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ABSTRACT

This work is a compilation of four manuscripts, three of which are published and one is

in the second round of review, all in refereed journals. All four manuscripts focus on analysis

of stochastic disruptions to support design of capacitated engineered networks. The work

is motivated by limited ability to mitigate elevated risk exposure of large-scale capacitated

enterprise networks functioning in lean environments. Such inability to sustain enterprise

capacity in the face of disruptions of various origins has been causing multi-billion enterprise

forfeitures and hefty insurance premiums. At the same time, decision support methodologies

for reliable design of dynamic capacitated networks have been largely unavailable.

This work is organized as follows. Paper 1 presents a methodology to analyze ca-

pacitated healthcare supply chains using a framework of forward flow-matching networks

with multiple points of delivery. Special emphasis is given to developing stochastic models

for capturing capacity trajectories at the points of delivery. Paper 2 focuses on assuring

capacity availability for a critical vertex exposed to random stepwise capacity disruptions

with exponentially distributed interarrival times and uniformly distributed magnitudes. We

explore two countermeasure policies for a risk-neutral decision maker who seeks to maxi-

mize the long-run average reward. We present an extensive numerical analysis as well as

a sensitivity study on the fluctuations of some system parameter values. Paper 3 extends

the capacity assurance analysis for critical vertices by considering stepwise partial system

capacity loss accumulating over time. We examine implementation of a countermeasure

policy, aimed at reducing the disruption rate, for a risk-neutral decision maker who seeks to

maximize long-run average return. We explore how the policy of maintaining the optimal

disruption rate is affected by a number of system parameters. Finally, Paper 4 presents a

dynamic predictive methodology for mitigation of cross-regional pandemic outbreaks which

can be used to estimate workforce capacity loss for critical vertices due to such societal

disasters.
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INTRODUCTION

Lean manufacturing philosophy and associated business practices have been widely em-

braced and deployed by global enterprises. The design of capacitated engineered networks

is driven by lean manufacturing philosophy and implementation of global outsourcing, re-

duction of inventories, consolidation of suppliers, with the main purpose of improving oper-

ational efficiency. An example is the US automotive industry, where some estimates assert

that the shift to JIT scheduling has saved companies more than $1 billion a year in inventory

costs alone.

However, while lean manufacturing has substantially boosted operational efficiency, such

reductionism has also left these enterprises operating in an increasingly risk-encumbered

environment. Capacity disruptions triggered by forces of nature, property and process

related hazards, and human interventions, have shown to have a profound impact on the

engineered network risk. The following examples demonstrate how increased risk exposure

and resulting capacity imbalance cause multi-billion enterprise forfeitures and increasing

insurance premiums.

In 1995, an earthquake hit the port town of Kobe, razed to the ground 100,000 buildings

and shut down Japan’s largest port for over two years. In 1999, an earthquake in Taiwan

displaced power lines to the semiconductor fabrication facilities responsible for more than

50 percent of the worldwide supplies of certain computer components, and shaved 5 percent

off earnings for major hardware manufacturers including Dell, Apple, Hewlett-Packard,

IBM, and Compaq. In September 2002, longshoremen on the US West Coast were locked

out in a labor strike for 11 days, forcing the shutdown of 29 ports. With more than

$300 billion of dollars in goods shipped annually through these ports, the dispute caused

between $11 and $22 billion in lost sales, spoiled perishables and underutilized capacity.

That December, a political strike in Venezuela made transnational businesses including

GM, BP, Ford, Goodyear and Procter & Gamble halt their manufacturing for the duration
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of the conflict. The 2003 outbreak of SARS in China and Singapore forced Motorola to

close several plants. More recently, the 2005 hurricane Katrina destroyed the infrastructure

of the state of Louisiana. In the same year, a labor strike in Asiana Airlines resulted in

over 90 percent of the cargo services canceled. Man-made disasters, from terrorist attacks

to computer viruses, are also on the rise.

Nowadays, a seemingly minor disruption in a lean infrastructure can have the potential

to initiate a cascading sequence of capacity losses, threatening human lives and devastating

large sectors of the economy. As a result of the above events, according to a recent survey by

A.M. Best Company, Inc. of 600 executives, 69 percent of chief financial officers, treasurers

and risk managers at Global 1,000 companies in North America and Europe view property-

related hazards–such as fires and explosions–and supply chain disruptions as the leading

threats to top revenue sources.

Historically, enterprises have lacked appropriate decision support methodologies and

computational tools suitable for addressing risk incurred through capacity disruptions. In

academia, traditional research efforts on minimizing the cost of supply chain operations

and the focus on leveraging economies of scale often yield results that overconcentrate

resources. Such optimal solutions can be very sensitive to system perturbations, initiated

by internal and external disruptions. The inability to recognize the hidden costs of such

overconcentration heightens the risk of increased costs and capacity imbalance.

The traditional literature that explicitly model the impact of disruptions has so far

been focusing primarily on a local level of issues including scheduling, ordering, inventory

management, and lot sizing. These works have modeled local entities exposed to operational

instabilities in (i) production rate and lead times, (ii) supply rate, including machine failures,

(iii) prices of resources, and (iv) process quality and yield.

One of the most common types of disruption appearing in the literature is that of supply

rate changes. Important efforts include (i) management of stochastic demand systems,

where the product supply is disrupted for periods of random duration, (ii) classic economic

order quantity (EOQ) problem with supply disruptions, (iii) order-quantity/reorder-point

inventory models with two suppliers subject to independent disruptions to compute the
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exact form of the average cost expression, and (iv) analytical models for computing the

stationary distribution of the on-hand inventory in a continuous-review inventory system

with compound Poisson demand, Erlang distributed lead time, and lost sales, where the

supplier can assume one of the two “available” and “unavailable” states at any point in

time according to a continuous-time Markov chain.

Other studies address both supply disruptions and random demand. Some examples

are (i) dynamic models concerning optimal inventory policies in the presence of market

disruptions, which are often characterized by events with uncertain arrival time, severity

and duration, (ii) the continuous-review stochastic inventory problem with random demand

and random lead-time where supply may be disrupted due to machine breakdowns, strikes

or other randomly occurring events, and (iii) the inventory-control model which includes

a detailed Markovian model of the resupply system. A number of efforts which address

supply and demand changes have been developed in the field of oil stockpiling, as there has

been grave concern over the oil supply from the Middle East.

Modeling production rate disruptions (machine failures) has been largely addressed by

extending classical economic manufacturing quantity (EMQ) models. These efforts include

(i) the EMQ model when the production process is subject to a random deterioration from

an in-control state to an out-of-control state, (ii) models of defect-generating process in

the semiconductor wafer probe process to determine an optimal lot size, which reduces the

average processing time on a critical resource, (iii) the approximation of the EMQ model

with Poisson machine breakdowns and low failure rate, and (iv) the study of an unreliable

production system with constant demand and random breakdowns, with the focus on the

effects of machine failure and repair on optimal lot-sizing decisions. Other studies derive

some unique properties of their model compared to the classical EMQ model, under the

assumption of exponentially distributed time between failures and instantaneous repair of

the machine.

Much of the recent literature focuses on minimizing costs of supply chain operations,

whereas only a small fraction of the efforts have been dedicated to modeling the impact of

various disruptions, such as those affecting demand patterns, supplier and production lead
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times, prices, imperfect process quality, process yield, and other factors. However, so far,

only a scant subset of the literature has attempted to analyze supply chain-wide disruptions,

with most of the efforts focusing on the facility location problems.

At this point, we can summarize that research efforts addressing the disruption of supply

are still comparatively new and scant, and none of these attempts have addressed the issue

of stochastic capacity disruptions in directed networks, in closed form.

The work presented in this dissertation is motivated by the limited ability to mitigate

elevated risk exposure of large-scale capacitated enterprise networks functioning in lean en-

vironments. Such inability to sustain enterprise capacity in the face of disruptions of various

origins has been causing multi-billion enterprise forfeitures and hefty insurance premiums.

At the same time, decision support methodologies for reliable design of dynamic capaci-

tated networks have been largely unavailable. This doctoral dissertation is a compilation

of four manuscripts, three of which are published and one is in the second round of review,

all in refereed journals. All four manuscripts focus on analysis of stochastic disruptions to

support design of capacitated engineered networks. This work is organized as follows.

The first manuscript is the paper titled “Analysis of Healthcare Supply Chain Systems

Exposed to Random Capacity Disruptions”. A final version of this document, to appear

in the special issue on “Healthcare Systems Engineering” in the International Journal of

Collaborative Enterprise by Inderscience Publisher, is presented in the Appendix B.1. In-

derscience Publisher retains the copyright of this manuscript. The written authorization

from the publisher to include the paper in this Ph.D. dissertation is attached in Appendix

A. In this paper, we present an attempt to contribute to development of mathematical tools

for modeling and analysis of risk inherent in health care supply chains, such as pharmaceu-

tical and medical equipment/device enterprises. Our underlying formulation leverages the

analytical convenience of formalism of capacitated feed–forward flow–matching networks

(FMNs) with multiple points of delivery (POD). Special emphasis is given to developing

stochastic models for capturing capacity trajectories at the points of delivery.

The second manuscript is titled “Two Countermeasure Strategies to Mitigate Random

Disruptions in Capacitated Systems”. This paper is published in the Journal of Systems
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Science and Systems Engineering, volume 19, number 2, pages 210-226, 2010, by Springer

Publisher. A printed version is presented in the Appendix B.2. Springer Publisher retains

the copyright of this manuscript. The written authorization from the publisher to include

the paper in this Ph.D. dissertation is attached in Appendix A. In this document, we focus

on assuring capacity availability for a critical vertex. We examine random stepwise capac-

ity disruptions with exponentially distributed interarrival times and uniformly distributed

magnitudes. We explore two countermeasure policies for a risk-neutral decision maker who

seeks to maximize the long-run average reward. A one-phase policy considers implementa-

tion of countermeasures throughout the entirety of a disruption cycle. The results of this

analysis form a basis for a two-phase model which implements countermeasures during only

a fraction of a disruption cycle. We present an extensive numerical analysis as well as a

sensitivity study on the fluctuations of some system parameter values.

The third manuscript is titled “An Optimal Countermeasure Policy to Mitigate Random

Capacity Disruptions in a Production System”. This paper is published in the International

Journal of Agile Systems and Management, volume 3, number 1/2, pages 4-17-226, 2008,

by Inderscience Publisher. A printed version is presented in the Appendix B.3. Inder-

science Publisher retains the copyright of this manuscript. The written authorization from

the publisher to include the paper in this Ph.D. dissertation is attached in Appendix A.

This work extends the capacity assurance analysis for critical vertices. We investigate a

manufacturing system exposed to unpredicted capacity disruptions with exponentially dis-

tributed interoccurrence times and uniformly distributed magnitudes of disruptions. Each

disruption renders a stepwise partial system capacity loss accumulating over time until the

remaining capacity reaches a certain level, upon which the system gradually restores the lost

capacity to the target level. We examine implementation of a countermeasure policy, aimed

at reducing the disruption rate, for a risk-neutral decision maker who seeks to maximize

long-run average return. We explore how the policy of maintaining the optimal disruption

rate is affected by a number of system parameters.

The final manuscript is titled “A Predictive Decision Aid Methodology for Dynamic Mit-

igation of Influenza Pandemics”. This document is currently in the second round of review
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in the special issue on “Optimization in Disaster Relief ” in the OR Spectrum by Springer

Publisher. A final version of this document is presented in the Appendix B.4. Springer

Publisher retains the copyright of this manuscript. The written authorization from the

publisher to include the paper in this Ph.D. dissertation is attached in Appendix A. In this

work, we present a large-scale simulation-based optimization methodology for developing

dynamic predictive mitigation strategies for a network of regional pandemic outbreaks. The

methodology considers measures of morbidity, mortality, and social distancing, translated

into the societal and economic costs of lost productivity and medical expenses. We present

a sensitivity analysis for estimating the marginal impact of changes in the total budget

availability and variability of some critical mitigation parameters. The methodology is in-

tended to assist public health policy makers. This effort can be used to estimate workforce

capacity loss for critical vertices due to such societal disasters.
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CONCLUSIONS

Current large-scale capacitated enterprise networks can span multiple continents and

subsume hundreds of suppliers and customers. In addition, as these enterprises have been

adopting the philosophy of lean manufacturing, including slimming inventory buffers, global

outsourcing, and consolidating supplier base, such reductionism has also left them operating

in an increasingly risk-encumbered environment. One of the most profound risk factors is

unpredicted disruptions in available capacity, as might be caused by a number of controllable

and uncontrollable factors, including nature, process hazards, and human activity. At the

same time, efficient predictive analytics and computational tools suitable for analyzing the

impact of capacity disruptions on network risk have been largely unavailable.

In this doctoral dissertation, motivated by limited ability to mitigate elevated risk ex-

posure of large-scale capacitated enterprise networks functioning in lean environments, we

focus on analysis of stochastic disruptions to support design of capacitated engineered net-

works. In what follows, we summarize the main contribution of each manuscript.

In the first manuscript, we present an original analysis of health care supply chain

systems exhibiting converging assembly and exposed to random capacity disruptions. The

supply chain was modeled as a feed–forward flow–matching network with multiple points

of delivery - a mathematical formalism particularly useful for understanding changes in the

aggregate network capacity, as might be impacted by unpredicted perturbations. In our

novel work, we captured the time-fixed probability law on the available effective network

capacity, in the presence of capacity propagation delays, in closed form. We then construed

two models of stochastic dynamics of the available effective capacity at the network level.

These trajectories can be used to model a number of disruptive scenarios.

Our analysis will contribute to understanding the degree of risk exposure and vulner-

ability of global health care supply chains. Moreover, our study can be used to provide a

substantive measure of the trade-off between a lean structure of the supply chain and its
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robustness and agility. The stochastic models of capacity disruptions discussed in this paper

present one of the initial attempts to characterize supply chain dynamics via a FMN-based

formalism. In the future, these stochastic models of capacity dynamics will be generalized

to feature different recovery modes and incorporate disposition of strategic inventory buffers

or capacity back-ups. This stochastic analytics will then be combined with the dynamics of

demand at the points of delivery and capacity expenditures, to develop future methodolo-

gies, based on the tenets of utility theory, to provide decision support for design of resilient

health care supply chain systems.

The second manuscript focuses on assuring capacity availability for a critical vertex of

a large-scale capacitated enterprise network. We presented one of initial attempts to fill

the vacuum in the existing literature and to focus on development of active countermeasure

policies for managing lean capacitated systems in the presence of random capacity disrup-

tions. The vertex under consideration experienced stepwise partial capacity disruptions

with exponentially distributed interarrival times and uniformly distributed magnitudes, fol-

lowed by instantaneous recovery. Examples of such capacity dynamics include: (i) shortage

of repair personnel and performance degradation caused by failing equipment with a full

repair upon a complete failure, (ii) non-self-announcing stepwise system failures, and (iii)

gradual equipment phaseout and modernization.

This work explores two different countermeasure policies for a risk-neutral decision

maker, who seeks to maximize the long-run average reward. The initial model consid-

ered a one-phase policy, where countermeasures were implemented during the entirety of a

disruption cycle. The results of this model served as a basis to analyze a two-phase strat-

egy, where countermeasures were activated during only a fraction of a disruption cycle. For

the latter model, we aimed to determine the optimal threshold when the countermeasures

should be disengaged. This paper provides one of the initial attempts for providing closed

form solutions for optimal countermeasure policies for mitigation of random disruptions in

capacitated systems. We hope that our work will be further generalized to address similar

questions for capacitated systems evolving under more complex capacity dynamics.
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The third manuscript extends the analysis on assuring capacity availability for a critical

vertex of a large-scale capacitated enterprise network. We examined a production system

experiencing periodic capacity disruptions, each of which is followed by a random recov-

ery delay and a constant linear rate of recovery. The system manager’s objective was to

implement a countermeasure strategy to alleviate the rate of disruptions with a decreasing

convex cost function. We derived an optimal level of disruption rate that maximizes the

long-run average reward. The results of comparative statics suggest that choosing to main-

tain a lower disruption rate is optimal, if the system profitability is high. We concluded

that higher unit profits and maximum capacity levels increase the costs of disruptions and

hence, must be balanced by appropriate countermeasure strategies. Since shorter expected

recovery delay and faster linear recovery reduce the economic loss of disruptions, the optimal

level of lambda is increasing in both parameters.

Finally, the fourth manuscript presents a dynamic predictive methodology for mitiga-

tion of cross-regional pandemic outbreaks which can be used to estimate workforce capacity

loss for critical vertices due to such societal disasters. The decision-aid methodology pre-

sented in this paper incorporates varying virus epidemiology and region-specific population

dynamics. The model supports development of mitigation strategies for an efficient, pro-

gressive allocation of a limited resource budget over a network of regional outbreaks. The

model seeks to dynamically minimize the impact of ongoing outbreaks and the expected

impact of potential outbreaks, spreading from the ongoing regions. The methodology con-

siders measures of morbidity, mortality, and social distancing, translated into the societal

and economic costs of lost productivity and medical expenses.
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APPENDIX B:

PUBLICATION 1: ANALYSIS OF HEALTHCARE SUPPLY CHAIN

SYSTEMS EXPOSED TO RANDOM CAPACITY DISRUPTIONS

In this appendix, we present the final version of the manuscript “Analysis of Healthcare

Supply Chain Systems Exposed to Random Capacity Disruptions” to appear in the special

issue on “Healthcare Systems Engineering” in the International Journal of Collaborative

Enterprise by Inderscience Publisher. The co-author, Dr. Alex Savachkin, authorized to

include this document in my dissertation. Inderscience Publisher retains the copyright of

this manuscript. The written authorization from the publisher to include the paper in my

Ph.D. dissertation is attached in Appendix A.
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lthcare supply chain can have the potential to initiate a cascading sequence of capacity 
ses, threatening human lives and devastating large sectors of the economy. 
The existing literature on the design of pharmaceutical supply chains is scarce, 

connected, and mostly in the form of qualitative discussions. Description and analysis 
the key issues can be found in Shah (2004), Booth (1996), Harland (1996), She (2001), 
 Koh et al. (2003). The integration of suppliers in the design of new pharmaceutical 

 chains has been discussed in Petersen et al. (2005). Allocation of production 
nts and distributions points in the form of an optimisation problem is presented in 
pageorgiou et al. (2001). The impact of dynamic demand on production and inventory 
icies is debated in Booth (1996). Finally, Bayer et al. (2007) discussed the impact of 

certainty about future requirements due to technological, demographic, medical and 
icy changes. 
In some ways, pharmaceutical supply chains resemble the ones associated with 
sumer goods (Koh et al., 2003). In the traditional supply chain design literature, the 
us on leveraging the economies of scale can yield results that over-concentrate 
ources. The optimal solutions can then be sensitive to system perturbations, initiated 
 internal and extern

ver-consolidation heightens the risk of capacity imbalance. The traditional literature 
t explicitly models the impact of disruptions has so far been focusing primarily on a 
al level of issues including scheduling, ordering, inventory management, and lot 
ing. These works have been mainly modelled local entities exposed to operational 
tabilities in: 

production rate and lead times (Arreola-Risa and DeCroix, 1998; Meyer et al., 1979; 
Parlar and Berkin, 1991; Parlar and Perry, 1996; Posner and Berg, 1989) 

supply rate (Bielecki and Kumar, 1988; Parlar, 1997; Song and Zipkin, 1996), 
including machine failures (Abboud, 1997; Buzacott and Shantikumar, 1993; 
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Gallego, 1988a, 1988b; Groenevelt et al., 1992; Henig and Gerchak, 1990; Hopp et 
al.,

3 pric

4 ro

Ho e
cha w
pro
Sav
and
disr

too
pha s. Our underlying formulation 
leverag
flo
ma
flo
for
dy
dis
hea
are
disr
sto
ana
me

pro
pro
pre
tw
we dis
rec
the

2 

Fe
dy hibit a converging assembly 
flow. The topology of such tier-like systems is such that, at each tier, system entities are 
joined in some way and advanced to subsequent merging. Supply chain systems of global 
pha esent a notable example of 
such systems, where each vertex (i.e., a production facility) combines the input of 
ma

  

 
  

  

terials, components, and parts from the suppliers in the preceding tier, to produce more 

 1989; Kim and Hong, 1997; Lee, 1992; Porteus, 1986; Rosenblatt and Lee, 1986) 

es of resources (Arcelus and Srinivasan, 1995; Ardalan, 1995; Aull-Hyde, 1992; 
Taylor and Bradley, 1985; Tersine and Barman, 1995) 

p cess quality and yield (Chao, 1987; Mohebbi, 2003; Weiss and Rosenthal, 1992). 

wev r, so far, only a scant subset of the literature has attempted to analyse supply 
in- ide disruptions, with most of the efforts focusing on the facility location 
blems. Notable examples include Eiselt et al. (1996), Snyder and Daskin (2005), 
achkin et al. (2008), Snyder et al. (2007), Lee (2001), Tsiakis et al. (2001), and Atamt 
 Zhang (2007). None of these attempts have addressed the issue of stochastic capacity 
uptions in directed networks, in closed form. 
In this paper, we present an attempt to contribute to development of mathematical 
ls for modelling and analysis of risk inherent in healthcare supply chains, such as 
rmaceutical and medical equipment/devices enterprise

es the analytical convenience of formalism of capacitated feed-forward  
w-matching networks (FMNs) with multiple points of delivery (POD). FMNs offer a 
thematical structure suitable for modelling network assemblies, where, at each tier, the 
ws of system entities (e.g., materials, components, etc.) are combined and forwarded 
 subsequent merging. This formalism can be particularly useful for understanding 
namics in the capacitated healthcare supply chains impacted by unpredicted 
ruptions. In this effort, we are primarily focused on examining the capability of 
lthcare supply chains to sustain anticipated demand for system throughput. Our results 
 useful for understanding, up to the probability law, the impact of unpredicted capacity 
uptions in healthcare supply chains. Special emphasis is given to developing 

chastic models for capturing capacity trajectories at the POD which will provide the 
lytical basis necessary to model network risk and develop risk-based design 
thodologies. 
The paper is organised as follows. Section 2 introduces the terminology and notation, 
vides a necessary account of the feed-forward FMN formalism, and constructs the 
bability law on the available effective capacity for FMNs with multiple POD, in the 
sence of capacity propagation delays. Section 3 builds upon this analysis and presents 

o stochastic models of the available effective network capacity. First, in Section 3.1, 
cuss an instantaneous capacity loss with random recovery delay and a constant 

overy rate trajectory. A special case of this model is discussed in Section 3.2. Finally, 
 concluding remarks are presented in Section 4. 

Feed-forward FMNs with multiple POD 

ed-forward FMNs offer a convenient mathematical paradigm that can describe 
namics of a wide range of capacitated networks which ex

rmaceutical and medical equipment/devices enterprises pr
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complex sub-assemblies. These sub-assemblies are then advanced to the succeeding tier, 
wh
in-
At
and
rea
fee

the e available effective capacity of FMN with multiple POD. 

2.1

Consider a feed-forward network, such as one shown in Figure 1, which has a finite 
num empty tiers. 

Fig

ere further merging occurs. The converging assembly flow nature prescribes that the 
flow rates for any vertex must match. A final product emerges the network at the POD. 
 a strategic level of network design, re-entrant flows may be assumed as insignificant 
 hence, the flow of assembly can be assumed as unidirectional (or feed-forward). The 
der is referred to Dorogovtsev and Mendes (2003) for a more detailed exposition of 
d-forward networks. 
In what follows, we introduce the terminology and notation, followed by derivation of 

 time-fixed distribution of th

 Terminology and notation 

ber 2≥n  of vertices and 2( )≥ ≤m m n  non-

ure 1 A feed-forward network with multiple POD 

 

The tiers are numbered in ascending order, starting from tier 1, where 1>D  POD are 
cated, and moving upstream the network. Vertices are numbered in ascending order, 

ting from vertices in tier 1, from top to bottom within a tier, and moving upstream the 
work. Let kN  be the set of vertices that belong to tier , 1,..., .

lo
star
net =k k m  Let 1 .==∪m kkN N  

In what follows, we assume that: 

each unique component (ingredient, part, material, etc.) is supplied by only one 
vertex 

each vertex performs a single merging operation. We introduce 
ter

1 

2 

Thr
ease of 
units of t ed product. 

the following 
minology and notation. 

oughput: the long-run average number of units of finished product per unit time. For 
exposition, the throughput of all vertices is measured in terms of the equivalent 
he finish

Available production capacity of vertex j  at time 0, ( ) :>
jp

t C t  maximum throughput 
uction resources of vertex that prod j  are capable of sustaining at .t  
lable supply capacity of vertexAvai  j  at time 0, ( ) :> st C t  maximum throughput that 

the
j

 supply to vertex j  is capable of sustaining at .t  
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Available effective capacity of vertex j  at time 0, ( ) :>
je

t C t  maximum throughput of 
vertex j  at .t  Note that ( ) min ( ), ( ) .{ }=

j j je p sC t C t C t  
Multifurcation coefficient, 0 1, :≤ ≤ > lable effective 
acity

jiA j i  the proportion of the avai
cap  of vertex j  designated to feed vertex 1 .( )=∑ jiii A  

Capacity propagation delay, 0 :≥jiT  time in-transit between vertices j  and .i  
We networsay that a feed-forward k is flow-matching, if for a y 

, , 1,..., ,∈ ∈ =N j N k m  the fo balance equation holds (see Figure 2)
n
: 1+k n k

( ) ( ) ... ( )− = − = = −
n j nn
j i e j iC t T A C t T

 (1) 

0,>t i

The left-
asserts th om the feeding 
suppliers nd side of the 
equ
be 
imp
of t

Fig

llowing 

1 1 2 21 2

( ).= ∑
j jj i e j i j i e j iA C t T A

A C t
1−∈

r i

r k

ih e
h N

hand side of equation (1) states the flow-matching assembly pr
at for any network vertex, the effective in-flow capacities fr
must match or else, they create a capacity imbalance; the right ha

inciple, i.e., it 

ation essentially states the capacity preservation principle: each effective in-flow must 
equal to the total effective out-flow. The flow-matching nature of assembly can be 
acted by the presence of unpredicted capacity disruptions of various origins. Analysis 
his impact will be the focus of the forthcoming exposition. 

ure 2 The flow-matching principle 

 

what follows, we consider the following simplified characterisation of FMNs: 

network topology is deterministic and fixed 

2 available production capacities ( )
jp

C t  are mutually independent for all 

In 

1 

j  and all t  

3 

4 p

5 

Assumption (2) above can be justified b at, for large and extended suppl
chains, aceutical and medical equipment/devices 
enterprises, the various points of phically isolated and/or operating 
ind n sonable for disruptive events 
trig red b

network has multiple POD ( 1,..., )=d D  

ca acity propagation delays are deterministic 

absence of backup capacity and inventor rs. y buffe

y noting th y 
such as those of global pharm

assembly are geogra
epe dently. However, this assumption may not prove rea
ge y nationwide labour strikes and political unrest. 
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Now, with assumptions (1)–(5) above, FMNs with multiple POD must posses the 
followi

1 2 ,{ } .∈ ∈ mN n N  

2 ji  

3 

ng properties. 

1 {1,2,..., },{ 1}= +N D D

0, , ,s.t. . Also, , ,= ∀ ∈ < ∀ ∈ =k jii j N j i i j N A 0.A

, , 0,  where 1, 2,..., ; 2.+∈ ∈ = = ≥k s k ji∀j N i N A k m s  

1,  at least one ,  s.t. 0,  where 1, 2,...,−∈ ∃ ∈ > =k k ji .∀4 j N i N A k m  

5  of 
e

6 

1 2, , , 0∈ ∀ ∈ = >id jdd N i j N A A  (equal to the propositions of the distribution
 final product among the PODs). 

∀
th

, 1∈ =jj∀j N A  and 0.=jjT  

We now def kine the thi  path from vertex ∈j N  to vertex ∈ sl N  as following (see 
Fig  ure 3): 

{ }
1 1

1 1 2, , ,..., : 0 .
− +

− − −= ∈ ∈ ∈ >i i
k s

i i
jl k k k k s jj j l
L j j N j N l N A A  2

Figure 3 

0,...,>−
i

Paths in FFN 

 

n, for each path ,ijlL  we define the product of the corresponding multifurcation 
coefficients as 

1 1 2 1
.

− − − +
= "i i i i

k k k s

i
jl jj j j j l
A A A A  

The

We let min{ }.= iA A i i

cap

jl

We now

jl jl
i  In additio  for each unique path ,jlL  we define jlT  as the total 

acity propagation delay o h :ijlL  
i

n,
f pat

1 1 2 1
.

− − − +
= + + +"i i i

ik k k s
jj j j j l

T T T T  

 let jlT  be the total capacity propagation delay of the path with the smallest value 
of 

it  c
fun etwork through

.ijlA  
In the next sections, we are concerned w h haracterising the prob ility distribution 
ctions of individual POD as well as the o

ab
put. verall n
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2.2 Probability law on the available effective capacity of a POD 

In ble 
eff
sec
ent

∈i

s j

Equation 

this section, we first derive the time-fixed distribution function of the availa
ective capacity of point of delivery ( 1,..., ).=d d D  We then use this result in the next 
tion to obtain the time-fixed probability law of the available effective capacity of the 
ire supply chain network. 
We begin by noting that for a fixed 0,>t  the available supply capacity of vertex 
kN  can be expressed as 

1
0

( ) min { ( )}.
+

>

∈
= −

k
Aji

i ej ji
j N

t A C t T  (2) 
i

C

(2) essentially suggests that the most disrupted feeding vertex in tier 1+kN  
becomes th upply capacity of vertex i  in tier .kN  It 
foll

}

e determinant of the available s
ows then that for vertex , ,∈ <ki N k m  and a fixed 0,>t  

{
1

( ) min{ ( ), ( )} in ( .
+

0

min ( ), m
>

∈
)

⎧ ⎫
⎪ ⎪= = −⎨ ⎬
⎪ ⎪⎩ ⎭

i i i j
k

e p s ji eC t C t C t A C t T  
i

Aji

p
j N

C t ji

We are now  
in the fo

Propositi d is 
giv

 in a position to express the available effective capacity of a point of deli
rm of the following proposition. 

on 2.1: For a fixed time 0,>t  the available effective capacity of POD 

very

en by 

1 1

1 2 2

2 22,3,...,
, ,...,

( ) min ( ),
− −= ==

= ∈ ∈

⎨ ⎬⎠⎩ ⎭∏d d i k k k kM

m m

e p p i i i ik kM m
i d i N i N

C t C t C T A

 

( ){ }

1

1

0 1,...,

\
0

min ( ), min ,

−
> ∀ =

∈
>

⎫⎞⎜ ⎟
⎝

⎧ ⎫
⎪ ⎪= −⎨ ⎬
⎪ ⎪
⎩ ⎭

i ik k

d j

jd

MM

A k m

p jd p jd
j N N
A

C t A C t T

 

provided that ( ) ( )  and 0.

⎧ ⎛= −∑t

= ∀ ∈ ∀ >
i pe p mC t C t i N t  

The proof of this result is presented in the Appendix. 
Proposition (2.1) essentially asserts that factoring in the topology and magnitude of 

propagation delays, the vertex with the most disrupted available production capacity 
det ng point of delivery. Recall 
tha e assumed to be mutually 
ind  

Proposi
eff

ermines the avai
t the available p er

lable effective capacity of the correspondi
roduction capacities of all vertices w

ependent at all times. We now introduce the following result.

tion 2.2: For a fixed time 0,>t  the complimentary distribution of the available 
ective capacity of POD d is given by 

{ } ( ) ( )
1

( ) 1 1( ) ( ) ,  where { \ } { }.−
∈

= > = = ∪∏e dd p jdj
C t e jdC t T

j E

F P C t F A E N N dα α α  

roof of this result is presented in the Appendix. The p
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A product form of proposition (2.2) suggests that lean FMNs can be vulnerable to 
even m
det
rel
wi
PO

2.3 ability law on the available effective FMN capacity 

Sin effective 
cap s

odest upstream disruptions. To a substantial extent, the degree of vulnerability is 
ermined by the nature of topology and capacity propagation delays. In addition, 
ative disposition of the impacted vertex and the dynamics of the disruption itself along 
th the recovery dynamics will ultimately determine the overall sustainability of the 
D. 

 Prob

ce the total available effective network capacity is the sum of the available 
acitie  of the POD, the former can be expressed as following. 

( ){ }( ) min ( ), min .
1\

1 1 0
∈

= = >

⎡ ⎤⎧ ⎫
⎢ ⎥⎪ ⎪= −⎨ ⎬⎢ ⎥

⎪ ⎪⎢ ⎥
⎩ ⎭⎣ ⎦

d d j

jd

j N N
d d

A

(3) 

At this point, we introduce two simplifying assumptions for the output tier
motivation to obtain closed form solution for the probability law on the available 
effective network capacity. First, we prescribe that for any point of delivery 

,d C

ass
equ
sup
any
jus
US
th

av
thi

∑ ∑
D D

e p jd p jdC t C t A C t T  

, driven by our 

( ) ( ) .≥ ∀
d dp st C t t  This assumption can be found reasonable in most cases when the final 

embly takes place in the USA, where the pharmaceutical and medical 
ipment/devices manufacturing, in general, is at least as reliable as that of the overseas 
pliers, such as those located in Asia (Davidson et al., 2005). We also assume that for 

d  and 2
ˆ, , .∀ ∈ = =id jdi j N T T t  This simplification can, in part, be 

tified by noting that for globally distributed supply networks with the final assembly in 
, the propagation times at the last tier are small compared to the total propagation time 
ughout the entire network, and, thus, the former can be assumed equal. 
We now consider a point of del ain an expression for the 
ilable effective capacity of d  in terms of its ‘most constrained supplier’ 2.∈v N  To 

s end, recall that 2, , .∀ ∈ =id jdi j N A A  Let 2∈h N  and define ˆ

 point of delivery 

ro

a
ivery d and aim to obt

=hd dA a  and ˆ.=hdT t  
t Le

( ){ }
2

ˆarg min .
∈

= −
heh N

C t t  (4) 

 are now ready to state th propo

posit

v

We

Pro ion 2.3: For a fixed time 0,>t  the available effective capacity of POD d is 
given by 

e following important sition. 

( )ˆˆ( ) .= −
d ve d eC t a C t t  

Pr
dp s  we have that oof: Using proposition 2.1 and provided that ( ) ( )>C t C t  holds for all ,t

d
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( ){ }

( ){ }

( ){ }

( ) ( ){ }

1

1

2 1

2 1 2

\
0

\
0

\
0

\( )
0

( ) min ( ), min

min

ˆˆ min min

ˆ ˆˆ min min , min

∈
>

∈
>

∈ ∈
>

∈ ∈ ∪
>

⎪ ⎪= −⎨ ⎬
⎪ ⎪
⎩ ⎭

−

⎧ ⎫
⎪ ⎪= − −⎨ ⎬
⎪ ⎪
⎩ ⎭
⎧ ⎫⎧ ⎫
⎪ ⎪⎪ ⎪= − − −⎨ ⎨ ⎬⎬
⎪ ⎪ ⎪

⎩ ⎭⎩ ⎭

d d j

jd

j

jd

j

jh

h j

jh

e p jd p jd
j N N
A

jd p jd
j N N
A

d jh p jh
h N j N N

A

d p jh p jh
h N j N N N

A

C t C t A C t T

A C t T

a A C t T t

a C t t A C t T t

( ){ }
( )
2

ˆˆ min

ˆˆ .

∈

⎧ ⎫

⎪

= −

= −

h

v

d e
h N

d e

a C t t

a C t t

 

ately, we have the following result for expressing the available effective network

on 2.4: For a fixed time 0,>t  the available effective network capacity can be

Immedi  
capacity. 

Propositi  
exp

( )ˆ

Pro sition 2.3, 

( ) ( )
1

ˆ ˆ ˆˆ ˆ .
=

= − = −∑v v

D

e d e
d

t t a C t t  

Pro pression for the total available effective capacity of 
a FMN w capacity of 
some cr

We ar

Propositi e available 
eff
wh

ressed as 

D

1

( ) .
=

= −∑ d ve e
d

C t C t t  

of: Using propo

( )
1 1

( )
= =

= −∑ ∑d v

D D

e d e
d d

C t a C t t C

position 2.4 provides a general ex
ith multiple points a delivery in terms of the available effective 

itical supplier 2.∈v N  
e now ready to state the main result of this section. 

on 2.5: For a fixed 0,>t  the complementary distribution of th
ective capacity of a FMN with multiple POD is given by the following expression, 
ere 2 1 2{ \ ( )} { }.= ∪ ∪E N N N v  

( ){ } ( )ˆ( )
ˆ( ) .− −

⎧ ⎫⎪ ⎪> = − >⎨ ⎬∑ ∏d v p jv
e e jvC t T tC t P C t t F Aα α α  

D

21= ∈⎪ ⎪⎩ ⎭ j
d j E

oof: The proof combines proposition 2.4 and proposition 2.1, applied to vertex .v  

P

Pr
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In the next section, we impose time dynamics for the available production capacity at the 
ver
of t

3 Stochastic trajectory of available effective capacity of FMN with 
multiple POD 

Proposi t the stochastic process 1{ ( ), 0}= ≥∑
ded C t t  is dependent, through 

the underlying topology, on the family of stochastic processes { ( ), 0}.≥
jp

C t t  In this part of 
ana
a c
deg
sup
app
An
ass
cap

3.1
 rate model 

Consider the following dynamics of the available production capacity of vertex .

tex level, subject to random disruptions, and examine the resulting capacity trajectory 
he network. 

tion (2.5) asserts tha D

lysis, we first discuss an instantaneous capacity loss with r  delay and 
onstant rate recovery model for the { ( ), 0}≥

jp
C t t  family. An instantan s capacity 

radation can be used to describe a sudden failure in supporting infrastructure, such as 
ply of electric power, chemical agents, and cyber grid. A graceful recovery can 
roximate equipment warm-up, progressive ma r stepwise modernisation. 
other example of such sample path is a terrorist attack warning causing an immediate 
embly shutdown, followed by area check-up and gradual release of production 
acity. 

 Instantaneous capacity loss with random recovery delay and constant 
recovery

andom recovery
eou

 ointenance,

j  The 
sys p
rendering ed by a random delay and a constant rate 0>α  
recovery (Fi

sto
*C

wi n
ass
{X
ca
i.i. dom Rμ penden
let -tn

tem o erates at the target capacity level *.C  Disruptions occur one at a time, each 
 an instantaneous loss, follow

gure 4). 
The points of recovery form a sequence of stopping times, at which the process 

chastically regenerates. Let , ∈`nX n  be the amoun time the vertex operates at the 
 level before the -thn  shock. { , }∈`nX n  are assumed to be i.i.d. random variables 

th mean .Xμ  Let Δ nC  be the magnitude of the -thn  loss (0 *, ),≤ Δ ≤ ∈`C C n  and 
ume 

t of 

{ , }Δ ∈`nC n  are i.i.d. random variables with mean ,ΔCμ  independent of the 
}.n  Let , ∈`nR n  be a random recovery delay during which the available production 

acity remains at level *−Δ nC C  (Figure 4). We assume that { }nR  form a sequence of 
. ran  variables with mean nd mutuall t of { }nX  and .Δ nC  We 

, ∈`nY n  be the length of the h  recover riod 

p
d ,  a

y pe
y inde

, 0.
Δ

= >n
n

C
α

α
 

1( ), ,== + ∈∑ `n
n iiZ X R n  whereby { }nZ  forms an embedded renewal process. 

 first seek to derive the lim mpl ry distrib { ( ) }.→∞ ≥
jp

P C t u  
ginning with the { ( ),C t t ne a 

( ),0 *,≤ ≤ ≥u t u C t

Y

e
Let 
W  li
Be rege
{B state space {0, 1} where 

;
u

+ iY

jp

i

itin
≥

g co imen
0}  process,

ta
 we defi

ution mt
nerative process 

0},  with 

1, if ( ) ≥⎧⎪= jp
C t

( ) |
0, otherwise.
⎨
⎪⎩

B t  
u
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The process is in state ‘1’ when the amount of the available production capacity is at least 

    
 
 

   

   
 

   

      

,u
prod
ne
oc
tim
Fi
{

the ng which the ate ‘1’ [i.e., the value of uT  exceeds
(F
los

>

It t

 and it is in state ‘0’ otherwise. At the epoch, where a disruption causes the available 
uction capacity to fall below ,u  a transition occurs from state ‘1’ to state ‘0’. At the 

t epoch, where the available production capacity recovers to level ,u  a transition 
urs from state ‘0’ to state ‘1’, and the process regenerates. A cycle is defined as the 
e period between occurrence of two successive transitions from ‘0’ to ‘1’ (see  
ure 4). Clearly, the { ( ), 0}≥uB t t  process has the same stopping times as the process 

( ), 0}.≥
jp
t t  

Consider the first cycle of ( ), 0}≥u t t  and let uT  denote the portion of 

x
c

g
C

cycle
igure 

the process
process is in 

 {B
st duri  ,u   

4)]. Let T  denote the length of the cycle, a of the (f ) capacity 
s that causes the process to make a transition from state ‘1’ to state ‘0’ be as follows 

 s.t. * .= Δ −u nN n C C u  (5) 

hen follows that 

nd let the index irst

* * ,− −
= + − =

uN Nα u

C u C u
T Z Z

α
 (6) 

and 

* .
Δ⎛ ⎞−

= + − +⎜ ⎟⎜ ⎟
uN

u N N

CC u
T Z R

⎝ ⎠
u uα α

 (7) 

We then 

Note that  with the probability mass function 
giv

{P N  (8) 

We

Pro 1: For the instantaneous capacity loss with random recovery delay and a 
constant r
productio

let 

{ * } for 1,2,..., .= Δ > − =u n up P C C u n N  

N  has a negative binomial distributionu

en by 
( 1)} (1 )  for 1,2,....−= − − =n

u u un p p n

 are now in a p ition to state the following important result. 

position 3.

os

ecovery rate model, the limiting complimentary
n capacity of vertex 

 distribution of the available 
j  is given by the 

( 1)∞ −k
following expression, where 

1 (1 ) ,0 *:== − ≤ ≤∑u u ukN kp p u C  ( )E

( * ) ( )( )
lim { ( ) } .

( )( )
Δ Δ

→∞ Δ

− + + − −
≥ =

+ +j

u R C R C
p

t u X R C

C u E N
P C t u

E N

αμ μ αμ μ
αμ αμ μ

 

oof: From equations (6)–(8), for this alternating regenerative stochastic process we 
er

Pr
obs ve that 

{ } ( )uE T
lim ( )

( )
( * ) ( )( )

→∞

Δ Δ

≥ =

− + + + − −

jpt

u X R C R C

P C t u
E T

C u E N αμ αμ μ αμ μ
 

.
( )( )Δ+ +u X R CE N αμ αμ μ
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We have the following important corollary when *.=u C  

Co covery delay and a 
con

rollary 3.1: For the instantaneous capacity loss with r eandom r
stant recovery rate model, the limiting probability that vertex j  operates at the target 
acity level is given by 

{
cap

}lim ( ) *
→∞

= =
jp

P C t C .
( )Δ+
X

t X R C

μ
μ −μ μ α

 

Proof: Note that in this case, 1=up  and ( ) 1.=uE N  The result follows from  
proposition (3.1).� 

De
ana t, as shown,  Figure  

Fig

spite its seemingly simple form, co  3.1 ca  for sensitivity  
lysis-based decision suppor

rollary
 e.g., in

n be used
 5 and Figure 6.

ure 5 Sensitivity on ΔCμ  and Xμ  

 

ty on Rμ  and α  Figure 6 Sensitivi
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As shown in Figure 5, there could be a certain trade-off in attempting to control the rate 
and
var
pro
on t
con
on
be 
rec
oth
val
lim

for

The
con
eff

 magnitude of disruptions (via Xμ  and ,ΔCμ  respectively, assuming the other 
iables are fixed). Increasing the value of μ  results in the limiting target capacity 
bability attaining its asymptomatic level in a steep or m re gradual fashion, depending 
he mean magnitude of disruption .ΔCμ  On the other hand, if a decision-maker has no 
trol on the disruption dynamics, she may instead prefer a mitigation strategy focused 

 agile recovery by effecting the mean recov elay Rμ  and recovery rate .α  As can 
seen in Figure 6, when the other variables are kept fixed, for small values of ,Rμ  the 
overy rate can have a significant effect on the resultant limitin robability. On the 
er hand, as recovery delays become more prolonged (particularly for comparable 
ues of ),Xμ  attempting a more rapid recovery can yield only marginal impact on the 
iting probability, which reaches saturation at lower levels. 
We conclude this section with the following theorem providing the desired expression 

 the limiting distribution of the available effective FMN capacity. 

ore

X

ery d

o

g p

m 3.2: For the instantaneous capacity loss with random recovery delay and a 
stant recovery rate model, the limiting complimentary distribution of the available 

ective FMN capacity is given by the following, where =� jv ju u A v  and 
2E 1 2{ / ( )} { }= ∪ ∪N N N v  [see also equation (4)]: 

 

( )
( )2

1

( * ) | ( )
.

( )

=

Δ Δ

∈ Δ

⎪ ⎪⎩ ⎭

− + + + − −
=

+ +
∏

�

�

�
jv

jv

t
d

jv u X R C R C

j E u X R C

C u E N

E N

α αμ αμ μ αμ μ

αμ αμ μ

 

Proof: Combine propositions (2.5) and (3.1).� 

As shown next in Section 3.2 and further discussed in Section 4, the model discussed 
above can serve as a foundation for a family of predictive models attempting to describe 
propagation of stochastic dynamics of capacity disruptions at the vertex level, to examine 
the 

Fig

lim ( )
→∞

⎧ ⎫⎪ ⎪≥⎨ ⎬∑ d

D

eP C t u

limiting behaviour of the network. 

ure 7 Realisation of instantaneous capacity loss with random recovery delay and 
instantaneous restoration 
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3.2 Instantaneous capacity loss with random recovery delay and instantaneous 

In this sec sent a rather straightforward special case of the model discussed in 
Sect
los
Fig
cas

α

Proposi
in  distribution of the available 
pro

recovery 

tion, we pre
ion 3.1. When recovery rate ,= ∞α  the model exhibits an instantaneous capacity 

s followed by a random recovery delay and instantaneous restoration, as shown in 
ure 7. The simplicity of this basic model can be appreciated by practitioners in the 
es when capacity ramp-up times iY  are small compared to iX  and .iR  
In this section, we state the results without proofs which are trivial by substituting 
= ∞  into the results of the previous section. 

tion 3.3: For the instantaneous capacity loss with random recovery delay and 
us recovery model, the limiting complimentarystantaneo

duction capacity of vertex j  is given by the following expression, where 
( 1)

1) (1 ) ,0 *:∞ −
== − ≤ ≤∑ k

u u ukN kp p u C  (E

lim { ( ) } 1 .
)

≥ = − R
pP C t u

μ
 

( )(→∞t u X RE N

Corollary 3.2: For the instantaneous ca t

+μ μ

paci

j

 random recovery delay and 
instan vertex 

y loss with
taneous recovery model, the limiting probability that j  operates at the target 

capacity is given by 

lim { ( ) *} .
→∞

= =
+j

X
p

t X R

P C t C
μ

μ μ
 

ally, by combining propFin ositions (2.5) and (3.3), we have the limiting distribution of 
the available  of the following theorem. 

Theorem  loss with random recovery delay and 
instan mplimentary distribution of the available 
eff

effective FMN capacity in the form

 3.4: For the instantaneous capacity
taneous recovery model, the limiting co

ective FMN capacity is given by the following, where =� jv jvu u A  and 
1 2{ \ ( )} { }= ∪ ∪N N N v  [see also equation (4)]: 2E

21

( )( )
lim ( ) .

( )( )→∞
= ∈

+ −⎧ ⎫⎪ ⎪≥ =⎨ ⎬ +⎪ ⎪⎩ ⎭
∑ ∏ �

�

jv

d

jv

D
u X R R

e
t u X Rd j E

E N
P C t u

E N

μ μ μ

μ μ
 

 the formalism developed In t in Section 3 can prov
fo r analytical
computat stems. 

4 

Re
has
chain systems, such as pharmaceutical and medical equipment/devices enterprises, can 
span multiple continents and subsume hundreds of suppliers and customers. In addition, 
as  adopting the philosophy of lean manufacturing, including 

he next section, we discuss how
undation for developing future 

ide a 
 and scalable, risk-driven methodologies fo

ional support of strategic design of healthcare supply chain sy

Conclusions 

engineering the USA existing healthcare delivery into a timely and efficient system 
 to invariably rely on robust and agile supply networks. Current healthcare supply 

these enterprises have been
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slimming inventory buffers, global outsourcing, and consolidating supplier base, such 
red
env
cap
inc
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exh ptions. The supply 
chain w
for
cap
cap
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of 
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sce

vul
pro
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dis
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dyn
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Abstract 
We examine a capacitated system exposed to random stepwise capacity disruptions with 

exponentially distributed interarrival times and uniformly distributed magnitudes. We explore two 
countermeasure policies for a risk-neutral decision maker who seeks to maximize the long-run average 
reward. A one-phase policy considers implementation of countermeasures throughout the entirety of a 
disruption cycle. The results of this analysis form a basis for a two-phase model which implements 
countermeasures during only a fraction of a disruption cycle. We present an extensive numerical 
analysis as well as a sensitivity study on the fluctuations of some system parameter values. 
Keywords: Capacity analysis, capacitated system, lean, random disruptions, countermeasure policy  
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1. Introduction and Motivation 
Lean manufacturing philosophy and 

associated business practices have been widely 
embraced and deployed by global enterprises. 
Some estimates assert that the shift to JIT 
scheduling in the US automotive industry has 
saved companies more than $1 billion a year in 
inventory costs, alone. While lean 
manufacturing has substantially boosted 
operational efficiency, it has also left enterprises 
operating in an increasingly risk-encumbered 
environment. Capacity disruptions triggered by 
forces of nature, property- and process-related 

hazards, and man-made interventions have 
proven to be the most profound influence on 
enterprise risk. As evidenced in 1995, an 
earthquake hit the port town of Kobe, Japan, 
razed to the ground 100,000 buildings and shut 
down Japan's largest port for over two years. In 
1999, an earthquake in Taiwan displaced power 
lines to the semiconductor fabrication facilities 
responsible for more than 50 percent of the 
worldwide supplies of certain computer 
components, and shaved 5 percent off earnings 
for major hardware manufacturers including 
Dell, Apple, Hewlett-Packard, IBM, and 
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Compaq (Wilcox 1999). In September 2002, 
longshoremen on the US West Coast were 
locked out in a labor strike for 11 days, forcing 
the shutdown of 29 ports. With more than $300 
billion of dollars in goods shipped annually 
through these ports, the dispute caused between 
$11 and $22 billion in lost sales, spoiled 
perishables and underutilized capacity (Isidore 
2002). In December 2002, a political strike in 
Venezuela made transnational businesses 
including GM, BP, Ford, Goodyear and Procter 
& Gamble halt their manufacturing for the 
duration of the conflict (Wilson 2003). The 
recent 2003 outbreak of SARS in China and 
Singapore forced Motorola to close several 
plants (Berniker 2003). Man-made disasters are 
on the rise, from terrorist attacks to computer 
viruses (Lemos 2003). As a result of the above 
events, according to a recent survey by A.M. 
Best Company, Inc. of 600 executives, 69 
percent of chief financial officers, treasurers and 
risk managers at Global 1,000 companies in 
North America and Europe view 
property-related hazards-such as fires and 
explosions--and supply chain disruptions as the 
leading threats to top revenue sources (A.M. 
Best Company 2006). 

Historically, enterprises have lacked 
appropriate decision support methodologies and 
computational tools suitable for addressing risk 
incurred through capacity disruptions. In 
academia, traditional research efforts on 
minimizing the cost of supply chain operations 
and the focus on leveraging economies of scale 
often yield results that overconcentrate resources. 
Such optimal solutions can be very sensitive to 
parameter fluctuations, caused by supply chain 
disruptions. The inability to recognize the 

hidden costs of such overconcentration 
heightens the risk of increased costs and 
capacity imbalance. Much of the recent literature 
focuses on minimizing costs of supply chain 
operations (see, for example, Barness-Shuster et 
al. (2002), Cheung & Lee (2002), Milner & 
Kouvelis (2002), Corbett & DeCroix (2001), 
Lee et al. (1997)), whereas only a small fraction 
of the efforts have been dedicated to modeling 
the impact of various disruptions, such as those 
affecting demand patterns, supplier and 
production lead times, prices, imperfect process 
quality, process yield, and other factors.  

One of the most common types of disruption 
appearing in the literature is that of supply rate 
changes. An excellent work by Arreola-Risa & 
DeCroix (1998) explores inventory management 
of stochastic demand systems, where the product 
supply is disrupted for periods of random 
duration. The classic economic order quantity 
(EOQ) problem with supply disruptions is 
studied by Parlar & Berkin (1991) and Parlar & 
Perry (1996) consider a order-quantity/ 
reorder-point inventory models with two 
suppliers subject to independent disruptions to 
compute the exact form of the average cost 
expression. Mohebbi (2003) presents an 
analytical model for computing the stationary 
distribution of the on-hand inventory in a 
continuous-review inventory system with 
compound Poisson demand, Erlang distributed 
lead time, and lost sales, where the supplier can 
assume one of the two “available” and 
“unavailable” states at any point in time 
according to a continuous-time Markov chain. 
Papers addressing both supply disruptions and 
random demand include (Chao 1987, Parlar 
1997, Song & Zipkin 1996). Chao (1987) 
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proposes a dynamic model concerning optimal 
inventory policies in the presence of market 
disruptions, which are often characterized by 
events with uncertain arrival time, severity and 
duration. Parlar (1997) considers a continuous- 
review stochastic inventory problem with 
random demand and random lead-time where 
supply may be disrupted due to machine 
breakdowns, strikes or other randomly occurring 
events. Song & Zipkin (1996), explore an 
inventory-control model which includes a 
detailed Markovian model of the resupply 
system. A number of papers which address 
supply and demand changes have been 
developed in the field of oil stockpiling, as there 
has been grave concern over the oil supply from 
the Middle East (Teisberg 1981, Chap & Manne 
1982, Murphy et al. 1987). Modeling production 
rate disruptions (machine failures) has been 
largely addressed by extending classical 
economic manufacturing quantity (EMQ) 
models. Rosenblatt & Lee (1986) derive an 
EMQ model when the production process is 
subject to a random deterioration from an 
in-control state to an out-of control state. Lee 
(1992) models the defect-generating process in 
the semiconductor wafer probe process to 
determine an optimal lot size, which reduces the 
average processing time on a critical resource. 
Abboud (1997) presents a simple approximation 
of the EMQ model with Poisson machine 
breakdowns and low failure rate. Groenevelt et 
al. (1992) study an unreliable production system 
with constant demand and random breakdowns, 
with the focus on the effects of machine failure 
and repair on optimal lot-sizing decisions. 
Assuming exponentially distributed time 
between failures and instantaneous repair of the 

machine, authors derive some unique properties 
of their model compared to the classical EMQ 
model. Groenevelt et al. (1992) extend their 
earlier work in Groenevelt et al. (1992) to the 
case where repair times are randomly distributed 
and excess demand is lost. Kim & Hong (1997) 
propose an extension to the model in Groenevelt 
et al. (1992), which determines an optimal lot 
size when a machine is subject to random 
failures and the time to repair is constant. They 
formulate average cost functions for the optimal 
lot size, and derive conditions for determining 
the optimal lot size. Hopp et al. (1989) presents 
a model that assumes the (s, S) control policy. 
With Poisson failures and exponential repair 
times, a cost function is derived. Rahim (1994) 
presents an integrated model for determining an 
economic manufacturing quantity, inspection 
schedule and control chart design of an 
imperfect production process, where he assumes 
that the process is subject to the occurrence of a 
non-Markovian shock having an increasing 
failure rate. Among other notable examples of 
such works are Henig & Gerchak (1990), 
Bielecki & Kumar (1988), Buzacott & 
Shantikumar (1993). Finally, Abboud (2001) 
examines a single machine production and 
inventory system with a deterministic 
production and demand rate, when the machine 
is subject to random failures. The author models 
the production/inventory system as a Markov 
chain and develops an algorithm to compute the 
potentials that are used to formulate the cost 
function. 

At this point, we can summarize that 
research efforts addressing the disruption of 
supply are still comparatively new and scant. 
Most of the open literature considering various 

APPENDIX C: (Continued)

39



Bakır et al.: Two Countermeasure Strategies to Mitigate Random Disruption in Capacitated Systems 
J Syst Sci Syst Eng  213 

 

types of disruptions focuses on issues of 
inventory, ordering, production lot sizing, 
production scheduling, and cost management of 
inventory, setup, and backorder costs. To the 
best of our knowledge, there have been no 
attempts to consider introducing countermeasure 
policies for mitigating unpredicted capacity 
disruptions in a capacitated system, and analyze 
the benefits of such policies for the system 
manager. Our paper presents an initial attempt to 
fill the vacuum in this area. 

The paper has the following organization. In 
Section 2, we introduce notation and problem 
definition. Section 3 presents analysis of a 
one-phase countermeasure policy, where a 
risk-neutral decision maker implements 
countermeasures during the entirety of a 
disruption cycle, striving to maximize the 
long-run average reward. These results are used 
in Section 4 to examine a richer class of policies, 
where countermeasures are activated during 
only a fraction of a disruption cycle. In Section 5, 
we present a numerical analysis for determining 
the optimal phase threshold and examine the 
sensitivity of the optimal policy to fluctuations 
in system parameter values. Finally, Section 6 
offers concluding remarks. 

2. Notation and Problem Definition 
For the rest of this paper, we define 

throughput as the long-run average of the 
number of item units per unit time processed by 
a capacitated system, and the available system 
capacity at time t, tC , is defined as the 
maximum throughput that system resources are 
capable of sustaining at t. Consider a lean (i.e., 
no inventory) system with a target (demand 
adjusted) capacity *C experiencing periodic 

random disruptions, each of which may render a 
full or partial system capacity loss. We assume 
that disruptions occur one at a time and that the 
ith occurrence results in an instantaneous loss of 
magnitude iCΔ in the remaining system 
capacity. Following the ith disruption at time t, 
the system capacity remains at level t iC C− Δ  
until the next disruption unless the remaining 
capacity falls below a critical level c upon which 
the system regains all lost capacity back to *C . 
For the reason of simplicity, in this paper, we 
assumed instantaneous recovery. The system is 
assumed to stochastically regenerate at points of 
recovery (Figure 1). Capacity dynamics as such 
can be observed in a number of industrial 
scenarios including, but are not limited to, (i) 
shortage of repair personnel and performance 
degradation caused by failing equipment with a 
full repair upon a complete failure, (ii) 
non-self-announcing stepwise system failures, 
and (iii) gradual equipment phaseout and 
modernization.  

 

Figure 1 A realization of the system capacity 
dynamics 

Let *,i iC CαΔ =  where {0 1, }i iα≤ ≤ ∈  

are assumed to form a sequence of i.i.d. random 
variables. The time of the first disruption is 
denoted by 1X , and , 2,3,iX i = … denotes the 

time between (i-1)th and ith disruptions (Figure 1). 
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We assume that , 2,3,iX i = …  are i.i.d. random 

variables. The time of the nth capacity loss is 

expressed as 
1

n

n i
i

Z X
=

=∑ , 1,2,...n =  where 

we define 0 0.Z = Let 

*

1
min{  s.t. }

n

x i
i

N n C C x
=

= Δ > −∑ . It then follows 

that cN  is the number of capacity disruptions 

between two successive recovery epochs. As 
such, 

cNY Z=  is the time between two 

successive recovery events, which marks the 
beginning and the end of a regenerative cycle. 

A proactive decision maker has a number of 
mitigation options to reduce the rate of 
disruptions. When no countermeasures are 
implemented, he earns ·t tR Cπ=  at time t , 

where π  is a time independent price factor 
minus item unit cost. Therefore, the revenue in 

each cycle is 
0

· d
Y

tR C t Cπ π= = ⋅∫ .  

We assume that a cost of ( )m λ  per unit 
time is incurred to activate and operate a set of 
countermeasures that would maintain a rate of 
λ  capacity disruptions per unit time. In this 
paper, we are not concerned with the description 
of the nature of specific countermeasure options 
but rather we focus on the analytics of the 
disruption rate reducing impact that those 
options have on the system performance. We 
assume that the decision maker has a 
risk-neutral utility function (Keeney & Raiffa 
1993), and thus, our analysis will be based on 
the limiting long-run average reward as the 
criterion for policy assessment. 

Let ( )R m YλΠ = − ⋅  denote the total 

reward earned in one renewal cycle and 

0
( )

t
t zR dz m tλΠ = − ⋅∫  denote the total reward 

by time t . The long-run average reward 
converges then to the following (Ross 1996): 

( ) .
( )

t E
t E Y

Π Π→                    (1) 

In this paper, we first consider a one-phase 
mitigation policy in which countermeasures are 
activated throughout a regenerative cycle. Later, 
we will expand the analysis to examine a 
two-phase model.  

3. One-Phase Countermeasure Policy 
When countermeasures are engaged 

throughout the entire cycle, 
( ) ( ) ( ) ( )E E C m E Yπ λΠ = ⋅ − ⋅ , and hence, we 

seek to derive the expected cycle length and the 
expected cycle capacity. We assume that 
interarrival times iX  are distributed 
exponentially with rate λ  and that fractional 
capacity losses iα  are distributed uniformly 
over [0, 1]. Total capacity per cycle can be 
expressed as 

1
*

1 2 1
,

c cN N i

i j i
i i j

C C X Xα
−

= = =

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑∑         (1) 

whereas the cycle length is 1
cN

iiY X==∑ . Before 

we proceed with computing ( )E C  and ( )E Y , 

we will need the following result to compute 
( )cE N , the expected number of capacity loss 

events per cycle. 
Result 1 Let , 1, ,i i nζ = …  be i.i.d. uniform 

[0,1] random variables. Then 

1
( ) / !

n
n

i
i

P u u nζ
=

≤ =∑  

Proof. We prove by induction. For 1n = , the 
result is trivial. Assuming that the result holds 
for 1n − , note that  
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1 2 1

2
, , , ( ) / ( 2)!.

n

nf u u nζ ζ ζ −

−
… = −   

We have 
1

1 1
( ) ( )

n n

i i n
i i

P u P uζ ζ ζ
−

= =
≤ = + ≤∑ ∑  

2

0 0 ( 2)!

nu u s sd y ds
n

−−
=

−∫ ∫  

2

0
( )

( 2)!

nu su s ds
n

−
= −

−∫  

.
( 1)! ( 2)! !

n n nu u u
n n n n

= − =
− −

             ■ 

Now we are in a position to compute ( )E Y  

using Result 1. Let *(1 )c Cα= −  for some 
(0,1)α ∈ . Note the equivalency of events 

{ }cN n=  and 
1

1 1
{  and }.

n n

i i
i i

α α α α
−

= =
≤ >∑ ∑  

Using Result 1 we have, 
1

1 1
(  and )

n n

i i
i i

P α α α α
−

= =
≤ >∑ ∑  

1

1 1
( ) ( )

n n

i i
i i

P Pα α α α
−

= =
= ≤ − ≤∑ ∑  

1
,

( 1)! !

n n

n n
α α−

= −
−

 

which can be used to obtain, 
1

1
( ) [ ]

( 1)! !

n n

c
n

E N n
n n
α α−∞

=
= ⋅ −

−∑  

0
,

!

n

n
e
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αα∞

=
= =∑                    (2) 

and 

1 1
( ) ( | ) ( )

cN

i c c
n i

E Y E X N n P N n
∞

= =
= = =∑ ∑  

1

1( ) ( ) .c c
n

n eP N n E N
α

λ λ λ

∞

=
= ⋅ = = ⋅ =∑  

Computation of ( )E C  can be found in the 

Appendix. We have that 
* 2

3 1
( ) ( ) ( , )[ {

n

c k
n k

CE C P N n n h n α
λ

∞ −

= =
= = ⋅ −∑ ∑  

( , ) ( 2) (2 (2, )) (1 ) ,} ]ch n P N hα α α− + = ⋅ − + −  

(3) 
where 

1( , ) ,
1( )( 1)

[ ]k
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α α α

α

+= − − +
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1

1
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1
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n nn
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α α

+
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Using (3), we can compute the long-run 
average reward in the following way. Define 

( )C α as 
2

3 1
( ) ( ) { ( , )

n

c k
n k

C P N n n h nα α
∞ −

= =
= = ⋅ −∑ ∑  

( , )} ( 2)(2 (2, )) (1 ).ch n P N hα α α− + = − + −  

Then, the limiting value of long-run average 
reward is given by the following expression. 

( )
( )

t E
t E Y

Π Π→  

* ( ) ( )( ) .
( ) /

C C e mE
E Y e

α

α

π α λ
λ λ

λ

⋅ ⋅ − ⋅Π =       (4) 

In this section, we have considered a 
one-phase mitigation policy where 
countermeasures are implemented during the 
entire disruption cycle. The expression for the 
limiting long-run average reward (Eq. 4) will 
serve as a basis for analyzing a two-phase policy 
in the next section. 

4. A Two-Phase Countermeasure 
Policy 
Consider the set of policies under which 
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countermeasures are activated at the beginning 
of each system cycle and remain in effect as 
long as system capacity exceeds a certain higher 
level lc c> , where *(1 )l lc Cα= − ⋅  for some 

(0,1)lα ∈ . Countermeasures remain deactivated 
for levels below lc , where the system becomes 
exposed to “normal” disruption rate. This model 
is driven by the idea that from the system 
manager's viewpoint, it is desirable to stay 
longer in the “on” zone, closer to the target level 

*C  rather than prolong the “off” portion of the 
cycle. As in Section 2 and 3, c  is the critical 
lower level that triggers instantaneous capacity 
recovery (Figure 2). The system is said to be 
“on” when countermeasures are in effect and 
“off” otherwise. Long-run average reward of this 
altered process exhibits the same convergence 
property. Therefore, it is our interest in this 
section to compute [ ] / [ ]E E YΠ . 

 
Figure 2 A realization of the system capacity 

dynamics for a two-phase policy. Disruption rate 
during the “on” phase ( lλ ) is smaller than the 

disruption rate during the “off” phase ( λ ). 

We first derive the distribution of the initial 
system capacity for the “off” period in a cycle. 
The following proposition summarizes the 
result, 

Proposition 1 Consider a capacitated system in 
which capacity disruption interarrival times are 
exponentially distributed with parameter λ , 
fractional stepwise capacity losses follow a 
uniform distribution on [0,1] , and capacity is 
restored fully and instantaneously upon falling 
below level c . Suppose that the system is “on” 
when *· ,(1 )t lC Cα> −  “off” otherwise, and 

*(1 ) , lc Cα α α= − < . Then, the distribution of 
initial system capacity of the “off” period is 
given by the following,  

*

1
( ) .( )

cl
l

N

i l
i

P C C eαα α α
=

Δ ≤ = −∑  

Proof. We proceed by considering the number of 
capacity losses during the “on” period, 

lcN . Let 

1

k

k iαΓ =∑ .  For 2n ≥ , 
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)n lαΓ >  

10
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n n lf s P s s ds
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α α α
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1
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l l
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1 1
( ) / .

( 1)! ( 1)! !
[ ]

n n n
l l l

l n n n
α α αα α

− −
= − −

− −
        (5) 

Note that 

1 1( ( , ) |  )l lP α α α α α∈ > = ( ) / (1 ).l lα α α− −  

Therefore, one can verify by slight 
modifications in the computations above that (5) 
holds for 1n =  as well. Using Result 1, we 
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obtain 
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which concludes the proof.               ■ 
Expected cycle reward is the sum of 

expected returns of the “on” and “off” cycle 
periods. Let lY  and sY  denote the length of the 
“on” and “off” cycle periods, respectively, where 

l sY Y Y= +  is the length of the cycle. Define 

2

3 1
( ) ( ) ( , ){

l

n

l l c k l
n k

C P N n n h nα α
∞ −

= =
= = ⋅ −∑ ∑  

( , ) ( 2) (2 (2, )) (1 ).}
ll c l lh n P N hα α α− + = ⋅ − + −  

Results of the previous section can be readily 
applied to obtain the expression for expected 
total capacity, lC , during the “on” period, 
which is *( ) ( ) /l l l lE C C Cα λ= ⋅ , where lλ  is 
disruption rate during the “on” period. Similarly, 
we have ( ) / .l

l lE Y eα λ=  While the length of 
each cycle is affected by the change in 
disruption rate, the total number of disruption 
events in a cycle, cN , is determined solely by a 
uniform capacity reduction process that evolves 
independently from the disruption rate. 
Therefore, we can deduce immediately using (2) 
that ( )cE N eα=  and ( ) .l

lcE N eα=  Then, 
since capacity disruption rate remains at λ  
during the “off” period we have, 

( ) .
l

s
e eE Y

αα

λ
−=  

Likewise, expected total capacity during the 

“off” period, sC , can be readily obtained after 
considering the initial capacity level in the “off” 
period, 0C . Note that 
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so that 
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This expression can be simplified to yield the 
following. 

*
0

0( | )s
C CE C C eα α

λ λ
−= ⋅ −  

*
0

3
( |  (1 ) )[

lc c
n

P N N n C Cα
∞

=
− = = − ⋅∑  

2

1
( , ) ( , ){ }

n

k
k

h n h nα α α α
−

=
− + − +∑  

*
0( 2 |  (1 ) )

lc cP N N C Cα− = = − ⋅ ⋅  

(2, )]h α α−  

*
0 ( , ).

C Ceα α ψ α α
λ λ

−= ⋅ − ⋅  

We also have 

*
0( |  (1 ) )

lc cP N N n C Cα− = = −  

1( ) ( ) .
( 1)! !

n n

n n
α α α α−− −= −

−
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In order to compute ( )sE C , we need the 
expression for 0( )E C eα α−⋅ , which is derived 
as follows, 

0( )E C eα α−⋅  

0( ( | ))
lcE E C e Nα α−= ⋅  

*

1
( ) (1 )

l l
c

n
C P N n e

α α α
α

α
∞

−

=
= ⋅ = ⋅ − ⋅ ⋅∑ ∫  

1 1
{ / [ ]}

( 1)! ( 1)! !

n n n
l l l d

n n n
α α α α

− −
−

− −
 

1
*

1
( ) [ ]

( 1)! !
l

n n
l l

l
n

C e
n n

α α α αα α
−∞

−

=
= ⋅ − ⋅ ⋅ − ⋅

−∑  

1 1
{ / [ ]}

( 1)! ( 1)! !

n n n
l l l

n n n
α α α− −

−
− −

 

* ( )l l
lC e eα α αα α −= ⋅ − ⋅ ⋅  

* ( )l
lC e eα αα α= ⋅ − ⋅ ⋅  

Now, we are in a position to obtain ( ) :sE C  

*
( ) ( )l

s l
CE C e eα αα α
λ

= ⋅ −  

*
( , )l

l

C e d
α α
α

ψ α α α
λ

− ⋅∫  

*
( , ).l

C f α α
λ

= ⋅  

This brings us to the following principle 
proposition. 

Proposition 2 For the capacitated system 
described in Proposition 1, the long-run average 
reward converges to the following expression. 

( )
( )

t E
t E Y

Π Π→  

* *( )[ ( , )] ( )
.

[ / ] [( ) / ]

l

l l

l l
l l

l l

l

C C C ef m

e e e

α

α αα

απ α α λ
λ λ λ

λ λ

⋅⋅ + − ⋅
=

+ −  
(6)

 

Proof. Using Theorem 3.6.1 in (Ross 1996), we 
know that long-run average reward converges to, 

( ( ) ( )) ( ) ( )
.

( ) ( )
t l s l l

s l

E C E C E Y m
t E Y E Y

π λΠ ⋅ + − ⋅
→

+   (7)
 

The proof follows by substituting 
expressions for ( )lE C , ( )sE C , ( )lE Y  and 

( )sE Y  into (7).                         ■ 

5. Numerical Analysis and Sensitivity 
Study 
An optimal two-phase policy maximizes 

long-run average reward by activating 
countermeasures that set optimal levels of lλ  
and .lα In what follows, we conduct a 
parametric analysis of the optimal policy 
behavior (Eq. 6). Note that in computing 

( , )lf α α  (through ( , ))ψ α α  and ( ),l lC α  we 
encounter infinite sums which include terms 

( )
lc cP N N n− =  and ( ),

lcP N n=  respectively. 
These terms represent the probability 
distribution of the number of disruptions during 
the “off” and “on” phases, respectively. Since 
the mean disruption magnitude is strictly 
positive and *C  (and hence, lc  and c ) is 
finite, both of these terms go to zero as n → ∞ . 

Since the disrupted capacity is regained 
instantaneously at the end of each cycle, the 
solution to an optimum policy * *( , )lα α  is 
trivial. Hence, we analyze the behavior of the 
optimal lα  as a function of ,α  i.e., *( ),lα α  
for fixed values of λ  and .lλ We first observe 
that *( )lα α  is monotonically non-decreasing in 
α : as α  increases, the cycle time will 
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increase as well, and so are the periods of lower 
system capacity. On the other hand, increasing 

lα  results in longer periods of higher system 
capacity. This trade-off between benefits and 
costs of activating countermeasures renders 

*( ) .lα α α<  In what follows, we use the initial 
parameter values as shown in Table 1. 

The cost of countermeasures is assumed to 
be of the form ( ) ( / ) .r

l lm λ λ λ=  The cost 
decreases as the disruption rate lλ  gets higher, 
which is used to measure effectiveness of 
countermeasure technology, and the cost 
increases in r , which is used to model the 
marginal cost of installing a more effective 
technology. As Figure 3 illustrates, *( )lα α is 
increasingly decreasing in r . We also observe 
that as r  gets larger, *( )lα α  exhibits a higher 
sensitivity to per unit changes in r . As one can 
see, in flat regions of Figure 3, reducing the 
disruption rate is not economically sound. 

Table 1 Initial parameter values 

lλ  π  λ  *C r  

0.0005 1,000 0.001 1 1 

 

Figure 3 A 3-dimensional representation of *
lα  as a 

function of α  and .r  

For a linear cost function (r = 1, plot I in 
Figure 4), *( )lα α  is increasing in ( / ),lλ λ  
which implies that the incremental benefits of 
reducing the rate of capacity disruptions do not 
warrant the use of countermeasures over 
extended periods of time. However, if the 
marginal cost of installing better 
countermeasures is not constant ( r =0.001, plot 
II in Figure 4), the plots of *( )lα α  for different 
values of ( / )lλ λ  intersect. If the marginal cost 
of a decreased ( / )lλ λ  is relatively small, then 

*( )lα α  may be increasing with a more 
advanced technology (this relationship does not 
hold for higher values of )α . However, both 
plots agree that the rate of increase of *( )lα α  is 
higher in the lower region of ( / )lλ λ  values. 
Therefore, we see that expected increase in 
countermeasure costs over extended periods 
outweighs the benefits of better technology. 

 

Figure 4 Behavior of *( )lα α  for different values of 
/ .lλ λ  

Furthermore, we observe that *( )lα α  is 
insensitive to changes in maximum capacity *C  
in the neighborhood of initial parameter values 
in Table 1. Common wisdom, however, suggests 
that *C  shall be positively correlated with the 
optimum period of activated countermeasures. 
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Should all items be sold, increasing *C  would 
lead to higher profits and hence, 
countermeasures should be engaged for longer 
periods (plot I in Figure 5, where *C  takes 
values in [0, 0.1]). As *C  approaches 0.1, 
marginal increase in *( )lα α  falls off sharply. 
This suggests that the optimal period of 
activated countermeasures is insensitive to 
changes in maximum capacity, if *C  is already 
high. Also, the region of sensitivity of *C  is a 
function of the unit profit. As illustrated in the 
second plot of Figure 5, *( )lα α  becomes 
responsive to changes in *C ∈  [0.1, 1.0], when 
π  gets smaller (this change in sensitivity may 
be minimal if *C  is already high). 

 

Figure 5 Behavior of *( )lα α  for different values of 
α  and *.C  

A similar relation exists between *( )lα α  
and .π  Figure 6 illustrates that *C  is 
insensitive to changes in π around the original 
parameter value of π =1000 whereas at lower 
unit profit levels, marginal changes in π render 
larger perturbations in *( ).lα α Changes in 
system capacity for low value items may require 
more radical changes in countermeasure policy. 
Nevertheless, the region of sensitivity is 
relatively small for both π  and *,C which 

suggests on a larger scale that *( )lα α  is quite 
robust to changes in system profitability. 

 

Figure 6 Behavior of *( )lα α  for different values of 
α  and .π  

6. Conclusions 
In this manuscript, we presented one of 

initial attempts to fill the vacuum in the existing 
literature focused on development of active 
countermeasure policies for managing lean 
capacitated systems in the presence of random 
capacity disruptions. The system under 
consideration experienced stepwise partial 
capacity disruptions with exponentially 
distributed interarrival times and uniformly 
distributed magnitudes, followed by 
instantaneous recovery. Examples of such 
capacity dynamics include: (i) shortage of repair 
personnel and performance degradation caused 
by failing equipment with a full repair upon a 
complete failure, (ii) non-self-announcing 
stepwise system failures, and (iii) gradual 
equipment phaseout and modernization. 

We explored two different countermeasure 
policies for a risk-neutral decision maker, who 
seeks to maximize the long-run average reward. 
The initial model considered a one-phase policy, 
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where countermeasures were implemented 
during the entirety of a disruption cycle. The 
results of this model served as a basis to analyze 
a two-phase strategy, where countermeasures 
were activated during only a fraction of a 
disruption cycle. For the latter model, we aimed 
to determine the optimal threshold when the 
countermeasures should be disengaged. In this 
paper, we are primarily concerned with analytics 
of the impact that countermeasure options can 
have on the system performance. In practice, the 
countermeasure options could range from purely 
technological solutions, such as installation of 
fire prevention water sprinkler systems, to 
non-technological decisions that could, for 
example, alleviate labor strikes or prevent 
terrorist attacks or political unrest. In this 
investigation, we considered two forms of the 
countermeasure cost functions. Our sensitivity 
analysis for the two-phase policy reveals that as 
the system profitability increases and the costs 
of countermeasures become smaller, the optimal 
countermeasure policy becomes less sensitive to 
changes in the system parameter values. 

In this paper, we did not address the question 
of the best critical threshold that initiates 
immediate capacity recovery, as we assumed 
that the cost associated with administering any 
level of α is zero. Therefore, the problem of 
obtaining the optimal pair * *( , )lα α  has a trivial 
solution (i.e., set *α =0). Rather, we aimed to 
find the optimal time in each regenerative cycle 
when countermeasures should be terminated 
given a capacity recovery threshold of .α  
Section 5 presented a numerical analysis to 
determine optimal *( )lα α  that maximized 
long-run average reward under various 
parametric settings. We presented the results of 

our sensitivity analysis for an exponential cost 
function. In general, *( )lα α  was found to be 
quite sensitive to exponentially increasing cost, 
as well as capacity and unit profit changes, if the 
system was already operating with low profit 
margins. However, as the profitability of the 
system increased, *( )lα α  had a robust response 
to system parameter changes. 

In general, capacity disruption risk can be 
mitigated by reducing the probability of the 
hazardous events as well as their severity. In this 
paper, we considered countermeasures that 
mostly impact the probability of hazardous 
events rather than their severity. For risks that 
render partial capacity disruptions, the model 
recommends implementation of 
countermeasures during only a fraction of the 
operational cycle. In many cases, partial 
capacity disruptions are caused by risks 
associated with daily operations, such as small 
fire events and stoppages due to machine 
failures. For such events, our results can 
substantiate that certain countermeasures may be 
cost prohibitive even when they offer significant 
reduction in the disruption rate. For example, in 
a manufacturing facility, installation of costly 
fire extinguishing systems may be disfavored to 
employee training programs that raise awareness 
of overall factory cleanliness. 

This paper provides one of the initial 
attempts for providing closed form solutions for 
optimal countermeasure policies for mitigation 
of random disruptions in capacitated systems. 
We hope that the presented models will be 
further generalized to address similar questions 
for capacitated systems evolving under more 
complex capacity dynamics. We also believe 
that such single-facility models will form a basis 
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to approach capacity management issues in large 
enterprise networks. 
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Appendix 
Computation of ( )E C in Equation 3. We 
begin by conditioning on .cN  Noting the 
dependency between iCΔ  and ,cN we first 

compute the conditional density of 
1

,
k

k iαΓ =∑  

( | )
k cf s N nΓ =  for 1k n< −  and 3.n ≥  Note 

that 

( | )
k cf s N nΓ =  

1

1

( , , )
.

( , )
k n n

s
n n

P s u
du

P
α α

α α
−

−

Γ = Γ = Γ >
=

Γ ≤ Γ >∫     (8) 

Since 'i sα are independent, we can use Result 1 
to obtain 

1( , , )k n nP s u α−Γ = Γ = Γ >  

1
1 1( ) ( ) ( )k n

i i ni i kP s P u P uα α α α−
= = += = = > −∑ ∑  

1 2( )(1 ) .
( 1)! ( 2)!

k n ks u su
k n k

α
− − −−= + − ⋅ ⋅

− − −
         (9) 

Substituting (9) in (8) and evaluating the integral, 
we obtain 

( | )
k cf s N nΓ =  

1

1
( , )n nP α α−

= ⋅
Γ ≤ Γ >

 

1 2( )(1 )
( 1)! ( 2)!

k n k

s

s u su du
k n k

α
α

− − −−+ − ⋅ ⋅
− − −∫  

1 1( ) ( )[( ) /
( 1)! ( 1)! ( )!

k n k n ks s s
k n k n k

α α− − − −− −= ⋅ −
− − − −

 

1
( )].
( 1)! !

n n

n n
α α−

−
−

 

We use this conditional density to compute 
( | )k cE N nΓ = as follows: 

( | )k cE N nΓ =  

1 1

0

( ) ( )[( ) /
( 1)! ( 1)! ( )!

k n k n ks s s
k n k n k

α α α− − − −− −= ⋅ −
− − − −∫  

1
( )] .
( 1)! !

n n
ds

n n
α α−

−
−

 

1
! 1

!( )! n n
nk

k n k nα α−= ⋅ ⋅ ⋅
− −

 

1
0

[( ) ( )k n kn k s s ds
α

α α − −− − −∫  

1 1
0

( ) ].k n ks s ds
α

α+ − −+ −∫  

Note that both integrals represent beta functions 
(to see this, make a variable change / ).t s α=  
Therefore, we arrange the expressions to obtain 

( | )k cE N nΓ =  

1
! 1

!( )! n n
nk

k n k nα α−= ⋅ ⋅ ⋅
− −

 

[( ) ( 1, )nn k B k n kα α− − + −  

1 ( 2, )]n B k n kα ++ + −  

1[ ]
1( ) ( 1)

k kn k
n nn k

α α

α

+= ⋅ − − +
+− ⋅ −

 

( , ).kh n α=                            (10) 

Note that this expression holds for 1k n< −  
and 3.n ≥  For 1k n= −  and 2,n ≥  

1

1
1

( ) ( )
( | )

( , )
n

n

n
c

n n

f s P s
f s N n

P
α α
α α

−

−

Γ
Γ

−

⋅ > −
= = ⋅
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Using the above expression, we eventually 
obtain 

1( | )n cE N n−Γ =  
1

1 0

1 (1 )
( 2)!

( 1)! !

n

n n
s s ds

n
n n

α
α

α α

−

−= ⋅ − +
−

−
−
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1

1
( 1) [(1 ) ]

1

n n

n n
n n

n nn
α αα

α α
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−
−= − +
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( , ).h n α=                             (11) 

We can now derive expected capacity per cycle. 
Equation (1) gives 

1
*

1 2 1
( ) ( ( | ))

c cN N i

i j j c
i i j

E C E C E X X N nα
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= = =
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Finally, substituting equations (10) and (11), we 
obtain 

*
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Abstract: In this paper, we investigate a manufacturing system exposed to 
unpredicted capacity disruptions with exponentially distributed interoccurrence 
times and uniformly distributed magnitudes of disruptions. Each disruption 
renders a stepwise partial system capacity loss accumulating over time until the 
remaining capacity reaches a certain level, upon which the system gradually 
restores the lost capacity to the target level. We examine implementation of a 
countermeasure policy, aimed at reducing the disruption rate, for a risk-neutral 
decision maker who seeks to maximise long-run average return. We explore 
how the policy of maintaining the optimal disruption rate is affected by a 
number of system parameters. 
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1 Introduction 

In 1995, an earthquake hit the port town of Kobe, Japan, razed to the ground 100,000 
buildings and shut down Japan’s largest port for over two years. In September 2002, 
longshoremen on the US West Coast were locked out in a labour strike for 11 days, 
forcing the shutdown of 29 ports. With more than $300 billion of goods shipped annually 
through these ports, the dispute caused between $11 and $22 billion in lost sales, spoiled 
perishables and underutilised capacity. The recent 2003 outbreak of SARS in China and 
Singapore forced Motorola to close several plants (Berniker, 2003). Man-made disasters 
are also on the rise, from terrorist attacks to computer viruses (Lemos 2003a,b).  
As evidenced from these and other examples, enterprises are consolidating their internal 
and external suppliers to gain economies of scale at the expense of heightened risk 
exposure to supply chain disruptions.  

Computational models and methodologies suitable for analysing the effects of 
capacity imbalance have been largely unavailable (Savachkin and Wortman, 2006). 
While the supply chain literature abounds, only a small portion of it has been dedicated 
to modelling the impact of various disruptions such as demand patterns, supplier and 
production lead times, prices, imperfect process quality and process yield. The research 
efforts have been focused primarily on modelling operational disruptions and localised 
issues of lot sizing, scheduling, ordering policy, management of costs, etc. The work on 
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modelling local supply rate changes were pioneered by Meyer et al. (1979), and later 
extended by Posner and Berg (1989) and Arreola-Risa and DeCroix (1998). Parlar and 
Berkin (1991) studied the classic EOQ problem with supply disruptions, later extended 
by Parlar and Perry (1996). Other work on production-inventory systems with 
deterministic demand and supply disruptions for a localised entity includes Bielecki and 
Kumar (1988), Weiss and Rosenthal (1992) and Mohebbi (2003). Papers addressing both 
supply disruptions and random demand include Chao (1987), Parlar (1997) and Song and 
Zipkin (1996). 

Modelling production rate disruptions, such as machine failures, challenged many 
researchers for several decades, and numerous research efforts have been devoted to 
extending classical Economic Manufacturing Quantity (EMQ) model (Abboud, 1997; 
Buzacott and Shanthikumar, 1993; Groenevelt et al., 1992; Henig and Gerchak, 1990; 
Hopp et al., 1989; Kim and Hong, 1997; Lee, 1992; Porteus, 1986; Rosenblatt and Lee, 
1986). As an example, Gallego (1988a,b) examine the classical economic lot-sizing 
model with single and multiple disruptions. A single localised unreliable bottleneck 
facility with a constant production and demand rate that is subject to random disruptions 
was analysed in Moinzadeh and Aggarwal (1997). Temporary price changes have also 
attracted interest among operations researchers (Arcelus and Srinivasan, 1995; Ardalan, 
1995; Aull-Hyde, 1992; Taylor and Bradley, 1985; Tersine and Barman, 1995). 

Our literature survey reveals that research efforts addressing the disruption  
of supply are insufficient. Most of the open literature focuses on reactive management of 
inventory, ordering policies, production lot sizing, scheduling and supply chain design. 
To the best of our knowledge, there have been no attempts to consider introduction of 
active countermeasure policies to mitigate unpredicted capacity disruptions in a 
production system. In this paper, we offer a modelling paradigm suitable for capturing a 
certain regenerative stochastic trajectory of capacity in a manufacturing facility exposed 
to hazardous events. The mitigation strategy focuses on decreasing the capacity 
disruption rate. The per unit time cost of countermeasures is modelled as a decreasing 
convex function of the rate. The rest of the paper has the following organisation.  
In Section 2, we present capacity-related terminology and notation, and state model 
assumptions. In Sections 3 and 4, we derive the average long-run reward as a function of 
the capacity disruption rate. In Section 5, we analyse how the optimal disruption rate 
behaves as we vary 

1 the unit profit 

2 the maximum capacity level  

3 the recovery rate 

4 the rate of recovery delay.  

Section 6 offers our concluding remarks.  

2 Problem 

We consider a manufacturing system and focus on its stochastic capacity, trajectory 
shaped in particular, by disruptions of random origin and mode. Let Ct denote available 
system capacity at time t ≥  0, which is defined as the maximal throughput that system is 
internally capable of sustaining at t. Throughput is defined as usual as the long-run 
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average of the number of item units per unit time processed by the system. The system 
operates at a target capacity C* and experiences some periodic and unpredicted 
disruptions, each of which renders an instantaneous partial or full loss in system capacity. 
Disruptions are assumed to arrive one at a time, where the ith instance results in a 
decrease ∆Ci in the remaining system capacity. Capacity stays at the reduced level until 
the next arrival unless the remaining disrupted capacity falls below a critical threshold  
c > 0, upon which the system experiences some recovery delay followed by a gradual 
restoration of accumulated lost capacity back to the level C* (Figure. 1). We assume that 
the system stochastically regenerates at the points of full recovery where each such point 
marks the beginning of a new regeneration cycle.  

Figure 1 A realisation of the system capacity trajectory 

 

The capacity trajectory described above subsumes as a special case the dynamics 
presented in Figure 2 (with c = C*), where every degradation entails a recovery delay and 
a subsequent capacity comeback. Capacity dynamics as in Figure 2 can be  
observed in a number of manufacturing scenarios. An instantaneous capacity loss can be 
attributed to disruptions in supporting infrastructure (e.g. power outages, intermittent 
compressed air supply, fires, etc.), labour strikes, and equipment failure or modernisation 
followed by a gradual capacity recovery. Another example is a warning of act of 
terrorism that ensues checking the area and a piecemeal unfolding of human and 
manufacturing resources. In what follows, we first focus on the general case (Figure 1) 
and introduce modelling assumptions on capacity kinesics and mitigation options. 

Figure 2 A realisation of the system capacity trajectory (c = C*) 
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Consider the first cycle, and let ∆Ci = αiC
*, where {0 ≤  αi ≤  1, i ∈  N} are i.i.d. random 

variables uniformly distributed over [0,1]. Let X1 be the time epoch of the first disruption, 
and let Xi, i ≥  2 be an interarrival time between (i−1)th and ith disruptions.  
We assume that Xi, i ≥  1 are i.i.d. random variables distributed exponentially with a rate 

λ > 0. The time of the nth capacity loss in each cycle is denoted by Zn = 1

n

ii
X

=∑ , where 

Z0 = 0. Let R represent a recovery delay distributed exponentially with a rate θ > 0.  
Finally, we assume a constant rate γ > 0 of capacity recovery with W  
designated as the recovery period (Figure 1). The rates λ, θ, and γ are  
time-independent. 

Let Nx = min
1

n s.t. C* – 
n

i
i

C x
=

⎧ ⎫∆ ≥⎨ ⎬
⎩ ⎭

∑ . Then, Nc is the number of disruptions during 

the cycle. We have that 

1

1 cN

i
i

W C
γ =

= ∆∑  

and hence the cycle time is Y = 
cNZ + R +W.  

We assume that a proactive system manager can integrate certain countermeasure 
options to maintain the rate of capacity disruptions at a fixed level λ, at a cost of c(λ) per 
unit time. If λ′  denotes a ‘regular’ disruption rate (with no countermeasure options 
available), we assume that c(λ) = 0 for λ ≥ λ ′ . We further assume that c (·) is convex 
and decreasing in λ. The mitigation strategy assumes that the countermeasures are 
deactivated during the recovery delay and recovery period. When the countermeasures  
are deactivated, the manager earns a profit πCt at time t, where π is a time independent 
unit price factor minus unit cost. Thus, the total reward earned during a renewal cycle is  

Π = π
0

Y

tC dt∫ – c(λ) 
cNZ  = πC – c (λ) 

cNZ . The system manager’s objective is to 

maximise the long-run average reward, where the decision variable is λ. Towards this 
end, using the result of Theorem 3.6.1 in Ross (1996), we observe that the long-run 
average reward converges to 

( )

( )
t E

t E Y

Π Π→  

Hence, in the next section, we aim to derive the expected cycle length and the expected 
cycle capacity. 

3 Long-run average cycle capacity 

The total capacity per cycle can be expressed as 

Nc
Z R WC C + C  + C=  

where ,
Nc

ZC  CR, and CW represent total capacity associated with
cNZ , R and W portions of 

the cycle period, respectively. In the Appendix, we calculate E ( )
Nc

ZC  = ( )C α  C*/λ, 

where ( )C α is defined accordingly as well. Next, we obtain E(CR) as follows. 
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( )

*

1

* *

1

* *

1

 =     

= E    ( )

=

c

c

c

N

R i
i

N

i
i

N

ii

E C E C C R

C C R

C C E

α

α

θ

=

=

=

⎛ ⎞⎡ ⎤
∆⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

−

∑

∑

∑

–

– E  

where 

( )

( )

= = =
= = =

=

=

1 1 1

1

| ( )

2

1

2 2

c cN N

i i c c
i n i

c
n

c

E E N n P N n

n
P N n

e
E N

α

α α
∞

∞

=

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

=

=

∑ ∑ ∑

∑  

where E (Nc) = eα, follows from (6) in Appendix. Therefore  

( )
*

 = 1
2R

C e
E C

α

θ
⎛ ⎞

−⎜ ⎟
⎝ ⎠

 

Next, we calculate E(CW). To this end, we first obtain CW as follows: 

+
2

* *

1

 = 
2

cN

W i
i

W
C C C W

γα
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑–  

=

=

+

2
**

1* * 1

1

 = –  
2

cc
c

NN
N iiii

i
i

CC
C C

γ α γα
α

γ
=

⎡ ⎤⎛ ⎞ ⎣ ⎦
⎜ ⎟
⎝ ⎠

∑∑∑  

= – +

2 2
2

2 2
* **

1 11

2

c c
c

N NN
i ii iii

C CC α αα
γ γ γ

= ==
⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦∑ ∑∑

 

=== –

2
2

2
**

11

2

c
c

NN
iiii

CC αα
γ γ

⎡ ⎤
⎣ ⎦∑∑

. 

It follows then that  

=
= –

= –

2

2

2* *

1

* * 2

1

( )  
2 2

Var
2 2 4

c

c

N

i
i

N

i
i

C C
e

C C e
e

α

α
α

α
γ γ

α
γ γ =

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

⎛ ⎞⎛ ⎞
+⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑
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= – =

= – +

2

2

* * 2

1

* * 2

Var |
2 2 4

2 2 4 12

cN

i c
i

C C e
e E N n

C C e e
e

α
α

α α
α

α
γ γ

γ γ

=

⎛ ⎞⎛ ⎞⎛ ⎞
+⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑
 

Therefore, 

= + – +
2* * * * 2( )

( )  1
2 2 2 4 12

C C C e C C e e
e

α α α
αα

λ θ γ γ
⎛ ⎞ ⎛ ⎞

− +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

E C  

In the next section, we derive the expected cycle length and finalise computation of the 
long-run average reward limit.  

4 Long-run average reward 

We calculate E(W) as  

( )

( )

*

1

*

1 1

* *

1
( )

|

2 2

c

c

N

i
i

N

i c c
n i

c

E W E C

C
E N n P N n

C e C
E N

α

α
γ

α
γ

γ γ

=

∞

= =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
⎛ ⎞

= = =⎜ ⎟
⎝ ⎠

= =

∑

∑ ∑  

where E(Nc) = eα, follows from (6) in Appendix. We then have that 

( ) ( ) ( )( ) = 
cNE Y E Z E R E W+ +  

*1

2

e e Cα α

λ θ γ
= + +  

where ( )
cNE Z  = eα/λ follows from (7) in Appendix. 

At this point, we are in a position to analyse the limiting behaviour of the long-run 
average reward which is given by the following expression  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )( ) ( )
( ) ( ) ( )+ +

2* * * * 2

*

( )

( )

( ) / / 1 / 2 / 2 / 2 / 4 /12 / ( )

/ 1/ / 2

t E

t E Y

C C C e C e C e e e c

e e C

α α α α α

α α

π α λ θ γ γ λ λ

λ θ γ

Π Π→

⎡ ⎤+ − + − + −⎣ ⎦=

 

To simplify the expression and gain meaningful insights, we limit our attention to the 
special case (c = C*) as presented in Figure 2. Then the long-run average reward 
simplifies to 
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( )
( )

( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( )+ +

* *

*

1/ 1/ 2 / 2 1/ 6 ( ) /

1/ 1/ / 2
t

C C cE

t E Y C

π λ θ γ γ λ λ

λ θ γ

+ + − −ΠΠ
→ =  

or multiplying both the numerator and the denominator by λ, 

( )
( )

( ) ( ) ( )( ) ( )
( ) ( )( )

+* * *

*

C  1/ 2 / 2 1/ 6 +  C
= 

1 1/ / 2

t
C cE

t E Y C

λ θ γ γ λ

λ θ γ

⎡ ⎤π − − πΠΠ ⎣ ⎦→
⎡ ⎤+ +⎣ ⎦

 (1) 

To find the maximum long-run average reward, we equalise the first derivative of (1) 
with respect to λ, to zero. After simplification, we obtain 

( )
*

* 1 1 1
( )– c ( ) ( )

6 2 2

C
c

γ θ θ γ
⎛ ⎞⎛ ⎞π + = + λ λ λ − λ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
' 'C c  (2) 

The assumptions we made on c(·) render both sides of (2) positive. To see this, one needs 
to take the Taylor expansion to estimate c( λ′ ) = 0 using λ as the reference point, and 
observe that c(λ) – λ· ( )c λ′ is positive since ( )c′ ⋅ < 0. In the next section, we will analyse 
the results of comparative statics based on this equation to see how λ behaves as a 
function of  

1 the unit profit π  

2 the maximum capacity level C* 

3 the recovery rate γ 

4 the rate of recovery delay θ. 

5 Behaviour of the optimal disruption rate 

As stated previously, the cost function c (λ) has two intervals. For λ λ′≤ , c (λ) is convex 
and decreasing in λ (with c ( λ ′ ) = 0), whereas c (λ) = 0 for λ > λ ′ . In this section, we 
assume that a solution λ* to (2) exists and satisfies λ* < λ′ . Note that λ appears only on 
the right hand side of (2) (hereafter denoted as RHS). Since c (·) is convex, we have that 

RHS =
*1

( ) ( ) 0
2

C
c cλ λ λ

λ θ γ
⎛ ⎞∂ ′′ ′′− + − <⎜ ⎟∂ ⎝ ⎠

 (3) 

Note that (3) also ensures that the solution λ* to (2), if it exists, is unique. We first 
consider the impact of the unit profit π, which appears only on the left hand side of (2) 
(hereafter denoted as LHS). Note that LHS is increasing in π. Thus, as π increases, λ has 
to decrease to satisfy (2). In other words, as the unit profit increases, disruptions become 
more costly, and hence λ* becomes smaller to reduce the number of disruptions over a 
long time horizon. 

Intuitively, increasing the maximum system capacity C* should have a similar impact 
on λ*. As the system profitability increases, λ should be reduced to ensure that the  
system operates at the maximum capacity level. This intuitive relationship follows 
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mathematically only for a range of parameter values. Note that both RHS and LHS are 
increasing in C*. We have that 

*

LHS 1 1 RHS ( ) ( )
0, 0

* 6 2 2

c c

C C

λ λ λπ
γ θ γ

′⎛ ⎞∂ ∂ −= + > = >⎜ ⎟∂ ∂⎝ ⎠
 (4) 

Note that both derivatives in (4) are independent of C*. If ∂LHS/∂C* > ∂RHS/∂C*, then 
LHS exceeds RHS as C* is increased from the initial level. Therefore, the new λ* has to 
be smaller. This implies that if the system profitability is sufficiently high, λ* is a 
decreasing function of C*. Furthermore, if the ratio of γ to θ exceeds a certain threshold, 
the same relationship holds between λ* and C*. If the expected recovery delay is short, 
the loss induced by a single disruption is not high enough to justify a lower λ* when C* 
is increased. 

An increased rate of linear recovery γ clearly benefits the system performance. 
However, note that γ appears in both RHS and LHS of (2). Taking the first order 
derivatives with respect to γ yields 

* *
2 2

LHS 1 RHS ( ) ( )
= – C 0,  = – C < 0

6 2

c cλ λ λπ
γ γγ γ

′∂ ∂ −<
∂ ∂

 

It follows then that ∂LHS/∂γ < ∂RHS/∂γ for all values of γ, if π > 3 (c(λ) − λ ( )c λ′ ). This 
implies that if the unit profit is sufficiently high, then λ* is increasing in γ. When the 
linear recovery rate is high, the loss from a disruption event is relatively low and hence 
are reduced countermeasure benefits. Therefore, the system manager shall not  
be motivated to maintain a low level of λ* as the economic benefits no longer outweigh 
the costs of such a policy. 

Finally, we discuss the relationship between λ* and θ. Similar to γ, the parameter θ 
appears in both RHS and LHS. We have that 

LHS RHS*
2 2

1 ( ) ( )
= C < 0, < 0

2

c cλ λ λπ
θ θθ θ

′∂ ∂ −− = −
∂ ∂

 

Since ∂LHS/∂θ < ∂RHS/∂θ follows independent of θ for π C* > 2·(c (λ)− λ· c′ (λ)), we 
conclude that higher values of θ render a higher λ*, when system profitability is high. 
The intuition behind this relationship is simple. Higher values of θ mean reduced 
expected recovery delays, which in turn reduce the economic benefits of implementing 
countermeasures. Hence, it is economically sound to choose a higher λ*. 

6 Conclusions 

In this paper, we examined a production system experiencing periodic capacity 
disruptions, each of which is followed by a random recovery delay and a constant linear 
rate of recovery. The system manager’s objective was to implement a countermeasure 
strategy to alleviate the rate of disruptions λ with a convex cost function that is 
decreasing in λ. We derived an optimal level of λ that maximises the long-run average 
reward. The results of comparative statics suggest that choosing to maintain a lower 
disruption rate is optimal, if the system profitability is high. We concluded that higher 
unit profits and maximum capacity levels increase the costs of disruptions and hence, 
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must be balanced by appropriate countermeasure strategies. Since shorter expected 
recovery delay and faster linear recovery reduce the economic loss of disruptions, the 
optimal level of λ is increasing in both parameters. 

Acknowledgement 

This work was supported in part by the National Science Foundation Grant # DMI 
0621030. 

References 
Abboud, N.E. (1997) ‘A simple approximation of the EMQ model with poisson machine failures’, 

Production Planning and Control, Vol. 8, pp.385–397. 

Arcelus, F.J. and Srinivasan, G. (1995) ‘Discount strategies for one-time only sales’, IIE 
Transactions, Vol. 27, pp.618–624. 

Ardalan, A. (1995) ‘A comparative analysis of approaches for determining optimal price and order 
quantity when a sale increases demand’, European Journal of Operational Research, Vol. 84, 
pp.416–430. 

Arreola-Risa, A. and DeCroix, C.A. (1998) ‘Inventory management under random supply 
disruptions and partial backorders’, Naval Research Logistics, Vol. 45, pp.687–703. 

Aull-Hyde, R.L. (1992) ‘Evaluation of supplier-restricted purchasing options under temporary price 
discounts’, IIE Transactions, Vol. 24, pp.184–186. 

Berniker, M. (2003) SARS Morphs New Concerns for Asian IT Industry, Available at: 
http://www.internetnews.com/bus-news/article.php/2203101. 

Bielecki, R.E. and Kumar, P.R. (1988) ‘Optimality of zero inventory policies for unreliable 
manufacturing systems’, Operations Research, Vol. 36, pp.532–541. 

Buzacott, J.A. and Shanthikumar, J.G. (1993) Stochastic Models of Manufacturing Systems, 
Englewood Cliffs, NJ: Prentice Hall. 

Chao, H. (1987) ‘Inventory policy in the presence of market disruptions’, Operations Research, 
Vol. 2, pp.274–281. 

Gallego, G. (1988a) ‘Linear control policies for scheduling a single facility after an initial 
disruption’, Technical Report No. 770, School of OR and IE, Cornell University, Ithaca, NY. 

Gallego, G. (1988b) ‘Produce-up-to policies for scheduling a single facility after an initial 
disruption’, Technical Report No. 771, School of OR and IE, Cornell University, Ithaca, NY. 

Groenevelt, H., Seidmann, A. and Pintelon, L. (1992) ‘Production lotsizing with machine 
breakdowns’, Management Science, Vol. 38, pp.104–123. 

Henig, M. and Gerchak, Y. (1990) ‘The structure of periodic review policies in the presence of 
random yield’, Operations Research, Vol. 38, pp.634–643. 

Hopp, W.J., Pati, N. and Jones, P.C. (1989) ‘Optimal inventory control in a production flow system 
with failures’, International Journal of Production Research, Vol. 27, pp.1367–1384. 

Kim, C.H. and Hong, Y. (1997) ‘An extended EMQ model for a failure prone machine with general 
lifetime distribution’, International Journal of Production Economics, Vol. 49, pp.215–223. 

Lee, H.L. (1992) ‘Lot sizing to reduce capacity utilization in a production process with defective 
items, process corrections, and rework’, Management Science, Vol. 38, pp.1314–1328. 

Lemos, R. (2003a) ‘Slammer’ Attacks may become Way of Life for Net, Available at: 
http://news.com.com/Damage+control/2009-1001_3-983540.html. 

Lemos, R. (2003b) Worm Exposes Apathy, Microsoft Flaws, Available at: http://news.com. 
com/2100-1001-982135.html. 

APPENDIX D (Continued)

64



   

 

   

   
 

   

   

 

   

   14 A.A. Savachkin, N.O. Bakir and A. Uribe-Sanchez    
 

    
 
 

   

   
 

   

   

 

   

       
 

Meyer, R.R., Rothkpof, M.H. and Smith, S.A. (1979) ‘Reliability and inventory in a production 
storage system’, Management Science, Vol. 25, pp.799–807. 

Mohebbi, E. (2003) ‘Supply interruptions in a lost-sales inventory system with random lead time’, 
Computers and Operations Research, Vol. 30, pp.824–835. 

Moinzadeh, K. and Aggarwal, P. (1997) ‘Analysis of a production/inventory system subject to 
random disruptions’, Management Science, Vol. 43, pp.1577–1588. 

Parlar, M. (1997) ‘Continuous-review inventory problem with random supply interruptions’, 
European Journal of Operational Research, Vol. 99, pp.366–385. 

Parlar, M. and Berkin, D. (1991) ‘Future supply uncertainty in EOQ models’, Naval Research 
Logistics, Vol. 38, pp.50–55. 

Parlar, M. and Perry, D. (1996) ‘Inventory models of future supply uncertainty with single and 
multiple suppliers’, Naval Research Logistics, Vol. 43, pp.191–210. 

Porteus, E.L. (1986) ‘Optimal lot sizing, process quality improvement and setup cost reduction’, 
Operations Research, Vol. 34, pp.137–144. 

Posner, M.J. and Berg, M. (1989) ‘Analysis of a production-inventory system with unreliable 
production facility’, Operations Research Letters, Vol. 8, pp.339–345. 

Rosenblatt, M.J. and Lee, H.L. (1986) ‘Economic production cycles with imperfect production 
processes’, IIE Transactions, Vol. 18, pp.48–55. 

Ross, S.M. (1996) Stochastic Processes, New York, NY: John Wiley & Sons, Inc. 

Savachkin, A. and Wortman, M. (2006) ‘Capacity disruption in supply networks: a concise 
literature survey’, Under Review in Production and Operations Management, Available at: 
http://www.ieedge.com/papers/survey.pdf. 

Song, J. and Zipkin, P. (1996) ‘Inventory control with information about supply conditions’, 
Management Science, Vol. 42, pp.1409–1419. 

Taylor, S.G. and Bradley, C.E. (1985) ‘Optimal ordering strategies for announced price increases’, 
Operations Research, Vol. 33, pp.312–325. 

Tersine, R.J. and Barman, S. (1995) ‘Economic purchasing strategies for temporary price 
discounts’, European Journal of Operational Research, Vol. 80, pp.328–343. 

Weiss, H.J. and Rosenthal, E.C. (1992) ‘Optimal ordering policies when anticipating a disruption in 
supply or demand’, European Journal of Operational Research, Vol. 59, pp.370–382. 

APPENDIX D (Continued)

65



   

 

   

   
 

   

   

 

   

    Random capacity disruptions in a production system 15    
 

    
 
 

   

   
 

   

   

 

   

       
 

Appendix 
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We first need the following result 
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Now we are in a position to compute ( )
cNE Z  using Result 1. Let c = (1 − α)C∗ for some 

α ∈ (0,1). Note, the equivalency of events {Nc = n} and 
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which can be used to obtain E(Nc), the expected number of capacity loss events per cycle 
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and, therefore 
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We proceed by conditioning on Nc. Noting the dependency between ∆Ci and Nc,  

we first compute the conditional density of 
1

k

k iαΓ =∑ , ( | )
k cf s N nΓ =  for k < n − 1 and 

n ≥ 3.  
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We use this conditional density to compute ( | )k cE N nΓ = as follows: 
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Making a variable change t = s/α, we see both integrals are beta functions and rearrange 
the expression 

( ) 1
1

! 1
| ( ) ( 1, ) ( 2, )

!( )!

1
( , )

( )(( / ) 1) 1

n n
k c n n

k

n
E N n k n k B k n k B k n k

k n k n

k k
n k h n

n k n n

α α α
α α

α α α
α

+
−

⎡ ⎤Γ = = − − + − + + −⎣ ⎦− −
+⎡ ⎤= − − + =⎢ ⎥− − +⎣ ⎦

 (A4) 

Note that (A4) holds for k < n − 1 and n ≥ 3. For k = n − 1 and n ≥ 2 
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Using the above expression, we eventually obtain 
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Finally, substituting Equations (A4) and (A5), we obtain 
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APPENDIX E:

PUBLICATION 4: A PREDICTIVE DECISION AID METHODOLOGY

FOR DYNAMIC MITIGATION OF INFLUENZA PANDEMICS

In this appendix, we present the version of the manuscript “A Predictive Decision Aid

Methodology for Dynamic Mitigation of Influenza Pandemics” currently in the second round

of review in the special issue on “Optimization in Disaster Relief ” in the OR Spectrum by

Springer Publisher. The co-authors, Dr. Alex Savachkin, Alfredo Santana, Diana Prieto,

and Dr. Tapas Das, authorized to include this document in my dissertation. Springer

Publisher retains the copyright of this manuscript. The written authorization from the

publisher to include the paper in my Ph.D. dissertation is attached in Appendix A.
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1 Motivation

Pandemic influenza (PI) outbreaks have historically entailed enormous societal calamities aggravated by

tremendous economic forfeitures. Since 2003, scattered outbreaks of the avian-to-human transmittable

H5N1 virus have been appearing through Asia, the Pacific region, Africa, Europe, and the Near East

[1]. As of December 2009, the World Health Organization (WHO) has reported 447 confirmed H5N1

infected cases which resulted in 263 mortalities worldwide [2]. Although instances of H5N1 human-to-

human transmission have rarely shown up in the recent statistics, ever-mutating emerging virus strains

with unpredictable epidemiology pose a menacing threat to the humankind. A milder human-to-human

transmissible H1N1 virus subtype resurfaced in Mexico in the Spring of 2009 and swiftly propagated to

a global H1N1 pandemic outbreak. As of late December 2009, 208 countries have been affected with a

total number of mortalities of at least 11,516 [3]. Most experts have an ominous expectation that the

next pandemic will likely be caused by an emerging highly pathogenic virus subtype, to which there is

little or no preexisting immunity in humans [4].

Combating influenza pandemic outbreaks requires an understanding of real-time evolution of virus

epidemiology and population dynamics. The practicality and effectiveness of mitigation strategies also

heavily depend on available emergency response infrastructure, mitigation resources, and allocation

policies. At present, although the most commonly studied virus strain H5N1 has reached a worldwide

case fatality ratio of more than 60% in recent years [2], prediction of the exact emerging virus subtype

remains a challenging task. With modern technology, even after a new virus subtype is identified, a

surge production of adequate stockpiles of a potent vaccine can take up to six months [5, 6]. This

may prove to be forbiddingly long for the vaccine to be an effective mitigation resource in the critical

onset stage of a pandemic. In the best case scenario, even if the emerged subtype has a known

epidemiology, the existing stockpiles would be insufficient [7, 8]. Furthermore, supply of antiviral

drugs, immunizers and other healthcare providers, hospital beds, resources to enforce social distancing,

and logistics will also be substantially constrained. Hence, development of mitigation strategies must

be done amidst limited knowledge of disease and population dynamics, constrained infrastructure,

and limited availability and effectiveness of clinical treatments. This challenge, attested by the recent

H1N1 outbreak, has been acknowledged by WHO [8] and echoed by national public health authorities,

including the U.S. Centers for Disease Control and Prevention (CDC) [9, 10].

2 Status of Current Literature

The existing general literature on pandemic modeling aims to address various aspects of the pandemic

process including (i) underlying spatio-temporal structure, (ii) contact mechanism, (iii) disease trans-

mission, (iv) disease natural history, and (v) development of containment and mitigation strategies.

These aspects are closely interrelated. For instance, the nature of the spatio-temporal structure, in-

cluding composition of the social mixing groups and temporal dynamics of the affected population,

drives the contact process which is the main determinant of the disease transmission [11–14]. A com-

prehensive decision-aid model for containment and mitigation must take into account all of the above

constituents; it must incorporate the mechanism of disease progression, from initial infection, to asymp-
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tomatic earlier phase, symptom manifestation, and final health outcome (recovery or death) [15–17];

it must also consider the population dynamics of disease spread, including individual susceptibility

[18, 19], transmissibility [15, 20–22], and human behaviors that mediate infection generation [23–26];

finally, it must incorporate the impact of pharmaceutical and non-pharmaceutical prevention and in-

tervention, including vaccination, antiviral therapy, social distancing, school and workplace closures,

travel restrictions, and use of low-cost measures, such as face masks and hand washing [14, 17, 27–33].

In essence, effective mitigation strategies have a two-fold objective: (i) systemically to alter the disease

dynamics and control disease progression with available clinical therapies, and (ii) to alter the social

dynamics and contain disease propagation within the affected communities. Mitigation strategies vary

in the composition of the target groups, geo-spatial coverage, and implementation time.

The current literature on assessment and development of PI containment and mitigation strategies

can be broadly classified into (i) statistical models, (ii) mathematical models, (iii) simulation-based

approaches, and (iv) combinations of thereof. In what follows, we present a summary survey of these

approaches, mostly focusing on the simulation-based approaches.

The statistical models, driven mainly by likelihood or regression-based approaches, have primarily

been used for epidemiological parameter assessment and estimation of the pandemic impact [22, 34,

35]. Traditionally, these models have inherently featured relatively simple and general spatio-temporal

structures (e.g., homogeneous social mixing groups [21, 36–38]).

The mathematical models have mostly focused on modeling virus spread and policy assessment.

Notable examples of such models are dynamic compartmental approaches, typically represented in

the form of a set of differential equations, which delineate transitions between disease phases (e.g.,

susceptible, exposed, symptomatic infected, etc.) [11, 39–41]. Based on the solution approach, the

mathematical models can be subdivided into analytical (or closed form) and iterative. Compared to the

statistical models, the dynamic-iterative models feature more granular composition of the mixing groups

[11, 33, 42]. However, the degree of granularity is still limited since any additional spatio-temporal

considerations can negatively impact the computational robustness of the models. Description of the

contact processes in mathematical models generally does not take into account changes in the behavioral

patterns during the course of the pandemic (e.g., compliance to intervention by vaccination and social

distancing) [39–41]. Consideration of behavioral aspects can be found in some of the recent simulation-

based models [43–46]. Furthermore, mathematical models are typically based on the infection pathways

and disease progression that are invariant to time and individual attributes [40, 41].

The simulation-based approaches have been used for modeling virus spread and assessment and

generation of pharmaceutical and/or non-pharmaceutical interventions. Based on the way of generating

disease progression, these models can be categorized as those that track infection pathway of each

individual entity [13, 27, 47–51] and the rest that are driven by occurrence of infection events [14, 31].

In contrast to the statistical and mathematical models, the simulation models are capable of providing

most detailed description of population dynamics whereby each individual can be assigned a set of

attributes (e.g., age, gender, community, etc), that can be modified without altering the general model

structure [47, 52]. However, such comprehensive descriptive granularity is achieved at the expense of

higher data demand and substantial computational burden. As a result, most existing simulation-based
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approaches incorporate statistical and/or mathematical submodels (e.g., for infection generation) in

order to attain an effective balance between model accuracy and practicality [47, 51].

In recent years, the simulation-based models have focused on integration of therapeutical and non-

therapeutical prevention and intervention, to develop synergistic strategies aimed at result-oriented

use of constrained resources. These approaches first aim to implement a form of social distancing to

reduce the contact between the susceptible and the infected. The infected population is then treated

with an antiviral therapy to reduce infectiousness, and the susceptible are vaccinated to increase their

immunity. For example, [14] implemented social distancing for all contacted and symptomatic cases

followed by antiviral application. Such strategies, which appear to be more discriminating and thus less

expensive, have been found to be particularly efficient for low transmissibility scenarios (i.e., scenarios

with the values of the basic reproduction number below 1.8 [48, 53]).

Most notable among recent efforts is a 2006-2007 initiative by MIDAS, the Models of Disease In-

fectious Agent Study network, which studied three independent simulation models [54]. These models

were used to emulate large-scale PI spread for rural areas of Asia [48, 55], U.S. and U.K. [13, 49],

and the city of Chicago [56]. MIDAS cross-validated the models by simulating the city of Chicago,

with 8.6M inhabitants, and implementing targeted layered containment (TLC). Under TLC, the symp-

tomatic infectious cases refrain from going to work (take liberal leave), receive antiviral treatment, and

become subject to household quarantine; the asymptomatic contacts receive targeted antiviral prophy-

laxis (TAP) and become subject to household quarantine. The research findings of the MIDAS network

and other institutions [17, 31] were used in a recent “Modeling Community Containment for Pandemic

Influenza” report by the Institute of Medicine (IOM), U.S., to formulate a set of recommendations for

mitigating PI at the local level [57]. These recommendations were used in a pandemic preparedness

guidance developed jointly by CDC, HHS, and other federal U.S. agencies [58].

The IOM report [57] points out several limitations of the MIDAS models, observing

that “because of the significant constraints placed on the models” being considered by policy makers,

“the scope of models should be expanded.” The IOM recommends that “steps be taken now to adapt or

develop decision-aid models that can be readily linked to surveillance data to provide real-time feedback

during an epidemic. Research protocols should be developed, approved, and put in place now to generate

the information needed during an outbreak to inform models, and improve their disease sub-models.”

The report also strongly recommends 1) “that future modeling efforts incorporate broader outcome

measures ... to include the costs and benefits of intervention strategies”, and 2) “that models examining

the potential effectiveness of school and workplace closures on mitigating pandemic influenza include

a broader range of closure options.” We add here that most current approaches focus on assessment

of policies defined apriori ; few of the existing models for design of synergistic mitigation strategies

are “learning”, i.e., capable of predicting of and adapting to changes in the course of a pandemic,

and ultimately generating a dynamic optimal strategy [51]. Furthermore, the majority of the current

simulation models feature a single-region design (see Appendix, Table 1). In [51], we developed a

simulation-based optimization model for generating mitigation strategies for cross-regional pandemic

outbreaks. The model was implemented on a sample outbreak and the resultant strategy was compared

to the existing governmental pro-rata distribution policy, which allocates mitigation resources to each
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affected region in proportion to its population [59].

In this paper, we present a novel decision-aid methodology for developing dynamic predictive mit-

igation strategies for a network of regional pandemic outbreaks. The methodology is driven by a

large-scale simulation-based dynamic optimization model that incorporates varying virus epidemiology

and region-specific population dynamics. The model generates mitigation strategies for an efficient, pro-

gressive allocation of limited resources, including stockpiles of vaccines and antiviral drugs, healthcare

capacities for administration of vaccination and antiviral therapy, and social distancing enforcement re-

sources. The optimization control seeks dynamically to minimize the impact of ongoing outbreaks and

the expected impact of potential outbreaks, and allocates the resources accordingly. The methodology

considers measures of morbidity, mortality, and social distancing, translated into the cost of lost pro-

ductivity and medical expenses (societal and economic costs). The model was calibrated using historic

pandemic data and tested on a sample cross-regional outbreak in Florida, U.S., with over four million

inhabitants. We also present a sensitivity analysis for estimating the marginal impact (measured in

terms of the average total pandemic cost and the average number of fatalities) of changes in the total

budget availability and variability of some critical decision factors. These factors included: (i) vaccine

efficacy, (ii) efficacy of antiviral therapy, (iii) social distancing conformance level, (iv) social distancing

declaration threshold, and (v) social distancing period.

Compared to our previous work in [51], this paper features the following main advances: (i) in

[51], progressive resource allocations are irrevocable, i.e., once resources are allocated to an affected

region, they remain in the region until full depletion, regardless of the posterior dynamics of the overall

pandemic; in contrast, our model is capable of re-allocating the resources remaining from the previous

distributions, based on the current pandemic status, and thus achieving a more efficient resource uti-

lization; (ii) our model incorporates the cost of the resources (e.g., vaccines, antiviral, etc.) and strives

to allocate a total available budget, as opposed to a separate allocation of total available quantities

of individual resources, which vary significantly in their relative cost and effectiveness; (iii) our model

investigates optimal policy generation under two scenarios of virus severity: low transmissibility and

high transmissibility, as opposed to a high transmissibility analysis in [51]; (iv) our study attempts

to analyze the affect of social distancing policies (namely, the target population conformance) on the

dynamics of societal and economic costs; (v) in this paper, we also present a short description of our

decision-aid simulation software made freely available to general public through our website.

This paper has the following organization. In Section 3, we present our simulation-based opti-

mization methodology, including description of the population dynamics and disease transmission, the

mechanism of disease progression, and therapeutical and non-therapeutical intervention, followed by

description of the calibration methodology for single-region and cross-regional simulation models, and

presentation of the optimization control model. In Section 4, results of the testbed implementation are

presented, followed by discussion of the sensitivity analysis. Conclusions are given in Section 5.
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3 Simulation-Based Optimization Model

Our large-scale simulation-based optimization model generates predictive strategies to allocate a total

available budget of mitigation resources over a network of regional pandemic outbreaks, progressively,

from one affected region to the next. Mitigation resources include stockpiles of vaccine(s) and antiviral

drug(s), hospital beds, capacities for vaccination and antiviral administration, social distancing en-

forcement resources, among others. The methodology combines a cross-regional simulation model, a

set of single-region simulation models, and an overarching dynamic optimization control.

Figure 1: Schematic of simulation-based optimiza-

tion methodology

The regions inside the network are classified as

unaffected, ongoing outbreak (which includes new

outbreak), and contained (see Fig. 1). The re-

gions are interconnected by air and land travel,

which is emulated by the cross-regional model.

The single-region model mimics the population

and disease dynamics inside each ongoing region,

impacted by available pharmaceutical and non-

pharmaceutical prevention and intervention. The

pandemic spreads from ongoing to unaffected re-

gions by infectious travelers who pass through re-

gional border control. At every new regional out-

break episode (epoch), the cross-regional model

invokes the optimization control, which allocates

the total available resource budget, including re-

maining resources from the previous allocations,

to the new/ongoing outbreak regions (actual allo-

cation) and potential (unaffected) outbreak regions (virtual allocation). The objective function of the

optimization model incorporates measures of morbidity, mortality, and social distancing, translated

into the cost of lost productivity and medical expenses. The objective function strives to minimize the

total cost of the new/ongoing outbreaks and the expected cost of the potential outbreaks, spreading

from the ongoing regions. Detailed daily pandemic statistics are collected for each affected region,

including the numbers of new infected, deceased, and quarantined cases, for different age groups. As

the regional outbreaks become contained, the model estimates their actual societal and economic costs.

In the remainder of this section, we present the details of the cross-regional simulation model (Sec-

tion 3.1) and the single-region simulation model (Section 3.2), including the description of the calibra-

tion methodology (Section 3.3). The dynamic optimization control model is presented in Section 3.4,

followed by analysis of the results of the testbed implementation in Section 4.

3.1 Cross-Regional Simulation Model

The cross-regional simulation model emulates propagation of the pandemic across the network of af-

fected regions. It controls a set of single-region simulation models of ongoing outbreaks and invokes

the optimization model for actual and virtual resource allocation at every new outbreak epoch. The
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schematic of the cross-regional simulation model is presented in Fig. 2.

Figure 2: Schematic of cross-regional simulation model

The model is initialized by generating mixing groups and population dynamics for each network

region (for details, see Section 3.2.1). A pandemic is triggered by injecting one or more infectious cases

into a randomly selected region, designated as the initial outbreak region. Details associated with the

resulting contact dynamics and disease propagation within the region are presented in Section 3.2. As

the symptomatic cases start seeking medical assistance, the new regional outbreak is detected. At this

point, the model calls the optimization control which generates a resource allocation (see Section 3.4).

The cross-regional simulation then passes control back to the single-region model, which executes a

cycle (e.g., daily) of the regional disease and population dynamics, now mediated by the allocated

clinical therapies and social distancing measures (see Section 3.2). The simulation clock inside the

single-region routine advances in smaller time increments (e.g., hourly; see Section 4).

As the outbreak intensifies, it spreads over to the unaffected regions, as infectious travelers pass

undetected through air and land border control with some probability (the probabilities are different for

asymptomatic and symptomatic cases). Travelers are considered to act independently. Each infectious

traveler is assumed to initiate a regional outbreak with an equal, time-homogeneous probability ω for

the entirety of his/her infection period, regardless of his/her point of origin. For each unaffected region,

the outbreak probability at time t > 0, Pt , is calculated using the binomial probability law, as follows

Pt = 1− (1− ω)nt , (1)

where nt denotes the number of infectious travelers in the region at time t. Based on the outbreak

probability value, the cross-regional model determines which of the unaffected regions have become

new outbreaks (in the testbed implementation, the values of Pt were computed once at the end of each

day). The model also determines if an outbreak has been contained, based on a certain threshold of

the daily infection rate. The cross-regional simulation ends when all outbreaks have been contained.
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3.2 Single-Region Simulation Model

The single-region simulation model emulates population and disease dynamics within an affected region.

Figure 3: Schematic of single-region simulation model

A schematic of the model is

shown in Fig. 3. The model sub-

sumes the following main compo-

nents: (i) population dynamics,

(ii) contact and infection process,

(iii) disease natural history, and

(iv) mitigation prevention and in-

tervention, including measures of

social distancing, vaccination, and

antiviral application. The model

collects detailed regional influenza

statistics, including numbers of in-

fected, recovered, deceased, and

quarantined cases, for different age

groups. For a contained outbreak, its societal and economic costs are calculated. The societal cost

includes the cost of lost lifetime productivity of the deceased; the economic cost includes the cost of

medical expenses of the recovered and deceased and the cost of lost productivity of the quarantined

(see Section 4.1.3). The single-region simulation model builds upon a prototype presented in [47].

At any point of time, the population of an ongoing region is assumed to be composed of the fol-

lowing exclusive compartments: susceptible, contacted, infected, recovered, and deceased (see Fig. 4).

Figure 4: Schematic of the disease progression model

During the course of his/her social in-

teraction, a susceptible individual may

periodically come into contact with in-

fectious cases. The contacted individual

then either becomes infected with a cer-

tain probability p or returns to the com-

partment of susceptibles. An infected

case then either dies with a certain prob-

ability m or recovers. It is further assumed that a recovered person develops immunity and cannot be

susceptible again. All recovered cases continue circulating through the mixing groups. In what follows,

we present the details of the main components of the single-region simulation model.

3.2.1 Population Dynamics

We model a region as a set of population centers composed of mixing groups of various types, in-

cluding households, offices, manufacturing facilities, universities, schools, churches, shopping centers,

entertainment centers, etc. A household consists of household members, each of which is assigned a

comprehensive set of attributes including age, gender, parenthood, workplace, immunity status, infec-

tion susceptibility, probability of travel, and others. Each inhabitant is also assigned ∆t time-discrete
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(e.g., ∆t = 1 hour) weekday and weekend schedules, which depend on a number of factors, including:

(i) age and parenthood, (ii) inhabitant’s disease status, (iii) travel status, (iv) social distancing decrees

in place, and (v) inhabitant’s conformance to them. As their schedules advance, inhabitants circulate

throughout the mixing groups, staying a certain amount of time in each of them.

3.2.2 Contact and Infection Processes

Disease transmission occurs through contact events between infectious and susceptible individuals

within the mixing groups. At the beginning of each period ∆t (e.g., one hour), for each mixing group

g, the simulation model tracks the total number of infectious cases ng present in the group. Each

infectious case randomly generates rg per ∆t unit of time new contacts, uniformly, from the susceptible

cases present in the mixing group. We assume the following simplifying characterization of the contact

process: (i) during ∆t period, a susceptible may come into contact with at most one infectious case and

(ii) each contact exposure lasts ∆t units of time. Once a susceptible has started a contact exposure

at time t, he/she will develop into an infectious case at time t + ∆t with a certain probability that is

calculated as shown below.

Let Li(t) be a nonnegative continuous random variable that represents the duration of contact

exposure, starting at time t, that is required for a contact i to become infected. We assume that Li(t)

follows an exponential distribution with parameter λi(t), where λi(t) represents the instantaneous force

of infection applied to contact i at time t [42, 60, 61]. The probability that a susceptible i, whose contact

exposure has started at time t, will develop into an infectious case at time t+ ∆t is then given as

P{Li(t) ≤ ∆t} = 1− e−λi(t)∆t. (2)

3.2.3 Disease Natural History

Figure 5: Schematic of disease natural history model

It is assumed that upon becoming infected,

an individual enters simultaneously into the

phases of latency and incubation (see Fig-

ure 5). During the incubation phase, the in-

dividual stays asymptomatic (i.e., shows no

visible symptoms). At the end of the latency

phase, the individual becomes infectious and

enters the infectious phase [49, 54, 55, 62].

At the end of the incubation period, the in-

dividual becomes symptomatic. At the conclusion of the infectious period, the individual enters the

final disease stage which culminates in his/her recovery or death.

Mortality for influenza like diseases is a complex process, which is affected by a number of factors

and variables. For most of these variables, little or no accurate data has been collected from past

pandemics. In addition, the time of death could oftentimes be weeks following the disease episode

(mainly attributable to subsequent pneumonia related complications [63]). Because of the uncertainty

underlying the mortality process, we adopted a simplified, age-based form of the mortality probabilities,
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where the mortality probability of infected i, mi is given as

mi = µi − τρi, (3)

where µi is the age-dependent base mortality probability of infected i, ρi is his/her status of antiviral

treatment (0 or 1), and τ is the efficacy of the antiviral therapy, measured in terms of the reduction in

the base mortality probability [55].

3.2.4 Mitigation Strategies

Mitigation prevention and intervention considered in the single-region model include pharmaceutical

and non-pharmaceutical measures. Implementation of the mitigation measures is initiated upon de-

tection of the first confirmed infected case [64]. At this point, mitigation resources are assigned (see

Section 3.4) and deployed in the region. The model considers a certain outbreak detection delay and

a delay for deployment of field responders.

Pharmaceutical mitigation. Pharmaceutical prevention and intervention consist of vaccination and

antiviral application. Vaccines are offered to the individuals from a prespecified risk group, to reduce

their infection susceptibility. It is assumed that a certain fraction of the risk group will not comply with

vaccination. Once administered, the vaccine takes a certain period to become effective (typically, be-

tween 10 and 14 days) [65]. Vaccination is constrained by the available stockpile and the administration

capacity, measured in terms of the number of immunizer-hours.

For antiviral application, we assume that a certain fraction of symptomatic infected cases will

seek medical assistance [66, 67]. Those of them who belong to a prespecified mortality risk group,

receive an antiviral treatment, to reduce their mortality probability (see Eq. 3). It is assumed that

an antiviral becomes effective immediately. The antiviral application is subject to availability of the

antiviral stockpile and the administration capacity, measured in terms of the number of certified nurses.

Both the antiviral application and vaccination are affected by a number of social behavioral factors,

including conformance of the target population, its degree of risk perception, and associated compliance

of healthcare personnel [68–70]. The conformance level of the target population could be affected by

the demographical profile of the region [71–75] and quality of the public information available [76],

among other factors. The degree of risk perception of the target population could be impacted by a

negative experience developed during pharmaceutical campaigns of the previous outbreaks [77, 78], as

well as by public fear and rumors [79, 80].

Non-pharmaceutical mitigation. For a social distancing mediation, we adopted a guidance suggested

by CDC, U.S. [58]. The guidance establishes five categories of pandemic severity (from 1 to 5) and

recommends different quarantine and closure policies for each of the categories. The categories are

determined based on the value of the case fatality ratio (CFR), the cumulative proportion of the

number of fatalities in the total infected population. Our simulation model periodically reassesses the

CFR value during the pandemic course. For the CFR values lower than 0.1% (which corresponds to

Category 1), voluntary at-home isolation of the infected cases is implemented. If the CFR falls in

the range between 0.1% and 1.0% (Categories 2 and 3), in addition to the above at-home isolation,

the following measures are recommended : (i) voluntary quarantine of households members of infected

APPENDIX E (Continued)

79



10

cases and (ii) child and adult social distancing. Finally, for the CFR values exceeding 1.0% (Categories

4 and 5), all the above measures are implemented. Alike pharmaceutical measures, the effectiveness

of social distancing mitigation is also affected by several of the behavioral factors mentioned above

[76]. Our model considers a certain social distancing conformance level, which can vary based on the

demographics profile. Travel restrictions considered in the model included regional air and land border

control for outgoing infected travelers (for details, see the testbed implementation in Section 4).

3.3 Calibration Methodology

The single-region simulation model was calibrated using two commonly accepted measures of pandemic

severity: the basic reproduction number (R0) and the infection attack rate (IAR). R0 is defined as the

average number of secondary infections, produced by a typical infected case in a totally susceptible

population. Our model with its a detailed, person-to-person infection generation traceability allows

identification of all secondary infections created by each infected case. All infected cases are then

classified by generation of infection, as in [31, 48], where a generation is defined as the set of all infected

cases (offsprings) that are at the same tier of descent from their infection generators (ancestors) [61].

The value of R0 is then calculated as the average reproduction number of a typical generation in the

early stage of the pandemic when no interventions are implemented (known as the baseline scenario).

Our model was calibrated to attain the baseline values of R0 similar to those obtained from historic

pandemic data [48, 53] (see Section 4.1.2).

IAR is defined as the ratio of the total number of infections over the pandemic period to the size of

the initial susceptible population. To further calibrate our model, we used the following relationship

between baseline R0 and IAR, as presented in [14, 61]:

R0 =
− ln(1− IAR)

IAR
, for R0 ≥ 1, 0< IAR<1. (4)

Section 4.1.2 of this paper provides the details of the calibration process for a sample testbed scenario.

3.4 Optimization Model

The optimization model is invoked at every new outbreak epoch to allocate the total available resource

budget, including remaining resources from the previous allocations, to the new/ongoing outbreak

regions (actual allocation) and potential outbreak regions (virtual allocation). By doing so, the model

seeks to progressively minimize the impact of ongoing outbreaks and the expected impact of potential

outbreaks. Mitigation resources include stockpiles of vaccine(s) and antiviral drug(s), hospital beds,

capacities for vaccination and antiviral administration, social distancing enforcement resources, among

others. The objective function of the optimization model incorporates measures of morbidity, mortality,

and social distancing, translated into the cost of lost productivity and medical expenses. In what

follows, we present the details of the model. We introduce the following notation.

S = the set of all regions,

An = the set of regions in which pandemic is contained at the nth outbreak epoch (n = 1, 2, . . . ),

Bn = the set of ongoing regions at the nth outbreak epoch,
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Cn = the set of unaffected regions at the nth outbreak epoch,

Mn = budget availability at the nth outbreak epoch,

R = the set of available types of mitigation resources (R = {1, 2, . . . , r}),
ci = unit cost of type i resource, i ∈ R,

q̂ ni = amount of resource i remaining from previous allocations, at the nth outbreak epoch.

Let TCnk denotes the total cost of an outbreak in region k at the nth outbreak epoch. The total cost

is a function of the decision variables qnik which denote the amount of resource i allocated to region k

at the nth outbreak epoch. We assume that outbreaks occur one at a time. At the nth new outbreak

epoch in region j, the following optimization problem is invoked

Min TCnj (qn1j , q
n
2j , . . . , q

n
rj) +

∑

l∈Bn\{j}
TCnl (qn1l, q

n
2l, . . . , q

n
rl) +

∑

s∈Cn

TCns (qn1s, q
n
2s, . . . , q

n
rs) · pns

subject to
∑

i∈R
ci · qnij +

∑

l∈Bn\{j}

∑

i∈R
ci · qnil +

∑

s∈Cn

∑

i∈R
ci · qnis · pns −

∑

i∈R
ci · q̂ ni ≤Mn

qnij +
∑

l∈Bn\{j}
qnil +

∑

s∈Cn

qnis · pns ≥ q̂ ni , ∀i ∈ R.

In the above objective function, the first term represents the total cost of the new outbreak in region

j, estimated at the nth outbreak epoch, and based on the actual resource allocation {qn1j , qn2j , . . . , qnrj}.
The second term represents the total cost of ongoing outbreaks, excluding region j, which is (re)estimated

at the nth outbreak epoch, based on the current pandemic status (for details, see below). This cost

is a function of the allocation {qn1l, qn2l, . . . , qnrl}, which may include amounts remaining from previous

allocations. The third term represents the total expected cost of outbreaks in currently unaffected

regions, based on the virtual allocation (qn1s, q
n
2s, . . . , q

n
rs) and the regional outbreak probabilities pns .

The first model constraint relates the total available budget with the value of the current actual

and virtual resource allocations, adjusted with the value of the resources remaining from the previous

allocations. The second set of constraints guarantee that the needs of the current actual and vir-

tual allocations will first be satisfied using the resources remaining from the previous allocations (the

outstanding resource needs will then be fulfilled from the remaining budget).

The total cost of an outbreak in region k at the nth outbreak epoch is calculated as following

TCnk =
∑

h∈H
(mh + w̄h)Xn

hk +
∑

h∈H
w̄h · Y n

hk +
∑

h∈H
ŵh ·Dn

hk +
∑

h∈H
wh · V n

hk +
∑

h∈H
m̂h · Unhk , (5)

where
H = the set of age groups,
mh = total medical cost of an infected case in age group h over his/her disease period,
m̂h = total medical cost of an uninfected case in age group h over the pandemic period,
w̄h = total cost of lost wages of an infected case in age group h over his/her disease period,
ŵh = cost of lost lifetime wages of a deceased case in age group h,
wh = daily cost of lost wages of a non-infected case in age group h who complies with quarantine,
Xn

hk = total number of infected cases in age group h who seek medical assistance,
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Y n
hk = total number of infected cases in age group h who do not seek medical assistance,
Dn

hk = total number of deceased cases in age group h,
V n

hk = total number of person-days of cases in age group h who comply with quarantine,
Un

hk = total number of uninfected cases in age group h.

Variables Xn
hk, Y

n
hk, D

n
hk, V

n
hk, and Unhk are defined for region k at the nth outbreak epoch. We determine

the value of Xn
hk using the following regression model

Xn
hk = δ0

hk +
∑

i∈R
δihk · qik +

∑

i,m∈R, i 6=m
δimhk · qik · qmk , (6)

where δi·· denotes the regression coefficient associated with resource i, and δim·· is the regression coefficient

for the interaction between resources i and m. Similar expressions are used for Yhk, Dhk, and Vhk. Unhk
is obtained by subtracting Xn

hk from the total population of the region at the nth outbreak epoch.

We have that pnk =
∑

l∈Bn

pnlk, where pnlk denotes the outbreak probability in region k, caused by an

ongoing outbreak in region l, estimated at the nth outbreak epoch. This probability is considered to

be a function of the resource allocation for region l at the nth outbreak epoch, and is calculated using

the following regression model

pnlk = γ0
lk +

∑

i∈R
γilk · qil +

∑

i,m∈R
i 6=m

γimlk · qil · qml , (7)

where γi·· denotes the regression coefficient associated with resource i, γim·· is the regression coefficient

associated with interaction between resources i and m, and γ0
·· represents the intercept.

3.5 Simulation Optimization Algorithm

Below we present the algorithm for the simulation optimization model.

1. Estimate regression equations for all regions using the single-region simulation model (Eq. 6, 7).

2. Set n = 1. Initialize sets of regions: An = ∅, Bn = ∅, Cn = S.

3. Select randomly the initial outbreak region j.

4. Update sets of regions: Bn ← Bn ∪ {j} and Cn ← Cn\{j}.

5. Solve the resource allocation model for region j. Update the total budget availability.

6. If Bn 6= ∅, do Step 7. Else, do Step 9.

7. (a) For each ongoing region, implement a next day run of its single-region simulation.

(b) Check the containment status of each ongoing region. Update sets An and Bn, if needed.

(c) For each unaffected region, calculate its outbreak probability.

(d) Based on the outbreak probability values, determine if there is a new outbreak region(s) j.

If there is no new outbreak(s), go to Step 6. Otherwise, go to Step 8.

8. For each new outbreak region j,
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(a) Increment n← n+ 1.

(b) Update sets Bn ← Bn ∪ {j} and Cn ← Cn\{j}.
(c) Re-estimate regression equations for each region k ∈ Bn ∪ Cn using the single-region simu-

lations, where each simulation is initialized to the current outbreak status in the region.

(d) Determine the remaining availability of the previously allocated resources.

(e) Solve the resource allocation model for each region k ∈ Bn.

(f) Update the total budget availability.

9. Calculate the total cost (Eq. 5) for each contained region and update the overall pandemic cost.

4 Testbed Illustration

A sample cross-regional outbreak scenario included a network of four counties in Florida, U.S.: Hills-

borough, Miami Dade, Duval, and Leon, with populations of 1.0, 2.2, 0.8, and 0.25 million people,

respectively. The H5N1 virus subtype was considered. A basic unit of time ∆t for people’s schedules,

contact dynamics, infection transmission, disease natural history, and implementation of interventions

was taken to be one hour (see Fig. 3 and Eq. 2). Each regional simulation was run for a period (up to

185 days) until the number of new daily infections approached near zero (see Section 4.1.3).

4.1 Model Parameter Values

This section presents the details on selecting parameter values for cross-regional and single-region

models, including parameters of population and disease dynamics, calibration, and mitigation.

4.1.1 Parameters of Population and Disease Dynamics

Demographic and social dynamics data for each of the regions was extracted from the U.S. Census [81]

and the National Household Travel Survey [82, 83] (see Appendix, Tables 2-4). Compositions of the

regional mixing groups are shown in Appendix, Tables 5-8 [83]. In these tables, column 1 and 2 show

the mixing group type and the number of mixing groups for each type, respectively. Column 3 shows

the probability distribution among the types for assigning the workplaces of inhabitants. Columns

4-6 show the probability distribution among the types for assigning the weekday after-work errands,

weekend errands, and errands during quarantine (see § 4.1.3), respectively. The last column contains

the hourly contact rates for each mixing group type. The hourly schedules [83] were adopted from [47].

Each infected individual was assigned a daily travel probability of 0.24% [82], of which 7% was by

air and 93% by land transportation. The origin-destination travel probabilities within the network

of four regions were calculated based on the traffic volume data [84–87] (see Appendix, Table 9).

Infection detection probabilities for regional border controls for symptomatic cases were assumed to

be 95% and 90% [88], for air and land transportation, respectively. These values were reduced by 70%

for asymptomatic travelers [88]. Travel bans were implemented for all detected infectious cases. An

undetected infectious traveler was assumed to trigger a regional outbreak in his/her destination with a
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time-homogeneous probability ω = 0.001 during his/her infectiousness period. The regional outbreak

probabilities Pt were calculated once at the end of each day using Eq. 1.

The instantaneous force of infection applied to contact i at time t (λi(t) in Eq. 2) was modeled as

λi(t) = −ln(1− pi(t)), where pi(t) = αi − δθi(t), (8)

Figure 6: λi(t) vs. pi(t)

where αi is the age-dependent base instantaneous infec-

tion probability of contact i, θi(t) is his/her status of vac-

cination at time t (taken as 0 or 1), and δ is the vaccine

efficacy, measured in terms of the reduction in the base in-

stantaneous infection probability (achieved after 10 days

[65]). Note that, as pi(t) increases, the instantaneous force

of infection λi(t) grows at an increasing rate (see Fig. 6).

The age-dependent base instantaneous infection probabil-

ities were adopted from [49] (see Appendix, Table 10).

The disease natural history for H5N1 virus subtype was taken as the following: a latent period of 29

hours, an incubation period of 46 hours, and an infectiousness period between 29 and 127 hours [89].

The values of the base mortality probability of infected case i, µi (Eq. 3), were determined using the

statistics recommended by the Working Group on Pandemic Preparedness and Influenza Response [90].

This data shows the percentage of mortality for age-based high-risk groups (see Appendix, Table 11,

columns 1-3). For the testbed scenario, the mortality probabilities for different age groups (Appendix,

Table 11, column 4) were estimated using the assumption that high-risk cases are expected to account

for 85% of the total number of fatalities, for each age group [90].

4.1.2 Calibration of the Single-Region Models

The single-region simulation models were calibrated against R0 and IAR (see Section 3.3), using hourly

contact rates within mixing groups. Original contact rates were adopted from [49]. These contact rates

were adjusted to obtain the baseline values of R0 similar to those estimated from past outbreaks [48, 53],

for both high and low transmissibility scenarios (see Appendix, Table 12 for a sample of contact rates).

Figure 7: Estimation of R0 (Hillsborough)

The values of R0 were estimated for each re-

gion using the average reproduction numbers for

generations of infection, as presented in [31, 48],

over multiple replicates (e.g., see Fig. 7 for the

Hillsborough County). As the figure illustrates,

generations 5 through 8 (the solid line) and gener-

ations 7 to 9 (the dotted line) represent “typical”

[31] or representative infectious cases, born in the

early stage of the pandemic, when most of the re-

gional population is susceptible. For the purpose

of computing the value of R0, earlier generations were disregarded, as they were composed of a limited

number of infected cases with highly variable individual reproduction numbers.
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Historically, R0 values for PI range between 1.4 and 3.9, where PI with R0 ≤ 1.8 are considered

as of low transmissibility and PI with 2.2 ≤ R0 ≤ 3.9 as of high transmissibility [48, 53]. Henceforth,

the R0 value of 2.538 for the high transmissibility testbed (Fig. 7, solid line) and 1.525 for the low

transmissibility testbed (Fig. 7, dotted line) were taken, for the Hillsborough County (other regions had

similar R0 values). These values corresponded to the simulated IARs of 0.881 and 0.538, respectively.

Note that from the theoretical relationship in Eq. 4, IAR of 0.881 and 0.538 yield R0 of 2.426 and 1.435,

respectively. Thus, the simulated R0 numbers show a good match with the theoretical approximations.

4.1.3 Mitigation Related Parameters

The mitigation resources considered in the testbed included stockpiles of vaccines and antiviral, ad-

ministration capacities for vaccination and antiviral therapy, and quarantine enforcement resources

(required to achieve a targeted social distancing conformance level). We assumed a 24-hour CDC

resource deployment delay once the first infection case is confirmed [64].

Pharmaceutical measures. The vaccination risk group included individuals younger than 5 years and

older than 65 years [91]. The risk group for antiviral application included individuals below 15 years

and above 55 years [91, 92]. The efficacy levels for the vaccine, δ (in Eq. 8) and antiviral, τ (in Eq. 3)

were assumed to be 40% [55, 93] and 30%, respectively. See Section 4.2.2 for a sensitivity analysis on

both parameters. We assumed a 95% target population conformance for both measures. The immunity

development period for the vaccine was taken as 10 days [65]; the antiviral was assumed to become

effective immediately. Table 13 summarizes vaccination and antiviral treatment resource requirements

for each region along with resource costs [94–96] and the total budget requirement.

Non-pharmaceutical measures. A simplified version of the CDC guidance for non-pharmaceutical

interventions for Category 5 was implemented (see Section 3.2.4, [58]). Once the case fatality ratio

has reached 1.0% in the affected region, a social distancing policy is declared and remains in effect

for 14 days [58]. Individuals below a prespecified age ξ (22 years) were assumed to stay at home

during the quarantine period. Of the remaining population, a certain proportion φ [97] stayed at home

and was allowed a one-hour leave, every three days, to buy essential supplies. The remaining (1 − φ)

non-compliant proportion followed a regular schedule. All testbed scenarios considered the quarantine

conformance level φ (a decision variable) bounded between 50% and 80% [76, 97].

An outbreak was considered contained, if the daily new infections did not exceed five cases, for

seven consecutive days. Once contained, a region was simulated for an additional 10 days [98] to allow

an accurate estimation of the pandemic statistics. The costs of lost productivity and medical expenses

were adopted from [90] and inflation-adjusted using [99] (see Appendix, Table 14). The medical costs

of uninfected arising from the use of face masks and preventive medicine were not considered.

The optimization model was based on regression equations re-estimated at every outbreak epoch.

For each region, we developed a 25 statistical design of experiment, to estimate the regression coeffi-

cients of the significant decision variables (factors) and their interactions. To ease the very significant

computational burden, the testbed implementation considered allocation decisions only for new out-

break regions. The simulation code was written in C++ and run on a Pentium IV with a 3.40 GHz

CPU and 4.0 GB RAM. The running time for a cross-regional simulation replicate averaged 20 minutes.
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4.2 Sensitivity Analysis

This section presents a sensitivity analysis for assessing the marginal impact of changes in the total

budget availability and variability of some of the critical factors, for both low and high transmissibility

scenarios. The marginal impact was measured separately by the change in the total pandemic cost

and the number of mortalities (averaged over multiple replicates), resulting from a unit change in

the total budget availability or a factor value, one at a time. Factors under consideration included:

(i) antiviral efficacy, (ii) vaccine efficacy, (iii) social distancing conformance, (iv) social distancing

declaration threshold, and (v) social distancing period. We also investigated the affect of varying the

social distancing conformance on the dynamics of the societal and economic costs.

4.2.1 Total Budget Availability

Figures 8(a) and 8(b) show the dynamics of the pandemic impact, measured as the average number of

fatalities and total cost, for different levels of the total budget availability relative to the total budget

requirement (see Appendix, Table 13).

(a) (b)

Figure 8: Sensitivity analysis on total budget availability (measured in terms of the average number of

deaths (a) and the average total cost (b))

As expected, the curves for the average number of deaths and total cost exhibit a downward trend,

for both transmissibility scenarios, as the total budget availability increases. An increased budget trans-

lates into higher availabilities of mitigation resources, which will mediate regional pandemic impact and

reduce the probability of spread to unaffected regions. As also expected, a higher virus transmissibility

generates more infections which, in turn, result into more fatalities and, subsequently, bigger societal

and economic costs. As the budget availability approaches the budget requirement (starting from ap-

proximately 60%), both impact curves show a converging behavior, for both scenarios, whereby the

marginal impact of additional resource availability decreases. This can be explained by noting that

the total budget requirement was calculated assuming the worst case scenario where all regions are

affected and provided with adequate resources to cover their respective populations at risk.
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4.2.2 Antiviral Efficacy

Figures 9(a) and 9(b) show the behavior of the two impact measures for the level of the antiviral

efficacy (τ in Eq. 3) between 10% and 20%, and a fixed level of the total budget availability (50% of

the total requirement).

(a) (b)

Figure 9: Sensitivity analysis on antiviral efficacy (measured in terms of the average number of deaths

(a) and the average total cost (b))

As expected from Eq. 3, for both transmissibility scenarios, the two curves exhibit a decreasing trend

which is approximately linear in the range of τ between 10% and 15%. As the value of τ approaches

the value of the maximum base mortality probability (approximately 16% for the elderly risk group),

the resultant effective mortality probability tends to zero, which explains the converging behavior of

the curve representing the total number of mortalities. The total cost curve exhibits a similar pattern.

4.2.3 Vaccine Efficacy

Both impact measure curves exhibit a downward trend as the vaccine efficacy (δ in Eq. 8) increases

between 20% and 35%, with a fixed level of the total budget availability (50% of the total requirement)

(a) (b)

Figure 10: Sensitivity analysis on vaccine efficacy (measured in terms of the average number of deaths

(a) and the average total cost (b))
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(see Fig. 10(a) and 10(b)). For lower transmissibility, the marginal utility of the vaccine efficacy is

less significant which can be explained by noting that such scenarios generate fewer infections and

consequently, the overall impact of a more effective vaccine is less pronounced.

4.2.4 Social Distancing Conformance Level

Reduction of the contact intensity through social distancing has long proven to be one of the most

efficient mitigation mechanisms. Figures 11(a) and 11(b) show the dynamics of the average number

of fatalities and total cost for different levels of the social distancing conformance. The analysis was

conducted for conformance levels between 50% and 80%.

(a) (b)

Figure 11: Sensitivity analysis on social distancing conformance (measured in terms of the average

number of deaths (a) and the average total cost (b))

For both transmissibility scenarios, the two curves exhibit a downward trend, which can be attributed

to a reduced contact intensity associated with higher conformance. The trends are steeper for higher

transmissibility scenarios which are characterized by more intensive social dynamics within the mixing

groups. The reduction in the contact intensity gets amplified throughout generations of infection within

the affected region and, more importantly, leads to reduced probabilities of spread to unaffected regions.

(a) (b)

Figure 12: Sensitivity analysis on social distancing conformance (societal (a) and economic cost (b))
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Figures 12(a) and 12(b) show the dynamics of the total cost broken into the societal and economic

components. The societal cost for the two scenarios generally decreases with quarantine conformance as

a consequence of generating fewer infections and deaths (and hence, smaller lost productivity) during

the quarantine period. For higher transmissibility, the marginal impact of the conformance level is

more pronounced due to the effect of amplifying reduction in contact intensity explained above. A

similar behavior can be observed for the economic cost which incorporates the cost of medical expenses

of the recovered/deceased (over the entire pandemic period) and the cost of lost productivity of the

quarantined individuals (during the social distancing period).

4.2.5 Social Distancing Declaration Threshold

Figures 13(a) and 13(b) show the dynamics of the impact measures for different levels of the social

distancing declaration threshold, measured in terms of the CFR (see Section 4.1.3). The analysis was

conducted for the CFR values between 0.2% and 1.0%.

(a) (b)

Figure 13: Sensitivity analysis on social distancing declaration threshold (measured in terms of the

average number of deaths (a) and the average total cost (b))

For both scenarios, the trends are increasing since later declaration leads to a growth in the number of

infected and dead. It can also be observed that for higher transmissibility, the curves reach saturation

starting from CFR of approximately 0.55%. This can be explained by noting that in this case, the time

difference in quarantine declaration using CFR values between 0.55% and 1.0% is insignificant.

4.2.6 Social Distancing Period

Figures 14(a) and 14(b) show the dynamics of the average number of fatalities and total cost for

values of the social distancing period between 10 and 14 days [58]. Similar to the analysis for the

social distancing conformance level (see Section 4.2.4), for both transmissibility scenarios, the two

curves exhibit a decreasing trend: once the case fatality ratio reaches a significant value of 1.0%, social

distancing becomes the most efficient containment measure. From this point, any additional quarantine

days (starting from 10 and up to 14 total days [58]) will reduce both the contact intensity during the

quarantine period and also the size of the post-quarantine infectious population.
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(a) (b)

Figure 14: Sensitivity analysis on social distancing period (measured in terms of the average number

of deaths (a) and the average total cost (b))

Based on our methodology, we have also developed a decision-aid simulator with a GUI which is made

freely available to general public through our web site at http://imse.eng.usf.edu/pandemics.aspx.

The simulator allows the input of data for regional demographic and social dynamics, and disease related

parameters (see Appendix, Fig. 15). It is intended to assist public health decision makers in conducting

customized what-if analysis for assessment of mitigation options and development of policy guidelines.

Examples of such guidelines include targeted risk groups for vaccination and antiviral treatment, social

distancing policies (e.g., thresholds for declaration and lifting, closure options (i.e., household-based,

schools, etc.), and compliance targets), and guidelines for travel restrictions.

5 Conclusions

The decision-aid methodology presented in this paper incorporates varying virus epidemiology and

region-specific population dynamics. The model supports development of mitigation strategies for

an efficient, progressive allocation of a limited resource budget over a network of regional outbreaks.

The model seeks to dynamically minimize the impact of ongoing outbreaks and the expected impact

of potential outbreaks, spreading from the ongoing regions. The methodology considers measures of

morbidity, mortality, and social distancing, translated into the societal and economic costs of lost

productivity and medical expenses.

As our analysis shows, for both transmissibility scenarios, starting with the budget availability of

approximately 60%, the marginal impact of additional resources steadily decreases. This can be ex-

plained by observing that while the total budget requirement was determined assuming that all regions

would be affected, our dynamic predictive allocation generally decreases the probability of spread from

the ongoing regions, which in turn reduces the actual resource need. The analysis also shows that

compared to high transmissibility, the marginal utility of the vaccine efficacy for low transmissibility

is less significant due to a relatively smaller infected population, which makes the overall impact of a

more effective vaccine less pronounced. We have observed that the overall pandemic cost is significantly

affected by the social distancing conformance, particularly for higher transmissibility scenarios charac-
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terized by more intense social interactions. A higher degree of social distancing conformance leads to

a reduction in the contact intensity within the affected region. This further reduces the probabilities

of spread to unaffected regions. We have also observed that later declaration of social distancing leads

to a growth in the number of infected and dead. Moreover, for both transmissibility scenarios, longer

social distancing period (from 10 to 14 days [58]) significantly reduces the pandemic cost by decreasing

both the contact intensity and the size of the post-quarantine infectious population.

To the best of our knowledge, the presented methodology is one of the first attempts to offer a

dynamic predictive decision-aid tool, which incorporates measures of both societal and economic im-

pact. Compared to the existing models, such as [51], this model makes the following contributions: (i)

the model is capable of re-allocating the resources remaining from the previous distributions, based

on the current pandemic status, and thus achieves a more efficient resource utilization; (ii) the model

incorporates the costs of the resources and aims to allocate a total available budget, as opposed to

allocating available quantities of individual resources, which vary in their relative cost and effective-

ness; (iii) the testbed implementation considers optimal policy generation under both low and high

transmissibility scenarios; (iv) finally, the paper attempts to investigate the dynamics of the societal

and economic costs under varying social distancing policies. In addition, the simulation represents one

of the first of its kind in incorporating a broader range of social behavioral aspects. The simulation

model features a flexible design which can be particularized to an even broader range of pharmaceutical

and non-pharmaceutical interventions and more granular mixing groups. The developed methodology

is intended to assist public health decision makers in development of dynamic strategies for mitigation

of large-scale cross-regional pandemic outbreaks.
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6 Appendix

Single region (SR) /

Author, year Cross regional (CR) Model objective Key features

Ferguson et al.,

2005 [48], Ferguson

et al., 2006 [13]

SR (Thailand, 2005), SR

(U.S. & UK, 2006)

Model PI spread & assess

mitigation strategies
- 85M Thailand, 300M US, 58.1M UK

- Use of GIS (Landscan)

- Use of targeted mass prophylaxis and

social distancing

- A set of homogeneous mixing groups

Glass et al., 2006

[31]

SR (small town in New

Mexico, U.S.)

Examine role of social dis-

tancing
- Targeted social distancing

- Fixed, small-scale contact network

- Time between infection events follows an

exponential distribution

Germann et al.,

2006 [49]

SR (U.S.) Assess mitigation strategies - 281M inhabitants (2000 U.S. census data)

divided in 2000-person communities

- Sensitivity analysis on R0 from 1.6 to 2.4

Wu et al., 2006 [14] SR (Hong Kong) Test different intervention

scenarios
- Natural history includes pre-symptomatic

cases

- Use of household-based interventions

- Need for significant stocks of antiviral drugs

Colizza et al., 2007

[23, 100]

CR (global) Model worldwide spread of a

pandemic
- Use of an air travel network

- Diverse urban centers

- Use of compartmental models (SLIR)

- Analysis of antiviral and travel restrictions

Halloran et al.,

2008 [54]

SR (Chicago) Cross-validate tar-

geted layered contain-

ment models (Fergu-

son/Germann/Eubank)

- 8.6M people

- R0 from 1.9 to 3.0

- Assessment of intervention strategies

Cooley et al., 2007

[101]

SR (North Carolina,

U.S.)

Compare a simulated pan-

demic curve against real-life

data

- Use of 2003-04 North Carolina data

- Use of ILI data to estimate model parameters

Das, Savachkin &

Zhu, 2008 [47]

SR Mimic stochastic propagation

of PI and assess mitigation

strategies

- Large-scale model (1.1M)

- Detailed schedules for inhabitants

- Heterogeneous mixing groups

Savachkin et al.,

2010 [51]

CR (Florida, U.S.) Model PI spread & assess

comprehensive dynamic mit-

igation strategies

- Dynamic predictive large-scale simulation-

based optimization methodology

- 4M people testbed

- Use of vaccination, prophylaxes, and social

distancing

STEM-Eclipse,

2009 [102]

CR (global) Model worldwide PI spread - Geographic visualization of PI spread

- Use of SIR model

- Limited to land transportation

Table 1: A summary of simulation-based PI containment and mitigation models
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Adult Population Distribution by Age

Age Group \ Region Hillsborough Miami Dade Duval Leon

23 - 29 0.16 0.15 0.16 0.24

30 - 64 0.67 0.66 0.69 0.63

65 - 99 0.17 0.19 0.15 0.13

Table 2: Distribution of regional adult population by age [81]

Children Population Distribution by Age

Age Group \ Region Hillsborough Miami Dade Duval Leon

0 - 5 (pre-school) 0.24 0.22 0.24 0.16

6 - 9 (elementary school) 0.23 0.23 0.25 0.17

10 - 14 (middle school) 0.25 0.25 0.23 0.17

15 - 17 (high school) 0.13 0.14 0.14 0.10

18 - 22 (college) 0.15 0.16 0.14 0.40

Table 3: Distribution of regional children population by age [81]

Household Type Regional Population by Household Type

# Adults # Children Hillsborough Miami Dade Duval Leon

1 0 0.28 0.25 0.27 0.30

1 1 0.04 0.04 0.04 0.04

2 0 0.31 0.26 0.30 0.32

1 2 0.04 0.05 0.05 0.04

2 1 0.13 0.15 0.14 0.13

1 3 0.01 0.01 0.01 0.01

2 2 0.13 0.15 0.13 0.11

1 4 0.01 0.01 0.01 0.00

2 3 0.06 0.08 0.06 0.04

Table 4: Distribution of regional population by households [81]

Mixing Group Number Distribution Distribution of Distribution of Distribution of Hourly

(MG) Type of MG of Workplaces Weekday Errands Weekend Errands Quarantine Errands Contact Rate

Home 1 0.066 0.000 0.000 0.800 1.500

Factory 613 0.058 0.000 0.000 0.000 0.750

Office 2,266 0.302 0.000 0.000 0.000 0.750

Pre-school 224 0.005 0.000 0.000 0.000 1.050

Elementary school 66 0.010 0.000 0.000 0.000 2.573

Middle school 134 0.203 0.000 0.000 0.000 3.750

High school 59 0.097 0.000 0.000 0.000 3.750

College 46 0.106 0.000 0.000 0.000 3.750

Afterschool center 256 0.007 0.000 0.000 0.000 1.500

Grocery store 390 0.026 0.619 0.515 0.100 0.375

Restaurant 223 0.087 0.278 0.256 0.000 0.375

Entertainment center 360 0.032 0.066 0.116 0.000 0.375

Church 86 0.001 0.037 0.113 0.100 0.375

Table 5: Composition of mixing groups, Hillsborough County [82]
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Mixing Group Number Distribution Distribution of Distribution of Distribution of Hourly

(MG) Type of MG of Workplaces Weekday Errands Weekend Errands Quarantine Errands Contact Rate

Home 1 0.092 0.000 0.000 0.800 1.500

Factory 1,353 0.035 0.000 0.000 0.000 0.750

Office 2,880 0.128 0.000 0.000 0.000 0.750

Pre-school 188 0.010 0.000 0.000 0.000 1.050

Elementary school 246 0.188 0.000 0.000 0.000 2.573

Middle school 84 0.098 0.000 0.000 0.000 3.750

High school 82 0.116 0.000 0.000 0.000 3.750

College 59 0.206 0.000 0.000 0.000 3.750

Afterschool center 507 0.006 0.000 0.000 0.000 1.500

Grocery store 942 0.025 0.619 0.515 0.100 0.375

Restaurant 3,935 0.085 0.278 0.255 0.000 0.375

Entertainment center 758 0.011 0.066 0.116 0.000 0.375

Church 266 0.000 0.037 0.113 0.100 0.375

Table 6: Composition of mixing groups, Miami Dade County [82]

Mixing Group Number Distribution Distribution of Distribution of Distribution of Hourly

(MG) Type of MG of Workplaces Weekday Errands Weekend Errands Quarantine Errands Contact Rate

Home 1 0.049 0.000 0.000 0.800 1.500

Factory 519 0.063 0.000 0.000 0.000 0.750

Office 2,880 0.313 0.000 0.000 0.000 0.750

Pre-school 74 0.006 0.000 0.000 0.000 1.050

Elementary school 116 0.170 0.000 0.000 0.000 2.572

Middle school 35 0.083 0.000 0.000 0.000 3.750

High school 30 0.087 0.000 0.000 0.000 3.750

College 21 0.112 0.000 0.000 0.000 3.750

Afterschool center 245 0.006 0.000 0.000 0.000 2.000

Grocery store 320 0.024 0.619 0.515 0.100 1.500

Restaurant 1,474 0.074 0.278 0.255 0.000 0.375

Entertainment center 244 0.012 0.066 0.116 0.000 0.375

Church 77 0.001 0.037 0.113 0.100 0.375

Table 7: Composition of mixing groups, Duval County [82]

Mixing Group Number Distribution Distribution of Distribution of Distribution of Hourly

(MG) Type of MG of Workplaces Weekday Errands Weekend Errands Quarantine Errands Contact Rate

Home 1 0.072 0.000 0.000 0.800 1.50

Factory 103 0.012 0.000 0.000 0.000 0.750

Office 1,093 0.212 0.000 0.000 0.000 0.750

Pre-school 20 0.008 0.000 0.000 0.000 1.050

Elementary school 30 0.106 0.000 0.000 0.000 2.573

Middle school 15 0.051 0.000 0.000 0.000 3.750

High school 14 0.064 0.000 0.000 0.000 3.750

College 9 0.374 0.000 0.000 0.000 3.750

Afterschool center 60 0.005 0.000 0.000 0.000 1.500

Grocery store 52 0.021 0.619 0.515 0.100 0.375

Restaurant 512 0.069 0.278 0.255 0.000 0.375

Entertainment center 73 0.006 0.066 0.116 0.000 0.375

Church 16 0.002 0.037 0.113 0.100 0.375

Table 8: Composition of mixing groups, Leon County [82]

Inter-Regional Travel Probability

Origin \ Destination Hillsborough Miami Dade Duval Leon

Hillsborough 0.00 0.60 0.27 0.13

Miami Dade 0.74 0.00 0.16 0.10

Duval 0.61 0.29 0.00 0.10

Leon 0.52 0.31 0.17 0.00

Table 9: Inter-regional travel probabilities [84–87]
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Age Group 0-5 6-19 20-29 31-65 66-99

αi 0.156 0.106 0.205 0.195 0.344

Table 10: Instantaneous infection probability for different age groups; adopted from [49]

Age Group % High-Risk Cases % Death for High-Risk Cases Mortality Probability

0-19 6.4 9.0 0.007

20-64 14.4 40.9 0.069

65+ 40.0 34.4 0.162

Table 11: Mortality probability for different age groups [90]

Mixing group Hourly contact rate

Home 1.50

Factory 0.75

Office 0.75

Preschool 1.05

Elementary school 2.57

Middle school 3.75

High school 3.75

University 3.75

Afterschool center 1.50

Grocery store 0.38

Restaurant 0.38

Entertainment center 0.38

Church 0.38

Table 12: Hourly contact rates by mixing group (Hillsborough County, high transmissibility scenario);

adopted from [49]

Resource Requirements by Region Required

Region Hillsb. Miami D. Duval Leon Total Cost of Budget by

(population) (1,007,916) (2,209,702) (852,168) (248,761) (4,318,547) Resource Resource

Resource

Vaccine stock 305,036 679,181 241,522 76,007 1,301,745 $8.48/dose $11,038,800

Antiviral stock 415,294 749,058 460,393 105,307 1,730,052 $60/dose $103,803,140

No. nurses (antiv.) 650 1,104 786 166 2,706 $27/hr

8 hr/day, 50 days $29,226,975

No. nurses (vacc.) 1,059 2,358 839 264 4,520 $27/hr

8 hr/day, 14 days $13,668,326

Total Budget Requirement $157,737,241

Table 13: Regional resource and budget requirements [94–96]
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Pandemic Impact Measure (age group, years) Value US$

Average cost of lost lifetime productivity of a deceased case (0 - 19) $1,336,347.86

Average cost of lost lifetime productivity of a deceased case (20 - 64) $1,370,987.28

Average cost of lost lifetime productivity of a deceased case (65 - 99) $98,959.24

Average cost of lost productivity and medical expenses of a recovered/deceased case (0 -19) $5,078.48

Average cost of lost productivity and medical expenses of a recovered/deceased case (20 -64) $10,466.68

Average cost of lost productivity and medical expenses of a recovered/deceased case (65 -99) $11,566.09

Average daily cost of lost productivity of a non-infected quarantined case (20-99) $432.54

Table 14: Values of pandemic impact measures (societal and economic costs) [90, 99]

Figure 15: A snapshot of the decision-aid simulator GUI
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of swine influenza vaccine in 1976-1977: results of a two-state study. American journal of epidemiology,
133(9):940, 1991.

[78] K.M. Cummings, A.M. Jette, B.M. Brock, and D.P. Haefner. Psychosocial determinants of immunization
behavior in a swine influenza campaign. Medical Care, 17(6):639–649, 1979.

[79] The New Yorker. The fear factor. http://www.newyorker.com/talk/comment/2009/10/12/091012taco_
talk_specter, 2009. Last accessed on 10/28/2009.

[80] The New York Times. Doctors swamped by swine flu vaccine fears. http://www.msnbc.msn.com/id/

33179695/ns/health-swine_flu/, 2009. Last accessed on 10/28/2009.

[81] U.S Census Bureau. 2001 American community survey. http://www.census.gov/prod/2001pubs/

statab/sec01.pdf, 2000. Last accessed on 03/27/2009.

APPENDIX E (Continued)

101



32

[82] Bureau of transportation statistics. 2001 National household travel survey (NTHS). http://www.bts.

gov/programs/national_household_travel_survey/, 2002. Last accessed on 12/09/2008.

[83] A. Savachkin, A. Uribe-Sánchez, T. Das, D. Prieto, A. Santana, D. Martinez. Supplemental data and
model parameter values for cross-regional simulation-based optimization testbed. http://imse.eng.usf.
edu/pandemic/supplement.pdf, 2010. Last accessed on 04/15/2010.

[84] Tampa International Airport: daily traffic volume data. http://www.tampaairport.com, 2010. Last
accessed on 04/07/2010.

[85] Miami International Airport: daily traffic volume data. http://www.miami-airport.com, 2010. Last
accessed on 04/07/2010.

[86] Jacksonville Aviation Authority: daily traffic volume data. http://www.jaa.aero/General/Default.

aspx, 2010. Last accessed on 04/07/2010.

[87] Tallahassee Regional Airport: daily traffic volume data. http://www.talgov.com/airport/index.cfm,
2010. Last accessed on 04/07/2010.

[88] B. Ortutay. How thermal-imaging cameras spot flu fevers. http://www.msnbc.msn.com/id/30523865/,
2010. Last accessed on 03/19/2010.

[89] Writing committee of the World Health Organization (WHO). Consultation on human influenza A/H5.
Avian influenza A(H5N1) infection in humans. N Engl J Med, 353(13):1374–1385, 2005.

[90] M. Meltzer, N. Cox, and K. Fukuda. The economic impact of pandemic influenza in the United States:
Priorities for intervention. Emerging Infectious Deseases, 5(5):659–671, 1999.

[91] World Health Organization (WHO). WHO guidelines on the use of vaccine and antivirals during in-
fluenza pandemics. http://www.who.int/csr/resources/publications/influenza/11_29_01_A.pdf,
2004. Retreived 03/27/2009.

[92] Institute of Medicine (IOM). Antivirals for pandemic influenza: Guidance on developing a distribution
and dispensing program. The National Academies Press, 2008.

[93] J. Treanor, J. Campbell, K. Zangwill, T. Rowe, and M. Wolff. Safety and immunogenicity of an inactivated
subvirion influenza A(H5N1) vaccine. N Engl J Med, 3554(13):1343, 2006.

[94] PayScale. Job: Registered nurse (rn). http://www.payscale.com/rcsearch.aspx?country=US&str=

Registered+Nurse+, 2009. Last accessed on 12/28/2009.

[95] Centers for Disease Control and Prevention. CDC vaccine price list. http://www.cdc.gov/vaccines/

programs/vfc/cdc-vac-price-list.htm#flu, 2009. Last accessed on 12/28/2009.

[96] PharmacyChecker.com. Pricing & ordering comparisons. http://www.pharmacychecker.com/Pricing.

asp?DrugId=36260&DrugStrengthId=61300&sortby=Price, 2009. Last accessed on 12/28/2009.

[97] R.J. Blendon, C.M. DesRoches, M.S. Cetron, J.M. Benson, T. Meinhardt, and W. Pollard. Attitudes
toward the use of quarantine in a public health emergency in four countries. Health Affairs, 25(2):15–25,
2006.

[98] A. Svensson. A note on generation times in epidemic models. Math Biosci, 208(1):300–311, 2007.

APPENDIX E (Continued)

102



33

[99] T. Halfhill. Inflation calculator. http://www.halfhill.com/inflatation.html, 2009. Last accessed on
12/04/2009.

[100] V. Colizza, A. Barrat, A. Valleron M. Barthelemy, and A. Vespignani. Modeling the worldwide spread of
pandemic influenza: baseline case and containment interventions. PLOS Medicine, 4:95–110, 2007.

[101] P. Cooley, L. Ganapathi, G. Ghneim, S. Holmberg, W. Wheaton, and C. Hollingsworth. Using influenza-
like illness data to reconstruct an influenza outbreak. Mathematical and Computer Modelling, (48):929–939,
2008.

[102] Foundation Eclipse. The Spatio-Temporal Epidemiological Modeler. http://www.eclipse.org/stem/

intro.php, 2009. Last accessed on 11/06/2009.

APPENDIX E (Continued)

103



ABOUT THE AUTHOR

Andrés Uribe-Sánchez received his B.S. in Industrial Engineering with emphasis on

Operations Research and Finance from the University of Los Andes, Bogota, Colombia in

2003. In 2006, he received his M.S. in Management Systems at the University of Puerto

Rico at Mayagez. He received his Ph.D. in Industrial Engineering from the University

of South Florida in 2010. In April 2010, he was awarded the Distinguished Graduate

Achievement Award from the University of South Florida. His areas of research interest

include engineering risk analysis, support of healthcare enterprise capacity management,

and decision support for mitigation of large-scale public health disasters.


	Analysis of Stochastic Disruptions to Support Design of Capacitated Engineered Networks
	Scholar Commons Citation

	tmp.1332161330.pdf.RfR9T

