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MOTION ANALYSIS OF FLUID FLOW IN A SPINNING DISK
REACTOR

Valentina N. Korzhova

ABSTRACT

The flow of a liquid film over a rapidly rotating horizontal disk has numerous indus-

trial applications including pharmaceuticals, chemical engineering, bioengineering, etc.

The analysis and control of complex fluid flows over a rapidly rotating horizontal disk

is an important issue in the experimental fluid mechanics. The spinning disk reactor

exploits the benefits of centrifugal force, which produces thin highly sheared films due

to radial acceleration. The hydrodynamics of the film results in excellent fluid mixing

and high heat or mass transfer rates.

This work focuses on developing a novel approach for fluid flow tracking and anal-

ysis. Specifically, the developed algorithm is able to detect the moving waves and

compute controlling film flow parameters for the fluid flowing over a rotating disk. The

input to this algorithm is an easily acquired non-invasive video data. It is shown that

under single light illumination it is possible to track specular portion of the reflected

light on the moving wave. Hence, the fluid wave motion can be tracked and fluid flow

parameters can be computed. The fluid flow parameters include wave velocities, wave

inclination angles, and distances between consecutive waves. Once the parameters are

computed, their accuracy is analyzed and compared with the solutions of the math-

ematical fluid dynamics models based on the Navier-Stokes equations for the case of

a thin film. The fluid model predicts wave characteristics based on directly measured

controlling parameters, such as disk rotation speed and fluid flow rate. It is shown that
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the calculated parameter values approximately coincide with the predicted ones. The

average computed parameters were within 5− 10% of the predicted values.

In addition, given recovered fluid characteristics and fluid flow controlling parame-

ters, full 3D wave description is obtained. That includes 3D wave location, speed, and

distance between waves, as well as approximate wave thickness.

Next, the developed approach is generalized to model-based recovery of fluid flow

controlling parameters: the speed of the spinning disk and the initial fluid-flow rate.

The search in space for model parameters is performed as to minimize the error between

the flow characteristics predicted by the fluid dynamics model (e.g. distance between

waves, wave inclination angles) and parameters recovered from video data. Results

demonstrate that the speed of a disk and the flow rate are recovered with high accuracy.

When compared to the ground truth available from direct observation, we noted that

the controlling parameters were estimated with less than 10% error.
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CHAPTER 1

INTRODUCTION

1.1 Overview of the Relative Works

The analysis of fluid flow is an important issue in the experimental fluid mechanics,

including calculating forces and moments on aircraft, determining the mass flow rate of

petroleum through pipelines, and understanding nebulae in interstellar space. Under-

standing atmospheric dynamics, oceanographic streams, and cloud motion is of great

importance for weather, climate prediction, etc. Rotating flows have been used to study

a variety of physical processes including geostrophic turbulence, baroclinic instability,

convection, and chaos.

The flow of a liquid film over a rapidly rotating horizontal disk has numerous indus-

trial applications (pharmaceutical, chemical engineering, bioengineering, etc.), ranging

from spin-coating of silicon wafers to the atomization of liquids. One of the most impor-

tant applications in present time is the transfer gases, for instance of carbon dioxide,

into liquids. Under certain conditions, this flow is accompanied by the formation of

non-linear waves leading to remarkably large increases in the rates of heat and mass

transfer. Therefore, the analysis and control of complex fluid flows over a rapidly ro-

tating horizontal disk is a major scientific issue. Here, we propose a novel video-based

technique for extraction of fluid flow characteristics and estimation of their accuracy.

The study [2, 39, 63] has investigated the heat and mass transfer characteristics

of the film considered as a steady state, giving rise to local heat and mass transfer

coefficients as a function of radius, flow rate, and rotation speed. It has been shown that

the presence of surface waves leads to a significant enhancement in transfer processes
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at the film surface, and as such are desirable features of the flow. Dependence of

the heat transfer coefficient on the radius of the disk and the speed of the disk is

demonstrated in Figure 1.1. To intensify these processes, control mechanism needs

Figure 1.1 Dependence of the heat transfer coefficient on the radius and the speed of
the disk [63].

to adjust hydrodynamic parameters of flow with relevant transfer of processes. So,

the controlled film flow is requested. Since various regimes of film flow in a spinning

disk reactor strongly influence these processes, it is important to control the formation

of the regimes to increase process productivity [33]. Video observation can provide a

cost-effective way to observe the film flow and to determine the actual flow parameters.

Recent review [33] summarizes experimental and theoretical studies of film flow over

a rotating disk. Most experimental investigations of flow over a spinning disk attempt

to measure the local maximum or the mean of a film thickness in order to obtain

information about the surface waves [2]. Various mechanical [6], electrical [3, 38], and

optical [30, 63] techniques were employed. The most promising was the optical technique

that was used to collect information about the waves observed. In the considered

experiments, a camera was placed below the disk and connected to a computer that

provided video imaging hardware and software. To measure the film thickness over a

disk domain, calibration of mechanical or optical tools and estimation of absorption

2



coefficients were performed. All three techniques (mechanical, electrical, and optical)

gave insufficient information to classify wave regimes and select most efficient regime

for specific technological applications.

Early experimental investigations [6] provided some qualitative and quantitative un-

derstanding of the effect of flow rate and rotational speed on the flow characteristics

for a given set of physical parameters. Experimental observations [2, 3, 30, 55, 63] have

demonstrated that at a small flow-rate, a smooth film is formed, and at a moderately

higher flow-rate, circumferential waves moving from the disk center to the disk periph-

ery are formed. Further increase in flow rate leads to the appearance of spiral waves

unwinding in the direction of the rotation [6]. It is shown in [63] that the initially

uniform film breaks down into well-defined spiral waves, which then break down further

into a confused assembly of wavelets. Circumferential and spiral waves were found to

decay at large disk radii. Comparison of those observed waves and their associated

parameters with the waves observed in falling films shows their similarity. The waves

in the falling films were first studied experimentally in the seminal work [22]. The

monograph [4] had collected most important results concerning falling film. In [31] the

authors present measurements of the instabilities of thin liquid film flowing down an

incline. The results are in good agreement with linear stability prediction. The growth

rates and wave velocities have been measured as a function of wavenumber. They also

estimated the film thickness in real time with high accuracy using fluorescence imaging.

Theoretical explanation of experimental results has received increasing attention in

recently published research. There are three main directions for theoretical investiga-

tion of a film flow over a rotating disk: calculation of waveless flow, analysis of its linear

stability, and non-linear simulations of finite-amplitude waves. The waveless solutions,

asymptotic and numerical, were investigated in [13, 40, 52]. These studies have been

successful in determining self-similar and asymptotic solutions in the limit of large Eck-

man numbers [40, 45] as well as numerical solutions for finite Eckman numbers [13, 52].
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The linear stability analysis was examined and performed using asymptotic methods [6]

and the full Navier Stokes equation for finite Eckman numbers [50, 51].

In recent papers [32, 47, 48, 49] an evolution system of equations was derived and

analyzed to model axisymmetric finite-amplitude waves; this model may be extended

for non-axisymmetric flows to explain the experimental results. Nevertheless, there are

problems that could be treated by parallel application of experimental and theoretical

approaches: wave regime sensitivity to flow conditions and three-dimensional structures

observed in experiments.

In the last decade, there has been significant work in image processing related to

the motion analysis of non-rigid objects [8, 11, 10, 21, 36, 69]. Most of the works have

concentrated on articulated and elastic motion [1]. In [21], the authors demonstrate

that the Finite Element Modeling allows to realize the motion analysis of biological

objects. The simulation of deformable objects is essential for many applications. Com-

puter Aided Design uses deformable models to simulate the deformation of industrial

materials and tissues. In image analysis, deformable models were used for fitting curved

surfaces, boundary smoothing, registration, and image segmentation. Later, deformable

models were deployed in character animation and computer graphics for the realistic

simulation of skin, facial muscles, clothing, and human or animal characters. The mod-

eling of deformable soft tissue is of great interest for a wide range of medical imaging

applications. A comprehensive review of deformable models for medical image analysis

and clothing modeling applications can be found in [34, 46] and [19], respectively. More

recently, such modeling techniques have been used for tasks such as age estimation [29]

and person identification [65].

Efforts have been made to assist face animation and recognition using a highly

accurate model that takes into account anatomical details of a face such as bones,

musculature, and skin tissues [66]. This is based on the premise that the nuances rec-

ognizable by humans can be synthesized (and fully explained) only by an elaborate
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biomechanical model. The early studies in this direction developed models with a hi-

erarchical biomechanical structure that were capable of simulating linear and sphincter

facial movements [37]. For example, Zhang et al. [36, 38] studied a model that incorpo-

rates a more detailed 3-layer skin module to characterize the behavior and interaction

among the epidermis, dermis, hypodermis, and muscular units. Analysis of fluid-like

motion was also attempted [11, 36, 69].

Recently, work was begun in an effort to combine precise experimental setup, theo-

retical derivation, and basic image analysis techniques [56, 55, 57, 63]. The equations

constitute a set of physical constraints that are different [21] from those commonly used

in the study of solid motion (e.g., the rigidity constraint). For the fast fluid-like motion

in the air, having wavy or turbulent character, detecting interface between fluid and

air is important. A special so-called particle image velocimetry (PIV) technique was

developed [44] to measure the kinematics of turbulent fluid flow in controlled labora-

tory experiments. Given a typical ensemble of PIV images, the aim is to calculate the

instantaneous interface. This, however, requires specialized imaging devices.

A novel approach dedicated to measuring velocity in fluid experimental flows through

image sequences was developed in [10]. The proposed technique is the extension of

optical-flow schemes that includes a specific enhancement for fluid mechanics appli-

cations. In paper [8], the authors defined a complete framework for processing large

image sequences for a global monitoring of short range oceanographic and atmospheric

processes. They used a novel regularization technique in optical flow computation that

preserves flow discontinuities. The study [16] confirms that the optical flow-based dense

vector fields show motion basically consistent with traditional atmospheric motion vec-

tor calculation methods. The motion information demonstrates that some areas are not

covered by ’traditional’ vectors. Differences are observed in areas of strong winds (such

as jet-streams) where the optical-flow method tends to underestimate the strength of

winds, including instantaneous velocity on the surface of fluid and air contact. Using
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the novel regularization techniques, the strength of winds is estimated efficiently and

with a reasonable degree of accuracy. Algorithms used are typically based on filter-like

motion. In the paper [5] a novel approach for estimating fluid motion fields is presented.

First, a local flow probability distribution function at each pixel was estimated using

the STAR model and the data from a spatio-temporal neighborhood. Then, the set of

distribution functions was fed into a global optimization framework. Experiments with

real fluid sequences show that this method can successfully estimate their motion fields.

Analysis of fluid-like motion was also attempted [11, 36, 69]. In [69], authors pro-

posed a new method for recovering nonrigid motion and structure of clouds under affine

constraints using time-varying cloud images obtained from meteorological satellites.

This problem is challenging not only due to the correspondence problem but also due

to the lack of depth cues in the 2D cloud images (scaled orthographic projection). In

this paper, affine motion was chosen as a suitable model for small local cloud mo-

tion. In [11], authors addressed the problem of estimating and analyzing the motion

of fluids in image sequences. They investigated a dedicated minimization-based mo-

tion estimator and demonstrated the performance of the resulting fluid flow estimator

on meteorological satellite images. The paper [36] presents a physics-based method to

compute the optical flow of a fluid. Authors proposed a method in which physical equa-

tions describing the object are used as supplementary constraints. The physical model

employed is a combination of the continuity equation and the Navier-Stokes’ equations.

The authors demonstrated the effectiveness of the proposed method by presenting ex-

perimental results of simulated and real Karman flows.

In the paper [41], a fluid flow estimation method for ocean/river waves, clouds,

and smoke based on the physical properties of waves such as the velocity-frequency

relationship and a wave statistical property was developed assuming that many fluid-

like motion changes are due to wave phenomena that lead to a brightness change. The

author shows that the results of the experiments with synthetic and real images are
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improved compared to the works [11, 35, 62]. In the paper [37], authors investigate

estimation of velocity, water elevation and contaminant concentration in a river current

using the Kalman filter finite element method (KE-FEM). Close agreement between the

observed and the computed results was obtained.

The described work in this dissertation focuses on developing imaging techniques and

image analysis algorithms to detect the traveling waves, determine the wave regimes,

and compute physical and controlling film flow parameters. The input to these algo-

rithms is an easily acquired non-invasive video data. The production of thin films over

a spinning disk and the formation of waves in realistic conditions are of interest here.

In this work, a two part algorithm is proposed. The first part includes image analysis,

detecting, tracking, and reconstructing of measuring wave shape and wave propagating

speed. Based on the image intensities and geometrical constraints of disk and surface

waves, the algorithm is proposed. The fluid flow parameters and characteristics are

calculated and compared with the solutions of the relevant mathematical models. Cal-

culations of radial velocity and inclination angle are obtained with the asymptotically

optimal steps. New results for step selection are derived. Initial version and further ver-

sion of algorithms and analysis of spiral waves in a spinning disk reactor are presented

in [25, 26, 27, 28].

The second part of the algorithm concentrates on model-based recovery of fluid flow

controlling parameters. Here the search in the space of model parameters is performed

to minimize the difference between the predicted flow characteristics (e.g. distances

between waves, wave inclination angles) and the ones measured from video data.

The overall purpose of this work is to develop a system of visual scanning, recording,

and tracking of the film flow over a spinning disk with the intention of detecting regimes

of the fluid flow with regard to different conditions using a single camera system, of

calculating fluid flow parameters and characteristics, and of comparing them with the

solutions of the relevant mathematical models.
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1.2 Contributions of This Dissertation

This dissertation has the following contributions:

1. A novel approach and analysis were developed for fluid wave detecting and track-

ing over a spinning disk. The novelty consists of wave studying in real conditions,

with regard to certain disk surface frictions and air resistances.

2. It was shown that under single light illumination it is possible to track specular

portion of the reflected light on the moving wave.

3. A novel approach for computing fluid flow parameters (wave velocity components,

wave inclinations, thickness of film, and distances between consecutive waves)

from observed wave patterns was developed. The novelty consists of developing

new model and video based algorithms and their accuracy analysis.

4. For practical realization, the optimal methods (asymptotically optimal and quasi-

optimal) are used for estimating the velocities and the inclination angles.

5. An arbitrary step along the azhimutal angle is used for the experimental estima-

tion of wave inclinations.

6. The developed approach is generalized to a model-based recovery of fluid flow

controlling parameters: the speed of spinning disk and the fluid-flow rate. The

search in space for model parameters is performed to minimize the error between

the predicted flow characteristics predicted by the fluid dynamics model (e.g.

distance between waves, wave inclination angles) and the parameters recovered

from video data.

Portions of the work in this dissertation have been presented on the Seminar of Image

Processing, June 2005 and Graduate Student Research Competition, November 2005

at USF, Department of Computer Science and Engineering. Also, parts are published
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in the ICPR-2006, Ukrobraz 06 Conferences, 59th Annual Meeting of the Division of

fluid Dynamics, and Optical 3-D Measurement Techniques Conference 2009 [25, 26,

27, 28]. The detailed paper is submitted in the journal ”International Journal Pattern

Recognition and Artificial Intelligence” [24].

1.3 Layout of the Dissertation

The organization of this paper is depicted in Figure 1.2.

Chapter 2.1 offers description of the general theory of fluid flow based on the equa-

tions of Navier-Stokes, including the important particular case of the thin film flow,

which are later compared with the respective experimental data and uses for the proper

estimations of wave parameters such as wave velocity components, wave inclinations,

and distances between consecutive waves. Also, this chapter presents the derivations of

the camera calibration accuracy, which is used in Section 5 under estimation of errors

of experimental velocities of waves and inclination angles.

In Chapter 3, a video based algorithm for detecting and tracking of waves in a

spinning disk reactor is presented. The input to this algorithm is an easily acquired

non-invasive video data. Details of the video input information are analyzed. It is shown

that under a single light illumination assumption it is possible to track wave motion

by observing specular portion of the reflected light on the moving wave. Hence, the

fluid wave motion can be tracked and fluid flow parameters can be computed. The fluid

flow parameters include wave velocities, wave inclination angles, and distances between

consecutive waves. Determination of velocity components and inclination angles is an

ill-posed problem. So, the vision-based asymptotically optimal by accuracy method was

applied.

Chapter 4 is devoted to data acquisition for the experimental disk reactor used in

this study.
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Chapter 5 presents experimental results for estimating parameters of wave spirals

such as their velocity components, inclination angles, and distances between consecutive

waves and their estimated accuracy. Those results are compared with the related results

of theoretical models introduced in Section 2.1. It was shown that no statistically

significant difference exists between theoretical and calculated values of wave parameters

at the significant level α = 0.05.

Variations of the rotational speed and the flow rate lead to the modification of the

shape, amplitude, and velocity of the observed waves. So, the computerized system for

estimation of speed of a spinning disk and flow rate using the video data and the relevant

system of evaluation equations are developed and described in Chapter 6. Conclusion

chapter follows.

It should be noted that the presented work focuses on computerized processing of

the input video data in order to extract the fluid flow characteristics and their analysis,

including estimation of errors of numerical results. Qualitative and quantitative com-

parison shows good coincidence (within 5-10%) of experimental and theoretical results.

Also, specifics of video input information are analyzed. It is shown that under a single

light illumination assumption it is possible to track wave motion by observing specular

portion of the reflected light on the moving wave.
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Figure 1.2 Dissertation organization flowchart.
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CHAPTER 2

THEORETICAL BACKGROUND

2.1 Theory of Fluid Flow

2.1.1 General Case

Considering an inviscid fluid, described by the following variables: the fluid density

ρ(X, t), the velocity vector field u(X, t), and the pressure p(X, t); X ∈ R3d is the spatial

coordinate.

In a Cartesian system coordinate, an incompressible viscous fluid can be described

with the Navier-Stokes equations that are four coupled nonlinear partial differential

equations for four unknown functions (the three components of u and the pressure p):

∂u1

∂t
+ u1

∂u1

∂x
+ u2
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∂y
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1
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∂u2

∂z
+

1

ρ

∂p

∂y
= ν

(

∂u2

∂y
,
∂u2

∂y
,
∂u2

∂z

)

,

∂u3

∂t
+ u1

∂u3

∂x
+ u2

∂u3

∂y
+ u3

∂u3

∂z
+

1

ρ

∂p

∂z
= ν

(

∂u3

∂x
,
∂u3

∂y
,
∂u3

∂z

)

,

∂u1

∂x
+
∂u2

∂y
+
∂u3

∂z
= 0,

where ν is the kinematics’ viscosity. Also, there is the matter of boundary conditions

[12].

Using the cylindrical system coordinates (r, θ, z), the steady Navier-Stokes equation

for a radial velocity u is:

u
∂u

∂r
+
∂u

∂z
− v2

r
= −1

ρ

∂p

∂r
+ ν(

∂2u

∂z2 +
∂2u

∂r2 +
1

r

∂u

∂r
− u2

r
), (2.1)
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where u, v, w are the components of velocity in the r, θ, z direction.

The authors [40] show that for a thin film, h/r � 1, where h is the film thickness,

the radial flow can be obtained from (2.1) to lowest order with respect to h/r by solving

the equations

−Ω2r = ν
∂2u

∂z2 ,

where Ω is the angular velocity of the disk.

Later, the last two formulas above are used to estimate the wave amplitude in the

case of thin film flow.

2.1.2 Fluid Flow over Rotating Disk - The Karman’s Problem

Considering an infinite plane disk, rotating at constant angular velocity Ω with an

unbounded fluid and taking cylindrical polar coordinates (r, θ, z), the steady axisym-

metric solution for velocity components (u, v, w) and pressure (p) can be found in the

form [64]:

u = Ωrf(ζ), v = Ωrg(ζ), w = (νΩ)1/2h(ζ),

p = ρνΩP (ζ), ζ = z
( ν

Ω

)1/2

(2.2)

under the following boundary conditions:

u = 0, v = Ωr, z = 0; u, v → 0, z →∞. (2.3)

Substituting (2.2) and (2.3) in the Navier-Stokes equations written in the cylindrical

polar coordinates, the functions f(z), g(z), h(z), and P (z) can be found [64] as solution

of a set of ordinary differential equations:

13



2F +
dH

dζ
= 0, F 2 −G2 +H

dF

dζ
=
d2F

dζ2
,

2FG+H
dG

dζ
=
d2G

dζ2
, H

dH

dζ
= −dQ

dζ
+
dH

dζ
, (2.4)

with boundary conditions F = H = 0, G = 1, when ζ = 0, F → 0, G→ 0, as ζ →∞.

For small values of ζ, a solution of (2.4) can be written in powers of ζ. For large values

of ζ, a solution can be written in the exponential form (see [64]).

2.2 Mathematical Modeling

This section describes the mathematical models of the film flow over a disk rotating

with angular velocity Ω.

2.2.1 Evolution Equations

A model derivation given below follows to [47] with accounting non-axisymmetric

terms. The authors [48] consider the flow of a thin, Newtonian, incompressible liquid

film of the density ρ, kinematic viscosity ν, surface tension σ, and the flow is described by

the velocity components u, v, w, and the pressure p, depending on the the cylindrical

coordinates r, θ and z and time t. The liquid film is bounded from above by an

essentially inviscid gas; the gas−liquid interface is located at z = h while the underlying

solid disc is situated at z = 0. The full Navier-Stokes system accompanied by the

boundary conditions (no-slip and no–penetration at the disc surface, the kinematic

boundary condition, shear and normal stress balances at the film surface) on the disk

and the free surface is formulated [47]. Analysis of experiments, carried out in [47],

revealed that a relation ε2/κ2 � 1 is satisfied in all data available when capillary waves

14



are observed, where κ and ε are determined by

κ =

(

σHc

ρΩ2R4
c

) 1

3

, ε =
Hc

r̃
, (2.5)

where Hc and Rc are scales of a thickness and a radius.

After omitting terms of O (ε2/κ2) in the problem statement, the pressure may be

eliminated and the approximate model follows in the form:

∂u

∂xκ

+
∂wκ

∂z
+ κ

(

2u+
∂v

∂ϑ

)

= 0,

∂u

∂tκ
+ u

∂u

∂xκ

+ wκ
∂u

∂z
+ κ

[

v
∂u

∂ϑ
+ u2 − (v + E)2

]

=

1

45δ

{

e−2κxκ
∂

∂xκ

[

e−2κxκ

(

∂2h

∂x2
κ

+ κ2∂
2h

∂ϑ2

)]

+
∂2u

∂z2

}

,

∂v

∂tκ
+ u

∂v

∂xκ

+ wκ
∂v

∂z
+ κ

[

v
∂v

∂ϑ
+ 2u (v + E)

]

=

1

45δ

[

κe−4κxκ

(

∂3h

∂x2
κ∂ϑ

+ κ2∂
3h

∂ϑ3

)

+
∂2v

∂z2

]

,

z = 0 : u = 0, v = 0, wκ = 0,

z = h(xκ, ϑ, tκ) :
∂h

∂tκ
+ u

∂h

∂xκ

+ κv
∂h

∂ϑ
= wκ,

∂u

∂z
= 0,

∂v

∂z
= 0, (2.6)

where ϑ = θ−Et is the azimuthal angle related to the spinning disc; and the similarity

parameter δ and the Eckman number E

δ =
(

45κE2
)−1

=
1

45ν2

(

ρΩ8R4
cH

11
c

σ

)
1

3

, (2.7)

E = ν/
(

ΩH2
c

)

(2.8)

have been introduced. Here

xκ =
x

κ
, tκ =

t

κ
, wκ = κw, (2.9)
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These equations are rendered dimensionless via the following scaling:

t→ Et

Ω
, r → Rce

x, z → Hcz, ur →
Ωru

E
,

uθ → Ωr
(

1 +
v

E

)

, uz →
ΩHcw

E
, p→ ρΩ2r2p, h→ Hch, (2.10)

where Hc is chosen so that the dimensionless radial flow rate is equal to unity for a

given value of Rc under steady conditions:

Hc =

(

νQc

2πΩ2R2
c

) 1

3

. (2.11)

The observed waves have a characteristic length scale, which is much smaller than Rc.

In experiments κ is a small coefficient. Thus, the problem (2.6) may be considered as

depending on two parameters: the film parameter δ that also appears in a falling film

problem [4] and the Eckman number E; then κ =
(

45δE2
)−1

.

Using the parabolic velocity profile, an approximate system of evolution equations

for the film thickness h and two values, q(u) and q(v) , characterizing flow rates in the

radial and azimuthal directions, is derived:

∂h

∂t
+
∂q(u)

∂x
+ 2q(u) +

∂q(v)

∂θ
= 0, q(u) =

∫ h

0

ur dz, q(v) =

∫ h

0

uθ dz,

∂q(u)

∂t
+ a11

∂

∂x

(

(

q(u)
)2

h

)

+ a12
∂

∂θ

(

q(u)q(v)

h

)

+ a13

(

q(u)
)2

h
+ a14

(

q(v)
)2

h
=

E2

{

κe−2xh
∂

∂x

[

κ2e−2x

(

∂2h

∂x2
+
∂2h

∂θ2

)]

− b1
q(u)

h2
+ h+

2

E
q(v)

}

,

∂q(v)

∂t
+ a21

∂

∂x

(

q(u)q(v)

h

)

+ a22
∂

∂ϑr

(

(

q(v)
)2

h

)

+ a23
q(u)q(v)

h
=

E2

[

κ3he−4x

(

∂3h

∂x2∂θ
+
∂3h

∂θ3

)

− b2
q(v)

h2
− 2

E
q(u)

]

. (2.12)
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The system (2.12) includes the constant coefficients

a11 =
6

5
, a12 =

17

14
, a13 =

18

5
, a14 = −155

126
, b1 = 3,

a21 =
17

14
, a22 =

155

126
, a23 =

34

7
, b2 =

5

2
.

The axisymmetric version of (2.12) was derived in [47].

System (2.12) has a steady axisymmetric solution of spiral-type slowly varying along

the radius; stability of this solution is investigated to small perturbations

(

ĥ, q̂(u), q̂(v)
)

=
(

h̆, q̆(u), q̆(v)
)

exp i (αx+ nθ − ωt) ,

where α and n are given real wave numbers, and ω is an unknown complex frequency

determining stability or instability of the basic flow.

Further, distances and velocities of most unstable perturbations which posses largest

amplification factors are obtained. These perturbations are compared with the exper-

imental data. The corresponding instant local inclination of the linear wave spiral is:

tan β =
1

r

dr

dθ
= −n

α
, (2.13)

where β is the angle between direction of the spiral and tangent, α and n are wave

numbers along radial and azimuthal directions. These numbers are compared with

experimental measurements. The definitions of β and θ are shown in Figure 2.1.
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Figure 2.1 Definition of β and θ.

2.2.2 The Experimental Model

Let (x, y) be the Cartesian system coordinates in the plane of an observed disk

with the origin at the center of that disk; and let (r, θ) be the respective polar system

coordinates. Using the theory [43], the following spiral equations were utilized with

regard to the fluid friction and air resistance [42, 58, 60]:

ar = r′′(t) = Ω2r − 8πcfr
′(t)− cres

2
sin βr′2(t),

as = v′s(t) = 8πf(Ωr − vs(t))−
c

2
cos βv2

s(t),

tan β =
r′(t)

vs(t)
= (y′x +

y

x
)(1 + y′xyx) =

1

r

dr

dθ
,

θ′(t) =
r′(t)

r(t)

1

sin β
,
dr

dθ
=
r(t)r′(t)

vs(t)
,

d2r

dθ2
=
r′2 + r(t)r′′(t)

vs(t)
− v′s(t)r

′(t)r(t)

v2
s(t)

)
1

θ′(t)
,

x(t) = r(t) cos θ, y(t) = r(t) sin θ,

y′x =
r′ sin θ + r cos θ · θ′
r′ cos θ + r sin θ · θ′ , v(t) = (r′2(t) + v2

s(t))
1

2

r(0) = 0, r′(0) = r′0, r(T ) = 100, vs(0) = 0, (2.14)
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where ar and as are accelerations of fluid respectively along radius and perpendicular

to radius, cf is a coefficient of fluid friction, and cres is resistance of air to fluid. In the

case of water we have

8πcf = 0.4(mm−1), cref = 2(mm−1),

The formula (2.14) is not valid in the vicinity of r(0) = 0. Therefore, we need to

use another model for θ(t) on the segment (0, b) for small b. Let θ(t) = a · t on this

segment. Then

θ′(0) = 0, a = θ′(b) =
r′(b)

r(b)
tan β(b).

It is clear that β is the angle between direction of the spiral and tangent of the circle.

To find θ(t), the angle between the radius at the moment t and the axes x, the right

triangle ABC, where legs AB = dr = r′(t)dt, BC = rdθ = rθ′(t) (angle β is opposite

to rdθ) (see Figure 2.1) is considered.

Note that the second and the third formulas for tan β above can be used by image

algorithms, since they do not depend on the time but only on geometric property of the

respective solution.

The approximate solution for this non-linear system is found using Euler’s numerical

method with decreasing steps of computation until approximate solutions are stabilized.

In our experiments, in the case of water, Ω is obtained from the respective graph

for the reactor used, r′(0) is obtained from the experiment and equals:

r′0 =
3.8 · 106

285 · 2π · 2.5 · 3 ≈ 280(
mm

s
),

19



where 3.8×106 mm3 is volume of a gallon of water, 285 s is the time for the water to

run out of the respective capacity, 2.5 mm is the radius of the tube, and 3 mm is the

gap between the end of the tube and the disk surface.

2.3 Camera Calibration Accuracy Analysis

2.3.1 Overview of Camera Calibration

Camera calibration is a necessary step in 2D and 3D computer vision in order to

extract metric information from video images; and it is important for accuracy in 2D

and 3D reconstruction. Much work has been done, starting in the photo-gram-metric

community [59], and more recently in computer vision [7, 14, 18, 23, 54, 67, 68]. Camera

calibration is the process of relating the ideal model of the camera to the actual physical

device and determining the position and orientation of the camera with respect to a

world reference system. Depending on the model used, there are different parameters

to be determined. For the pinhole camera model the parameters to be calibrated are

classified into two groups:

1. Internal (or intrinsic) parameters. Internal geometric and optical characteristics

of the lenses and the imaging device.

2. External (or extrinsic) parameters. Position and orientation of the camera in a

world reference system.

The relationship between a point (X,Y ) and its image projection (x, y) is given [68] by













x

y

1













= A · [r1, r2, t] · [X,Y, 1]T , A =













s γ cx

0 s cy

0 0 1













(2.15)
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where [r1, r2, t] are the extrinsic parameters (the rotations and translation) that relate

the world coordinate system to the camera coordinate system; A is the camera intrinsic

matrix, in which (cx, cy) is the principal point, s = f/sx = f/sy, f is the focal length,

sx = sy is the effective size of the pixel, s is the scale factor (accuracy of which to be

accounted for any uncertainty due to imperfections in the viewing camera), and γ is

the skewness of the image axes.

2.3.2 Camera Calibration Accuracy

The relations between observed (xd, yd) coordinates and the ideal (distortion-free)

pixel coordinates (x, y) are:

xd = x+ k (x− cx) , yd = y + k (y − cy) ,

k = k1r
2
d + k2r

4
d, r2

d = x2
d + y2

d,

where k1 and k2 are the coefficients of the radial distortion. These relations allow us

to calculate x and y, after which values X and Y are calculated using the following

formulae (2.16).

[

X,Y, 1]T =
[

r1, r2, t]
−1 · A−1 · [x, y, 1]T ,

x =
xd + cx · k

1 + k
, y =

yd + cy · k
1 + k

. (2.16)

Due to the fact that the main error of the calibration method [14] used in this work

is determined by values of distortion, the relative deviations for x, y and X, Y are

estimated, assuming for simplicity that cx = cy = 0. In this regard, the result in [68],

page 13, is used. The relative deviations for the estimates of k1 and k2 do not exceed
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3-4%. Since in the case considered

x =
xd

1 + k
, y =

yd

1 + k
,

with regard to the main terms (assuming k is small, k ≤ 0.03, and k1 = k2), the absolute

values of variations

|∆x| ≤ |∆xd|+ xd · |∆k| |∆y| ≤ |∆yd|+ yd · |∆k|,

∆k = ∆k1 · (r2
d + r4

d),
∆k

k
=

∆k1

k1

≤ 0.03, (2.17)

from where,

|∆x|
x

≤ |∆xd|
xd

+ k · |∆k|
k

,
|∆y|
y

≤ |∆yd|
yd

+ k · |∆k|
k

,

∆rd = ∆r ≤ x · |∆x|+ y · |∆y|
(x2 + y2)1/2

.

Using the fact that |∆xd|
xd

, |∆yd|
yd

< 0.3
720

, where 720 is maximal value of the number of

pixels and 0.3 is the upper bound for ∆xd and ∆yd, it is easy to estimate that

∆x

x
<

0.3

720
+ 0.03 · 0.03 ≈ 0.0013,

∆y

y
≈ 0.0013.

In the case when r =
√

x2 + y2, we have

∆r

r
≤ ∆x

x
+

∆y

y
≈ 0.0026.

Similarly, in the case when R =
√
X2 + Y 2 with regard to

R =
1

s
(x2 + y2)

1

2 ,
∆s

s
< 0.001,
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we have

ε =
∆R

R
≤ ∆x

x
+

∆y

y
+

∆s

s
· 1

s ·R ≤ 0.0026 + 0.000001 < 0.003. (2.18)

The estimates of the relative errors of the initial data are calculated and used for

the experimental estimation of the radial velocity components and the spiral wave

inclination angles of the film flow (see Subsections 3.3.3 and 3.3.4).
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CHAPTER 3

ESTIMATION OF FLUID FLOW PARAMETERS

In this section video-based algorithms for detecting and tracking of waves in a spin-

ning disk reactor are presented. Using experimental video data and the developed

models and algorithms, the characteristics of wave regimes are estimated. Therefore, in

order to calculate the fluid flow parameters the following steps need to be performed: 1.

Detection of points on the peaks of waves along the same radius, 2. Estimation of ra-

dial velocities, 3. Estimation of wave inclination angles, and 4. Estimation of distances

between the consecutive peaks of waves or the respective wave spirals. The algorithms

use the polar system coordinates and Cartesian system coordinates with the origin in

the center of the disk. The block-scheme and the respective schematic view are given in

Figure 3.1. Prior to the process of detecting projected points with maximal intensity on

waves (with the fixed camera position relatively to the disk), the preprocessing of im-

ages is performed. This is done using local contract enhancement, which improves the

visual appearance of the wavefront for human observation and normalizes the intensity

values. That follows by local thresholding operation which detects points at maximal

intensity along the radial (in respect to the spinning disk) direction.

In the experimental setup, videos were taken from a side view because of the better

visibility of the waves. Moreover, in many industrial applications the imaging must be

from a side view such as in the synthesis of aero gels. In such applications the rotating

disk is inside the closed cylinder with a window on the side of the cylinder.
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(a)

(b)

Figure 3.1 (a) Block-scheme of algorithms; (b) Schematic view.

3.1 Tracking Specular Reflection Patterns

The total reflection is an additive of several components: diffuse reflection (Ld),

specular reflection (Lc) from the front surface [23], scattering (Lh) from the volume of
25



liquid of thickness (h), and reflection (Lb) from the bottom [61],

L = Ld + Ls + Lh + Lb. (3.1)

The optical path of the reflected light is illustrated in Figure 3.2.

Figure 3.2 The optical paths of reflected beams.

We show that at each time instant (t0) there is only one point on cross-section

on the wave with the specular reflection component Ls, which dominates when non-

clear fluid is imaged. Consequently, this specular point on the wave has the highest

intensity in the image. At this point the incident angle (the angle between the viewer

direction and the surface normal orientation at the given point) and the emittance angle

(the angle between the illumination direction and the surface normal orientation at the

given point) are equal due to geometrical optics (reflection law) [15, 17] (see Figure 3.3).

Since the approximation of a fluid wave has a sine-like shape [35], the projection

of wave on the plane xoz perpendicular to wave motion of spatial structure of fluid

waves in a two-dimensional space is approximated by the parabolic equation. Within

the interval [−δ, δ] the projected sine function and parabolic function are similar as

shown in Figure 3.4.

Thus, the approximation of A sin(ω( π
2ω
− x))−A with the parabola on the interval

[−δ, δ] has the form
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Figure 3.3 The incident angle α and the emittance angle β.

Figure 3.4 The graph z = sin( π
2ω
−x)−A, − π

2ω
≤ x ≤ π

2ω
and z = −A (ω·x)2

2
, −δ ≤ x ≤ δ.

A
ω2

2
δ2 − A sin(ω(

π

2ω
± δ)) + A =

A
ω2

2
δ2 + A(1− cos(ω(

π

2ω
± δ)) =

A
ω2

2
δ2 − 2A sin2(π ± πω

2
) = A

ω2

2
δ2 − 2A sin2(

πω

2
) =

A
ω2

2
δ2 − 2A

(

ωδ

2
−
(

ωδ

2

)3

+ ...

)2

=

A
ω2

2
δ2 − 2A

(

(ωδ)2

4
− (ωδ)4

48
+

(ωδ)6

242
− ...

)

≈ A
(ωδ)4

24
, (3.2)

Using parabolic approximation of wave profile, we consider, first, a special case when

two coordinates of a camera and light are the same, xl = xc and zl = zc, (see Figure
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3.5), having zl >> R, where R is a radius of a disk, we derive the following equations:

Figure 3.5 A camera and light are in the same location, xc

zc
≤ ε.

zl − z0

xl − x0

= − 1
dz0

dx0

, z0 = −Aω
2

2
x2

0,
dz0

dx0

= −Aω2x0,

x3
0 + 2

Aω2zl + 1

A2ω4
x0 − 2

xl

A2ω4
= 0, (3.3)

where (x0, z0) is the specular point at the time instant (t0) on the wave. This equation

has one real root, since the derivative 3x2
0 + 2Aω2zl+1

A2ω4 does not change the sign. The

solution of (3.3)is shown below.

x0 =
(27Aω2xl + 3

√
c0)

1/3

3Aω2
− 2(Aω2zl + 1)

Aω2(27Aω2xl + 3
√
c0)1/3

,

c0 = 24A3ω6z3
l + 72A2ω4z2

l + 72Aω2zl + 24 + 81A2ω4x2
l , (3.4)

where x0 is the distance from the top of the wave to the specular point on the wave.

If the wave is moving by ε in the x-direction, the equation becomes

z1 = −Aω
2

2
(x1 − ε)2,

dz1

dx1

= −Aω2(x1 − ε),

(x1 − ε)3 + 2
Aω2zl + 1

A2ω4
(x1 − ε)− 2

A2ω4
(xl − ε) = 0, (3.5)
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where (x1, z1) is the specular point at the time instant (t1) on the moved wave. Solving

the equation (3.5), we have

x1 − ε =
(27Aω2xl − 27Aω2ε+ 3

√
c0ε)

1/3

3Aω2
−

2(Aω2zl + 1)

Aω2(27Aω2xl − 27Aω2ε+ 3
√
c0ε)1/3

,

c0ε = c0 + 81A2ω4ε2 − 162A2ω4ε. (3.6)

Estimation of difference |x0 − (x1 − ε)| approximately equals zero when ε � xl, zl,

xl

zl
≤ ε and zl >> R, where R is the radius of the disk. Since the distance x1− ε ≈ x0, it

is reasonable to use the specular points for tracking waves. Hence, tracking the specular

points allows us to track the wave of fluid flowing over a rotating disk.

In a general case, when coordinates of a camera (xc, zc) and coordinates of a light

(xl, zl) are not the same, we derive the following equations for the specular point posi-

tions:

zc−z0

xc−x0
−m0

1 + zc−z0

xc−x0
m0

= −
zl−z0

xl−x0
−m0

1 + zl−z0

xl−x0
m0

, m0 =
1

Aω2x0

,

x5
0 − (xl + xc)x

4
0 +

2

A2ω4
x3

0 − (
3

A2ω4
xl +

2

Aω2
xczl +

3

A2ω4
xc +

2

Aω2
xlzc)x

2
0 − (

4

A2ω4
zczl + 2

zc − zl

A3ω6
− 4

A2ω4
xlxc)x0 +

2
xczl + xlzc

A3ω6
= 0. (3.7)

The equation (3.7) has only one solution which is negative if 2xczl +2xlzc is positive

and positive if 2xczl + 2xlzc is negative. Moving the wave by ε, the distances |x0| ≈

|x1 − ε|, when ε� zc, zl,
xl

zl
≤ ε and Aω2 = const.

Thus, under general camera and light positions, the specular points do not coincide

with the peaks of the waves. However, as shown above, the distances along the radial
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direction between specular points and the peaks are approximately constant for the

moving wave. Hence, tracking the specular points allows us to track the wave of fluid

flowing over a rotating disk.

Moreover, the conditions under which the specular points practically coincide with

the peaks of waves are found (see Appendix A). This coincidence is more precise when

the ratio, r
zc

, is smaller, where zc is a z-coordinate of a camera and r is a radius of the

rotating disk.

3.2 Algorithm for Detecting and Tracking Specular Points on Waves

In the process of detecting points along the radius-vector the maximums of intensities

are found corresponding to the specular points of the waves. We consider the spiral

below as periodic functions due to their stationary property [30] with respect to the

rotating disk. Let ∆Φ be the period of the spiral equations in the polar system of

coordinates r = rj(φ) : rj(φ + ∆Φ) = rj(φ), where ∆φ is the angle-step of the

calibration in the polar system coordinates, N = ∆Φ
∆φ

> 1 is an integer, and

φ = φi = φ0 + i∆φ, i = 1, 2, ..., N ;

rj(φ0) = r0 = min rj(φ);

r0 < ri1 < ri2 < ... < riS ≤ 100,

rij = rj(φi), i = 1, 2, ..., N, j = 1, ..., S, (3.8)

where S is the number of spirals for each i, rij are experimental data for φ = φi; the

points (φi, rij) are on the respective spirals. To determine the number of spirals S the

training frame for each video is used. The number of spirals S is equal to the number

of intensity increases in the radial direction from the center of a disk. Then

1st spiral: (φ1, r11), (φ2, r21), (φ3, r31), ..., (φN , rN1); (φN+1, r12), (φN+2, r22), ..., (φ2N , rN2);

...; (φ(S−1)N+1, r1S), (φ(S−1)N+2, r2S), ..., (φSN , rNS);
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2d spiral: (φN+1, r11), (φN+2, r21), (φN+3, r31), ..., (φ2N , rN1); (φ2N+1, r12), (φ2N+2, r22),

..., (φ3N , rN2); ...; (φSN+1, r1S), (φSN+2, r2S), ..., (φS2N , rNS); ...;

(n+1)th spiral: (φnN+1, r11), (φnN+2, r21), (φnN+3, r31), ..., (φ(n+1)N , rN1);

(φ(n+1)N+1, r12), (φ(n+1)N+2, r22), ..., (φ(n+2)N , rN2); ...; (φ(n+S−1)N+1, r1S),

(φ(n+S−1)N+2, r2S), ..., (φ(n+S)N , rNS).

Let

Rij, i = 1, ..., N, j = 1, ..., S,

be the given data on the contracted disk in the form of the standard ellipse with the

parameters a = R and 0 < b < R. Then

rij = rj(φi) = Rij
R

[(a cosφi)2 + (b sinφi)2]1/2
,

where φ0 = 0, and i = 1, ..., N, j = 1, ..., S.

Let ∆r be the radius-step of calibration in the polar system coordinates, and

(φi, k∆r; Iik), i = 1, 2, ...; k = 1, 2, ...,

be the calibration net on the contracted disk, where Iik are the intensities of the points

(φi, k∆r). Then

Rij =
1

2M
Σj+M

k=j−Mk∆r; Iik 6= 0,

k = j −M, j −M + 1, ..., j +M ;

i = 1, 2, ..., N ; j = 1, 2, ..., S,
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where 2M means maximal number of pixels in the vicinity of the point (φi, Rij) along

the radius with the angle φi and with the center in that point.

This processing is continued for all frames and repeated for each video sequence.

Samples of resulting images are shown in Figure 3.6.

(a) (b)

Figure 3.6 (a) Detected points of waves. (b) A detected wave.

Note: With the purpose of presenting clarity, pixel detected points are enhanced in

Figure 3.6.

3.3 Estimation of Parameters of Spiral Waves

3.3.1 Asymptotically Optimal Numerical Method of Differentiation

Estimation of the first derivatives for a given function is the ill-posed problem [20],

i.e., for such problems, arbitrary small errors of the initial data can give, in general,

arbitrary large errors of the respective results.

In the deterministic case, when X̃i is the vector at the time t, Xi is its experimental

value, h is the step of differentiation, and | Xi − X̃i |< ε for any t. Then, with regard

to the main terms
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∆ =

∣

∣

∣

∣

X̃ ′
i −

Xi+1 −Xi−1

2h

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

X̃ ′
i −

X̃i+1 − X̃i−1

2h
+

(X̃i+1 − X̃i−1)− (Xi+1 −Xi−1)

2h

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

X̃ ′′′
i

6

∣

∣

∣

∣

∣

h2 +
ε

h
= φ(h), φ′(h) =

∣

∣

∣

∣

∣

X̃ ′′′
i

3

∣

∣

∣

∣

∣

h− ε

h2
= 0,

hopt =

(

3ε

X̃ ′′′
i

)1/3

, 4opt = 2





∣

∣

∣X̃ ′′′
i

∣

∣

∣

3





1/3

ε2/3. (3.15)

Instead of unknown X̃ ′′′
i we apply

X ′′′
i =

Xg(i+2) − 2Xg(i+1) + 2Xg(i−1) −Xg(i−2)

2g3
6= 0, g = ε1/5,

h =

(

3ε

X ′′′
i

)1/3

, 4 = 2

( |X ′′′
i |
3

)1/3

ε2/3. (3.16)

Theorem 1. The estimate 4 in (3.16) is asymptotically optimal.

Proof. We have

d =
∣

∣

∣
X̃ ′′′

i −X ′′′
i

∣

∣

∣
=

∣

∣

∣

∣

X̃ ′′′
i −

Xg(i+2) − 2Xg(i+1) + 2Xg(i−1) −Xg(i−2)

2g3

∣

∣

∣

∣

≤

|(X̃g(i+2) − 2X̃g(i+1) + 2X̃g(i−1) − X̃g(i−2))

2g3
−

(Xg(i+2) − 2Xg(i+1) + 2Xg(i−1) −Xg(i−2))

2g3
| ≤ cg2 +

3ε

g3
= ψ(g), (3.17)

where c is a certain existing constant (fifth derivative). Using (3.17), we find

g = ε1/5, d = (c+ 3)ε2/5;
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that is under g order ε1/5 the value of
∣

∣

∣X ′′′
i − X̃ ′′′

i

∣

∣

∣ has the order ε2/5. Then

(

∆opt

∆

)3

=

∣

∣

∣X̃ ′′′
i

∣

∣

∣

|X ′′′
i |
,

1− (c+ 3)ε2/5

|X ′′′
i |

≤
|X ′′′

i | −
∣

∣

∣X ′′′
i − X̃ ′′′

i

∣

∣

∣

|X ′′′
i |

≤

∣

∣

∣X̃ ′′′
i

∣

∣

∣

|X ′′′
i |
≤

∣

∣

∣
X̃ ′′′

i

∣

∣

∣
+
∣

∣

∣
X ′′′

i − X̃ ′′′
i

∣

∣

∣

|X ′′′
i |

≤ 1 +
(c+ 3)ε2/5

|X ′′′
i |

,

that is, ∆opt

∆
→ 1, ε→ 0, and hence ∆ is asymptotically optimal.

The stochastic case, described in Appendix B, is applicable to the estimation of the

wave velocity and wave inclination. It is based on the normal distribution of errors and

estimation of a variance.

3.3.2 Radial Velocity Component Computation

To determine the velocity of the waves, the sequences of the images of film flows are

used with the step of differentiation ∆t > 0. Choosing the system of coordinates at the

center of the rotating disk, the estimate of the radial velocity component is given by

r′exp =
∆r

∆t
=
rti+1

− rti

∆t
, ∆t = |ti+1 − ti|.

where rt and rt+1 are the values of the radii from the center to the points on the wave at

the moments ti and ti+1. The problem of estimating radial velocity is ill-posed, i.e., for

such problems, arbitrary small errors of the initial data can give, in general, arbitrary

large errors of the respective results [20]. So, the asymptotically optimal method for

minimizing error of estimate under a known error of initial data is used (see Equation

(3.15)).
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Figure 6.6 Relations of fluid-flow parameter relative errors and rotation speeds of disk
at the radius of 60 mm.

Table 6.5 The relative errors of recovered disk speeds (RDS) at the combined minimal
relative errors (CMRE) for video segments 1 through 8.

V ideo # 1 2 3 4 5 6 7 8
CM RE 0:026 0:037 0:063 0:046 0:053 0:021 0:063 0:037

RDS (r pm) 500 510 540 520 475 500 535 505
Relativ e

err ors (%) 0 2 8 4 5 0 7 1

Table 6.6 The relative errors of recovered disk speeds (RDS) at the combined minimal
relative errors (CMRE) for video segments 9 through 15.

V ideo # 9 10 11 12 13 14 15
CM RE 0:056 0:052 0:057 0:036 0:087 0:051 0:0534

RDS (r pm) 470 470 525 505 545 480 485
Relativ e

err ors (%) 6 6 5 1 9 4 3
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CHAPTER 7

SUMMARY

7.1 Conclusion

This dissertation presents a novel video-based algorithm to detect moving waves, to

determine wave regimes, and to compute controlling film flow parameters. The input

to this algorithm is an easily acquired non-invasive video data. The first part of the

algorithm includes image analysis, tracking, and reconstruction algorithms to measure

the wave shape and the wave propagating speed. It is shown that it is possible to

track wave motion by observing specular portion of the reflected light on the moving

wave under a single light illumination assumption. The fluid flow parameters and

characteristics (velocities, thickness of film, inclination angles, and distances between

consecutive waves) are calculated. Velocities and inclination angles are estimated using

the so-called quasi-optimal method, which minimizes error of differentiation estimate

under known error of initial data. The fluid flow parameters are compared with the

solutions of the relevant computation fluid dynamics models based on the Navier-Stokes

equations. The fluid models predict wave characteristics based on directly measured

controlling parameters (such as disk rotation speed and fluid flow rate). From the

results, we observe that the average computed parameters are within 5-10% of the

predicted values.

The second part of algorithm concentrates on model-based recovery of fluid flow

controlling parameters. The search in space of model parameters is performed so that

the predicted flow characteristics (e.g. distance between waves, wave inclination angles)

are close to those measured from video data. The aim of such algorithms is visual control
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of the processes in spinning disk reactors. The method of steepest descent is used to find

the controlling parameters using both the experimental video-based parameters and the

theoretical model of fluid flow. Experimental results demonstrate that the speed of a

disk and the flow rate are recovered with high accuracy, which supports the validity of

the approach. When compared to the ground truth available from direct observation,

the controlling parameters are estimated with less than 10% error.

Results presented in this work substantiate that using the developed algorithms,

it is possible to accomplish the above tasks (estimation of fluid flow parameters and

controlling parameters) with reasonable accuracy. We believe that the demonstrated

approach will be valuable in experimental studies of wave patterns as well as suitable

for practical applications of visual quality control of chemical processes.

7.2 Future Research

Some issues that need to be addressed in future investigations are:

1. Experiments with different sizes of the rotating disk;

2. Experiments with various physical parameters, including viscosity of liquid;

3. 3D surface recovery using multiple light illuminations;

4. Analysis of those experiments based on nonlinear solutions of the evolution sys-

tem;

5. Further comparing the results of the experiments with the respective models;

6. The applicability of the theory of computer vision for the evolution systems;

7. Performing the developed system for a broader set up, for example, for the syn-

thesis of aero gels, when a rotating disk is inside of a closed cylinder;
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8. Using the developed system for fluid waves in natural condition problems in-

cluding the astrophysical and geophysical problems, like global scale flow in the

atmosphere, the oceans;

9. Applying this work to the medical problems, for example, for analysis of cerebral

spinal fluid flow waveforms.
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Appendix A Tracking the Peaks of Waves Using the Specular Reflection
Patterns

Assuming [35] that tops of waves over a disc can be represented with enough accuracy

by collections of piece-wise sinusoids, let one of those sinusoids have a form

Z = Asin
(π

2
− ωX

)

− A

on the segment [−δ, δ] and let (x, z) be a point on that sinusoid, −δ ≤ x ≤ δ, ((0, 0)

is the coordinate of the respective top of wave projection on the plane 0XZ), where A

and ω are parameters of wave approximation. Then the condition that the normal to

the sinusoid in the specular point [15] (x, z) crosses the point (xc, zc) has the form

xc − x

zc − z
= Aωsin(ωx), (A.1)

from where under small ωδ sin(ωx), small A, and large Aω2zc the solution is:

x ≈ xc

1 + aω2(zc − A
≈ xc

1 + Aω2zc

≈ xc

Aω2zc

. (A.2)

It follows from A.2 that x can be close to zero under sufficiently small xc

zc
.

Lets consider a condition when two straight lines passing through points (x, z),

(xc, Zc), and (xl, zl), have equal angles with the normal to the same sinusoid [15] in the

point (x, z). Using the known formula for an angle α between two lines,

tan α =
k2 − k1

1 + k1k2

,

where slopes of those lines, the conditions of equal angles are:

(

1− k1

k2

)(

1

k2

+ k1

)

=

(

k3

k2

− 1

)(

1

k2

+ k3

)

, (A.3)
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Appendix A (Continued)

where k3 is a slope of the second line. In our case,

k1 =
zc − z

xc − x
,

1

k2

= Aωx, k3 =
zl − z

xl − x
, (A.4)

where we can put xc = δ and, for the simplicity, xc = xl = x∗ with the value for

convenient disposition of a camera and a light. Then the obvious solution is x = 0, z =

0), the normal to the sinusoid is axis 0Z, xl = −δ, k1 = z∗

δ
and the angle α = arctan z∗

δ
.

However, if the coordinate of (xc, z
∗) and (xl, z

∗) are fixed and |xc − xl| 6= 2δ, then in

the case that the segment of the size 2δ under the top of the wave is in the center of

the segment [xc, xl], then x = xc+xl

2
, z = 0 the normal is parallel to 0Z, and the angle

α = arctan( 2z∗

xl−xc
).

If in addition the segment of the size 2δ under the top of the wave projection is

arbitrary disposed on a disk, then under condition of equality of angles above the

normal in the desired point (x, z) will not be parallel to 0Z, and we have to find the

solution when (x, z) will be the nearest to the middle of the respective segment. Let the

left side of the sinusoid have the coordinate (x′, z′), z′ = A cos(ωx′)−A and let it have

maximal possible distance from xl, the right end of the segment [xl, xc]. This distance

does not exceed 2r, where r is the radius of a disk. The normal in the point (x′, z′) to

the sinusoid has the slope k2 ≈ 1
Aω2x′

, so that we have to find the condition on z∗ such

that the lines passing through the points (xc, z
?), (x′, z′), and the points (xl, z

?), (x′, z′)

have equal angles with the normal to the sinusoid in the point (x′, z′). In our case,

k1 =
z? − z′

xc − x′
, k3 =

z? − z′

xl − x′
, k2 =

1

Aω2x′
. (A.5)
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Appendix A (Continued)

Therefore, instead of (A.3) we have

(z? − z′)2

(

1

(xc − x′)2
− 1

(xl − x′)2

)

Aω2x′ −

(z? − z′)

(

1

xc − x′
− 1

xl − x′

)

(

(

Aω2x′
)2 − 1

)

+ 2Aω2x′ = 0, (A.6)

from (A.6)

z? − z′ =
(Aω2x′)

2 − 1
1

xc−x′
+ 1

xl−x′

1

2Aω2x′
±





(

(Aω2x′)
2 − 1

1
xc−x′

+ 1
xl−x′

)2
(

1

2Aω2x′

)2

− 2
1

(xc−x′)2
− 1

(xl−x′)2





1/2

(A.7)

In the case, when δ << r and x′ = r − δ, xc = −r, xl = r, we have

z? − z′ ≈ (Aω2r)
2 − 1

δ

1

2Aω2r
+





(

(Aω2r)
2 − 1

δ

1

2Aω2r

)2

+
2

δ2





1/2

=

(

Aω2r − 1

Aω2r

)

1

2δ
+

1

δ

(

(

Aω2r − 1

Aω2r

)2
1

4
+ 2

)1/2

, (A.8)

i.e., z∗ will be the order 1
δ
.

Thus, arbitrary fixed disposition of xc and xl requires rather high disposition of z∗

and certain restriction on parameters of waves. For the best accuracy, not the high

disposition of z∗, and without the restriction on parameters, we have to move xc and xl

along radii in such a way that the measured tops turn out to be approximately in the

middle of those coordinates.
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Appendix B A Stochastic Case

Under the condition

f(x) ∈ N(f̄(x), σ2), P [f(x1 · x2] = P [f(x1)] · P [f(x2)], (B.1)

we find estimate of σ2

σ?2 =
1

M

M
∑

ν=1

[f(xν)− f̄(xν)]
2, |σ − σ?| ≤ c1√

M
, (B.2)

and also

∣

∣

∣

∣

E

[

f̄ ′(x)− f(x+ h)− f(x− h)

2h

]∣

∣

∣

∣

=

∣

∣

∣

∣

f̄ ′(x)− f̄(x+ h)− f̄(x− h)

2h

∣

∣

∣

∣

≤ c

6
h2,

E

[

f̄ ′(x)− f(x+ h)− f(x− h)

2h
− f̄ ′(x) +

f̄(x+ h)− f̄(x− h)

2h

]2

=

E

[−f(x+ h) + f̄(x+ h) + f(x− h)− f̄(x− h)

2h

]2

=

1

4h2

[

E[f̄(x+ h)− f(x+ h)]2 + E[f̄(x− h)− f(x− h)]2
]

=
1

2

(σ

h

)2

,

∆ =

∣

∣

∣

∣

f̄ ′(x)− f(x+ h)− f(x− h)

2h

∣

∣

∣

∣

≤ c

6
h2 +

(σ

h

)2

, P ∼ 0.95, (B.3)

from where

c

3
h− 2

σ2

h3
= 0, h4 =

6

c
σ2, h2 =

(

6

c

)1/2

σ,

∆ ≤
( c

6

)1/2

σ +
( c

6

)1/2

σ = 2
( c

6

)1/2

σ ≤

2
( c

6

)1/2

σ? + 2
( c

6

)1/2 c1√
M
. (B.4)
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We can find c1 using that (M − 1)σ∗2

σ2 has Ξ2
M−1 distribution. However,

P

(

∣

∣σ∗2 − σ2
∣

∣ ≤ c1
M − 1

)

= P

(∣

∣

∣

∣

(M − 1)
σ∗2

σ2
− (M − 1)

∣

∣

∣

∣

≤ c1

)

=

P
(∣

∣Ξ2
M−1 − (M − 1)

∣

∣ ≤ c1
)

= 0.95. (B.5)
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Appendix C A Regression Model

The video data are used to build a regression model. The average results of ex-

perimental wave parameters (inclination angles, distances, and velocities) for various

controlling parameters (speed of rotating disk and initial fluid flow rate) are calculated.

The relation between inclination angle, disk speed, and flow rate is:

1

β
= β1 + β2xdisk + β3xrate + β4xdiskxrate, (C.1)

where β is the inclination angle and βi, i = 1, 2, 3, 4, are coefficients, β1 = 9.071e− 02,

β2 = 1.718e − 03, β3 = −2.596e − 02, and β4 = −3.598e − 04. The residual standard

error is 0.01489 on 12 degrees of freedom, the multiple R-squared is 0.9986, and the

adjusted R-squared is 0.9983.

To check if the model is correct and if the assumptions are satisfied, we plot the

residuals versus the the fitted values. This plot should not reveal any obvious pattern.

Figure C.1 (b) plots the residuals versus the fitted values for the experimental inclination

angles. No unusual structure is apparent.

An extremely useful procedure is to construct a normal probability plot of the resid-

uals. If the underlying error distribution is normal, this plot will resemble a straight

line (see Figure C.1 (c)).

Scaled residuals such as the standardized and studentized are useful in looking for

outliers. Most of standardized residuals should lie in interval [-3,3], and any observation

with a standardized residual outside of this interval is potentially unusual with respect

to its observed response. A residual versus a leverage plot is a scatterplot of residuals

against hat values. The Scale-Location plot, also called Spread-Location or S-L plot,

takes the square root of the absolute residuals in order to diminish skewness (square

root of the absolute residuals is much less skewed than the absolute residuals for Gaus-

sian zero-mean residuals). The Residual-Leverage plot shows contours of equal Cook’s
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Appendix C (Continued)

(a) (b)

(c) (d)

Figure C.1 (a) Log-Likelihood; (b) Residuals vs Fitted values; (c) Standardized Resid-
uals; (d) Square root of Standardized Residuals vs Fitted values.

distance, for values of Cook’s levels (by default 0.5 and 1) and omits cases with leverage

one (see Figure C.2).
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Figure C.2 Standardized Residuals vs Leverage.

The relation of distances of speed disk and flow rate is:

1

dist
= γ1 + γ2 ∗ xdisk + γ3 ∗ (1/xrate) + γ4 ∗ xdisk ∗ (1/xrate), (C.2)

where dist distances and coefficients: γ1 = 3.162e − 02, γ2 = 5.430e − 04, γ3 =

1.198e−03, and γ4 = 2.469e−05. The residual standard error is 0.006687 on 12 degrees

of freedom, the multiple R-squared is 0.9982, and the adjusted R-squared is 0.9978. To

check if the model is correct and if the assumptions are satisfied, we plot the residuals

versus the the fitted values. This plot should not reveal any obvious pattern. Figure

C.3 (b) plots the residuals versus the fitted values for the experimental distances. No

unusual structure is apparent. A normal probability plot of the residuals resembles the

straight line (see Figure C.3 (c)). However, the underlying error distribution is normal.

The Residual-Leverage plot is shown in Figure C.4.
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Appendix C (Continued)

(a) (b)

(c) (d)

Figure C.3 (a) Log-Likelihood; (b) Residuals vs Fitted values; (c) Standardized Resid-
uals; (d) Square Root of Standardized Residuals vs Fitted values.
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Appendix C (Continued)

Figure C.4 Standardized Residuals vs Leverage.
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