can achieve independence in

the final sample with improved optimality and, in addition, reduce storage requirement for

computer generated data. Furthermore, by generating a Markov sample independently for each

subject, we are able to make the assumption of both within-subject and between-subject

25

independence for the N Markov samples. Therefore by drawing a sufficiently large sample

(c)
iη ,c=1,...,C from ()p(η | , z;)ky  we can write

 () (c)
i i

1 1

1
Q̂(,) [logp(,z ,η ;)]

C  

 
C N

k
i

c i

y   (2.21)

 Since we are using Metropolis algorithm to sample from a conditional normally

distributed η , the selection probability simplifies to *p(η | , z;) / p(η | , z;)y y  where *η is the

proposal value. Recall that given η , Y and Z are independent. Therefore for the ith subject in the

kth EM iterate the conditional distribution can be approximated up to a constant K as follows:

()
() ()i i

i i i i()
i

() () ()
i i i i i i

p(η , , z ;) 1
p(η | , z ;) p(η , , z ;);

p(,z ;) h

1
p(η | , z ;) p(| η ;)p(z |η ;)p(η).

h

  

 

k
k ki

i ik
i

k k k
i i y z

y
y y

y

y y


 



  

 (2.22)

So we have (for normal Z linearly related to )

1/2-p/2 1
i

2 -1/2 2
i i i i2

-m/2
i i i

1
f (| η ;) (2π) exp () () ,

2

1
f(z |η ;) (2πσ) exp - (z -a-βη) ,

2σ

1
f(η)=(2π) exp η η .

2

         
    

   

i y i i i i

z

y y y      

 (2.23)

In the cth MCMC iteration the candidate value *
iη drawn from the univariate normal proposal

distribution is accepted as the new value (c+1)
iη with the probability ofα :

* () * () *
i i i i(c) *

i i (c) () (c) () (c)
i i i i

p(| η ;)p(z |η ;)p(η)
α(η ,η)=min 1,

p(| η ;)p(z |η ;)p(η)

  
 
  

k k
i y z

k k
i y z

y

y

 

 
 (2.24)

26

Note that h has cancelled out in the ratio (c) *
i iα(η ,η) . From (2.23) the ratio therefore simplifies to

 
 

* 1 * -2 * 2 * *
i i i i i i

(c) 1 (c) -2 (c) 2 (c) (c)
i i i i i i

1
exp (η) (η) σ (z -a- bη) η η

2
min 1,

1
exp (η) (η) σ (z -a- bη) η η

2





            
 

            

i i

i i

y y

y y

    

    
 (2.25)

If u  where u has a random uniform distribution, the transition jump (c) (c+1)
i iη η is allowed,

otherwise the jump does not occur and the current value is retained in the Markov chain position.

 We chose for our proposal density a normal distribution centered on the current value (c)
iη

. The scale and spread of the proposal density are important factors controlling the acceptance or

rejection rate and the sample space region covered by the chain. For accuracy it is desirable that

the density be sampled mostly around its mode. If the variance of the density is too large some

generated candidates will be too far from the mode and so have relatively low acceptance

probability. On the other hand if the variance is too small, it will prolong the time required by the

process to sufficiently traverse the sampling space supported by the density, leading to under-

sampling of the low probability regions. To achieve a delicate balance an approximate acceptance

rate of 0.45 is recommended when dealing with one-dimensional problem like ours where we

estimate only one ‘parameter’ (i) (Chib & Greenberg, 1995). Therefore a proper fine tuning of

the variance of proposal density is necessary for good mixing and efficient sampling (Chib &

Greenberg, 1995; Walsh, 2004). As a rough guide, we compute the Empirical Bayes’ variance

estimate of ()[η | ;]ky  for use as a start value. From general multivariate results for factor

analytic model, the latent factors conditional on the observed indicators are multivariate normal:

m η| η|[η | ,] ~ N (,)y yy    . Therefore given a standard normal marginal density of η (see (2.7) to

(2.9)), the common conditional variance is computed as follows

27

 1
η| ()   y I     (2.26)

2.3.2 The Maximization Step of EM

 Recall the decomposition of the complete data log-likelihood (see (2.12) and (2.13)) as

reproduced below:

() ()

() ()

(c) () (c) ()
i i i

1 1 1 1

Q(,) E [log p(| η;) log p(z|η;) log p(η)] | , z,

E [log p(| η;) | , z,] E [log p(z|η;) | , z,] log p(η)

1 1
[log p(| η ;) | ,] [log p(z |η ;) | z,] w

C C

k k
y z

k k
y z

C N C N
k k

i y z
c i c i

y y

y y y

y y



 

    

   

   
   

    
  

   

 (2.27)

The first two terms on the right of (2.27) on the first line (a factor analytic model and a univariate

regression model) have their separate distinct parameters, so maximization can be done separately

(McLachlan & Krishnan, 2008). Note that for the purpose of identification the marginal

distribution p() has 0 mean and unit variance (Dempster, Laird, & Rubin, 1977). Secondly, even

if we resort to approximating p() by its conditional distribution in the M-step, this will not be

useful since ()[η | , z;]ky  can be specified only up to a normalizing constant (see (2.22)) and the

conditional distribution is proportional to its joint distribution. Therefore the last term is treated

here as a constant w (2.27) that does not depend on  hence does not contribute to the

maximization. The EM algorithm hence concerns the finding of

1. (1)k
y to maximize η ()E [log p(| η;) | ,]k

y yy y  , and

2. (1)k
z to maximize η ()E [log p(z|η;) | z,]k

z z  .

An alternative approach to maximization is based on the idea of a Stochastic EM algorithm as

described in (Lee, Song, & Lee, 2003). Here the mean of random observations (iη̂) in the

28

Markov chain for the ith subject is computed, considered as fixed, and simultaneous regression

model is solved to obtain mle’s. For example, their approach to modeling the Y’s would give:

(1) () ()

C
(c)

i i
c=1

ˆ ˆarg max Q(,) arg max[log p(| η;) | ,],

1
η̂ = η , i=1,.....N

C

  



y y

k k k
y y y yy y

 
    

However our approach to maximization is slightly different in the sense that we plugged

(c)
iη directly into the regression model and solve C simultaneous regression equations instead. A

major consideration in our decision is to avoid bias in our estimation, since the computed

likelihoods from the two methods are not necessarily equivalent. Our approach requires the

assumption that the random sample elements in each Markov chain (subject) are independent;

which we are able to satisfy by using thinning method as necessary to minimize autocorrelation.

Secondly we can also assume independent observations between subjects since the C Markov

samples are independently generated for each subject to yield N independent Markov chains. So,

using the MCMC method, the kth M-step solves

(1) () (c) ()

1

(1) () (c) ()

1

1ˆ arg max Q(,) arg max[log p(| η ;) | ,]
C

1ˆ arg max Q(,) arg max[log p(z|η ;) | z,]
C









 

 





y y

z z

C
k k k

y y y y
c

C
k k k

z z z z
c

y y
 

 

    

    
 (2.28)

One notable advantage of the ALV model structure is that with iη available, the two parts

above have fixed-effects GLM structure and maximum likelihood estimation can be carried out

separately for them using the existing statistical tools for standard regression models. For the

future ALV model extensions, all that is required of either part is for the response variables to

belong to the exponential family.

29

2.3.3 Standard Errors of Estimates

In the context of EM algorithm the standard errors of the maximum likelihood estimates

̂ may be obtained from the inverted Hessian or information matrix based on the observed data

likelihood function, according to the method of Louis e.g. (Lee & Zhu, 2002; Song & Lee, 2005;

Law, Taylor, & Sandler, 2002). The Louis method expresses observed information matrix as the

difference between complete and missing data information matrices, thus

2
η

com

com

ˆ ˆI(; ,z) E log L (; ,z,η) | ,z,

ˆVar log L (; ,z,η) | , z,

 
    

    

y y y

y y

  
 

 


 (2.29)

where ˆI(; , z)y is the observed information and the first and second terms on the right represent

complete and missing data information evaluated at the final parameter maximum likelihood

estimates ̂ . This approach is chosen because the EM implementation does not generate

observed data information as a by-product. However since these matrices generally have no

closed forms, the Louis’ method provides a formula for computing the observed information

matrix in terms of the expectation of the first and second derivatives of the complete data log

likelihood function using the MCMC samples (McLachlan & Krishnan, 2008). The missing data

information formula is written as

2 (c)
com

1

2
(c) (c)

com com

1 1

ˆlog L (; ,z,η | , z,)1ˆI(; , z)
C

ˆ ˆlog L (; ,z,η | , z,) log L (; ,z,η) | , z,1 1

C C



 




 

     
   



 

C

c

C C

c c

y y
y

y y y y

 


 

   
 

 (2.30)

30

Given the availability of η and assuming normally distributed response variables, the

complete-data log likelihood function and related partial derivatives can be easily obtained

separately for each outcome variable at each point in the Markov chain in the form of a least

square regression model:

1 (c) 2
com i

1

com 1 (c)
i

1

com 1 (c)
i i

1

com 1 2 (c) 2
i i

1

1 1 1ˆ ˆ ˆˆ ˆlog L () Nlog(2π) Nlog (η)
2 2 2

ˆlog L () ˆ ˆˆ(η)
ˆ

ˆlog L () ˆ ˆˆη (η)
ˆ

ˆlog L () 1 1ˆ ˆ ˆˆN N η (η)
ˆ 2 2













 



     


  




  




    









N

y i
i

N
y

i
i

N
y

i
i

N
y

i
i

y

y

y

y

    


  




  




   




 (2.31)

where 1 p 1 p 1 p
ˆ ˆ ˆ ˆˆ ˆ ˆ{υ ,...,υ ,λ ,...,λ ,θ ,...,θ }y is the set of MLE’s associated with p indicator variables.

The corresponding second partial derivatives are

2
com 1

2

2
com 1 (c) 2

i2
1

2
com 2 3 (c) (c) 2

i i2
1

ˆlog L () ˆ

ˆlog L () ˆ (η)

ˆlog L () 1 ˆ ˆ ˆˆN N η (η)
2







 




 




 



   







y

N
y

i

N
y

i
i

y











   



 (2.32)

Appropriate combinations of the above derivations according to the Louis’ formula will supply

the approximate ingredients of the observed information matrix with respect to each outcome.

Similar expression can be derived for the Z variable.

According to the literature, out of the available different techniques for computation of

the standard errors within the EM setting, Louis’ method is best suited for adaptation to the

35

From another perspective (Holler, 2005), GLMs may be seen as a special case of GAMs.

For example consider a regression equation of the form    1 2 1 2 Intercept s x s x    as a

generic additive model. For a GLM the functions 1s and 2s can be polynomial, categorical, or

transforms e.g. log. In a GAM one or both functions may be represented as non-parametric

smoothers; in the former case we have the semi parametric type of GAM. The question then is

how to strike the best balance between the degrees of freedom, amount of data, and functional

form (Holler, 2005).

3.3 Baseline-Treatment Interactions using GAM

As already indicated in the first chapter, additive models (GAM, GAMM) are particularly

useful for uncovering a potential nonlinear structure between an outcome and each continuous

covariate (and its interaction with other predictors) that one might otherwise miss. Consider a

GAM modeling of the dependence of the mean of the outcome Z on treatment Tx

(intervention=1, control=0), and the smooth functions of the baseline risk covariate  and

baseline-treatment interaction:

 i 1 i 2 ig(E[z]) = α + () +β(Tx) + (*Tx)i is s  (3.4)

In addition to the use of smoothers by the GAM procedure to estimate the dependence in the data

based on the model, the smoothers are also used to estimate the distribution shapes to enhance the

visual appearance of the plot of Z against the predictor (Hastie & Tibshirani, 1990), and to

describe vividly the nature of the treatment-baseline interaction (Brown, 1993; Khoo, 1997;

Brown, et al., 2008). The usefulness of these models can be best illustrated with hypothetical

situations such as described in the plots in figure 3.1 which is modified from Khoo (1997) with

additions. In the plots, Y is the fitted outcome of a GAM model in which Z is regressed on the

36

treatment variable plus smooth functions of baseline risk and baseline-treatment interaction. On

the x-axis the level of baseline risk increases from left to right. The dashed curve represents the

treatment that is designed to reduce outcome Z relative to the control (solid line). Any tangible

separation between the two curves indicates intervention effects. The length of a vertical arrow

measures the drop in Z along y-axis, thereby depicting the magnitude of intervention effects at a

given level of baseline risk. Generally all the plots display a nonlinear increase of the outcome

with the baseline risk irrespective of the intervention condition.

In plot A the curves are parallel and the constant length of the arrows indicates constant treatment

effects across all levels of the baseline risk; hence there is no baseline-treatment interaction. In

contrast there is a steady or linear increase of group difference (drop arrows) in Z as the baseline

risk increases in plot B; this signifies a linear baseline-treatment interaction. The higher the

baseline risk levels of the subject the more effective the intervention. In plot C the Z drop arrow

length initially increases with baseline then tapers off; that is, the intervention is effective for

individuals in the lower end of the risk scale but less so for the high risk individuals. The opposite

occurs in plot D where the intervention is rather effective for only the high risk individuals. Plot E

describes a rather interesting situation where the intervention impact is most effective in some

middle region but not at the extremes of risk. Such situations exist whenever too little or too

much of a baseline characteristic that is the target of intervention is problematic and more

resistant to modification. For example, either extreme on a parenting scale (too authoritative or

too permissive) may lead to poorer child outcomes than moderate scores on this scale. Lastly, it is

not uncommon that program interventions may produce iatrogenic effects. As shown in plot F,

the intervention is detrimental to low risk individuals but the impact gradually shifts to being

beneficial as the baseline risk level gets higher.

37

Figure 3.1 The Plots of Distal Outcome versus Baseline Risk

As we can see, analyses that ignore variation in intervention impact may not be telling the

whole story since all the hypothetical situations depicted on the plots are not implausible. Apart

from gaining insight as to what works and for whom, we may also uncover unintended

consequences of a given intervention if there is any. Much of this obtainable extra information is

contingent on the ability to capture the nonlinear outcome-baseline relationship; this type of

information may be easily lost if we are limited to linear modeling techniques. Most importantly,

while GAM type models are most suitable for exposing such nonlinear dependence in the data,

they can handle linearity as well.

VARIATION IN INTERVENTION IMPACT ACROSS BASELINE RISK

A B C

D E F

38

3.4 The Best Smoothing Function

Motivation

For a simple illustration consider this time a set of independent bivariate observations consisting

of outcome Z and predictor , where  i i, z , i 0, 1, 2, , n    and 0 1 2 na ... b        

. We wish to fit a curve through the data points and plot it on a graph, infer data values between

the data points and estimate some parameters from the data. Suppose we wish to fit a simple

function s() that can be easily manipulated to the discrete data, such that it matches the data

points exactly; such a function will be an interpolant. Some families of common interpolant

functions include polynomials, piecewise polynomials or splines (segments of polynomials joined

together at data points or knots); trigonometric, exponential and rational functions.

Polynomials are popular candidates for interpolation because they are continuously

differentiable up to all orders so that the smoothness can be easily quantified. However, simply

fitting a single high-degree polynomial function to several data points is plagued with excessive

oscillations thereby resulting in some misfit. For this reason polynomial bases are not efficient for

representing s() when we are interested in the whole domain of s() (Wood, 2006). A better

alternative is to employ a piecewise polynomial interpolation (spline bases) which allows for

fitting low-degree polynomials (e.g. cubics) to interval segments on the  continuum (Heath,

2005; Wood, 2006; Cheney & Kincaid, 2004). So in terms of fitting a model to sampled data

from a function, the idea is to create a spline that approximates that data well. Therefore it is

necessary to determine which of the low order polynomials will be most appropriate for achieving

optimal smoothness and minimal error. While choosing the best curve fitting function is of

paramount importance it should not be done arbitrarily (Wood, 2006).

39

Smoothness Property

If we assume that the data points represent a discrete sample of an underlying continuous

function, fitting all the observed points exactly may be undesirable because the behavior of the

function spanning the discrete data points will likely be highly variable. For example the results

of plotting a candidate function may be unpleasing to the eyes because of excessive oscillations

or sharp curvatures. A curvature is a function of the second derivative (rate of change of slope) at

the given data point. Therefore for s() to be the best smoothing interpolant, it must possess the

minimum magnitude of the integrated squared second derivatives over all data points, that is,

b 2

a
min [s ''()]  from among all other interpolating functions (that are differentiable up to

second derivatives) over the same set of data points. Let

2
i i i i iz s() e , E(e) 0, Var(e)        ,

We wish to estimate the unknown function s() without specifying a form for s except that s

belongs to a class of suitably smooth functions. So in terms of data fitting we seek a general

solution to the penalized least squares criterion (least squares criterion with respect to ‘optimal

smoothness’), specified as

b2 2

i i a
i

[z s()] [s ''()]       (3.5)

where  is the smoothing parameter. The first term in (3.5) measures approximation to the data,

and the second term controls smoothness by penalizing larger curvatures.

40

Theorem (Cheney & Kincaid, 2004; Heath, 2005)

For a given  , there exists an interpolant s() for the set  i i, z , where, of all twice-

continuously differentiable functions f () that interpolate  i i, z , s() f ()   is the smoothest

interpolant, i.e. an explicit, unique minimizer of (3.5) in the sense of having the smallest

integrated squared second derivative over  i i, z . Thus we have the following Lemma:

b b2 2

a a
s"() f "()     (3.6)

Proof

We need to show that if certain conditions are satisfied, s() will qualify as the

smoothest interpolant. Since s() and any other f () are interpolants with knots at all the data

points in the interval, the functions must be equal at i ; hence it follows that i if () s()   and

also

2 2
i i i i

i i

[z f ()] [z s()]      .

Therefore we let g() f () s() 0      such that f " s" g"  . By expansion

b b b b2 2 2

a a a a
(f ") (s") 2 s"g" (g")        .

Note that we are mainly interested in the magnitudes of the integrated squared second derivatives.

Hence we see that the inequality
b b2 2

a a
[s"()] [f "()]      will be true if the integral

b

a
s"g" 0  , so that

41

b b b b2 2 2 2

a a a a
(f ") (s") (g") (s")        

Therefore, to prove our theorem we next need to show that this integral equals zero under certain

specified conditions which must be satisfied by s() . We set out to accomplish the task by

integrating by parts. Using the formula u v uv v u     , let s" u, g" v    , then we have

b bb

aa a
s"g" s"g ' | s '''g '     .

Now, the first set of conditions is: s ''(a) 0 and s ''(b) 0 , that is, the second derivatives at both

end points 1a x and nx b  must be set to zero. This done, we will then have

b b

a a
s"g" s '''g '    

If we break the interval [a,b] into its n-1 segments of component functions joined together at the

knots, the equation becomes discrete summation over all segments, that is

i 1

i

n 1b b

a a
i 1

s"g" s '''g ' s '''g '


 




      

Next, it is required that s ''' , the 3rd derivative at each unit interval i i 1[,]  be a constant, say ic , a

property of cubic polynomial at each interval, so that we have

  i 1 i 1 i 1

i i i

k n 1 n 1 n 1x

i i i i 1 ix
i 1 i 1 i 1 i 1

S'''g ' x c g ' c g ' c g() g() 0
  

   

 
   

             .

The last term above equals zero because we specify at the beginning that ig() 0  for every knot,

thus the proof.

42

So far we have determined a number of conditions that must be imposed on s() for it to

be the smoothest interpolant: be a cubic spline with knots at the unique values of , and the

second derivatives at the end points set to zero. By definition, the function that satisfies these

conditions is a natural cubic spline (Cheney & Kincaid, 2004).

3.5 Cubic Splines

There are several types of splines in the literature and the typology may be associated

with how the splines are represented, the spacing of the knots, and type of other conditions

imposed. For example, in B-splines basis functions are used for the entire spline, interpolating

splines require that the splines include some given values, zero second derivatives are enforced at

the end knots to yield natural splines, and uniform splines have evenly spaced knots; just to

mention a few. As already shown, the natural cubic splines are the best available curve fitting

functions (Cheney & Kincaid, 2004; Wood, 2006).

A k-degree spline function is a function consisting of k-degree polynomial pieces joined

together and are continuously differentiable k-1 times (Heath, 2005). A cubic spline (k = 3) is a

twice continuously differentiable piecewise polynomial function. The connection points of the

polynomial pieces plus the two end points are known as the knots of the spline. The polynomials

join smoothly at these knots because the cubic spline is continuous up to second derivative across

the knots (Wood, 2006).

Supposing an N-vector  (single predictor variable) is divided into n intervals so that

0 1 2 n.       represent n 1 unique values. Let different cubic polynomials be fitted to

each interval j j 1, ; j 1,...,n     . In its standard representation the knots of a cubic spline

43

coincide exactly with the unique values of  in the data; and the 1st and 2nd derivatives including

the values of the cubic spline at the knots are specified to yield a number of equations and

polynomial coefficients (parameters) to be estimated. Each cubic polynomial piece joins two

adjacent knots and has four unknown coefficients β's whose values vary from one piece to the

other. Given n intervals in the piecewise polynomial, there are n+1 (or q) knots, thus there are n

different cubics and 4n spline coefficients in all. The estimates of the coefficients are therefore

simultaneous solutions to a system of linear equations. To get a unique set of solution, it is

required that the number of equations and parameters be equal. Thus for a simple standard

representation of a natural cubic spline to be fitted to the set of n+1 knots, a total number of 4n

equations is formed with continuity conditions imposed on the cubic polynomials as listed in

Table 3.1 below (Heath, 2005; Cheney & Kincaid, 2004):

Table 3.1 Cubic Spline Interpolation

Following an example that is illustrated in (Heath, 2005), suppose we wish to estimate the natural

cubic spline function that interpolates three data points  j j, z , j 0,1, 2.   So we have n 2

 Three Continuity Conditions Number of

equations

1 Each cubic to pass through the 2 knots at either end of its interval  j+1, j  2n

2 1st derivatives of adjacent cubics to match at each of n‐1 interior knots (0,n)j j  n‐1

3 2nd derivatives of adjacent cubics to match at each of n‐1 interior knots (0,n)j j  n‐1

4* 2nd derivatives of first and last cubics to be fixed at zero at endpoints 0 and n 2

 Total number of equations 4n

* addition of this specification results in a natural cubic spline function

44

intervals 0 1 1 2(,), (,)    with two cubic polynomials joined at the 3 knots to represent the cubic

spline; and 4n 8 simultaneous equations to estimate 8 parameters a,b in the two polynomials

denoted as

2 3

1 1 2 3 4

2 3
2 1 2 3 4

p () a a a a

p () b b b b

      

      
 (3.7)

The 2n 4 equations satisfying continuity condition 1 in the table 3.1 are specified as follows:

2 3
0 1 2 0 3 0 4 0 0

2 3
1 1 2 1 3 1 4 1 1

2 3
1 1 2 1 3 1 4 1 1

2 3
2 1 2 2 3 2 4 2 2

At : a a a a z

At : a a a a z

At : b b b b z

At : b b b b z

       

       

       

       

 (3.8)

Condition #2 requires the first derivatives of the two polynomials to match at the lone interior

point:

 2 2
1 2 3 1 4 1 2 3 1 4 1At : a 2a 3a b 2b 3b          (3.9)

Similarly, condition #3 with respect to the second derivatives gives the equation:

 1 3 4 1 3 4 1At : 2a 6a 2b 6b      (3.10)

The final two equations satisfying the 4th condition relate to the endpoints:

 0 3 4 0

2 3 4 2

At : 2a 6a 0

At : 2b 6b 0

   
   

 (3.11)

The above representations and notations are for the very basic conventional spline where

the knots coincide exactly with the input data points. Typically less number of knots than data

45

points are chosen and may be evenly spaced over the range of values of  that is constrained to

between 1 and 0 (Wood, 2006). Alternatively the knots may be placed at the quintiles of unique

values distribution of . We will revisit how to determine the optimal number of knots later in

this chapter.

3.5.1 Representation of Natural Cubic Splines

A critical objective of GAM fitting is ensuring that the chosen smoothing function is the best

smoother, as well as fits or summarizes the data well. This property is related to how the smooth

function is represented. The representation of the smoothing function can take many forms and

can be very complicated and intimidating especially for those forms that are most suitable for

computation and general practical use. Therefore, representing the smooth functions and choosing

how smooth the functions should be are two critical issues of major theoretical importance in

additive modeling (Hastie & Tibshirani, 1990; Wood, 2006). There is more than one approach to

representing GAM depending on the method of estimation. The estimation by backfitting

technique (Hastie & Tibshirani, 1990) iteratively fits each smoothing component to its partial

residuals until the individual components no longer change (convergence) but automatic

smoothness selection is very costly (Wood, 2006). Another approach to estimation is penalized

regression splines; this involves choosing some basis functions defined as the space of functions

of which the smoothing function is an element (Wood, 2006). Here the degree of smoothness of

model terms is estimated as part of the GAM algorithm (Wood, 2006), therefore we prefer this

latter approach for our work. The estimation of degree of smoothness is not integrated into the

backfitting procedure (Wood, 2006) and the degree has to be chosen by the user.

46

To illustrate the basic principles, we will again use a simple regression model of the

outcome Z with a smooth function of the single predictor :

 i i iz s()    (3.12)

A proper representation of (3.12) requires that it becomes a linear model. One way to achieve this

is by choosing for (.)s some basis functions and treating them as known (Wood, 2006):

L

l l
l 1

s() b ()


    (3.13)

A basis for ()s  defines the space of all functions of which ()s  or its approximation is an

element. With ()lb  as the lth basis function and l the lth parameter, substituting (3.13) into

(3.12) results in a linear model (Wood, 2006) so that estimation methods for linear model such as

least square method can be employed. For example, a basis for the space of cubic or less order

polynomials is

 2 3
1 2 3 4b () 1, b () , b () , b ()          

in which case we have

 2 3
1 2 3 4s()           (3.14)

The above representation is for a single 4th degree polynomial fitted to  in its entirety. As

previously noted, the natural cubic spline is the best smoothing function; in which case we have

 divided into intervals and we fit a cubic to each segment. For a similar purpose, a modified

representation of cubic spline function can be made. Let the knot locations be * , and the number

47

of the chosen knots be q, where q therefore represents the dimension or rank of the basis. The

rather complicated bases for the cubic spline (Wood, 2006) are

 *
1 2 j 2 jb () 1, b () , b () R(,), for j 1.....q 2           (3.15)

where, if we let t represent the jth knot location *
j ,

   

   

2 2

4 2

R(, t) t 1 / 2 1 /12 1/ 2 1/12 / 4

t 1 / 2 1 / 2 t 1 / 2 7 / 240 / 24

           
       
 

 (3.16)

The result is a linear model representation of Z which then allows for model estimation by least

squares:

 q 2
*

1 2 j j 2
j 1

z z s()

s() R(,)





        

        

X

 (3.17)

where  is a q-vector of real valued coefficients and the ith row of model matrix X is

 * * *
i i i 1 i 2 i q 21, ,R(,),R(,),..............R(,)         X

Further technical details about the cubic spline bases formulation can be found in (Wood, 2006).

3.5.2 Penalized Regression Cubic Splines

Once a basis has been chosen for each smooth in the model, next it is necessary to control

the degree of smoothness. One method for doing this is to fix the basis dimension q (number of

knots) at a slightly higher level than necessary and add a “wiggleness” penalty to the least square

fitting criterion (Wood, 2006). That is, fit model to the data by minimizing

48

  
1

22

0

y s"() d     X (3.18)

over all twice continuously differentiable functions (.)s having integrable second derivatives. The

first term in (3.18) measures the goodness-of-fit to the data and from here the wiggleness of the

function arises; and without a penalty term the model becomes strictly an interpolation of q knots.

The second term in (3.18) represents quantified “wiggleness” multiplied by . It penalizes the

first term. The tradeoff between the wiggleness (how closely the data points are tracked) and

smoothing (for visual pleasing and ease of interpretation) is controlled by the smoothing

parameter which weights the wiggleness. When s"() 0  a constant slope is implied, that is

s() is linear, in which case we have the standard least squares problem. Otherwise, when

s"() 0  (and therefore 2[s"()] is positive), the slope is changing and nonlinearity is present;

therefore as  approaches infinity the penalty term also approaches infinity. Obviously the

penalty term then needs to be calibrated. For example 0  implies an un-penalized regression

estimate (Hastie & Tibshirani, 1990; Wood, 2006). Too low  causes the model to fit the signal

plus the noise; the resulting excessive tracking or extra variability will lead to poor prediction of

the missing datum by the model. The idea is to choose the best value for  that will allow a

candidate additive model to maximally predict data to which it was not fitted. Fortunately there

are algorithms for finding the optimal value for  including the ordinary cross validation (OCV)

and the generalized cross validation (GCV); basically both methods find ̂ that minimizes the

difference between the true function ()s  and the spline estimate ˆ()s  :

 2

1

1
ˆ() ()

n

i i
i

CV s s
n

 


 

49

Since we do not know ()s  , the cross validation (CV) cannot be calculated directly, instead the

expected squared error in predicting a new variable is derived as 2()E CV  and worked with in

slightly different ways in the two methods; details of which can be found in (Wood, 2006). The

GCV approach has computational advantages over the former; hence GCV is preferred for

searching for the optimal , that is, selecting the degree of smoothness (Wood, 2006). Whereas

the approach to model estimation in AM is by penalized least squares, the method of choice for

estimation in GAM is penalized likelihood maximization which in practice is achieved by

penalized iterative least squares (Wood, 2006). For detailed information about the cross-

validation techniques and the model estimation methods, please refer to (Wood, 2006). In the

GAM procedure according to the mgcv package (R Development Core Team, 2008), the effective

degrees of freedom (edf) is automatically calculated as a mathematical function of  and reported

in the model output. A higher edf corresponds to greater nonlinearity.

3.5.3 Estimation in Penalized Regression Splines

Expanded details of the estimation process described in this section can be found in

(Wood, 2006). Briefly the penalty term in (3.18) being linear in the parameters  can be re-

expressed in a quadratic form of  (for cubic splines)

 

 

1
2

0

* *
i 2, j 2 i j

s"() dx

S R ,

i, j 1,...,q 2

 

    

   


 

 S

 (3.19)

where S is a matrix of known coefficients with its first two rows and columns equal to zero. It

follows that fitting the model reduces to minimizing

50

2

y     X S (3.20)

w.r.t.  given  . An optimal smoothing parameter  is chosen using the method of generalized

cross validation. For an additive model involving two smooth functions, penalized regression

spline basis is used for each smooth function. Consider two predictors U and with all values

constrained to lie in[0,1] :

  

 

1

2

2
i 1 i 2 i i i

q 2
*

1 1 2 j j 2
j 1

q 2
*

2 1 2 j j 2
j 1

y s (u) s () e ; e i.i.d. N(0,)

s (u) u R u,u

s (v) v R ,











    

     

       







 (3.21)

where 1q and 2q are the number of parameters to be estimated for the corresponding smooth

function. For identification, either of 1 or 1 is set to zero. The ith row of the model matrix for

the linear model form y    X becomes

1 2

* * * * *
i i i 1 i 2 i q 2 i i 1 i q 21,u ,R(u ,u),R(u ,u),...,R(u ,u), ,R(,),...,R(,)        X (3.22)

To estimate the parameters
1 21 2 q 2 q[, ,..., , ,...,]       , we minimize the least square objective

2

1 1 2 2y           X S S (3.23)

For non-normal data the Generalized Additive Models (GAMs) are set up as penalized GLMs and

the model is fitted by penalized likelihood maximization using penalized iterative least square.

For an example of a model that includes both non-smoothed and smoothed terms including

interaction term, let *
iX represent the model matrix of the strictly parametric (non-smoothed)

51

component of the model with its associated parameters  while the js are the smooth functions;

we have

 
j

*
i 1 i 2 i i

q

j j ji ji j
i 1

g E(y) s () s (,x) ...

s () b ()


      

   

X

 (3.24)

with g as the known link function. To make the model identifiable, the model matrices for each

smooth term is mean- or sum-centered at zero, and the model can then be represented as

 
*

1 2

1 2

g E(y)

[X : X : X :...]

[, , ,...]

 

 
        

X

X (3.25)

To suppress the wiggleness contribution from each j js (x) the likelihood ()L  of the model is

penalized to obtain ()pL  :

 p j j
j

1
L () L()

2
       S (3.26)

where the smoothing parameters j control the wiggleness and are themselves estimated. For the

proof and the iterative estimation process the reader is referred to (Wood, 2006).

3.6 Goodness of Fit and Model Comparison

For each regression equation in the ALV model we applied the generalized linear model

(Nelder & Wedderburn, 1972) so that each regression model specification is in terms of the linear

predictor X . So the deviance is output directly by the standard GLM/GAM procedure, and is

defined as

52

 sat

2
n p

ˆ ˆD 2[log L() log L()]

D 

    



 where ˆlog ()satL  is the maximized log likelihood of the saturated model, n is number of

observations, p is number of identifiable parameters, and the scale parameter 1  for the Normal

and Binomial distributions used in the development of the ALV model. Note that there are C

columns of N-vectorgenerated in each EM cycle as MCMC samples (N and C are number and

length of MCMC chains respectively). For p response variables there are p univariate regression

models fitted for each N-vector repeatedly across C columns, to yield a p C matrix of each

element of the model fit results. One of these elements is the deviance D directly estimated by

each regression model. Then the average deviance is computed over the C columns to produce a

set of average values 1 p{D ,...,D } for the p sub-models. So there are C univariate regression model

fits yielding C deviances w.r.t. each response variable. These p deviances are then summed for

the system of regression equations to give a total deviance D which indicates the overall log

likelihood of the ALV model. So, to compare nested ALV models 1 and 2 we can perform the

likelihood ratio test, where with hypothesis testing based on large sample limit we have

approximately

2 1

2
p pD1 D2  

Non-nested ALV models can also be compared on the Bayesian information criterion (BIC) and

Akaike information criterion (AIC) also which we are able to compute as follows:

AIC D 2* p

BIC D (log n) * p

 

 

53

The better fitting of the two ALV models will produce lower values of either statistic. We

considered computing the BIC and AIC also at the sub-model levels and finding the average as

done for the deviance, however we believe that more simulation studies will be required

specifically to investigate which approach should be better, and this should be a subject of future

study.

54

CHAPTER 4

COMPUTATIONAL DEVELOPMENT OF ALV MODEL

4.1 Computation Steps

The proposed ALV model was developed and written entirely in R language using the R

2.8.1 statistical application (R Development Core Team, 2008). The latent ηvector was simulated

using a random walk Metropolis algorithm available within the Markov Chain Monte Carlo

Package (MCMCpack version 0.9-4) written by Martin, Quinn, & Park (2009) in R. To simulate

the random vector η we employed the R function MCMCmetrop1 available from the

MCMCpack to construct a Markov sample from user-defined conditional distribution of η , using

a random walk Metropolis algorithm. For diagnostic purpose the output of the MCMC

simulations is analyzed with the CODA (Convergence Diagnostics and Output Analysis) package

(Plummer, Best, Cowles, & Vines, 2006) that comes with the MCMCpack.

The steps involved in the extended MCEM computations are graphically displayed in

Figures 4.1a-c reflecting summaries of the equations (2.20) to (2.28) . For the kth MCEM

iteration, a single chain Markov sample of size C was drawn from the conditional distribution of

η for the ith subject in the E-step via the Metropolis algorithm (Figure 4.1b). This yields for all

subjects N independent Markov samples stored in an N×C matrix. Each column of this matrix

constitutes independent observations and was plugged into the Q function one column at a time to

substitute for η , given the current (kth) parameter estimates. The availability of estimated N-

vector η as a predictor variable then allows for the new (k+1)th MLE’s and their standard errors

55

to be obtained at the M-step as direct outputs by fitting standard regression models including

GAM (Figure 4.1c).

The ALV model at this stage accepts continuous indicator variables (Y’s), one

continuous or binary distal outcome (Z), and a two-category group or treatment variable (GRP).

In addition it can also accept a cluster variable as a random effect; however in its current form he

ALV model can optionally include the cluster variable in its analysis only at the final EM

iteration. That is, the Additive component will switch from GAM to GAMM in the final EM

iteration to accommodate the the clustering factor in the data. Technically the GAMM analysis

procedure combines Linear Mixed Model (LME) with GAM within its algorithm (Wood, 2006).

Figure 4.1a ALV Algorithm Flow Chart: Overview of EM Setup

1

log () log (, | ;)
N

i i i
i

L p y z


  

(1) ()arg max (,)k kQ


    (1)(| , ,)k
i i ip y z  (1)k

1

() ()

1

()

1

log () log (, , ;)

(,) log (, , ;) | , ,

log (, , ;) (| , ,)

N

c i i i
i

N
k k

i i i i i
i

N
k

i i i i i i
i

L p y z

Q E p y z y z

p y z p y z d









 
  

 













  

    

    

56

Figure 4.1b ALV Algorithm Flow Chart: Implementing the E-Step via MCMC Process

()
()

()

()

() ()

(, , ;)
(| , ;)

(, ;)

(, , ;) /

(| ;) (| ;) () /

k
k i i i

i i i k
i i

k
i i i

k k
i i y i i z i

p y z
p y z

p y z

p y z h

p y p z p h

  


 

    







1/2/2 1

2 1/2 2
2

/2

1
(| ;) (2π) exp () () ,

2

1
(| ;) (2π) exp () ,

2

1
() (2π) exp .

2

p
i i y i i i i

i i z i i

m
i i i

f y y y

f z z a

f

 





        
      

    

       

   


  

* () * () *
() *

() () () () ()

(| ;) (| ;) ()
(,) min 1,

(| ;) (| ;) ()

k k
i i y i i z ic

i i c k c k c
i i y i i z i

p y p z p

p y p z p

    
  

    
  

    

 
 

* 1 * 2 * 2 * *

() 1 () 2 () 2 () ()

1
exp () () ()

2
min 1,

1
exp () () ()

2

i i i i i i i i

c c c c c
i i i i i i i i

y y z a b

y y z a b

 

 

              
 

              

        

        

57

Figure 4.1c ALV Algorithm Flow Chart: Summary of the MCEM Implementation

() () ()

1 1

1
(,) [log (, , ;) | , ,]

C N
k c k

i i i i i
c i

Q p y z y z
C  

     

(1) ()

() ()

1 1

() ()

1 1

arg max (,)

1
arg max [log (| ;)

1
arg max log (| ;)

k k

C N
c k

i i y
c i

C N
c k

i i z
c i

Q

p y
C

p z w
C







  

 

 



 

 



 
  

 
 

 
 





The main parameters to be estimated require start values. We adopt the following scheme

to facilitate fast convergence and efficiency of the AVL algorithm. The calculated sample means

and variances of the Y’s are employed as start values for the Y-intercepts  and measurement

error variances  while Y-slopes  are arbitrarily assigned start values, e.g. 1.0. For the GAM

component, Z is regressed on GRP and Y’s to obtain a start value for the Z intercept , but the

initial error variance 2 is also obtained from the sample variance. The above first line start

58

values are then used to compute the empirical Bayes’ (EB) estimates to serve as start values for

the N-vector η . Alternatively, a standard normal random sample can be generated as the initial η

vector and we found this to work as well for our simulated data but in general this is not our

preferred choice. It is important to choose start values that allow the MCMC chain to start as

close to the center of the target distribution (conditional distribution of η) as possible (e.g. EB

estimates, approximate MLE’s) as this will greatly reduce the required burn-in time and facilitate

a well mixing chain (Walsh, 2004). In a well mixing chain the entire space of the target

distribution is sufficiently sampled. In a situation where the target distribution has multiple peaks,

a simulated annealing approach would be an alternative for obtaining start values on a single-

chain such as ours (Walsh, 2004), but our target distribution is uni-modal.

The ‘pseudocode’ for ALV model is as follows:

Step 1. Preliminary

Dataset: Arrange variable columns in the order 1 p{Y ,..., Y , Z, GRP, Cluster} . Remove rows with

missing values.

Start values –

 Parametric coefficients: supply 0 's , compute 2
0 0 0's, 's, 's  

 Generate or compute the initial vector 0

 Nonparametric coefficients: regress Z on 0 using the GAM function to obtain initial

MLE’s of 0 and 0 's

 Use 0 (rescaled to lie in [0,1]) to construct initial GAM model matrix 0Xmat

59

Step 2. Start EM Loop

for k = 1 to maximum iteration do until convergence

 update EM counter, parameters, vector - to give kth values

 create matrices for holding results generated in kth iteration

Metropolis Loop (generates MCMC samples)

for i = 1 to N do

 update subject counter

 input: subject level data: ith row of (i) dataset (ii) vector (iii) Xmat

 apply MCMCmetrop1R function to the input data (subject level)

 output: N C  -matrix; the rows consist of N independent Markov chains of length

C; each column is an N-vector 

end for

Regression Loop (produces MLE’s)

for j = 1 to C do

 input: (i) N C matrix consisting of columns of  (ii) dataset

 regression models are plugged into the conditional likelihood functions:

 fit linear model to each Y-indicator with jth column of  -matrix as a lone predictor

60

 fit GAM to Z (response variable) with jth column of  -matrix + GRP + 2-way

interaction terms as predictors

 output: (k+1)th set of (i) mle’s { 's, 's, 's   } (ii) standard errors of mle’s (iii) {

2
0 0's, 's  } computed from residuals of regression equations (iv) deviance estimate

for each model fit.

end for

 A total of C regression equations are fitted per response variable to yield C estimates

per parameter. Final (k+1)th estimates are the average of C estimates

Update Xmat

 Compute the row means of the N C eta-matrix to yield  for N subjects

 Use N-vector  to generate the (k+1)th Xmat

Compute convergence errors. If convergence, stop, else return to step 2.

End EM Loop

4.2 Criteria for Convergence of ALV Model

Convergence issues are addressed at two levels: how to ensure that the Metropolis

sampler has reached a stationary distribution; and how to diagnose convergence for the E-M

iterations and ensure that the parameter estimates converge to their true values.

61

4.2.1 Convergence of MCMC

 There are two main concerns including how to eliminate dependence on start values and

how to diagnose convergence of the MCMC iterations. Also there are two schools of thought on

the appropriate approach to address these concerns: generate multiple chains from different start

values, or simply use one long chain because this is more robust with respect to poor start values

(McLachlan & Krishnan, 2008). According to the authors, whether one uses one long Markov

chain or uses multiple short chains, the diagnostic tests of convergence can still be fallible; so the

focus of MCMC runs should be on the precision of estimation of the expectation(s). Therefore,

considering the above and the fact that our ALV algorithm involves N number of MCMC runs

per EM cycle; obviously we prefer the single chain approach. Later in our simulation studies, we

will place emphasis on the precision of MCMC estimates (compared to true values) in the

evaluation of convergence of the ALV model.

 We took advantage of the available diagnostic tests that can be conducted within the MCMCpack

(Martin, Quinn, & Park, 2009) to confirm that the Markov chain converges sufficiently close to

its stationary distribution. Using the R function ‘raftery.diag’ we were able to calculate the

effects of autocorrelation in a short pilot run of a Markov chain and use the results to determine

an adequate length required for the chain to achieve a stationary state. If the estimated

autocorrelation is high (‘dependence factor’ estimate > 5), the required length of chain will be

large and this can pose computer memory challenge. The memory demand can be reduced by

thining the output whereby every nth consecutive value after burn-in period is selected and stored

for use in subsequent analysis (Walsh, 2004). The results of the Raftery diagnosis also included

the estimated number of ‘burn-in’ iterations to be thrown away at the beginning of the Markov

chain, as well as plots of the sampler run.

62

4.2.2 Convergence of EM

The determination of convergence in the Monte Carlo EM extension is not trivial; the

usual standard approach is not suitable and non-convergence may be compounded by

implementation or numerical errors (Lee, Song, & Lee, 2003; McLachlan & Krishnan, 2008).

According to the authors, by approximating the expectation at the E-step with values generated

from MCMC samples, a Monte Carlo error is introduced and the monotonicity property of the

EM algorithm is lost. One approach to monitoring of EM convergence therefore is to plot the

values of parameter estimates ̂ against the index of iteration and conclude that convergence has

taken place if the process has stabilized with random fluctuations around the estimates (Wei &

Tanner, 1990; McLachlan & Krishnan, 2008). When the number of parameters to be estimated is

large (as in our case) an alternative approach is to monitor changes in a function of ̂ such as the

log-likelihood function (Meng & Schiling, 1996). It is also known that the log-likelihood function

can still fluctuate randomly along the EM iterates even in the absence of implementation or

numerical errors (Lee, Song, & Lee, 2003), however this has been shown to be adequate for the

purpose of statistical inference (Lee & Zhu, 2002; Meng & Schiling, 1996). Although we

included both of these methods in our approach, we placed relatively more emphasis the

monitoring of log-likelihood function.

A special method is required to monitor convergence of a likelihood function in the EM

setting. We would be interested specifically in the change in observed data log-likelihoods

between two consecutive EM iterations (k, k+1), which can be obtained from the logarithm of the

ratio of the two likelihood values (logLR):

(1)

(1) ()
()

p(, z|η;)
log LR(,) log

p(,z|η;)


 

k
k k

k

y

y


 


 (4.1)

63

Ideally the ratio will be easy to evaluate if using marginal likelihood after integrating outη .

However, similar to the experience of Lee, Song, & Lee (2003) the observed likelihood in our

case is difficult to obtain analytically, so we follow the authors’ approach (bridge sampling

method) by applying the Meng and Schiling’s approximation formula (Meng & Schiling, 1996)

based on the complete data likelihood with respect to cth MCMC iterate within the kth EM cycle

as follows:


1/2k,(c) (1)

(1) ()
k,(c) ()

1

1/2k+1,(c) ()

k+1,(c) (1)
1

p(,z,η |)
log LR(,) log

p(,z,η |)

p(,z,η |)
log

p(,z,η |)









      
   

      
   





kC
k k

k
c

kC

k
c

y

y

y

y


 






 (4.2)

where k(c){η , c = 1,....C} are simulated from the conditional distribution of ηevaluated at kth

estimates. The aim is to claim approximate convergence when the change in consecutive

likelihoods along EM iterations becomes very small and fluctuates within a desired level, that is,

the log of the likelihood ratio fluctuates near zero. The approximation is claimed to be sufficient

for the purpose of statistical inference (Meng & Schiling, 1996; Lee & Zhu, 2002). Similar to the

monitoring of parameter estimates, approximate convergence is assumed when the estimated

logLR approaches and fluctuates in the neighborhood of zero.

Most importantly, once within the region of such steady fluctuation, it is necessary to

come up with appropriate values of parameter estimates at convergence. Some authors obtained

the average of all values within the region for the final estimates with respect to individual

parameters, while some selected the parameters values at arbitrary kth iteration within the region

as the MLE’s (Lee, Song, & Lee, 2003). In our case, regression model deviances are also

available as output using our algorithm. So, in order to establish a more objective criterion for

64

point convergence, we decided to also monitor the ALV model deviance computed as the sum of

deviances for all regression model fits comprising the ALV model. So, from within the steady

fluctuation region we choose the parameter values corresponding to the point of minimum

deviance across the EM iterations i.e. set of parameters that provide the best overall model fit to

the data. So our strategy for deciding EM convergence is to first monitor the log of the likelihood

ratio to ensure the region of stable fluctuation around zero is achieved, then choose parameter

estimates associated with minimal model deviance within the stable region.

65

CHAPTER 5

APPLICATION TO SIMULATED DATA

5.1 Simulation Design and Background Information

A simulation study was carried out to evaluate the properties of the estimation procedure

of the proposed ALV model. The simulation data structure mimics a randomized control trial

investigating the variation in impact of treatment G on an outcome Z across the levels of a

baseline risk (); with the additional challenge that  is unobservable and must be inferred from

five observed variables Y1 to Y5. The Y’s are assumed to be continuous and multivariate

Normal, G has two levels, and Z may be binary or continuous with a normal distribution. Also,

the Y’s and Z are conditionally independent given . The ALV model in this case consists of six

regression sub-models corresponding to five Y’s and one Z. We used different specifications,

each with 50 replicated datasets, and repeated for each of three sample sizes N = 100, 200, 300

(see Table 5.1). All simulation datasets were generated in R 2.81 (R Development Core Team,

2008). Complementary analyses were performed in Mplus version 5.1 (Muthen & Muthen, 2008).

The simulations were used to assess two major important questions for the model: (1)

what is the long term behavior of the ALV model (pattern of convergence)? (2) How well does

the ALV model perform under (a) different study sample sizes and (b) different functional forms

of the relationship of Z to ? To answer the posed questions we performed simulations under 12

different scenarios constructed from the combinations of the following data structures (see Table

5.1): Z-scale (continuous and binary),  -effects (linear and nonlinear), and sample size (100,

66

200, 300). Under each scenario we investigated (i) the optimality requirements for the MCMC

sampler, (ii) the ALV model convergence characteristics with a single run of the model through

100 EM iterations, and (iii) the accuracy of the ALV model estimates and their standard errors by

running 50 replications. Regarding the MCMC sampler optimality conditions, we pilot tested the

MCMC sampling to (a) fine tune the variance of proposal distribution so as to achieve a

Metropolis sampling acceptance rate of between 0.43 and 0.47, (b) determine the shortest length

of Markov chain required to achieve stationarity (burn-ins), (c) assess variance inflation factor I

of the data, if 4I  then determine how much thinning is required to reduce the autocorrelation

in the data to a minimum, (d) determine the optimal size of MCMC samples that is required to

estimate  accurately and efficiently, i.e. the minimum size that is adequate for the purpose of

statistical inference.

Table 5.1 Twelve Simulation Scenarios used to Assess ALV Model Performance

 Sample size

Scale of Z Z dependence on ηand η*Z 100 200 300

Continuous Linear 1 2 3

 Nonlinear 4 5 6

Binary (logit) Linear 7 8 9

 Nonlinear 10 11 12

67

If we can assume a joint multivariate normality for all dependent variables (Y’s and Z)

the ALV model analysis will mimic a simple linear CFA. However, unlike the conventional

CFA, in addition to solving linear equations, the ALV model is also able to model complex and

unknown relationships in the Z sub-model component. So the major difference between a simple

linear CFA and the proposed ALV model in its current formulation is found in the functional

form of the regression sub-model of Z (the GAM component). Therefore for brevity we illustrate

the results of our simulation study with the report on six representative scenarios that capture the

span of ALV performance under two standard conditions (simplest & most complex) based on the

functional form of the Z regression equation. The two functional forms include a continuous Z

linearly related to both  and G interaction term (1st row of Table 5.1), and a binary Z related

to both predictor terms in a nonlinear fashion (last row of Table 5.1), and are presented as

schemes 1 & 2. The first standard condition (1st row, scheme 1) allows for the assessment of ALV

performance when joint multivariate normality can be assumed for the data (Y’s and Z

conditioned on), equivalent to a standard linear CFA. Importantly, the ALV model results in

this case can be compared to the results of CFA performed by a standard statistical application

such as Mplus. The second simulated condition (last row, scheme 2) enables us to evaluate the

ALV model application to more complex data. Such condition includes when Z has a binary

distribution conditioning on , plus the presence of a complex nonlinear dependence of Z on the

Y’s indirectly through . The dependence is not fully specified except that the variables are

conditionally independent. The emphasis in the latter evaluation is therefore on how well the

ALV model is able to recover the true  and uncover the functional forms used to generate the

data.

68

 For all simulations, the measurement sub-model component of the ALV model connecting the

latent and the five observed indicators ,i=1,...Niy is given by

 i iη ; η N(0,1)i iy       .

Population values for this component are assigned as 1 5{υ ,...,υ } 0  , 1 5{λ ,...,λ } 1  , and

1 5diag{θ ,...,θ } 0.5  . A standard normal N-vector was generated first, then the response

variables Y’s and Z were generated conditioned on . While a linear model is specified for each

Y, both linear and nonlinear regression models of Z (second component of the ALV model) were

specified. Nonlinearity is described by inclusion of appropriate higher degree polynomial terms in

the model. Let n = N/2 where N is the number of subjects in the sample; separate specification

for each treatment group G is as follows:

i=1:n 00 10 i=1:n i=1:n 2
i

i=(n+1):N 01 11 i=(n+1):N i=(n+1):N

2 3
i=1:n 00 10 i=1:n 20 i=1:n 30 i=1:n

i=(n+1):N 01 11 i=(n+1):

G=0: z =β +β η +e
Scheme1(Linear) ; e ~N(0,σ)

G=1: z =β +β η +e

G=0: z =β +β η +β η +β η
Scheme 2 (Nonlinear)

G=1: z =β +β η





2 3
N 21 i=(n+1):N 31 i=(n+1):N+β η +β η





 (5.1)

For the second scheme we then simulated binary *Z to have probability

prob(z=1)=1 [1+exp(-z)] where z is probability on the logit scale. Model specifications for

scheme 1 were 00 01β =β =0, 10β =0.2, 11β =0.7, and σ=0.5. For the second scheme we specified

00 10β =1,β =-1, 20 30β =-0.5,β =1for group 0; 01β =0, 11β =-3, 21β =0.4, 31β =0.6 for group 1.

69

5.2 Monitoring Convergence

5.2.1 Convergence Pattern: MCMC loop

The studies of the MCMC convergence were carried out at the subject level where the

conditional distribution of  is randomly generated from an inner loop inside an EM iteration

cycle. Guided by the Raftery diagnostic tests results from several runs in which we looked at the

times series trace of across number of MCMC iterations, we found that a relatively shorter

MCMC chain with 400 iterations after a burn-in period of at least 100 iterations is generally

sufficient for the purpose of inference with the ALV model. For all our simulated data the

calculated sample inflation factor due to autocorrelation was generally low at about 0.4 (less than

0.5) (Chib & Greenberg, 1995), and we found that thinning of the MCMC samples did not change

our results in any significant way. The acceptance rates for the Metropolis algorithm ranged

between 0.40 and 0.47 (Lee & Zhu, 2002; Gamerman & Lopes, 2006).

For a snapshot illustration the results of three Metropolis sampling runs are shown in

Figure 5.1; the purpose here is to compare the graphical outputs of the Raftery test for three

different burn-in periods. The dataset used was generated according to scheme 1, and the results

for the subject sample size N =300 is reported here. Potentially N trace/density plots could be

generated in each EM cycle for all the subjects in the sample. However each run producing a

trace plot in the Figure 5.1 occurred in the kth EM cycle and was carried out on the ith subject

randomly selected from the subjects sample stratified by treatment group. Each plot in the left

column depicts a trace of accepted i values across 400 random-walk Metropolis samplings.

Note that by default in R (difficult to override) the ‘N’ in the density plot label (right panels)

represents MCMC sample size (for the ith subject) and not subject sample size; this confusion

with use of symbols arises in this instance only. So each density plot depicts the distribution of

70

MCMC samplings from a single run for the ith subject in the kth EM cycle; under different burn-

ins. For the trace plots (left panels), the horizontal scale starts from the (b+1)th MCMC iteration

after a burn-in period of length b. Any long flat segment of the trajectory corresponds to iterations

where all proposed ηvalues were being rejected; this is not desirable. The presence of multiple

vertical spikes indicates well explored sampling space. We want the Markov chain to be ‘well

mixing’ and this is achieved when ‘the time series looks like white noise’ (Walsh, 2004). In

addition, if stationarity has been reached the average value of ηacross the iterations should be

approximately linear and horizontal; if it appears to be drifting, it may suggest inadequate burn-in

period.

The results reported here in Figure 5.1 are representative of our findings for several

subjects with different sample sizes under the different model specifications we tested. They

show a fair settling of the traces (linear trend) with good mixing produced with the three choices

of burn-in, therefore we found the shortest burn-in period of 100 to be most efficient. In addition,

apart from the relatively greater computation time and memory demand by the longer burn-in

periods, we did not see any noteworthy difference in the model estimates under burn-in periods of

100 or more.

71

Figure 5.1 Trace and Density Plots of Markov Samples for Individual Subjects (Scheme 1)

5.2.2 Convergence Pattern: EM loop

We report here the results of our investigation of the long term behavior of the ALV

model estimation process with applications to simulated data. For each ALV model run we

monitored across the EM iterations (i) convergence errors, (ii) approximate log of observed

B
u
rn
‐i
n
 =
 1
0
0

B
u
rn
‐i
n
 =
 2
0
0

B
u
rn
‐i
n
 =
 4
0
0

100 200 300 400 500

-0
.6

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1

0
.0

Iterations

Trace of var1

-0.6 -0.4 -0.2 0.0

0
1

2
3

4

N = 400 Bandwidth = 0.03218

Density of var1

3rd Randomly Selected Subject (GRP=1)

200 400 600

-0
.8

-0
.6

-0
.4

-0
.2

0
.0

Iterations

Trace of var1

-0.8 -0.4 0.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

N = 400 Bandwidth = 0.04863

Density of var1

5th Randomly Selected Subject (GRP=2)

400 500 600 700 800

-0
.2

0
.0

0
.2

0
.4

Iterations

Trace of var1

-0.4 0.0 0.2 0.4 0.6

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

N = 400 Bandwidth = 0.04876

Density of var1

5th Randomly Selected Subject (GRP=2)

72

likelihood ratio derived by bridge sampling, (iii) total ALV model deviance, and (iv) parameter

estimates. We calculated convergence errors separately for two sets of parameters, the smoothing

coefficients and the remainder parametric ML estimates. To compute the convergence error for

the current EM iteration given P parameters we apply the formula:

  
P 2

p p
p 1

new error old estimate - new estimate


  (5.2)

Two representative plots of sequences of convergence errors across 100 EM iterations are

displayed in Figure 5.2. The two convergence error curves in either plot (dashed line for the

parametric set of estimates and solid line for the smoothing spline coefficients) show dramatic

drop before flattening out. The steady portion of each trajectory is fairly linear for the parametric

set but values of the smoothing coefficients show random fluctuation within a small range. Note

that the starting convergence error for the parametric set is relatively small for scheme 1 that

corresponds to linear CFA analysis. This is because we started very close to the true values of 

vector by using the empirical Bayes’ estimates of  as start values in the Metropolis algorithm.

However such approximation of  is less accurate in scheme 2 where multivariate normality does

not hold, therefore the corresponding starting convergence error in this particular case is

expectedly higher. The patterns are otherwise rather similar.

73

Figure 5.2 Convergence Errors versus EM Iteration

In the same ALV model run (scheme 2), the consecutive values of log of likelihood ratios

and the summed deviances from all six regression sub-model estimations were plotted against the

index of EM iterations (Figure 5.3). From the top graph we see that the log of likelihood ratios

curve quickly approaches zero and thereafter continues to fluctuate within a narrow band around

zero. This pattern is consistent with reports of previous similar studies in which the authors used

the Monte Carlo EM (MCEM) approach (Lee & Song, 2007; Lee & Zhu, 2000; McLachlan &

Krishnan, 2008). In the bottom graph of Figure 5.3 the total deviance scores had been rescaled so

that the minimum value equals zero. The deviance curve reaches a minimum in the 4th iteration

(vertical dashed line) before stabilizing; based on our criteria for convergence we concluded

convergence at this point. A trajectory with an early ‘pit’ followed be steadiness has been the

typical finding from all our simulations results describing the trace of ALV model deviance.

Therefore we believe that the bottom of the ‘pit’ likely represents a global minimum on the

trajectory. Although the linear model structure probably indicates this is the case, we cannot

Scheme 1b:
Continuous Z, linear model, N = 200

Scheme 2:
Binary Z, nonlinear model, N = 200

0 20 40 60 80 100

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Iteration

C
o
n
ve

rg
e
n
ce

 E
rr
o
rs

{mu's, lambda's, theta's, sigma^2's}
beta's

0 20 40 60 80 100

0
.0

0
.5

1
.0

1.
5

2.
0

2
.5

3
.0

Iteration

C
o
n
ve

rg
e
n
ce

 E
rr

o
rs

{mu's, lambda's, theta's, sigma^2's}
beta's

74

assume this in general. For efficiency, once convergence is decided at this minimum model

deviance, the ALV algorithm is terminated at a couple of EM iterations afterwards.

Figure 5.3 Scheme 2: Binary Z, Nonlinear Model, N=200

Just for completeness we also monitored the individual parameters in the parametric set

of estimates just to explore how these parameters behave as the iterations in EM increase; some

results are displayed in Figures 5.4 and 5.5 where start values on the Y-axis correspond to zero

iteration. From these Figures, the residuals (thetas, sigma^2) and z-intercept (GAM component)

stabilize rather quickly by the 4th iteration, our decided point of convergence; however the y’s and

lambdas (measurement intercepts and slopes) show gentle steady increase and only start to

stabilize as from around the 100th EM iteration.

Again, from all of our simulation the results the model deviance typically becomes stable

as from around 10th to 20th iteration after the minimum deviance has already been achieved;

0 20 40 60 80 100

0
.0

0
0
.1

5

Iteration

L
o
g
 o

f l
ik

e
lih

o
o
d
 r
a
tio

Log of Observed-Data Likelihood Ratio
 Versus EM Iteration from the 2nd Iteration

0 20 40 60 80 100

0
4
0

1
0
0

Iteration

T
o
ta

l d
e
vi

a
n
ce

Scaled Total Deviance Versus EM Iteration

75

similar patterns are exhibited by the model residuals. Therefore we suspect that the drifting values

of the y-intercepts and lambdas indicate possible multiple solutions; this may need to be explored

further in future studies. We believe these findings are further justifications for our approach of

choosing solutions at the point of minimum model deviance as these solutions will be better than

if chosen at any other point in the iterations. For these reasons, we did not see the need to extend

the EM runs beyond 100 iterations just to show where the y-intercepts and lambdas finally

stabilize.

Figure 5.4. Sequences of Parameters (Scheme 1) Across 100 EM Iterations

0 20 4 0 6 0 80 1 00

-0
.1

0
.1

0
.3

0
.5

i te ra t ion

e
s

ti
m

a
te

Y-inte rc e pts

0 2 0 40 6 0 8 0 10 0

0
.5

1
.5

2
.5

it erat ion

e
s

ti
m

a
te

La mbd a s

0 20 4 0 6 0 80 1 00

1
.0

1
.5

2
.0

i te ra t ion

e
s

ti
m

a
te

The ta s

0 2 0 40 6 0 8 0 10 0

0
.0

1
.0

2
.0

it erat ion

e
s

ti
m

a
te

S i gm a ^2 -.- Z-inte rc --

76

Figure 5.5. Sequences of Parameters (Scheme 2) Across 100 EM Iterations

5.3 Assessing Performance of ALV Model

We performed 50 replications of the ALV model analysis using datasets of different

sample sizes (N = 100, 200, 300) generated according to the scheme 1 where joint multivariate

normality is assumed for the {Y’s, Z}. For the Monte Carlo part of each replication, we used

burn-in =100, MCMC sample = 400. To be conservative we stopped the ALV algorithm at two

iterations subsequent to reaching the minimum point on the total deviance curve. This is based on

our consistent findings of an early convex shape (pit) before a prolonged flat trajectory for all the

plots of deviance against EM iterations in our simulations for studying ALV model convergence

(see section 5.2.2).

0 20 40 60 80 100

-0
.7

-0
.4

-0
.1

iteration

es
tim

at
e

Y-intercepts

0 20 40 60 80 100

0.
5

1.
5

2.
5

iteration

es
tim

at
e

Lambdas

0 20 40 60 80 100

0.
2

0.
6

1.
0

1.
4

iteration

es
tim

at
e

Thetas

0 20 40 60 80 100

-1
.5

-0
.5

0.
5

iteration

es
tim

at
e

Sigma^2 -.- Z-interc --

77

To evaluate the overall accuracy of the ALV model we calculated the following summary

statistics for each parameter estimate based on 50 replications:

Bias– This was calculated as the difference between the true value and the computed mean of

estimates.

Standard deviation (SD) – This is the empirical standard deviation of the parameter estimates

across replications.

Root mean square error (RMSE) – This was calculated as the square root of the sum of the

variance (of the estimates across replications) and the squared bias.

Standard error average (SE) – This is the mean of the standard errors estimated by ALV model

for each parameter estimate across the replications.

SE/SD – This ratio was used to assess the accuracy of the standard errors estimated by the ALV

model. If the number of replications is sufficiently large, the empirical SD can be taken as the

standard error of estimate. Therefore, assuming we have sufficient number of replications,

correctly estimated SE should closely approximate the empirical SD. However given the

extensive computations involve in our simulations we have arbitrarily limited our replications to

50.

5.3.1 Performance under Scheme 1

The replication study based on linear models (scheme 1) helps establish that the ALV

algorithm was set up correctly; and the results are reported in Table 5.2. Overall, the estimates

produced by the ALV model are close to their true values as evidenced by the very small

RMSE’s, and the values further reduce (i.e. the performance improves) as the sample size

78

increases. However, the residual variance estimates (theta’s, sigma^2) show little change across

the different sample sizes, possibly masked by round-off errors. In addition, the estimated

residual variances are considerably smaller than the specified values for the error terms (‘true

values’) used in generating the data, hence the high values of recorded biases. Alternatively the

true values of the residual variances may be approximated by replicating OLS regression

equations with true eta as predictor, but we decided that this is not crucial to our study. While the

bias associated with the y-intercept estimates declines as sample size increases, no clear pattern is

seen with respect to the estimated slopes (lambdas). The recorded bias in z-intercept estimation

appears not to be influenced by sample size. Also, while the SE/SD columns show values close to

1 for the intercepts and thetas, the values recorded for the lambdas are small. This indicates

potential bias (or possibly imprecision due to insufficient number of replications) in the ALV

model estimation of standard errors of estimates for the lambda parameters specifically, although

there is improvement as sample size increases.

Based on our simulation findings above we believe that the measurement part of the ALV

model may not yield unique solutions to the parameter estimates (intercepts and lambdas) under

the current stopping rule we have adopted for convergence. As previously mentioned in earlier

section, the potential existence of multiple solutions may be reflected in the delayed stabilization

seen for the Y-intercepts and lambdas long after the thetas, Z-intercept and sigma^2 have

stabilized (see Figures 5.4 & 5.5). Based on our stopping rule, convergence is diagnosed at the

point of minimum deviance on the condition that the approximate observed log-likelihood ratio

has stabilized (is fluctuating around zero) (see Figure 5.3), even when the Y-intercepts and

lambdas are yet to. Although thereafter the stable sequence of the model deviance did not change

considerably from the minimum, it is most efficient to stop the algorithm soon after the minimum

is crossed. We believe that running the model longer than is allowed by our stopping rule will not

79

yield improvement in the estimation of the latent variableηwhich is our major focus, however

further studies are needed in this area.

In addition to the above replication study of ALV model performance we also compared

its analysis results to those obtained from a standard reference statistical application such as

Mplus. Both statistical methods were applied however to only one copy of the simulated datasets

(scheme 1, N = 300), in which a simple confirmatory factor analysis (CFA) was performed in

Mplus. Although no definitive conclusion can be drawn from the results based on a single

replication, the following comparison analyses offer a glimpse into some other aspects of the

performance of ALV model. We found that the results of both analyses (see Table 5.3) are

similar; although relatively smaller standard errors are recorded for the ALV model, the residual

variance estimates from both models are close.

Next we used the results of the same set of analyses (one replication, N=300) to make

comparisons between (1) the true η , (2) Empirical Bayes (EB) estimates of η̂obtained from

Mplus output, and (3) MCMC estimated η̂ from the ALV model. As revealed in Figures 5.6 and

5.7, the ALV model estimated η̂ is nearly identical in distribution to both true ηand EB

estimates. This suggests that the ALV algorithm is able to accurately estimate the latentη

(conditional distribution) underlying the outcome variables Y’s and Z in the data. These results

based on a single dataset are only preliminary; the accuracy of ALV model in estimating the

latent factor will be examined further with replication studies later under scheme 2.

80

Table 5.2 ALV Model Estimation Performance under Scheme 1 (50 Replications)

Conditional on η , Y’s are Linearly Related to Z

 N = 100 N = 200 N = 300

Parameter Pop Bias SE/SD RMSE Bias SE/SD RMSE Bias SE/SD RMSE

Y1 ‐intercept 0

‐ 0.161 0.906 0.026

‐0.085 0.982 0.007

0.012 1.029 0.000

Y2 ‐intercept 0

‐ 0.159 0.896 0.026

‐0.088 1.071 0.008

0.010 1.066 0.000

Y3 ‐intercept 0

‐ 0.160 1.003 0.026

‐0.090 0.816 0.008

0.011 1.017 0.000

Y4 ‐intercept 0

‐ 0.164 1.276 0.027

‐0.090 1.198 0.008

0.011 1.019 0.000

Y5 ‐intercept 0

‐ 0.160 1.050 0.026

‐0.090 0.934 0.008

0.013 1.094 0.000

lambda1 1

0.076 0.493 0.007

‐0.118 0.649 0.014

0.091 0.720 0.008

lambda2 1

0.084 0.518 0.009

‐0.119 0.571 0.014

0.090 0.613 0.008

lambda3 1

0.085 0.532 0.009

‐0.118 0.604 0.014

0.091 0.651 0.009

lambda4 1

0.078 0.510 0.008

‐0.116 0.474 0.014

0.093 0.657 0.009

lambda5 1

0.083 0.487 0.009

‐0.115 0.576 0.014

0.093 0.625 0.009

theta1 0.25*

‐ 0.218 NA 0.047

‐0.218 NA 0.047

‐ 0.217 NA 0.047

theta2 0.25*

‐ 0.216 NA 0.047

‐0.217 NA 0.047

‐ 0.217 NA 0.047

theta3 0.25*

‐ 0.218 NA 0.048

‐0.217 NA 0.047

‐ 0.217 NA 0.047

theta4 0.25*

‐ 0.216 NA 0.047

‐0.216 NA 0.047

‐ 0.217 NA 0.047

theta5 0.25*

‐ 0.217 NA 0.047

‐0.218 NA 0.047

‐ 0.217 NA 0.047

Z ‐ intercept 0

0.002 1.064 0.000

‐0.002 1.188 0.000

0.032 1.009 0.001

sigma^2 0.25* ‐ 0.215 NA 0.046 ‐0.211 NA 0.045 ‐ 0.210 NA 0.044

* Variance of error term used in simulation

81

Table 5.3 Results of ALV and Mplus Analyses of a Single Dataset (Scheme 1, N=300)

Conditional on η , Y’s are Linearly Related to Z

 MPLUS ANALYSIS ALV ANALYSIS

Parameter Estim S.E. Estim S.E.

Y1‐ intercept

‐0.007 0.061

‐0.014 0.010

Y2‐ intercept

0.034 0.060

0.027 0.011

Y3‐ intercept

0.000 0.060

‐0.007 0.012

Y4‐ intercept

0.009 0.059

0.002 0.010

Y5‐ intercept

0.029 0.059

0.023 0.010

lambda1

1.031 0.047

1.104 0.011

lambda2

1.023 0.047

1.096 0.011

lambda3

1.014 0.046

1.086 0.012

lambda4

1.011 0.046

1.082 0.011

lambda5

1.001 0.046

1.072 0.011

theta1

0.038 0.004

0.031 NA

theta2

0.040 0.004

0.033 NA

theta3

0.047 0.005

0.040 NA

theta4

0.038 0.004

0.031 NA

theta5

0.035 0.004

0.029 NA

Z ‐ intercept

‐0.037 0.019

0.008 0.012

82

Figure 5.6 Boxplots of Eta Produced from Three Sources (Scheme 1, N = 300)

Conditioned on η , Y’s are Linearly Related to Z

Figure 5.7 Q-Normal Plots of Eta Produced from Three Sources (Scheme 1, N = 300)

Conditional on η , Y’s are Linearly Related to Z

-3
-2

-1
0

1
2

3

T R U E

-2
-1

0
1

2
3

M P L U S

-2
-1

0
1

2
3

A L V

- 3 - 1 0 1 2 3

-3
-2

-1
0

1
2

3

T R U E

T h e o r e t i c a l Q u a n t il e s

S
a

m
p

le
 Q

ua
nt

ile
s

- 3 - 1 0 1 2 3

-2
-1

0
1

2
3

M P L U S

T h e o r e t i c a l Q u a n t il e s

Sa
m

pl
e

Q
ua

nt
ile

s

- 3 - 1 0 1 2 3

-2
-1

0
1

2
3

A L V

T h e o r e t i c a l Q u a n t i le s

S
a

m
pl

e
Q

ua
nt

ile
s

83

To assess the quality of the fitting process of the GAM component of the ALV model, some

basic residual plots were produced (Figure 5.8) using the gam.check routine in R (Wood, 2006).

The closeness of the Q-Q plot to a straight line validates the Gaussian assumption for the model

and the histogram of the residuals is consistent with normality. The plot of residuals versus linear

predictors (top right) shows that the assumption of constant variance as the mean increases is not

violated. The bottom right plot shows a positive linear correlation between the response and fitted

values.

Figure 5.8 Model Checking Plots: GAM Component of ALV Model (Scheme 1, N = 300)

Conditional on η , Y’s are Linearly Related to Z

The same analysis (based on a single dataset) is also used to further illustrate with an

example of how convergence is decided in a simple run of the ALV algorithm with the results of

the monitoring displayed in Figure 5.9. Based on our criteria for convergence, the total deviance

-3 -2 -1 0 1 2 3

-2
-1

0
1

2

Normal Q-Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

-3 -2 -1 0 1 2

-2
-1

0
1

2

Resids vs. linear pred.

linear predictor

re
si

du
al

s

Histogram of residuals

Residuals

F
re

qu
en

cy

-3 -2 -1 0 1 2 3

0
20

40
60

-3 -2 -1 0 1 2

-4
-2

0
2

4

Response vs. Fitted Values

Fitted Values

R
es

po
ns

e

84

trajectory reached the minimum at the 3rd iteration (see left panels, bottom plot). Therefore

convergence was decided after just three iterations and the algorithm was terminated after five

iterations (two consecutive iterations following the minimum deviance point). It is seen that the

approximate log of likelihood ratio has already reached the region of zero at the chosen

convergence point. Similarly the right column shows that the estimates of the residual variances

and z-intercept stabilized by the 3rd iteration. However the measurement y-intercepts and slopes

(lambdas) continue to drift slightly in their estimates, as previously noted. Note that the recorded

values of the log of likelihood ratio start from 2nd iteration (first likelihood ratio being between

the first two iterations). For the plots in the right panels the recorded values at zero iteration

correspond to the start values used in the ALV algorithm.

Figure 5.9 ALV Model Convergence (Scheme 1, N=300)

Conditional on η , Y’s are Linearly Related to Z

1 2 3 4 5

0
.0

0
.3

0
.6

Iteration

L
o

g
 o

f l
ik

e
lih

o
o

d
 r

a
tio

Log of Observed-Data Likelihood Ratio
 Versus EM Iteration from the 2nd Iteration

1 2 3 4 5

0
2

0

Iteration

T
o

ta
l d

e
vi

a
n

ce

Scaled Total Deviance Versus EM Iteration

0 1 2 3 4 5

-0
.1

9
-0

.1
6

-0
.1

3

iteration

es
tim

at
e

Y-intercepts

0 1 2 3 4 5

0.
6

0.
8

1.
0

1.
2

iteration

es
tim

at
e

Lambdas

0 1 2 3 4 5

0.
0

0.
4

0.
8

iteration

es
tim

at
e

Thetas

0 1 2 3 4 5

0.
00

0.
15

0.
30

iteration

es
tim

at
e

Sigma^2 -.- Z-interc --

85

5.3.2 Performance under Scheme 2

As previously stated in section 5.1, the emphasis in the evaluation of ALV performance

under scheme 2 is on how well the ALV model is able to estimate  conditioned on Y’s and Z

and uncover an unknown complex relationship between  and Z. Although we were able simulate

a complex relationship accordingly we did not have a full analytic expression for the conditional

distribution ofor an appropriate existing standard statistical model for comparison (like in the

linear case in scheme 1). Therefore for this assessment we compared the ALV model estimate η̂

to the true η generated according to scheme 2 specifications based on 50 replications;

considering that the marginal distribution of true η is directly proportional to its true conditional

distribution to be estimated as η̂ by the ALV model. We computed 50 correlation values between

η and rη̂ , r=1,...,50 using a sample size N = 300. We believe that the strength of the computed

correlation indirectly reflects the closeness in values of η̂ (estimated conditional distribution) to

the unknown true values of the conditional distribution. Our results show that the correlation

between η and η̂ is very high in the range of .973 to .981 with mean of .975. The distribution of

the calculated correlations is shown in Figure 5.10. This result indicates that the measurement

component of the ALV model consistently recovers the latent factor η̂underlying the Y’s and Z

variables even when the solutions to the measurement parameters (y-intercepts and y-slopes) may

not be unique. However we are aware that while a high correlation between η and η̂ is desirable

it does not necessarily indicate accuracy in the estimation of η̂because a shift of η̂ from its true

value by a constant (bias) can retain the high correlation. Therefore we took the next step to

address this concern.

86

Figure 5.10 Correlations between ALV Estimates of Eta and Population Values

(50 Replications; Scheme 2: Conditional on η , Y’s are Nonlinearly Related to Z (Logit); N = 300)

To further quantify the performance of ALV model in estimating η̂ we considered

computing the mean square error or MSE which assesses the quality of the estimation in terms of

its variation and unbiasedness. Ideally we would define 2ˆ ˆMSE() E[()]    however this

definition of MSE is not appropriate here because η̂ is not an estimate of the marginal

distribution of η , rather it is an estimate of the conditional distribution. Therefore instead we

compared the MSE we’d get if we used the true η in a regression model (GAM), to the MSE

obtained by using (1) ALV estimated η̂and (2) * measurement error   where the error term is

defined as the ratio of the variance of η̂ to the variance of true η . For this comparison three

different GAM’s were fitted to 50 replicated datasets (N=300) generated under scheme 2. The

regression models were specified (with variables represented as vectors) as follows:

0
.9

7
4

0
.9

7
6

0
.9

7
8

0
.9

80

87

r r r r r r r r r r

* * *
r r r r r i r r r r

logit(Z) ~ s() + GRP + s(GRP) + e;

ˆ ˆ ˆlogit(Z) ~ s() + GRP + s(GRP) + e ; (| y ,z ;);

ˆlogit(Z) ~ s() + GRP + s(GRP) + e ; [var() / var()];

r 1,.....,50 replications.

  
       

         


 (5.3)

For each fitted GAM the MSE was computed as the mean of the squared residuals;

residuals being the difference between the observed and the fitted values of Z. The degree of

closeness of the computed MSE’s for the different GAMs will reflect the accuracy of the ALV

model; that is one can assess how comparable is the estimated η̂ to the true η in predicting the Z

observations. Similar comparison between ηand * will allow us to assess the effects of

measurement errors (associated with η̂) on the quality of prediction of the true η . Since the MSE

in the context of statistical models depends on data, it is treated as a random variable and the 50

replicated MSEs then serve as a measure of how well the three models explain the variability in

the observations.

As anticipated, the boxplots of MSEs in Figure 5.11 and the related summaries in Table 5.4 show

that generally there is only a slight increase in the MSEs with respect to the predictor η̂over that

of η , and on the average the increase in median MSE is less than 1%. Also, the measurement

errors arising from the ALV estimation did not affect the quality of model prediction when added

to the true η in the GAM. In addition the spread of MSE’s for η̂ is slightly smaller than the other

two.

88

Figure 5.11 Boxplots for the MSE’s of GAM of Z Separately on , ̂and *

(Scheme 2; N=300, 50 Replications)

Having assessed the performance of the ALV model quantitatively, next we wish to use

graphical tools to visually demonstrate the primary purpose of the ALV model, which is to assess

variation in intervention impact across the unobserved baseline ηgiven an unknown complex

relationship between the outcome Z and the predictors including baseline-treatment interaction (

ηand G). In the following description we again specifically investigated the GAM component of

89

the ALV to determine how well it is able to recover the ‘true’ complex relationships between a

binary response Z and the predictors. To achieve this we compared two analyses.

Table 5.4 Percent Change in MSEs: GAMs of Z on ̂and * Compared to 

(Scheme 2; N=300; 50 Replications)

  ̂
*

Value Change (%) Value Change (%)

Lower Quartile 1.208 1.231 1.836 1.208 -0.001

Median 1.238 1.248 0.806 1.238 0.001

Upper Quartile 1.264 1.269 0.388 1.264 0.000

 = True (simulated); ̂= ALV estimate (| y, z) ; * = ˆvar() / var()  

In the first analysis a stand-alone GAM procedure was performed on the sample data

using the true η as known. For the second analysis the ALV model was fitted to the same data

with η̂ estimated from the data. This pair of analyses was performed on a single sample

randomly selected from 50 under each sample size N = 100, 200, 300; and the results are

graphically displayed in Figures 5.12 and 5.13. In the first column of Figure 5.12 the outcome is

model estimated logit of Z (simulated as binary) and is plotted against the true η that was used to

generate it. This plot is used to establish the true trajectories according to the simulation model in

scheme 2. The ALV model performance is evaluated against the true trajectories directly by

comparing plots in the first and third columns. Also, the trajectories of the fitted values by ALV

model (column 3) are compared to those of the stand alone GAM (column 2). Each trajectory on

90

a single plot represents members of one arm of treatment. The curves are drawn with points

corresponding to actual data points (ηand estimated logit of Z). Vertical dashed lines are drawn

to partition the trajectories along the indicated quantiles of η . The vertical lines serve as aids in

the assessment of distribution of fitted values for individual subjects across the baseline; also

comparison across modalities is made easy. Confidence bounds are constructed at one standard

error around the estimates for easy comparison on precision of estimates.

From the patterns of the plots (Figure 5.12), compared to the true trajectories both GAM

and ALV trajectories reveal some attenuation generally; otherwise the ALV trajectories are nearly

identical to those of GAM. Note that there are one or two substantial outliers in the observed Z

(logit transformed) located in the top right corners in column one. The presence of such outliers

in data has been noted to be problematic in GAM fitting technique (Wood, 2006), apparently the

outliers were not tracked to any reasonable degree by the trajectories produced by both GAM and

ALV model. Both methods did not completely capture the true relationship between Z and η ,

however the use of a single dataset as a basis for the comparison prevents any definitive

conclusion here. Possibly these performances may also be related to the outlier problems. Single

replication analyses notwithstanding, the similarity between GAM and ALV models reflects our

earlier findings (comparisons of MSEs) and suggests that when η and its relationship Z are

unknown, the ALV model may perform equivalently to GAM procedure given known η . Also

graphically there seems an improved performance by both GAM and ALV models (closer

approximation to the true trajectories) and increased similarities between the two as sample size

increases (Figure 5.12).

The convergence pattern of the ALV analysis under scheme 2 is again depicted in Figure

5.13. For example, the ALV model converged after 4 iterations (left column). On the right

91

column it is seen that the parameter estimates (except for the lambdas) have stabilized before the

convergence point. These findings are similar to those obtained under scheme 1.

92

F
ig

ur
e

5.
12

 P
lo

ts
 o

f
Z

 (
B

in
ar

y
O

ut
co

m
e)

 P
re

di
ct

ed
 b

y
E

ta
 (

B
as

el
in

e
R

is
k)

 b
y

G
 (

T
re

at
m

en
t)

 (
R

es
ul

ts
 B

as
ed

 o
n

a
S

in
gl

e
S

im
ul

at
ed

S
am

pl
e

A
m

on
g

50
)

O
b
se
rv
e
d
 Z
 (
lo
gi
t)
 v
s
Tr
u
e
 E
TA

G
A
M
 f
it
te
d
 Z
 v
s
Tr
u
e
ET
A

A
LV

 f
it
te
d
 Z
 v
s
A
LV

 e
st
im

at
e
d
 E
TA

N = 100

N = 200

N = 300

-2
-1

0
1

2

-2024

V
e
rt

ic
a

l
li
n
e
s
 a

t
p

e
rc

e
n
ti
le

s
 o

f
e

ta
e
ta

 (
p

o
p

u
la

ti
o
n
 v

a
lu

e
s
)

Z (logit scale, population values)

 10th

 25th

 50th

 75th

 90th

-2
-1

0
1

2

-2024

V
e

rt
ic

a
l
li
n
e

s
 a

t
p

e
rc

e
n
ti
le

s
 o

f
e

ta
 e

ta
 (

p
o

p
u
la

ti
o

n
 v

a
lu

e
s
)

fitted Z (GAM)

 10th

 25th

 50th

 75th

 90th

-1
0

1
2

-2024

V
e

rt
ic

a
l
li
n
e

s
 a

t
p

e
rc

e
n
ti
le

s
 o

f
e

ta
e

ta
 (
A

L
V

 e
s
ti
m

a
te

s
)

fitted Z (ALV)

 10th

 25th

 50th

 75th

 90th

-3
-2

-1
0

1
2

3

0510

V
e

rt
ic

a
l
li
n
e
s
 a

t
p
e

rc
e

n
ti
le

s
 o

f
e
ta

e
ta

 (
p
o

p
u
la

ti
o

n
 v

a
lu

e
s
)

Z (logit scale, population values)

 10th

 25th

 50th

 75th

 90th

-3
-2

-1
0

1
2

3

0510

V
e

rt
ic

a
l
li
n
e

s
 a

t
p

e
rc

e
n
ti
le

s
 o

f
e
ta

 e
ta

 (
p

o
p
u
la

ti
o

n
 v

a
lu

e
s
)

fitted Z (GAM)

 10th

 25th

 50th

 75th

 90th

-1
0

1
2

0510

V
e

rt
ic

a
l
li
n
e

s
 a

t
p

e
rc

e
n
ti
le

s
 o

f
e
ta

e
ta

 (
A

L
V

 e
s
ti
m

a
te

s
)

fitted Z (ALV)

 10th

 25th

 50th

 75th

 90th

-3
-2

-1
0

1
2

3

-50510

V
e

rt
ic

a
l
li
n
e
s
 a

t
p

e
rc

e
n
ti
le

s
 o

f
e
ta

e
ta

 (
p

o
p
u
la

ti
o
n
 v

a
lu

e
s
)

Z (logit scale, population values)

 10th

 25th

 50th

 75th

 90th

-3
-2

-1
0

1
2

3

-50510

V
e

rt
ic

a
l
li
n
e

s
 a

t
p

e
rc

e
n
ti
le

s
 o

f
e

ta
 e

ta
 (

p
o

p
u
la

ti
o

n
 v

a
lu

e
s
)

fitted Z (GAM)

 10th

 25th

 50th

 75th

 90th

-1
0

1
2

-50510

V
e

rt
ic

a
l
li
n
e

s
 a

t
p

e
rc

e
n
ti
le

s
 o

f
e

ta
e

ta
 (

A
L

V
 e

s
ti
m

a
te

s
)

fitted Z (ALV)

 10th

 25th

 50th

 75th

 90th

93

F
ig

ur
e

5.
13

.
A

L
V

 M
od

el
 C

on
ve

rg
en

ce
 (

R
es

ul
ts

 B
as

ed
 o

n
a

S
in

gl
e

S
im

ul
at

ed
 S

am
pl

e
of

 S
iz

e
N

=
20

0
S

el
ec

te
d

fr
om

 5
0)

1
2

3
4

5
6

0.00.3

Ite
ra

tio
n

Log of likelihood ratio

L
o

g
 o

f
O

b
se

rv
ed

-D
at

a
L

ik
el

ih
o

o
d

 R
at

io

V

e
rs

u
s

 E
M

 It
e

ra
ti

o
n

 f
ro

m
 t

h
e

2n
d

 It
e

ra
ti

o
n

1
2

3
4

5
6

0150

Ite
ra

tio
n

Total deviance

S
c

al
e

d
T

o
ta

l D
ev

ia
n

ce
 V

er
s

u
s

E
M

 I
te

ra
tio

n

0
1

2
3

4
5

6

0.00.20.40.6

ite
ra

tio
n

estimate

Y-
in

te
rc

e
pt

s

0
1

2
3

4
5

6

0.61.0

ite
ra

tio
n

estimate

L
a

m
b

d
as

0
1

2
3

4
5

6

0.20.61.01.4

ite
ra

tio
n

estimate

Th
e

ta
s

0
1

2
3

4
5

6

0.40.8

ite
ra

tio
n

estimate

S
ig

m
a

^
2

-.
-

 Z
-i

n
te

rc
 -

-

94

CHAPTER 6

APPLICATION OF ALV MODEL TO ASAPS DATA

We illustrate the ALV method with an application to data from the Adolescent Substance Abuse

Prevention Study (ASAPS) (Sloboda, et al., 2008). This is a cluster randomized field study

involving 19,200 students in 83 high school clusters (a cluster being a high school and all its

feeder middle schools) from six metropolitan areas across the U.S. (see chapter 1of this

dissertation). The study’s main objective was to test an intervention program Take Charge of

Your Life (TCYL) delivered by selected trained D.A.R.E. officers, on its effectiveness in

reducing some key behavioral outcomes: use of alcohol, tobacco and other drugs (ATOD). One of

the major research questions was to investigate who benefits or is harmed by the instituted

intervention program and how the intervention effects are moderated by the baseline risk factors.

The original D.A.R.E. curriculum was criticized for focusing on the low risk group, thinking that

high risk group would be alienated by officers who were “preaching at them”. The new

curriculum with TCYL program delivered by trained instructors was designed with sensation

seeking and high risk kids in mind. The aim was to impact intentions to use alcohol, tobacco and

other drugs (marijuana) by addressing baseline (7th grade pretest) beliefs as to the normative use

of ATOD; perceptions of the harmful effects of use; and skills necessary to avoid substance use

(decision making, resistance skills). It was hypothesized that intervention may show different

effects for low and high risk kids at baseline.

The 1st wave-data (pretest data) consisted of 53 items that showed significant loadings on 10

risk constructs in a previous factor analysis performed by the researchers. The item-level response

scores on Likert scale were coded so that the highest score implies highest risk. As an example of

the constructs, the five items designed to assess normative beliefs of 11th graders about alcohol,

95

tobacco and other drugs are displayed in Table 6.1. To illustrate ALV model application these

constructs (see Table 6.2) formed 10 summary risk variables that served as factor indicators for a

single latent risk to be estimated by ALV. Some of these summary risk variables are skewed but

no attempt was made to dichotomize any of them since the ALV model its current form only

takes continuous measurement variables. In the ALV analysis we examined variation in the

intervention program effect on only one of the 7th wave-outcomes (substance use in 11th grade),

(see Table 6.2), across the estimated baseline risk. This illustrative ALV analysis is neither

complete nor final because of the presence of significant amount of missing data on the outcomes,

for which no imputation was performed (Table 6.3). The researchers had anticipated 50 percent

attrition among the student cohort. There was substantial cross mobility of students during

transition to high school from feeder middle schools. For example some students went into study

high schools not assigned to their middle schools or to high schools not included in the study. In

addition, one high school opted out of the study and by the time of the 11th grade survey two

additional high schools affected by Hurricane Katrina were lost from the study. Therefore, for

illustrative purpose, we report here on the results of fitting ALV model to incomplete data on risk

measures in 7th grade and substance use in 11th grade for 2500 males from the ASAPS study (after

listwise deletion of missing values).

96

Table 6.1 Five Items Used in the ASAPS to Assess Normative Beliefs of 11th Graders

Item Questions

In the Last 30 Days, how many 8th graders across the entire U.S. do you think ….

a) used cocaine or other hard drugs?

b) drank beer, wine or liquor?

c) smoked cigarettes?

d) sniffed glue, inhale gases or a spray to get high?

e) smoked marijuana (pot, reefer, weed, blunts)?

Possible Answers Possible Scores

All or almost all (100%)

More than half (about 75%)

About half (50%)

Less than half (25%)

None (0%)

5

4

3

2

1

97

Table 6.2 Ten Summary Baseline Risk Constructs in ASAPS Data

 Construct

1 Normative beliefs

2 Referent others

3 Consequences of ATOD use on the brain

4 Personal attitudes towards ATOD use

5 Negative expectation from ATOD use

6 Intentions (to use under certain situations)

7 Intentions (what age ok to initiate risky behave)

8 Number of best friends using ATOD

9 Pro-social bonding (school attachment)

10 Self-reported delinquent behaviors

 ATOD = alcohol, tobacco and other drugs (marijuana)

98

Table 6.3 Some 11th Grade Outcomes and Missing Data in ASAPS Data

A key feature of the ALV model lending weight to its appropriateness for analyzing the

ASAPS data is that it can easily handle complex relationships in the data without requiring the

knowledge of the relationship beforehand. Nonlinearities arise in the data because of the potential

variation in impact of the administered behavioral intervention on the individuals with different

baseline risk experience. It is also important to note that the risk experience was not directly

observed and has to be inferred from the data as a latent variable; plus, the shape of the

relationship between the latent risk and the outcome (in this example, marijuana use) is unknown

and is potentially complex. These are compelling reasons to specify the effects of the latent

baseline risk (and its interaction with intervention) nonparametrically. To include the cluster

effects of school districts in the analysis Generalized Additive Mixed Model (GAMM) was

specified for the additive part of the ALV algorithm at the final EM iteration after baseline risk

has been estimated (̂) from the data, treating the clusters as random effects:

Missing Proportion
Missing

Explanatory Variables

School 0 0

Gender 0 0

Treatment 476 0.03

Outcomes

Used Marijuana in Past 30 Days 7869 0.46

Got Drunk in Past 30 Days 7824 0.46

Binge drinking in Past 30 Days 7758 0.46

Used Cigs in Past 30 Days 7750 0.45

Used Inhalants in Past 30 Days 7826 0.46

99

 

i ii 0 1 i i i i

b i

logit(E[z]) Group s(Risk) s(Risk *Group) H b ;

b N(0,); N(0,).

       
   

 (5.4)

Here z is a binary response ‘Marijuana Use’; 's are fixed parameters for the model intercept and

intervention group variable; s(.) is a smoothing function that estimates the unknown complex

relationships of the response to the baseline risk and its interaction with treatment; H and b are

the random effects model matrix and coefficients.

The partial results (additive part) of ALV model fit to the ASAPS data are reported here

(Figures 6.1 & 6.2; Tables 6.4 a & b). In the context of the estimates of the nonparametric

functions, the plots in Figure 6.1 describe the relationships between the smoothing terms in the

model and the outcome using solid lines/curves within 95% point wise confidence bands (dashed

lines). Along the bottom of each plot are rug-plots at points corresponding to the covariate values

for each smooth. For the whole sample (treatment and control), a smooth curve (top panel) is

estimated with 2.97 (number in y-axis caption) effective degrees of freedom for the effect of

baseline risk while the estimated interaction effect (bottom panel) is approximately linear with the

outcome and so requires only 1 degree of freedom to estimate a slope. The above information

could be missed if a parametric model with s(.) restricted to be linear were to be fitted to the data;

although for this particular sample data, the fit of a quadratic model may be sufficiently close in

quality to the ALV model fit.

100

Figure 6.1 Estimated Relationship of Probability of Marijuana Use to Baseline Risk.

ALV Estimated Baseline Risk (top panel) and Baseline-Treatment Interaction (bottom panel)

Figure 6.2 is a visual display of the variation in intervention impact across the baseline

risk. The dashed curves represent pointwise 95% confidence intervals around values predicted

from the results of the fitted GAMM. To compute these values the R function predict() was

applied to the R object for GAMM fit; the corresponding standard errors were also returned. The

95% confidence was then constructed around each predicted value as value +/- standard error

and from these generated values it was possible to draw the upper and lower limits separately

around the fitted curves. The plot shows a changing direction of intervention effects along the risk

scale and precisely which levels of risk are associated with higher or lower marijuana use. Note

-1 0 1 2 3

-2
0

2
4

risk1

s(
ri

sk
1

,2
.9

7)

-1 0 1 2 3

-2
0

2
4

riskBYgroup

s(
ri

sk
B

Y
g

ro
up

,1
)

101

that the uniformly increasing group difference in average probability of marijuana use across

baseline indicates a linear interaction effect, as revealed by the bottom panel plot in Figure 6.1,

and previously expounded in this dissertation (refer to Figure 3.1 (B)). For the top 5% of kids on

the baseline risk scale, the average probability of marijuana use is obviously lower for individuals

in the intervention group relative to the controls. In contrast, the intervention appears to be

marginally harmful to the low risk subgroup (below 25 percentile). In summary the effect of the

intervention is harmful when there is low baseline risk and gets more beneficial with higher risk.

However only across the percentiles where the 95% confidence intervals show no overlap is

significant intervention impact implied. There appears to be some degree of overlap across all

percentiles more marked at the top end of the risk scale. This indicates that the intervention

effects are not locally significant, that is the intervention has no significant impact on any risk

subgroup at the 95% confidence level.

102

Figure 6.2 The Effect of Baseline Risk on Probability of Marijuana Use by Group, with 95%

Pointwise Confidence Bands

Results of the ALV model analysis are also reported in Tables 6.4 a & b. These results

are from the direct output of the Additive component of the ALV model and are supported by the

iterpretations derived from Figure 6.1. In Table 6.4a both terms for the baseline risk and the

interactioe are specified as nonparametric smoothing functions as in (5.4). Under the section on

Nonlinear Terms the baseline risk (3rd row) shows significant nonlinearity (p<0.001) in its

relationship with marijuana use and this effect is estimated as a smooth curve with 2.97 expected

degrees of freedom (edf). However a straight line corresponding to edf of 1.00 is estimated for its

interaction effect (4th row) and the test of nonlinearity for this term is not significant (p=0.07). It

should be noted here that the p-values of smooth terms are only approximate due to the

-1 0 1 2 3

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ALV Model of Variation in Intervention Impact on Marijuana
 Use in 11th Grade Males by Baseline Risk in 7th Grade

Latent Baseline Risk

P
ro

b
a

b
ili

ty
 o

f
M

a
ri

ju
a

n
a

 U
se

 in
 P

a
st

 3
0

 D
a

ys

Tx (n = 1355)
Ctrl (n = 1145)
Risk Percentile

 2
5

th

 5
0

th

 7
5

th

 9
0

th

 9
5

th

103

uncertainty in estimating smoothing parameters (Wood, 2006). According to the author, the p-

values are usually safe to rely on only when they give a very clear cut result; when the results are

around a reject/accept threshold, the tests reject the null too readily and therefore must be treated

with caution. Given that linear interaction effect is demonstrated in Table 6.4a, we fitted another

GAMM this time using a fixed parameter for the interaction term; the results (Table 6.4b, 3rd row)

show a negative linear interaction that is fairly significant (p=0.037) at the 95% confidence level.

This is in support of the finding of reversal of intervention effects along the baseline

demonstrated graphically in Figure 6.2; and given the caution required for interpreting p-values,

the interaction effects are probably not significant.

 For the parametric terms, we see in the 2nd rows of both tables that no significant main

effect (p=0.50) is demonstrated for the intervention. Finally, there is significant random effect of

school districts clustering in the data (last rows). Combining all of the findings from Figures 6.1

& 6.2 and Tables 6.4a&b, in summary there is significant nonlinearity in the relationship of 7th

grade baseline risk and Marijuana use in 11th grade but no significant intervention effect are

demonstrated across any baseline risk subgroups.

104

Table 6.4a ALV Model of Marijuana Use Reported by 11th Grade Males (N=2500; 79 High

School Clusters): Additive Sub-model# Includes Nonlinear Interaction Term

#GAMM: i 0 1 i i i ilog it(E[Marijuana Use]) * Intervention s(Risk) s(Risk * Intervention)    

Type of Effect Effect Coefficient
(Logit)

SE z- value p-value

Parametric Terms

1. Intercept -1.521 0.100 - 15.103 <0.001

2 . Intervention Main
Effect (adjusted)

Intervention = 1 vs.
Controls = 0 0.091 0.135 0.675 0.500

Smooth Terms Functions edf F p-value

3 . BaselineRisk Smooth (baseline) Smoothing
coefficients

2.97 27.493 <0.001

4. Interaction
Effect

Smooth
(interaction)

Smoothing
coefficients

1.00 2.906 0.070

Random Effects Effect Name SD 95% CI

Cluster School District 0.348 0.219 – 0.555

105

Table 6.4b ALV Model of Marijuana Use Reported by 11th Grade Males (N=2500; 79 High

School Clusters): Additive Sub-model# Includes Linear Interaction Term

#GAMM: i 0 1 i i 3 i ilog it(E[Marijuana Use]) * Intervention s(Risk) (Risk * Intervention)      

Type of Effect Effect Coefficient
(Logit)

SE z- value p-value

Parametric Terms

1. Intercept -1.552 0.102 -15.168 <0.001

2 . Intervention Main
Effect (adjusted)

3 . InteractionEffects

Intervention = 1 vs.
Controls = 0

Interv-by-Baseline

0.091

-0.418

0.135

0.200

0.675

-2.087

0.500

0.037

Smooth Terms Functions edf F p-value

4 . BaselineRisk Smooth (baseline) Smoothing
coefficients

2.97 27.480 <0.001

Random Effects Effect Name SD 95% CI

Cluster School District 0.348 0.219 – 0.555

106

CHAPTER 7

DISSCUSSION & RECOMMENDATIONS

In this dissertation we have considered plausible variations in intervention impact due to

baseline individual level risk/protective factor characteristics. We also considered the importance

of modeling these variations in the statistical analyses of behavioral, social and psychological

research data from randomized field trials in particular, where measurement errors and

nonlinearity commonly arise and pose statistical challenges. We reviewed the existing statistical

modeling techniques that have been applied to assess these variations, such as nonlinear

(polynomial terms) SEM and GAM. We highlighted their limitations including the inefficiency

associated with the ad hoc approach of stepwise application of these two methods in one analysis

but on different statistical application platforms. To address these challenges we have developed

a new modeling technique, ALV, by integrating the two powerful statistical models (SEM and

GAM) into one model that runs on one platform and draws strength from both methods.

We reached the following conclusions from the results of our simulation studies. First,

the ALV model works well with the tested sample sizes of 100, 200, and 300 with measurement

errors. Second, this new method was successful in capturing the nonlinear dependence of the

outcome on a latent variable in the data. Also the method performs nonlinear modeling task

nearly as well as it does a linear modeling at least in the simulation studies with sample size as

low as 100.

Like most existing methods in SEM our proposed ALV model approach is based on the

assumptions of conditional independence for the baseline factor indicators and distal outcome

given the underlying latent factor, plus normally distributed errors. However a notable

107

distinguishing feature of the ALV modeling technique is that it makes no assumption about the

relationship between the latent factor and the distal outcome. The new ALV method is developed

to simultaneously estimate the latent factor underlying the observed baseline risk variables plus

the complex relationship between the latent factor and the distal outcome it predicts, without

requiring a priori specification of a functional form for the unknown relationship. The ALV

modeling is implemented in Monte Carlo EM environment and it involves the estimation of

posterior distribution of the latent factor in the E-step via Metropolis algorithm while ML

estimation of parameters is via standard regression sub-models in the M-step. The EM type

algorithms are tremendously useful in solving statistical problems involving missing and latent

data.

In order to establish a more objective criterion for our stopping rule for convergence in

the Monte Carlo EM loop within the ALV algorithm, we have taken into account the overall fit of

the ALV model in addition to the behavior of parameters. Given the typical long term pattern of

the ALV model deviance trace with respect to EM iterations, we are able to conclude model

convergence at the point of minimum deviance, which we consider to be probably global within

the context of our simulations. Our stopping rule is new relative to those proposed in the literature

for Monte Carlo EM; and from our experience we also found our criteria (including point of

minimum deviance) to be very crucial for the efficiency of the ALV algorithm. The criteria allow

us to decide convergence after single digit number of EM iterations in most instances, because the

ALM model is largely a linear model.

Performance-wise, a key emphasis has been on testing the ability of ALV model to

accurately recover both the latent factor (underlying baseline risk) as well as the complex

nonlinear relationships between the outcome and the predictors. The results of our simulation

studies show that the ALV model performs well. While the role of the measurement part is

108

mainly concerned with estimation of the latent factor, for interpretability our focus necessarily

shifts to the nonparametric (GAM) component, on which the major feature of the ALV model

depends. Compared to the easily interpretable GLMs, GAMs may be more difficult to interpret

because of the nonparametric nature of the underlying nonlinearity in the data. However it is

important to acknowledge that although GAM’s may serve different analytic purposes like

suitably exploring the data nonparametrically and visualizing the complex relationships, in the

presence of unknown complex nonlinearity GAM’s are closer to reality and are known to yield a

better fit than their GLM counterparts. These properties are well illuminated by the results of our

application of the proposed ALV model to both simulated and real data in this dissertation. In

practice, because of the flexibility of GAM technique, it is very possible to provide a good fit to

the data by tracking significant noise in addition to the nonlinear relationships in the predictor

variables. This happens whenever higher than the appropriate degrees of freedom are used in

estimating the nonparametric functions of the predictor terms. Although the user is allowed to

specify degrees of freedom for the cubic spline smoother for each predictor term in a stand-alone

GAM procedure, the optional feature we adopted in the GAM component of ALV model allows

for optimal estimates of effective degrees of freedom to be computed directly by the model

(Wood, 2006). So the potential problems of over fitting (or under fitting) typically associated with

user-specified degrees of freedom in AM methods are minimized in the ALV method.

One major limitation was the number of cases we examined in the simulation. This

limitation with respect to maximum size of 300 was due to practical considerations since each

simulation required massive computing time. The minimum size of 100 was chosen because

typically factor analysis is a large sample procedure, and also because the choice is in line with

similar past studies involving Monte Carlo version of the EM (Lee & Song, 2007; Lee & Zhu,

2002). However more studies are required to study the stability of ALV model when sample size

109

drops below the minimum of 100 used in the present study. Another major limitation of the ALV

model in its current form is its listwise deletion approach to missing data problems. Given the

frequent encounter with missing data in practice and the availability of more effective methods of

handling this problem, the incorporation of such methods into ALV model will be of considerable

importance and we are planning to do this in our next stage. As it is currently set up, the nesting

in the data is accounted for only at the final EM iteration and only in the GAM component of the

ALV model. Further studies are needed to assess the adequacy of this partial effort compared to

full multilevel extensions to the ALV model. Although this new approach is computationally

intensive, given the persistent rapid developments in computer technology, this should not be

considered a serious limitation. Even though the ALV model consistently estimates the latent

factor accurately in the measurement part of the model, the associated measurement parameter

estimates are not stable and this may indicate that the solutions are non-unique. Therefore the

emphasis of the ALV model application should be on the accurate recovery of unknown complex

relationships in the data; in its current form it may not be useful for analyzing psychometric

properties of instruments.

There are several other ways (than our choice in this dissertation) of defining a cubic

regression spline basis which may offer some advantages with respect to the interpretability of the

parameters and appropriateness to the data at hand (Wood, 2006). The ALV method can be

improved upon therefore by exploring other smoothing spline bases available as options in the R

package mgcv and determining under what conditions a particular choice would be best within the

ALV framework.

Our model can be extended to examine complex nonlinearity between multiple distal

outcomes and their predictors including multiple latent factors (e.g. multiple-factors solutions to

observed baseline risk variables) or growth factors in a longitudinal study. In future we intend to

110

also explore the application of ALV method to a wider spectrum of nonlinear structural equation

modeling involving complex factor-to-factor, factor-to-indicator, and indicator-to-indicator

relationships, using nonparametric methods.

In conclusion, the ALV modeling technique allows researchers to assess how an intervention

affects individuals differently as a function of baseline risk that is itself measured with error, and

uncover complex relationships in the data that might otherwise be missed. In practice, its users

are relieved from the need to decide functional forms for the complex relationships before the

model is run. The ALV program is written in R language and the R software is freely available;

so general users can apply the new methodology. We expect the ALV model and its extensions to

have lots of new applications to modeling of behavioral, sociological and psychological data in

the future.

111

REFERENCES CITED

Brown, C. (1993). Analyzing Preventive Trials with Generalized Additive Models. American

Journal of Community Psychology , 21, 635-664.

Brown, C., Wang, W., Kellam, S., Petras, H., Toyinbo, P., Poduska, J., et al. (2008). Methods

for Testing Theory and Evaluating Impact in Randomized Field Trials: Intent-to-Treat Analyses

for Integrating the Perspectives of Person, Place, and Time. Drug and Alcohol Dependence , 95

(Supplement 1), S74-S104.

Chambers, J. M., & Hastie, T. J. (1993). Statistical Models in S. London: Chapman & Hall.

Cheney, W., & Kincaid, D. (2004). Numerical Mathematics and Computing. Belmont,

California: Brooks/Cole-Thomson.

Chib, S., & Greenberg, E. (1995). Understanding the Metropolis-Hastings Algorithm. The

American Statistician , 49 (4), 327-335.

Chib, S., & Jeliazkov, I. (2006). Inference in Semiparametric Dynamic Models for Binary

Longitudinal Data. Journal of the American Statistical Association , 101, 685-700.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum Likelihood from

Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society , 39 (1), 1-38.

Gamerman, D., & Lopes, H. F. (2006). Markov Chain Monte Carlo. Stochastic Simulation for

Bayesian Inference (2nd Edition ed.). Boca Raton, FL: Chapman & Hall/CRC.

112

Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distribution and Bayesian

restoration of images. IEE Transactions on Pattern Analysis and Machine Intelligence , 6, 721–

741.

Gu, C. (2002). Smoothing Spline Anova Models. New York: Springer-Verlag.

Hastie, T. J., & Tibshirani, R. J. (1990). Generalized Additive Models. New York: Chapman

and Hall.

Heath, M. T. (2005). Scientific Computing : An Introductory Survey. New York, New York:

McGraw-Hill.

Holler, K. D. (2005). Generalized Additive Models. Retrieved May 5, 2009, from

www.casact.org/education/specsem/f2005/handouts/holler.ppt

Joreskog, K. G. (1977). Structural Equation Models in the Social Sciences: Specification,

Estimation and Testing. In P. R. Krishnaiah, Applications of Statistics. Armsterdam: North-

Holland.

Kellam, S., Brown, C., Poduska, J., Ialongo, N., Petras, H., Wang, W., et al. (2008). Effects

of a Universal Classroom Behavior Management Program in First and Second Grades on Young

Adult Behavioral, Psychiatric, and Social Outcomes. Drug and Alcohol Dependence , 95

(Supplement 1), S5–S28.

Khoo, S.-T. (1997). Assessing Interactions between Program Effects and Baseline.

Dissertation . University of California, Los Angeles, Carlifornia.

113

Law, N. J., Taylor, J. M., & Sandler, H. (2002). The Joint Modeling of a Longitudinal

Disease Progression Marker and the Failure Time Process in the Presence of Cure. Biostatistics ,

3 (4), 547-563.

Lee, S. Y., & Zhu, H. T. (2000). Statistical Analysis of Nonlinear Structural Equation

Modelwith Continous and Polytomous Data. British Journal of Mathematical and Statistical

Psychology , 53, 209-232.

Lee, S.-Y., & Song, X.-Y. (2007). A Unified Maximum Likelihood Approach for Analyzing

Structural Equation Models With Missing Nonstandard Data. Sociological Methods & Research ,

35 (3), 352-381.

Lee, S.-Y., & Zhu, H.-T. (2002). Maximum Likelihood Estimation of Nonlinear Structural

Equation Models. Psychometrika , 67 (2), 189-210.

Lee, S.-Y., Song, X.-Y., & Lee, J. C. (2003). Maximum Likelihood Estimation of Nonlinear

Structural Equation Models with Ignorable Missing Data. Journal of Educational and Behavioral

Statistics , 28 (2), 111-134.

Martin, A. D., Quinn, K. M., & Park, J. H. (2009). R package version 0.9-6. Retrieved from

MCMCpack: Markov chain Monte Carlo (MCMC) Package: http://mcmcpack.wustl.edu

McLachlan, G. J., & Krishnan, T. (2008). The EM Algorithm and Extensions (2nd Edition

ed.). Hoboken, New Jersey: John Wiley & Sons, Inc.

Meng, X. L., & Schiling, S. (1996). Fitting Full-information Item Factor Models and an

Empirical Investigation of BridgeSampling. Journal of American Statistical Association , 91,

1254-1267.

114

Muthen, B. O. (2002). Beyond SEM: General Latent Variable Modeling. Behaviormetrika ,

29 (1), 81-117.

Muthen, B. O. (1989). Latent Variable Modeling in Heterogeneous Populations.

Psychometrika , 54 (4), 557-585.

Muthen, L. K., & Muthen, B. O. (2008). Mplus User's Guide, Version 5 .

Nelder, J. A., & Wedderburn, R. W. (1972). Generalized Linear Models. Journal of the Royal

Statistical Society , 135, 370-384.

Plummer, M., Best, N., Cowles, K., & Vines, K. (2006, March). CODA: Convergence

Diagnosis and Output Analysis for MCMC. R News , 7-11.

Poduska, J., Kellam, S. G., Wang, W., Brown, C. H., Ialongo, N., & Toyinbo, P. (2008).

Impact of the Good Behavior Game, a Universal Classroom–Based Behavior Intervention, on

Young Adult Service Use for Problems with Emotions, Behavior, or Drugs or Alcohol. Drug and

Alcohol Dependence , 95 (Supplement 1), S29-S44.

R Development Core Team. (2008). R: A Language and Environment for Statistical

Computing. Vienna: R Foundation for Statistical Computing.

Rubin, D. B. (1991). EM and Beyond. Psychometrika , 56, 241-254.

Rubin, D. B. (1976). Inference and Missing Data. Biometrika , 63, 581-592.

Sloboda, Z., Pyakuryal, A., Stephens, P. C., Teasdale, B., Forrest, D., Stephens, R. C., et al.

(2008). Reports of Prevention Programming Available in Schools. Prev. Sci.

115

Song, X.-Y., & Lee, S.-Y. (2005). Maximum Likelihood Analysis of Nonlinear Structural

Equation Models With Dichotomous Variables. Multivariate Behavioral Research , 40 (2), 151-

177.

Walsh, B. (2004). Markov Chain Monte Carlo and Gibbs Sampling. Lecture Notes for EEB

581 , version 26.

Wang, C., Brown, C., & Bandeen-Roche, K. (2005). Residual Diagnostics for Growth

Mixture Models. Journal of the American Statistical Association .

Wei, G. C., & Tanner, M. A. (1990). A Monte Carlo Implementation of the EM Algorithm

and the Poor Man's Data Augmentation. American Statistical Association , 85 (411), 699-704.

Wood, S. N. (2006). Generalized Additive Models: An Introduction with R. Boca Raton,

Florida: Chapman & Hall / CRC.

Xiang, D. (2004). Fitting Generalized Additive Models with the GAM Procedure. Paper

P256-26 . Cary, NC: SAS® 9.1.2 User’s Guide, SAS Institute Inc.

116

APPENDICES

117

APPENDIX A: DATA SIMULATION CODES FOR SCHEMES 1 & 2

SIMULATE COPIES OF DATASETS (N=100,200,300):

6 VARIABLES CONDITIONALLY INDEPENDENT GIVEN ETA:

{5 CONTINUOUS Y's + 1 CONTINUOUS OR BINARY Z}

Define Population parameters

n <- 150 # half sample size

J <- 50 # number of datasets

lambda.1 <- lambda.2 <-lambda.3 <-lambda.4 <-lambda.5 <-1

sigma.eta <- 1 # s.d. for eta

sigma.ey <- .5 # s.d. for error term of y

sigma.ez1 <- .5 # s.d. for error term of z (linear model)

define f1 , f2

f1 <- function (x) { 1 - x - 0.5 * x^2 + 0.3 * x^3 }

f2 <- function (x) { - 3 * x + 0.4 * x^2 + 0.6 * x^3}

simulate eta, the latent factor

set.seed (1235)

eta <- rnorm (2*n, 0, sigma.eta)

118

APPENDIX A: (CONTINUED)

define G (group)

G <- c (rep (0, n), rep (1, n))

create arrays to store J number of (2n x 8) datasets for

a) ContArray: Z is cont and linearly related to eta

b) BinArray: Z is binary and nonlinearly related to eta

DATASETS do not include eta column

ContArray <- BinArray <- matrix(NA, nrow=(2*n), ncol=(7*J))

dim(ContArray) <- dim(BinArray) <- c((2*n), 7, J)

dimnames(ContArray) <- dimnames(BinArray)<- list(NULL,
c("Y1","Y2","Y3","Y4","Y5","Z","GRP"),1:J)

DATASETS include eta column

ContArray2 <- BinArray2 <- matrix(NA, nrow=(2*n), ncol=(8*J))

dim(ContArray2) <- dim(BinArray2) <- c((2*n), 8, J)

dimnames(ContArray2) <- dimnames(BinArray2)<- list(NULL,
c("Y1","Y2","Y3","Y4","Y5","Z","GRP", "ETA"),1:J)

119

APPENDIX A: (CONTINUED)

SIMULATION

 for (j in 1:J){

simulate y1 to y5

e1 <- rnorm (2*n, 0, sigma.ey)

y1 <- lambda.1 * eta + e1

e2 <- rnorm (2*n, 0, sigma.ey)

y2 <- lambda.2 * eta + e2

e3 <- rnorm (2*n, 0, sigma.ey)

y3 <- lambda.3 * eta + e3

e4 <- rnorm (2*n, 0, sigma.ey)

y4 <- lambda.4 * eta + e4

e5 <- rnorm (2*n, 0, sigma.ey)

y5 <- lambda.5 * eta + e5

define Z (continuous, linear with eta) for group (0,1)

ez1 <- rnorm (2*n, 0, sigma.ez1)

Z <- rep (0, 2*n)

Z [1: n] <- 0.2*(eta [1:n]) + ez1 [1:n]

Z [(n+1) : (2*n)] <- 0.7*(eta [(n+1) : (2*n)]) + ez1 [(n+1) : (2*n)]

ContArray[,,j] <- cbind (y1, y2, y3, y4, y5, Z, G)

ContArray2[,,j] <- cbind (y1, y2, y3, y4, y5, Z, G, eta)

120

APPENDIX A: (CONTINUED)

#--

define Z(binary, nonlinear with eta) for group (0,1)

#---

Z.logit <- rep (0, 2*n)

Zbin <- rep (0, 2*n)

#logit scale

Z.logit [1: n] <- f1 (eta [1:n])

Z.logit [(n+1) : (2*n)] <- f2 (eta [(n+1) : (2*n)])

Simulate.1 binary Z to have Prob(Z = 1) = exp(Z.logit)/(1 + exp(Z.logit))

Z.prob <- exp(Z.logit)/(1 + exp(Z.logit)) # convert logit to probability

Zbin <- rbinom (2*n, 1, Z.prob)

BinArray[,,j] <- cbind (y1, y2, y3, y4, y5, Zbin, G)

BinArray2[,,j] <- cbind (y1, y2, y3, y4, y5, Zbin, G, eta)

}

121

APPENDIX A: (CONTINUED)

#===

ANALYZE BINARY Z: Given observed eta

#===

#---

establish population characteristics graphically

#---

plot(density(eta), main="Eta (Population values)")

LOGIT SCALE

Z.logit.true <- Z.logit

par(mfrow = c(1, 1))

yrange <- range(Z.logit.true)

xrange <- range(eta)

plot(eta, Z.logit.true, type="n", xlim=xrange,ylim=yrange,

 main = "Observed Z vs True Eta",

 xlab = "eta (true values)", ylab = "Z (logit scale)",

 sub = "Vertical lines at percentiles of eta")

points(eta [1:n], Z.logit.true[1:n], pch=19 , col=4)

points(eta [(n+1) : (2*n)], Z.logit.true[(n+1) : (2*n)], col=2)

Q <- matrix(quantile(eta, c(.10, .25, .50, .75, .90)))

122

APPENDIX A: (CONTINUED)

segments(Q[1], yrange[1], Q[1], yrange[2], lty = 2)

segments(Q[2], yrange[1], Q[2], yrange[2], lty = 2)

segments(Q[3], yrange[1], Q[3], yrange[2], lty = 2)

segments(Q[4], yrange[1], Q[4], yrange[2], lty = 2)

segments(Q[5], yrange[1], Q[5], yrange[2], lty = 2)

text(Q[1], yrange[1], " 10th ", , adj = c(0,0), par(srt=90))

text(Q[2], yrange[1], " 25th ", , adj = c(0,0), par(srt=90))

text(Q[3], yrange[1], " 50th ", , adj = c(0,0), par(srt=90))

text(Q[4], yrange[1], " 75th ", , adj = c(0,0), par(srt=90))

text(Q[5], yrange[1], " 90th ", , adj = c(0,0), par(srt=90))

PROBABILITY SCALE

Prob(Z = 1) = 1/[1+exp(- Z.logit.true)]

Z.prob.true <- 1/(1+exp(- Z.logit.true))

par(mfrow = c(1, 1))

yrange <- c(-0.1, 1)

xrange <- range(eta)

123

APPENDIX A: (CONTINUED)

plot fixed values with no error term

 plot(eta, Z.prob.true, type="n", ylim = yrange,

 xlab = "eta (population values)", ylab = "Probability of Z (population)",

 sub = "Vertical lines at percentiles of eta")

points(eta [1:n], Z.prob.true[1:n], pch=19 , col=4)

points(eta [(n+1) : (2*n)], Z.prob.true[(n+1) : (2*n)], col=2)

Q <- matrix(quantile(eta, c(.10, .25, .50, .75, .90)))

segments(Q[1], yrange[1], Q[1], yrange[2], lty = 2)

segments(Q[2], yrange[1], Q[2], yrange[2], lty = 2)

segments(Q[3], yrange[1], Q[3], yrange[2], lty = 2)

segments(Q[4], yrange[1], Q[4], yrange[2], lty = 2)

segments(Q[5], yrange[1], Q[5], yrange[2], lty = 2)

text(Q[1], yrange[1], " 10th ", , adj = c(0,0), par(srt=90))

text(Q[2], yrange[1], " 25th ", , adj = c(0,0), par(srt=90))

text(Q[3], yrange[1], " 50th ", , adj = c(0,0), par(srt=90))

text(Q[4], yrange[1], " 75th ", , adj = c(0,0), par(srt=90))

text(Q[5], yrange[1], " 90th ", , adj = c(0,0), par(srt=90))

124

APPENDIX A: (CONTINUED)

SELECT A COPY FROM 50 DATASETS FOR Z-REGRESSION MODEL

For Analyses of 1st copy of 50 datasets

dat.copy <- data.frame(BinArray2[, ,1]) # 1st copy

names(dat.copy)

table(dat.copy$GRP)

table(dat.copy$Z)

table(dat.copy$GRP, dat.copy$Z)

subset dataset for analysis of GAM component of ALV model

dat.copy2 <- data.frame(dat.copy[,6:8])

#---

GAM estimates of Z-population parameters

#---

etaG <- dat.copy$ETA * dat.copy$GRP

fitZ0.b1 <- gam(Z ~ s(ETA) + GRP + s(etaG), family=binomial, data = dat.copy)

summary(fitZ0.b1)

var(residuals(fitZ0.b1))

pred.y <- predict(fitZ0.b1, se = TRUE) # predicted values on logit scale

125

APPENDIX A: (CONTINUED)

#---------------------------------

ANALYTIC PLOTS

#----------------------------------

lwd<-2; lwd2<-1;

Tx.col<-2; Ctr.col<-4;

fit <- pred.y$fit

UL <- pred.y$fit + pred.y$se.fit

LL <- pred.y$fit - pred.y$se.fit

 group <- G

risk <- eta

ord <- order(risk)

xrange <- range(risk)

yrange <- range(fit)

yrange <- range(Z.logit.true)

plot(risk, fit, type = "n",

main= paste("Variation in Intervention Impact by Baseline Risk"),

 sub = "Vertical lines at percentiles of eta",

 ylim=yrange,

 xlim=xrange,

 xlab = " eta (population values)",

126

APPENDIX A: (CONTINUED)

ylab = paste("Probability of Z (GAM fit)")) # for continous Z

 ylab = paste("fitted Z (GAM)")) # for binary Z

ylab = paste("fitted Z (GLM)")) # for binary Z

 xord <- risk[ord]

 fitord <- fit[ord]

 Grord1 <- group[ord]

 ULord <- UL[ord]

 LLord <- LL[ord]

#lines(xord[Grord1 == 1], fitord[Grord1 == 1], lty=1, lwd=lwd, col=Tx.col)

#lines(xord[Grord1 == 0], fitord[Grord1 == 0], lty=2, lwd=lwd, col=Ctr.col)

lines(xord[Grord1 == 1], ULord[Grord1 == 1], lty=2, col=Tx.col)

points(xord[Grord1 == 1], fitord[Grord1 == 1], col=Tx.col)

lines(xord[Grord1 == 1], LLord[Grord1 == 1], lty=2, col=Tx.col)

lines(xord[Grord1 == 0], ULord[Grord1 == 0], lty=2, col=Ctr.col)

points(xord[Grord1 == 0], fitord[Grord1 == 0], pch=19 , col=Ctr.col)

lines(xord[Grord1 == 0], LLord[Grord1 == 0], lty=2, col=Ctr.col)

127

#tx.legend <- paste("Tx (n = ", sum(Grord1), ")")

#ctrl.legend <- paste("Ctrl (n = ", sum((Grord1 == 0)),")")

#legend(xrange[1],yrange[2], legend = c(tx.legend, ctrl.legend), lty=c(1,2), lwd=c(lwd, lwd),
col=c(Tx.col, Ctr.col))

Q <- matrix(quantile(eta, c(.10, .25, .50, .75, .90)))

segments(Q[1], yrange[1], Q[1], yrange[2], lty = 2)

segments(Q[2], yrange[1], Q[2], yrange[2], lty = 2)

segments(Q[3], yrange[1], Q[3], yrange[2], lty = 2)

segments(Q[4], yrange[1], Q[4], yrange[2], lty = 2)

segments(Q[5], yrange[1], Q[5], yrange[2], lty = 2)

text(Q[1], yrange[1], " 10th ", , adj = c(0,0), par(srt=90))

text(Q[2], yrange[1], " 25th ", , adj = c(0,0), par(srt=90))

text(Q[3], yrange[1], " 50th ", , adj = c(0,0), par(srt=90))

text(Q[4], yrange[1], " 75th ", , adj = c(0,0), par(srt=90))

text(Q[5], yrange[1], " 90th ", , adj = c(0,0), par(srt=90))

128

APPENDIX A: (CONTINUED)

#===

save simulated datasets for later replication studies

#===

write.csv(ContArray, file = "C:/.../repDat.N300.ContLin.csv", row.names = FALSE)

write.csv(BinArray, file = "C:/.../repDat.N300.BinNlin.csv", row.names = FALSE)

write.csv(ContArray2, file = "C:/.../repDat2.N300.ContLin.csv", row.names = FALSE)

write.csv(BinArray2, file = "C:/.../repDat2.N300.BinNlin.csv", row.names = FALSE)

129

APPENDIX B: SELF-WRITTEN R FUNCTIONS CALLED BY ALV MODEL

R-FUNCTIONS FOR THE GAM COMPONENT OF ALV MODEL

LIST OF FUNCTIONS

(1) write R function to define R(x,z)for cubic spline on [0,1]

function name = rk

(2) Use the rk function in a new function that takes a sequence of knots

and an array of x values to produce a model matrix X for cubic spline (p127)

function name = spl.X

(3) write a function to setup a penalized regression spline penalty matrix S

function name = spl.S

(4) write a simple matrix sqrt function to use on S

function name = mat.sqrt

(5) write a function to SET UP a simple additive model

with 2 smooth terms + 1 parametric term. This function is modified from the

function am.setup(Wood, 2006, p 135) and calls functions (1) to (3).

function name = am.setup2

130

APPENDIX B: (CONTINUED)

#####################################

FOR GAM COMPONENT

###################################

SIMPLE CUBIC SPLINE

write R function to define R(x,z)for cubic spline on [0,1]

rk <- function(x,z)

 { ((z - 0.5)^2 - 1/12)*((x - 0.5)^2 - 1/12)/4 -

 ((abs(x - z) - 0.5)^4 - (abs(x - z) - 0.5)^2/2 + 7/240)/24

 }

Use the rk function to write a function that takes a sequence of knots

and an array of x values to produce a model matrix X for cubic spline (p127)

spl.X <- function(x,xk)

 { q <- length(xk) + 2 # number of params

n <- length(x) # number of data

 X <- matrix(1, n, q) # initialize model matrix

 X[,2] <- x # set 2nd column to x

 X[,3:q] <- outer(x,xk,FUN=rk) # and remaining to R(x,xk)

 X

 }

131

APPENDIX B: (CONTINUED)

EXTENSION TO PENALIZED CUBIC SPLINE

Model extension: to fit penalized regression spline to x, y, data

First write a function to setup a penalized regression spline penalty matrix S

spl.S <- function(xk) # i.e. given a knot sequence xk

 {

 q <- length(xk) + 2; S <- matrix(0,q,q) # init S to 0

 S[3:q, 3:q] <- outer(xk,xk,FUN=rk) # fill in nonzero part

 S

 }

need a simple matrix sqrt function to use on S

mat.sqrt <- function(S)

 {

 d <- eigen(S, symmetric = TRUE)

 rS <- d$vectors%*%diag(d$values^0.5)%*%t(d$vectors)

 }

132

APPENDIX B: (CONTINUED)

EXTENSION TO ADDITIVE MODEL

Write a function to SET UP a 3-term simple additive model :

function to produce a model matrix X

and 2 regression penalty matrices in S for

a 2-smooth + 1-parametric terms additive model

am.setup2 <- function(x, z, g, q = 10)

 # get X, S_1 and S_2 for a simple 2-term (x & z) AM

 # including 1 parametric term g

 {

 # choose knots

 xk <- quantile(unique(x), 1:(q-2)/(q-1))

 zk <- quantile(unique(z), 1:(q-2)/(q-1))

 # get penalty matrices

 S <- list()

 S[[1]] <- S[[2]] <- matrix(0, 2*q, 2*q)

 S[[1]][3:(q+1), 3:(q+1)] <- spl.S(xk)[-1, -1]

 S[[2]][(q+2):(2*q), (q+2):(2*q)] <- spl.S(zk)[-1, -1]

 # get model matrix the 2 smooth terms

 n <- length(x)

 X1 <- matrix(1, n, 2*q-1)

133

APPENDIX B: (CONTINUED)

X1[,2:q] <- spl.X(x, xk)[, -1] # 1st smooth

 X1[,(q+1):(2*q-1)] <- spl.X(z, zk)[, -1] # 2nd smooth

 # add parametric term to 2nd column of model matrix

 d <- dim(X1)[2]

 X <- cbind(X1[,1], g, X1[,2:d])

 dimnames(X) <- NULL

 list(X=X, S=S)

 }

134

APPENDIX B: (CONTINUED)

FOR MCMC ALGORITHM

Define the unnormalized log-density of the cond distribution of eta

from which to draw a sample.

The function accepts data from the ith independent observation.

condETAfun.gam <- function(eta_i, YZ, muY, lambda, theta, beta, sigma.sq, Xmat_i,
penalty)

 {

 Y <- matrix(YZ[c(1:p)], ncol=1)

 Z <- matrix(YZ[p+1])

 # Allow ith eta to alternate btw candidate and current values

 # so that both values contribute to its condit distrib in turns:

 # Note - eta is in 3rd column of model matrix

 Xmat_i[3] <- eta_i # insert eta value (when eta = canditate/current)

 # Define cond distrib of eta_i upto a constant

 logLik <- (

 -0.5 %*% t(Y-muY-lambda%*%eta_i) %*% solve(theta) %*% (Y-muY-
lambda%*%eta_i) +

 -0.5 * 1/sigma.sq * ((Z - t(Xmat_i) %*% beta)^2) +

 -0.5 * eta_i^2

)

 }

135

APPENDIX C: R CODES FOR ALV MODEL ALGORITHM

#$$$

MUST FIRST RUN ALV FUNCTIONS IN R (APPENDIX B)

#$$$

load libraries.

library(foreign)

library(mgcv)

library(nlme)

library(MASS)

library(MCMCpack)

library(numDeriv

GET SIMULATED DATASETS (50 COPIES STACKED HORIZONTALLY)

replicData <- read.csv("C:/.../repDat.N300.ContLin.csv", header = TRUE)

dim(replicData)

#---------VARIABLE LABELS FOR DATASET----------

Y1-Y5 = continous scale indicators

Z = binary/cont distal outcome

GRP = 2-level group

#---

136

APPENDIX C: (CONTINUED)

assign GLM family of distribution

Y1.family <- gaussian

Y2.family <- gaussian

Y3.family <- gaussian

Y4.family <- gaussian

Y5.family <- gaussian

#---- select distribution for Z ----

z.binary <- TRUE

Z.family <- binomial

OR

z.binary <- FALSE

Z.family <- gaussian

USE THE 1ST COPY OF REPLIC DATASETS TO INITIATE SOME PARAMETER
VALUES

YZdata <- data.frame(replicData[,1:7])

names(YZdata) <- c("Y1","Y2","Y3","Y4","Y5","Z","GRP")

#dim(YZdata)

N <- nrow(YZdata)

p <- ncol(YZdata)-2 # let p = dim YZdata less (Z, GRP) -> no of Y variables

Ydata <- YZdata[,1:p]

Zdata <- YZdata[,(p+1)]

137

APPENDIX C: (CONTINUED)

#---

TRUE VALUES

#---

STORE TRUE VALUES (WHERE AVAILABLE) FOR EASY TABULATION

Y's

muY.t <- matrix(rep(0, p), ncol = 1)

muY.se.t <- matrix(rep(NA, p), ncol = 1)

muY.pval.t <- matrix(rep(NA, p), ncol = 1)

Rsq.muY.t <- matrix(rep(NA, p), ncol = 1)

lambda.t <- matrix(rep(1, p), ncol = 1)

lambda.se.t <- matrix(rep(NA, p), ncol = 1)

lambda.pval.t <- matrix(rep(NA, p), ncol = 1)

theta.t <- diag(rep(0.25,p))

theta.se.t <- matrix(rep(NA, p), ncol = 1)

Z

muZ.t <- matrix(0)

muZ.se.t <- matrix(NA)

muZ.pval.t <- NA

Rsq.Z.t <- NA

138

APPENDIX C: (CONTINUED)

beta.t <- matrix(NA)

beta.se.t <- matrix(NA)

beta.pval.t <- NA

sigma.sq.t <- matrix(0.25)

sigma.sq.se.t <- matrix(NA)

grp.interc.t <- matrix(NA)

grp.interc.se.t <- matrix(NA)

grp.interc.pval.t <- NA

etaBYgrp.t <- matrix(NA)

etaBYgrp0.se.t <- matrix(NA)

etaBYgrp0.pval.t <- NA

139

APPENDIX C: (CONTINUED)

#---

START VALUES

#---

muY0 <- matrix(apply(YZdata[,1:p], 2, mean), ncol = 1)

muY0.se <- matrix(rep(NA, p), ncol = 1)

muY0.pval <- matrix(rep(NA, p), ncol = 1)

Rsq.muY0 <- matrix(rep(NA, p), ncol = 1)

lambda0 <- matrix(rep(0.5,p), ncol = 1)

lambda0.se <- matrix(rep(NA, p), ncol = 1)

lambda0.pval <- matrix(rep(NA, p), ncol = 1)

#theta0 <- diag(rep(1,p))

theta0 <- diag(apply(YZdata[,1:p], 2, var)) # standard for ALV

theta0.se <- matrix(rep(NA, p), ncol = 1)

obtain approx z-interc when regressed on GRP + Y1 + Y2 + Y3 + Y4 + Y5

muZ0 <- matrix(glm(Z ~ . ,family = Z.family, data=YZdata)$coefficients[1])

muZ0.se <- NA

muZ0.pval <- NA

Rsq.Z0 <- NA

140

APPENDIX C: (CONTINUED)

beta0 <- NA # initial spline coefficients to be estimated shortly

#beta0.se <- matrix(NA)

#sigma.sq0 <- matrix(1.0)

sigma.sq0 <- matrix(var(YZdata[,(p+1)])) # standard for ALV

etaBYgrp0 <- matrix(0)

etaBYgrp0.se <- NA

etaBYgrp0.pval <- NA

grp.interc0 <- matrix(1)

grp.interc0.se <- NA

grp.interc0.pval <- NA

#--------------------------------

start values for eta

#--------------------------------

Compute approx var(eta|Y,Z,current params) from the start values

B <- solve((lambda0 %*% t(lambda0)+ theta0))

sigma2.eta0 <- 1 - t(lambda0) %*% B %*% lambda0

#sigma2.eta0

141

APPENDIX C: (CONTINUED)

generate initial N-vector eta from its cond distrib

eta00 <- matrix(rep(NA, N))

for (i in 1:N)

 {

 Yi <- matrix(as.numeric(Ydata[i,], ncol=1))

 eta00[i] <- t(lambda0) %*% B %*%(muY0-Yi)

 }

#plot(density(eta00))

GENERATE INITIAL PENALIZED REGRESSION SPLINE MODEL MATRIX

Scale eta00 to lie in [0,1]

 x <- eta00 - min(eta00); x <- x/max(x)

Next select a rank=30 basis (a set of 28 knots evenly spread over [0,1];

 xk <- 1:28/29 # choose knots

 q <- length(xk) + 2 # dimension of basis

Call function to produce model matrix

Xmat0 <- spl.X(x, xk)

Smat0 <- spl.S(xk)

NEXT GENERATE INITIAL ESTIM OF SPLINE COEFF AND PENALTY TERM

fit <- gam(Z ~ s(eta00, GRP, k=q) , family=Z.family, data=YZdata)

#summary(fit)

beta0 <- matrix(fit$coefficients, ncol=1)

tau0 <- fit$gcv.ubre

penalty0 <- tau0 * (t(beta0) %*% Smat0 %*% beta0)

142

APPENDIX C: (CONTINUED)

 # ALV (MCEM) ALGORITHM

#--

SET PARAMETERS FOR ALV ALGORITHM

#--

NOTE:

SINGLE REPLICATION TO STUDY CONVERGENCE (set bridge = TRUE)

MULTIPLE REPLICATIONS TO STUDY ESTIMATION (set bridge = FALSE)

Start RUN from here

 bridge <- TRUE

 maxrep <- 50 # of datasets to analyze

 stop.iter <- 3 # number of EM iterations following min deviance.

 #(set to 100 for convergence studies)

maxiter <- 100 # set maximum EM iterations

tuneSize <- 2.5 # rejection/acceptance control

burninSize <- 100 # Markov samples in burn-in period (to discard)

mcmcSize <- 100 # Length of MCMC chain retained for analysis

thinSize <- 1 # for thinning size

M <- mcmcSize/thinSize # Effective length of Markov chain used in analysis remains constant

143

APPENDIX C: (CONTINUED)

#=========== START OF ALV MODEL RUN ============

intialize lines as pointers for tracking different stages in the MCEM loop

line1 <- 0; line2 <- 0; line3 <- 0; line4 <- 0; line5 <- 0;

line6 <- 0; line7 <- 0; line8 <- 0; line9 <- 0; line10 <- 0

#--

Initialize storage matrices for all MCEM replications

#---

etaVectors <- matrix(NA, N, maxrep)

Z.best.mat <- matrix(NA, N, maxrep)

means and variances of ESTIMATES

paramMeans1 <- matrix(NA, (3*p+3), maxrep) # for non-smoothed param est

paramMeans2 <- matrix(NA, (q+1), maxrep) # for q spline coeff + 1 column

paramVars1 <- matrix(NA, (3*p+3), maxrep)

paramVars2 <- matrix(NA, (q+1), maxrep)

means and variances of ESTIMATES

paramMeans1.se <- matrix(NA, (3*p+3), maxrep) # for non-smoothed param est

paramMeans2.se <- matrix(NA, (q+1), maxrep) # for spline coeff

paramVars1.se <- matrix(NA, (3*p+3), maxrep)

paramVars2.se <- matrix(NA, (q+1), maxrep)

144

APPENDIX C: (CONTINUED)

sub-model deviances

all.deviances <- matrix(NA, maxrep, 6)

#---

START ALV REPLICATIONS: 1ST LOOP

#---

clock the start of EM iterations

Start.time <- Sys.time()

replic <- 0

while (maxrep > replic)

{

 replic <- replic + 1

get a copy from 50 replicate datasets stacked horizontally

(7 variable columns per dataset)

r <- replic # for rth dataset; r=1,...,50

d <- replicData[, ((r-1)* 7 + 1):(r * 7)] # select the rth 7 columns for rth dataset

YZdata <- data.frame(d)

Ydata <- YZdata[,1:p]

Zdata <- YZdata[,(p+1)]

names(YZdata) <- c("Y1","Y2","Y3","Y4","Y5","Z","GRP")

145

APPENDIX C: (CONTINUED)

create storage matrices for kth MCEM iteration

arrays to store calculated MEANS of individual regression parameter values

Y_params <- matrix(0, nrow=(maxiter+2), ncol=(10*p))

dim(Y_params) <- c((maxiter+2), 10, p)

dimnames(Y_params)<- list(NULL, c("EM-iter","interc","(s.e.)","p.value","lambda","(s.e.)",

 "p.value","theta","R^2","deviance"),
names(Ydata))

Y_params[,1,] <- c("true", "start", c(1:maxiter)) # input EM counter index

Z_params1 <- matrix(0, nrow=(maxiter+2), ncol=13)

dimnames(Z_params1) <- list(NULL, c("EM-
iter","threshold","(s.e.)","p.value","beta","(s.e.)","p.value",
"grp","(s.e.)","p.value","sigma^2","dev_explained","deviance"))

Z_params1[,1] <- c("true", "start", c(1:maxiter)) # input EM counter index

Z_params2 <- matrix(0, nrow=(maxiter+1), ncol=(q+1))

dimnames(Z_params2) <- list(NULL, c("EM-iter","interc",rep("s(eta.grp)", (q-1))))

Z_params2[,1] <- c("start", c(1:maxiter)) # input EM counter index

Z_params3 <- matrix(NA, nrow=(maxiter), ncol=2)

dimnames(Z_params3) <- list(NULL, c("EM-iter","UBRE score (tau)"))

Z_params3[,1] <- c(1:maxiter) # input EM
counter index

146

APPENDIX C: (CONTINUED)

arrays to store calculated VARIANCES of individual regression parameter values

Y_parVars <- matrix(0, nrow=(maxiter+2), ncol=(10*p))

dim(Y_parVars) <- c((maxiter+2), 10, p)

dimnames(Y_parVars)<- list(NULL, c("EM-iter","interc","(s.e.)","p.value","lambda","(s.e.)",

"p.value","theta","R^2","deviance"), names(Ydata))

Y_parVars[,1,] <- c("true", "start", c(1:maxiter)) # input EM counter index

Z_parVars1 <- matrix(0, nrow=(maxiter+2), ncol=13)

dimnames(Z_parVars1) <- list(NULL, c("EM-
iter","threshold","(s.e.)","p.value","beta","(s.e.)","p.value",

"grp","(s.e.)","p.value","sigma^2","dev_explained","deviance"))

Z_parVars1[,1] <- c("true", "start", c(1:maxiter)) # input EM counter index

RECORD the true values in first row of parameters table

for (h in 1:p)

 {

 Y_params[1 ,c(2:10), h] <- round(cbind(muY.t[h],
muY.se.t[h],muY.pval.t[h],lambda.t[h],lambda.se.t[h],

 lambda.pval.t[h], theta.t[h,h], Rsq.muY.t[h], NA), 4)

 }

 Z_params1[1, c(2:13)] <- round(cbind(muZ.t, muZ.se.t, muZ.pval.t, beta.t, beta.se.t, beta.pval.t,

 grp.interc.t, grp.interc.se.t, grp.interc.pval.t,

 sigma.sq.t, Rsq.Z.t, NA), 4)

147

APPENDIX C: (CONTINUED)

Store initial values in 2nd row of parameters table

for (h in 1:p)

 {

 Y_params[2 ,c(2:10), h] <- round(cbind(muY0[h], muY0.se[h], muY0.pval[h], lambda0[h],
lambda0.se[h],

 lambda0.pval[h], theta0[h,h], Rsq.muY0[h], NA), 4)

 }

 Z_params1[2, c(2:13)] <- round(cbind(muZ0, muZ0.se, muZ0.pval, NA, NA, NA,

 grp.interc0, grp.interc0.se, grp.interc0.pval,

 sigma.sq0, Rsq.Z0, NA), 4)

 Z_params1[2, 5] <- "spline"

 Z_params2[1, c(2:(q+1))] <- round(as.vector(beta0), 4)

initialize storage of best MCEM output results

iter.best <- 0

minDeviance <- 0

create a matrix to store deviance & convergence values for MCEM

convergence <- data.frame(matrix(NA,nrow=maxiter, ncol=7))

convergence[, 1] <- 1:maxiter

convergence[, 2] <- 999999

names(convergence) <- c("EM-iter", "SumDeviance", "Conv.Err1",

 "Conv.Err2", "Conv.Err", "logLR.com", "logLR.obs")

148

APPENDIX C: (CONTINUED)

log_LR <- matrix(NA, nrow=1, ncol=maxiter)

Y.estim.se <- matrix(0, maxiter*6*p)

dim(Y.estim.se) <- c(maxiter, 6, p)

Z.estim.se <- matrix(0, maxiter, 6)

Matrix to store std error estim by Louis method

louis.se <- matrix(NA, nrow=20, ncol=maxiter)

#--

START MCEM ITERATIONS (2ND LOOP)

#--

Get start values

muY <- muY0

lambda <- lambda0

theta <- theta0

muZ <- muZ0

beta <- beta0

sigma.sq <- sigma.sq0

Xmat <- Xmat0

penalty <- penalty0

149

APPENDIX C: (CONTINUED)

supply initial parameter values

new.params1 <- c(muY, lambda, theta, sigma.sq)

new.params2 <- c(beta)

new.params <- c(muY, lambda, theta, beta, sigma.sq)

iter <- 0

while(maxiter > iter)

{

 iter <- iter + 1 # update EM counter

to store eta statistics for N subjects

eta.chains <- matrix(0, nrow=N, ncol= M) # to store N Markov chains

eta.stat <- matrix(0, nrow=N, ncol=4) # initialize matrix to store eta statistics

eta.stat <- data.frame(eta.stat)

names(eta.stat) <- c("Mean", "SD", "Naive SE", "Time-series SE")

create matrices to record bridge sampling results

Lik_aa <- matrix(NA, nrow=N, ncol=M)

Lik_ab <- matrix(NA, nrow=N, ncol=M)

Lik_ba <- matrix(NA, nrow=N, ncol=M)

Lik_bb <- matrix(NA, nrow=N, ncol=M)

create matrices to record parameter values to be generated in the current EM iteration

Yparam.est <- matrix(0, nrow=M, ncol=(9*p))

dim(Yparam.est) <- c(M, 9, p)

Zparam.est1 <- matrix(0, nrow = M, ncol=12)

Zparam.est2 <- matrix(0, nrow = M, ncol=(q+1))

150

APPENDIX C: (CONTINUED)

create an array to record derivatives and calculated stderr to be generated in

the current EM iteration using Louis' formula

############

E-step

############

#---

START M-H ITERATION: 3RD LOOP

#---

old.params1 <- new.params1 # save current parameter values

old.params2 <- new.params2

old.params <- new.params

Metropolis-Hastings algorithm is performed on each subject

to simulate from p(eta|observed data at current values)

 line1 <- line1 + 1

 # sample within GRP level: YZdata is sorted by GRP

 a <- round(N/2)

 samp1 <- sample(1:a, 5, replace = FALSE)

 samp2 <- sample((a+1):N, 5, replace = FALSE)

 samp <- c(samp1, samp2)

151

APPENDIX C: (CONTINUED)

 # SUBJECT loop to run N Markov chains (1 for each subject i = 1:N)

 i <- 0 # initialize subject (row) counter

 while (N > i)

 { # begin M-H inner loop

 i <- i + 1

 YZi <- as.numeric(YZdata[i,]) # select ith observed data row

 eta_i <- Xmat[i, 3] # eta is in 3rd column of model matrix

 Xmat_i <- matrix(Xmat[i,], ncol=1)

 count <- 0

 repeat

 {

 count <- count + 1

 testrun <- try(MCMCmetrop1R(condETAfun.gam, theta.init= eta_i, Xmat_i=Xmat_i,
YZ=YZi, muY=muY, theta=theta, lambda=lambda, penalty=penalty, beta=beta,
sigma.sq=sigma.sq, thin=thinSize, mcmc=mcmcSize, burnin=burninSize, tune=tuneSize,
seed=NA, optim.method = "BFGS", verbose=0, logfun=TRUE, force.samp = TRUE,
optim.control = list(fnscale = -1, trace = 0, REPORT = 10, maxit=1000)))

 if (class(testrun) != "try-error" || count > 5) break

 }

 eta.samp <- testrun

SCRIPT FOR EXAMINING MCMC OPTIMALITY ####

plot(eta.samp)

raftery.diag(eta.samp)

152

APPENDIX C: (CONTINUED)

#raftery <- raftery.diag(eta.samp)

#ifelse (raftery$resmatrix[1] < 30, burninSize <- 50, burninSize <- 100)

END OF SCRIPT FOR EXAMINING MCMC OPTIMALITY ####

eta.chains[i,] <- t(eta.samp)

 eta.stat[i,] <- summary(eta.samp)$statistics

line2 <- line2 + 1

store MCMC samples of 5 randomly selected observations (subject) for diagnostics

 if (i == samp[1]) eta.samp1.1 <- eta.samp

 if (i == samp[2]) eta.samp1.2 <- eta.samp

 if (i == samp[3]) eta.samp1.3 <- eta.samp

 if (i == samp[4]) eta.samp1.4 <- eta.samp

 if (i == samp[5]) eta.samp1.5 <- eta.samp

 if (i == samp[6]) eta.samp2.1 <- eta.samp

 if (i == samp[7]) eta.samp2.2 <- eta.samp

 if (i == samp[8]) eta.samp2.3 <- eta.samp

 if (i == samp[9]) eta.samp2.4 <- eta.samp

 if (i == samp[10]) eta.samp2.5 <- eta.samp

#--

END M-H ITERATION: 3RD LOOP

#--

}

153

APPENDIX C: (CONTINUED)

##########

M-step: Estimate new parameters given the expected value of eta

##########

linear regression of Y's on etaHat

Personal note: This loop will be generalized later to accept any number p of regressions

line3 <- line3 + 1

for (j in 1:M)

 {

 # FIT Y INDICATORS

 eta_j <- as.numeric(eta.chains[,j])

 fitY1 <- glm(YZdata[,1] ~ eta_j, family = Y1.family)

 fitY2 <- glm(YZdata[,2] ~ eta_j, family = Y2.family)

 fitY3 <- glm(YZdata[,3] ~ eta_j, family = Y3.family)

 fitY4 <- glm(YZdata[,4] ~ eta_j, family = Y4.family)

 fitY5 <- glm(YZdata[,5] ~ eta_j, family = Y5.family)

 Yparam.est[j, 1:3, 1] <- summary(fitY1)$coefficients[1, c(1,2,4)] # extract interc,
s.e., p-value

 Yparam.est[j, 4:6, 1] <- summary(fitY1)$coefficients[2, c(1,2,4)] # extract slope,
s.e., p-value

 Yparam.est[j, 7, 1] <- var(residuals(fitY1))

 Yparam.est[j, 8, 1] <- NA # place holder for R-squared

 Yparam.est[j, 9, 1] <- fitY1$deviance

154

APPENDIX C: (CONTINUED)

 Yparam.est[j, 1:3, 2] <- summary(fitY2)$coefficients[1, c(1,2,4)] # extract interc,
s.e., p-value

 Yparam.est[j, 4:6, 2] <- summary(fitY2)$coefficients[2, c(1,2,4)] # extract slope,
s.e., p-value

 Yparam.est[j, 7, 2] <- var(residuals(fitY2))

 Yparam.est[j, 8, 2] <- NA # place holder for R-squared

 Yparam.est[j, 9, 2] <- fitY2$deviance

 Yparam.est[j, 1:3, 3] <- summary(fitY3)$coefficients[1, c(1,2,4)] # extract interc,
s.e., p-value

 Yparam.est[j, 4:6, 3] <- summary(fitY3)$coefficients[2, c(1,2,4)] # extract slope,
s.e., p-value

 Yparam.est[j, 7, 3] <- var(residuals(fitY3))

 Yparam.est[j, 8, 3] <- NA # place holder for R-squared

 Yparam.est[j, 9, 3] <- fitY3$deviance

 Yparam.est[j, 1:3, 4] <- summary(fitY4)$coefficients[1, c(1,2,4)] # extract interc,
s.e., p-value

 Yparam.est[j, 4:6, 4] <- summary(fitY4)$coefficients[2, c(1,2,4)] # extract slope,
s.e., p-value

 Yparam.est[j, 7, 4] <- var(residuals(fitY4))

 Yparam.est[j, 8, 4] <- NA # place holder for R-squared

 Yparam.est[j, 9, 4] <- fitY4$deviance

 Yparam.est[j, 1:3, 5] <- summary(fitY5)$coefficients[1, c(1,2,4)] # extract interc,
s.e., p-value

155

APPENDIX C: (CONTINUED)

 Yparam.est[j, 4:6, 5] <- summary(fitY5)$coefficients[2, c(1,2,4)] # extract slope,
s.e., p-value

 Yparam.est[j, 7, 5] <- var(residuals(fitY5))

 Yparam.est[j, 8, 5] <- NA # place holder for R-squared

 Yparam.est[j, 9, 5] <- fitY5$deviance

line4 <- line4 + 1

 # FIT DISTAL OUTCOME Z

 fitZ <- gam(Z ~ s(eta_j, GRP, k=q) , family = Z.family, data=YZdata)

 Zparam.est1[j, 1:3] <- summary(fitZ)$p.table[1 ,c(1,2,4)] # extract interc, s.e., p-
value

 Zparam.est1[j, 4:6] <- c(NA, NA, NA) # beta's
not recorded here

 Zparam.est1[j, 7:9] <- c(NA, NA, NA)

 Zparam.est1[j, 10] <- var(residuals(fitZ))

 Zparam.est1[j, 11] <- summary(fitZ)$dev.expl # extract deviance explained

 Zparam.est1[j, 12] <- fitZ$deviance

 Zparam.est2[j, 1:q] <- fitZ$coefficients # extract spline coeff

 Zparam.est2[j, (q+1)] <- fitZ$gcv.ubre # extract estimated smoothing parameter tau

 }

line5 <- line5 + 1

156

APPENDIX C: (CONTINUED)

Calculate the means & Monte Carlo std err of parameter estimates for current EM iteration

#===============

parameters for Y

#================

Ymeans <- matrix(NA, nrow = p, ncol = 9)

Yvars <- matrix(NA, nrow = p, ncol = 9)

for (k in 1:p)

 {

 ## calculate col means/variances of kth array in Yparam.est, form a vector

 # store temporarily

 Ymeans[k,] <- matrix(apply(Yparam.est[, , k], 2, mean), nrow=1)

 Yvars[k,] <- matrix(apply(Yparam.est[, , k], 2, var), nrow=1)

 # store results for MEANS permanently in kth array in Y.estim.se

 Y_params[(iter+2), 2:10, k] <- round(Ymeans[k,], 4)

157

APPENDIX C: (CONTINUED)

 # Record y-interc, lambdas, thetas and calculate their MC std err of estimates

 Y.estim.se[iter, c(1,3,5), k] <- round(Ymeans[k, c(1,4,7)], 3)

 Y.estim.se[iter, 2, k] <- round(sqrt((sum((Yparam.est[, 1, k] - Ymeans[k,
1])^2))*(1/(M*(M-1)))), 3)

 Y.estim.se[iter, 4, k] <- round(sqrt((sum((Yparam.est[, 4, k] - Ymeans[k,
4])^2))*(1/(M*(M-1)))), 3)

 Y.estim.se[iter, 6, k] <- round(sqrt((sum((Yparam.est[, 7, k] - Ymeans[k,
7])^2))*(1/(M*(M-1)))), 3)

 }

#======================

1st set of parameters for Z

#=======================

Record Z-threshold, grp-coef, sigma.sq and calculate their MC std err of estimates

Zmeans1 <- matrix(apply(Zparam.est1, 2, mean), nrow=1) # calculate col means

Zvars1 <- matrix(apply(Zparam.est1, 2, var), nrow=1) # calculate col variances

Z.estim.se[iter, c(1,3,5)] <- round(Zmeans1[c(1,7,10)], 3)

Z.estim.se[iter, 2] <- round(sqrt((sum((Zparam.est1[, 1] -
Zmeans1[1])^2))*(1/(M*(M-1)))), 3)

Z.estim.se[iter, 4] <- round(sqrt((sum((Zparam.est1[, 7] -
Zmeans1[1])^2))*(1/(M*(M-1)))), 3)

Z.estim.se[iter, 6] <- round(sqrt((sum((Zparam.est1[, 10] -
Zmeans1[1])^2))*(1/(M*(M-1)))), 3)

Z_params1[(iter+2), 2:13] <- round(Zmeans1, 3)

Z_params1[(iter+2), 5] <- "spline"

158

APPENDIX C: (CONTINUED)

#===================================

2nd set of parameters for Z

#===================================

Zmeans2 <- matrix(apply(Zparam.est2, 2, mean), nrow=1) # calculate col means

Zvars2 <- matrix(apply(Zparam.est2, 2, var), nrow=1) # calculate col variances

Z_params2[(iter+1), 2:(q+1)] <- round(Zmeans2[1:q], 3) # extract 20 coeff (less ubre score)

Z_params3[(iter), 2] <- round(Zmeans2[(q+1)], 3) # store gcv.ubre score

line6 <- line6 + 1

UPDATE parameters for next EM round

#------------------------

Update Y parameters

#------------------------

muY <- matrix(c(Ymeans[1:p, 1]), ncol=1)

lambda <- matrix(c(Ymeans[1:p, 4]), ncol=1)

theta <- diag(c(Ymeans[1:p, 7]))

159

APPENDIX C: (CONTINUED)

#------------------------

Update Z parameters

#------------------------

muZ <- matrix(Zmeans1[1]) # threshold/intercept

sigma.sq <- matrix(Zmeans1[10])

beta <- matrix(Zmeans2[1:q], ncol=1) # spline coefficients

tau <- matrix(Zmeans2[(q+1)]) # smoothing parameter

line7 <- line7 + 1

TO UPDATE matrices X, S and penalty: first obtain an N-vector eta from MCMC simulations

eta.vec <- as.vector(apply(eta.chains, 1, mean)) # get row means (eta Hat for each subject)

Scale eta.vec to lie in [0,1]

x2 <- eta.vec - min(eta.vec); x2 <- x2/max(x2)

Call function to produce new model and penalty matrices

Xmat <- spl.X(x2, xk)

Smat <- spl.S(xk)

dim(Smat) # q x q penalty matrix for s(eta,grp)

dim(Xmat) # Nxq model matrix

dim(beta) # qx1 penalized least sq estimates of spline coefficients

dim(tau) # scalar : estimate of common smoothing parameter

160

 APPENDIX C: (CONTINUED)

update current estim of penalty of the penalized least square expression for

(Z|eta, grp, eta*grp) component of (eta|Y,Z,omega(k)). NOTE: This step is not neccssary

penalty <- tau * (t(beta) %*% Smat %*% beta)

line8 <- line8 + 1

####################################

COMPUTE LOUIS' STD ERRORS

####################################

#---

calculate partial derivatives w.r.t. muY, lambda and theta

#---

louis1 <- matrix(0, nrow=M, ncol=(6*p))

dim(louis1) <- c(M, 6, p)

for (j in 1:M)

{

eta_j <- as.numeric(eta.chains[,j])

 for (k in 1:p)

 {

mu <- Yparam.est[j,1,k]

lam <- Yparam.est[j,4,k]

the <- Yparam.est[j,7,k]

y <- YZdata[,k]

161

 APPENDIX C: (CONTINUED)

Calculate the gradient/Hessian of a function by numerical approximation using numDeriv-
package functions

func.mu <- function(mu){ -0.5*N*log(the)-(0.5/the)*(sum((y - mu - lam*eta_j)^2)) }

func.lam <- function(lam){ -0.5*N*log(the)-(0.5/the)*(sum((y - mu - lam*eta_j)^2)) }

func.the <- function(the){ -0.5*N*log(the)-(0.5/the)*(sum((y - mu - lam*eta_j)^2)) }

Store 1st partial derivatives

louis1[j,1,k] <- grad(func.mu, mu # muY

louis1[j,2,k] <- grad(func.lam, lam) # lambda

louis1[j,3,k] <- grad(func.the, the) # theta

2nd partial derivatives

louis1[j,4,k] <- as.double(hessian(func.mu, mu)) # muY

louis1[j,5,k] <- as.double(hessian(func.lam, lam)) # lambda

louis1[j,6,k] <- as.double(hessian(func.the, the)) # theta

 }

}

162

APPENDIX C: (CONTINUED)

calculate Louis std err (use NEGATIVE 2nd partial derivatives)

Store stacked in a column per EM iter

for (k in 1:p)

{

louis.se[k, iter] <- round((mean((louis1[,1,k] - mean(louis1[,1,k]))^2) - mean(louis1[,4,k])), 3)
muY

louis.se[(k+p), iter] <- round((mean((louis1[,2,k] - mean(louis1[,2,k]))^2) -
mean(louis1[,5,k])), 3) # lambda

louis.se[(k+2*p), iter] <- round((mean((louis1[,3,k] - mean(louis1[,3,k]))^2) -
mean(louis1[,6,k])), 3) # theta

}

MONITOR CONVERGENCE 1 : STANDARD APPROACH

Store new parameters

new.params1 <- c(muY, lambda, theta, sigma.sq)

new.params2 <- c(beta)

new.params <- c(muY, lambda, theta, beta, sigma.sq)

163

APPENDIX C: (CONTINUED)

Calculate and update convergence error

err1 <- sqrt(sum((old.params1 - new.params1)^2))

err2 <- sqrt(sum((old.params2 - new.params2)^2))

err <- sqrt(sum((old.params - new.params)^2))

Calculate and update total deviance

y.dev <- matrix(1:p, nrow=1)

for (h in 1:p)

 { y.dev[h] <- as.numeric(Y_params[(iter+2), 10, h]) }

dev.Z <- as.numeric(Z_params1[(iter+2), 13])

convergence[iter, 1] <- iter

convergence[iter, 2] <- sum(y.dev, dev.Z)

convergence[iter, 3] <- err1

convergence[iter, 4] <- err2

convergence[iter, 5] <- err

Record and update model fits & MCMC samples for best EM iteration

based on minimum total deviance

new.minDeviance <- min(convergence$SumDeviance)

best <- convergence[convergence$SumDeviance == new.minDeviance,]

 iter.best <- as.numeric(best[1])

164

APPENDIX C: (CONTINUED)

 if (iter == iter.best)

 {

 eta.chains.best <- eta.chains

 eta.sample1.1 <- eta.samp1.1

 eta.sample1.2 <- eta.samp1.2

 eta.sample1.3 <- eta.samp1.3

 eta.sample1.4 <- eta.samp1.4

 eta.sample1.5 <- eta.samp1.5

 eta.sample2.1 <- eta.samp2.1

 eta.sample2.2 <- eta.samp2.2

 eta.sample2.3 <- eta.samp2.3

 eta.sample2.4 <- eta.samp2.4

 eta.sample2.5 <- eta.samp2.5

 eta.vec.best <- eta.vec

 eta.stat.best <- eta.stat

 Xmat.best <- Xmat

 Y_params.best <- Y_params[c(1,2,(iter+2)), -c(4,7,9) ,]

 Z_params1.best <- Z_params1[c(1,2,(iter+2)), c(1:3,8,9,11,13)]

 Z_params2.best <- Z_params2[iter, 4:21]

165

 APPENDIX C: (CONTINUED)

Ymeans.best <- Ymeans

 Zmeans1.best <- Zmeans1

 Zmeans2.best <- Zmeans2

 Yvars.best <- Yvars

 Zvars1.best <- Zvars1

 Zvars2.best <- Zvars2

 }

 #------------------------

MONITOR CONVERGENCE 2 :

PERFORM BRIDGE SAMPLING TO APPROX OBSERVED LIKELIHOOD

#------------------------

record estimates for (k+1)th EM iteration

muY.b <- muY

lambda.b <- lambda

theta.b <- theta

muZ.b <- muZ

beta.b <- beta

sigma.sq.b <- sigma.sq

eta.chains.b <- eta.chains

166

APPENDIX C: (CONTINUED)

if (bridge == TRUE && iter > 1)

{ # RUN bridge-sampling loop only when studying convergence

 # and start from 2nd EM iteration

for (m in 1:M)

 {

 for (i in 1:N)

 {

 Y <- matrix(as.double(Ydata[i,]))

 Z <- as.double(Zdata[i])

 eta.a <- eta.chains.a[i, m]

 eta.b <- eta.chains.b[i, m]

 Xm.a <- matrix(Xmat[i,])

 Xm.a[3] <- eta.a

 Xm.b <- matrix(Xmat[i,])

 Xm.b[3] <- eta.b

 Lik_aa[i, m] <- (1/sqrt(det(theta.a))) * (1/sqrt(sigma.sq.a)) *

 exp(-0.5 * (t(Y-muY.a-lambda.a%*%eta.a) %*% solve(theta.a) %*% (Y-
muY.a-lambda.a%*%eta.a) +

 1/sigma.sq.a * ((Z - t(Xm.a) %*% beta.a)^2 + penalty) + eta.a^2))

167

APPENDIX C: (CONTINUED)

 Lik_ab[i, m] <- (1/sqrt(det(theta.b))) * (1/sqrt(sigma.sq.b)) *

 exp(-0.5 * (t(Y-muY.b-lambda.b%*%eta.a) %*% solve(theta.b) %*% (Y-
muY.b-lambda.b%*%eta.a) +

 1/sigma.sq.b * ((Z - t(Xm.a) %*% beta.b)^2 + penalty) + eta.a^2))

 Lik_ba[i, m] <- (1/sqrt(det(theta.a))) * (1/sqrt(sigma.sq.a)) *

 exp(-0.5 * (t(Y-muY.a-lambda.a%*%eta.b) %*% solve(theta.a) %*% (Y-
muY.a-lambda.a%*%eta.b) +

 1/sigma.sq.a * ((Z - t(Xm.b) %*% beta.a)^2 + penalty) + eta.b^2))

 Lik_bb[i, m] <- (1/sqrt(det(theta.b))) * (1/sqrt(sigma.sq.b)) *

 exp(-0.5 * (t(Y-muY.b-lambda.b%*%eta.b) %*% solve(theta.b) %*% (Y-
muY.b-lambda.b%*%eta.b) +

 1/sigma.sq.b * ((Z - t(Xm.b) %*% beta.b)^2 + penalty) + eta.b^2))

 }

 }

num1 <- apply(Lik_ab, 2, sum)

den1 <- apply(Lik_aa, 2, sum)

num2 <- apply(Lik_ba, 2, sum)

den2 <- apply(Lik_bb, 2, sum)

A <- sqrt(num1/den1)

B <- sqrt(num2/den2)

log_LR[iter] <- log(sum(A)) - log(sum(B))

}

168

APPENDIX C: (CONTINUED)

record estimates for (k)th EM iteration

muY.a <- muY.b

lambda.a <- lambda.b

theta.a <- theta.b

muZ.a <- muZ.b

beta.a <- beta.b

sigma.sq.a <- sigma.sq.b

eta.chains.a <- eta.chains.b

new.iter.best <- iter.best

if((iter - iter.best) == stop.iter)

 {

 iter.hi <- max(iter.hi, new.iter.best)

if (iter.hi > new.iter.best) target.replic <- replic # identif replic with highest EM iteration

 break

 }

if (iter==maxiter)

 {

 break

 }

} # end EM loop

#--

END MCEM ITERATION: 2ND LOOP

#---

169

APPENDIX C: (CONTINUED)

line9 <- line9 + 1

For the BEST EM iteration in jth replication:

Store all parameter estimates

Record and update model fits & MCMC samples for best EM iteration

based on minimum total deviance

means and std.dev of ESTIMATES

paramMeans1[1:p, replic] <- c(Ymeans.best[1:p, 1]) # Y-intercepts

paramMeans1[(p+1):(2*p), replic] <- c(Ymeans.best[1:p, 4]) # Y-lambdas

paramMeans1[(2*p+1):(3*p), replic] <- c(Ymeans.best[1:p, 7]) # Y-thetas

paramMeans1[(3*p+1), replic] <- Zmeans1.best[1] # Z-threshold/intercept

paramMeans1[(3*p+2), replic] <- Zmeans1.best[7] # Z-grp.intercept

paramMeans1[(3*p+3), replic] <- Zmeans1.best[10] # Z-sigma.sq

paramVars1[1:p, replic] <- sqrt(c(Yvars.best[1:p, 1])) # Y-intercepts

paramVars1[(p+1):(2*p), replic] <- sqrt(c(Yvars.best[1:p, 4])) # Y-lambdas

paramVars1[(2*p+1):(3*p), replic] <- sqrt(c(Yvars[1:p, 7])) # Y-thetas

paramVars1[(3*p+1), replic] <- sqrt(Zvars1.best[1]) # Z-threshold/intercept

paramVars1[(3*p+2), replic] <- sqrt(Zvars1.best[7]) # Z-grp.intercept

paramVars1[(3*p+3), replic] <- sqrt(Zvars1.best[10]) # Z-sigma.sq

170

APPENDIX C: (CONTINUED)

paramMeans2[, replic] <- Zmeans2.best # q spline coeff + 1 smoothing param (ubre)

paramVars2[, replic] <- Zvars2.best

means and std.dev of STD ERRORS OF ESTIMATES

paramMeans1.se[1:p, replic] <- c(Ymeans.best[1:p, 2]) # Y-intercepts

paramMeans1.se[(p+1):(2*p), replic] <- c(Ymeans.best[1:p, 5]) # Y-lambdas

paramMeans1.se[(2*p+1):(3*p), replic] <- NA # Y-thetas

paramMeans1.se[(3*p+1), replic] <- Zmeans1.best[2] # Z-threshold/intercept

paramMeans1.se[(3*p+2), replic] <- Zmeans1.best[8] # Z-grp.intercept

paramMeans1.se[(3*p+3), replic] <- NA # Z-sigma.sq

paramVars1.se[1:p, replic] <- sqrt(c(Yvars.best[1:p, 2])) # Y-intercepts

paramVars1.se[(p+1):(2*p), replic] <- sqrt(c(Yvars.best[1:p, 5])) # Y-lambdas

paramVars1.se[(2*p+1):(3*p), replic] <- NA # Y-thetas

paramVars1.se[(3*p+1), replic] <- sqrt(Zvars1.best[2]) # Z-threshold/intercept

paramVars1.se[(3*p+2), replic] <- sqrt(Zvars1.best[8]) # Z-grp.intercept

paramVars1.se[(3*p+3), replic] <- NA # Z-sigma.sq

paramMeans2.se[, replic] <- Zmeans2.best # q spline coeff + 1 smoothing param (ubre)

paramVars2.se[, replic] <- Zvars2.best

etaVectors[,replic] <- eta.vec.best

171

APPENDIX C: (CONTINUED)

store sub-model deviances at EM covergence for each replication

all.deviances[replic,] <- round(c(Ymeans.best[1:p, 9], Zmeans1.best[12]), 1)

line10 <- line10 + 1

#if (replic == 3) stop("3rd replication completed")

}

#---

END REPLICATIONS: 1ST LOOP

#--

CLOCK THE END OF EM ITERATIONS

End.time <- Sys.time()

Lapsed.time <- difftime(End.time, Start.time)

Lapsed.time

#=========== END OF ALV MODEL RUN ============

line1

line2

line3

line4

172

APPENDIX C: (CONTINUED)

line5

line6

line7

line8

line9

line10

#==

COMPILE REPLICATION RESULTS

#==

COMPILE TRUE VALUES

p <- ncol(YZdata)-2 # let p = dim YZdata less (Z, GRP) -> no of Y variables

Parameter <- c(rep(c("Y-intercept","lambda","theta"), each=p),

 "Z-intercept", "group", "sigma^2")

Index <- c(rep(1:p, 3), rep(1,3))

Pop_param <- c(muY.t, lambda.t, diag(theta.t), muZ.t, grp.interc.t, sigma.sq.t)

#Pop_se <- c(muY.se.t, lambda.se.t, theta.se.t, muZ.se.t, grp.interc.se.t, sigma.sq.se.t)

Pop <- data.frame(Parameter, Index, Pop_param)

Pop

173

APPENDIX C: (CONTINUED)

PARAMETRIC COEFFICIENTS

L <- replic

Mean_Dev <- matrix(apply(all.deviances, 2, mean), ncol=1) # calculate col means of sub-
model deviances

Mean_Est <- matrix(apply(paramMeans1[,1:L], 1, mean), ncol=1) # calculate row means of
param estim

SD_Est <- matrix(apply(paramMeans1[,1:L], 1, sd), ncol=1) # calculate row std dev

v.est <- matrix(apply(paramMeans1[,1:L], 1, var), ncol=1) # calculate row variance

Mean_SE <- matrix(apply(paramMeans1.se[,1:L], 1, mean), ncol=1) # calculate row means
of std.err of estim

SD_of_SE <- matrix(apply(paramMeans1.se[,1:L], 1, sd), ncol=1) # calculate row std dev

SE_by_SD <- Mean_SE/SD_Est

true <- Pop[, 3]

Bias <- Mean_Est - true

RMS <- v.est + Bias^2

pc <- data.frame(Pop, round(data.frame(Mean_Est, SD_Est, Mean_SE, SE_by_SD, Bias, RMS),
3))

pc$Deviance <- round(c(Mean_Dev[1:5], rep(NA, 10), Mean_Dev[6], NA, NA), 1)

paramCoef <- tt[-17,] # Remove GRP coeff

paramCoef

174

APPENDIX C: (CONTINUED)

Save estimated eta vector for each replication

write.csv(etaVectors, file = "C:/.../*.csv", row.names = FALSE)

Save results of replication studies

write.csv(paramCoef, file = "C:/.../*.csv", row.names = FALSE)

WHEN ALV MODEL IS FITTED TO A SINGLE DATASET,

COMPILE RESULTS FOR GAM COMPONENT AS FOLLOWS:

#====================================

Plot the fitted curve - GAM

#=====================================

USE THE SELECTED BEST ETA ESTIMATE (AT EM CONVERGENCE)

data.comp <- YZdata

data.comp$eta <- eta.vec.best

data.comp$eta_by_group <- eta.vec.best * YZdata$GRP

 fitZ.b <- gam(Z ~ s(eta) + as.factor(GRP) + s(eta_by_group), family=Z.family,
data=data.comp)

summary(fitZ.b)

save

write.csv(data.comp, file = "C:/…/ *.csv", row.names = FALSE)

175

APPENDIX C: (CONTINUED)

ANALYTIC PLOT

lwd<-2; lwd2<-1;

Tx.col<-2; Ctr.col<-4;

fit <- fitZ.b$fitted.values

 group <- data.comp$GRP

risk <- data.comp$eta

ord <- order(risk)

yrange <- range(data.comp$Z)

xrange <- range(risk)

plot(risk, fit, type = "n",

main= paste("Variation in Intervention Impact by Baseline Risk"),

 sub = "Vertical lines at risk percentiles",

 ylim=yrange,

 xlim=xrange,

 xlab = "Baseline Risk (eta)",

 ylab = paste("Distal Outcome (Z)")) # for continous Z

ylab = paste("Probability of Distal Outcome (Z)")) # for binary Z

 xord <- risk[ord]

 fitord <- fit[ord]

 Grord1 <- group[ord]

176

APPENDIX C: (CONTINUED)

lines(xord[Grord1 == 1], fitord[Grord1 == 1], lty=1, lwd=lwd, col=Tx.col)

lines(xord[Grord1 == 0], fitord[Grord1 == 0], lty=2, lwd=lwd, col=Ctr.col)

tx.legend <- paste("Tx (n = ", sum(Grord1), ")")

ctrl.legend <- paste("Ctrl (n = ", sum((Grord1 == 0)),")")

legend(xrange[1],yrange[2], legend = c(tx.legend, ctrl.legend), lty=c(1,2), lwd=c(lwd, lwd),
col=c(Tx.col, Ctr.col))

Q <- matrix(quantile(risk, c(.25, .50, .75, .90, .95)))

segments(Q[1], yrange[1], Q[1], yrange[2], lty = 2)

segments(Q[2], yrange[1], Q[2], yrange[2], lty = 2)

segments(Q[3], yrange[1], Q[3], yrange[2], lty = 2)

segments(Q[4], yrange[1], Q[4], yrange[2], lty = 2)

segments(Q[5], yrange[1], Q[5], yrange[2], lty = 2)

text(Q[1], yrange[1], " 25th ", , adj = c(0,0), par(srt=90))

text(Q[2], yrange[1], " 50th ", , adj = c(0,0), par(srt=90))

text(Q[3], yrange[1], " 75th ", , adj = c(0,0), par(srt=90))

text(Q[4], yrange[1], " 90th ", , adj = c(0,0), par(srt=90))

text(Q[5], yrange[1], " 95th ", , adj = c(0,0), par(srt=90))

177

APPENDIX C: (CONTINUED)

#-------------------------------------

DIAGNOSTIC PLOTS

#-------------------------------------

gam.check(fitZ.b) # residual plots

plot(fitZ.b,pages=1,residuals=TRUE)

plot(fitZ.b,pages=1,seWithMean=TRUE, shade=TRUE)

#--

MORE ALV MODEL FIT RESULTS FOR REVIEW

#--

Y_params.best

Z_params1.best

Z_params2.best

Y_params[1:(iter+2),-c(4,7,9) ,]

Z_params1[1:(iter+2),c(1:3,8,9,11,13)]

paramMeans1[,1:replic]

178

APPENDIX C: (CONTINUED)

ALV MODEL CONVERGENCE RESULTS

OVERAL FOR ALV MODEL

record log of observed-data likelihood ratio between 2 consecutive steps

convergence$logLR.obs <- as.vector(log_LR)

Create a new variable for total deviance minus its MINIMUM (for graphing purposes)

convergence$SumDeviance2 <- rep(NA, nrow(convergence))

mDev <- min(convergence$SumDeviance[1:iter])

convergence$SumDeviance2[1:iter] <- round((convergence$SumDeviance[1:iter] - mDev), 4)

RECORD convergence data

convergence[1:iter, c(1:5,7)]

round(convergence[1:(iter-1), c(1:5)], 4)

save

write.csv(convergence, file = "C:/.../*.csv", row.names = FALSE)

179

APPENDIX C: (CONTINUED)

#---

PLOTS TO MONITOR CONVERGENCE

#---

DEVIANCE PLOTS

par(mfrow = c(2, 1))

plot(c(1:iter), convergence$logLR.obs[1:iter], type="l",

 ylab="Log of likelihood ratio", xlab="Iteration")

 title(main="Log of Observed-Data Likelihood Ratio

 Versus EM Iteration from the 2nd Iteration", cex.main=1.1)

abline(v = iter.best, col = "blue", lty=3)

plot(c(1:iter), convergence$SumDeviance2[1:iter], type="l",

 ylab="Total deviance", xlab="Iteration")

 title(main="Scaled Total Deviance Versus EM Iteration", cex.main=1.1)

abline(v = iter.best, col = "blue", lty=3)

180

APPENDIX C: (CONTINUED)

CONVERGENCE ERRORS

par(mfrow = c(1, 1))

plot(convergence[,1], convergence[,3], ylim=c(0,3), xlim=c(0,iter),type="n",

 ylab="Convergence Errors", xlab="Iteration")

 title(main="Log of Observed-Data Likelihood Ratio

 Versus EM Iteration from the 2nd Iteration", cex.main=1.1)

#abline(v = iter.best, col = "black", lty=3)

lines(convergence[,1], convergence[,3], lwd=1.9, lty=2, col=1)

lines(convergence[,1], convergence[,4], lwd=1.9, lty=1, col=1)

err1.legend <- paste("{mu's, lambda's, theta's, sigma^2's}")

err2.legend <- paste("beta's")

legend("topright", legend = c(err1.legend, err2.legend), lty=c(2, 1),

 horiz = FALSE, lwd=c(1, 1), col=c(1,1))

#---

MONITOR PARAMETER ESTIM

#---

yp <- Y_params[1:(iter+2),-c(4,7,9) ,]

zp1 <- Z_params1[1:(iter+2),c(1:3,8,9,11,13)]

 est1 <- est2 <- est3 <- matrix(NA, ncol=p, nrow=(iter+1))

181

APPENDIX C: (CONTINUED)

for (k in 1:p)

{

est1[, k] <- as.double(yp[c(2:(iter+2)),2 ,k]) # y-interc

est2[, k] <- as.double(yp[c(2:(iter+2)),4 ,k]) # lambda

est3[, k] <- as.double(yp[c(2:(iter+2)),6 ,k]) # theta

}

est4 <- matrix(NA, ncol=3, nrow=(iter+1))

est4[,1] <- as.double(zp1[c(2:(iter+2)),2]) # z-interc

est4[,2] <- as.double(zp1[c(2:(iter+2)),4]) # grp

est4[,3] <- as.double(zp1[c(2:(iter+2)),6]) # sigma.sq

estA <- data.frame(cbind(est1, est2, est3, est4))

rm(yp)

rm(zp1)

names(estA) <- c("Y1", "Y2", "Y3", "Y4", "Y5", "lam1", "lam2", "lam3", "lam4", "lam5",

 "the1", "the2", "the3", "the4", "the5", "Z", "grp","sig2")

par(mfrow = c(2, 2))

iteration <- 0:iter

182

APPENDIX C: (CONTINUED)

plot(iteration, estA[,1], ylim=range(estA[,1:5]), ylab="estimate", type="n")

 title(main="Y-intercepts", cex.main=1.1)

abline(v = iter.best, lty=3)

for (j in 1:5)

{

lines(iteration, estA[,j], col=(j+1), lty=(j+1), lwd=2)

}

plot(iteration, estA[,1], ylim=range(estA[,6:10]), ylab="estimate", type="n")

 title(main="Lambdas", cex.main=1.1)

abline(v = iter.best, col = "blue", lty=3)

for (j in 6:10)

{

lines(iteration, estA[,j], col=(j-4), lty=(j-4), lwd=2)

}

plot(iteration, estA[,1], ylim=range(estA[,11:15]), ylab="estimate", type="n")

 title(main="Thetas", cex.main=1.1)

abline(v = iter.best, col = "blue", lty=3)

for (j in 11:15)

{

lines(iteration, estA[,j], col=(j-9), lty=(j-9), lwd=2)

}

183

 APPENDIX C: (CONTINUED)

 plot(iteration, estA[,1], ylim=range(estA[,c(16,18)]), ylab="estimate", type="n")

 title(main="Sigma^2 -.- Z-interc __", cex.main=1.1)

abline(v = iter.best, col = "blue", lty=3)

lines(iteration, estA[,16], lwd=2, lty=2)

#lines(iteration, estA[,17], lwd=2, lty=3)

lines(iteration, estA[,18], lwd=2, lty=4)

#---

PLOTS to examine MCMC simulations for 5 randomly selected subjects

#--

plot(eta.sample1.1)

mtext("1st Randomly Selected Subject (GRP=1)", cex = 1.2, side = 3, line = 3)

plot(eta.sample1.2)

mtext("2nd Randomly Selected Subject (GRP=1)", cex = 1.2, side = 3, line = 3)

plot(eta.sample1.3)

mtext("3rd Randomly Selected Subject (GRP=1)", cex = 1.2, side = 3, line = 3)

plot(eta.sample1.4)

mtext("4th Randomly Selected Subject (GRP=1)", cex = 1.2, side = 3, line = 3)

184

APPENDIX C: (CONTINUED)

plot(eta.sample1.5)

mtext("5th Randomly Selected Subject (GRP=1)", cex = 1.2, side = 3, line = 3)

plot(eta.sample2.1)

mtext("1st Randomly Selected Subject (GRP=2)", cex = 1.2, side = 3, line = 3)

plot(eta.sample2.2)

mtext("2nd Randomly Selected Subject (GRP=2)", cex = 1.2, side = 3, line = 3)

plot(eta.sample2.3)

mtext("3rd Randomly Selected Subject (GRP=2)", cex = 1.2, side = 3, line = 3)

plot(eta.sample2.4)

mtext("4th Randomly Selected Subject (GRP=2)", cex = 1.2, side = 3, line = 3)

plot(eta.sample2.5)

mtext("5th Randomly Selected Subject (GRP=2)", cex = 1.2, side = 3, line = 3)

############################

SAVE WORKSPACE

############################

save.image(file = "C:/…/*.RData")

ABOUT THE AUTHOR

 Peter Toyinbo received a doctoral Degree in Medicine from University of Ife, Nigeria in

1981 and an M.S.P.H. (Biostatistics) from University of South Florida (U.S.F.) in 2004. He was

accepted into the Ph.D. program at the U.S.F. in 2004. Concurrently he completed a two-year

postdoctoral fellowship in Preventive Research Methodology in Mental Health from the Johns

Hopkins Bloomberg School of Public Health in 2006. He received the national ‘Certified in

Public Health’ (CPH) credential in 2009.

He is an active member of the Prevention Science and Methodology Group (PSMG) and

has collaborated on few research projects through the PSMG research efforts. He currently holds

the position of Statistical Data Analyst with the Department of Aging and Mental Health

Disparities in the Florida Mental Health Institute of the USF where he collaborates and provides

consultations on research study designs and statistical analyses to fellow research faculty.

