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Development of Three Dimensional Fluid-Structure Interaction Models for the Design of 

Surface Acoustic Wave Devices: Application to Biosensing and Microfluidic Actuation  

 

Reetu Singh 
 

ABSTRACT 

 

Surface acoustic wave (SAW) devices find uses in a plethora of applications including 

but not limited to chemical, biological sensing, and microfluidic actuation. The primary aim of 

this dissertation is to develop a SAW biosensor, capable of simultaneous detection of target 

biomarkers in fluid media at concentrations of picogram/ml to nanogram/ml levels and removal 

of non-specific proteins from sensor surface using the process of acoustic streaming, for potential 

chemical sensing,  medical, and clinical diagnostic applications. The focus is on the development 

of three dimensional finite element structural and fluid-structure interaction models to study wave 

propagation and acoustic actuation of fluids in a SAW biosensor. This work represents a 

significant improvement in understanding fluid flow over SAW devices, over the currently 

available continuum model of Nyborg. The developed methodology includes use of a novel 

substrate, namely, Langasite coupled with various combinations of novel multidirectional 

interdigital transducer (IDT) configurations such as orthogonal, focused IDTs as well as sensor 

surface modifications, such as micro-cavities. The current approach exploits the capability of the 

anisotropic piezoelectric crystal to launch waves of different characteristics in different 

directions, which can be put to the multiple uses including but not limited to sensing via shear 

horizontal waves and biofouling elimination via Rayleigh wave induced acoustic streaming. 
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Orthogonal IDTs gives rise to constructive interference, thereby enhancing the magnitudes of 

device displacements and fluid velocities. The net effect is an increase in device sensitivity and 

acoustic streaming intensity. The use of micro-cavities in the delay path provides a synergistic 

effect, thereby further enhancing the device sensitivity and streaming intensity. Focused IDTs are 

found to enhance the device displacements and fluid velocities, while focusing the device 

displacements and fluid motion at the device focal point, thereby enhancing the SAW device 

biosensing performance. The work presented in this dissertation has widespread and immediate 

use for enhancing sensor sensitivity and analyte discrimination capabilities as well as biofouling 

removal in medical diagnostic applications of SAW sensors. This work also has a broad relevance 

to the sensing of multiple biomarkers in medical applications as well as other technologies 

utilizing these devices such as microfluidic actuation. 
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Chapter 1                                            

Introduction 

 

1.1 Motivation and Objectives 

Acoustic wave (AW) devices are based on piezoelectric crystals, which allow the 

transduction of electrical energy to acoustic energy and vice versa. Surface acoustic wave (SAW) 

devices are characterized by an acoustic wave whose propagation is restricted to the surface of 

the piezoelectric substrate and find use in a multitude of applications including but not limited to 

microfluidics, chemical, and biological sensing. In the current era, miniaturization and integration 

of multiple functionalities on a single SAW device will revolutionize the microelectronics 

industry, especially for their utility in various biological and chemical processes such as highly 

integrated lab-on-a-chip systems that combine multiple functions on a single chip. Microfluidics 

lies at the core of such technology, miniaturizing various processes on micrometer – nanometer 

length scale for various life sciences, biological, defense, and pharmaceutical applications, such 

as lab-on-a-chip systems. One of the approaches towards development of microfluidic 

technologies relies on SAW pumping units fabricated by patterning interdigital transducers 

(IDTs) on suitable substrates such as Lithium Niobate (LiNbO3) and Lithium Tantalate (LiTaO3) 

[1, 2]. Some applications of microfluidics include gene expression analysis using DNA chips, 

DNA hybridization, lab-on-chip systems, immuno-assays, micro-arrays, biosensing, drug 

screening, single cell handling and manipulation, drug delivery, ultrasonic mixing, actuation, flow 

cytometry, and microliter-picoliter droplet generation, colloidal patterning, and jet atomization to 

name a few [3-13].  
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The current work focuses on the incorporation of multiple functionalities on a single 

SAW device for biosensing and microfluidic actuation applications. The use of the SAW devices 

in biosensing applications relies on the ability of these devices to produce an output signal in 

response to an input quantity, through the process of transduction. Further, biosensing requires 

the transduction of picogram to nanogram level of biomarkers, present in small volumes of 

biological fluids, into a readable signal without interference from other proteins thereby 

necessitating high device sensitivity, selectivity, capability of manipulating small fluid volumes, 

and minimizing dead volumes. Advances in the device fabrication techniques and the integration 

of multiple functionalities on a single SAW device can result in improved device performance, 

such as enhanced sensitivity, selectivity and speed of response as well as actuation capabilities. 

The key issues related to biosensor technology include: (1) biofouling resulting from the 

binding of undesirable moieties such as non-specific proteins to the sensor surface (2) selectivity 

(3) sensitivity (4) response and recovery times (5) detection limit (6) cost and (7) size. The most 

severe limitation of current biosensors technology is the inability to obtain a repeatable, fast, 

selective response to a target analyte at low concentrations. Modifications in device delay path, 

novel transducer configurations and proper choice of piezoelectric material and orientation hold 

the promise of addressing these issues. The current research aims at addressing the above issues 

by employing novel SAW device designs involving transducer and device surface modifications, 

such as those shown in Figs. 1.1 and 1.2, in light of the advances being made in microelectronic 

fabrication techniques, such as nano-imprint lithography. Development of a device that is capable 

of simultaneously detecting the desired biomarkers at levels of tens of picograms to nanogram/ml 

while achieving the removal of other non-specifically bound proteins to avoid interference with 

the sensing phenomenon is the main focus of this research. 
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(a)        (b) 

Figure 1.1: Examples of Different Transducer Configurations (a) Focused IDTs (b) Orthogonal 

IDTs  

 
 

    

(a)         (b) 

Figure 1.2: Device Surface Modifications in the Delay Path for Improving SAW Device 

Performance (a) Micro-cavities (b) Grooves 

 

Computational methods such as finite element (FE) are an efficient tool to study the 

influence of various IDT configurations and surface modifications on the wave propagation, fluid 



 

4 
 

flow and velocity fields in SAW devices [14, 15]. The fluid device coupling leads to transfer of 

energy from the piezoelectric device to the fluid medium, which when exploited efficiently, can 

be used for microfluidic manipulations. In biosensing applications, this interaction can be 

exploited to achieve the removal of non-specifically bound (NSB) proteins from sensor surface to 

allow sensor reuse while minimizing the effect of this fluid-device interaction on biosensing and 

the adhesion of specific proteins to the device surface. Understanding the interaction of the fluid 

field with the SAW sensor and the effects of various IDT configurations (such as multidirectional 

IDTs) on wave propagation in the crystal requires the development of coupled field structural and 

fluid-structural (FSI) FE models which provide an alternative to experiments and can provide 

more detailed information about the nature of propagating waves, flow field, and the interaction 

of propagating waves with the liquid media.  

The present work focuses on the development of three dimensional finite element 

structural and fluid-structure interaction models of SAW devices to investigate the wave 

propagation characteristics and interaction with the fluid media. In particular, the emphasis is on 

the development of coupled field structural and FSI models to study the effect of wave 

propagation characteristics on sensor response in multi-frequency SAW device. Using the 

framework of the developed FE structural and FSI models, the IDT configurations and surface 

modifications that allow for enhanced device performance, are identified. Specifically, this 

research aims at designing SAW sensors interacting with a liquid loading with improved 

selectivity, sensitivity and speed of response for enhanced biosensing and actuation. This work is 

based on the approach that piezoelectric crystal anisotropy allows for the propagation of 

fundamentally different modes of acoustic waves of different frequencies in different directions. 

The current research has manifold aims, which include (1) Identifying a piezoelectric substrate, 

for use in SAW device, that can be used in biosensing applications and can achieve the dual 

objective of biosensing and non-specific biofouling protein elimination (2) investigation of 
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acoustic wave propagation characteristics along various cut and propagation direction for the 

SAW device (3) identifiying multidirectional IDT designs capable of launching different modes 

of acoustic waves in the same piezoelectric substrate in order to simultaneously achieve sensing 

and non-specific biofouling protein removal in the same device (4) delay path modifications to 

include micro-cavities and grooved structures for increased energy entrapment at the surface 

acoustic wave surface (5) understanding the fluid-SAW interaction which can be exploited to 

remove weakly and non-specifically bound proteins from device surface. The overall goal is to 

obtain a SAW device that would allow multiple functionalities of biosensing and NSB removal in 

the same device, although the results are generally applicable to various microfluidic actuation 

applications of SAW devices.  

 

1.2 Choice of Substrate Material for SAW Biosensor for the Current Work 

In this section, the choice of Langasite as a suitable substrate for use in a SAW biosensor 

in the current work, is justified. A Langasite (La3Ga5SiO14) crystal is a trigonal piezoelectric 

material [16-18] similar to α-quartz. To achieve good SAW device characteristics, good 

temperature characteristics of group delay time and small temperature related characteristic 

variations are desired in the piezoelectric substrate. Langasite offers considerable advantages for 

use in SAW sensors, which include temperature coefficient of zero, low sensitivity to process 

parameters, low phase velocity, low diffraction [19], high dielectric permittivity [20] and low 

level of bulk excitation waves [19] which would lead to smaller insertion loss [21].  In addition, 

Langasite does not undergo phase transition upto 1400 deg C [22-24], making it suitable for high 

temperature treatment during the manufacturing process and for high temperature sensing 

applications [25-30]. In addition, Langasite has a stronger electromechanical coupling coefficient 

compared to α-quartz, which is desirable especially in applications where a Rayleigh wave is 

excited in the SAW device [22]. Therefore, Langasite is a promising material for biosensing 
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applications and hence the current work utilizes this material as the piezoelectric substrate for 

biosensing applications. 

 

1.3 Organization of the Dissertation 

This dissertation is organized as follows 

Chapter 2 provides a brief introduction to sensors. The principles and uses of surface 

acoustic wave (SAW) and shear horizontal SAW (SH-SAW) sensors are discussed. This chapter 

also brings out the main issues related to biosensor technology and highlights the importance and 

need of computational finite element (FE) models as an alternative to experiments to model the 

fluid-device interaction. The advantages of the three dimensional computational FE fluid-

structure interaction (FSI) models, over the available analytical and simpler computational 

models, are discussed.  

Chapter 3 discusses the development of a fully coupled three dimensional transient FE 

FSI model of the SAW device subject to liquid loading to investigate the streaming velocity fields 

and forces induced by SAW device. The dynamics of the fluid domain in contact with the 

piezoelectric domain is investigated and discussed. The results broadly apply to microfluidic 

actuation applications of the SAW device.  

Chapter 4 discusses the design and development of a novel SAW biosensor based on a 

Langasite (LGS) substrate for simultaneous biosensing and bio-fouling removal by employing 

multidirectional interdigital transducers (IDTs).  The crystallographic directions, allowing the 

propagation of waves of fundamentally different characteristics, are identified. 3-D structural and 

FSI FE models, of LGS based SAW sensor, are developed. A multidirectional orthogonal 

transducer configuration is employed along two different crystallographic orientations in LGS 

substrate and the nature of propagating waves along both directions is obtained and investigated 

to analyze the suitability of the device for integrating the dual functionality of biosensing and 
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NSB protein elimination, on a single device. The fluid field and the various hydrodynamic forces 

are computed and analyzed. The applicability of the device for the dual functionality of 

simultaneous biosensing and biofouling elimination is investigated and discussed. The results 

have significance in understanding biosensing and microfluidic actuation mechanisms in the 

respective applications of the SAW devices. 

Chapter 5 discusses integrated multi-directional IDTs and delay path modifications in 

SAW devices based on a LGS substrate. The simulated devices have mutually interacting 

orthogonal IDTs and micro-cavities of square cross-sections and different depths located in the 

middle of the delay path.  3-D structural and FSI FE models are developed for the devices with 

combined mutually interacting orthogonal IDTs and micro-cavities in the delay path; the fluid 

velocity profiles as well as the acoustic streaming force and device sensitivity are compared for 

the device designs. The effects arising from mutually interacting transducers and delay path 

modifications in the form of micro-cavities in SAW sensors on LGS are investigated. The 

improved SAW device design has tremendous significance and implications in the areas of 

biosensing and microfluidic applications. 

Chapter 6 investigates and discusses the fluid motion induced in a focused surface 

acoustic wave (F-SAW) device with concentric inter-digital transducers (IDTs). 3-D bi-

directionally coupled FSI FE models of a F-SAW device are developed and various features in 

the flow field and wave propagation characteristics are derived from the developed models. 

Acoustic streaming flow fields are investigated to evaluate the enhancement in the intensity of 

acoustic streaming brought about by the F-SAW device in comparison to a conventional SAW 

device.  The results from the study detailed in this chapter are generally applicable and significant 

of microfluidic actuation applications of SAW devices. 

Chapter 7 deals with the design of a Langasite based biosensor with a mutually 

interacting multidirectional IDT configuration, along different Euler directions for enhanced 
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biosensor performance. The main focus is to achieve the dual objective of biosensing and 

efficient biofouling removal via the combined use of uniform IDTs (U-IDTs) and focused IDTs 

(F-IDTs). U-IDTs are employed along the crystallographic orientation that allows for propagation 

of shear horizontal waves while F-IDTs are used along the direction that allows for the 

propagation of waves with surface normal component. Three dimensional (3D) coupled field FE 

models are developed to investigate the second order effects arising from these mutually 

interacting IDTs and biosensor performance is analyzed in terms of device sensitivity and 

acoustic streaming force which is a measure of the biofouling removal efficiency.  

Chapter 8 discusses the major contributions of the current work and recommendations for 

future work that is possible using the framework provided in this dissertation, to advance the field 

of SAW microfluidics.  
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Chapter 2 

Acoustic Wave and Surface Acoustic Wave Devices: Applications to Biosensing and 

Microfluidics 

 

2.1 Acoustic Wave Sensors 

A sensor is a device that produces an output signal in response to an input quantity, 

through the process of transduction. The input signal can be a physical, chemical, or biological 

quantity which may include properties of films, concentrations of analytes or biological species 

whereas the output signal is usually an oscillatory voltage or frequency, whose value can be 

related to the change in sensing layer properties. Acoustic wave (AW) devices, which were 

primarily used in the telecommunications industry as acoustic wave filters, have gained 

increasing importance as sensors in the recent years due to their small size, high reliability, cost 

effectiveness, and high sensitivity. In addition, these devices can be used in passive wireless 

mode [31-33], without the need of a power supply, which makes them excellent candidates for 

remote monitoring and for use in situations where use of conventional sensors can be hazardous, 

such as under strong radioactive exposure. The use of acoustic waves in sensing applications can 

be attributed to the discovery of a phenomenon known as piezoelectricity, which refers to the 

ability of certain materials to generate an electric potential in response to mechanical strain and 

vice versa. These materials, which are generally crystals, lack a center of inversion symmetry. 

Some of the most commonly used piezoelectric substrates include quartz, lithium niobate 

(LiNbO3), lithium tantalite (LiTaO3), Langasite (LGS), lead zirconium titanate (PZT), zinc oxide 

(ZnO), and silicon carbide (SiC) to name a few. Acoustic wave (AW) sensors exploit the 
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capability of piezoelectric materials to generate a mechanical strain in response to the application 

of an electric potential at the input interdigital transducers (IDTs), which in turn creates a 

mechanical wave that propagates through the piezoelectric medium. These devices can be 

classified into single port and two port devices. In single port devices such as quartz crystal 

microbalances, the same port serves as the input and output port; however the input and output 

ports are distinct and separate in two port devices which include surface acoustic wave (SAW), 

acoustic plate mode (APM), and flexural plate mode (FPW) devices. The acoustic mode 

interaction with the species being detected leads to changes in the characteristics of these 

propagating waves, which forms the basis of sensing in AW sensors. Typically, chemical 

sensitivity is imparted to an AW sensor by depositing a thin film in the acoustically active region, 

between the input and the output IDTs. In biological sensing applications, this film is typically 

coupled to antibodies which can bind the target biomolecules. The film acts as a 

chemical/biological to physical transducer whose properties change in response to the species 

being detected; the most common being change in the mass of the film due to the 

accumulation/deposition of the chemical species. However changes in other film characteristics 

like electrical or elastic properties can also be utilized. The change in the film properties induces 

a change in the propagated acoustic wave which can be detected at the output IDTs. AW sensors 

exploit the changes in acoustic wave propagation characteristics, such as amplitude and/or 

velocity, in piezoelectric media for detecting chemical and biological species of interest. 

Based on the methods of signal transduction, a sensor can be broadly classified into 

thermal, mass, electrochemical, and optical. AW sensors belong to the class of mass sensors and 

detect changes in the mass loading of an analyte on the sensor surface by monitoring the 

propagation of acoustic waves in a piezoelectric substrate.  
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Based on the acoustic mode of operation, the acoustic wave sensors can be classified into [34]  

(1) Devices that generate shearing motion like the Thickness shear mode (TSM) resonator (also 

referred to as Quartz Crystal Microbalance or QCM)  

(2) Devices with predominantly surface displacement (eg. Surface Acoustic Wave (SAW) 

sensors based on Rayleigh waves and shear horizontal waves) 

(3) Devices using a shear horizontal acoustic plate mode (APM) 

(4) Devices utilizing waves propagating at velocity lower than that of sound (Flexural plate wave 

(FPW) devices)  

Schematics of one port TSM and two port SAW devices are shown in Fig. 2.1 (a, b). In this 

chapter, surface acoustic wave devices based on Rayleigh and shear horizontal wave modes 

are discussed in detail.  

 

        

 

Figure 2.1: A Schematic Showing Acoustic Wave Devices (a) TSM (Quartz Crystal 

Microbalance) device (b) Surface acoustic wave device used for chemical and biological species 

detection. V denotes input voltage. 
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2.2 Acoustic Wave Propagation in Piezoelectric Substrates  

Application of alternating voltage to the input IDTs results in the generation of 

mechanical strain in the piezoelectric crystals. Deformation of a solid leads to the displacement of 

the constituent particles from their original position, represented by u(x, y, z, t), resulting in the 

propagation of a wave through the medium. The propagating waves can be compressional or 

shearing in nature. The local deformations of the medium are represented by the second order 

displacement gradient tensor, given by 
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ui (i=1, 2, 3) represents the displacements along the three principal directions. The displacement 

gradient represents the translations as well as local rotations caused by particle displacements. 

The results of rotations are ignored and the local stretching of the solid is obtained by adding the 

displacement gradient to its transpose, which gives the strain matrix S 
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The diagonal terms of the strain matrix represent compressional strains whereas the off diagonal 

terms are representative of shear strains. 

 

2.3 Surface Acoustic Wave and Shear Horizontal Surface Acoustic Wave Devices 

A surface acoustic wave (SAW) device consists of two sets of interdigital transducers 

(IDTs) patterned on a piezoelectric crystal, namely the input and the output IDTs. The application 

of an alternating voltage on the alternately connected input IDTs causes a mechanical 

deformation in the piezoelectric crystal, which in turn leads to the generation of a standing 
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acoustic wave. This wave launches propagating waves in both directions [34]. SAW sensors are 

characterized by an acoustic wave whose propagation is restricted to the surface due to the stress 

free boundary condition on the crystal surface, thereby making the wave highly sensitive to 

surface perturbations [35]. The output IDTs receive these acoustic waves and convert them back 

to an electric signal. A comparison of magnitudes and the phase difference between the input and 

output electrical signals constitutes the SAW sensor response.  Figure 2.1(b) depicts a SAW 

sensor with a sensing layer in the delay line path. 

In SAW devices, the acoustic wave propagation is confined near the surface, which 

allows for these waves to be generated by surface electrodes and possess extreme sensitivity to 

surface perturbations. To satisfy the stress free boundary condition of the crystal, the surface 

traction forces are zero, i.e. 

0ˆ. =zT           (2-3) 
T denotes stress tensor, ẑ denotes unit normal to the surface.  

In an isotropic medium or along a pure mode direction in the crystal, the propagating 

acoustic wave reduces to a Rayleigh wave whose transverse component is negligible [36, 37]. 

The surface normal and longitudinal components being 90o out of phase, the particles move in an 

elliptical orbit in the sagittal plane. The wave amplitude along the surface normal direction decay 

rapidly away from the surface, with most of the wave energy confined within one wavelength of 

the surface. As the frequency of the device increases, the wavelength decreases, thereby confining 

the wave energy closer to the device surface and increasing the sensitivity of the device to surface 

perturbations. Owing to the presence of prominent surface normal wave component, 

compressional waves are generated in liquid medium, when it is in contact with the SAW device. 

This leads to significant dissipation of the wave energy and SAW attenuation, thereby rendering 

the SAW mode unsuitable for sensing in liquid media [38-40]. The Rayleigh wave SAW mode is, 

however, suited for gas phase sensing applications. 
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Shear horizontal surface acoustic wave (SH-SAW) devices are characterized by surface 

particle displacements having components parallel to the device surface (longitudinal direction) 

as well as normal to the propagation [41] direction (transverse direction) but a negligible surface 

normal component. The absence of the surface normal component allows the shear horizontal 

(SH) wave to propagate without any coupling with the liquid domain in contact with the device. 

This prevents energy dissipation and wave attenuation, thus making the SH-SAW device very 

well suited for liquid sensing [42-45]such as biosensing in bodily fluids. 

 

2.4 SAW Devices in Biosensing Applications 

SAW sensors find intensive applications in chemical and biological sensing owing to 

their portability, cost effectiveness, high sensitivity, and reliability [43, 46-53].  Biosensors find 

use in a wide array of applications including detection of pathogens, biological warfare agents, 

analysis of drug composition, biomarker detection for various pathologies such as cancer, glucose 

monitoring and other health related markers, sensing of micro organisms, determining biological 

activities of new compounds, detection of toxic compounds, food analysis, various security 

applications and many other biological assays. SAW biosensors use a biosensing element which 

interacts with the biological species being detected, leading to a surface perturbation in the device 

which is converted into a measurable signal which is collected at the output transducer. Typically, 

biosensing applications require the detection and measurement of biomarkers in fluid media [54]; 

an example being the measurement of certain proteins in bodily fluids for the detection of ovarian 

cancer. Thus, biosensors are often subject to liquid loading. The biosensing elements used in 

SAW biosensors refer to proteins, antibodies or nucleic acids which have an affinity for the target 

biological species to be detected [55-58]. Thus, a SAW biosensor surface requires 

functionalization with proteins and antibodies that can bind specifically to the target biomolecules 

(Fig. 2.2), at concentrations as low as a single molecule. The use of SAW sensors in biosensing 
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applications requires the detection of small quantities of biomarkers in small volumes of 

biological fluids thereby necessitating the integration of SAW devices with microfluidics [7, 59-

63], which is the science of designing systems that can confine the processes to length scales 

typically in the micrometer range, such that the volumes of fluids handled are of the order of 

picoliters to nanoliters thereby reducing the dead volume in the system . 

 

 

Figure 2.2: A Surface Acoustic Wave Biosensor Functionalized Using an Antibody Linked to the 

Device via a Coupling Agent (eg. Organosilane), Showing a Specifically Bound Antigen. 

 

2.5 Acoustic Streaming in SAW Devices 

Acoustic streaming, a phenomenon first discovered by Lord Rayleigh in 1884, results 

from the interaction of SAWs with liquid film covering a piezoelectric substrate and represents a 

challenging phenomenon that has led to several inventions over the last few years [64-68]. When 
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SAWs with a prominent surface normal component interact with fluid media in contact with the 

SAW device, they couple strongly with the fluid [69]. If the velocity of the acoustic wave in the 

fluid (vl) is smaller than that on the device surface (vR), energy transfer takes place from the 

SAWs to the fluid which launches compression waves in the fluid at a characteristic angle known 

as Rayleigh angle given by [70] 
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This strong fluid-device interaction leads to mode conversion from Rayleigh to leaky 

SAW which leaks energy into the fluid medium and undergoes attenuation leading to decay in the 

amplitude [71-73].  This leakage of energy to the fluid domain results in the transfer of 

momentum from the SAW to fluid domain, resulting in the propagation of longitudinal waves in 

the fluid domain (Fig. 2.3).  This SAW-fluid interaction creates a pressure gradient in the 

direction of acoustic wave propagation in the fluid, inducing fluid flow and leading to an 

acoustically driven streaming phenomenon known as SAW streaming [74-76]. In microfluidic 

channels, boundary induced acoustic streaming becomes the dominant transport phenomenon 

owing the fact that the streaming propulsion forces and velocities are localized in the vicinity of 

the channel walls and the flow is primarily laminar at such small length scales.  

A large number of applications can be envisaged for the acoustic streaming phenomenon, 

including pumping of fluids in microfluidic channels, fluid property measurement, droplet 

formation, liquid droplet propulsion, droplet positioning, enhanced reactant transport in 

applications like detection using surface Plasmon resonance which otherwise would be mass 

transport controlled, droplet detachment from free surfaces, ultrasonic mixing and microtransport 

in microfluidic channels, biosensing, droplet atomization, thin film deposition to name a few [8, 

11, 77-85]. One of the most critical developments utilizing acoustic streaming is ‘lab on a chip’ 

devices which integrates multiple laboratory functionalities on a single micron sized device for 

use in diagnostic applications such as immunoassays. One such example is a microfluidic device 
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that integrates nanoliter droplet manipulation, propulsion, and mixing on a single piezoelectric 

substrate [80, 86-89]. In such a device, directed movements of the droplets allow them to merge, 

leading to reactant contact and subsequently reaction. At low SAW amplitudes, the acoustic 

micro streaming leads to internal mixing of the reactants, which in turn induces chemical and 

biochemical reactions in the droplet acting as a microreactor. At high SAW amplitudes, bulk 

streaming leads to the advective transport of the droplets. Such devices find use in biological 

applications such as DNA hybridization, to accelerate the mass transport limited reactions in such 

processes by enhancing the rate of transport via streaming induced advection. 

 

 

Figure 2.3: Schematic Showing Acoustic Streaming Induced by a Surface Acoustic Wave Device. 

 

2.6 Current Issues in SAW Biosensing 

Most of the clinical and medical diagnostic applications of SAW microfluidic devices 

require transduction of picogram to nanogram level of biomarkers isnto a readable signal without 
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interference from other proteins and biomarkers, thereby requiring high device sensitivity and 

selectivity. However, most of the biosensors are plagued with the issue of binding of non-specific 

fouling proteins to the device surface, which reduces the available surface area for binding of 

specific proteins, thereby preventing specific interactions between the target analytes and the 

functionalized sensor device surface. This phenomenon of non-specific protein binding, thus 

reduces device sensitivity, selectivity, as well as analyte discrimination capabilities [90]. As the 

sample volumes decrease, such as in biosensing applications where rare and expensive bodily 

fluids are used in very small volumes, non-specific protein binding becomes a critical issue 

affecting the repeatability and reproducibility of the data. Thus, simultaneous sensing and non-

specifically bound (NSB) protein removal is desirable feature that remains a challenge in 

biosensing applications. There have been considerable efforts to devise methods that can 

potentially reduce the non-specific interactions, which include addition of detergents such as 

Tween 20 and non-reactive proteins such as albumin, gelatin or low fat milk [91-96]. Addition of 

detergents and nonreactive proteins reduces the background signal that results from the 

nonspecific protein adsorption resulting from hydrophobic interactions in the assays. However, 

these nonreactive proteins can potentially terminate the active surface groups and obscure target 

biomolecules by blocking them from binding to the desired sites. A potential technique, that 

forms the basis of the current work, is overcoming the nonspecific adhesive forces via 

microfluidic actuation of SAW devices. The current work explores the feasibility and role of the 

hemodynamic removal forces, induced by the fluid motion resulting from acoustic streaming in 

SAW devices, in overcoming the nonspecific adhesive forces while simultaneously allowing for 

biosensing. 

 Whereas the shear horizontal (SH) mode is suitable for sensing [97, 98], the removal of 

NSB fouling proteins is favored by Rayleigh waves which have a prominent surface normal 

component. Thus, different wave propagation modes are needed for the two purposes of sensing 
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and NSB removal. In addition, high device sensitivity is required so as to detect small enough 

concentrations of the analyte. The current work exploits the piezoelectric crystal anisotropy that 

allows for the propagation of fundamentally different modes of acoustic waves of different 

frequencies along different crystallographic orientations. 

The choice of the piezoelectric substrate, piezoelectric crystal orientation, the IDT 

geometry/configuration, and crystal thickness determine the mode of the propagating waves. IDT 

designs and configurations must be identified which can allow the utilization of different waves 

for the purposes of sensing and cleaning. Recent experimental and computational studies have 

shown that the SAW induced acoustic streaming phenomenon can be used to knock off the NSB 

proteins from the device surface [99-101]. The efficient utilization of streaming in SAW devices 

requires the understanding of fluid dynamics in these systems. Further, owing to the fact that 

biosensors typically operate in a fluid media, understanding the acoustic wave propagation, fluid 

dynamics, and the sensing mechanism in SAW biosensors involving fluid interactions with 

complex multi-directional transducers and surface modifications represents a significant 

challenge. 

 

2.7 Computational Modeling of Fluid-Device Interaction 

Till date, attempts to model the fluid device interaction and investigate propagation of 

acoustic waves at the surface of a fluid-piezoelectric boundary have relied on simplified 

analytical models that solve the complex characteristic equation to obtain the complex leaky 

wave phase velocities and attenuation of the propagating waves [102-107]. Perturbation 

approaches, that treat the leaky wave treat the leaky wave as a first-order perturbation on the non-

leaky wave associated with surface-wave propagation, have been developed [102, 103] to study 

fluid-device interaction and investigate the wave propagation characteristics. However, these 

analytical models are based on the assumption of simplified geometries, and ignore the effect of 
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fluid loading which is critical in determining the fluid dynamics, wave propagation 

characteristics, and affects the viscous drag forces that act on the fluid-structure boundary as a 

result of fluid motion induced by acoustic streaming. These factors necessitate the consideration 

and inclusion of fluid mechanical properties while modeling the interaction of the fluid domain 

with the SAW device.  

Attempts to account fluid structure coupling while accounting for fluid mechanical 

properties have led to the development of FE unidirectionally coupled FSI models, that solve for 

the fluid domain with the solid domain motion applied as boundary conditions [107, 108]. 

Models involving fluid solid coupling while using acoustic elements for modeling the fluid 

region, have also been developed [109]. However, these models have a limitation as they involve 

the solution of the simplified Navier-Stokes equation for the pressure field in the fluid region 

while ignoring the viscous dissipation arising from the effects of fluid viscosity and are limited to 

investigations of wave damping.  

The complex nature of the fluid-SAW interaction requires the solution of the generalized 

Navier-Stokes equation in conjunction with the acoustoelectric equations for solid motion, while 

establishing bidirectional coupling by maintaining stress and displacement continuity at the 

interface. Two dimensional (2-D) FE FSI models, developed previously [110] to model acoustic 

streaming in a SAW device based on YZ Lithium Niobate, are limited in scope. For example, 2-D 

FE FSI models cannot be used to model devices in which the wave propagation is mixed mode, 

with significant transverse and longitudinal components in addition to a surface normal 

component of wave displacement. Similarly, these models cannot be used to model devices with 

complex transducer geometries such as mutually interacting IDTs. This necessitates the 

development of a fully coupled three dimensional FSI model of a SAW device in contact with the 

fluid loading and forms the focus of the current work. The models are used to understand the 

complex device fluid interaction and the role of this interaction in determining the effectiveness 
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of acoustic streaming induced microfluidic actuation. Such a model is also instrumental in 

investigating the effectiveness of complex transducer geometries such as hexagonal IDTs in 

biofouling removal which require the inclusion of the transverse direction to provide a complete 

representation. 

 

2.8 Finite Element Method 

The basis of the finite element (FE) method is the discretization of the domain of interest 

(fluid and/or solid) into elements of characteristic length or mesh described as a product of shape 

functions that are functions of space and are independent of time [111]. The elements are 

connected by nodes. The FE representation of the fluid and structural domains involves a 

complex mathematical function of the node shape factors and the equation of the motion for the 

respective domains. The fluid and solid equations of motion are solved at the nodes to obtain the 

respective degrees of freedom for the two domains. For transient analysis, time integration 

techniques like forward Eulerian, backward Eulerian, or Newmark’s methods are used to obtain a 

time-varying nodal solution. The structural models constitute solution of the piezoelectric 

equations while the FSI model involves the sequential solution of the piezoelectric and fluid 

domains and transfer of loads between the two domains until convergence is achieved. 

The coupled finite element model for a piezoelectric substrate takes the form [112] 
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    (2-5) 
M, Cs, and Cd are structural mass, structural damping, and element dielectric damping matrices, 

respectively. u and v are structural nodal displacement and nodal electric potential vectors, 

respectively. KE, Kp, Kd are element stiffness, piezoelectric coupling, and element dielectric 

permittivity matrices, respectively. F denotes nodal and surface force vector; L denotes nodal, 

surface, and body charge vector.  
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2.9 Current Work - Development of Three Dimensional Fluid-Structure Interaction Models to 

Design SAW Devices for Biosensing and Microfluidic Applications 

This dissertation is focused on the development of three dimensional structural as well as 

bidirectionally coupled FE FSI models of SAW devices in contact with fluid domain, to 

investigate the propagating wave characteristics, fluid dynamics and techniques to improve the 

streaming phenomenon thereby successfully eliminating weakly bound fouling proteins. Based on 

the fluid fields computed using the developed FE FSI models, the various forces that act on 

particles in the system, such as the non-specific and specific proteins, are computed to give an 

estimate of the various removal and adhesive forces on the particles. Such estimates are employed 

to establish design parameters for devices that can address elimination of biofouling NSB 

proteins while minimizing the influence on specifically bound proteins, thereby minimizing the 

effect on the sensing phenomenon and achieving the dual objective of biosensing and biofouling 

removal, simultaneously. Using the framework of the developed models, transducer and device 

surface modifications are designed to obtain biosensors that allow for simultaneous biosensing 

and biofouling elimination, while exhibiting high device sensitivity and biofouling elimination 

efficiency. Significant improvements in the sensor performance are expected from this new 

combination of transducer configurations and sensor surface modifications, as demonstrated in 

biosensing applications, within the scope of this dissertation. Although the results are discussed 

with reference to acoustic streaming applied to biofouling elimination and biosensing, the work 

presented herein broadly applies to various microfluidic and sensing applications of SAW devices 

and is expected to provide significant insights into microfluidic phenomenon in these devices. 
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Chapter 3 

A Novel Three Dimensional Fluid-Structure Interaction Finite Element Model of Wave 

Propagation in SAW Device: Application to Biosensing & Microfluidics 

 

The key issues related to biosensor technology include selectivity, sensitivity, response and 

recovery times, and detection limit; most of these limitations stem from biofouling resulting from 

the binding of undesirable moieties such as non-specific proteins to the sensor surface. Thus, 

removal of non-specifically bound (NSB) proteins remains a significant challenge in biosensing 

applications. Operation of biosensors in liquid media necessitates an investigation of the fluid-

piezoelectric device interaction to understand the mechanisms of biofouling elimination as well as 

wave propagation in such devices. This chapter reports on the first three dimensional, fully 

coupled transient finite element fluid-solid interaction (FSI) model of the SAW device subject to 

liquid loading to investigate the streaming velocity fields and forces induced by SAW device. The 

simulation results suggest that the SAW-fluid interaction creates a pressure gradient in the 

direction of acoustic wave propagation in the fluid, leading to an acoustically driven streaming 

phenomenon known as SAW streaming which can be used for removal of non-specifically bound 

(NSB) proteins. Computed velocity fields indicate that the normal component of fluid velocity is 

smaller than the tangential component along the propagation direction. Thus, the SAW induced 

drag force, arising from the tangential component of fluid velocity and leading to particle 

advection is an important mechanism in biofouling removal from the SAW device surface and the 

normal component would prevent the reattachment of the particles to the device surface. Apart 

from microfluidic applications, this work broadly applies to all transducers used for biological 
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species sensing that suffer from fouling and non-specific binding of protein molecules to the 

device surface. 

 

3.1 Introduction 

The key issues related to biosensor technology include selectivity, sensitivity, response 

and recovery times, and detection limit; most of these limitations stem from biofouling resulting 

from the binding of undesirable moieties such as non-specific proteins to the sensor surface[99, 

110]. Thus, removal of non-specifically bound (NSB) proteins remains a challenge in biosensing 

applications. When Rayleigh waves propagate in the piezoelectric device in contact with fluid, 

the transfer of momentum into the fluid domain leads to longitudinal wave propagation in the 

fluid domain, giving rise to an acoustically driven phenomenon known as acoustic streaming 

[113]. The SAW induced acoustic streaming has the potential to detach and remove the non-

specifically bound (NSB) proteins from the device surface, as has been shown experimentally 

[99]. Computational methods can be used to investigate the acoustic streaming phenomenon in 

SAW devices.  

Till date, attempts to model the fluid device interaction and investigate propagation of 

acoustic waves at the surface of a fluid-piezoelectric boundary have relied on simplified 

analytical models that solve the complex characteristic equation to obtain the complex leaky 

wave phase velocities and attenuation of the propagating waves [102-106, 114]. Perturbation 

approaches, which treat the leaky wave as a first-order perturbation on the non-leaky wave 

associated with surface-wave propagation, have been developed [102, 103] to model wave 

propagation and investigate wave propagation characteristics. However, these analytical models 

are based on simplifying assumptions and ignore the effect of fluid mechanical properties which 

poses a limitation since the fluid viscosity leads to viscous dissipation of energy, increases the 

leaky wave attenuation losses, and lower the phase velocities. Further, the fluid-SAW device 
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interaction leads to an acoustically drive streaming phenomenon that generates fluid motion at the 

interface boundaries. This fluid motion exerts viscous shear stresses on the interface boundary, 

which aid the detachment of loosely bound non-specific fouling proteins from the device surface. 

The effect of boundary layer thickness, which depends on the fluid viscosity, cannot be ruled out 

as well. Additionally, the simplified analytical models as discussed above do not take into 

account the influence of complex device geometries, such as the use of complex and mutually 

interacting IDTs. These factors necessitate the consideration and inclusion of fluid mechanical 

properties while modeling the interaction of the fluid domain with the SAW device. 

Computational methods such as finite element (FE) are an efficient tool to study the wave 

propagation, fluid flow and velocity fields in SAW devices. 

In the past, FE models have been developed that solve for the fluid domain while the 

piezoelectric device motion, which is assumed to be an analytical function of a known time 

varying form, is superimposed as a boundary condition on the fluid-device interface [107, 115]. 

The grid positions and the velocity boundary conditions for the fluid are, thus, obtained from the 

analytical equation for solid motion. However, such models allow only for unidirectional 

coupling between the fluid and the device and the solid motion is not representative of the fluid 

dynamics in the system. To capture the dynamics of fluid-solid interaction, the fluid dynamical 

equations of motion must be solved in conjunction with the acoustoelectric equations describing 

the motion of the piezoelectric solid. FE models involving coupling of fluid and solid domains 

have been constructed using acoustic elements for modeling the fluid region. However, these 

models have a limitation as they involve the solution of the simplified Navier-Stokes equation for 

the pressure field in the fluid region while ignoring the viscous dissipation arising from the 

effects of fluid viscosity [109]. In addition, uniform mean density and mean pressures are 

assumed with the pressure solution in the model [109] being obtained as the deviation from the 

mean pressure instead of solving for the absolute pressure. Therefore, such studies can only 
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provide qualitative estimates of the fluid motion resulting from fluid-SAW interaction, and are 

limited to investigations of wave damping.  

For SAW biosensing applications in liquid media, the complex nature of the fluid-device 

interaction requires one to model fluid motion which can be accomplished using fluid elements 

which allow for the solution of the generalized Navier-Stokes equation. Further, the 

understanding the interaction of the fluid field with the SAW sensor and the effects of various 

design parameters such as IDT configurations as well as device surface modifications on wave 

propagation in the crystal requires the development of coupled field structural and FSI FE models 

which would enable investigation of methods to increase the acoustic streaming velocity for NSB 

removal while minimizing the influence of the streaming force on the sensing layer, thereby 

increasing the sensitivity and selectivity. A two dimensional coupled field fluid structure 

interaction model has been developed [110] to investigate acoustic streaming in a SAW device 

based on YZ Lithium Niobate, in which fluid was modeled using Navier Stokes equation. 

Whereas such a model is appropriate for a pure Rayleigh wave such as in YZ Lithium Niobate, it 

does not provide a complete representation when the wave propagation is mixed mode having the 

surface normal, transverse, and longitudinal components. This necessitates the development of a 

fully coupled three dimensional FSI model of a SAW device in contact with the fluid domain. 

Such a model is also instrumental in investigating the effectiveness of complex transducer 

geometries such as orthogonal IDTs in biofouling removal which require the inclusion of the 

transverse direction to provide a complete representation. The current chapter focuses on the 

development of 3-D. fully and bidirectionally coupled FE FSI model of a piezoelectric device in 

contact with fluid domain.  Although this model is developed for a YZ Lithium Niobate substrate 

in this chapter, the same model is extended to Langasite, which is the substrate of choice for 

biosensing applications in the current work. 
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3.2 Computational and Model Details 

The FSI model involves sequential solution of the piezoelectric domain constitutive 

equations and Navier-Stokes equation in conjunction with the continuity equation with load 

transfer between the domains. 

  

3.2.1 Solid/Piezoelectric Domain 

The interaction between the electric field and mechanical strain is studied by coupling the 

elastic and electromagnetic constitutive equations though a piezoelectric matrix [34, 116-119].  

[ ] [ ]EeScT −=          (3-1) 

[ ] [ ]ESeD T ε+=          (3-2) 

The resulting equations, known as the piezoelectric constitutive equations, describe the 

interaction between elastic strain, stress, and electric field in the piezoelectric substrate. 

Here, T and D denote stress tensor and electric flux density vector, respectively. S, E denote 

structural strain and electric field intensity vectors, respectively.  c, e, and ε represent structural 

elasticity matrix at constant electric field, piezoelectric stress matrix, and dielectric matrix at 

constant mechanical strain, respectively.  

In the absence of body force, the equation of motion is given by 

⋅⋅

=⋅∇ uT ρ           (3-3) 

where ρ is the density and u represents displacement.  

The electric field intensity is given by the gradient of the electric potential (φ) 

ϕ−∇=E           (3-4) 

The strain tensor is symmetric, therefore 
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In tensor notation,  
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In a system with no free charges,   

0=⋅∇ D            (3-7) 

 Substituting and rearranging the above set of equations leads to a system of four coupled wave 

equations for the electric potential and the three component of displacement in piezoelectric 

materials which are solved for the piezoelectric substrate or the solid domain:   

Combining Eqns (3-3) through (3-6), we get 
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Equation (3-8) represents three equations in four unknowns, namely the three displacements and 

the voltage (φ). The fourth equation is obtained by combining Eqns (3-2) and (3-7),  

0
23

1,

23

1,,

=
∂∂

∂
−

∂∂
∂ ∑∑

== kjkj
jk

kj

l

lkj
jkl xxxx

u
e ϕε        (3-9) 

Equations (3-8) and (3-9) form a complete set of coupled wave equations which can be solved for 

the four unknowns. These equations are discretized in space and time, and solved at the nodes in 

the finite element domain to obtain a transient solution.  

The coupled finite element model for a piezoelectric substrate takes the form [112] 
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    (3-10)  

M, Cs, and Cd are structural mass, structural damping, and element dielectric damping matrices, 

respectively. u and v are structural nodal displacement and nodal electric potential vectors, 

respectively. KE, Kp, Kd are element stiffness, piezoelectric coupling, and element dielectric 



 

29 
 

permittivity matrices, respectively. F denotes nodal and surface force vector; L denotes nodal, 

surface, and body charge vector.  

 

3.2.2 Fluid Domain 

Fluid is modeled as an incompressible, viscous, Newtonian fluid using the Navier-Stokes 

and continuity equation in the Eulerian frame of reference. The generalized Navier-Stokes 

equation is written as 
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The continuity equation takes the form 

0=⋅∇+
∂
∂

fv
t

ρρ

         (3-12) 

Here, vf, P, ρ and η denote the fluid velocity, pressure, density, and viscosity, respectively. D is 

the rate of deformation tensor given by 

( )t
ff vvD )(

2
1

∇+∇=           (3-13) 

 

3.2.3 Fluid-Solid Interaction 

The solution of fluid and solid fields in the finite-element domain requires the use of 

either the Lagrangian or Eulerian frame of reference. The Eulerian frame refers to the fixed frame 

of reference whereas Lagrangian frame is a moving frame of reference. In the Lagrangian frame, 

the grid deforms as the region of interest deforms. Whereas the structural phase (piezoelectric 

substrate) is best described using the Lagrangian frame, either frame of reference can be used for 

the fluid domain. In the Lagrangian frame, the mesh embedded in the fluid domain moves with 

the velocity of the fluid while in the Eulerian frame, the mesh, through which the fluid moves, is 



 

30 
 

fixed.  A purely Lagrangian frame is not suitable for dealing with strong distortions of the fluid 

mesh arising from the non-cohesive nature of fluid particles which causes them to travel 

independently and diverge in space. A purely Eulerian frame for the fluid domain introduces 

complexity in fluid-solid coupling as it is unable to track the path of the elements. Therefore, 

Arbitrary-Lagrangian-Eulerian (ALE) methods, which combine the best of the both frames of 

reference, are used for kinematical description of the fluid domain in such problems. In ALE, the 

Lagrangian frame is used for ‘almost contained’ flows and Eulerian description is used for 

regions where the mesh would be highly distorted if required to follow fluid motion. The theory 

for ALE has been developed by Hughes et al. for viscous, incompressible flows [120]. In the 

ALE framework, the fluid equation of motion can be written as  [121] 
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where w is the grid velocity such that 0≠≠ fvw . 

To achieve fluid-solid coupling, an interface is defined across which displacements are 

transferred from solid to fluid and pressure from fluid to solid. These conditions translate to no-

slip for the fluid domain (velocity continuity) and stress continuity for solid domain. The fluid 

mesh is continuously updated as the piezoelectric substrate undergoes deformation. 
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jn is the outward normal at the solid-liquid interface in the deformed configuration, i denotes 

longitudinal direction. Superscripts f and s denote fluid and structural domain, respectively. 

Fluid structure coupling is established by transferring displacements from solid to fluid 

and stress from fluid to solid across the fluid structure interface; this translates to displacement 

and stress continuity at the interface. The acoustic streaming velocity is obtained as the time 
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average of the first order fluid velocity vf over a time period and contains contributions only from 

the time-invariant “dc” components.  

 

3.2.4 Acoustic Streaming 

The equations governing acoustic streaming are based the general Navier-Stoke’s 

equation for fluid flow and have been derived by Nyborg [122]. The generalized Navier Stoke’s 

equation is written as 
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Where ρ is the fluid density, f1 denotes other body forces such as gravitational, fv denotes 

acoustic streaming velocity, P is the pressure, and T is the deviatoric stress tensor. 

The continuity equation takes the form 
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Also, 
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Combining Eqs (3-17) through (3-19), 

( )
1fTPF

t
v f +⋅∇+−∇=+
∂

∂ ρ
       (3-20) 

Where ffff vvvvF ρρ ⋅∇+∇⋅=        (3-21) 

F is the non linear driving force, which acts as the source for acoustic streaming and is related to 

the Reynold’s stresses. <Q> represents the time average of Q to obtain a time independent 

quantity [113, 123, 124]. The first order velocity, required to compute the SAW induced acoustic 

streaming force, is calculated using the particle displacement fields generated during the 
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propagation of a leaky SAW when the surface is in contact with a liquid [110, 124]. The force 

calculated using the first order velocity acts as a body force near the SAW-fluid interface. This 

force can be further used to compute the second order velocity, known as the acoustic streaming 

velocity induced by the SAW streaming force [125-127].  

The velocity v calculated from Equations (3-11) through (3-16) contains harmonically 

varying terms and a “dc” term.  The latter induces acoustic-streaming.  When averaged over a 

relatively long time, the effect of the harmonically varying terms disappears and only the 

contributions from the dc part appear in the solution, producing a time invariant mean flow.  The 

acoustic-streaming velocity ( )zyxiv ia ,,;, =  is therefore obtained by averaging v over a time 

period as follows: 
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             (3-22) 

Where i=x, y and z; T is the time period of the wave propagation. 

 

3.2.5 Finite Element Model 

A coupled field FSI model of a YZ-LiNbO3 based SAW device in contact with fluid 

loading, was developed (Fig. 3.1). The properties for the LiNbO3 substrate are summarized in 

Table 3.1 [34]. Rotation of the matrices was carried out to obtain the stiffness and piezoelectric 

constants for the YZ-LiNbO3 configuration. A substrate with dimensions 400 μm width x 800 μm 

propagation length x 200 μm depth in contact with a 50 μm thick fluid film was modeled. Two 

interdigital transducer (IDT) finger pairs in each port were defined at the surface. The fingers 

were defined with periodicity of 40 μm and aperture width of 200 μm. The IDT fingers were 

coupled by voltage degree of freedom. The model was meshed using twenty node coupled field 

solid elements with four degrees of freedom (DOF), three of them being the translations and the 

fourth being the voltage. The three dimensional coupled field solid element used to mesh the 
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piezoelectric is a 20 node element and exhibits large deflection, stress stiffening effects, and 

prestress effects. The governing equations for the piezoelectric domain were solved to obtain the 

displacements and voltage at each node. The fluid domain was meshed using an eight node fluid 

element. The fluid velocities were computed using the conservation of momentum principle and 

the pressure was computed using the conservation of mass principle. Millions of nodes and 

elements (2, 218, 399 nodes and 2, 085, 877 elements) were generated to ensure sufficiently high 

mesh densities. Further, the mesh was refined near the interface and coarser away from it, to 

capture the interfacial dynamics accurately. The fluid was modeled as incompressible and 

Newtonian, using the Navier-Stokes equation. The piezoelectric domain was discretized using the 

Lagrangian frame while arbitrary Lagrangian Eulerian (ALE) was used for the fluid domain. In 

the ALE description, the mesh is moved independent of the fluid particles, to track the motion of 

the boundary while minimizing the mesh distortion at the same time.  The piezoelectric domain 

was excited using an ac voltage on the IDTs with a peak value of 2.5 V and frequency of 100 

MHz, which is equal to the frequency of the device. The structure was simulated for 100 ns using 

a time step of 1 ns.  

 

      

(a)         (b) 

Figure 3.1: Meshed Structure of a Surface Acoustic Wave Device (a) Meshed structure with IDTs 

(b) Fluid loading. 
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Table 3.1: Density (ρ, kg/m3), Elastic Stiffness Constants (Cij, GPa), and Piezoelectric Constants 

(eij, C/m2) for LiNbO3 [34] 

Material constants Value for LiNbO3 

ρ  4700 

C11  20.3 

C33  24.5 

C44  6.0 

C66  6.0 

C12  5.3 

C13  7.5 

C14  0.9 

e15  3.7 

e22  2.5 

e31  0.2 

e33  1.3 

 

3.3 Results and Discussion 

 
3.3.1 Device Displacement and Fluid Velocities 

The piezoelectric device surface displacement profiles, shown at various time instants in 

Fig. 3.2, indicate that the highest displacement is occurs near the input IDTs and decays rapidly 

on moving away from them. The piezoelectric actuation by applying voltage to the input IDTs 

launches propagating waves in both directions, as evident from Fig. 3.2.  
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      (a) 

 

      (b) 

Figure 3.2: Displacement Contours on the Piezoelectric Device Surface at Various Time Instants 

(a) 30 ns (b) 50 ns (c) 70 ns (d) 80 ns. Scale bar is in meters. 
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      (c) 

 

      (d) 

Figure 3.2: Continued. 
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Owing to coupling of the fluid with the piezoelectric substrate, the fluid motion also 

decays away from the input IDTs, leading to a conversion from Rayleigh to leaky SAW (Fig. 

3.3), which in turn induces fluid motion. The conversion of attenuated sound waves into flow 

leads to an acoustically driven phenomenon, known as acoustic streaming.  The fluid domain 

motion is shown in Fig. 3.3 which indicates that the fluid velocities obtained are of the order of 

mm/s, in accordance with the experimentally observed values [3]. The velocity contours obtained 

on a section through the center shows fluid recirculation away from the device surface (Fig. 3.4), 

suggesting the formation of eddies which can aid in particle removal by preventing their 

reattachment to the surface. Thus, the fluid couples strongly with the piezoelectric domain. An 

analysis of fluid velocity vector streamlines, which are indicative of particle trajectories, in the 

vicinity of the IDTs reveals recirculation leading to eddy formation between successive IDTs. 

Thus, one end of the IDTs acts as a source expelling the fluid and the other end acts as sink, 

where the fluid re-enters the IDT region. Thus, the IDTs induce fluid flow due to strong fluid-

device coupling. This fluid motion decays away from the input IDTs.  

 

 

      (a) 

Figure 3.3: Instantaneous Fluid Velocity Profiles at Various Time Instants (a) 30 ns (b) 50 ns (c) 

80 ns. Scale bar is in m/s. 
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      (b) 

 

 

      (c) 

Figure 3.3: Continued. 
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Figure 3.4: Fluid Velocity Contours on a Section Cut Through the Center of the Delay Path 

Along the Propagation Length at 70 ns. Scale bar is in m/s. 

 

3.3.2 Acoustic Streaming and Non-Specific Protein Removal 

The transient solution obtained using the FSI model is used to compute acoustic streaming 

velocities [128]. The time averaged tangential, normal, and total streaming velocities are shown in 

Fig. 3.5. The profiles reveal that the normal velocity component although slightly smaller in 

magnitude than the tangential velocity components, is not negligible. This suggests strong 

coupling of the fluid with the piezoelectric domain, which eventually leads to a net pressure 

gradient in the fluid along the direction of wave propagation thereby causing fluid motion and 

giving rise to acoustic streaming. The maximum tangential and normal fluid velocities occur near 

the device surface. The velocity profiles indicate that most of the fluid motion is confined to the 

fluid thickness close to the device beyond which flow reversal takes place. This is indicative of 

fluid recirculation away from the surface, which can give rise to eddy formation. These eddies can 
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play a role in non-specific protein transport from the device surface. The tangential direction fluid 

velocities are higher than the normal velocities.   

The removal of NSB proteins from the piezoelectric surface is the result of interplay 

between the removal and adhesive forces [129, 130]. The hydrodynamic forces on the NSB 

proteins resulting from fluid motion can lead to particle removal. The adhesive forces result from 

non-dispersive van der Waal’s forces. The computations reveal that while the lift and drag forces 

are smaller compared to the adhesive van der Waal’s forces, the direct SAW body force 

overcomes the adhesive force thereby detaching the particle from the device surface. As the 

detached particle moves away from the device surface, the SAW body force and adhesive van der 

Waal’s force decrease rapidly. Therefore, following particle detachment, preventing their 

reattachment to the device surface is critical in ensuring their removal. At this stage, the forces 

exerted by the tangential and normal streaming velocity components play a role in overcoming the 

weight of the particle. Whereas the tangential direction velocities induce drag force leading to 

advection of NSB proteins, the normal velocities exert a lift force on the proteins which can 

prevent their reattachment to the surface. Thus, both these mechanisms play a role in the removal 

of the NSB proteins; however owing to the larger magnitude of tangential velocities, the drag 

induced particle advection plays a more prominent role as compared to the lift  force. 
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      (b) 

Figure 3.5: Time Averaged Acoustic Streaming Velocity Profiles (a) Along the three principal 

directions. vtang,1 and vtang,2 denote tangential velocities along the propagation and transverse 

directions, respectively (b) Total acoustic streaming velocity. 
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One of the important factors in the NSB protein removal pertains to the thickness of the 

viscous boundary layer adjacent to the fluid-solid interface. The viscous boundary layer involved 

is defined as δ=√2ν/ω, where δ is the thickness of the viscous boundary layer, ν is the kinematic 

viscosity of the fluid medium and ω = 2πf is the angular frequency of the surface acoustic wave. 

For the simulated viscosity employed in this study and the frequency of the surface waves, the 

thickness of the viscous boundary layer would be of the order of sub-micrometer length scale at 

MHz frequencies. For example, a SAW device operating at 100 MHz frequency and with a water 

loading (ν = 1 x 10-6 m2/s), the thickness of the viscous boundary layer is 0.05 microns whereas for 

a SAW operating at 100 KHz, the viscous boundary layer thickness would be 1.8 microns. It is 

noteworthy that protein molecule agglomerates are typically in the sub-micron size range. 

Therefore, the thinner boundary layer for MHz frequencies would minimize particle “hideout” as 

compared to devices operating at KHz frequencies. 

Inside the viscous boundary layer, the simulations indicate that there is eddy formation 

resulting from the circular flow as the medium has to confirm to the no slip condition at the fluid-

solid interface. The medium outside this boundary layer vibrates irrotationally in accordance with 

the sound field. Therefore, the extent of viscous dissipation resulting from the vortex formation 

near the SAW-fluid interface would be higher at ultrasonic frequencies than under megasonic 

frequencies and fluid viscosity would have a critical role to play. Therefore, particle removal in 

viscous liquid loading at the ultrasonic (KHz) frequencies would be more difficult to achieve than 

under megasonic (MHz) frequencies. This clearly illustrates the role of fluid properties in 

biofouling elimination. The current 3-D FSI model takes into account the viscous and density 

effects and provides a more realistic description of the system dynamics.  

The model developed for LiNbO3 is further extended to study acoustic wave interaction 

with fluid domain in langasite, and is discussed in the forthcoming chapters.   
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3.4 Conclusion 

To summarize, a three dimensional bi-directionally coupled fluid-structure interaction 

model, of a LiNbO3 based SAW device in contact with fluid loading, was developed to investigate 

the interaction of the device with the fluid domain and gain insights into the acoustic streaming 

phenomenon. Device surface displacement and fluid velocity profiles indicate strong coupling of 

the fluid with solid domain and leakage of acoustic energy into the fluid domain, thereby 

launching longitudinal waves into the fluid. This attenuation of sound waves leads to an 

acoustically driven phenomenon known as acoustic streaming. The model predicts fluid velocities 

in accordance with the experimentally reported values. Further, the streaming velocities computed 

as the time average of the first order fluid velocities indicate fluid recirculation beyond the initial 

fluid thickness in contact with the piezoelectric domain. The model results also indicate that the 

hydrodynamic drag and lift forces exerted due to the tangential and normal velocity components 

play a role in NSB protein removal from the device surface; however the drag force plays a more 

significant role compared to the lift force. The developed model can be used to study acoustic 

streaming phenomenon in more complex transducer geometries and devices involving propagation 

of mixed waves. In a broader context, the FSI models developed in this work can be used to 

understand fluid motion and flow fields while accurately taking into account the structural 

dynamics. This has tremendous significance in potential microfluidics and biosensing applications. 
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Chapter 4 

Orthogonal Surface Acoustic Wave Device based on Langasite for Simultaneous 

Biosensing and Bio-fouling Removal 

 

This chapter reports on the first combined 3-D structural and fluid structure interaction 

finite element study of an orthogonal surface acoustic wave (SAW) device based on Langasite 

(LGS).  The simulation results indicate that simultaneous sensing and non-specifically bound 

protein removal can be achieved through the use of multidirectional transducers on a single 

piezoelectric device.  Based on the simulation results, the current study finds that that the (0, 22, 

90) Euler direction on the LGS-based device is suitable for biosensing via propagation of pure 

shear-horizontal (SH) waves, whereas, the (0, 22, 0) direction allows for acoustic streaming 

induced bio-fouling removal, through the propagation of mixed mode waves with prominent 

surface normal component.  This study reveals the possibility of integration of sensing and bio-

fouling removal functions on a single SAW device, thereby enhancing sensor performance. 

 

4.1 Introduction 

Biological transducer based devices used in medical diagnostic applications suffer from 

the deficiency of analyte discrimination and decrease in sensitivity resulting from the binding of 

non-specific proteins on the sensor surface, which interferes with the sensing phenomenon [99, 

110, 131].  In a surface acoustic wave (SAW) device utilizing Rayleigh waves, the device-fluid 

interaction creates a pressure gradient in the direction of acoustic wave propagation in the fluid, 

leading to an acoustically driven streaming phenomenon known as acoustic streaming [74, 75] 



 

45 
 

which can be used for removal of non-specifically bound (NSB) proteins to permit sensor reuse 

and improve device performance, as has been shown experimentally [99]. However, simultaneous 

sensing and NSB protein removal poses a significant challenge in biosensing applications.   

In this chapter, a novel SAW biosensor based on a Langasite (LGS) substrate, is 

investigated, to analyze its suitability for simultaneous biosensing and bio-fouling removal by 

employing multidirectional interdigital transducers (IDTs), using a finite element model.  LGS 

offers considerable advantages for use in SAW sensors, which include a zero temperature 

coefficient, low sensitivity to process parameters, low phase velocity, low diffraction [19], high 

dielectric permittivity [20] and low level of bulk excitation waves [19] which would lead to 

smaller insertion loss  and a high phase transition temperature of 1400 deg C [22], making it 

suitable for high temperature treatment during the fabrication process.  Furthermore, LGS has a 

stronger electromechanical coupling coefficient compared to α-quartz, which is desirable 

especially in applications where a Rayleigh wave is excited in the SAW device [22].  Since 

biosensors typically operate in a fluid media, understanding the acoustic wave propagation and 

the sensing mechanism in SAW biosensors involving fluid interactions with complex multi-

directional transducers represents a significant challenge.  To-date, attempts to address this have 

relied on simplified numerical and analytical models or perturbation theories which neglect the 

mechanical properties of the fluid and treat the leaky wave as a first-order perturbation on the 

non-leaky wave associated with surface-wave propagation [103, 110].  This chapter reports on a 

3-D fluid-structure interaction (FSI) model of SAW sensors.  A novel multi-directional transducer 

design based on a LGS substrate is employed, to investigate the streaming velocity fields and 

forces induced by the SAW device.  
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4.2 Computational and Model Details 

 
4.2.1 Fluid Domain 

Fluid is modeled as an incompressible, viscous, Newtonian fluid using the Navier-Stokes 

and continuity equation in the Eulerian frame of reference given below: 

02 =⋅∇−∇+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇⋅+

∂

∂
DPvv

t
v

ff
f ηρ       (4-1) 

0=⋅∇ fv            (4-2) 

Here, vf, P, ρ and η denote the fluid velocity, pressure, density, and viscosity, respectively. D is 

the rate of deformation tensor given by 

( )t
ff vvD )(

2
1

∇+∇=           (4-3) 

 

4.2.2 Piezoelectric Domain 

For the piezoelectric solid, the equation of motion is obtained by modifying the elastic 

constitutive equation for a non-piezoelectric solid to account for the coupling between the electric 

field and mechanical strain. The interaction between the electric field and mechanical strain is 

studied by coupling the elastic and electromagnetic constitutive equations though a piezoelectric 

matrix [34, 116-119].  

[ ] [ ]EeScT −=          (4-4) 

[ ] [ ]ESeD T ε+=          (4-5) 

The resulting equations, known as the piezoelectric constitutive equations, describe the 

interaction between elastic strain, stress, and electric field in the piezoelectric substrate. 

Here, T and D denote stress and electric flux density vectors, respectively. S, E denote structural 

strain and electric field intensity vectors, respectively.  c, e, and ε represent structural elasticity 
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matrix at constant electric field, piezoelectric stress matrix, and dielectric matrix at constant 

mechanical strain, respectively.  

In the absence of body force, the equation of motion is given by 

⋅⋅

=⋅∇ uT ρ           (4-6) 

where ρ is the density and u represents displacement, 2

2

t
uu

∂
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⋅⋅

 

The electric field intensity is given by the gradient of the electric potential (φ) 

ϕ−∇=E           (4-7) 

The strain tensor is symmetric, therefore 
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Substituting eqns. (4-7) and (4-8) in eqn. (4-4), we obtain T in tensor notation as  
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Substituting eqns. (4-7), (4-8), (4-9) in eqn. (4-6), 
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In a system with no free charges,   

0=⋅∇ D            (4-11) 

Combining eqns. (4-5), (4-7), and (4-11), 
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Equation (4-10) represents three equations in four unknowns, namely the three displacements and 

the voltage (φ) which combined with equation (4-12), forms a set of coupled wave equations that 
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can be solved for the four unknowns. These equations are discretized in space and time, and 

solved at the nodes in the finite element domain to obtain a transient solution. 

 

4.2.3 Fluid-Solid Interaction 

The solution of fluid and solid fields in the finite-element domain requires the use of 

either the Lagrangian or Eulerian frame of reference. The Eulerian frame refers to the fixed frame 

of reference whereas Lagrangian frame is a moving frame of reference. In the Lagrangian frame, 

the grid deforms as the region of interest deforms. Whereas the structural phase (piezoelectric 

substrate) is best described using the Lagrangian frame, either frame of reference can be used for 

the fluid domain. In the Lagrangian frame, the mesh embedded in the fluid domain moves with 

the velocity of the fluid while in the Eulerian frame, the mesh, through which the fluid moves, is 

fixed.  A purely Lagrangian frame is not suitable for dealing with strong distortions of the fluid 

mesh arising from the non-cohesive nature of fluid particles which causes them to travel 

independently and diverge in space. A purely Eulerian frame for the fluid domain introduces 

complexity in fluid-solid coupling as it is unable to track the path of the elements. Therefore, 

Arbitrary-Lagrangian-Eulerian (ALE) methods, which combine the best of the both frames of 

reference, are used for kinematical description of the fluid domain in such problems. In ALE, the 

Lagrangian frame is used for ‘almost contained’ flows and Eulerian description is used for 

regions where the mesh would be highly distorted if required to follow fluid motion. The theory 

for ALE has been developed by Hughes et al. for viscous, incompressible flows [120]. In the 

ALE framework, the fluid equation of motion can be written as  [121] 

02)( =⋅∇−∇+∇⋅−+⎟⎟
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where w is the grid velocity such that 0≠≠ fvw . 
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To achieve fluid-solid coupling, an interface is defined across which displacements are 

transferred from solid to fluid and pressure from fluid to solid. These conditions translate to no-

slip for the fluid domain (velocity continuity) and stress continuity for solid domain. The fluid 

mesh is continuously updated as the piezoelectric substrate undergoes deformation. 

t
uvv sf ∂
∂

==           (4-14)  

0=+ f
j

f
ij

S
j

S
ij nn σσ          (4-15)  

jn is the outward normal at the solid-liquid interface in the deformed configuration, i denotes 

longitudinal direction. Superscripts f and s denote fluid and structural domain, respectively. 

 

4.2.4 Finite Element Model 

3-D Structural and FSI finite element (FE) models of a SAW device based on LGS 

substrate, with dimensions of 800 μm length X 400 μm depth X 200 μm height,  were developed.  

Figure 4.1 shows the IDT configuration of the simulated orthogonal SAW device, with IDT 

finger pairs defined on the surface for each port along (0, 22, 0) and (0, 22, 90) Euler directions.  

    

Figure 4.1: Schematic Diagram of an Orthogonal Surface Acoustic Wave Device simulated in the 

Current Work. X and Y denote (0, 22, 90) and (0, 22, 0) directions in the Langasite substrate, 

respectively. Each of the delay paths were simulated independently. 

IDTs 

SAW
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The material properties for LGS substrate are summarized in Table 4.1 [132]. The 

piezoelectric and elastic stiffness constants were rotated to obtain the values along the (0, 22, 0) 

and (0, 22, 90) directions. The IDT fingers were represented by a set of nodes coupled by voltage 

degrees of freedom (DOF). The fluid region, with 50 μm height, was modeled as an infinite 

reservoir of Newtonian, incompressible fluid subject to stress free boundary condition at the free 

surface (i.e. P =0).  The piezoelectric domain was meshed using three dimensional twenty node 

coupled field solid elements with four DOF to account for the three translations and the voltage.  

The fluid domain was meshed using eight node fluid elements and discretized employing an 

Arbitrary Lagrangian Eulerian (ALE) frame for the kinematical description.  The FSI model 

contained millions of nodes and elements: specifically, 2, 217, 889 nodes and 2, 085, 525 

elements; a total of 208, 640 nodes and 144, 022 elements were generated for the structural 

model.  The meshed FSI model with fluid loading is shown in Figure 4.2.   

 

Table 4.1: Density (ρ, kg/m3), Elastic Stiffness Constants (Cij, GPa), and Piezoelectric Constants 

(eij, C/m2) for Langasite [132] 

ρ 5724 

C11 189.5 

C33 262.6 

C44 53.50 

C66 42.09 

C12 105.4 

C13 97.16 

C14 14.25 

e11 -0.397 

e14 0.203 
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Figure 4.2: Meshed Fluid-Structure Interaction Model of the SAW Device With Fluid Loading. 

High mesh densities were ensured near the device surface to capture the dynamics at the surface 

which undergoes highest deformation.  The FSI model shown here contained millions of nodes 

and elements: 2, 217, 889 nodes and 2, 085, 525 elements were generated. 

 

Numerical solutions were obtained by sequentially solving the generalized Navier-Stokes 

equation for the fluid domain and acoustoelectric equations for the solid motion [110], employing 

the iterative sequential coupling algorithm[133].  In this algorithm, the governing equations for 

the two domains are solved separately and the solver iteration between the two domains continues 

till convergence of the load transferred across the interface is achieved.   

 

4.3 Results and Discussion 

 
4.3.1 Frequency Response 

The frequency response of the device to an input impulse voltage applied at the transmitter 

IDT was utilized to deduce the central frequency of the device. The insertion loss of the device 

Fluid-Solid Interface Fluid Domain 

SAW Device 



 

52 
 

was computed by taking the Fourier transform of the voltage profile at the output IDTs. Based on 

the insertion loss, the central frequency of the device was computed which was computed to be 

68 MHz (Figure 4.3).  Wave propagation characteristics and acoustic streaming velocities were 

obtained by transient ac analysis with a peak voltage of 2.5 V and frequency of 68 MHz applied 

to the transmitter IDT fingers, using a time step of 1 ns.   
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Figure 4.3: Calculated Frequency Response Along (0, 22, 0) and (0, 22, 90) Euler Directions in the 

Simulated Orthogonal SAW Device. 

 

4.3.2 AC Analysis: Wave Propagation Characteristics and Device Sensitivity 

An analysis of the wave propagation characteristics indicates the propagation of a pure 

shear horizontal (SH) mode along the on-axis (0, 22, 90) direction with a negligible surface 

normal component (Figure 4.4) leading to negligible coupling with the fluid domain, thereby 

making it suitable for biosensing.   
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Figure 4.4: Contour Plot Showing Shear Horizontal Wave Propagation Along the (0, 22, 90) 

Direction on Langasite Substrate. Scale bar is in meters. Inset shows particle displacement 

profiles along the three principal directions for IDTs along the (0, 22, 90) direction. The device is 

not drawn to scale. 

 

Propagation along the (0, 22, 90) direction indicates shallow penetration depth, rendering 

it suitable for liquid sensing applications such as those in biosensing in bodily fluids.  Further, the 

(0, 22, 0) direction shows the presence of mixed modes (Figure 4.5).  Despite the wave mode 

being mixed, the surface normal component is the dominant component in the (0, 22, 0) direction 

suggesting strong coupling with the fluid domain, and can thus be utilized for acoustic streaming 

to achieve removal of NSB proteins from the device surface.  

 

0.00027 0.17 0.34 0.51 0.68 0.85 1.02 1.18 1.52 
x 10-11 m 

1.35 
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      (b)       

Figure 4.5: Contour Plot Showing Mixed Mode Wave Propagation Along the (0, 22, 0) Direction 

on Langasite Substrate. Scale bar is in meters. Inset shows particle displacement profiles along 

the three principal directions for IDTs along (0, 22, 0) direction. The device is not drawn to scale.   

 

In addition, the computed sensitivity along (0, 22, 90) direction to a 100 pg applied mass 

was found to be higher for the LGS device in comparison to a  SAW device based on the 

competitive and practical 36° YX LiTaO3 [134] substrate (11.09 Hz-cm2/ng vs. 2.98 Hz-cm2/ng, 

details shown in Figure 4.6).  Figure 4.3 also indicates that the insertion loss for propagation in 

the (0, 22, 90) direction is ~ 6.9 dB lesser as compared to that for propagation along the off-axis 

(0, 22, 0) direction, thus suggesting increased sensitivity in the former configuration. 

0.00043 0.14 0.29 0.43 0.58 0.72 0.87 1.01 1.15 1.30 
x 10-11 m 
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Figure 4.6: Comparison of Sensitivities for the Langasite Substrate for Propagation Along the (0, 

22, 90) Euler Direction and a Comparable 36° YX-LiTaO3 Substrate. FE models were created for 

100 pg mass applied over an area of 9600 μm2 in the delay path of the SAW device based on 

Langasite.  Transient analysis was utilized to study transmission characteristics of this ideal mass 

perturbed sensor. The sensitivity obtained for the LGS SAW device in the current study is 

compared with that for the 36° YX LiTaO3 device obtained by Cular et al.[134], using the same 

approach as outlined [134]. The sensitivity for the 100 MHz 36° YX LiTaO3 device is scaled to 

match the centre frequency (68 MHz) of LGS.  

 

4.3.3 Acoustic Streaming Velocity 

The acoustic streaming velocities were computed and analyzed using the 3D FE-FSI model of the 

device with propagation along the (0, 22, 0) direction.  The fluid motion induced by the piezoelectric 

actuation at a given time instant, shown in Figure 4.7, indicate that most of the fluid motion is 
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confined to the region near the device surface and that the velocities are of the order of mm/s in 

accordance with the experimentally reported values [3].  The highest fluid velocity is observed near 

the IDTs and decays rapidly on moving away from them.  The solid displacement also decays along 

the delay path, suggesting acoustic energy dissipation leading to a mode conversion from Rayleigh to 

leaky SAW.  This mode conversion results in longitudinal wave propagation in the fluid domain 

which, if of sufficiently high intensity, results in a net pressure gradient along its direction of 

propagation thereby inducing fluid flow.  The fluid motion resulting from the attenuation of sound 

wave induces acoustic streaming.  The steady state streaming velocities, computed as the average 

over a time period, are shown in Figure 4.8.  The streaming velocity profiles show that the fluid 

attains the highest velocity before undergoing flow reversal and recirculation close to the device 

surface, beyond which there is significant dampening of the fluid motion.  Fluid motion, observed 

near the device surface, exerts stresses on the fluid-structure interfacial boundary which in turn induce 

the removal of loosely and NSB proteins from the device surface.  Whereas the tangential 

components of the fluid velocity exert viscous shear stress creating a drag force, the normal 

component exerts a lift force [135]. The 3D FSI model results indicate that the tangential velocity 

component along the propagation direction is predominant, suggesting that the drag force is 

significantly greater than the lift force and therefore, the particle advection induced by the former is 

the dominant mechanism of bio-fouling removal for the SAW sensor based on LGS.  
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Figure 4.7: Simulated Fluid Velocity Vector Profile for a Peak Input AC Voltage of 2.5V Applied 

to the Langasite SAW Device Operating at 68 Mhz. Scale bar is in m/s. 
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 Figure 4.8: Streaming Velocity Profiles Along the Fluid Film Thickness Computed by Time 

Averaging, for a Peak Input AC Voltage of 2.5V Applied to the Langasite SAW Device 

Operating at 68 Mhz.  
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4.3.4 Adhesive And Removal Forces 

The various removal forces, namely the SAW body force, lift force, and drag force were 

computed using the simulated fluid velocities as outlined [110] and compared with the adhesive 

force to predict a bio-fouling removal mechanism.  The comparisons (Table 4.1) reveal that for a 

demonstrative particle radius of 1 μm, the fluid induced lift force (1.0 x 10-15 N/m2)  is 

significantly smaller than the drag force (1.8 x 10-12 N/m2) and neither of these two forces is 

sufficient to overcome the Van der Waals force of attraction (-4.2 x 10-8 N/m2).  Interestingly, the 

SAW body force (3.3 x 10-5 N/m2) overcomes the Van der Waals force to detach the non-specific 

protein particles and move them away from the surface till the adhesive force decreases 

significantly.  Since the SAW body force also decreases on moving away from the device surface, 

the fluid induced lift and drag forces come into play away from the surface to prevent NSB 

protein reattachment to the surface and facilitate its removal from the fluid stream, respectively.  

Thus, the mixed modes, as observed for propagation along the off-axis (0, 22, 0) direction in 

LGS, are instrumental in bio-fouling removal.  It is worth mentioning that owing to the pure SH 

mode propagation along the on-axis direction (0, 22, 90), the calculated removal (particularly 

SAW body) force is significantly smaller than the adhesive force indicating non-feasibility of 

NSB protein removal in a single IDT configuration and necessitating a multi directional IDT 

configuration to achieve the dual objective of sensing and bio-fouling removal. Furthermore, the 

minimum protein radius that can be removed using the phenomenon of acoustic streaming in the 

vicinity of the IDTs, computed in the limit when the dominant removal force equals the non-

specific adhesive Van der Waals force, reduces as the number of IDT finger pairs is increased 

(Table 4.2). This is due to the fact that dominant removal force increases with increasing number 

of IDT pairs (Table 4.2), thereby facilitating removal of smaller sized proteins. It should be noted 

that with increasing distance from the IDTs, the amplitude of the displacement decays resulting in 

decreased removal efficiency away from the IDTs. 
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Table 4.2: Comparison of Non-Specific Adhesive and Removal Forces for Particles on a 70 MHz 

SAW Device Based on Langasite for Propagation Along the Off-Axis (0, 22, 0) Direction. The 

calculated forces are based on the fluid velocity fields generated near the device surface close to 

the IDTs.  The particle diameter R is varied from 0.1 μm to 10 μm and typical displacement 

amplitude of 2.5 nm is used. 

 

Particle radius R (μm)  

Forces (N) 0.1 1 10 

Fvdw 

 

-4.2 x 10-9 -4.2 x 10-8 -4.2 x 10-7 

FSAW 3.3 x 10-7 

 

3.3 x 10-5 

 

3.3 x 10-3 

 

FL 

 

1.0 x 10-17 1.0 x 10-15 1.0 x 10-13 

FST 

 

1.8 x 10-13 1.8 x 10-12 1.8 x 10-11 
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Table 4.3: Calculations of Removal Force for Different Number of IDT Pairs and Comparison 

With Non-Specific Adhesive Force. Also included is the minimum protein radius which can be 

removed. 

 

Particle radius R = 1 μm  

Number of IDT 

pairs 

Non-specific  

adhesive force Fvdw 

(N) 

Dominant removal 

force FSAW (N) 

 

Minimum protein radius 

which can be removed 

Rmin (nm) 

3 -4.2 x 10-8 3.3 x 10-5 1.28 

5 -4.2 x 10-8 4.2*10-5 0.99 

7 -4.2 x 10-8 4.7*10-5 0.89 

 

4.4 Conclusion 

To summarize, it has been shown that multidirectional transducer based SAW devices on 

a single piezoelectric substrate offer the advantage of selectively exploiting features which are 

specific to acoustic waves propagating along a given crystallographic orientation.  Computational 

modeling on an orthogonal SAW device based on LGS indicates differing characteristics of 

acoustic waves propagating in different Euler directions facilitating the incorporation of dual 

functionality of target analyte detection and NSB protein elimination, in the same device, which 

can lead to enhanced device performance.  In the simulated device, the (0, 22, 90) direction is 

suitable for biosensing and (0, 22, 0) direction for potential application in removal of NSB 

proteins through acoustic streaming.  These results are of tremendous significance for not only 

improving the device design, but also for understanding biosensing mechanisms in multi-

directional acoustic wave devices as well as actuation mechanisms in potential microfluidic 

applications of these devices.  
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Chapter 5 

Enhanced SAW Biosensor Performance via Integrated Transducer and Delay Path 

Modifications: A Computational Study 

 

Integrated multi-directional inter-digital transducers (IDTs) and delay path modifications 

for surface acoustic wave (SAW) sensors in a Langasite substrate are shown to positively and 

significantly impact power consumption, device sensitivity, and bio-fouling elimination 

capability.  Simulated devices have mutually interacting orthogonal IDTs and micro-cavities of 

square cross-sections of side λ/2, and of different depths located in the middle of the delay path.  

A combined orthogonal IDT- polystyrene filled micro-cavities device (of dimensions λ/2 x λ/2 x 

λ/2), with constructive wave interference and enhanced surface acoustic wave entrapment in the 

delay region, is shown to be most efficient and reduces insertion loss by 23.6 dB, generates two 

orders of magnitude larger streaming forces, and exhibits velocity sensitivity 100% larger than 

that of a simulated standard SAW sensor with unidirectional IDTs along the (0, 22, 90) direction. 

 

5.1 Introduction 

Recent challenges for developing reliable and efficient biosensors include factors such as 

power consumption, sensitivity, and reproducibility.  In biosensing applications, one of the most 

critical issues is biofouling which arises from the binding of non-specific proteins to the sensor 

surface[110, 131].  Biofouling can drastically reduce the sensitivity, selectivity, and 

reproducibility[99].  Conventional methods of improving SAW device sensitivity include the use 

of either a waveguide to create Love wave devices or lithographic techniques to reduce the 
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interdigital finger spacing thereby reducing the acoustic wavelength [136].  However, these 

methods are insufficient to address the critical issue of biofouling.  One of the ways to eliminate 

biofouling involves the use of acoustic streaming induced forces to overcome the adhesive forces 

between the sensor surface and non-specifically bound proteins [99, 110].  Multidirectional 

transducer configurations [15] which allow for the generation of streaming through acoustic 

modes with a prominent surface normal component along one direction and shear horizontal 

mode along the other can lead to simultaneous biofouling elimination and sensing.  Sensitivity 

enhancement due to coherent wave interaction in the common region being probed can also be 

achieved.  Such devices involve complex non-linear interactions arising from mutually interacting 

transducers which cannot be accounted for by using simple analytical and numerical models.  

This work investigates a Langasite (LGS) based SAW device comprising of mutually interacting 

interdigital transducers (IDTs), utilizing coupled field finite element (FE) structural and fluid-

structure interaction (FSI) analysis. The main focus of this work is the development of a 

biosensor device, with integrated delay path modifications and mutually interacting IDTs, which 

can provide enhanced sensitivity, reduced power loss and enhanced biofouling elimination 

capability on a single piezoelectric device.  

Power consumption is another important issue in sensing applications. . Typical SAW 

delay line sensors are expected to have insertion loss in the range of 7-20 dB.  Methods to reduce 

the SAW device power loss  include utilization of reflective gratings, grooves and corrugated 

gratings, and waveguides to improve the conversion of bulk waves into surface waves and 

entrapment of energy near the surface that would otherwise be lost to bulk waves [47, 137].  It 

was recently reported that micro-cavities etched along the delay path of a 36-YX LiTaO3 

substrate can reduce insertion loss substantially (20 dB for the case simulated compared to a 

standard device with unidirectional IDTs and no delay path modifications) [134]. 
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In this chapter, a novel SAW biosensor, with integrated multi-directional inter-digital 

transducers (IDT) and delay path modifications on a device based on a Langasite (LGS) substrate, 

is introduced.  The choice of LGS was motivated due to its significant advantages over other 

standard substrates such as quartz investigated previously [69]. For example, shear horizontal 

(SH)-SAW mode on quartz suffers from low electro-mechanical coupling coefficients, high 

penetration depth, and low dielectric permittivity with respect to the liquid media while LGS 

offers considerable advantages which include a much stronger electromechanical coupling 

coefficient compared to α-quartz, desirable especially in applications where a Rayleigh wave is 

excited in the SAW device, a zero temperature coefficient, low sensitivity to process parameters, 

low phase velocity, low diffraction, high dielectric permittivity and low level of bulk excitation 

waves which would lead to smaller insertion loss and a high phase transition temperature of 1400 

deg C, making it suitable for high temperature treatment during the fabrication process[19, 22, 

138]. The investigated device design is a superior alternative to the available conventional 

devices and is shown to give significantly enhanced performance in terms of reduced power 

consumption, enhanced device sensitivity, and larger biofouling elimination efficiency.  Coupled 

field FE analyses are used to first deduce the best case micro-cavity on a LGS surface.  These 

micro-cavities are then integrated into an orthogonally-oriented, mutually-interacting IDT 

configuration to study the improvements in sensor performance (Fig. 5.1).  To the best of my 

knowledge, this is the first study that simulates a device with interacting IDTs including the 

second order effects and non-linear interactions arising between surface and bulk modes which 

are excited by the IDTs. 
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Figure 5.1: Schematic Diagram of a Mutually Interacting Orthogonal IDT Device With Micro-

Cavities Etched Along the Delay-Path of the SAW Device. The device is not drawn to scale. X 

and Y directions denote different crystallographic directions allowing for propagation of waves of 

different characteristics. 

 

5.2 Computational Details 

 
5.2.1 Structural Model 

FE models of a SAW device based on LGS substrate, with dimensions 1600 μm length x 

1600 μm depth x 200 μm height, were developed.  Figure 5.1 shows a schematic diagram of the 

simulated SAW device with orthogonal IDT configuration integrated with delay path 

modification, in the form of micro-cavities.  IDT finger pairs, with width 2λ and periodicity 40 

μm, were defined on the surface for each port along (0, 22, 0) and (0, 22, 90) Euler directions.  

The piezoelectric domain was meshed using a three dimensional twenty node coupled field solid 

element with four degrees of freedom accounting for the three translations and voltage and 

ensuring high mesh densities near the surface.  Impulse response analysis was performed during 

190 ns by applying an impulse voltage of 100 V at the input IDT and employing a time step of 

0.95 ns [15].  Subsequently, an ac analysis was carried out using a peak voltage of 2.5 V with the 
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device frequency obtained from impulse response analysis for each of the propagation directions. 

Using simulations involving unidirectional IDTs along (0, 22, 90) and (0, 22, 0) directions, it has 

been established that the (0, 22, 90) direction with pure SH mode is best suited for sensing and (0, 

22, 0) with mixed modes can be used to generate streaming induced forces for bio-fouling 

elimination [139]. 

 

5.2.2 Fluid Structure Interaction Model 

The fluid region, with 50 μm height, was modeled as an infinite reservoir of Newtonian, 

incompressible fluid on top of the piezoelectric domain, subject to stress free boundary condition 

at the free surface (i.e. P =0).  The piezoelectric domain was meshed using a ten node tetrahedral 

coupled field solid element with four DOF to account for the three translations and the voltage.  

The fluid domain was meshed using eight node fluid elements and discretized employing an 

Arbitrary Lagrangian Eulerian (ALE) frame for the kinematical description.  The FSI model 

contained millions of nodes and elements: 2, 217, 889 nodes and 2, 085, 525 elements.  

Numerical solutions were obtained by sequential solution of the generalized Navier-Stokes 

equation for the fluid domain and acoustoelectric equations for the piezoelectric motion [110], 

employing the iterative sequential coupling algorithm[133].  In this algorithm, the governing 

equations for the two domains are solved separately and the solver iteration between the two 

domains continues till convergence of the load transferred across the interface is achieved. 
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5.2.3 Best Case Micro-Cavities 

To obtain the best micro-cavity configuration for sensing, 20 micro-cavities of λ/2 square 

cross sections with varying depths were etched on the device surface along the delay path with 

IDTs along the (0, 22, 90) direction. These micro-cavities were filled with a waveguide material 

polystyrene (PS) to provide increased entrapment of acoustic energy near the device surface 

[134].   

 

5.3 Results and Discussion 

 
5.3.1 Best Case Micro-Cavities 

Based on the simulated node translation data, it is found that Love waves incident on a 

shallow groove or cavity on the surface of a piezoelectric substrate filled with another elastically 

isotropic material such as polystyrene are weakly scattered with a part of the energy contained in 

the reflected and the transmitted Love waves and the other part converted into the bulk shear 

waves that propagate into the substrate.  The simulations indicate that PS filled micro-cavities 

with dimensions λ/2 x λ/2 x λ/2 exhibit the highest energy transmission and smallest insertion 

loss (lesser by 2 dB compared to the next best PS filled λ/2 x λ/2 x λ/8 micro-cavities) (Fig. 5.2).  

An analysis of displacement profiles for each of the simulated micro-cavity designs indicate that 

these improvements are brought about by a larger coherent reflection of the incident Love wave 

and subsequent reduced conversions into bulk shear modes which radiate into the substrate (Fig. 

5.3).  Details of the pass-bands are shown in Fig. 5.2 where a 21.8 dB increase in energy 

transmission is clearly shown for the best case micro-cavity over the SAW sensor with 

unidirectional IDTs along the (0, 22, 90) Euler direction and no delay path modifications 

(henceforth, referred to as standard SAW).  Therefore, 20 PS-filled micro-cavities with 

dimensions λ/2 x λ/2 x λ/2 were incorporated in the delay path of a SAW device with 
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orthogonally-oriented, mutually-interacting IDTs along the (0, 22, 0) and (0, 22, 90) Euler 

directions.  
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Figure 5.2: Comparison of Transmitted Energies for Empty and PS-Filled Micro-Cavities Having 

λ/2 Square Cross Section and Depths of λ/4, λ/4 and λ/2 With Standard LGS SAW Delay-Line 

Device and an Optimized LW Device. Std LGS refers to a device with unidirectional IDTs and no 

delay path modifications. PS filled micro-cavities with dimensions λ/2 x λ/2 x λ/2 exhibit the 

highest energy transmission and smallest insertion loss and form the best case configuration. 

 

5.3.2 Device Displacements and Transmission Losses 

 Figure 5.3 shows the displacement contours at various instants of time, showing surface 

wave propagation in the orthogonal SAW device with micro-cavities having depth λ/2 and square 
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cross section λ/2. The magnitudes of the surface displacements increase and the wave front 

marches forward towards the micro-cavities with time. The device displacement profiles indicate 

that the wave reaches the micro-cavities after almost 30 ns, beyond which the surface 

displacements are mostly confined to the micro-cavities. Maximized displacements are observed 

in the proximity of the micro-cavities owing to the larger coherent reflection of the incident Love 

wave and subsequent reduced conversions into bulk shear modes which radiate into the substrate 

[140, 141]. 

 

                 (a)    

Figure 5.3: Snapshots of Displacement Contours Taken at Various Time Instants Showing 

Surface Acoustic Wave Propagation in the LGS Orthogonal SAW Device With Micro-Cavities 

(λ/2 x λ/2 x λ/2) in the Delay Path. Acoustic wave confinement leading to maximized 

displacements in the micro-cavities is clearly shown after the wave reaches the micro-cavities.  

Scale bar is in meters. (a) 30 ns (b) 70 ns (c) 100 ns (d) 180 ns.  
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                (b) 

 

    (c) 

Figure 5.3: Continued. 

0.000005 
0.020 

0.040 
0.060 0.080 0.10 0.120 0.140 0.160 0.180 

x 10 -10 m 

0.000004 
0.028 

0.056 
0.083 0.111 0.139 0.167 0.194 0.222 0.250 

x 10 -10 m 



 

70 
 

  

      (d) 

Figure 5.3: Continued. 

 

 It is interesting to note from Fig. 5.4 that the orthogonal SAW device which includes 

non-linear interactions between the orthogonally propagating waves has smaller insertion loss 

compared to the unidirectional standard device. When two waves interact and superimpose, the 

particle displacement at a point is the vector sum of the individual wave displacements such that 

the resultant displacement is determined by the phase difference [34].  To analyze the nature of 

the wave interaction, the phase difference (φ) between the orthogonally propagating waves was 

computed.  The calculated value of the phase angle φ ranges from 86.2 to 92.6 degrees for the 

different components of displacement, suggesting constructive interference between the waves.  

Therefore, the insertion losses in the orthogonal SAW device are smaller (by 15.6 dB) as 
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compared to a standard device with unidirectional IDTs, as seen in Fig. 5.4.  Furthermore, for 

reasons stated before, the incorporation of micro-cavities in the delay path leads to further 

enhancement in surface acoustic energy entrapment, thereby further reducing the insertion loss by 

8.0 dB.  Thus, the smallest insertion loss was observed for orthogonal IDTs with micro-cavities in 

the delay path making it the best possible configuration amongst the simulated designs. 
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Figure 5.4: Comparison of Transmitted Energies for Different Device Configurations. (1) denotes 

unidirectional IDTs along (0, 22, 90) with PS-filled micro-cavities (λ/2 x λ/2 x λ/2) on LGS; (2) 

denotes mutually interacting orthogonal IDTs without micro-cavities; (3) denotes mutually 

interacting orthogonal IDTs with PS-filled micro-cavities (λ/2 x λ/2 x λ/2); (4) denotes 

unidirectional standard LGS SAW device. Transmitted energies for all the devices shown are 

calculated at the output IDT port corresponding to propagation along the (0, 22, 90) Euler 

direction. 
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5.3.3 Fluid Streaming and Biofouling Elimination 

Bio-fouling elimination in the simulated orthogonal SAW device due to mixed mode 

waves propagating along (0, 22, 0) Euler direction is dependent on the magnitude of the induced 

acoustic streaming forces given by [124, 139, 142]:  

)(2exp)1( 222/32 zkxkkAF iii ααωαρ ++−=      (5-1) 

Here, α and ki refer to the attenuation constant and leaky SAW wave number, respectively, and 

are obtained using a perturbation approach[102, 103].  And, ω refers to the angular frequency and 

A refers to the acoustic wave displacement, which are obtained using FE simulations.  The 

induced streaming forces for water loading (density ρ =1000 Kg/m3) for the various device 

designs are shown in Fig. 5.5.  Owing to the constructive interference of the orthogonally 

propagating waves, the resultant displacement amplitudes are much larger than in the 

unidirectional standard SAW device, which in turn lead to higher fluid velocities in the former 

configuration.  As a result, the streaming force in orthogonal SAW device (F=3.24 x105 N/m2), 

computed using Eq. (5-1), is an order of magnitude larger than that in the standard SAW device 

(F=5.44 x104 N/m2).  Integration of the orthogonal SAW device with delay path modifications in 

the form of PS filled micro-cavities leads to significantly enhanced surface acoustic energy 

entrapment (Fig. 5.3), which further contributes to an increase in the generated streaming force 

(F=3.49 x106 N/m2, i.e., two orders larger than in the standard SAW device, Fig. 5.5), leading to 

much larger removal efficiency of non-specifically bound proteins.  
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Figure 5.5: Comparison of Streaming Forces. (1) denotes standard unidirectional LGS SAW 

device, (2) denotes unidirectional SAW device with best case micro-cavities (λ/2 x λ/2 x λ/2), (3) 

denotes orthogonal SAW device, and (4) denotes orthogonal SAW device with micro-cavities 

(λ/2 x λ/2 x λ/2).  The unidirectional propagation direction is (0, 22, 0) for computing streaming 

force. 

 

The increase in acoustic streaming force in the orthogonal SAW device with micro-

cavities is also evident from the fluid velocity profiles obtained using 3-D FSI simulations (Figs. 

5.6, 5.7, 5.8), which shows that in a micro-cavity based orthogonal SAW device, the highest fluid 

velocity is observed in the proximity of the micro-cavity region in the delay path thereby 

allowing for high biofouling removal efficiency along the entire delay path etched with micro-
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cavities which is also the sensing region. It is important to note that in a standard unidirectional 

SAW device, the maximum fluid velocity occurs just near the input IDTs and the velocity decays 

in intensity on moving away from the input IDTs[110] suggesting a reduction in removal 

efficiency away from the IDTs. In contrast, the occurrence of highest fluid velocities near the 

micro-cavity region in the micro-cavity based orthogonal SAW device, as seen in Figs. 5.6 and 

5.7, leads to higher streaming forces (Fig. 5.5) and therefore enhancement in acoustic streaming 

induced NSB protein removal along the entire delay path. 

 

 

   (a) 

Figure 5.6: Instantaneous Fluid Velocity Contours at Various Time Instants in the Orthogonal 

SAW Device Having Micro-Cavities (λ/2 x λ/2 x λ/2) Etched in the Delay Path (a) 50 ns (b) 70 ns 

(c) 100 ns. Scale bar is in m/s. FSI denotes fluid-structure interface and t denotes fluid film 

thickness. 
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   (b) 

 

 

   (c) 

Figure 5.6: Continued. 
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Figure 5.7: Fluid Velocity Vector for Orthogonal SAW Device With Micro-Cavities in Delay 

Path. A section is cut along the delay path to clearly depict the velocity vectors along the 

propagation length as well as fluid depth. Scale bar is in m/s.  

 

The fluid streaming velocities along the three principal directions for the micro-cavity 

based orthogonal SAW device are compared with those for the standard device with 

unidirectional IDTs along (0, 22, 0) in Fig 5.8. As clearly evident, the transverse direction 

tangential velocity has the largest magnitude for both cases; however the magnitude of the 

velocity in each of the three directions is almost two orders of magnitude higher for the micro-

cavity based orthogonal device compared to the standard device. 

 

0.00000005 
0.005 

0.0075 
0.01 0.012 0.015 

0.02 
0.075 

0.15 
m/s 



 

77 
 

0 10 20 30 40 50
-30

0

50

100

150

 

 

0 10 20 30 40 50
-0.5

0   

0.5 

1.0

1.5 

2.0

Distance from device surface (μm)

St
re

am
in

g 
ve

lo
ci

ty
 (m

m
/s

)

 

 

vx
vy
vz

vx
vy
vz(a) (b)

 

Figure 5.8: Comparison of Time Averaged Streaming Velocity Profiles in the Three Principal 

Directions Across the Fluid Film Thickness (a) Standard SAW device with IDTs along (0, 22, 0) 

and (b) Orthogonal SAW device with micro-cavities in delay path.  

 

5.3.4 Device Sensitivity 

Finally, device sensitivity was computed using the perturbation theory utilizing the mass 

sensitivity equation applicable to all kinds of surface acoustic devices independent of the kind of 

acoustic modes [143]: 

⎟
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        (5-2) 

To calculate the mass sensitivity, the values of mode center frequency f0, angular frequency ω, 

average area density of wave energy U, and displacements ux, uy, and uz were derived from the 



 

78 
 

finite element simulations.  Figure 5.9 compares the calculated sensitivities for orthogonal and 

unidirectional standard SAW devices with and without best case PS filled micro-cavities.   
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Figure 5.9: Comparison of Mass Sensitivities. (1) denotes standard unidirectional LGS SAW 

device, (2) denotes unidirectional SAW device with best case micro-cavities (λ/2 x λ/2 x λ/2), (3) 

denotes orthogonal SAW device, and (4) denotes orthogonal SAW device with micro-cavities 

(λ/2 x λ/2 x λ/2).  The unidirectional propagation direction is (0, 22, 90) for computing mass 

sensitivity. 

 

The finite element analysis shows a clear correlation of surface perturbations with 

sensitivity.  As wave displacements increase due to constructive interference, the surface mass 

sensitivity value calculated using Eq. (5-2) and shown in Fig. 5.9 also increases.  In addition, the 

use of micro-cavities in the delay path leads to an enhanced entrapment of acoustic energy near 
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the surface, leading to maximum displacements in the micro-cavity region, as clearly seen in the 

displacement contours (Fig. 5.3).  This integrated effect of constructive wave interference due to 

orthogonally mutually interacting acoustic waves and acoustic energy confinement in micro-

cavities leads to maximized energy entrapment and displacements on the surface, thereby 

imparting the highest sensitivity of 24.15 Hz-cm2/ng to orthogonal SAW devices with PS filled 

micro-cavities.  This design reflects more than 100% increase in sensitivity over that of a standard 

SAW device (11.56 Hz-cm2/ng).  Together with the capability to simultaneously eliminate 

biofouling at the highest possible efficiency amongst the investigated designs, the SAW device 

with combined delay-path and transducer modifications marks a significant improvement over the 

standard SAW biosensor with unidirectional IDTs and no delay path modifications. 

 

5.4 Conclusion 

In summary, the effects arising from mutually interacting transducers and delay path 

modifications in the form of micro-cavities, on SAW sensors fabricated in LGS, have been 

evaluated using FE simulations.  This work reveals that phase difference between the 

orthogonally propagating waves in LGS allows for constructive acoustic wave interference in 

mutually interacting, multidirectional IDTs leading to decreased power loss.  Furthermore, the 

results indicate that the enhanced acoustic energy entrapment through the incorporation of sensor 

surface modifications such as PS-filled micro-cavities in the orthogonal SAW device results in 

dramatically increased transmitted acoustic energy, further reducing the power consumption.  

Compared to a standard LGS-based SAW device, a configuration with integrated multidirectional 

IDTs and PS-filled micro-cavities in the delay path provides advantages of significantly increased 

sensor sensitivity and much higher streaming induced non-specifically bound protein removal 

efficiency to overcome biofouling.  The improved SAW device design has tremendous 

significance and implications in the areas of biosensing and microfluidic applications. 
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Chapter 6 

Enhancement of Acoustic Streaming Induced Flow on a Focused SAW Device: 

Implications for Biosensing and Micro-fluidics 

 

Fluid motion induced on the surface of 100 MHz focused surface acoustic wave (F-SAW) 

devices with concentric inter-digital transducers (IDTs) based on YZ LiNbO3 substrate was 

investigated using three dimensional bi-directionally coupled finite element fluid-structure 

interaction models. Acoustic streaming velocity fields and induced forces for the F-SAW device 

are compared with a conventional SAW device with uniform IDTs. The velocity vector 

streamlines indicate recirculation patterns which differ between the conventional and F-SAW 

devices. While the conventional SAW shows maximum fluid recirculation near input IDTs, the 

region of maximum recirculation is concentrated near the focal point of the F-SAW device. The 

current simulation results indicate acoustic energy focusing by the F-SAW device leading to 

maximized device surface displacements, fluid velocity, and streaming forces near the focal point 

located in the center of the delay path, in contrast to the conventional SAW exhibiting maximized 

values of these parameters near the input IDTs. Significant enhancement in acoustic streaming is 

observed in the F-SAW device when compared to the conventional ones; the increase in 

streaming velocities was computed to be 352% and 216% for tangential velocities in propagation 

and transverse directions, respectively, and 353% for the normal velocity. Consequently, the 

induced streaming force for F-SAW is 480% higher than conventional SAW. In biosensing 

applications, this allows for the removal of smaller sub-micron sized particles by F-SAW which 

are otherwise difficult to remove using the conventional SAW; the F-SAW presents an order of 
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magnitude reduction in the smallest removable particle size compared to the conventional device. 

Thus, the results from the present study indicate that the acoustic energy focusing and acoustic 

streaming enhancement brought about by the F-SAW device manifests itself as enhanced 

biofouling efficiency of F-SAW throughout the device delay path compared to the conventional 

device, thereby providing enhanced device sensitivity, selectivity and permitting device reuse. 

The results of this work are shown to have significant implications in biosensing and microfluidic 

applications. In a broader context, the results of the present study demonstrate a technique of 

enhancing streaming induced flows, which is of great importance to contemporary problems 

involving microfluidic and sensing applications of piezoelectric devices. 

 

6.1 Introduction 

Surface acoustic wave (SAW) sensors find intensive applications in chemical and 

biological sensing owing to their portability, cost effectiveness, high sensitivity, and reliability 

[43, 46-52]. Typically, biosensing applications require the detection and measurement of 

biomarkers in fluid media [54]; such as the measurement of certain proteins in bodily fluids for 

the detection of pathologies. The use of SAW sensors in biosensing applications requires the 

integration of SAW devices with microfluidics [144], which is the science of designing systems 

and processes that handle and use fluid volumes of the order of picoliters to nanoliters thereby 

reducing the dead volume in the system.  Some applications of microfluidics include gene 

expression analysis using DNA chips, DNA hybridization, lab-on-chip systems, immuno-assays, 

micro-arrays, biosensing, drug screening, drug delivery, ultrasonic mixing, actuation, and flow 

cytometry to name a few [3-10]. In microfluidic applications, the performance of the SAW device 

is influenced by its ability to generate high enough velocities in a small volume [145] which can 

be achieved through high frequency acoustic waves generated in these devices. SAW devices can 
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also be used as actuators for pumping small volumes of fluid to generate high enough velocities 

in the small fluidic channels owing to the high intensity acoustic waves.  

Most of the clinical and diagnostic biosensing applications of SAW devices require 

transduction of picogram to nanogram level of biomarkers into a readable signal without 

interference from other proteins and biomarkers, thereby requiring high device sensitivity and 

selectivity. However, most of the biosensors are plagued with the issue of non-specific protein 

binding to the device surface [99, 110, 131, 146] which interfere with the sensing phenomenon 

and leads to a reduction in the device sensitivity, selectivity, and analyte discrimination 

capabilities. Thus, non-specifically bound (NSB) protein removal remains a challenge in 

biosensing applications. Additionally, high device sensitivity is required so as to detect small 

enough concentrations of the analyte. Acoustic streaming, which refers to fluid motion induced 

by high intensity sound waves, can be used to eliminate non-specifically bound (NSB) proteins 

from the SAW surface [110]. When Rayleigh waves with a prominent surface normal component 

propagate in a SAW device, they couple strongly with the fluid in contact with the device and 

leak energy into the fluid domain leading to conversion from Rayleigh to leaky SAW, which 

results in the propagation of longitudinal waves in the fluid domain. This SAW-fluid interaction 

creates a pressure gradient in the direction of acoustic wave propagation in the fluid, inducing 

fluid flow and leading to an acoustically driven streaming phenomenon known as SAW streaming 

[74, 75] which can facilitate the removal of loosely bound non-specific proteins as demonstrated 

through recent experimental investigations in our laboratory [99, 101] and consequently improve 

sensor selectivity and sensitivity. The interplay of SAW body force and the acoustic streaming 

induced fluid forces with the adhesive force plays a critical role in NSB removal.  While the 

acoustically induced tangential fluid motion exerts viscous stresses at the interface boundary 

causing fluid recirculation and particle advection, the normal motion exerts a lift force on the 

particles preventing particle re-attachment to the device surface [110, 139, 147] which are 



 

83 
 

detached from the surface when the SAW body force overwhelms the adhesive van der Waal’s 

force between the particle and the device surface. Thus, streaming induced flows on device 

surface can play a significant role in biosensing applications.  

Enhancement of ultrasonic micro transport via acoustic streaming through the design and 

use of novel device and transducer configurations has received considerable attention in recent 

years [145]. Typically in a conventional SAW device with uniform finger IDTs (henceforth 

referred to as conventional SAW), the SAW displacement field and consequently the streaming 

force decay rapidly on moving away from the input IDTs in the sensing region. This aspect 

severely limits the application of conventional SAW devices in biosensing applications. One of 

the critical issues in this regard is the generation of sufficiently high acoustic streaming velocities 

and streaming force along the entire SAW delay path, which in turn requires the generation of 

strong SAW fields in the region being probed. The latter can be realized through the generation of 

focused beam using specialized IDT designs [148]. Experimental and theoretical investigations 

have revealed that focused interdigital transducers (F-IDTs), based on concentric wave surfaces, 

can excite waves with high intensity, high beam-width compression ratio, and small localized 

area. [149-152].  These high intensity excited waves can be utilized to enhance the streaming 

induced removal of fouling proteins leading to highly sensitive biosensors.  

The efficient utilization of acoustic streaming in SAW devices requires the understanding 

of wave propagation and fluid dynamics as well as the interaction of acoustic waves with the fluid 

domain in these systems. Previous attempts to address this have utilized simplified analytical 

models treating the leaky wave as a first-order perturbation on the non-leaky wave associated 

with surface-wave propagation and numerical models in conjunction with perturbation theory 

derived parameters to predict streaming velocities and forces based on the continuum model of 

Nyborg [14, 103, 110, 122]. However, these models ignore the effect of liquid loading and 

viscous dissipation in the presence of the same, owing to simplification of the Navier-Stokes 
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equation. A comprehensive understanding of the SAW-fluid interaction and the effectiveness of 

complex IDT configurations such as F-IDTs in acoustic streaming enhancement requires the 

development of fully coupled three dimensional (3-D) finite element (FE) fluid structure 

interaction (FSI) models. These models would be instrumental in investigating methods to 

increase the acoustic streaming velocity for NSB protein removal while minimizing the influence 

of the streaming force on the sensing layer, thereby increasing the sensitivity and selectivity.  

In the present work, a 3-D FE FSI model has been developed to investigate and analyze the 

streaming velocity fields and forces induced by SAW devices with F-IDTs based on concentric 

wave surfaces. Using the developed 3-D FSI model, the acoustic streaming enhancement brought 

about by the F-SAW device is analyzed by comparison with a conventional SAW device having 

uniform IDTs. Till date, there have been no three dimensional fluid structure interaction studies 

on the streaming induced by F-SAW devices which can quantitatively give an estimate of the 

streaming velocity variations introduced by viscous effects. 

 

6.2 Computational Details 

This section discusses the FSI model and the associated theory to investigate acoustic 

streaming and compute streaming velocities in the SAW device in contact with fluid domain. 

 

6.2.1 Theory 

A coupled-field FSI model of a piezoelectric device in contact with a liquid loading 

requires the solution of the piezoelectric constitutive equations in conjunction with the fluid 

dynamical equations. A system of four coupled wave equations for the electric potential and the 

three component of displacement in piezoelectric materials are solved for the piezoelectric 

substrate[34].   
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c, e, and ε represent structural elasticity matrix at constant electric field, piezoelectric stress 

matrix, and dielectric matrix at constant mechanical strain, respectively and φ denotes the electric 

potential. These coupled wave equations are discretized and solved to obtain voltage and 

displacement profiles at each element/node.  

The fluid domain is modeled as incompressible and Newtonian, using the Navier-Stokes in 

conjunction with the continuity equation.  
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0=⋅∇ fv                 (6-4) 

Here, vf, P, ρ and η denote the fluid velocity, pressure, density, and viscosity, respectively. D is 

the rate of deformation tensor given by 

( )t
ff vvD )(

2
1

∇+∇=          (6-5) 

Whereas a Lagrangian frame is used for discretization of the structural domain, the fluid domain 

can be discretized using either Eulerian or Lagrangian frame of reference. However, a purely 

Lagrangian frame, in which the mesh moves with the velocity of the fluid, is not suitable for 

dealing with large deformations of the fluid mesh arising from the non-cohesive nature of fluid 

particles which causes them to travel independently and diverge in space. On the other hand, a 

purely Eulerian frame for the fluid domain in which the mesh is fixed, is unable to track the path 

of the elements. Therefore, Arbitrary-Lagrangian-Eulerian (ALE) methods, which combine the 

best of the both frames of reference, are used for discretization of the fluid domain in such 
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problems [120, 121]. In ALE method, an Eulerian frame is used for regions with significant fluid 

motion such that a deformable mesh could undergo excessive distortion and the Lagrangian frame 

is used for regions of negligible flows; the equation of motion for the fluid domain can be written 

as follows 

02)( =⋅∇−∇+∇⋅−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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∂
DPvwv

t
v

ff
f ηρ ;     (6-6)  

where w is the grid velocity such that 0≠≠ fvw  

The fluid-solid coupling is established by maintaining stress and displacement continuity 

at the fluid-structure interface. These conditions translate to no-slip for the fluid domain (velocity 

continuity) and stress continuity for solid domain, given by 

t
uvv sf ∂
∂

==           (6-7)  
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f
ij

S
j

S
ij nn σσ          (6-8)  

jn is the instantaneous outward normal at the fluid-structure interface, i denotes longitudinal 

direction. Superscripts f and s denote fluid and structural domain, respectively and u denotes 

displacement of the piezoelectric domain. The fluid mesh is updated with the distortion of the 

structural domain. 

The velocity v calculated from Equations (6-4) through (6-8) contains harmonically 

varying terms and a “dc” term. The latter induces acoustic-streaming. When averaged over a 

relatively long time, the effect of the harmonically varying terms disappears and only the 

contributions from the dc part appear in the solution, producing a time invariant mean flow. The 

acoustic-streaming velocity ( iav , , i=x, y, and z) is therefore obtained by averaging v over a time 

period as follows: 
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where T is the time period of the wave propagation. 

 

6.2.2 Model Details 

A 3-D coupled field FSI model of a SAW device based on YZ-LiNbO3 with a liquid 

loading was developed to gain insights into the acoustic streaming phenomenon. A piezoelectric 

substrate, with dimensions 400μm width x 800μm propagation length x 200μm depth and in 

contact with a 50 μm thick fluid film, was modeled to investigate acoustic streaming in the SAW 

device (Fig. 6.1a). Two sets of IDTs were defined: the input IDTs and the output IDTs with three 

IDT finger pairs on the surface in each port. The focused SAW (F-SAW) device was constructed 

by adopting a pair of concentrically shaped F-IDTs as shown in Fig. 6.1b.  

 

   

    (a)      (b) 

Figure 6.1: (a) Meshed Fluid-Structure Interaction Model of the Surface Acoustic Wave Device 

in Contact With the Fluid Domain. (b) Schematic Showing Focused Interdigital Transducers in a 

Focused SAW Device. FSI denotes fluid-structure interface. Da, FL, and λ denote angle of arc, 

focal length, and wavelength, respectively.  

FSI Piezoelectric 
substrate 

Fluid 
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The IDT fingers were represented by a set of nodes coupled by voltage degrees of 

freedom (DOF). The piezoelectric domain was meshed with tetragonal solid elements with four 

degrees of freedom, namely the three translations and the voltage. The fluid domain was meshed 

using eight node fluid elements and discretized employing an Arbitrary Lagrangian Eulerian 

(ALE) frame for the kinematical description. To optimize on the computation time while 

capturing the interface dynamics accurately, the mesh density was such that it was refined near 

the fluid-structure interface and coarser away from it. A total of 2, 218, 399 nodes and 2, 085, 877 

elements were generated.   

To achieve bidirectional fluid structure coupling, stress and displacement continuity were 

maintained across the fluid-structure interface. To achieve this, displacements were transferred 

from solid to fluid and pressure from fluid to solid across the interface. The fluid mesh was 

continuously updated as the piezoelectric substrate undergoes deformation. Numerical solution 

was obtained by solving the governing equations for the two domains using the iterative 

sequential coupling algorithm: the Navier-Stoke’s equation for fluid and acoustoelectric equations 

for the piezoelectric domain [110, 133]. In this algorithm, the governing equations for the two 

domains are solved separately and the solver iteration between the two domains continues till 

convergence of the load transferred across the interface is achieved. Structural simulations were 

carried out for different F-IDT designs having varying degree of arc, focal length, and 

wavelength. The F-IDT design that provides the maximum streaming force and least insertion 

loss was used in the FSI simulation to investigate acoustic streaming in F-SAW device. The 

enhancement in F-SAW induced acoustic streaming velocity was computed by comparison with a 

conventional SAW device having finger IDTs defined with a periodicity of 40 μm and aperture 

width of 200 μm. The meshed structures for the conventional and F-SAW device are shown in 

Figures 6.2(a, b).  
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(a) 

 

      (b) 

Figure 6.2: Meshed Structures of the Simulated SAW Devices With IDTs (a) Uniform IDTs (b) 

Focused IDTs (F-IDTs). FSI denotes fluid-structure interface. 

 

The central frequency of the device was computed to be 100 MHz using an impulse 

response analysis. To investigate acoustic streaming, the acoustic excitation of the device was 

IDTs FSI 

F-IDTs FSI 
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induced by applying an input AC voltage with a peak of 2.5 V and a frequency of 100 MHz (Fig. 

6.3). 
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Figure 6.3: AC Voltage for Structure Excitation Applied to Input IDTs. 

 

6.3 Results and Discussion 

Structural simulations have been carried out previously [14] for various F-IDT 

configurations with varying degree of arc (Da), focal length (FL), and wavelength (λ) to estimate 

the magnitude of insertion loss and SAW displacements for various device designs and identify 

the best F-IDT configuration that can lead to enhanced acoustic streaming.  The results for 

various device designs are summarized in Table 6.1 below.  
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Table 6.1: Summary of Various F-SAW Designs Simulated [14]. 

 
 Geometric Focal 

length (µm) 

Degree of arc Da Wavelength 

(µm) 

Insertion 

loss (dB) 

Normalized 

displacement (λ) 

1 45 120° 40 -9.5 1.16 

2 45 120° 60 -11.6 0.75 

3 45 120° 80 -11.9 0.60 

4 45 90° 40 -8.6 1.03 

5 45 60° 40 -3.8 0.96 

 

It can be seen that minimum insertion loss corresponds to design 5. However, for 

microfluidic actuation and sensing applications involving biofouling elimination which requires 

enhanced streaming, insertion loss is not the most critical criteria. It is more important to have 

higher amplitudes of SAW displacement, which can in turn lead to higher induced SAW 

streaming. When the device displacement amplitude are analyzed, the device with 

periodicity/wavelength of 40 μm, geometric focal length of 45 μm and degree of arc (Da) 120° 

provides the best design. This design configuration was utilized in FSI simulations to study fluid 

flow profiles and streaming velocity fields generated in SAW devices involving focused IDTs. 

The aperture width of the fingers varied depending on their radial distance from device center. 

 

6.3.1 SAW Fluid Interaction 

The SAW device with a propagating Rayleigh wave couples strongly and leaks acoustic 

energy into the fluid, leading to a mode conversion from Rayleigh to leaky SAW (Figures 6.4, 

6.6b). The leaky SAW decays with distance from the input IDTs (Fig. 6.4). This mode conversion 

eventually generates a pressure gradient in the direction of acoustic wave propagation in the fluid, 
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leading to an acoustically driven phenomenon known as acoustic streaming. The highest fluid 

displacements and velocities are obtained close to the device surface beyond which significant 

damping of fluid motion is observed. The fluid is characterized by velocities the order of 20 mm/s 

in the 50 µm thick fluid film, in accordance with the reported experimental values [3], yielding a 

Reynolds number of 0.8 suggesting that the flow is completely laminar. Flow reversal leading to 

recirculation is obtained close to the device surface, which can lead to eddy formation. This fluid 

motion and recirculation facilitates particle transport via advection and lift, attributable to the 

generation of various hydrodynamic forces.    

 

 

      (a) 

Figure 6.4: (a) Simulated Fluid Displacement Profile for the Conventional SAW Device (b) 

Simulated Fluid Displacement on a Section Cut Through the Device Center Across the Fluid Film 

Thickness Along the Propagation Length in the Conventional Saw Device. The figure is enlarged 

near the IDT region. The decay of the fluid motion on moving away from the IDTs can be clearly 

seen. Scale bar is in meters. FSI denotes fluid-structure interface.  ‘t’ denotes fluid film thickness.  
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      (b) 

Figure 6.4: Continued. 

 

6.3.2 Fluid Flow Fields and Substrate Displacement Profiles 

The fluid velocity vector along the fluid-device interface, zoomed in close to the IDT 

regions, for the conventional and F-SAW device are shown in Fig. 6.5. The streamlines of the 

vector field are representative of the trajectory of particles advected by the fluid. The fluid vector 

streamlines in the conventional device indicate recirculation leading to eddy formation between 

the IDTs. Since the flow is mainly laminar, this eddy formation near the IDTs may be attributable 

to the impedance to fluid flow between two successive crests formed between two successive IDT 

fingers. When fluid flows through these wave crests that result from the alternating motion of the 

IDTs, it experiences frictional resistance. As the flow circumvents these crests, the viscous effect 

drives a counter-circulation leading to eddy formation. In the conventional device, the extent of 

recirculation and hence eddy formation is reduced away from the IDTs. In contrast, the IDTs 

focus the fluid flow near the device focal point in the F-SAW device, thereby increasing the 

intensity of recirculation and therefore eddy formation in the region near the focal point (Fig. 

6.5b). With time, these eddies rise from the device surface and break into smaller ones, while new 

ones are formed at the surface. These eddies play a role in particle advection. It is worth 

mentioning that the operating conditions can be chosen obtain an increased intensity of acoustic 
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actuation due to focusing effect, which can be utilized for various microfluidic applications like 

micro-dispensing to pico-dispensing.  

 

 

    (a) 

Figure 6.5: Simulated Fluid Velocity Vectors for the Conventional and Focused SAW Device. (a) 

Fluid velocity vectors zoomed in near the IDT region for the conventional SAW device. The 

dotted white lines indicate IDT fingers. Fluid recirculation near the IDTs is clearly shown. (b) 

Fluid velocity vectors (zoomed in) at the fluid surface in contact with the focused SAW device. 

The recirculation near the device focal point in the delay path is clearly shown. Fluid layer at the 

interface is depicted and the direction of viewing is normal to the fluid-structure interface. Scale 

bar is in m/s. 
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    (b) 

Figure 6.5: Continued. 

 

As the piezoelectric device is excited, surface displacements are generated leading to the 

propagation of a wave through the piezoelectric substrate. A comparison of the simulated device 

displacement profiles reveals an  increase in the surface displacements of a F-SAW device 

compared to a conventional SAW device with a similar size, finger periodicity and applied input 

voltage (Figs. 6.6, 6.7), consequently leading to an enhancement in the induced acoustic 

streaming. Further, the F-SAW device leads to the acoustic energy focusing leading to maximized 

displacements near the focal point in the center of the delay path, in contrast to the conventional 

SAW device in which the displacements are maximum near the input IDTs and decay rapidly on 

moving away from them (Fig. 6.7). The increased and localized surface displacements of the F-

SAW device eventually lead to enhanced acoustic streaming thereby making the F-SAW device 
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more suitable for microfluidic applications, such as biofouling elimination in biosensing, 

compared to the conventional SAW. 

 

      (a) 

 

(b)           

Figure 6.6: Simulated Piezoelectric Device Displacement Contours (a) Focused SAW device (b) 

Conventional SAW device with uniform IDTs. Scale bar is in meters. 
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Figure 6.7: Comparison of Particle Displacement on the Device Surface Along the Propagation 

Length for Focused SAW (F-SAW) vs. Conventional SAW (C-SAW) Device Having Uniform 

IDTs for a Peak Input AC Voltage of 2.5 V.  

 

The fluid velocity vectors for the conventional and F-SAW device, shown in Fig. 6.8, 

indicate that the F-SAW device generates higher velocities in the fluid domain in contact with the 

device as compared to the conventional SAW. For the current configuration, the F-SAW device 

generated fluid velocity is almost double the velocity generated by the conventional device. 

Further, owing to the acoustic energy focusing in the F-SAW device leading to peak 

displacements near the focal point (Fig. 6.7), the highest fluid velocities are generated near the 

focal point in the F-SAW device whereas in the conventional SAW, the fluid velocity peaks near 

the input IDTs (Fig. 6.8).  
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      (a) 

    

    (b) 

Figure 6.8: Simulated Fluid Velocity Profiles (a) Focused SAW device (b) Conventional SAW 

device with uniform IDTs. Scale bar is in m/s. t denotes fluid film thickness, FSI denotes fluid-

structure interface. 
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away from them whereas the streaming force peaks near the focal point in the F-SAW device 

(Fig. 6.9a). Further, the F-SAW induced streaming force is higher than the conventional SAW 

device throughout the delay path (Fig. 6.9a), providing higher magnitude of peak streaming force 

in the F-SAW device compared to the conventional SAW device (Fig. 6.9b) suggesting enhanced 

performance of the F-SAW device in biofouling elimination and other microfluidic applications, 

as brought out later.  
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     (a) 

Figure 6.9: Comparison of Streaming Forces (FSAW) for Focused SAW (F-SAW) vs. 

Conventional SAW (C-SAW) Device Having Uniform IDTs Corresponding to a Peak Applied 

Input AC voltage of 2.5 V (a) Streaming forces on the device surface along the propagation 

length. F denotes focal point of the F-SAW device (b) Maximum streaming force.  
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         (b)         

Figure 6.9: Continued 

 

Equation (6-9) was used to compute the streaming velocity in the F-SAW device, which 

gives a time invariant mean flow. The calculated tangential and normal streaming velocity 

obtained for an F-SAW was compared to a conventional SAW device with the same wavelength 

(Fig. 6.10). The velocity profiles for both the devices indicate that the highest tangential and 

normal velocities occur close to the device surface. The fluid motion is confined to a small fluid 

thickness close to the device surface beyond which the wave motion is dampened significantly. In 

addition, beyond initial small fluid thickness, flow reversal is observed indicating fluid 

recirculation close to the SAW device surface. It is noteworthy that for both the devices, the 

tangential velocity component is higher as compared to the normal velocity component. This 

suggests that the streaming induced drag force is greater than the lift force. Further, the F-SAW 
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device generates much higher intensities of both forward and backward flow thereby suggesting a 

stronger recirculation as compared to conventional SAW. A comparison of the velocity fields 

between focused and conventional SAW devices indicates a significant increase in the tangential 

velocity in the propagation as well as transverse directions, normal velocity, and consequently 

total streaming velocity as a result of focusing brought about by the FSAW devices, leading to 

enhanced intensity of acoustic streaming. The F-SAW induced increase was found to be 352% 

and 216% for tangential velocities in propagation and transverse directions, respectively, and 

353% for the normal velocity.  
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     (a) 

Figure 6.10: Comparison of Variation in Fluid Streaming Velocity Along the Fluid Film 

Thickness in Focused SAW vs. Conventional SAW Device for a Peak Input AC Voltage of 2.5 V 

(a) Tangential fluid velocity in the propagation direction (b) Tangential fluid velocity in the 

transverse direction (c) Normal fluid velocity. 
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       (c) 

Figure 6.10: Continued. 
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As brought out in the forthcoming sections, the enhancement in acoustic streaming leads 

to enhanced particle removal capability of the F-SAW device, making them more suitable for 

biofouling elimination and biosensing applications compared to the conventional SAW device. 

 

6.3.4 Non-Specifically Bound Protein Removal (Focussed vs. Conventional SAW) 

Using the computed streaming velocities, various hydrodynamic[153] and adhesive 

forces were computed to predict and compare NSB removal from the F-SAW wand conventional 

SAW device. The NSB removal from the device surface is the result of a complex interplay 

between the adhesive and removal forces. When the device is in contact with the fluid domain, 

the adhesive forces are van der Waal’s dispersion, electric double layer, and gravitational forces. 

However, the electrostatic double layer forces are ignored in an order of magnitude analysis as 

the maximum magnitude of these forces can be of the order of van der Waal’s force. If the non 

specific protein in contact with the SAW device is modeled as a spherical particle of radius R, the 

non retarded van der Waal’s force of adhesion between a sphere and a plate is given by [154] 

26z
ARFvdw = . A denotes Hamaker’s constant (typical value of 10-20 J), z denotes the distance 

beyond which the adhesion force becomes retarded.  Typically, z ranges from 0.2-0.4nm; in this 

work, z = 0.3 nm is used. The removal forces on the particle are mainly hydrodynamic in nature 

and are a result of the linear and non-linear fluid-device interactions that eventually give rise to 

acoustic streaming. The linear forces include added mass and Basset forces whereas the non-

linear ones include radiation pressure, the SAW body force arising from the motion of the 

piezoelectric device, and acoustic streaming induced drag forces and lift forces. The added mass 

force is an inertial force which acts on a particle in an accelerating fluid due to the work done by 

the particle in displacing the fluid and changing the kinetic energy of the surrounding fluid. This 

force is computed as FAM ~ 2πfρR3u. For particles submerged in the boundary layer of an 
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accelerating fluid, i.e. particle radius being comparable to the boundary layer thickness, the 

acceleration of the relative motion between the fluid and the particle leads to a delay in the 

boundary layer formation and viscous effects gain importance. These two effects are accounted 

for by the Basset force, given by FB= AMD FF ; FD denotes Stoke’s drag. The particle in contact 

with the piezoelectric device is acted upon by a direct SAW body force resulting from the 

displacement of the device surface. The magnitude of this force is given by 

222 RFFF zxSAW +=  where Fx and Fz denote the tangential and normal components of the body 

force computed at the center of the device given by [110, 122] 

ix kAF 222
1 )1( ωαρ +−=  ; iz kAF 2

1
22

1 )1( ωααρ +−=     (6-10) 

A denotes the magnitude of surface displacement, α1 is the attenuation constant, ω is the device 

angular frequency and ki is the leaky SAW wave number. The values of ki and α1 for the 100 MHz 

YZ-LiNbO3 devices are computed to be 16409 m-1 and 1.92, respectively.  

 The acoustic streaming induced drag force is given by FD ~ µRux, the streaming induced 

lift force is given by FL ~ µ(Ruz)2. The radiation pressure force is imparted by the acoustic 

radiation into the fluid and is given by [155] 
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ρp denotes particle density, f denotes device frequency, µ and ρ represent fluid density and 

viscosity, respectively, ux and uz denote the tangential and normal acoustic streaming velocity 

components and u denotes total fluid velocity. The various forces have been computed for two 

different particle sizes, for the conventional and F-SAW devices and compared in Table 6.2.  
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Table 6.2: Comparison of Adhesive and Removal Forces Corresponding to Three Different 

Particle Sizes for Focused SAW (F-SAW) vs. Conventional SAW (C-SAW) Devices. 

 

 R=0.03 µm R=1.0 µm R=50 µm 

 F-SAW C-SAW F-SAW C-SAW F-SAW C-SAW 

Fvdw 5.6x10-10 5.6x10-10 1.9x10-8 1.9x10-8 9.3 x10-7 9.3 x10-7 

Fg 1.1x10-18 1.1x10-18 4.1x10-14 4.1x10-14 5.1 x10-9 5.1 x10-9 

FSAW 6.3x10-10 1.1 x10-10 7.0 x10-7 1.2 x10-7 4.4 x10-4 3.0 x10-4 

FD 2.8x10-13 1.2x10-13 9.4x10-12 4.0x10-12 4.7x10-10 2.0x10-10 

FL 2.9 x10-17 6.1 x10-18 3.2 x10-14 6.8 x10-15 8.1 x10-11 1.7 x10-11 

FAM 8.0 x10-16 4.6 x10-16 3.0 x10-11 1.7 x10-11 3.7 x10-6 2.1 x10-6 

FB 3.0 x10-14 1.9 x10-14 3.3 x10-11 2.2 x10-11 8.3 x10-8 5.4 x10-8 

FRS 1.5 x10-18 3.3 x10-19 5.4 x10-14 1.2 x10-14 6.8 x10-9 1.5 x10-9 

 

A comparison of the various forces reveals that while the hydrodynamic forces are 

smaller compared to the adhesive van der Waal’s force, the direct SAW body force is of sufficient 

magnitude to overcome the adhesive force. Following particle detachment, preventing particle 

reattachment to the surface becomes critical to achieve biofouling elimination.  From the order of 

magnitude analysis, it appears that the acoustic streaming induced drag and lift, radiation 

pressure, Basset, and the added mass forces appear to be inconsequential as they are much 

smaller compared to the van der Waal’s adhesive force. However, it is important to note that both 

the SAW body force and van der Waal’s force decrease with increasing distance from the device 

surface. Therefore, after the particle becomes fluid borne and moves away from the zone of 

adhesion to a distance where the van der Waal’s force becomes insignificant and the gravitational 
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(g denotes gravitational constant) is the prominent adhesive force that 

can bring the particle closer to the device surface for reattachment. At this juncture, the 

hydrodynamic forces come into play, which include drag, lift, acoustic radiation, added mass, and 

Basset forces and can easily overcome Fg. Thus, these hydrodynamic forces play a key role in 

preventing the reattachment of the particle to the device surface by overcoming Fg. This interplay 

of the various adhesive and removal forces is summarized in Fig. 6.11. 

 

 

Figure 6.11: Illustration of the Interplay of Various Adhesive and Removal Forces on the Non-

Specific Proteins Bound to the SAW Surface. The SAW body force leads to particle detachment 

from the device surface while the hydrodynamic forces including added mass, acoustic radiation, 

acoustic streaming induced drag and, lift prevent particle re-attachment to the surface and are 

responsible for particle transport from the fluid stream. FSAW, FD, Fam, FL, Fg, Fvdw denote SAW 

body, streaming induced drag, added mass, streaming induced lift, gravitational and van der 

Waal’s forces, respectively. 
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A comparison of the various forces also reveals that for very small sub-micron particles, 

streaming induced drag is larger compared to the other hydrodynamic removal forces; however 

for larger particles, the added mass and Basset forces are larger than streaming induced drag and 

lift forces. Therefore, particle advection by streaming induced drag is a dominant mechanism in 

preventing particle reattachment following detachment for sub-micron particles whereas the 

added mass force due to the accelerating fluid plays a dominant role in preventing particle 

reattachment and removal of very large particles.  Nevertheless, the interplay of the various 

hydrodynamic and adhesive forces leads to a net particle displacement which ultimately translates 

to particle removal from the fluid stream. 

From Table 6.2, it is evident that the F-SAW device generates higher magnitudes of 

hydrodynamic and direct SAW body removal forces compared to the conventional SAW device 

due to an increase in the intensity of acoustic streaming as well as induced streaming velocities 

(Fig. 6.10) as a result of the acoustic energy focusing in a small localized area. It is important to 

note that for large particle sizes such as 50 µm, the hydrodynamic removal force such as added 

mass is sufficient to overcome the adhesive van der Waal’s force in the conventional as well as 

the F-SAW device whereas for smaller particle sizes such as R= 1.0 µm, only the SAW body 

force is of sufficient magnitude to overcome the adhesive force; the other hydrodynamic forces 

come into play after the adhesive force becomes insignificant some distance away from the 

surface.  For very small particles (R = 0.03 µm), the removal forces in the conventional SAW 

cannot inflict particle removal owing to their smaller magnitude compared to the adhesive van der 

Waal’s force; however the F-SAW induced SAW body force overwhelms the van der Waal’s force 

and  facilitates sub-micron particle size elimination. Therefore, it appears that while the removal 

of sub-micron sized particles is not achievable in a conventional SAW device, the high intensity 

focused beam in the F-SAW device is instrumental in removing smaller sub-micron sized 

particles.   
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It can be seen that as particle size reduces, the removal forces namely the direct SAW 

body force and hydrodynamic forces namely drag, added mass, Basset, radiation pressure forces 

decay much faster compared to the adhesive van der Waal’s force since the latter varies linearly 

with particle size whereas the removal forces, excluding the lift force, vary as higher powers of 

particle size. Therefore, removal of smaller particles poses a greater challenge while it is 

relatively easy to remove larger particles.  The smallest particle removable via acoustic streaming 

can be computed in the limit when the SAW body force overcomes the adhesive van der Waal’s 

force and is used as an indicator of removal efficiency of the SAW device. The smallest particle 

radius (Rmin) is given by 

22min
6 zx FFz

AR
+

=

         

(6-12) 

 The ability of the F-SAW device to generate higher magnitudes of hydrodynamic and 

direct SAW body removal forces compared to the conventional SAW device, as discussed before,  

manifests itself as the ability of the F-SAW to remove much smaller particles compared to the 

conventional SAW device (Fig. 6.12), thereby ensuring higher removal efficiency of the F-SAW 

device. It is also worthwhile to note that in a conventional SAW device, the smallest particle is 

removable near the input IDT region owing to the fact that the device displacements and therefore 

streaming force are highest near the input IDTs and decay exponentially on moving away from 

the source; thus only larger particles can be removed in the delay path away from input IDTs. 

However, in a F-SAW device, the smallest particle can be removed at the focal point of the device 

in the center of the delay path due to localized acoustic energy focusing. Further, the acoustic 

streaming enhancement due to acoustic energy focusing manifests itself as the capability of the F-

SAW to remove much smaller particles throughout the delay path corresponding to the sensing 

region, which are otherwise not removable using the conventional SAW. The F-SAW device 

presents almost an order of magnitude reduction in the smallest removable particle size compared 
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to the conventional SAW, allowing for the removal of sub-micron sized particles which cannot be 

removed by the conventional device. Thus, the F-SAW device provides an enhancement over the 

conventional SAW device through its ability to achieve increased biofouling removal efficiency 

throughout the delay path or the sensing region, thereby enhancing device sensitivity, selectivity 

and permitting device reuse.  These results suggest acoustic wave focusing brought about by F-

SAW device is an efficient technique to generate enhancing streaming velocities and streaming 

forces, which can be utilized for a plethora of microfluidic actuation and sensing applications.  
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Figure 6.12: Comparison of Radius of the Smallest Particle (Rmin) That Can Be Removed, in a 

Conventional SAW (C-SAW) vs. Focused SAW (F-SAW) device. The smallest particle is 

removed near the input IDTs in the C-SAW device and focal point in the F-SAW device. 
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6.4 Conclusion 

In summary, 3-D FE-FSI models were developed for an F-SAW device to investigate 

acoustic streaming flow fields and evaluate the enhancement in acoustic streaming induced 

biofouling elimination brought about by the F-SAW device in comparison to a conventional 

SAW. Results from the FSI simulations indicate an increase in the surface displacements, fluid 

velocity, and streaming force in F-SAW device compared to a conventional SAW device with a 

similar size, finger periodicity and applied input voltage. Further, the acoustic energy focusing in 

the F-SAW device leads to maximized surface displacements, fluid velocity, and consequently 

streaming force near the focal point in the center of the delay path in contrast to the conventional 

SAW in which the peak surface displacements, fluid velocity, and streaming force occur near the 

input IDTs and decay rapidly on moving away from them. The fluid vector streamlines in the 

conventional device differ significantly from those in the F-SAW device. The velocity vectors in 

the conventional SAW indicate maximum intensity of recirculation and IDTs near the IDTs, 

which reduce away from the IDTs. In contrast, the concentric IDTs focus the fluid flow near the 

device focal point, leading to maximum intensity of recirculation near the focal point in the F-

SAW device. The streaming velocities obtained using the FE-FSI simulations were used to 

compute the various adhesive and hydrodynamic removal forces on the non-specifically bound 

protein particles. A comparison of the various forces indicates that the interplay between the 

adhesive van der Waal’s and gravitational forces, SAW body force and the hydrodynamic removal 

forces leads to a net particle displacement which eventually translates to NSB protein detachment  

from the device surface as well as their removal from the fluid stream. The smallest removable 

particle size was used as a measure of the biofouling elimination efficiency in the SAW device. 

Whereas conventional SAW removes smallest particle near the input IDTs, the F-SAW device 

realizes the elimination of smallest particles near the focal point in the delay path corresponding 

to the sensing region.  Further, the results from the developed FE FSI models indicate that the 
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acoustic streaming enhancement in the F-SAW device manifests itself in the F-SAW device 

capability to remove much smaller particles compared to the conventional SAW having uniform 

IDTs. The enhanced biofouling elimination capability owing to the acoustic streaming 

enhancement brought about by the F-SAW device increases the suitability of the F-SAW device 

in biosensing applications, providing higher sensitivity, selectivity, and device reuse capabilities. 

Although the results have been discussed in the context of biofouling elimination in biosensors, 

the findings of this work are of general applicability and have tremendous significance for other 

microfluidic actuation applications of SAW devices. 
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Chapter 7 

Design of Mutually Interacting Multi-Directional Transducer Configurations on a 

Surface Acoustic Wave Device for Enhanced Biosensing  

 

 Transducers used in biosensing applications are plagued by biofouling, which refers to 

the binding of non-specific proteins to the device surface resulting in a compromise of the device 

sensitivity and selectivity. Acoustic streaming, resulting from high intensity sound waves, has the 

potential to address the issue of biofouling elimination in biosensors. Multi-directional 

transducers have the capability of achieving the dual objectives of biosensing and non-

specifically bound protein removal for improved sensor performance.  Also, focused interdigital 

transducers (IDTs) have the potential for acoustic energy focusing, thereby increasing the 

intensity of acoustic streaming. In the previous chapters, it has been identified that various 

crystallographic orientations allow the propagation of different modes thereby rendering them 

suitable for different applications. For example, in Langasite, shear horizontal modes propagate 

along (0, 22, 90) Euler direction while mixed modes with prominent surface normal component 

are obtained along (0, 22, 0) direction. Thus, the (0, 22, 90) and (0, 22, 0) directions are suitable 

for biosensing and the removal of NSB founding proteins from device surface, respectively. In 

this chapter, a Langasite based biosensor, with a mutually interacting multidirectional IDT 

configuration along the two identified Euler directions for enhanced biosensor performance, is 

investigated using 3-D FE models. Uniform IDTs (U-IDTs) are employed in the (0, 22, 90) 

direction while focused IDTs (F-IDTs) are placed along the (0, 22, 0) direction. The enhancement 

in sensor performance was analyzed in terms of device sensitivity and acoustic streaming force. 
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The results indicate that the streaming force and the sensitivity for the device with the mutually 

interacting U-IDTs/F-IDTs are significantly higher when compared to uniform unidirectional 

IDTs. Thus, the Langasite based device with mutually interaction U-IDTs and F-IDTs represents 

a significant enhancement over the conventional SAW device having uniform IDTs and is better 

suited for biosensing applications. This work broadly applies to all transducers used for biological 

species sensing that suffer from fouling and non-specific binding of protein molecules to the 

device surface. 

 

7.1 Introduction 

Surface acoustic wave devices find use in an array of applications including biosensing, 

chemical sensing, gene expression analysis, actuation, droplet excitation, and lab-on-chip systems, 

to name a few [9, 10, 46, 47]. However, biosensing applications of SAW devices suffer from 

reduction in sensitivity and selectivity owing to the binding of non-specific proteins from the 

biosensing medium, to the device surface, thereby severely compromising device performance. 

Acoustic streaming, resulting from the interaction of Rayleigh waves propagating in the 

piezoelectric device with the fluid domain, has been shown to remove non-specifically bound 

(NSB) proteins from the device surface. Biosensing and NSB protein removal requires the 

propagation of various types of wave modes. While a shear horizontal mode, which can resist 

attenuation in the fluid domain, is potentially beneficial for biosensing of target moieties, a 

Rayleigh wave is most suited to knock off the NSB proteins from the device surface via the 

phenomenon of acoustic streaming. Selective exploitation of different wave characteristics along 

various Euler directions holds the key to address the issue of achieving the dual objective of 

biosensing and biofouling elimination. In the previous chapters, we have demonstrated the 

possibility of simultaneous sensing and biofouling elimination on a single device, via the use of 

orthogonal IDTs on Langasite.  It has also been established,  in the previous chapters, that for 
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devices based on a Langasite substrate the (0, 22, 90) allows for propagation of shear horizontal 

mode and is, therefore, best suited for biosensing [139]. The (0, 22, 0) direction is ideal for the 

generation of waves with prominent surface normal component and hence is critical for NSB 

removal [139]. Further, efficient removal of NSB proteins via acoustic streaming requires the 

generation of high enough fluid velocities and Rayleigh wave amplitudes.  Furthermore, this 

dissertation has also established that devices with focused interdigital transducers (F-IDTs) based 

on concentric wave surfaces provide enhanced acoustic streaming compared to the conventional 

SAW device with uniform IDTs (U-IDTs) [156, 157]. In this chapter, the concepts from the device 

design configurations explored in the previous chapters are combined to achieve high streaming 

forces while providing improved sensing capabilities of Langasite based biosensor. Specifically, 

the orthogonal IDT configuration explored in Chapter 4 is further modified to include F-IDTs 

along the (0, 22, 0) direction while U-IDTs along the (0, 22, 90) direction. The aim is to exploit the 

capability of the F-IDTs to generate high streaming forces along the (0, 22, 0) direction which 

allows for the propagation of waves with a prominent surface normal component. This chapter 

presents the first report on a Langasite based biosensor employing mutually interacting F-IDTs and 

U-IDTs along the two different crystallographic directions, in order to allow for enhanced 

biofouling efficiency along the (0, 22, 0) direction while simultaneously allowing for sensing 

along the (0, 22, 90) direction.  Three dimensional (3D) coupled field finite element (FE) models 

are developed to investigate the second order effects arising from such a combination of mutually 

interacting IDTs and biosensor performance is analyzed in terms of device sensitivity and 

biofouling removal efficiency. The results are compared with those for a conventional SAW 

device having U-IDTs along (0, 22, 90) Euler direction. Such a device is expected to provide 

enhanced performance compared to a conventional SAW device having U-IDTs along (0, 22, 90) 

direction and orthogonal device having mutually interacting U-IDTs along each of the (0, 22, 0) 

and (0, 22, 90) directions.   
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7.2 Computational and Model Details 

 

7.2.1 Fluid Domain 

Fluid is modeled as an incompressible, viscous, Newtonian fluid using the Navier-Stokes 

and continuity equation in the Eulerian frame of reference given below 

02 =⋅∇−∇+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇⋅+

∂

∂
DPvv

t
v

ff
f ηρ       (7-1) 

0=⋅∇ fv            (7-2) 

Here, vf, P, ρ and η denote the fluid velocity, pressure, density, and viscosity, respectively. D is 

the rate of deformation tensor given by 

( )t
ff vvD )(

2
1

∇+∇=           (7-3) 

 

7.2.2 Piezoelectric Domain 

For the piezoelectric solid, the equation of motion is obtained by modifying the elastic 

constitutive equation for a non-piezoelectric solid to account for the coupling between the electric 

field and mechanical strain. The interaction between the electric field and mechanical strain is 

studied by coupling the elastic and electromagnetic constitutive equations though a piezoelectric 

matrix [34, 116-119].  

[ ] [ ]EeScT −=          (7-4) 

[ ] [ ]ESeD T ε+=          (7-5) 

The resulting equations, known as the piezoelectric constitutive equations, describe the 

interaction between elastic strain, stress, and electric field in the piezoelectric substrate. Here, T 

and D denote stress and electric flux density vectors, respectively. S, E denote structural strain 
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and electric field intensity vectors, respectively.  c, e, and ε represent structural elasticity matrix at 

constant electric field, piezoelectric stress matrix, and dielectric matrix at constant mechanical 

strain, respectively.  

In the absence of body force, the equation of motion is given by 

⋅⋅

=⋅∇ uT ρ           (7-6) 

where ρ is the density and u represents displacement, 2
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The electric field intensity is given by the gradient of the electric potential (φ) 

ϕ−∇=E           (7-7) 

The strain tensor is symmetric, therefore 
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Substituting eqns. (7-7) and (7-8) in eqn. (7-4), we obtain T in tensor notation as  
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Substituting eqns. (7-7), (7-8), (7-9) in eqn. (7-6), 
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In a system with no free charges,   

0=⋅∇ D            (7-11) 

Combining eqns. (7-5), (7-7), and (7-11), 
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Equation (7-10) represents three equations in four unknowns, namely the three displacements and 

the voltage (φ) which combined with equation (7-12), forms a set of coupled wave equations that 

can be solved for the four unknowns. These equations are discretized in space and time, and 

solved at the nodes in the finite element domain to obtain a transient solution. 

 

7.2.3 Fluid-Solid Interaction 

The solution of fluid and solid fields in the finite-element domain requires the use of either 

the Lagrangian or Eulerian frame of reference. The Eulerian frame refers to the fixed frame of 

reference whereas Lagrangian frame is a moving frame of reference. In the Lagrangian frame, the 

grid deforms as the region of interest deforms. Whereas the structural phase (piezoelectric 

substrate) is best described using the Lagrangian frame, either frame of reference can be used for 

the fluid domain. In the Lagrangian frame, the mesh embedded in the fluid domain moves with the 

velocity of the fluid while in the Eulerian frame, the mesh, through which the fluid moves, is fixed. 

 A purely Lagrangian frame is not suitable for dealing with strong distortions of the fluid mesh 

arising from the non-cohesive nature of fluid particles which causes them to travel independently 

and diverge in space. A purely Eulerian frame for the fluid domain introduces complexity in fluid-

solid coupling as it is unable to track the path of the elements. Therefore, Arbitrary-Lagrangian-

Eulerian (ALE) methods, which combine the best of the both frames of reference, are used for 

kinematical description of the fluid domain in such problems. In ALE, the Lagrangian frame is 

used for ‘almost contained’ flows and Eulerian description is used for regions where the mesh 

would be highly distorted if required to follow fluid motion. The theory for ALE has been 

developed by Hughes et al. for viscous, incompressible flows [120]. In the ALE framework, the 

fluid equation of motion can be written as  [121] 
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where w is the grid velocity such that 0≠≠ fvw . 

To achieve fluid-solid coupling, an interface is defined across which displacements are 

transferred from solid to fluid and pressure from fluid to solid. These conditions translate to no-slip 

for the fluid domain (velocity continuity) and stress continuity for solid domain given by  

t
uvv sf ∂
∂

==           (7-14)  

0=+ f
j

f
ij

S
j

S
ij nn σσ          (7-15)  

jn is the outward normal at the solid-liquid interface in the deformed configuration, i denotes 

longitudinal direction. Superscripts f and s denote fluid and structural domain, respectively. The 

fluid mesh is continuously updated as the piezoelectric substrate undergoes deformation.  

 

7.2.4 Finite Element Model 

A three dimensional finite element model of a SAW device based on Langasite substrate, 

with U-IDTs/F-IDTs was developed [158], as shown in Fig. 7.1. The dimensions of the 

piezoelectric substrate were 1600μm width x 1600μm propagation length x 200μm depth.  

The device was modeled with two port delay line consisting of two sets of IDTs along 

each of the two delay paths: the input IDTs and the output IDTs. The fingers were defined with 

periodicity of 40 μm and aperture width of 200 μm along the (0, 22, 90) direction. Along the (0, 

22, 0) direction, aperture width of the fingers varies depending on their radial distance from device 

center  The model was meshed with tetragonal solid elements with four degrees of freedom, three 

of them being the three translations and the fourth being the voltage. To optimize on the 

computation time while capturing the dynamics accurately, highest mesh densities were ensured 

near the device surface and the middle of the substrate. A total of 388, 893 nodes and 266, 762 

elements were generated. An impulse response analysis was performed during 190 ns by applying 
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an impulse voltage of 100 V at the input IDT and employing a time step of 0.95 ns to deduce the 

central frequency of the device in each direction. 

 

 

Figure 7.1: Meshed Model Showing Mutually Interacting Inter-Digital Transducers Along 

Different Euler Directions. Focused IDTs are used along (0, 22, 0) direction and uniform IDTs are 

used along (0, 22, 90) direction 

 

The central frequencies were computed as 68 MHz and 64 MHz along the (0, 22, 90) and 

(0, 22, 0) direction, respectively. Subsequently, an ac analysis was carried out using the respective 

frequency in each Euler direction, by applying a peak voltage of 2.5 V to the input IDTs in each of 

the two Euler directions and employing a time step of 1 ns, to investigate the nature of waves 

propagating in the two directions. The device sensitivity and acoustic streaming force were 

computed and compared with devices having uniform unidirectional IDTs in the respective 

directions. 
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7.3 Results and Discussion 

Previous experimental and computational studies have demonstrated acoustic streaming 

induced by Rayleigh waves with prominent surface normal component can be effectively used to 

achieve removal of non-specifically bound (NSB) proteins from the device surface, thereby 

enhancing device performance [99, 110].  The key biosensing issues which are addressed in this 

work include identifying transducer configurations that lead to enhanced sensitivity while 

simultaneously enhancing the biofouling elimination capability of the device. Enhancement in 

acoustic energy confinement to the device surface brings about improvement in device sensitivity 

while increase in acoustic streaming intensity is related to increase in the efficiency of biofouling 

elimination. Results from the developed 3D coupled field FE simulations involving unidirectional 

IDTs along different Euler directions indicate that while pure shear horizontal mode propagates 

along (0, 22, 90) direction, thereby rendering it ideal for biosensing in fluid media, the (0, 22, 0) 

direction is most suited for acoustic streaming induced biofouling elimination owing to mixed 

modes with dominant surface normal component of displacement [139]. Specifically, in this 

chapter, the enhancement in acoustic streaming along the (0, 22, 0) direction and increase in device 

sensitivity along (0, 22, 90) direction is investigated, through the use of mutually interacting F-

IDTs and U-IDTs in the respective directions. The simulations account for second order effects 

arising from the interaction of the IDTs.  

 

7.3.1 Device Displacements and Device Sensitivity 

The current simulations indicate that the use of mutually interacting U-IDTs/F-IDTs leads 

to the focusing of waves along the (0, 22, 0) direction lead (Fig. 7.2) thereby maximizing the 

device displacements near the focal point. Further, the use of focused IDTs along (0, 22, 0) 

direction allows for amplification of the prominent surface normal component in the propagating 
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mixed mode wave as well as the focusing of the acoustic waves near the device focal point at the 

center of the delay path. 

 

 

      (a) 

Figure 7.2: Displacement Contours at Various Time Instants on the Surface of the SAW Device 

With Mutually Interacting Orthogonally Oriented Uniform and Focused IDTs  (a) 30 ns (b) 70 ns 

(c) 100 ns (d) 150 ns (e) 180 ns. Propagation direction (0, 22, 90) with uniform IDTs has a pure 

shear horizontal mode which would be used for biosensing. Orthogonally located focused IDTs 

along (0, 22, 0) direction allow for amplification of surface normal component leading to 

significantly higher streaming forces. Scale bar is in meters. 
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      (b) 

 

       (c) 

Figure 7.2: Continued. 
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      (d) 

 

      (e) 

Figure 7.2: Continued. 
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The device sensitivity was computed using the perturbation theory utilizing the mass 

sensitivity equation given by [143]: 
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f0, ω, U represent to mode center frequency, angular frequency, and average area density of wave 

energy, respectively. ux, uy, and uz were derived from the finite element simulations.  
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Figure 7.3: Biosensor Sensitivity on a Langasite Substrate Calculated Along the (0, 22, 90) 

Direction. Comparison of mass sensitivities for mutually interacting multidirectional (U-IDT/F-

IDT) SAW with standard unidirectional SAW device and orthogonal SAW device with U-IDTs is 

shown. is shown. The term ‘conventional IDTs’ refers to single split uniform IDT configuration. 

(1) denotes standard unidirectional SAW device having U-IDTs along (0, 22, 90); (2) denotes 

orthogonal SAW device having mutually interacting U-IDTs along the (0, 22, 0) and (0, 22, 90) 

directions; (3) denotes orthogonal SAW device having mutually interacting U-IDTs along (0, 22, 

90) and F-IDTs along (0, 22, 0) directions. 
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 The sensitivity for the different device configurations is shown in Fig. 7.3. The 

constructive interference of propagating waves in the delay path leads to maximized energy 

entrapment and displacements on the device surface, thereby imparting 32.4% higher sensitivity to 

the device with U-IDTs/FIDTs (15.3 Hz-cm2/ng) compared to the standard unidirectional IDT 

design (11.56 Hz-cm2/ng) and almost comparable sensitivity in relation to the orthogonal SAW 

device with mutually interacting U-IDTs along the (0, 22, 90) and (0, 22, 0) Euler directions 

(16.89 Hz-cm2/ng) (Fig. 7.3). 

 

7.3.2 Fluid Velocities and Streaming Forces 

Since biosensing typically occurs in liquid media such as blood or urine placed in contact 

with the piezoelectric device, the acoustic energy focusing in the device would lead to the same 

effect in the velocity of the fluid in contact with the piezoelectric device, thereby focusing and 

enhancing the fluid velocity near the device focal point. This is evident from Fig. 7.4, which shows 

the focusing effect of the F-IDTs such that the peak fluid velocity occurs near the device focal 

point in the center of the delay path of the device with combined F-IDTs and U-IDTs. This 

convergence of fluid velocities leads to the development of high shear stress gradients near the 

focal point, which combined with the high shear stresses in the region can help in detaching and 

knocking off the NSB proteins from the device surface. Further, the focusing and enhancement of 

acoustic energy leads to an increase in the acoustic streaming force (Fig. 7-5) which plays a key 

role in detaching the NSB proteins from the device surface. Also, an enhancement in the fluid 

velocities resulting from the use of F-IDTs leads to an increase in the fluid induced hydrodynamic 

removal forces such as drag and lift, which facilitate NSB removal. 
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        (a) 
 

 
      

    (b) 
 
Figure 7.4: Velocity Profiles of the Fluid in Contact With the Surface of the SAW Device at 

Various Time Instants (a) 30 ns (b) 70 ns (c) 100 ns (d) 150 ns (e) 180 ns. The fluid-structure 

interface is shown here. Scale bar is in m/s. 
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              (c) 

 

  
(d) 

Figure 7.4: Continued. 
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       (e) 
 
Figure 7.4: Continued. 

 

Bio-fouling elimination in the simulated SAW devices due to mixed mode waves 

propagating along (0, 22, 0) Euler direction is dependent on the magnitude of the induced acoustic 

streaming forces computed as [124, 142]:  

)(2exp)1( 222/32 zkxkkAF iii ααωαρ ++−=           (7-17) 

Here, α and ki refer to the attenuation constant and leaky SAW wave number, respectively, and are 

obtained using a perturbation approach [102, 103], ω refers to the angular frequency and A refers 

to the acoustic wave displacement, which are obtained using FE simulations.   

In the presence of mutually interacting IDTs, such as the case in point, interference 

between the waves propagating in different Euler directions determine the nature of wave 

interaction [140, 159, 160]. Analysis of the phase difference between the wave propagating along 
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(0, 22, 0) and (0, 22, 90) directions in the mutually interacting transducer configuration reveals 

constructive interference between the them, thereby leading to an amplification of the device 

displacement amplitudes compared to a conventional device with U-IDTs.  
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Figure 7.5: Streaming Forces on a Langasite Substrate Calculated Along the (0, 22, 0) Direction. 

These forces act to eliminate biofouling proteins from the device surface. Comparison of induced 

streaming forces for mutually interacting multidirectional (U-IDT/F-IDT) SAW with standard 

unidirectional SAW and orthogonal SAW with U-IDTs is shown. The term ‘uniform IDTs’ refers 

to single split uniform IDT configuration. (1) denotes standard unidirectional SAW device having 

U-IDTs along (0, 22, 0); (2) denotes orthogonal SAW device having mutually interacting U-IDTs 

along the (0, 22, 0) and (0, 22, 90) directions; (3) denotes orthogonal SAW device having mutually 

interacting U-IDTs along (0, 22, 90) and F-IDTs along (0, 22, 0) directions. 
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The amplification of the surface normal component, brought about by constructive wave 

interference, leads to a 266% and 31.7% increase in the amplitude of streaming force (4.2*105 

N/m2 for device with U-IDTs/F-IDTs design vs. 1.2*105 N/m2 for device with standard 

unidirectional uniform IDTs vs. 3.2 *105 N/m2 for orthogonal SAW device with mutually 

interacting uniform IDTs) compared to a conventional device with unidirectional U-IDTs and an 

orthogonal SAW device with mutually interacting uniform IDTs, respectively as seen in Fig. 7.5. 

Thus, the simulation results indicate that the use of mutually interacting U-IDTs/F-IDTs on a 

Langasite substrate leads to an efficient sensor with increased device sensitivity and intensity of 

acoustic streaming compared to a device with uniform unidirectional IDTs. 

 

7.4  Conclusion 

To summarize, a Langasite based biosensor with mutually interacting F-IDT/U-IDT 

configuration is investigated for its applicability in biosensing applications while simultaneously 

cleaning the biofouling proteins. Mutually interacting U-IDTs/F-IDTs on a Langasite substrate are 

utilized to enhance device performance in biosensing applications by increasing the intensity of 

acoustic streaming forces for efficient biofouling removal and amplify the displacement/surface 

acoustic energy for increased device sensitivity. F-IDTs are used along (0, 22, 0) direction while 

U-IDTs are employed along the (0, 22, 90) direction in Langasite. The investigated device reflects 

a 32.4% higher sensitivity and 266% increase in the amplitude of streaming force compared to a 

device with unidirectional U-IDTs. The device also reflects almost comparable sensitivity and a 

31.7% enhancement in the intensity of acoustic streaming compared to an orthogonal SAW device 

with uniform mutually interacting IDTs. Thus, the simulation results from the present work 

indicate that the use of mutually interacting U-IDTs/F-IDTs on a Langasite substrate leads to an 

efficient biosensor compared to a device with uniform unidirectional IDTs. 
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Chapter 8 

Conclusions and Future Work 

 

This dissertation focuses on the development of efficient SAW devices that allow for the 

integration of multiple functionalities on a single device and improved biosensing performance, 

via the use of novel transducer configurations and surface modifications such as micro-cavities. 

The main objective, in the context of this dissertation, is the development of a device that is 

capable of transducing nanogram to picogram/ml levels of target biomarker species, such as 

biomarkers for ovarian cancer, while simultaneously eliminating the NSB biofouling proteins that 

interfere with the sensing phenomenon, thereby enhancing the device sensitivity, selectivity, and 

speed of response. Novel transducer and device surface modifications are designed and employed 

in this work, to enhance the biosensor device performance in terms of sensitivity and acoustic 

streaming induced NSB protein removal. The current approach towards achieving the 

aforementioned goal is based on exploiting the capability of the piezoelectric crystal to launch 

waves of different characteristics in different crystallographic orientations owing to crystal 

anisotropy, which can be put to the multiple uses including but not limited to sensing and 

biofouling elimination on the same device, utilizing the shear horizontal waves and Rayleigh 

waves, respectively. The main contributions of this dissertation, to the scientific community, are 

summarized below. The findings of the present work have widespread and immediate use for 

enhancing sensor sensitivity and analyte discrimination capabilities as well as biofouling removal 

in medical diagnostic applications of SAW sensors. It has a broader impact on the sensing of 

multiple biomarkers in medical applications as well as chemical and environmental species 
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detection.  The models developed and the simulation techniques used in the present work can be 

extended to a range of other applications of acoustic wave devices such as lab-on-a-chip systems 

involving microfluidic actuation and microvolume separation processes. 

 

8.1 Contributions 

The first part of this dissertation focuses on the development of a coupled three 

dimensional FSI FE model of SAW devices, to investigate wave propagation and fluid dynamics 

in SAW devices when in contact with a liquid loading, for typical microfluidic applications such 

as biosensing in bodily fluids. A three dimensional FE FSI model of a LiNbO3 based SAW device 

in contact with fluid loading, is developed for the first time in this work, to study the acoustic 

wave interaction with the fluid media and gain insights into the acoustic streaming phenomenon. 

Analysis of the device displacement and fluid velocity profiles obtained from the developed FSI 

model indicates that the fluid domain couples strongly with the piezoelectric substrate, which 

leads to a leakage of acoustic energy into the fluid domain. This sound wave attenuation leads to 

the propagation of longitudinal waves in the fluid medium which, in turn, generate an acoustically 

driven phenomenon known as acoustic streaming. Fluid streaming velocities, computed as the 

time average of instantaneous fluid velocities over a time period, indicate fluid recirculation and 

are typically in the range of mm/s. Thus, the streaming velocity computed using the developed 

model is in accordance with the experimental values. Based on the device displacements and the 

streaming velocity profiles, various removal forces, namely the SAW streaming and 

hydrodynamic forces were computed to gain insights into the NSB biofouling proteins from the 

device surface.  The developed three dimensional FSI FE model, of a SAW device with liquid 

loading, has broad applicability in understanding fluid motion and flow fields while accurately 

taking into account the structural dynamics of the piezoelectric substrate, in SAW applications 

involving their interaction with the fluid domain. The developed FSI FE model is extended 
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further, to investigate transducer configurations and device surface modifications that can 

enhance device sensitivity and microfluidic actuation capabilities.  

In the next part of this dissertation, the suitability of langasite substrate for use in 

biosensing applications involving a fluid domain was analyzed using the three dimensional FE 

structural and FSI models. A novel design approach employing an orthogonal IDT configuration 

was explored to realize enhancements in device sensitivity and biofouling elimination capability. 

Specifically, the capability of langasite based SAW device to allow for the integration of dual 

functionality of biosensing and biofouling elimination on a single device was investigated by 

employing the devised orthogonal transducer configuration, using the developed FE structural 

and FSI models. Precise knowledge of the wave propagation characteristics and induced 

streaming phenomenon due to the developing flow fields, arising from the transient fluid-

piezoelectric interaction, is provided by the developed 3-D models. The directions suitable for 

biosensing and biofouling elimination were identified by analyzing the wave propagation 

characteristics along different crystallographic orientations in langasite. Computations on 

langasite based orthogonal SAW device indicates different characteristics of waves propagating 

along various Euler directions. Whereas a pure shear horizontal wave was found to propagate 

along the (0, 22, 90) direction, rendering it suitable for biosensing, mixed modes with prominent 

surface normal component was found to propagate along the (0, 22, 0) direction making it 

suitable for potential application in removal of NSB proteins through acoustic streaming. 

Streaming velocity profiles were computed using the instantaneous fluid velocities for 

propagation along (0, 22, 0) direction. Mechanistic insights into biofouling elimination are 

deduced from the model, by comparing the van der Waal’s adhesive force with the fluid induced 

hydrodynamic and the device induced SAW streaming removal forces on the non-specific protein 

particles. The computational modeling results on the orthogonal LGS based SAW device indicate 

the feasibility of incorporation of multiple functionalities on the same device, which can lead to 
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enhancement in device performance and have implications in improving device design, 

development of lab-on-chip systems, understanding biosensing mechanisms, and microfluidic 

actuation mechanisms in SAW devices. 

The orthogonal transducer configurations were combined with delay path modifications 

on a langasite based SAW device to obtain enhanced biosensor performance and biofouling 

elimination capabilities. Using the developed three dimensional structural and FSI FE models, 

wave propagation, complex acoustic wave interactions, and fluid dynamics were investigated in a 

novel langasite based SAW biosensor with integrated mutually interacting multi-directional inter-

digital transducers (IDT) and delay path modifications. Finite element simulations reveal that 

significant enhancements to sensor performance are realized from a combination of mutually 

interacting inter-digital transducers and micro-cavities of square cross-sections in the center of 

surface acoustic wave delay path. These enhancements are significantly larger than those realized 

by utilizing guiding layers and operating in the Love wave mode which represents the most 

commonly accepted method of enhancement. Current results indicate constructive interference 

between the propagating waves in mutually interacting, multidirectional IDT configuration on 

langasite leading to decreased power loss.  The integration of surface modifications, such as 

polystyrene filled micro-cavities in the sensor delay path, with the mutually interacting 

orthogonal IDTs provides a synergistic effect owing to acoustic energy entrapment at the surface 

resulting in a further reduction in power consumption.  Thus, integration of multidirectional 

mutually interacting IDT configuration with micro-cavities in the delay path enhances device 

biosensing performance via increased device sensitivity and reduced power loss as compared to a 

standard langasite based SAW device having unidirectional IDTs, while simultaneously allowing 

for non-specifically bound protein removal via acoustic streaming. The results lead us to believe 

that practical devices realized using these finite element results will yield superior surface 

acoustic wave sensors which consume less power and afford higher sensitivity than alternative 
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designs and also allow for simultaneous biofouling elimination. The results are of tremendous 

significance for not only improving the device design, but also for understanding biosensing 

mechanisms in multi-directional acoustic wave devices as well as actuation mechanisms in 

potential microfluidic applications of these devices. 

Enhancements in acoustic streaming induced biofouling elimination were realized 

through the use of F-IDTs, employing the three dimensional FSI FE models developed in this 

work. The FSI simulation derived functional parameters such as device displacement amplitude, 

fluid velocity fields, and streaming forces for the F-SAW device are compared with those for the 

conventional SAW. Both, qualitative and quantitative differences in the aforementioned 

quantities are observed between the F-SAW and conventional SAW device. Using a 

representative example of streaming induced biofouling elimination in acoustic wave biosensor, it 

is shown that the acoustic energy focusing and streaming enhancement brought about by F-SAW 

device results in a significantly improved micro-transport which translates into higher biofouling 

removal efficiency of F-SAW compared to the conventional SAW device, thereby providing 

enhanced device sensitivity, selectivity and device re-usability. The results of this study have 

significant implications in biosensing and microfluidic applications like micro-dispensing to pico-

dispensing.  In a broader context, the results of the present study demonstrate a technique of 

enhancing streaming induced flows, which is of great importance to contemporary problems 

involving microfluidic and sensing applications of piezoelectric devices.  

The ability of the F-SAW device to enhance acoustic streaming is exploited to design an 

efficient biosensor capable of simultaneous biosensing and NSB protein elimination via 

microfluidic actuation, on langasite substrate. Combined with the fact that the (0, 22, 0) direction 

in langasite allows for mixed mode propagation having surface normal component, the F-IDTs are 

used along this direction while conventional IDTs with uniform finger spacing are utilized along 

(0, 22, 90) Euler direction. The mutually interacting U-IDTs/F-IDTs transducer configuration is 
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found to enhance device biosensing performance by amplifying the displacement/surface acoustic 

energy for increased device sensitivity while simultaneously increasing the intensity of acoustic 

streaming forces for efficient biofouling removal. The amplification of device surface 

displacements is attributed to the constructive interference between the orthogonally propagating 

waves while the enhancement in biofouling elimination efficiency arises from the acoustic 

streaming enhancement owing to the focusing effect of the F-IDTs.  The results from the finite 

element modes indicate a significant increase in device sensitivity and streaming induced 

biofouling elimination efficiency, compared to a device with U-IDTs.  

To summarize, the current work has focused on the development of FSI FE models of 

SAW devices which provide a strong platform to understand the interaction of the fluid domain 

with the sensor surface in liquid sensing applications and also optimize sensor design for these 

applications. Significant improvements in the sensor performance are realized from the new 

multidirectional transducer configurations and sensor surface modifications in the form of micro-

cavities, introduced in the present work, as demonstrated in biosensing applications within the 

scope of this project. The results are broadly applicable to various SAW applications requiring 

device operation in liquid media, such as microfluidic actuation or lab-on-chip systems. 

 

8.2 Future Work 

 The models developed in the current work and understanding gained into the underlying 

physics of SAW device interaction with the fluid domain builds the framework for future work, 

especially in the area of microfluidic actuation using SAW devices. Using the groundwork laid 

down in this dissertation, improvements in the device designs can be made for various 

microfluidic applications of SAW devices. Some of the areas that merit investigation are 

discussed in this section. 
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8.2.1 Newtonian vs. Non-Newtonian Fluid Loading 

Biosensing occurs in bodily fluids such as urine and blood. The acoustic streaming 

phenomenon depends on the fluid dynamical properties, namely the density and viscosity [161]. 

Newtonian fluids show a linear relationship between stress and strain, the slope of the curve being 

the fluid viscosity which is a constant. However, a Non-Newtonian fluid exhibits a shear rate 

dependent fluid viscosity and therefore a non-linear stress-strain relationship. Blood consists of 

multiple components namely red blood cells, platelets and white blood cells suspended in plasma 

consisting of proteins and water [162]. While blood plasma is Newtonian in nature, the red blood 

cells tend to form aggregates at low shear rates [163]. At high shear rates, these red blood cells 

lose their viscoelasticity [164], become ‘fluid like’, align themselves with the flow and tend to 

slide over the plasma layers. Thus, blood is a mixture of Newtonian plasma and non-Newtonian 

hematocrits, exhibiting shear thinning and viscoelastic behavior at low shear rates [165-167] 

owing to the changes in microstructure resulting from the aggregation, deformation, and 

alignment of the hematocrits. This behavior of blood is evident from the experimental viscosity 

measurements carried out at a wide range of shear rates [161]. In microfluidic channels, the non-

Newtonian behavior of blood can be particularly important owing to the small dimensions to 

which it is confined, generating velocity profiles more characteristic of complex fluids. 

Therefore, in microfluidic applications, the rheological behavior of blood can be expressed using 

a non-Newtonian constitutive relation. A number of studies have utilized [168-170] the Carreau 

model to characterize blood rheology, given by [171] 

( )[ ]( ) 2/12
0 1 −

∞∞ +−+=
nDλμμμμ        (8-1) 

0μ and ∞μ  represent viscosities at zero and infinite shear rate, D denotes shear rate, λ is the time 

constant, and n represents power factor. The experimental data relating the viscosity of blood to 

the shear rate can be used to determine 0μ , ∞μ , λ, and n.   
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Using the fluid-structure models developed in the current work, the influence of non-

Newtonian behavior of blood on the acoustic streaming velocity fields can be investigated by 

comparison with results based on the assumption of Newtonian behavior of blood. The results 

from such a comparison will be beneficial for various applications that utilize acoustic streaming 

in blood, such as biomedical diagnostics and biosensing. 

 

8.2.2 SAW Induced Ultrasonic Mixing and Micropumping 

Mixing in very small fluid volumes is desirable in biomedical applications such as 

microarrays or lab on chip devices [172-177]. At the small length scales encountered in these 

microfluidic devices, the fluid flow is characterized by low Reynolds number which in turn 

renders the mixing process primarily diffusion controlled [178-182]. In recent years, efforts of the 

scientific community have been directed towards coupling microfluidic channels with SAWs to 

induce mixing in these channels [173, 183-185]. When a liquid droplet is placed in contact with a 

SAW device, acoustic streaming is induced. At small wave amplitudes, internal streaming takes 

place which can have a stirring effect and induce fluid mixing at the micro or nano scale. At 

larger wave amplitudes, bulk fluid actuation can take place, bringing about bulk transport leading 

to macro-mixing by advection. Such SAW based micropumps are of tremendous importance in 

various biological applications. One such example is DNA microarrays used in gene expression 

analysis. DNA hybridization assays, used for gene expression analysis, involve binding of 

fluorescently labeled sample molecules with probe spots of DNA in the arrays and an increase in 

the intensity of fluorescence of the spot is an indicator of successful hybridization. Such 

experiments typically utilize a very thin liquid film in which the flow is laminar and therefore 

molecule transport is primarily diffusion limited owing to the lack of convective transport. Thus, 

the accuracy of such processes is governed by microfluidic constraints and relies on reaction 

equilibrium at each DNA spot which might give misleading results if equilibrium is not reached. 
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Such processes can be accelerated considerably if advective transport of the molecules is 

achieved. SAW induced acoustic streaming, which induces fluid motion leading to the creation of 

a jet, can be used to achieve mixing within microfluidic channels. The fluid-structure interaction 

models developed in the current work can be readily extended to investigate velocity and pressure 

fields generated in microfluidic channels coupled with the SAW devices. The models can be used 

to gain insights into the translation of acoustic streaming into fluid velocity in such channels and 

design efficient microfluidic devices for various biomedical applications.   

 

8.2.3 Droplet Generation 

Liquid droplet based microfluidic systems are beginning to find extensive applicability in 

biological applications, such as carriers to target drug delivery to the intended diseased tissue, 

encapsulation agents for various biological entities, micro-reactors for rapid mixing and reaction 

of reagents, liquid reaction vessels for protein crystallization, biosensing, DNA analysis,  

sampling glucose concentrations in bodily fluids, to name a few [186-199]. In droplet based 

microfluidics, discrete droplets are created via the use of two immiscible phases in microchannels 

[200, 201]. All applications require a great control on droplet size, shape, and distribution; 

mondispersed droplets are typically required. Most of the microfluidic systems require 

manipulation of the externally applied pressure gradient to control particle size. SAW devices, 

with hydrophobically modified surfaces, can be utilized for efficient microfluidic control and 

droplet generation [202-205]. The Rayleigh wave generated in SAW devices impinges on the 

fluid medium and imparts momentum generating fluid motion known as acoustic streaming. The 

fluid induced shear force, in conjunction with the pressure difference can overcome the interfacial 

force, which leads to droplet detachment from the surface. The droplet size distribution depends 

on the velocity distribution in the SAW microfluidic system. Using the framework of the models 

developed in this dissertation, methods to design SAW microfluidic systems capable of providing 
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monodispersed droplets can be investigated. In this dissertation, we have discussed the role of 

micro-cavities in amplifying the device displacements and fluid velocities and its implications on 

biosensing.  By extending the developed fluid-structure interaction models of SAW devices, the 

role of micro-cavities in SAW induced droplet generation and their size distribution merits 

investigation. Similarly, the use of focusing on droplet generation can be studied using the 

developed models.  

 

8.2.4 Multilayered SAW devices Based on Nanocrystalline Diamond  

 The intensity of acoustic streaming in microfluidic applications of SAW devices depends 

on the device frequency, in addition to fluid properties. Researchers are constantly searching for 

new materials that can be used to enhance sensor performance. Nanocrystalline diamond films 

have gained tremendous importance in recent years owing to their wide applicability and 

attractive properties [206]. Although diamond by itself is not piezoelectric, diamond layers have 

also found increasing use in recent years as coating materials for SAW/MEMS deices. When used 

on SAW devices, diamond layers provide a dual advantage of improved transduction and device 

surface biofunctionalization [207, 208]. Diamond exhibits high Young’s modulus, tensile 

strength, fracture strength, thermal conductivity, low coefficient of thermal expansion, good wear 

resistance, stability in extreme conditions, chemical inertness and a broad electrochemical range. 

Owing to its biocompatibility and stability in harsh environments, diamond can be used as an 

interface to biomolecules in biosensors [209-211]. In addition, diamond can be easily doped to 

enhance conductivity [212] and can be readily treated to render the surface hydrophobic or 

hydrophilic. The hydrophobicity of the device surface coated with diamond layer inhibits non-

specific protein binding while the surface can still be photochemically treated to facilitate specific 

binding, thereby enhancing the biosensor selectivity and sensitivity.  Furthermore, the high 

density of diamond allows for high acoustic wave propagation velocity  and realizing high 
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frequency devices [213, 214] that can generate high SAW amplitudes and stronger acoustic 

streaming fields. Langasite, as a substrate for biosensing while allowing for simultaneous 

biofouling elimination via acoustic streaming, has already been investigated in this dissertation. 

The use of nanocrystalline diamond films on Langasite based SAW device is worthy of 

investigation and forms a part of the future work in the area of biosensors. The structural and 

three dimensional fluid-structure interaction finite element models of SAW devices developed 

herein can be extended to investigate multilayered diamond coated SAW devices based on 

Langasite, for evaluating the enhancement in device performance in terms of sensitivity, 

selectivity, and acoustic streaming intensity. Optimization of the diamond layer thickness can be 

carried using the finite element models.  

The future work proposed in this section is expected to significantly advance the field of 

SAW microfluidics and lead to the development of improved SAW devices for various 

applications.  
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