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ABSTRACT 

 

 Cancer can develop through a series of genetic events in combination with 

external influential factors that alter the progression of the disease. Gene expression 

studies are designed to provide an enhanced understanding of the progression of cancer 

and to develop clinically relevant biomarkers of disease, prognosis and response to 

treatment. One of the main aims of microarray gene expression analyses is to develop 

signatures that are highly predictive of specific biological states, such as the molecular 

stage of cancer. This dissertation analyzes the classification complexity inherent in gene 

expression studies, proposing both techniques for measuring complexity and algorithms 

for reducing this complexity.  

Classifier algorithms that generate predictive signatures of cancer models must 

generalize to independent datasets for successful translation to clinical practice. The 

predictive performance of classifier models is shown to be dependent on the inherent 

complexity of the gene expression data. Three specific quantitative measures of 

classification complexity are proposed and one measure (φ) is shown to correlate highly 

(R
2
=0.82) with classifier accuracy in experimental data.  

 Three quantization methods are proposed to enhance contrast in gene expression 

data and reduce classification complexity. The accuracy for cancer prognosis prediction 

is shown to improve using quantization in two datasets studied: from 67% to 90% in lung 



x 
 

cancer and from 56% to 68% in colorectal cancer. A corresponding reduction in 

classification complexity is also observed. 

 A random subspace based multivariable feature selection approach using cost-

sensitive analysis is proposed to model the underlying heterogeneous cancer biology and 

address complexity due to multiple molecular pathways and unbalanced distribution of 

samples into classes. The technique is shown to be more accurate than the univariate t-

test method. The classifier accuracy improves from 56% to 68% for colorectal cancer 

prognosis prediction.  

 A published gene expression signature to predict radiosensitivity of tumor cells is 

augmented with clinical indicators to enhance modeling of the data and represent the 

underlying biology more closely. Statistical tests and experiments indicate that the 

improvement in the model fit is a result of modeling the underlying biology rather than 

statistical over-fitting of the data, thereby accommodating classification complexity 

through the use of additional variables.  
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CHAPTER 1     INTRODUCTION 

 

1.1 Introduction 

 Cancer is the second leading cause of death in the United States [1]. Studies of the 

molecular basis of cancer [2-5] have shown that progression of cancer is influenced by a 

series of genetic events in combination with external factors such as age, dietary 

conditions or smoking history [6-7]. Gene expression studies probe genetic activity to 

develop clinically-relevant biomarkers of disease, prognosis and response to treatment [8-

11]. Microarray gene expression data (see Section 2.3) has been used for discovery of 

genes involved in one or more specific biological functions of tumor cells [2-4, 12-28]. 

One of the main aims of microarray gene expression analyses is to extract signatures that 

are highly predictive of specific biological states, such as the molecular stage of cancer 

[5, 29]. This has opened up the possibility of translational science that moves basic 

biological findings from laboratory discoveries to clinical tests [30]. Molecular signatures 

may offer the opportunity to develop a personalized medicine approach to disease 

management, in which therapy is tailored to the individual [31]. 

 

1.2 Contribution and Organization 

 Microarray gene expression data has been used to generate models to understand 

the development and progression of cancer. However, models predictive in the dataset in 

which they were developed may not generalize to independent samples accurately [3]. 
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This issue is examined and used to understand some of the fundamental issues in building 

gene expression models and to develop a framework to extract more accurate and 

generalized signatures. 

 Chapter 2 provides a brief overview of the problem domain (gene expression 

studies in cancer), along with the datasets and the data analysis tools used for various 

modeling techniques described in the subsequent chapters.  

 Chapter 3 examines the sources of data complexity and develops three specific 

measures of complexity. These measures are used to quantitatively compare the 

complexity of different gene expression datasets to establish a relationship between the 

proposed complexity measures and classification accuracy.  

 Chapter 4 proposes simplification of high-resolution microarray data by the use of 

quantization techniques. Classifier experiments are performed to provide a quantitative 

assessment of the quantized datasets in developing predictive models of survival.  

 Chapter 5 discusses a cost-sensitive random subspace based approach that is 

proposed for extracting subsets of genes that are, in combination, associated with the 

outcome. Data complexity due to multiple gene pathways is used as a motivation for the 

multivariable feature selection approach for improving classification accuracy. 

 Chapter 6 explores the effect of inclusion of specific biological indicators into 

gene expression models. The fit of the enhanced model to the underlying data is explored 

and verified.  

 Finally, conclusions from the analysis of the proposed methods are summarized in 

Chapter 7 and recommendations for future work are provided.  



3 
 

 

     

CHAPTER 2     BACKGROUND 

 

2.1 Introduction 

 Classifier models and statistical tools are used on microarray gene expression 

datasets to extract patterns of expression differences between samples [32-34]. These 

patterns, called signatures in this body of work, are used to develop clinically-relevant 

biomarkers of disease, prognosis and response to treatment [5, 19, 29, 35-38]. This 

chapter presents basic background information regarding the data and techniques used in 

the following chapters. 

 An overview of cancer is provided in Section 2.2 followed by a description of 

gene expression, the basic setup of microarray technology and gene expression analysis 

in Section 2.3. Section 2.4 describes the specific datasets used for analysis and the basic 

data analysis models used in the following chapters are presented in Section 2.5 Model 

validation techniques and performance measures are presented in Section 2.6.  

 

2.2 Cancer 

 Cancer is the second leading cause of death in the United States [1]. More people 

succumb to lung cancer per year than any other type of cancer. Almost 80% of the 

196,454 people diagnosed with lung cancer in 2006 died from the disease. Colorectal 

cancer (cancer of the colon and rectum) is the second leading cause of death due to 

cancer. Close to 37% of the 139,127 people diagnosed with colorectal cancer in 2006 

died due to the disease. In women, breast cancer is one of the leading causes of cancer 
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related deaths, second only to skin cancer. 191,410 women were diagnosed with breast 

cancer in 2006, and 40,820 died from the disease. Development of biomarkers for early 

detection of these cancers and treatment planning in advanced stages of the disease can 

greatly aid in reducing the fatality due to the disease [13, 14, 35]. 

  Genetic mutations in normal cells, and environmental stimuli in combination 

with external factors such as age, smoking history or diet, can cause a normal cell to 

multiply uncontrollably, leading to cancer (Figure 2-1a) [7,39]. It is hypothesized that the 

specific sequence of molecular events that initiated the deviation from normalcy can be 

an indicator for the progression of the disease [7]. A molecular pathway is defined as a 

series of actions between molecules at the cellular level that leads to a certain cell 

function [8]. The progression of the tumor from normal to invasive depends on the 

molecular pathways that are active in the cells as indicated in Figure 2-1b. 

 Physical and molecular characteristics of a tumor sample can aid the physician in 

planning treatment for a specific patient. General information such as patient age and 

gender, and more specific clinical information including biological indicators for 

molecular pathways such as the RAS status [7, 8, 40] and p53 status [41] may also be 

used for treatment planning. Models of disease progression use retrospective data such as 

patient survival information in addition to the physical and molecular data.  
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(a) 

 
(b) 

Figure 2-1: Description of cancer development. (a) Behavior of cells at different 

stages of cancer [42] (b) Pathways for progression from normal cell to invasive  

  

2.3 Gene Expression 

 

2.3.1 Measuring Gene Expression Using Microarrays 

 The human body is estimated to have approximately 30,000 genes [8, 42, 43]. 

Although each cell of the body contains an exact copy of these genes for the individual, 

only certain genes are active in any given cell. The specific genes that are active and the 

level of their activity, or the expression level, in the cell govern how the cell functions in 

its environment. Measuring the level of activity of genes in a cell can provide information 

on the function it performs, and the influence it exerts on its environment [7, 8]. Figure 

2-2 provides an example of differences in expression levels of certain genes in normal 

and cancerous cells. Identification of genes that are expressed differently under different 
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biological conditions, such as normal or tumor, or different stages of tumor can aid in 

understanding the disease process and progression. 

 

 
Figure 2-2: Differences in expression levels of genes  

can be used to distinguish normal from cancerous cells 

 

 The activity of thousands of genes in a target tissue may be measured 

simultaneously using mRNA microarray chips [44, 45]. A microarray chip consists of 

specific sequences of nucleic acids, called probesets, that are designed to identify and 

hybridize [45] with specific target sequences representing genes of interest. A probeset is 

typically designed to probe only a small section of the target gene, and a single gene may 

be probed by multiple probesets. Detailed information regarding the design and 

functioning of different types of microarrays is provided in [44, 46]. For a microarray 

experiment, RNA from the sample is extracted from the tissue and fluorescence-tagged. 

This tagged RNA is then washed over the microarray chip under specific experimental 

conditions. If the sample RNA contains sequences of interest, these sequences will 

hybridize with the corresponding probe sequences, resulting in fluorescence in specific 

areas of the chip. Detection of fluorescence is used as an indication of expression of the 

Gene A

Gene B

Gene C

Gene A

Gene B

Gene C

Normal cell Cancer cell
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target gene while lack of fluorescence indicates an absence of expression. The level of 

fluorescence for each probe is detected and quantified by acquiring a high-resolution 

digital image of the microarray chip (Figure 2-3). The image data is converted to a 

numerical quantity that is used as the expression level for the probeset of the specific 

gene. 

 

         
(a)    (b)    (c)  

Figure 2-3: Microarray experiment to detect expression of target genes on 

Affymetrix GeneChip
®

. (a) RNA probes attached to the microarray chip designed to 

identify specific target sequences  (b) Hybridization of sample RNA onto the 

microarray chip  (c) Detected fluorescence indicates expression level of the target 

gene (Images courtesy of Affymetrix
®
) 

 

2.3.2 Building Gene Expression Models 

 The main steps involved in building gene expression models are shown in Figure 

2-4. The model building process begins with the framing of a specific biological question 

followed by an experimental design that selects samples such that at least a few examples 

are included for each aspect of the disease intended for study. For example, in an 

experiment designed to study the molecular differences between different stages of 

colorectal cancer, at least a few samples must be included for each of the four stages of 

disease.  
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Figure 2-4: A general approach for gene expression analysis to build models of 

cancer 

 

 Microarray experiments include image analysis and normalization of the data to 

yield the gene expression dataset for analysis [9, 10, 47]. Since microarray data typically 

consists of a few thousand probesets or features, the first step of the analysis is to select a 

small set of features that are strongly correlated to the outcome. These features are used 

to train a classifier model which is then tested on a set of independent test samples. 

Performance measures such as accuracy, specificity and sensitivity (see Section 2.6) may 

be used to determine if the classifier model of gene expression is predictive.  
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2.3.3 Gene Expression Signatures 

 Microarray gene expression analysis involves studying patterns of expression for 

genes e.g. across tissues of various types [4], diseased vs.  normal tissue [26], or tissue 

under varying environmental conditions, such as tumor cells treated with radiation 

therapy [27].  Other examples of microarray analysis include analyzing expression across 

different stages of development of cancer [13] or for different types of patient outcome 

[14].   

 Feature selection, or elimination of noisy probesets, is popularly used as a first 

step in gene expression analysis [34]. Feature selection may be achieved in an 

unsupervised or supervised manner. Some simple methods for unsupervised analysis 

include computation of a few basic statistics from the dataset, such as variance [48], 

ranking of features [49], linear dependency [50] and others [50, 51] to provide 

information on the existence (or lack thereof) of some structure or order within the data. 

Many methods have been proposed for supervised feature selection, including 

information gain-based methods [18, 52-55]. Supervised methods of feature selection are 

useful when a specific signature is being investigated, for example, a signature to 

describe the drug effect for cancer patients.   

 Golub et al [4] analyzed two types of acute leukemia, (ALL: acute lymphoblastic 

leukemia and AML: acute myeloid leukemia), to develop a general strategy for 

discovering and predicting types of cancer. Neighborhood analysis was used to identify a 

set of informative genes that could predict the class of an unknown sample of leukemia. 

Each informative gene was used to cast a weighted vote on the class of the sample, and 
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the summation of the votes predicted the class of the sample. Self-organizing maps 

(SOM) were used to cluster tumors by gene expression to discover new tumor types.  

 van ‘t Veer et al [14] utilized a hierarchical clustering algorithm to identify a gene 

expression signature that could predict the prognosis of breast cancer. Two subgroups 

were created using the clustering technique, with genes that were highly correlated with 

the prognosis of cancer. The number of genes in each cluster was then optimized by 

sequentially adding subsets of 5 genes and evaluating the power of prediction in a leave-

one-out cross-validation scheme. Expression profiles of tumors with correlation 

coefficients above the optimized sensitivity threshold were classified as good prognosis, 

and the rest as poor prognosis. 

 Alon et al [26] distinguished between normal and tumor samples of colon cancer 

using a deterministic annealing algorithm. Genes were clustered into separate groups 

sequentially to build a binary “gene tree”, and tissues were clustered to create a “tissue 

tree”. Genes that showed strong correlation were found closer to each other on the “gene 

tree”, and tissues with strong similarities were found close together on the “tissue tree”. A 

two-way ordering of genes and tissues was used to identify families of genes and tissue 

based on the gene expressions in the dataset. 

 Glinsky et al [56] identified an 11-gene signature that was shown to be a powerful 

predictor of a short interval to distant metastasis and poor survival after therapy in breast 

and lung cancer patients, when diagnosed with an early-stage disease. The method 

clustered genes exhibiting concordant changes of transcript abundance. The degree of 

resemblance of the transcript abundance rank order within a gene cluster between a test 

sample and a reference standard was measured by the Pearson correlation coefficient. 



11 
 

 Eschrich at al [13] showed that molecular staging of cancer, using the gene 

expression profile of the tumor at diagnosis, can predict the long-term survival outcome 

more accurately than clinical staging of the tumor. A feed-forward-back-propagation 

neural network used 43 genes to predict the molecular stage of a tumor sample. 

 Fan et al, [57] address the issue of disagreement of gene expression models for 

the same tumor type, in terms of the genes used for the models.  The models described in 

the article were developed to analyze characteristics of breast cancer samples. A 70-gene 

model was used to predict “good-versus-poor” prognosis of patients and a recurrence 

model predicted a high or low recurrence score for the samples. A wound response model 

predicted samples with poor or good response. An intrinsic sub-type model classified the 

samples as “luminal A”, “luminal B”, “basal-like”, “HER2-positive”, “estrogen-receptor-

negative” (HER2+ and ER-) and “normal breast-like”. The fifth model was a two-gene 

ratio model developed to predict outcome for ER+ samples receiving tamoxifen. Clearly, 

each of these 5 models addressed a different clinical characteristic than the others, or 

more explicitly, as the authors allude to, these models address clinically different 

biological phenotypes.  

 Each of these models studied by Fan et al [57] selected a few genes to create a 

model for prediction. Although these models were claimed to perform well on breast 

cancer samples, a comparison of the five lists of selected genes showed that very few 

genes were actually common.  

 Ho and Basu [58] explored several popular methods of defining classification 

complexity, including overlap in individual features, separability of classes, and the 

topology of the problem space. They demonstrated through a large set of problems (both 
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real and artificial) that many of the measures identify complex (or even random) 

problems from simpler problems.  

 The literature review presented here demonstrates that several models have been 

developed to address various biological questions and generate predictive signatures 

using microarray gene expression data.  

 

2.3.4 Problem Definition for Data Analysis 

 The choice of feature selection and classifier methods for gene expression data 

analysis is largely dependent on the problem definition.  For many problems, the samples 

are split into discrete groups or classes, with samples in each class having some common 

characteristic/s and differing from samples in the other classes. For example, a study 

based on the stages of colorectal adenocarcinoma will split the sample set into four 

classes with one class for each stage of the tumor. Other problems require data analysis 

techniques that model a continuous variable as the outcome. For example radiation 

sensitivity of a patient may be modeled as a continuous outcome.  

 Outcomes such as patient survival time can be modeled both as a discrete or 

continuous variable. The data can be split into two distinct groups of patients with 

specific survival characteristics, for example, patients who have survived longer than 60 

months may be categorized as “Good prognosis” patients and those who survived a lesser 

time in the “Bad prognosis” group.  

 When modeled as a continuous variable, the actual patient survival times (number 

of months survived after surgery) are used as the outcome. This data includes a censoring 

variable when complete information regarding patient survival is unavailable. 
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 Other two-class outcomes are also defined for some of the datasets described in 

this chapter. These outcomes include gender (Male, Female), clinical stage (I, III), and 

tissue type (Colon, Rectum). 

 

2.4 Gene Expression Datasets 

 The microarray gene expression datasets used for describing the techniques 

proposed in the subsequent chapters are presented in the following sections. All datasets 

except the MRC-CRC dataset (Section 2.4.2) are publicly available. 

 

2.4.1 Lung Adenocarcinoma (NSCLC) 

 This dataset was arrayed on the Affymetrix HuGeneFL GeneChips
®

 (n = 62) with 

7,129 features and stored in the MAS5.0 data format [47] with a 6-digit precision and 

range of 10.0-6000.0. A study previously published on this dataset identified a signature 

between patients with higher and lower risk of death from the cancer [26]. 

 For the two-class survival analysis models developed in Chapters 3-4, the risk of 

death was transformed using a cut-off for survival time of 30 months (median survival 

time). Patients who died within 30 months were considered poor prognosis (n = 20), else 

they had a good prognosis (n = 42). Two additional classification problems using this 

data are: predicting cancer stages I (n = 49) and III (n = 13); and predicting gender (Male: 

n=25, Female: n=37) of the patients. The overall survival time for the patients was a 

continuous variable with information on the vital status of the patient at the end of the 

study. 
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2.4.2 Colorectal Adenocarcinoma (MRC-CRC) 

 Colorectal cancer patient samples (MRC-CRC), collected at the H. Lee Moffitt 

Cancer Center and Research Institute, were arrayed on the Affymetrix U133Plus2.0 

GeneChip
®

[45], consisting of 54,675 features. The data (n = 121) was processed using 

RMA normalization [47] and represented as a continuous value from 0.0 to 15.0 with a 6 

digit precision. An outcome study was previously published using a subset of this data 

[13].  

 For the models developed in Chapters 3-5, the survival times were stratified into 

high risk (less than 36 months of survival, n = 37) and low risk (greater than 36 months 

of survival, n = 84).  Additional classification problems include determining the gender 

of the patients (Male: n=59, Female: n=62), as well as the differentiation between colon 

(n = 85) and rectal (n = 36) cancer. The overall survival time for the patients was 

available as a continuous variable along with information on the vital status of the patient 

at the end of the study. 

 

2.4.3 Cell Line Data (NCI60) 

 Gene expression profiles were obtained from a previously published study [59] 

using Affymetrix HU6800® chips consisting of 7,129 features [45]. The data was 

normalized using the Affymetrix MAS 4.0 algorithm in average difference units [47], 

with the gene expression represented as a continuous value from 0.0-122000.0. Radiation 

sensitivity data, defined by survival fraction after 2 Gy (SF2), were obtained from 

literature and used as a continuous-valued outcome for developing a radiation sensitivity 

model (Chapter 6). 
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2.5 Data Modeling Techniques 

 Several data modeling techniques including data mining classifiers and statistical 

modeling techniques are described in the following sections. These techniques may be 

used at the feature selection stage and/or as the classifier for building gene expression 

signatures. 

 

2.5.1 C4.5 Decision Trees 

 Decision trees are learning algorithms that employ a “divide and conquer” 

strategy [60] to create nodes at various levels of the tree. C4.5 [61] is a variant of the 

basic decision tree that uses information-gain as a measure of purity at each node. 

Information gain can be described as the effective decrease in entropy resulting from 

making a choice as to which feature to use and at what level. The entropy is computed as: 

 

entropy(pi) = -pilog(pi) 

 where pi = (# samples at node i)/(total samples at parent node) 

 

 The entropy of subsets created by splitting the samples on a feature value is 

compared to the entropy of the system prior to the split. The feature that yields the 

maximum information gain by splitting the dataset is chosen as the best split attribute. 

Thus a tree can be built up of decisions that allow navigation from the root of the tree to a 

leaf node by continually examining these split attributes (Figure 2-5). The USF 

implementation of C4.5 decision trees (C4.5 DT) is used for the models described here. 
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2.5.2 Feed-Forward-Back-Propagation Neural Network 

 A feed-forward-back-propagation neural network (NN) [62, 63] typically consists 

of an input layer followed by one or more layers of hidden units or computational nodes 

(Figure 2-6), ending in a layer of output nodes. The learning algorithm employs a forward 

and a backward pass of signals through the different layers of the network. The forward 

pass involves propagation of an input vector through the layers of the network, producing 

a response at the output layer of the network.  An error signal is computed by subtracting 

the actual response of the network from a desired or target response and propagated 

backward through the network to make the actual response of the network closer to the 

desired response. 

 Quickprop, a fast implementation of the feed-forward-back-propagation network, 

is used for the models described in the subsequent chapters. The network is designed with 

10 hidden units and 2 output nodes.  The training of the classifier is designed to stop 

either when the training set error rate dropped to 0, or 500 epochs.  

  

Root 

Leaf Node Leaf Node 

Branches 

Set of possible answers Set of possible answers 

Figure 2-5: Structure of a decision tree 
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2.5.3 Support Vector Machines 

 Support vector machines (SVM) use linear models to represent non-linear 

boundaries between classes [32, 64]. Input feature vectors are transformed into a higher 

dimensional space using a non-linear mapping. Hyper-planes are defined in this high 

dimensional space so that data from any two classes can be separated (Figure 2-7). The 

hyper-plane that achieves the highest separation of the classes, known as the maximum 

margin hyper-plane, generalizes the solution of the classifier and is completely defined 

by specifying the vectors closest to it, called the support vectors. The support vector 

machine implementation in WEKA [32] is used for the models described in the following 

chapters.  A linear kernel is used with standard normalization.   

 

Output Layer 

Hidden 

Layer 

Input  

Layer 

Processing 

Units 

M a/g Dx G σ0 σ0
' 

Figure 2-6: Architecture of a feed-forward-back-propagation neural network 
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2.5.4 Linear Regression Analysis 

 Linear regression analysis [65] is a statistical technique used to model the 

relationship between a scalar outcome variable y and one or more covariates x. The 

model depends linearly on unknown parameters that are determined via regression 

techniques. The linear model is represented as: 

 

ippiii xxxy βββ +++= ...2211
;      for i=1, …, N 

 

where N is the total number of samples in the data, with y as the outcome variable that is 

linearly dependent on the covariates x via the model parameters β. Thus, the linear effect 

of each covariate xi on the outcome is governed by the regression parameter βi. 

 

2.5.5 Student's T-Test 

 The Student's t-test is a popular technique used to test the difference in means of 

two groups of data [65]. The computation of the t-statistic, as shown in Figure 2-8, 

indicates the ease of distinguishing between two groups in presence of variability. The 

null hypothesis states that there is no difference in the means of the two groups. A p value 

Support 

vectors 

Maximum margin hyper-plane 

Figure 2-7: A maximum margin hyper-plane [69] 
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of less than the α-level (typically set at 0.05 or lower) indicates that the difference 

between the two groups is statistically significant thereby rejecting the null hypothesis. 

 

 

 

  

 

 

 

2.5.6 Kaplan-Meier Survivor Estimates and the Log-Rank Test 

 The Kaplan-Meier product limit estimate (K-M) is used to compute the survival 

probabilities and the survivor curves for a cohort of patients [66, 67]. The product limit 

estimate computes the survival probability as: 

 

                                          ; n: total number of cases, 

            

 

 

 These estimates are used to draw survivor curves for each group of patients in the 

dataset. A log-rank (L-R) test [66, 67] is used to compare these curves for differences in 

survival. This test statistic is approximately chi-square distributed with one degree of 

freedom under the null hypothesis that the two K-M curves are statistically equivalent. 
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where       Oi: observed score for the group i and  Ei: expected score for the group i 

 

 The p value obtained at an α (e.g. 0.05) confidence level from the chi-square 

distribution tables is used to determine if the null hypothesis is rejected. A rejection of the 

null hypothesis indicates that the two curves are statistically different. 

 

2.5.7 Cox Proportional Hazards Model 

 The Cox proportional hazards model [66, 67] (CoxPH) is a semi-parametric 

survival regression analysis technique used to model the effect of secondary variables or 

covariates on survival. The strength of the technique lies in its ability to model and test 

many inferences about survival without making any specific assumptions about the 

parametric form of the hazard or survival functions. For any two individuals with 

covariate vectors x1 and x2, the hazard ratio is specified by a constant of proportionality: 
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where ),( ixtλ is the hazard function for individual i with covariates xi at time t. The 

hazard is interpreted as: 

  ρ(x)=1: S(t,x) = So(t): no difference in survival between groups 

ρ(x)<1: S(t,x) > So(t): better survival than baseline 

ρ(x)>1: S(t,x) < So(t): worse survival than baseline 
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2.6 Validation Techniques 

 Validation techniques [68] are used to test the predictive performance of classifier 

models. A simple validation method used in this work is a hold-out procedure known as 

n-Fold-Cross-Validation (n-fold CV) that involves dividing the dataset into a fixed 

number of partitions (n). All but one partition are used to train the classifier and the left-

out partition is used for testing. The training-and-testing procedure is repeated enough 

number of times (called folds) so that each partition is used as a test set exactly once. The 

10-fold cross-validation setup shown in Figure 2-9 is used for validating classifier models 

in the subsequent chapters. 

 

 

 

 

 For two-class problems, the samples in each partition represents a proportional 

selection of samples from all the classes under consideration to ensure that the classifier 

learns all the classes equally well, and is not over-trained on any one class. 

 

Figure 2-9: 10-fold cross validation setup 
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2.6.1 Performance Measures 

 Performance measures [68] are used to determine the expected prediction 

accuracy of a classifier model on independent test samples. The choice of the measures 

used depends on the basic construct of the problem definition (see Section 2.3.4).  

 The predictive performance of a classifier for a two-class problem can be 

analyzed by means of a confusion matrix (Table 2-1), and the performance measures 

listed in (Table 2-2). Although the total accuracy of prediction is commonly used as a 

preliminary measure of performance, computation of a weighted accuracy is useful in 

datasets with unbalanced class distributions. Measures of sensitivity and specificity [69] 

are popularly used to gauge performance when dealing with clinical data. Sensitivity is 

defined as the true positive rate and specificity as the true negative rate for the classifier. 

Since the weighted accuracy reports the average of these rates it may be used as a 

convenient measure to evaluate the performance of the classifier. 

 

Table 2-1: Confusion matrix 

                                               

                       Classified As 

True condition 

Class A 

(positive) 

Class B 

(negative) 

Class A (positive) 
True Positive 

(a) 
False Negative 

(b) 

Class B (negative) 
False Positive 

(c) 

True Negative 

(d) 
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Table 2-2: Performance measures for two-class problems 

Performance measure Formula used 

Total accuracy 
dcba

ba

+++

+  

Weighted accuracy 2/







+

+
+ dc

d

ba

a  

Sensitivity 
dc

d

+
 

Specificity 
ba

a

+
 

 

 Continuous-valued predictions are obtained for statistical techniques that model 

continuous-valued problems. Such outcomes can be assessed for predictive ability in two 

ways. In the first approach, the continuous-valued predictions are split into two classes 

based on some threshold. Statistical tests such as the Student's t-test or K-M curves and 

L-R test may be used to determine if these groups are significantly different. For 

example, the survival estimates obtained from the CoxPH model may be split on the 

median value to obtain two groups. K-M survivor estimates and L-R test can be used to 

test the difference of survival between the two groups.  

 The second method used in the following chapters to determine model 

performance is a goodness-of-fit test for a specific statistical technique. This is measured 

by a model R
2
 value. The high values of R

2 
indicate good correlation of the modeled 

covariates with the outcome.  

 

2.7 Summary 

 A basic overview of the process for developing molecular signatures was 

provided, from a description of cancer to the data analysis and statistical tools used in the 
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subsequent chapters. Two different ways to state a problem definition for experimental 

design were described. These included splitting the data into discrete number of classes, 

or modeling the outcome as a continuous variable. Three different microarray gene 

expression datasets were described and multiple outcomes for study were outlined for 

two of these datasets. Several data analysis models were described that may be used for 

feature selection as well as classifier design. Finally, validation techniques for assessing 

the predictive performance of both types of problem definitions were discussed.  
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CHAPTER 3     MEASURING THE CLASSIFICATION COMPLEXITY OF 

GENE EXPRESSION DATASETS 

 

3.1 Introduction 

 Microarray gene expression signatures that are predictive in the training datasets 

in which they were developed can perform poorly when tested on samples from 

independent sources [57]. Further, classifier models that generate predictive signatures in 

certain datasets can fail to be as predictive on other datasets [58]. Although 

methodological mistakes can lead to poor estimates of signature accuracy estimates [17], 

even correctly developed classifiers suffer from this difficulty.  This chapter shows that 

the inherent complexity of gene expression data can limit the ability of classification 

schemes to generate accurate signatures. 

 A case study is presented in Section 3.2 to illustrate the behavior of classifiers on 

complex datasets. Data complexity is explored in detail in Section 3.3 and three specific 

quantitative measures of complexity are proposed in Section 3.4. The need for internal 

controls in a dataset, and a method to establish the control is outlined Section 3.5. The 

proposed measures of complexity are applied to datasets in Section 3.6 and discussed in 

Section 3.7. Finally, a methodology is outlined in Section 3.8 to assess the complexity of 

a dataset given a problem definition and a classifier model. 
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3.2 Case Study: Survival Analysis of MRC-CRC and NSCLC 

 The MRC-CRC dataset (n = 121) was analyzed as a two-class problem to 

generate a predictive signature for patient survival (MRC-CRC/Survival). The survival 

times were stratified into high risk (less than 36 months of survival, n = 37) and low risk 

(greater than 36 months of survival, n = 84). Features with smallest Student's t-test p 

values were selected to train the three classifiers (C4.5 DT, SVM and NN) and 

classification accuracy was estimated using 10-fold CV. Figure 3-1 shows that the best 

weighted accuracy of the classifiers was found to be 56%,  indicating survival prediction 

was only slightly better than chance. Since the main aim was to build accurate predictive 

signatures, a further refinement of the models was required. However, refining a 

classifier model significantly to obtain high prediction accuracies even within a 10-fold 

CV can lead to over-training of the classifiers [58, 68]. Such over-trained classifiers 

rarely perform with the expected prediction accuracy on independent datasets.  

 

 
Figure 3-1: Classifier accuracies for MRC-CRC/Survival dataset 
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 To explain poor classification accuracy, it was hypothesized that the classifiers 

chosen were ineffective in modeling the underlying characteristics of survival in the data. 

The survival outcome is inherently a difficult problem to model due to the lack of 

complete follow-up information as well as confounding factors such as age, existing 

medical conditions and other physiological parameters. To determine the ability of the 

three classifiers (C4.5 DT, SVM and NN) to model a survival outcome, the same 

techniques were used to predict survival for a different dataset (NSCLC).  A previously 

published K-M survival model was shown to be highly predictive for this dataset [26]. In 

this work, the dataset (n=62) was transformed into a two-class problem using a cut-off for 

survival time of 30 months (median survival time). Patients who died within 30 months 

were considered poor prognosis (n = 20), otherwise they had a good prognosis (n = 42) 

(NSCLC/Survival).  

 

 
Figure 3-2: Classifier accuracies for NSCLC/Survival dataset 
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effective in modeling two-class survival data. Thus, it was hypothesized that the poor 

accuracy in the MRC-CRC/Survival dataset must result from some intrinsic property of 

the dataset. 

 

3.3 Data Complexity 

 A key issue in gene expression studies is to determine if a predictive signature can 

be developed for a dataset given an appropriate classification method. The case study 

illustrates two difficulties in choosing classifier models for gene expression analysis. The 

first difficulty is that a classifier method that is shown to work well in one dataset may 

not yield satisfactory results in a different dataset. The second difficulty is that for a given 

classification problem one type of classifier may outperform other types of classifiers, as 

shown in Figure 3-1 and Figure 3-2.  This was also shown in the No Free Lunch Theorem 

[70]. In some cases, this difference is explained by the decision boundary created by the 

classifier to separate the defined classes. For example, a decision tree creates only axis-

parallel decision boundaries while neural networks can create arbitrary boundaries [62, 

63]. Another possible cause for these issues is that the data itself imposes a limit on the 

classification accuracy that can be obtained from any classifier [58]. This may be due to 

several reasons including noisy data, omission of informative variables, incorrect 

assignment of the examples into specific classes or perhaps an incomplete understanding 

of the ground truth. Unfortunately, each of these problems is prevalent in gene expression 

studies, particularly when the tissue originates within humans. This work proposes and 

develops quantitative measures of data complexity to estimate an upper limit on 

classification accuracy for a dataset given a classification method.  
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3.3.1 Example: Intrinsic Heterogeneity in Datasets  

 Figure 3-3 illustrates the problem of classification complexity in a heterogeneous 

dataset with a simple example. The dataset consists of two variables: Color (Black or 

White) and Pattern (Solid or Stripes). Size (Big and Small shapes) is used as the outcome.  

 

 

 

 Since there is no direct correlation between Color and Size, or Pattern and Size, 

classifier models using these variables will be inaccurate (see Figure 3-4). However, 

defining a second outcome, type of Shape (Squares or Triangles) can lead to a more 

trivial grouping of the samples, and accurate classifiers can be created using Pattern as a 

variable (Figure 3-4). Here, the samples are perfectly split into the two classes: all striped 

shapes are Triangles and all solid shapes are Squares. Thus, in a heterogeneous dataset, 

the problem definition can have an impact on the complexity of a classifier model. The 

definitions that are easy to model tend to yield simple classifiers, while other questions 

can lead to complex classifier boundaries. 

 

 

 

Figure 3-3: Example of a heterogeneous dataset 

Variables:  
Color 
Pattern 

Classes: 
Size 
Shape 
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3.3.2 Example: Heterogeneity from Sampling Process 

 Inherent biological characteristics of tissue samples can introduce heterogeneity 

within gene expression signatures of cancer. An example may be observed in solid 

tumors such as colorectal cancer. Figure 3-5a shows that the colon tissue is composed of 

several different layers of epithelial cells surrounded by connective and muscle tissue, 

and the specific composition of a tissue sample changes based on the location of the 

tumor in the colon or rectum. Inconsistent extraction of tissue across samples can lead to 

microarray datasets with a mixture of cell types with varying proportions [71] and 

introduces signatures that are inherently different. The task of classifying samples for a 

specific biological question has to then overcome the distinction between the basic tissue 

types to find more subtle differences. In the worst case, the sample may consist of non-

malignant cell types. This sample may be erroneously labeled as tumor, along with the 

clinical factors that are attributed to the patient, such as age, stage of tumor, surgery and 

overall survival time. A classifier model using this as a training sample could generate an 

inaccurate model. 

(a) (b) 

Figure 3-4: Examples of two possible classifications. (a) Dividing samples by Size  

(b) Dividing samples by type of Shape 

Big Small Squares Triangles 



31 
 

 
      (a)     

   

 

 
 

 

 

 

 

 

 

(b) 

Figure 3-5 :Cross-section of colorectal tumor. (a) At different stages of development  

(Image courtesy of  http://www.cancersociety.com/cancer_information/colon.html)  

(b) Surrounded by adenoma and normal tissue 

 

3.3.3 Other Examples of Heterogeneity 

Other less obvious differences in samples such as age of the patient, gender, 

smoking history or ethnic background may introduce further heterogeneity in the data 

that may not be modeled by the classifiers and may confound the analysis. Errors in 

documenting these factors can exacerbate the problem. The microarray experiment itself 

could introduce some heterogeneity in the final data due to differences in processing 

Adenocarcinoma 

Adenoma 

Spread to other organs 
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conditions or book-keeping errors [71]. Image analysis and normalization of the data in 

the final processing steps can add to the noise or introduce undesirable signals into the 

dataset [72]. 

 Figure 3-6 depicts the impact of sample mislabeling on a classifier decision 

boundary. A test sample is assigned to a specific class depending on the side of the 

decision boundary it lies on. Changing the class label of a single training sample from 

Figure 3-6a to Figure 3-6b (circled in red in Figure 3-6b), alters the decision boundary 

such that four of the five test samples are labeled as Class 1 in Figure 3-6b when only two 

of the test samples were labeled as Class 1 in Figure 3-6a. 

 

(a)       (b) 

Figure 3-6: Understanding the impact of sample mislabeling on classifier decision 

boundaries. Training samples for the two classes are represented as filled (Class 1) 

or hollow (Class 2) samples. Test samples are depicted as orange circles in the 

graphs 

    

 If the actual class labels for the test samples were known in advance, it is 

relatively easy to determine which of these two decision boundaries is more accurate. 

However, since in a practical situation there is no way of knowing the actual class of test 

samples in advance, there is little guiding information on whether a chosen classifier 
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model is performing poorly on the data because it is an ineffective choice for the data, or 

if the data itself is imposing an upper limit on the accuracy that can be obtained. Further, 

if the source of the mislabeling is unknown, there may be little chance of rectifying the 

error.  

 

3.4 Measures of Classification Complexity 

 As discussed in the preceding sections, intrinsic complexity of gene expression 

datasets can affect classifier performance. Three specific measures are formulated here to 

quantitatively evaluate the complexity of these datasets and provide insight into the 

expected classifier performance for a given problem definition. 

 A biological basis for measuring the complexity of a classification problem is that 

large numbers of gene expression changes occur in significantly different tissue types. 

For instance, the differences in gene expression between epithelial tissue of the colon and 

surrounding connective tissue are dramatically high; correspondingly, tissue type-based 

signatures have been demonstrated to be accurate and robust (e.g. [12]). This rationale 

suggests consideration of the number of genes differentially expressed across two classes 

as a measure. Separately, large changes in individual gene expressions (e. g. 5 fold 

differences) between classes can be indicative of functional or morphological differences 

within cells; therefore the maximum univariate gene discrimination can also be 

considered. The following sections describe the proposed measures of classification 

complexity. 
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3.4.1 Complexity Measure I: Student's T-Test: ττττ 

 The first measure of complexity (τ) is defined as the proportion of genes 

identified as significant when considered using a Student's t-test. P values (pi) are 

calculated for the difference in gene expression between two groups.  

 The t-statistic represents the ease of distinguishing between two groups in the 

presence of inherent variability in the data or noise in measurement. A p value of less 

than the α-level (typically set at 0.05 or lower) indicates that the difference between the 

two groups is statistically significant thereby rejecting the null hypothesis. The 

assumption for this measure is that if a dataset has a large number of features that are 

significant, an accurate classifier model may be designed. The larger the number of 

significant features, the less complex the classification problem. Thus τ can be formally 

defined as shown below, where s represents the number of features tested. 

 

   τ =
|����.��|

�
 ;      i = 1, ..., s     

 

3.4.2 Complexity Measure II: Fisher's Discriminant Ratio: φφφφ 

 A second complexity measure (φ) is based on Fisher's discriminant ratio that was 

used in [58]. The ratio measures the separation of two classes, adjusted by the spread of 

the samples in each class. The method is primarily used to find an axis in the feature 

space along which the separation of the two classes is a maximum [73, 74]. The samples 

are then projected onto this axis for classification.  

 The Fisher's discriminant ratio is computed using each feature univariately to 

determine the separabilty of each feature. The ratio is defined as given below, where µ1i; 
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µ2i; σ1i and σ2i, are the means and variances of the two classes for feature i and s is the 

number of features tested. The proposed summary complexity measure, φ, is the 

maximum ratio obtained from the dataset. 

 

 ! = "#$%&#'%('

)*$%
' +*'%

' ,
';         i = 1 ,..., s     

φ = ��-" !(       

 

 Higher ratios indicate better separation between the classes for the selected 

feature. Since the first step in gene expression analysis selects features with good 

discrimination between classes, considering the maximum separation of a single gene 

provides an upper bound on classification.  

 

3.4.3 Complexity Measure III: SAM π0 

 A third measure of complexity is π0, an estimate of the number of unchanged (true 

null) features in a series of statistical tests. This measure is used by the SAM 

(Significance Analysis for Microarrays) [15, 75] algorithm. The samples are repeatedly 

shuffled around by permuting their class labels (or response states) and the statistic is 

computed for each permutation. SAM identifies genes as significant when they change 

stably and significantly with a minimum pre-specified change in expression level across 

the repeated measurements.   

 The overall error rate is summarized by a measure π0 that estimates the probability 

of erroneously rejecting the null hypothesis. π0 is specified for a rejection region, (e.g. α 
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= 0.05 or lower) and is computed as the proportion of features with p values that fall in 

this rejection region, normalized by the range of the region.  

 

  .� =
|�%/0|

"1&0(�
;           i = 1, ..., s       

 

 Thus π0 indicates the proportion of features whose values do not change between 

the classes. As stated earlier, a dataset with classes that have strong differences is 

expected to have a small proportion of features that are not associated with the outcome. 

Thus an increase in π0 values from one outcome to another on a specific dataset can be 

used as an indication of increasing complexity of classification.  

 

3.5 Internal Controls 

 While a universal measure of classification complexity is desirable, individual 

datasets may have different baseline complexities. One approach to alleviate this concern 

is through the use of internal controls within each dataset. Identifying different outcomes 

(e.g. gender, staging, and patient survival) that are believed to be more or less complex 

within the same set of samples provides an internal control on the measurement of 

complexity. This approach also allows for a normalization factor in the form of a similar 

outcome across datasets.  

 Identification of gender from gene expression data is an example of a low-

complexity classification   problem, in particular when the dataset includes gender-related 

features. Gender of an individual is indicated in the chromosomal composition of the 

cells. Males have one X and one Y chromosome, while females have two X 
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chromosomes. Since the chromosomes define the genetic composition of the cells, male 

and female samples are likely to have strong differences in the expression of gender 

related genes. Further, secondary effects of gender, such as differences in hormonal 

levels, can also be measured at the genetic level. If the features measured in the dataset 

include genes associated with gender, then distinguishing between males and females 

becomes a straightforward classification problem.  

 

3.6 Assessing the Complexity of MRC-CRC and NSCLC Datasets 

 The MRC-CRC and NSCLC datasets were used to measure complexity and these 

measures were compared with prediction accuracies of survival models. Gender was used 

as the internal control for each dataset: (MRC-CRC/Gender: Male: n=59, Female: n=62 

and NSCLC/Gender: Male: n=25, Female: n=37). An additional outcome was specified 

for each dataset to provide a further data point for assessing the complexity measures. 

Tissue type was defined for MRC-CRC dataset (MRC-CRC/Site: Colon: n=85, Rectal: 

n=36). Stage was defined for the NSCLC dataset.  (NSCLC/Stage: I: n==49, III: n=13). 

 The three measures of classification complexity were computed for each dataset 

and compared against the best weighted accuracy classifier for each problem, regardless 

of classifier type. These results were published in [76]. Table 3-1 details the complexity 

measures and accuracies for each problem. As expected, for both MRC-CRC and NSCLC 

the gender classification achieved the highest accuracy (98% and 95% respectively) 

compared to the other problems specified for each dataset. However, both τ and π0 

measures indicate relatively few features that are significant in these problems. In 

retrospect this result is not surprising, since the genes associated with gender are often 
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very distinct (e.g. absent or present) but may not be numerous. Although the number of 

significant genes may be a sufficient measure of complexity, it is not a complete measure. 

The complexity measure φ estimates the best univariate separation in the data, and hence 

is a more reasonable measure of expected classification accuracy. 

 

Table 3-1: Classification complexity and classifier accuracy for the MRC-CRC and 

NSCLC datasets 

Dataset ττττ φφφφ ππππ0 
Best weighted 

classifier accuracy 

(%) 

MRC-CRC/Gender 
MRC-CRC/Site 

MRC-CRC/Survival 

7.8 
12.3 

11.8 

9.98 
0.64 

0.33 

0.93 
0.76 

0.75 

98.4 
77.7 

55.5 

NSCLC/Gender 

NSCLC/Stage 
NSCLC/Survival 

4.9 

13.2 
8.8 

2.47 

1.10 
0.75 

0.98 

0.88 
0.96 

95.3 

87.4 
76.8 

 
  

 Table 3-1 also reports the complexity for the two additional problems (MRC-

CRC/Site and MRC-CRC/Survival; NSCLC/Stage and NSCLC/Survival) for the two 

datasets, along with the corresponding maximum classifier accuracy. Again two measures 

of significant genes (τ and π0) do not reflect the differences in accuracy that are observed. 

For instance, in the MRC-CRC/Site and MRC-CRC/Survival datasets, the differences are 

small in τ and π0 however there is almost a 20% difference in best accuracies between the 

two problems. For example, in the MRC-CRC dataset, τ is 12.3% for Site and 11.8% for 

Survival and π0 is 0.757 for Site and 0.750 for Survival; however the classifier accuracies 

are very different (78% for Site and 56% for Survival). Note that despite the differences 

for these two outcomes, the trend in accuracy vs. complexity is maintained: accuracy 

drops as fewer features are found to be significant.  
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 The complexity measure φ captures the classification complexity better than the 

remaining two measures in this data. However, it can be seen from the results for gender 

and survival outcomes that the measure of complexity is not directly comparable across 

datasets. Thus, the internal control for each dataset is required to provide information on 

the maximum attainable classifier accuracy.  

  

 
Figure 3-7: Classification Accuracy vs. Complexity measure φφφφ 

 

 Of the three measures tested, φ correlated highly with maximum classification 

accuracy (R
2
 for correlation is 0.82 for the MRC-CRC dataset, Table 3-2). Figure 3-7 

provides a detailed view of the classifier accuracy (bar) and complexity measure (point) 

for each of these datasets. The equation for correlation can be used to estimate an upper 

bound on the expected classifier accuracy using the specified classifier models for any 

new outcome on the dataset. 
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Table 3-2: Correlation of complexity measures with classifier accuracies 

Dataset 

Correlation coefficient for comparison of 

complexity measures with classifier accuracy  

(R
2
) 

ττττ φφφφ ππππ0 
MRC-CRC 0.58 0.82 0.69 

NSCLC 0.53 0.99 0.16 

 

3.7 Discussion 

 Genes with large univariate differences can aid in achieving high classifier 

accuracies. Examples of such differences are gender related genes that are present or 

absent in each class. If a large number of these genes are available, the classifier accuracy 

can be expected to be very high. However, with such large distinctions, even a small set 

of genes is sufficient to create an accurate classifier. In such a case, the number of distinct 

genes may not provide much information on the expected performance. However 

information on the largest separation between the classes can provide insight into the 

quality of a classifier decision boundary. In datasets where such large distinctions are not 

available, the best univariate separation between the classes can provide an indication of 

the classifier performance. 

  Figure 3-8 depicts complex datasets with multiple probesets. In case 1 with a 

single probeset, all the complexity measures provide the same information. When more 

genes are added to the model, the measures provide slightly different types of 

information. In case 2, where Gene 1 has a reasonable separation between the samples 

and Gene 2 has very poor separation, values of τ and  π0 indicate that a decision boundary 

can be found (here, τ = 50%).  
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Figure 3-8: An example to demonstrate the applicability of the complexity measures. 

# significant features is a useful measure, but φφφφ provides a  

measure of the maximum univariate separability 

(a) 

(b) 

(c) 
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 The value of φ is unaffected by the addition of the variable Gene 2 in the model, 

and will provide the same measure of separation as case 1. As indicated by the 

complexity measures, the separation provided by Gene 1 allows for a decision boundary 

between the samples. Similarly, Gene 1 and Gene 2 in case 3 do not have a good 

separation but Gene 3 does. Here, τ and  π0 will be lower (τ = 33.3%), but φ still measures 

the separation provided by Gene 3, indicating that a predictive classifier may be created. 

This supports the conclusion that complexity measure φ is a good indicator of the 

complexity of a dataset, and provides an estimate of expected classifier performance. 

 

3.8 A Method to Assess the Classification Complexity of a Microarray Gene 

Expression Dataset  

 The case study and experimental results indicate that when using the t-test for 

feature selection in the classifier model, the complexity measure (φ) provides a 

reasonable estimate of the complexity across different outcomes. The table below 

outlines the proposed steps for evaluating classification complexity. 

 

Step 1: Establish an internal control for the dataset using covariate information to define 

the easiest classification problem. Ensure that the gene expression dataset 

contains at least a few relevant probesets for this problem. For example, gender 

will not work as an easy problem if the microarray chip contains no probesets 

for the primary or secondary aspects of gender. 

Step 2: Define one or more additional problems for the dataset, if possible. For 

example, tissue site was used as an additional outcome for the MRC-CRC 
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dataset. As before, each outcome defined here must have relevant probesets in 

the data. 

Step 3: Compute the complexity measure on all the outcomes proposed. 

Step 4: Compute the correlation to describe the change in complexity across the 

different outcomes as a function of classifier accuracy.  

Step 5: Given the maximum classifier accuracy for the defined outcomes, the maximum 

expected classifier accuracy for a new outcome can be estimated from the 

correlation.  

Step 6: If the classifier performs much worse than the predicted accuracy, a further 

refinement of the method is warranted. Else, the classifier model is shown to 

perform as well as it possible can on the dataset. In this case, the method 

recommends investigation of the intrinsic properties of the data before refining 

the model further. 

 

 Consider the case study presented in Section 3.2. The survival model for the 

MRC-CRC/Survival dataset had very poor accuracy. To investigate the reason for this 

lowered accuracy, two outcomes were defined using the same classifier method. MRC-

CRC/Gender was used as the internal control and MRC-CRC/Site was used as a problem 

with medium level of difficulty to provide more information on the complexity of the 

data. φ was very high (9.98) in the gender outcome, with a correspondingly high classifier 

accuracy (98.35%). The low classifier outcome for survival (56%) was found to 

correspond to the low value of φ (0.33). This result indicates that the low accuracy in the 

survival outcome is a result of the inherent complexity in the data and further refinement 



44 
 

of the classifier models will not aid in improving accuracy without a severe loss of 

generality. Here, the data may be investigated further to reduce the inherent complexity 

by some means. Alternately, other classifier models may be tested that can deal with the 

complex feature space in a more efficient manner. An example of this will be provided in 

Chapter 5. 

  

3.9 Summary 

 Data complexity was proposed as a means to explain the classifier performance 

on two gene expression datasets (the MRC-CRC and NSCLC datasets). Three methods of 

quantitatively measuring classification complexity in gene expression data were 

proposed. The sources of data complexity were explored and used to propose three 

measures of complexity (τ, φ and π0). Experimental results were used to compare the 

complexity of microarray gene expression datasets with maximum achieved classification 

accuracy. Correlation of these measures with classifier performance was used to 

determine the usefulness of the measures. In this study, outcomes with larger π0 or lower 

τ and φ values tended to have lower overall classification accuracy except in the case of 

gender classification where a strong signal exists in a small number of genes. The 

complexity measure φ was shown to have a clear relationship with classifier accuracy. A 

methodology was proposed to assess the complexity of a dataset given a problem 

definition and a classifier model. 
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CHAPTER 4      REDUCTION OF DATA COMPLEXITY FOR GENE 
EXPRESSION MODELS USING QUANTIZATION 

 

4.1 Introduction  

 As discussed in Chapter 3, the intrinsic heterogeneity of samples in a microarray 

gene expression dataset can lead to complex classifier models with low predictive 

accuracy. The large number of features available in a typical microarray experiment, 

along with the high resolution of the data can lead to complex decision boundaries. For 

instance, the MRC-CRC data contains 54,675 probesets, each taking a value of 0.0 to 

15.0 with a 6-digit precision. Methods to reduce these sources of data complexity aim at 

creating simpler classifier models and extracting predictive signatures. This chapter 

explores the use of quantization of gene expression datasets for data reduction.  

 Section 4.2 describes the MRC-CRC dataset as a case study of a complex dataset. 

Reduction of data complexity by quantization is discussed in Section 4.3. Three different 

methods of data quantization are presented in Section 4.4, followed by results of their 

application to the MRC-CRC dataset in Section 4.5. Finally, the modified complexity of 

the quantized datasets is examined in Section 4.6. 

 

4.2 Case Study: Survival Analysis of MRC-CRC Dataset 

 Chapter 3 described some of the sources of heterogeneity in gene expression 

datasets and demonstrated the impact of complexity on the predictive accuracy of 

classifier models on MRC-CRC and NSCLC datasets. The MRC-CRC dataset was 
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analyzed as a two-class survival analysis problem to generate a predictive signature for 

patient survival (MRC-CRC/Survival) and the best weighted classifier accuracy was 

found to be 56%.   

 The complexity measures (τ, φ and π0) proposed in Chapter 3 indicated that the 

MRC-CRC dataset contained significant information, as demonstrated by the high 

predictive accuracies on the MRC-CRC/Gender problem. However, re-organizing the 

samples to setup the survival problem resulted in a higher complexity dataset. The 

measures indicated that higher accuracies were probably not attainable on the dataset in 

the original form for the classifier models considered. Two steps were recommended to 

generate predictive signatures from the data: first, the data had to be refined in some way 

to reduce the complexity and second, a better classifier model could be designed to 

address the characteristics of the underlying class information. 

  

4.3 Reduction of Data Complexity 

 It was shown in Chapter 3 that when studying gene expression datasets with a 

relatively heterogeneous cohort of samples, small differences in gene expression could be 

lost in the experimental and biological level of variability (or noise) in the data. For 

example, when studying the effects of a drug on a cohort of cancer patients, gene 

expression differences due to secondary aspects of the study such as gender, age or race 

may in fact be more prominent than the primary effect of the drug. The high resolution of 

the data, relative to the expected effect size, can further add to the complexity of the data. 

To efficiently extract the drug’s effect in this example, the relevant differences in gene 

expression between samples of different classes need to be magnified relative to the 
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minor differences between samples of the same class. In noisy datasets, this 

magnification of the signal may reduce the complexity of analysis. Feature selection is a 

popular approach to achieve this magnification of important gene expression differences 

[48, 50, 51, 77]. Retaining only a small set of informative features aids in simplifying 

classifier boundaries (see Section 2.3.3). A complex algorithm is more prone to being 

fine-tuned to the specific dataset and often fails when applied to newer samples [58, 68]. 

Thus, most algorithms incorporate some mechanism of limiting the noise in a dataset to 

improve the accuracy of analysis and to build robust models for prediction [13, 14, 25, 

34, 77]. 

 

4.3.1 Quantization to Reduce Data Complexity 

 One approach to reducing data complexity is to enhance the contrast within the 

dataset by altering the individual expression levels either at the probeset level or for the 

data as a whole [78]. In general, this approach aims at magnifying the differences 

between distinct groups of samples. Small differences in expression consistent with the 

sample grouping are magnified along with the larger and more pronounced differences 

and hence can contribute to the analysis more effectively [79].  

One way to achieve this contrast enhancement of the data is quantization of the 

continuous gene expression data into a distinct number of levels [80]. For example, when 

working with a single gene to separate samples into two classes, having more than two 

levels for expression could potentially render the analysis complex. This issue is 

illustrated in Figure 4-1, where the variable Color, with three distinct levels  (one level 

for each shade of gray) is used to separate the data into the two classes of Shape  
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(Squares and Triangles).  While using the three levels of Color yields a complex 

classifier, quantizing the variable to two levels (Light - white and light gray and Dark - 

black), as shown in Figure 4-2, can yield a simpler classifier for prediction.  

 

 
 
 

 

 
 

 
 

 

4.4 Quantization Techniques for Microarray Data 

 Several techniques exist in literature for quantizing gene expression data into 

meaningful levels to aid in improving the accuracy of subsequent analysis. In [79], the 

authors proposed the use of clustering techniques to find a natural grouping of expression 

levels in the data. The probesets were reassigned values based on their group 

membership. Parametric analysis of the data has also been used in a similar manner to 

  Squares       Triangles 

Variable:  
Color 

Class: 
Shape 

Figure 4-1: Example of a two-class dataset with multiple levels for a feature  

Figure 4-2: An example of quantizing a feature from three levels to two levels to 

represent a two-class problem 
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find overlapping Gaussian distributions that described the spread of the data [78]. Each of 

these methods were described in the context of specific analysis such as finding genes 

that were turned "on" or "off" in different tissue types. However, these techniques have 

not been applied to understand if resulting classification accuracy is altered as a result. 

Modifications of some of these techniques are proposed in the following sections to be 

more suitable for developing cancer-related signatures. 

 

4.4.1 K-Means Clustering 

 K-means clustering estimates the number of groups that exist within a given 

dataset [81]. When the number of groups the data is known in advance, the method is 

straightforward to use. However, the technique also proves to be useful in exploring the 

types and numbers of sub-groups within a cohort of samples. Here, each probeset is 

analyzed separately using varying values of K to indicate the number of possibly distinct 

groups of expression values that exist in the samples for the selected probeset. The value 

of K that yields the tightest clusters (lowest within-cluster variation) as well as the largest 

between-cluster variation is chosen to represent the number of “levels” for that probeset 

[79].   

 After clusters or levels are determined, a typical application of this method re-

labels the gene expression of the probeset for individual samples by the level or cluster 

that it belongs to. This re-labeling technique works quite well when just information 

regarding group membership is required. However, when expression values are compared 

across genes or used to build classifiers, the method can fail to maintain the ordering of 

the samples in the expression space, and hence the distinction between the groups. Figure 
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4-3 uses the gene expression value for 10 samples and a single probeset to demonstrate a 

loss of information on relative expression differences when the expression values are 

reassigned based on cluster labels, and highlight the advantage of using cluster centroids 

to retain information on the ordering of samples with the data. Thus, instead of re-

labeling the samples by the group or cluster index, it is proposed that the expression value 

for an individual sample is replaced by the centroid of the cluster to which it belongs.   

 

 

 

  

 

 

 

 

 

 A practical drawback of this method is the limitation in the maximum value of K 

that can be explored. The K-means algorithm is designed to find K distinct groups in the 

dataset, and in the worst case scenario, each sample in the dataset forms an individual 

cluster. Thus, K can take on a maximum value equal to the number of samples in the 

dataset. When the range of expression levels is on a compressed scale, such as in the case 

of RMA normalized data [47] represented in the log-2 scale (3.0-14.0), a few hundred 

samples can adequately represent the spread of the data samples. In cases where the range 

of data is very large, for example a range from 1.0 to 6000.0, as in a MAS5.0 normalized 
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Figure 4-3: Example of K-means clustering. (a) Use of cluster index as sample label 

does not affect analysis (b) Use of cluster index results in loss of information on 

relative differences in expression levels 

(a) (b) 
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dataset [47], several thousand samples may be required to adequately represent the entire 

data range. However, in practical situations, the gene expression datasets are limited to 

only a few hundred samples. Thus, the method works when the values consist of very 

tight clusters around a few expression levels and can fail when the clusters span a large 

range of expression values. The effect of quantization on the dataset due to clustering 

must be carefully examined before proceeding with gene expression analyses to ensure 

that the quantized data contains meaningful information. 

 

4.4.2 Noise Removal 

 A method is described in [80] to reduce the noise in a gene expression dataset by 

re-labeling the numerical levels in the data. The actual number L of distinct levels αl in 

the gene expression matrix [Am x n] is used to re-organize the data. The gene expression 

values are rank-ordered by magnitude, and each level is first redefined as: 

 

2

1−+
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The interval [b0 bL] is divided into equal sub-intervals. The new data matrix is 

created by analyzing each expression level – if the value anm falls in the sub-interval [bl-1 

bl] then, it is quantized to the centroid of that sub-interval.  

High resolution gene expression datasets are expected to have a very large 

number of distinct levels. To reduce the number of distinct levels, a slight modification is 
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proposed. The number of labels L in the final dataset is pre-specified rather than 

computed from the data. The data is organized into bins that represent the range between 

the ordered levels. Each gene expression level is analyzed to determine which bin it 

belongs to. The probeset is then assigned a new expression value equal to the median or 

mean of that bin. This method aims at reducing the noise in the dataset by eliminating 

unnecessary levels, regardless of the number of levels or groups within each probeset. 

Figure 4-4 demonstrates the working of the method using simulated gene expression data 

for 10 samples and a single gene. 

 

 
 

 

As with K-means clustering, the effectiveness of the method depends on the 

characteristics of the data being analyzed. The method can maintain the integrity of the 

data at the probeset level when working with a small range of expression levels. Data 

represented on a log-2 scale inherently has a lower range than the original data, and can 

be represented more easily with a relatively small L. As the value of L is increased, the 
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Figure 4-4: An example to demonstrate the noise removal algorithm for 

quantization of gene expression data 
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new expression values begin to converge around the original values. Thus, a small L 

would be adequate to represent the data without losing significant information. However, 

since the method converts the data into a set of L uniform intervals, when the range of 

expression values is very large, an adequate number of levels L have to be used in order 

to maintain the relative differences between probesets. For example use of L=10 in a 

MAS5.0 dataset with a range from 1.0 to 6000.0 can severely distort the contrast between 

low and high expressing samples. Use of a large L on the other hand, can maintain the 

contrast between the extreme values as well as limit the noise in the data. The selection of 

the quantization parameter L is thus dependent on the characteristics of the numerical 

data. 

 

4.4.3 Simple Rounding 

 A simple method for reducing the resolution of data is to limit the numerical 

precision of the data [82]. Practically, many generalized gene expression analysis 

algorithms ignore the higher significant digits. The use of all the significant digits to 

create a numerical or mathematical model of the biological problem tends to generate 

models that are very specific to the given sample set. Such highly specific models rarely 

work well in predicting the class of new samples. Slight perturbations in gene expression 

values, either due to experimental variation or genetic differences, can lead to 

significantly different models that cannot be validated on independent samples. Thus, a 

straightforward way to reduce the resolution of a gene expression dataset is to reduce the 

number of significant digits in the numerical representation.  The number of significant 

digits that are retained can have an impact on the outcome of analysis and the accuracy of 
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prediction models. Hence, it is necessary to experiment with the level of quantization, 

and choose an optimal tradeoff between resolution of the data and loss of accuracy. 

 

 
 
 

 

Figure 4-5 shows the effect of rounding on the distribution of expression levels 

for 10 samples using 4 significant digits. The figure shows the change in spread of the 

samples as the number of significant digits is reduced. The rounding technique used here 

analyzes the dataset by examining each individual expression value in the dataset. Thus, 

the relative expression levels in the data as well as the ranking of the probesets or 

samples within the dataset remain unaltered.  

 

4.5 Experiments Using Quantization 

 The goal of the case study presented in Section 4.2 was to generate a predictive 

signature for patient survival in the MRC-CRC dataset. The survival times were stratified 

into high risk (less than 36 months of survival: n = 37) and low risk (greater than 36 
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Figure 4-5: Example of the effect of rounding to decimal on a gene expression 

dataset 
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months of survival: n = 84). The data (54675 features) was processed using RMA 

normalization and represented as a continuous value from 0.0 to 15.0 with 6 digit 

precision. Three classifiers (C4.5 DT, SVM and NN) were used to build models in a 10-

fold CV setup and the best weighted accuracy of the classifiers was found to be 56%.  

 The motivation for quantization of gene expression data is largely dependent on 

the problem definition and the type of analysis to be performed on the data. Here, the 

usefulness of the quantization algorithms and the selection of quantization parameters are 

analyzed in the context of survival analysis of gene expression data, a highly complex 

classification problem. The NSCLC dataset is also studied here to compare the effect of 

quantization on classifier performance when working with datasets of different 

complexity. As before, the NSCLC dataset (n=62) was transformed into a two-class 

problem using a cut-off for survival time of 30 months (median survival time). Patients 

who died within 30 months were considered poor prognosis (n = 20), otherwise they had 

a good prognosis (n = 42). The data consisted of 7129 features stored in MAS5.0 data 

format with a 6-digit precision and range of 10.0-6000.0. 

 

4.5.1 Experimental Setup to Test the Effectiveness of Quantization Algorithms 

 Table 4-1 provides the range of values for the quantization parameters used for 

each of the datasets by the three methods. The K-means algorithm uses K, the number of 

clusters as a parameter. The noise removal method considers L, the number of discrete 

levels and the rounding algorithm uses R, the number of significant digits to retain after 

rounding, as parameters. 
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Table 4-1: Quantitative description of quantization parameters 

MRC-CRC dataset 

Quantization method Parameter used Min value Max value 

K-means clustering K 2 100 

Noise-removal L 10 100 

Rounding  R 0 6 

NSCLC dataset 

Quantization method Parameter used Min value Max value 

K-means clustering K 2 60 

Noise-removal L 10 2000 

Rounding  R 0 6 

 
  

 Chapter 3 showed that the MRC-CRC/Survival as well as the NSCLC/Survival 

datasets contained several probesets that were significantly correlated with the survival 

outcome (Section 3.6). The quantization methods aim at improving the contrast in 

probesets that have small signals while also retaining the effect of large signals. Thus, the 

number of probesets that are significantly associated with survival outcome in a 

quantized dataset can be used as one of the indicators of the effectiveness of quantization.  

 The quantization algorithms may be categorized based on whether the algorithm 

operates at the probeset level, or at a global level (using the entire dataset) to alter the 

data. Both methods of quantization retain the integrity of the probeset level data, such as 

the relative ranking of the samples and the number of distinct groups of samples. Thus, 

univariate gene expression analysis can be used as an initial screening test of 

effectiveness for both types of quantization schemes. Multivariable models are useful in 

practical situations to understand the collective effect of a set of genes on the survival 

outcome and used to test the selection of quantization parameters for model building.  

Survival analysis may be performed on continuous survival data, or on 

dichotomized data, as described in Chapter 2. The CoxPH method works with continuous 
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survival data and requires a few levels in the data for effective modeling. Other methods 

such as the Student’s t-test and the K-M survivor estimates work exclusively on two 

groups of data. The two groups of data are created in slightly different ways for each of 

these tests.  

The Student’s t-test is used to determine if the two groups of data have a 

significantly different expression profile for a selected probeset [33, 65]. Hence, the two 

groups are formed by choosing an appropriate cut-off for patient survival time. For 

example, patients with survival time less than 36 months are grouped in a “Bad 

prognosis” group, and the rest of the samples are grouped in the “Good prognosis” group. 

 On the other hand, K-M curves are used to determine if the two groups have 

significantly different survival characteristics [66, 67]. In this case, the two groups are 

formed by defining an appropriate cut-off for expression values. Often the median 

expression level is used as a threshold to form two groups of patients. K-M curves are 

estimated for each of these groups. A log-rank test is used to determine if the two 

survivor curves are significantly different. 

Each of these methods provides different means to understand the data, and uses 

information in the gene expression dataset in slightly different ways. However, each 

method aims at answering a single question – can a mathematical model be generated 

from the dataset to distinguish the groups of survival? If such a model can be created, it 

would then be used to suggest the survival group, or expected survival time for a new 

patient. The effect of the three quantization algorithms was tested on the Student’s t-test, 

K-M and CoxPH in a univariate manner. Since all the three methods aim at analyzing the 

same aspect of the data, the outcomes of the analyses are expected to concur. Only those 
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parameter settings that yield a reasonable number of significant probesets and the most 

consistent results across the analysis methods are retained for further inspection (see 

Table 4-1).   

 

4.5.2 Effect of Quantization on Survival Analysis of MRC-CRC/Survival and   

NSCLC/Survival Datasets 

 The number of probesets found to be significant using univariate tests in a 

quantized dataset is compared with the original full resolution data to assess the 

effectiveness of the quantization method. This information is shown in Figure 4-6  and 

Figure 4-7 for the two datasets. The number of significant probesets is expected to 

stabilize as the resolution of the data is altered from very coarse to very fine resolution 

(e.g. original resolution). For the MRC-CRC/Survival dataset, the number of significant 

probesets for each test remains stable except at the coarsest resolutions (for example at 

R=0; L=40 and below; and K=2).  

 A similar effect is seen with the noise removal method for the NSCLC/Survival 

dataset, with lower number of significant probesets for resolution L=200 and below. 

However, the opposite trend is seen for rounding and K-means quantization.  One reason 

for this effect due to rounding could be the scale of the data (0-6000.0). When working 

with such a large range of values, the small effect of the significant digits may add more 

noise than information for the univariate tests. Reducing this data may enhance the 

contrast between the classes to improve the significance of correlation with survival. K-

means clustering assigns cluster centroids as the expression value. Given the large range 

of the data, at quantization levels of K=2 or K=10, an extreme contrast is introduced at 
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the probeset level. Such an effect is not observed in the MRC-CRC/Survival dataset that 

is represented on a log-2 scale with a range of 0-15.0. This result supports the hypothesis 

that the selection of the quantization method and its parameters should take into account 

the range of the data and the inherent data complexity.  

 It was shown in Chapter 3 that predictive classifiers may be built on datasets with 

small numbers of significant features, if these features have a high contrast between the 

classes. Thus, it is important to assess the quality of each quantized dataset individually. 

The reduction in the number of significant probesets may result from information being 

lost with the resolution. Alternately, these settings may be improving the probesets with 

high level of contrast, while all the probesets with lower levels of contrast are suppressed.  

 Although the variation in the total number of significant probesets is lower at the 

higher resolution settings, these datasets may include probesets that are noisy and hence 

not highly correlated to the outcome. As the resolution is lowered, the noise is expected 

to diminish since the contrast is expected to be enhanced in the highly correlated 

probesets as well as probesets with low levels of correlation. The lower variation in the 

number of significant probesets for the medium-resolution settings suggests that a low 

complexity dataset can be used in place of the high resolution original data while still 

retaining all the relevant features of the dataset.  

If the dataset created by a specific quantization method is consistent with the 

original dataset and maintains the integrity of the expression values at the probeset level, 

the result of the three analyses should be consistent for the probeset. Figure 4-8 (MRC-

CRC/Survival) and Figure 4-9 (NSCLC/Survival) summarize this consistency in results. 

Figure 4-8b a shows the number of probesets in each dataset for which all three tests had 
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significant p values. Note that in the baseline MRC-CRC/Survival dataset (Figure 4-6), 

the three tests individually found several thousand features to be significant (Student's t-

test: 6000; CoxPH: 11000; K-M: 8500). However, only about 1100 probesets had 

significant p values for all three tests. The trend for the change in number of significant 

probesets that was observed in Figure 4-6 is still maintained. Figure 4-8b shows the total 

number of probesets that had concordant results across the tests. As before, the higher 

resolution datasets have very little variation in the total number of concordant probesets, 

indicating that the information content is consistent with the original dataset. Similar 

trends are observed in the NSCLC/Survival dataset. (Figure 4-9). These results suggest 

that at least a few significant probesets are being retained in the dataset by each 

quantization method and the different parameter settings. Figure 4-8b also shows that at 

coarser settings, a large number of probesets have consistent p values across the tests. 

However, only a small subset is significantly related to survival.  
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Figure 4-6: # Significant probesets in the MRC-CRC/Survival datasets for the quantized datasets 
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Figure 4-7: # Significant probesets in the NSCLC/Survival dataset for the quantized datasets 
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(a) 

 

 
(b) 

Figure 4-8: Number of probesets with concordant p values across  

all three univariate tests on the MRC-CRC/Survival dataset 
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(a) 

 

 
(b) 

Figure 4-9: Number of probesets with concordant p values across  

all three univariate tests on the NSCLC /Survival dataset 
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4.5.3 Multivariable Analysis 

 Quantization of the gene expression data was used to reduce the complexity of the 

data to aid in the use of simpler classifiers as well as creating simpler classifier 

boundaries. Chapter 3 used three classifiers (C4.5 DT, SVM and NN) in a 10-fold CV 

setup to generate models of survival. The results indicated that a better model needed to 

be designed for the MRC-CRC/Survival dataset. The same classifier experiments were 

repeated on the quantized datasets to determine if the modified data was better suited for 

use with the described classifier setup. Student's t-test was used as the initial feature 

selection step to compare the effect of feature selection with the effect of quantization as 

a data reduction technique. 

 Figure 4-10 and Figure 4-11 show the weighted accuracy of the classifiers for the 

quantized datasets (MRC-CRC/Survival) using C4.5 DT and NN for a varying number of 

features. Figure 4-12 and Figure 4-13 show the same for the NSCLC/Survival dataset for 

NN and SVM. SVM for MRC-CRC/Survival and C4.5 DT for NSCLC/Survival did not 

perform better than the other classifiers presented here, and thus are not represented in 

the graphs. For the MRC-CRC/Survival dataset (Figure 4-10 and Figure 4-11), it is seen 

that the behavior is complex, however, in general, the classifiers tend to perform with 

better accuracy with the quantized datasets than with the original full resolution data that 

is used as the baseline for comparison.   

 The results indicate that accuracy is impacted by interaction between the number 

of features and quantization parameters. For example, L=10 performs better than L=100 

when 50 features are used (L-10 : 68% and L-100 : 48%), but worse when the number of 

features is 3000 (L-10 : 38% and L-100 : 45%).  The graphs do not show clear trends that 
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can be used to determine the best combination of parameters for quantization and feature 

selection. This suggests that it is important to explore the settings for both types of data 

reduction to obtain the best accuracy for prediction. However, the results also indicate 

that quantization may lead to improved accuracy. Figure 4-14 and Figure 4-15 compares 

the best performing quantization parameters with the baseline accuracies for the MRC-

CRC/Survival dataset. Figure 4-16 and Figure 4-17 show the same for the 

NSCLC/Survival dataset. The graphs show that each quantization method performs 

differently. For example, maximum accuracy for rounding is obtained when higher 

numbers of features are selected, however, for noise removal the maximum accuracy 

occurs with fewer features selected. The data also suggests that relatively coarse data 

produces the highest accuracy. Note here that the range of accuracies for the 

NSCLC/Survival dataset is lower than the accuracy obtained in Chapter 3 due to different 

numbers of t-test features selected for classification.  
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Figure 4-10: Performance of C4.5 DT on the quantized MRC-CRC/Survival 

datasets. Each classifier result is compared to the performance on the baseline 

dataset (shown in red dashed lines) 
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Figure 4-11: Performance of NN on the quantized MRC-CRC/Survival datasets. 

Each classifier result is compared to the performance on the baseline dataset (shown 

in red dashed line) 
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Figure 4-12: Performance of NN on the quantized NSCLC/Survival datasets.  

Each classifier result is compared to the performance on the baseline dataset (shown 

in red dashed line) 
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Figure 4-13: Performance of SVM on the quantized NSCLC/Survival datasets.  

Each classifier result is compared to the performance on the baseline dataset (shown 

in red dashed line)  
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Figure 4-14: Comparison of the weighted accuracies for C4.5 DT using the best parameter setting for quantization on the 

MRC-CRC/Survival dataset. Graph legends: x-axis: T-test features used, y-axis: Weighted accuracy for classifier 

 

 

 
Figure 4-15: Comparison of the weighted accuracies for NN using the best parameter setting for quantization on the MRC-

CRC/Survival dataset. Graph legends: x-axis: T-test features used, y-axis: Weighted accuracy for classifier 
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Figure 4-16: Comparison of the weighted accuracies for NN using the best parameter setting for quantization on the NSCLC 

/Survival dataset. Graph legends: x-axis: T-test features used, y-axis: Weighted accuracy for classifier 

 

 

Figure 4-17: Comparison of the weighted accuracies for SVM using the best parameter setting for quantization on the NSCLC 

/Survival dataset. Graph legends: x-axis: T-test features used, y-axis: Weighted accuracy for classifier 
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 Figure 4-18 (MRC-CRC/Survival) and Figure 4-19 (NSCLC/Survival) compare 

the best weighted accuracies for each method of quantization independent of the features 

used for modeling. The figures clearly indicate that the predictive accuracy of the 

classifier models improves with quantization of the data. The noise removal algorithm 

tends to do the best in improving accuracy while reducing the resolution of the dataset. 

The weighted accuracy for the MRC-CRC/Survival dataset was improved from 56% to 

68% and the accuracy for the NSCLC/Survival dataset improved from 67% to 90% for 

the feature selection settings presented here. Statistical tests were used to determine if the 

improvement per fold of the 10-fold CV was significant. For each dataset, this change 

was found to be significant at a level of 0.05 (MRC-CRC/Survival: p value=0.035; 

NSCLC/Survival: p value=0.008). 

 
 

 
 

 
 

(a) (b) 

Figure 4-18: Comparison of the best weighted accuracies using the three methods of 

quantization for the MRC-CRC/Survival dataset 
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4.6 Classification Complexity Using Quantization 

 Figure 4-20 shows the complexity of a quantized dataset with the measure φ as 

defined in Chapter 3. φ is shown for the best quantized dataset (L=10) for the MRC-

CRC/Survival dataset. It can be seen that the complexity of the MRC-CRC/Survival 

dataset has been reduced, and the classifier accuracy has increased. The complexity of 

this dataset is now equivalent to the MRC-CRC/Site dataset (see Chapter 2). As predicted 

by φ, the corresponding classifier accuracies are similar. It can be noted that the accuracy 

of the MRC-CRC/Site dataset has decreased. This suggests that the quantized dataset at 

L=10 can be used to generate a predictive model for the survival problem. A better 

quantization parameter setting has to be determined to obtain better accuracies with the 

MRC-CRC/Site dataset. The complexity and the classifier accuracy of the MRC-

CRC/Gender dataset remain the same as before suggesting that the information regarding 

gender is maintained in the quantized dataset. 

 

Figure 4-19: Comparison of the best weighted average accuracies using the three 

methods of quantization for the NSCLC/Survival dataset 
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Figure 4-20: Measure of complexity on the best quantized MRC-CRC/Survival 

dataset 

  

 This result further emphasizes that the quantization methods retain useful 

information in the data at all the parameter settings and lower resolution datasets can be 

used instead of the original high resolution datasets to create better predictive classifier 

models. Such models created on simpler datasets are expected to have simpler decision 

boundaries and hence be able to generalize to independent samples for prediction. 

 

4.7 Summary 

 Data quantization was explored to limit the resolution of gene expression data to 

yield low complexity data for analysis. Three methods of quantization were proposed and 

tested on the MRC-CRC/Survival and NSCLC/Survival. Concordance in the results of 

univariate analyses indicated that the three methods altered the data in a consistent 

manner. Experiments with classifier models indicated that the quantization techniques 

aided in improving classification accuracy by creating simpler models for analysis. Thus, 

98%

67% 67%

0

2

4

6

8

10

12

0%

20%

40%

60%

80%

100%

MRC-CRC/Gender MRC-CRC/Site MRC-CRC/Survival

W
e
ig

h
te

d
 a

c
c
u

r
a
c
y

Complexity measure on quantized data

Classifier accuracy Complexity measure

C
o
m

p
le

x
it

y
 m

e
a
su

r
e
 φφ φφ

φ



76 
 

quantization of gene expression data creates datasets with low complexity and provides 

the ability to build robust and reliable prediction models. 
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CHAPTER 5      A COST-SENSITIVE MULTIVARIABLE FEATURE 

SELECTION FOR GENE EXPRESSION ANALYSIS USING RANDOM 
SUBSPACES 

 

5.1 Introduction 

 As stated in earlier chapters, one aim for building gene expression models is to 

identify signatures that provide accurate clinically-relevant biomarkers of disease. 

Chapter 3 analyzed the impact of data complexity on classifier accuracy, while Chapter 4 

used quantization to reduce data complexity and improve classifier accuracy. This 

chapter explores the use of feature selection to improve classifier accuracy.   

 Section 5.2 illustrates the need for a multivariable approach in modeling 

biological processes using the example of a molecular pathway involving the Ras family 

of proteins.  The random subspace approach is described in Section 5.3. A previously 

developed random-subspace based approach for multivariable feature selection (MFS-

RS) is described in Section 5.4 and extended to incorporate a cost sensitive aspect (MFS-

RSc) in Section 5.5. Results are summarized in this section and demonstrate the 

improved classification accuracy from using the extended method. Future work is 

summarized in Section 5.6.  

 

5.2 Multivariable Models 

 One of the first stages of gene expression analysis is to reduce the dimensionality 

of the data by selecting a small set of features that are reliably expressed at different 
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levels across different classes of samples. Many techniques for feature selection analyze 

the data in a univariate fashion to determine if a gene is significantly associated with the 

outcome of interest. The classifier models presented thus far utilize univariate tests 

(Student's t-test) as the basis to select relevant features. However, many biological 

processes are governed by multiple genes acting along pathways [8, 83]. This domain 

knowledge suggests that a mathematical process that incorporates multiple variables in 

the feature selection process is likely to capture the biological process better than 

univariate feature selection and thus improve the predictive ability of the classifier.   

 

5.2.1 Molecular Pathways - An Example 

A genetic pathway is defined by the interactions between groups of genes with 

individual functions [8]. These genes are typically dependent on specific interactions for 

the cell to function normally. Mutation in a gene active within a pathway can disrupt the 

functioning of the pathway. For example, consider a molecular pathway for the Ras 

family of proteins [40, 83, 84]. These proteins deliver signals from cell surface receptors 

via several protein-to-protein signals to ultimately affect cell growth, differentiation and 

cell survival [8]. Ras communicates signals from the cell surface to the nucleus and 

mutation of the Ras gene can disrupt these sequences of protein signaling and cause 

transmission of the signaling even in the absence of an extracellular stimulus. This can 

ultimately lead to the development of cancer [40, 83].  
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Figure 5-1: Example of a molecular pathway involving Ras. (Image generated from 

GeneGO, St. Louis, MO) 

 

 Figure 5-1 provides an example of a molecular pathway involving Ras. Disrupting 

the expression of Ras can cause changes in transcription downstream from Ras in the 

pathway [8, 40]. Thus, information on expression of genes in a pathway can provide a 

hint regarding where a disruption in signaling may have occurred. Further, it can be seen 

that the change in expression of a single gene can rarely provide an indication of the 

complete picture of the tissue function. In addition to this, a gene may be a part of 

multiple pathways that could drive the biological state of a cell.  The supporting genes in 

a selected pathway can aid in determining which of these pathways is active in the cell. 

Hence, multivariate selection of gene probesets in a gene expression dataset would be 

expected to provide more information regarding the state of the cell than univariate 

analysis.   
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5.2.2 Existing Multivariable Gene Expression Techniques 

 Multivariable gene expression models have been developed using different types 

of analysis methods. Continuous models such as CoxPH have been used to select subsets 

of features that are correlated with survival to develop clinical relevant signatures for 

breast cancer [23].  

 A supervised principal component approach was published in [85] that modified 

the unsupervised technique of principal component analysis by selecting subsets of 

components that were shown to be related to a specified outcome. The genes used for the 

component analysis were univariately selected in a supervised manner using CoxPH. This 

method allowed selection of subsets of genes that were related to outcome via a specific 

combination, defined by the principal component. The contribution of each gene to the 

signature was altered by the component scores rather than the traditional CoxPH 

coefficients. The technique was constructed so as to allow inclusion of covariates in the 

model to improve predictive ability. The models were shown to extract biologically 

relevant gene expression signatures for various models of disease. 

 The principal component approach was used in combination with a maximum 

entropy linear discriminant analysis (MLDA) [86] to discriminate normal from tumor 

prostatic tissue. In this case, the MLDA weights assigned to each feature was modified by 

the principal components and the features ranked in decreasing order of the weights. The 

method was found to identify clinical known biomarkers of the disease.  

 A SVM-based feature selection method is described in [87] that steps through the 

gene expression dataset to generate a feature set that best fits the problem. At each step of 

the feature selection process, a feature that maximizes the correlation of the feature set to 
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outcome is included into the model. The resultant feature set is expected to be  

representative of the multi-gene pathways of the underlying biology. 

 An entropy based multivariate feature selection method is described in [88]. The 

method estimates the entropy of the class variables on the model rather than on the data. 

Multivariate normal distributions are used to model the sparse data. The method was 

tested on several datasets and shown to perform with high predictive accuracy.  

 

5.3 Random Subspace Approach 

 The random subspace technique has been used to create ensembles of classifiers 

to achieve accuracies higher than those obtained from a single classifier [60].  

Considering a problem in which many features are present (p >> n), selection of the best 

features for distinguishing the samples of the two classes can create a projection on the 

feature space that can greatly aid in creating simpler classifier boundaries. The greater the 

separation between the classes for each feature, the better the ability to design a simple 

decision boundary.   

 However, in complex datasets, it may be difficult to find many features that can 

individually separate the samples into the two classes. Statistical techniques have the 

advantage of a significant theoretical basis and allow partially overlapping distributions 

between two classes. However, when features with overlap are used in a classifier model, 

a complex decision boundary may be created, as illustrated in Figure 5-2. 
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 Figure 5-3 illustrates the advantage of using random subspaces for multivariable 

feature selection in such complex cases. In a dataset with multiple features, where the 

individual features have poor separation between the classes, use of the entire feature set 

for classification may lead to poor accuracy. However, a projection of the data into a 

subset of the feature space could provide a better separation of the samples. In Figure 5-3, 

projection of the data onto the plane created by Gene 1 and Gene 3 provides a separation 

of the samples, while projection onto the other two planes yields poor separation. A 

classifier that uses this projection space for modeling a gene expression signature may be 

expected to perform better than a classifier that used the entire feature space, or the 

features univariately. 

(a) 

(b) 

Figure 5-2: Illustration of distributions of features or probesets 
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 The random subspace technique uses this concept to create ensembles of 

classifiers [60] as illustrated by Figure 5-4.  A subset of features is randomly sampled 

from the entire set of features. This is a random subspace or a random projection of the 

feature space. A classifier is constructed from this random projection on the feature 

space.  The process is repeated many times, each time selecting another random subset of 

features. If enough such random subspaces are created then several subspaces may be 

obtained that optimally represent all the important features in the samples. Further, if the 

random subspaces cover all the important features effectively, then each classifier would 

potentially be tuned to learn a few characteristics of the population. This process 

inherently identifies subsets of features that are important for describing the underlying 

samples in a multivariate sense. The combination of feature subsets can provide a better 

understanding of the underlying data than using a single feature set or creating a single 

classifier.  

Figure 5-3: A random projection of the data provides better separation of samples 
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 A typical application of the original random subspace classifier model described 

in [60] uses each of these classifiers to predict the class of an unseen test example, and 

the resulting predictions are combined by a majority vote. The majority vote assigns the 

test sample to the class that was predicted by a majority of the random subspace 

classifiers. Since each classifier is tuned to learn slightly different characteristics of the 

population, the class assigned by the majority vote will indicate that the test sample 

displayed characteristics of that class for a majority of the random subspace classifiers. 

Further, since the sample characteristics are analyzed from multiple points of view, the 

majority vote is expected to perform better at learning the classes of samples than any 

single classifier.  

 

features

Accuracy 1

Classifier

Random subspace 1

Accuracy 2

Classifier

Random subspace 2

Accuracy n

Classifier

Random subspace n

Select subspaces that have high test accuracy; Multiple features sets

Figure 5-4: Random subspace approach for feature selection 
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5.4 Multivariable Feature Selection Using Random Subspaces (MFS-RS) 

 The random-subspace approach was used for multivariable feature selection in 

[46] by identifying the features used by these random subspace classifiers rather than use 

the ensemble of classifiers as the model for the gene expression signature. Thus, instead 

of using the random subspace classifiers to assign the class of a test sample, this new 

technique, termed MFS-RS, extracted the features used by the subspace classifiers.  C4.5 

DT [61] were used to build the subspace classifiers. Since these classifiers select important 

features from accurate random subspaces, they inherently select important features from 

an input set while creating the decision boundary. Standard C4.5 pruning is used to avoid 

over fitting that may occur by randomly selecting features from such a large space.  

 With large gene expression datasets that consist of several thousand features, a 

large percentage of the features could be unrelated to the underlying classes, as evidenced 

by signatures with gene sets that consist of hundreds of features [2, 4, 14].  These features 

do not provide any useful information for a classifier and may reduce the accuracy of 

prediction. Selecting random subspaces that yield extremely inaccurate classifiers aids in 

quickly removing uninformative features. Thus, classifiers that perform very poorly on 

either the training or test samples indicate that the specific combination of features used 

by the classifier may be safely dropped from the analysis. Conversely, classifiers that can 

create an efficient decision boundary between the training samples of the classes can be 

used as an indicator that at least some of the features are useful for describing the classes. 

A simple way to select the highest accuracy classifiers is to examine the prediction 

accuracy of each subspace classifier on a test set of samples. Use of these subsets of 
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features increases the likelihood that many of the important genes are included in the 

analysis as opposed to a univariate selection of features.  

 The MFS-RS method was applied to the MRC-CRC/Survival problem (see 

Section 2.4.2).  Chapter 3 showed that the dataset was relatively complex and in general, 

the prediction accuracies for survival are expected to be low. Figure 5-5  indicates that a 

large percentage of the subspaces created on this dataset were extremely poor in 

predictive accuracy, and thus not very general. Less than 0.05% of the subspaces were 

found to have predictive accuracies better than 80%. Hence, the approach taken was to 

create as large a number of random subspaces as possible and sift through these subspaces 

to identify features used most often in subspaces that yield high-accuracy classifiers.   

 

 
Figure 5-5: Weighted test accuracies of 10000 trees on MRC-CRC/Survival dataset 

 

 The random subspace classifiers were created in a 10-fold CV setup. Two 

thousand subspaces were generated of size 200 each and a C4.5 decision tree was 

constructed from each random subspace. Subspace classifiers within each fold were tested 
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for prediction accuracies and a single subspace that attained the highest train and test 

accuracy was selected as the final classification model. Thus, 10 subspaces were extracted 

from the dataset (representing the best subspace of each fold) and combined into a single 

feature set.  

 This procedure of extracting the best single feature set from the dataset was 

conducted within a 10-fold CV to provide independent samples for validation, thus 

yielding 10 feature sets for use. Survival models were created for these feature sets using 

three classifiers (C4.5 DT, NN and SVM). The average weighted accuracy of these 

classifiers on the 10 feature sets was used as a measure of the performance of the 

technique.  

 The Student's t-test was used as a univariate feature selection method for 

comparison on the same dataset. The n most significant features, ranked according to 

Student’s t-test p values, were used for building feature sets for the same classifier 

methods in a 10-fold CV. The MFS-RS technique used an average of 81-96 features per 

feature set. To compare the performance of the two feature selection techniques, n in the 

Student's t-test approach was set to 100 and the average weighted accuracies of the 10-

fold CV were compared. 

 Figure 5-6 shows that MFS-RS performed with better prediction accuracies than 

univariate feature selection [46]. Since the features were selected in a multivariate fashion, 

it is expected to mimic the underlying biology of the samples in a closer manner than the 

univariately chosen features. 
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Figure 5-6: Comparison of prediction accuracies using MFS-RS and univariate 

feature selection methods for the MRC-CRC/Survival dataset 
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class a majority of the time. In doing so, the classifier may gain in accuracy of prediction 

but the sensitivity and specificity (see Section 2.6) of such classifiers may be drastically 

altered. When analyzing biomedical questions, it is often desirable to have a high 

sensitivity as well as a high specificity of prediction.  

 Classifier performance in such imbalanced datasets can be evaluated by using cost-

sensitive learning tools [89]. Evaluation of cost-sensitive classifiers using cost curves was 

proposed in [90] to visualize classifier performance in imbalanced datasets. A wrapper 

approach was used in [91, 92] to address this issue and to improve minority class 

accuracy. The wrapper was used for optimization of a composite f-value to reduce the 
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average cost per test example for the datasets considered. The true positive rate of the 

minority class increased significantly without causing a significant change in the f-value.   

 A modification of the MFS-RS technique is proposed here to factor in this 

imbalance in the class distributions. The method, termed MFS-RSc, chooses the best 

random subspaces to maximize both the sensitivity and the specificity of a random 

subspace classifier based on a pre-determined threshold. The thresholds for prediction 

accuracy, specificity and sensitivity are set to a value lower than 100% to avoid selecting 

classifiers that are over-trained on the samples. In this modification, multiple feature sets 

may be selected to maximize the representation of good features in the dataset. 

 As before, 2000 subspaces were created of size 200 features each. A multivariable 

feature set was created by combining the features in subspaces that simultaneously 

yielded 80% or greater specificity and sensitivity.  All the features in the selected random 

subspaces were pooled together to form a new feature space. Hence, each individual 

random subspace classifier may be re-created from this space. Further, since the features 

are now pooled together, more features could be included in the creation of a classifier 

than in the original subspace. A new classifier created on this feature space has the choice 

of several of the individually important subsets of features, as well the ability to combine 

these features into a single decision boundary. The decision boundary created by this 

classifier is used as the final predictor for all new and unseen samples, evaluated in a 10-

fold CV setup.   
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Figure 5-7: Comparison of prediction accuracies of classifiers using the proposed 

MFS-RSc technique and univariate feature selection on the MRC-CRC/Survival 

dataset 

 

 Figure 5-7 shows the improvement in prediction accuracy of the classifiers with 

use of the proposed multivariable feature selection. SVM and NN were found to perform 

with much better prediction accuracies with the random subspace features. However, the 

performance of C4.5 decision trees was found to be similar with both feature selection 

methods. The difference in performance of the three classifiers is most likely due to the 

difference in the use of features by the classifier methods. SVM and NN train on all the 

features used as an input and develop a decision boundary based on these. On the other 

hand, C4.5 DT select only a small set of the input features to represent the classifier 

boundary. In doing so, some of the features may be removed from consideration. In such 

cases, C4.5 DT are useful for the initial stages of multivariable feature selection, and the 

classifier models such as SVM and NN are useful in creating the final prediction model. 

 Figure 5-8 shows the sensitivity and specificity of the classifiers with 

multivariable and univariate feature selection. Here, the sensitivity of the classifier is the 
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accuracy of the majority class (“Good” prognosis) and has similar values using either 

feature selection method. However, the specificity, or the accuracy of the “Poor” 

prognosis class, indicates that when using the univariate feature selection method, the 

classifiers are focused on the majority class at the expense of the minority class. With the 

multivariable feature selection however, the accuracies of this class are significantly 

increased. MRF-RSc is able to boost the accuracy of the minority class without 

sacrificing the accuracy of the majority class, thereby increasing the overall accuracy of 

the classifier. These results were published in [93]. 

 

 
Figure 5-8: Comparison of the specificity and sensitivity of prediction using MFS-

RS and univariate feature selection on the MRC-CRC/Survival dataset 
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The specificity and sensitivity of the best random-subspace based classifiers using 

the proposed modification is compared to the best subspace classifier created using the 

original method (Figure 5-10). MFS-RS selected features based on the weighted accuracy 

of each subspace classifier. This would potentially bias the classifier towards the majority 

class due to the unequal distribution of the classes. MFS-RSc was proposed to retain 

features that were equally representative of both classes of survival.  It can be seen that 

the specificity as well as sensitivity of the classifier model are improved with the use of 

MFS-RSc. 

 

 
Figure 5-9: Comparison of classifier prediction accuracies for MFS-RS, MFS-RSc 

and univariate feature selection on the MRC-CRC/Survival dataset 
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Figure 5-10: Comparison of the best classifier sensitivity and specificity using MFS-

RS and MFS-RSc methods on the MRC-CRC/Survival dataset 

 

5.6 Future Work 

 The random subspace technique was shown to work as a multivariable feature 
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designed to select a subset of the input features to retain only those features that are 

correlated to the outcome and provide a good fit to the data [67]. The features can be 

selected in a forward or backward selection model [67]. Good random subspaces are 

selected as before, and the selected features pooled to form input features for the final 

classifier model. 

 Further work can be done in understanding the effect of features on classification 

accuracy. Features selected as important in subspaces that performed poorly could be 

assigned low weights while features in accurate subspaces could be assigned higher 

weights. These weights could be used to influence the classifier models to use better 

performing features to produce more predictive models. 

 The described models can also be extended to incorporate the quantization 

techniques described in Chapter 4 to further enhance the classification accuracy. 

 

5.7 Summary 

 The complexity of heterogeneous cancer with multiple molecular pathways was 

used as a motivation for extending a feature selection method using random subspaces. 

The predictor built using the original formulation of this feature selection method (MFS-

RS) was shown to perform with better accuracy than univariately selected features on the 

MRC-CRC/Survival dataset. A modification of the original formulation was proposed to 

account for the difference in sensitivity and specificity of predictors when working with 

imbalanced datasets (MFS-RSc). This new method of feature selection used cost-

sensitive analysis and was shown to improve the overall weighted accuracy of prediction. 
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It was also shown to boost the prediction accuracy in the minority class while retaining 

the high accuracies in the majority class. 
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CHAPTER 6      INTEGRATING BIOLOGICAL COVARIATES IN GENE 
EXPRESSION MODELS 

 

6.1 Introduction 

 In preceding chapters, classification complexity was measured and methods were 

proposed for managing or reducing this complexity. The use of quantization to reduce 

data resolution and a multivariable feature selection method to reduce data 

dimensionality were shown to improve the predictive accuracy of classifiers in complex 

datasets. However, additional options exist for managing complexity by accounting for 

the biological heterogeneity of tumor samples when creating gene expression models. 

One such approach was used in [95] for the prediction of radiation sensitivity. This 

chapter experiments with the methods employed in that paper and provides a more 

complete approach to the integration of selected biological indicators of cancer into a 

gene expression model. 

 Biological indicators of cancer models are introduced in Section 6.2. A brief 

description of the radiosensitivity dataset and multi-linear regression model developed for 

prediction of radiosensitivity is presented in Section 6.3.  A systematic method to include 

biological variables in the linear regression model is discussed in Section 6.4 followed by 

results in Section 6.5.  Verification of the proposed model is presented in Section 6.6.    
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6.2 Biological Indicators for Cancer Models 

 An important aspect in the management of cancer treatment is understanding how 

a patient will respond to a specific treatment such as radiation therapy. Customizing 

radiation therapy to maximize cancer cell death is beneficial, and predicting such a 

response of the cells to radiation therapy is important for effective patient management.  

 Genes such as Ras [40, 84] and p53 [41] influence the response of tumor cells to 

radiation treatment. For example, the presence of a mutant Ras can indicate a higher 

likelihood of non-response to radiation, while the wild type Ras gene does not predict 

response to radiation treatment. Similarly, presence of a mutant p53 gene is used as an 

indicator for uncontrolled proliferation of cells, while a wild type p53 gene is known to 

be a tumor suppressor. The effect of these genes, both wild type and mutant, has been 

studied with respect to radiation sensitivity of cancer patients [83]. Radiation sensitivity 

has been measured by applying a specific amount of radiation (2 Gy) and measuring 

survival fraction of the target cells. The measured survival fraction is referred to as SF2 

and used to predict the sensitivity of patients to radiation treatment [96].   

 Combining clinical indicators, such as the influence of these genes, with gene 

expression models of tumor characteristics has the potential to provide meaningful 

insight into the tumor biology. Models have been developed that incorporate clinical 

indicators such as tumor grade and angio-invasion [97] to build predictive models for 

prognosis of breast cancer. Here, the radiation sensitivity of the NCI60 panel of cell lines 

is investigated by incorporating biological indicators into a gene expression model. 
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6.3 Multivariable Linear Regression for Prediction of Radiosensitivity 

 A multivariable linear regression model was developed using gene expression 

data to predict the radiosensitivity of tumor cell lines [95]. The model was built using a 

subset of 35 epithelial-based human tumor cell lines from the NCI60 panel of cancer cell 

lines representing significant biological diversity with respect to the tissue of origin (TO). 

Radiation sensitivity data, defined by survival fraction after 2 Gy (SF2), was available for 

each cell line. The method used the Significance Analysis of Microarrays (SAM) [75] to 

select probesets with a false discovery rate of 5%. The model was shown to achieve a 

statistically significant (p=0.0002) predictive accuracy of 62% for predicting 

radiosensitivity. The genes selected by the model were shown to be mechanistically 

involved in radiation sensitivity through wet-lab experiments, thus establishing the 

biological validity of the mathematical algorithm.  

 Further work on enhancing the model showed that although the gene expression–

based predictor was found to be accurate, the classifier model was not accurate as the cell 

line population was increased to 48 (compared to 35) cell lines. The best linear 

regression-based classifier using the 48 cell lines correctly classified 28/48 samples 

(58%) compared to 25/35 (71%) for the best classifier in the 35 cell line dataset. This 

result suggested that the linear regression model based only on gene expression data may 

not be able to capture the complexity of the problem in detail. To address this issue, 

clinical indicators including tissue of origin (TO), Ras mutational status (wt/mut) (RAS) 

and p53 mutational status (wt/mut), that are known to be implicated in the biological 

regulation of radiosensitivity [83, 96], were included in the gene expression model for 

prediction of radiosensitivity. RAS and P53 status indicators are binary variables that 
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indicate wild type (wt) or mutational (mut) status of the gene for a cell line. The indicator 

for tissue of origin (TO) has 9 levels, one for each type of the tissue of origin for the 

tumor cell line [59]. 

  

6.4 Inclusion of Biological Covariates in Model Development 

 In the published model [95], gene expression was used to predict radiation 

sensitivity using the following mathematical equation. 

 

Gene Expression Model:   SF2j = k0 + k1(yij) 

 

where ki (i=0, 1) represents a model coefficient, computed during the training process; yij 

represents the gene expression value for probeset i in cell line j of the n predictive 

probesets selected by the classifier and SF2j is the predicted radiosensitivity for cell line j.   

 A drop in predictive performance of this basic model was observed when tested 

on newer samples. An attempt was made to include clinical indicators in the predictive 

model to capture the underlying biology more closely. The complexity of the data due to 

the large number of features increases the difficulty of integrating gene expression and 

biological (or clinical) parameters into a single model. The large number of gene 

expression measurements makes it much more likely that the most significant 

correlations to radiation sensitivity are gene expression probesets rather than biological 

variables.  
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 Expanded linear mathematical models outlined by the following equations allow 

inclusion of biological variables to construct individual probeset models for explicitly 

integrating the biological parameters at the feature selection step.  

 

Additive Model:    SF2j = k0 + k1(yij) + k2(TO) + k3(RAS) + k4(p53)  

 

Interactive Model:  

SF2j = k0 + k1(yij) + k2(TO) + k3(RAS) + k4(p53)  

+ k5(yij)(TO) + k6(yij)(RAS) + k7(TO)(RAS) + k8(yij)(p53) + k9(yij)(TO)(RAS) + … 

 

where yij represents the gene expression value for probeset i in cell line j of the n 

predictive probesets selected by the classifier and SF2j is the predicted radiosensitivity 

for cell line j.    

 The goodness of fit, represented by an R
2
 value, is used to estimate the fit of 

linear regression models to the underlying data. Higher R
2
 values are a better fit for the 

data. Here, an adjusted R
2
 value (Adj-R

2
) was used instead of R

2
 to adjust for the addition 

of regressors in the equations. While R
2
 tends to increase with an increasing number of 

regressors, the Adj-R
2
 value will penalize the statistic for inclusion of regressors that are 

not correlated with the outcome.  

 Thus, the usefulness of a modified linear model for the prediction of 

radiosensitivity in comparison to the existing model is assessed in terms of the least 

squares model fit parameter Adj-R
2
. Once a set of probesets is selected, a full model 

combining selected probesets/genes and biological parameters can then be considered. 
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This effectively reduces the impact of a large number of gene expressions by forcing the 

biological parameters into the equation.  

         

6.5 Analysis of Fit for the Linear Models 

 The original gene expression-only model, as well as the additive and the 

interactive linear regression models were used on 48 of the NCI60 panel of human cancer 

cell lines. The analysis was performed for each probeset and the model fit parameter 

(Adj-R
2
) was used to determine if the model improved by inclusion of the covariates. 

Figure 6-1 shows a box plot of the Adj-R
2
 values from modeling each probeset 

individually when correlated with radiation response in the 48-cell line database for each 

of the three linear models. In the original gene expression-only model, relatively fewer 

probesets could achieve a model fit better than Adj-R
2
=0.2 (< 30 of the 7129 probesets), 

with the best fit being just above Adj-R
2
=0.3. The least squares fit for the additive model 

as well as the interactive models improve considerably. The average fit for the additive 

model was found to be Adj-R
2
=0.28 with a maximum fit of Adj-R

2
=0.48. With the 

interactive model, the average fit improved to Adj-R
2
=0.6 with a maximum value of Adj-

R
2
=0.84.  
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Figure 6-1: Adj-R
2
 values for linear equations fitting SF2 on 48 cell lines  

  

6.6 Verification of Model Fit  

 Figure 6-1 indicates that the inclusion of biological variables significantly 

improved the ability of most genes to describe the relationship between gene expression 

and radiosensitivity in a linear regression model. However, the inclusion of additional 

parameters and their interactions within the same equation almost certainly leads to over 

fitting. Since all genes are considered separately with the addition of these parameters, 

the use of this strategy for ranking genes does not require that over-fitting not occur. 

However, it is hypothesized that for some probesets and biological variables, the 

interaction will, in some instances, provide significantly better model fit.  

Adj-R2 values for linear models with biological covariates 

Gene expression 
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Additive 
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 An observed improvement in Adj-R
2
 value of expanded linear models using 

biological variables such as RAS, p53 and TO could be from the addition of covariates 

that tends to improve the overall fit of the model regardless of information content [65]. 

However, this also suggests that an improvement in Adj-R
2
 value of the linear fit can be 

similarly obtained when adding a randomly generated variable into the model instead of a 

variable that carries biological significance. It is hypothesized that the improvement in 

the model fit due to inclusion of the biological covariates is due to relevant biological 

information contained in the covariates. Random variables that do not have any 

meaningful information and are uncorrelated to the outcome are expected to produce 

models with lower Adj-R
2
 values. 

 The random variables created for exploring the effect of RAS and p53 were 

created and uniformly distributed into two states (one each for the mutated and wild-type 

status). The frequencies of these states were similar to the true distributions in the data. 

Similarly, a random variable was defined for TO, with each sample being assigned a 

tissue type at random. This new dataset with randomly assigned biological parameters 

was used to develop the basic and expanded linear models as described earlier.  

 Table 6-1 documents the change in the model fit (∆R
2
: difference in Adj-R

2
 

values of two models) when terms are added to a linear model. The table documents the 

average difference in Adj-R
2
 values observed across all the probesets. The variances of 

the measured ∆R
2
 values were very small for each tabulated result (<0.006) and hence are 

not shown in the table. Both the change in fit from clinical indicators and randomly 

generated variables are recorded. For example, consider the linear model that includes 

gene expression values only. The Adj-R
2
 of the model is expected to change when a 
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covariate (e.g. TO) is added into the linear model (e.g. additive). This change in the Adj-

R
2
 value obtained by including the additional covariate (∆R

2
=0.254) can be compared to 

the change obtained by including a randomly generated covariate (∆R
2
=0.256), as seen in 

Table 6-1. In this example, the finding suggests that the inclusion of TO provided no 

more information than would be expected by chance. The biological covariates are 

expected to carry meaningful information and hence expected to increase the model fit 

when included in a linear model. This result might suggest that the biological variables 

may not be adding much information to the model, and the improvement in model fit may 

be due to over-fitting of the data. 

 However, when the random variables are included in the expanded interaction 

models, the true impact of the biological variables becomes more apparent. For example, 

the additive model considered earlier included TO and gene expression. When RAS is 

included in this model in an additive manner, the model-fit improves by ∆R
2
=0.256. The 

same improvement is observed when the random variable is added to the GeneEx: TO 

model (∆R
2 

= 0.257). When RAS is included into the interaction model, the correlation 

improves as before by 0.272. However, the interaction of the random variables for TO 

and RAS does not provide any meaningful information for modeling, and the correlation 

drops by 0.213 (∆R
2 
= -0.213).  

 A similar behavior can be observed for each biological covariate (RAS, p53 and 

TO), where inclusion of the variable in an additive manner improves the model fit just as 

well as including randomly generated variables. Inclusion of the variables in an 

interaction model improves the fit considerably, as opposed to the random variables 

which always causes a poorer fit to the data. This behavior is observed even when 
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including all three terms in the interaction models, where the Adj-R
2
 improves by 0.317 

but the random variables cause a drop in correlation (∆R
2 
= -0.103).  

 

Table 6-1: Change in Adj-R
2
 value (∆∆∆∆R

2
) obtained by adding terms and complexity 

to the linear model. Results obtained with clinical indicators TO, RAS and p53 are 

compared to Adj-R
2
 values obtained using random variable for each indicator. 

Model terms Model Comparison 

Mean �R
2
 value  

Clinical 

 indicators 

Random  

Variables 

GeneEx: TO 
GeneEx only  vs. Additive 0.254 0.256 

Additive vs. Interaction 0.134 0.146 

GeneEx: RAS 
GeneEx only  vs. Additive 0.060 0.004 

Additive vs. Interaction 0.030 0.031 

GeneEx: p53 
GeneEx only  vs. Additive 0.026 0.0007 

Additive vs. Interaction 0.016 0.031 

GeneEx: TO: RAS 
Basic vs. Additive 0.256 0.257 

Additive vs. Interaction 0.272 -0.213 

GeneEx: TO: p53 
Basic vs. Additive 0.262 0.257 

Additive vs. Interaction 0.198 -0.211 

GeneEx: RAS: TO 
Basic vs. Additive 0.256 0.257 

Additive vs. Interaction 0.272 -0.214 

GeneEx: RAS: p53 
Basic vs. Additive 0.062 0.022 

Additive vs. Interaction 0.042 0.024 

GeneEx: p53: TO 
Basic vs. Additive 0.262 0.257 

Additive vs. Interaction 0.198 -0.212 

GeneEx: p53: RAS 
Basic vs. Additive 0.062 0.022 

Additive vs. Interaction 0.042 0.024 

GeneEx: TO: RAS: p53 
Basic vs. Additive 0.265 0.258 

Additive vs. Interaction 0.317 -0.103 

GeneEx: RAS: TO:  p53 
Basic vs. Additive 0.265 0.258 

Additive vs. Interaction 0.317 -0.103 

GeneEx: p53: TO: RAS 
Basic vs. Additive 0.265 0.258 

Additive vs. Interaction 0.317 -0.103 

 
  

 Since inclusion of the biological variables in the additive models may not provide 

more information than inclusion of random variables in the model, there is a risk of over-
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fitting to the data by including biological covariates. However, the behavior of the 

random variables in the interaction models clearly indicate that the biological variables 

do provide meaningful information, and rather than cause over-fitting of the model to the 

data, the biological covariates can be used to create a better model for predicting 

radiosensitivity of the tumor cells.  

  

 

Figure 6-2: Change in Adj-R
2
 values obtained by including interaction terms in the 

linear model 

 

 Figure 6-2 shows the change in the Adj-R
2
 value when a term is added to a model. 

The interaction of random variables with gene expression data alone provides a marginal 

improvement in the fit, as expected by the mathematical construct of the modeling 

process. However, in the interaction models, when two or more random variables 

interact, the lack of information in each variable translates into poorer fit of the linear 

model to the radiation sensitivity outcome. In contrast, the interaction of the biological 
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variables adds more information to the linear model, as shown by the improvement in 

Adj-R
2
 values in Table 6-1 and Figure 6-2.  

 However, it is intriguing that not all variables considered had similar impact in 

improving the model. For example RAS was significantly more important than p53 in 

improving the model. This observation suggests that at least part of the improvement 

obtained by the expanded linear models is due to a better representation of biology. 

 

6.7 Summary 

 The prediction accuracy of a published model for the radiosensitivity of tumor 

cell lines was found to decrease when adding more cell lines. Biological indicators such 

Ras mutational status, p53 mutational status and the tissue of origin were included in the 

multivariable linear regression model in an attempt to better model the underlying 

biology [95]. The additive and interaction models created by including these variables at 

the probeset level were shown to provide a better fit for prediction of radiosensitivity than 

the gene expression model alone. Since the inclusion of additional variables is expected 

to enhance model fit, the effect of the biological indicators was compared with the effect 

of randomly generated variables for model fit. It was shown that the biological indicators 

could create more meaningful linear models than random variables. 
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CHAPTER 7      CONCLUSIONS AND FUTURE WORK 

 

7.1 Conclusions 

 Cancer is the second leading cause of deaths in the United States. Gene 

expression microarrays are used to find reliable biomarkers of tumor for cancer 

diagnostics, treatment planning and patient management with an aim of eventually 

reducing fatality due to the disease. 

 Some of the fundamental methodological issues with successfully extracting 

reliable biomarkers of cancer prognosis were described using a colorectal cancer gene 

expression dataset as a case study. Classifier models that perform well on other datasets, 

e.g. identifying survival rates of lung cancer patients, performed poorly in predicting 

survival for the colorectal cancer dataset. Classifier performance was shown to be 

influenced by the intrinsic complexity of the dataset.  Three measures of complexity were 

proposed to obtain a relative measure of the expected predictive accuracy for the 

classifier models. A specific measure of complexity (φ) was shown to correlate very 

closely (R
2
=0.82) with expected classifier performance. The measure indicated that the 

survival dataset for colorectal cancer was complex, and further work was necessary to 

extract reliable prognostic signatures. 

 Data reduction using quantization methods was proposed as the first step in 

reducing the complexity of the colorectal cancer dataset. Since typical microarray gene 

expression datasets consist of very high resolution data, it was hypothesized that limiting 
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the numerical resolution of the data could yield simpler datasets and consequently, better 

predictive accuracy for classifier models. Three methods of quantization were proposed 

to limit the data resolution in different ways. While each method was shown to improve 

the predictive accuracy of the classifier models, the noise removal method was shown to 

maximize classifier performance. Predictive accuracy on the colorectal cancer dataset 

was shown to increase from 56% to 68% and the same technique was shown to enhance 

classifier performance from 67% to 90% accuracy on a lung adenocarcinoma dataset.  

 Dimensionality reduction was proposed as the second step in addressing the 

complexity of the heterogeneous data. A random subspace based technique using cost-

sensitive analysis was proposed as a multivariable feature selection method. Multiple 

genes are known to be active in molecular pathways, and multiple pathways can be active 

in a heterogeneous tumor. The random subspace technique was designed to address this 

underlying biology of the tumor. Extraction of multiple sets of genes that were correlated 

with survival in a multivariate manner was shown to produce more accurate classifiers 

(68% accuracy) than a univariate feature selection method (56% accuracy). 

 As mentioned earlier, the goal of these gene expression microarray studies is to 

identify reliable biomarkers of cancer to aid in patient management. Biological 

indicators, for example the mutational status of certain genes such as Ras or p53, have 

been routinely used as clinical factors for patient selection and treatment management. A 

method was proposed to integrate these clinical indicators in developing a gene 

expression signature for predicting radiation sensitivity of tumor cells. While inclusion of 

biological indicators can be expected to provide meaningful information, it can also lead 

to over fitting of the model to the training data. Experiments using random variables were 
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used to demonstrate that inclusion of Ras mutational status, p53 mutational status and the 

tissue of origin as biological indicators in a gene expression model enhanced the 

correlation of the model to the underlying biology without over fitting to the data. 

  

7.2 Future Work 

 Chapter 3 demonstrated that gene expression datasets may be intrinsically 

complex, and classifier models may fail on such datasets due to several reasons such as 

statistical over-fitting, high dimensionality or high resolution of the data. The measure of 

complexity proposed here can be used to investigate the expected classifier performance 

when working with models such as those described in Chapter 3. However if a different 

classifier model is used for analysis, the specific mathematical basis of the classification 

must be used to design a more applicable measure of complexity. The methodology 

proposed at the end of Chapter 3 may be used to develop newer measures. 

 Three methods of quantization reduced data complexity and enhanced classifier 

accuracies in the colorectal and lung adenocarcinoma datasets. These datasets contained 

different ranges of numerical information. The colorectal data was represented in a log-2 

format and a range of 0.0-15.0 and the lung dataset had a range of 0.0-6000.0. A 

discussion of the methods indicated that the parameter selection for the quantization 

methods is dependent on the numerical information and spread of values. Further work 

can be done in enhancing these methods to work with datasets that have sparser ranges 

than the datasets used in the chapter. 

 The random subspace technique was designed to better model the underlying 

biology and functioning of genes in molecular pathways. The technique was described 
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using decision trees that inherently select a set of important genes from within a subspace 

of the dataset. Other selection methods may be investigated in the same random subspace 

setup, such as the Cox proportional hazards model or the multiple linear regression model 

to select genes from a random projection of the data. These multiple subsets of genes may 

then be used as an input to the multivariable models to generate predictive signatures. 

 A method was described to integrate biological indicators into gene expression 

models to enhance the modeling of the underlying biology. Three indicators were used in 

modeling radiation sensitivity of tumor cells. The experiments conducted to test for 

statistical over-fitting of the data indicated that the biological indicators provided 

significant information for modeling radiation sensitivity. Other indicators may be tested 

in the same framework to include more biological information into gene expression 

models thereby creating more powerful predictors for clinical use. 
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