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The Virtual Hip: An Anatomically Accurate Finite Element Model Based  

on the Visible Human Dataset 

Jonathan M. Ford 

ABSTRACT 

 

The purpose of this study is to determine if element decimation of a 3-D 

anatomical model affects the results of Finite Element Analysis (FEA).  FEA has 

been increasingly applied to the biological and medical sciences. In order for an 

anatomical model to successfully run in FEA, the 3-D model’s complex geometry 

must be simplified, resulting in a loss of anatomical detail. The process of 

decimation reduces the number of elements within the structure and creates a 

simpler approximation of the model. Using the National Library of Medicine’s 

Visible Human Male dataset, a virtual 3-D representation of several structures of 

the hip were produced. The initial highest resolution model was processed 

through several levels of decimation. Each of these representative anatomical 

models were run in COMSOL 3.5a to measure the degree of displacement. 

These results were compared against the original model to determine what level 

of error was introduced due to model simplification.  
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CHAPTER 1: 

INTRODUCTION 

 

Anatomy traditionally has been a descriptive science. Anatomical structures are 

named based on their shape, location and/or their relationship to the surrounding 

anatomical structures. Three-dimensional (3-D) anatomical features and 

relationships historically have been displayed in atlases composed of stylized 

drawings and more recently photographs. Advances in computer and medical 

imaging technology now permits the production of detailed 3-D models of 

anatomy for use as teaching and research tools. Research initiatives which 

began in the early 1990’s with the Visible Human Project have now expanded to 

include data from different imaging modalities and have provided ever increasing 

insight into how the human body is organized.1 

 

Utilizing tools from other fields such as engineering, anatomists have begun to 

create anatomically accurate 3-D models for use in medical education and 

research. One such tool, the Finite Element Method (FEM), utilizes two-

dimensional (2-D) and 3-D geometry to gain a better understanding of how an 

object physically functions. Finite Element Analysis (FEA) can be used as a 

precursory step to predict the outcome of a physical event before actually 
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running an experiment or manufacturing an expensive prototype. Applying FEM 

to the study of human anatomy permits detailed analysis of complex virtual 

anatomical models under simulated experimental conditions.2 

 

Despite the current level of today’s advanced computer technology, there are still 

limitations to applying FEA for biological models. The complex geometries and 

the subtle details of anatomical structures can prove too intricate for FEA to work. 

As a result, 3-D models must often be decimated to such an extent that a 

significant reduction in anatomical detail may result. The trade off is a more 

simplified approximation of the original object that is no longer anatomically 

accurate and may affect the FEA results.  

 

The question remains as to how much decimation is acceptable. The answer 

depends on a variety of factors such as the goals of the research project, the 

functional importance of certain features, and the hardware and software 

capabilities. The purpose of this study is to determine if element decimation of a 

3-D anatomical model affects the results of FEA. 

 

In this study two versions of a high-resolution 3-D model of the human hip from 

the Visible Human Male dataset were developed. One model contained the 

actual geometry of the gluteus minimus and the other model contained a 

cylindrical arm representing the same muscle. A test simulation was run in 

COMSOL comparing the displacement of the distal end of the femur. The results 
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of each simulation were compared against the model’s complexity. For the 

purposes of this study, complexity was represented by the decrease in the 

number of elements in the gluteus minimus model. These findings were used as 

an example of the possible effects of model simplification.  

 

By creating a virtual 3-D hip and decimating the geometric meshes that make up 

the gluteus minimus, the results of this study will inform anatomists, clinicians, 

and biomedical engineers what affects the loss of anatomical detail has in a 

model’s behavior and also flag what features should be preserved. 
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CHAPTER 2: 

BACKGROUND 

Anatomy 

 

Early anatomists like Galen, based their anatomical knowledge on observations 

made from dissecting wild and domestic animals. The birth of modern human 

anatomy is credited to a Belgian medical student named Andreas Vesalius 

(1514-1564).3 His work, On the structure of the Human Body, inspired 

generations of anatomical scholars. Taking their cue from Vesalius, the use of 

illustrated textbooks in conjunction with cadaver dissection became standard 

tools in medical education. Netter’s Atlas of Human Anatomy, Grant’s Atlas of 

Anatomy and the current version of Gray’s Anatomy are common resources in 

modern medical schools across the United States. All these atlases are static 2-

D representations of 3-D anatomical structures. 4 

 

Visible Human Project 

 

The National Library of Medicine’s Visible Human Project was initiated in 1989 

with the goal to create a digital volumetric collection of complete normal adult 

male and female anatomy. The Visual Human Male (VHM) dataset was 
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completed in August of 1993. The specimen was that of a 39-year-old male 

incarcerated on death row in the Texas prison system and who had donated his 

body to science. His donation began a nine-month process of imaging, freezing 

and sectioning the specimen for the creation of the dataset. The specimen 

remained frozen in a gelatin block for 46 days at a temperature of -7º C or below. 

Due to the size limitations of the custom cryomacrotome developed by the 

University of Colorado, the specimen was sectioned into four blocks with 

dimensions no larger than 22 inches in height, 21 inches in width and 14 inches 

in depth. Over a period of 128 days the specimen was milled in 1 mm increments 

using the cryomacrotome. A series of film and digital photographs were taken for 

each slice through the specimen. 

 

The VHM dataset consists of the initial MRI and CT scans and the digital 

collection of color images. This digital information is roughly 15 gigabytes in size. 

The 1,878 axial images are tiff files that are 1760 x 1024 pixels in size with a 

resolution of 72 dpi and in total take up roughly 9.5 gigabytes of space. The 

dataset is public domain and available from the National Library of Medicine 

(NLM).6 Following release of the Visible Human Male, a number of similar 

projects were undertaken. In the years that followed, the NLM released the 

Visible Human Female. Other groups released their own versions such as the 

Visible Korean Project7 and the Visible Chinese Project8.  
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What makes the visible human datasets unique is the ability to observe the 

anatomy of an entire individual in situ. The spacing of organs and structures 

remain in their natural location as they were in a living body. The availability of 

these high-resolution images provides for the first time the opportunity for the 

accurate reconstruction of the human body. Three-dimensional and four-

dimensional representations of human anatomy are now possible as a result of 

advances in high-resolution medical imaging modalities such as Magnetic 

Resonance Imaging (MRI) and Computed Tomography (CT). High-resolution 

anatomically accurate 3-D models can now be visualized and manipulated using 

readily available software and analyzed and measured using application based 

software for Computer-Aided Design (CAD) and Finite Element Analysis (FEA). 

 

Finite Element Analysis 

 

FEA or the Finite Element Method (FEM) has become standard practice in the 

development of models and simulations for a variety of engineering projects. The 

term was first coined by R.W.Clough in 1960 with his discussion concerning 

plane stress analysis.9 The lessons learned from the early applications of FEA 

were quickly adopted and utilized the fields of thermal, fluid flow and piezoelectric 

process. FEM is now used in transportation, electrical, communications, housing, 

environmental, acoustical, as well as biological and medical applications. The 

ability to model, visualize, analyze, simulate, prototype and fabricate structures 
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has opened up the possibilities and the usefulness of computers in the 

engineering process.10,11 

 

The main goal of FEM is to determine the distribution of a property throughout 

the structure based on a set of partial differential equations. A few common 

examples of these potential properties can be temperature disbursement, the 

displacement from an applied stress, or the distribution of an electrical charge. At 

the beginning of this process, the engineer calculates the acting agent for each 

element of the structure. This agent can take the form of force, electrical current, 

temperature and so on. The result is an approximated solution that numerically 

represents the distribution of a problem that would be considerably difficult to 

obtain manually. FEM can be applied to one-dimensional, two-dimensional, 

three-dimensional and four-dimensional problems. The model is sectioned into a 

number of simplistic geometric elements. These elements range from tetrahedral 

(four-sided), brick (8-sided) to hexahedral (6-sided) in shape. The number of 

elements is finite and in turn each element has a set of known physical laws and 

finite parameters applied to it. The process creates a set of linear algebraic 

equations that are run simultaneously to solve the system.11 

 

The real objects and their relative components can be rather complex and often 

need to be decimated so that the finite element software package can handle the 

geometry. The structure’s geometry is created from the collection of elements 

that provide a discretized approximation of the object’s curves in a piecewise 
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fashion. This occurs via a process known as meshing. The accuracy of the 

curve’s representation hinges on the number of elements that are used in the 

mesh. It follows that the closest representation of a structure would have the 

highest number of elements. However, each element requires its own 

computation. Due to software and hardware limitations, it is essential to cap the 

number of elements used. On account of these limitations, the finer details of a 

structure are often omitted. It is up to the designer or modeler to determine 

whether or not the smaller details are critical to the overall structure. If these 

details play only an aesthetic or minimal role in the performance then their 

exclusion is considered acceptable. A greater quantity of elements in the mesh 

corresponds to a closer representation of the actual geometry. The results of the 

analysis need to be observed with these omissions firmly in mind. In the end, all 

finite element analysis results in the approximation of the structure or structures 

being studied. It may be a very close approximation, but it is still an 

approximation nonetheless. 11 

 

The creation of a mesh can be an arduous process. The length of time needed in 

mesh creation lies in the object’s complexity and the experience of the analyst. 

Meshing via triangulation is the most common form of element creation. Unlike 

brick meshes, the creation of tetrahedral meshes is highly automated in most 

pre-processing software. Tetrahedral meshes also have the added advantage of 

being able to tackle complex organic geometries. However, the speed and ease 
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of tetrahedral meshes comes at the cost of accuracy. Brick element meshes are 

considered more accurate, but their lack of automation decreases their use.11 

 

Once the mesh is created the object is assigned material properties. Objects can 

be made up of multiple materials based on the Young’s modulus and shear 

modules of the desired material. These properties can be assigned to a group of 

elements or to each individual element. Commercially available FEM packages 

often come with a built-in library of known material values. These usually consist 

of different types of metals and other materials such as wood or glass. Most 

packages do not come with biological materials and the properties for these 

items need to be furnished from experimental data. A number of publications 

exist that have suggested material properties for objects of a biological origin, 

such as bone or soft tissue. The Poisson’s ratio and density of the material is 

often lacking.12-17 The solving of the computational model utilizes a computer’s 

Central Processing Unit (CPU) and the Random Access Memory (RAM). 

Obviously, the functionality of a computer improves as its processor and memory 

power increases. 

 

There are a number of Finite Element software packages available for 

commercial use. A few of note include COMSOL, ANSYS and Abaqus. Each 

package is designed to accept a variety of file formats. Templates for common 

applications, such as electrical, thermal, acoustical, structural, fluids scenarios, 

are usually provided. All of these packages allow for user customization so the 
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analyst has full control of their model and simulation. As multi-physics packages, 

it is possible to include more than one physics interaction. For example, a finite 

element analysis can be run on a circuit for multiple scenarios. One analysis can 

compute the flow of electricity, while another determines the heat that 

corresponds with the generated electric current. Structure geometry can be 

created using native creation tools or imported from another software package.  

 

Biological Applications 

 

Finite Element Analysis chiefly has been used by engineers as a step in the 

manufacturing of products. More recently researchers from the biological 

sciences have tapped into finite element analysis to study the mechanics of 

organisms. The subjects studied are almost as varied as the number of 

organisms that exist past and present. Simulations have been made for insect 

flight,18 feeding mechanics of animals,19,20 defensive performance of extinct 

animals,21 and plant biomechanics22 to name a few. It must be stressed that the 

forces at work in these types of experiments are often hypothetical. For example, 

an FEA concerning the bite force of an animal must have the muscle forces and 

bones available from in vivo experimental data. The results of this experiment 

would be theoretical without physical testing. In cases where a study is being 

done concerning an extinct species, in vivo data would be impossible to acquire 

and the ultimate solution from an accompanying FEA analysis would be un-

testable. Added difficulty exists in the modeling of biological geometries. Unlike 
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standard, predefined shapes and curves used in other engineering practices, 

biologically derived geometries must be either modeled by hand, a time 

consuming and potentially inaccurate process, or captured through one of the 

many scanning modalities.25 

 

Human Applications 

 

In addition to biological applications, FEA has been applied to humans and has 

assisted in a variety of medical and design fields. The mechanical behavior of the 

femur using a 2-D model was analyzed as early as 1972.24 Blood flow25, arterial 

wall pressure26, foot tread analysis27 and a number of other medically applicable 

studies have utilized the tools of the finite element method. Medical implant 

design and performance have also benefitted from finite element simulations.28 

Furthermore, the FE method has been applied to human models for design 

purposed in the automobile industry. One such example involves the creation of 

a model of the human body for restraint system testing applications.29  

 

The field of Orthopedics has greatly benefited from the FE method. One example 

of finite element analysis used in a medical application can be seen in Helwig’s 

study on the performance of a proximal femur nail. In this study femur data was 

captured using CT scanning. A force was applied to the femur to simulate a 

patient standing on one leg. Muscle tension was not considered. The femur 

model retained its hollow medullary cavity which was filled by a model of the 
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femoral implant. Two factures were modeled to represent the damaged bone. 

Under their analysis the femoral implant failed with the dislocation of the axial 

head screw. They credited this to the tilting of the proximal bone fragment. The 

researchers compared their results to clinical observations and determined that 

their model provided some clues to the implants performance, but that it was 

limited in its exclusion of musculature and the assumptions made on the isotopic 

material behavior of cancellous bone. They concluded that their results provided 

hints to explain some of the clinical observations but suggested an improved 

model would be better suited to answer those questions. Improvements in the 

modeling of muscles and their ultimate inclusion in more complex models are the 

focus of other studies.30 

 

Much of FEA focuses on how muscles are modeled and their functions. Many 

computer models focusing on the musculoskeletal system represent muscles as 

line segments.31-33 Software, such as Software for Interactive Musculoskeletal 

Modeling (SIMM)34 and LifeModeler35, have been developed to simulate the 

biomechanics of movement in both humans and animals. These software 

packages often utilize moment arms to control the model’s movement.36 There 

have been attempts to model the complex 3-D muscular geometry by focusing on 

the fibers that make up the muscles themselves. Some studies focus on the 

perpendicular arraignment of muscle fibers to try and capture shear stress and 

analyze stretch distributions during muscle exertion.37 Still others try capture the 

3-D arrangement and lengths of the muscle fibers to capture muscle behavior.38 
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These studies all focus on the 3-D geometry of the muscle to varying degrees of 

complexity. 

 

Muscle Anatomy 

 

The focus of this study was to examine the effect model simplification has on the 

biomechanics of the gluteus minimus and its associated osseous structures. The 

gluteus minimus lies beneath the gluteus medius and is a fan-shaped muscle 

whose origin is the upper portion of the ileum and inserts into the anterolateral 

face of the greater trochanter of the femur. The gluteus minimus is innervated by 

the superior gluteal nerve. This muscle abducts the lower limb at the hip and also 

stabilized the head of the femur in the acetabulum during walking or running.39, 40 

Dysfunction of the gluteus minimus often is associated with that of the gluteus 

medius due to their shared nerve supply and may result in Trendelenburg gait. 

The disorder causes the pelvis to sag on the non-affected side during a single leg 

stance on the affected side. Individuals with Trendelenburg gait compensate for 

their muscle weakness by leaning the torso toward the damaged side when their 

weight is on the affected limb.41 

 

A finite element model involving the gluteus minimus, the femur and innominate 

(os coxa) bone and the ligamentum teres, was created to test the importance of 

anatomical geometry. The anatomy was based on the VHM dataset. For Phase 

1, the gluteus minimus was decimated in a stepwise fashion. For each iteration, a 
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finite element analysis of displacement was conducted and the results were 

compared to determine what impact geometric simplification had on the models 

performance. For Phase 2, the geometry of the gluteus minimus was replaced 

with a moment arm to test the influence of the muscle’s origin and insertion. 
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CHAPTER 3: 

MATERIALS AND METHODS 

Dataset 

 

The National Library of Medicine’s (NLM) Visible Human Male dataset from the 

Visible Human Project was used as the initial source for the development of 

anatomically accurate models. The entire dataset is available for download upon 

request from the NLM’s website.43 In total, the dataset consists of 1,878 slices as 

a tagged image file format (tiff) each with a resolution of 1760 x 1024. Each slice 

is 1 millimeter thick with a pixel size of 0.3528 millimeters. The slices are 

numbered in a fashion ranging from 1,001 to 2,878. Each color image was then 

hand segmented using Adobe’s Photoshop. Every structure segmented was 

assigned its own red, green and blue (RGB) value. This was a lengthy process 

that took a number of trained hands a considerable amount of time. An example 

of an original image and a segmented image can be seen in Figures 3.1 and 3.2 

respectively. 

 

 

 

 



16 
 

 

 

Figure 3.1 Example of original image. This is slice 1870 of the Visible Human 
Male. 

 

 

Figure 3.2 Example of segmented image. This is slice 1870 of the Visible Human 
Male. Courtesy of Dr. Don R. Hilbelink. 
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Making the Models 

 

For the purposes of this study, all model creation was performed on a 

workstation with a 64-bit version of Windows 7 Professional. The computer had 

48 gigabytes of RAM and an Intel Xeon X5677 3.57 gigahertz computer 

processing unit. The video card was an NVIDIA Quadro FX 5800. This computer 

will be referred to as desktop for the remainder of the paper. 

 

The structures of interest in the scope of this study was limited to the VHM’s left 

os coxa and femur bone as well as the left gluteus minimus muscle. An artificial 

ligament representing the ligamentum teres was created to anchor the femoral 

head to the acetabulum. The initial modeling steps occurred in the Mimics 14.0 

software package by Materialise. Due to the size of the segmentation data (9.45 

gigabytes), only the slices relevant to the anatomy of interested were imported 

into Mimics. This included slices 1725 through 2350 for a total of 625 slices. 

 

Upon import into Mimics, the RBG values were automatically converted to a 12-

bit gray value with a scale of 0 to 4095. Once imported, the structure was 

assigned its own mask which was limited to the exact gray value allowing for the 

exclusion of all other structures. A three-dimensional (3-D) model of the structure 

was created using the optimal preset setting once the mask creation was 

complete. Mimics uses a triangular tessellation method to create 3-D geometries. 
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An example of the Mimics user interface displaying the conversion to grayscale, 

mask editing and the rough 3-D geometry can be seen in Figure 3.3.  

 

 

Figure 3.3 Example of Mimics 14.0 user interface. 

 

Due to the size limitations of the milling devices used in the sectioning of the 

visible human male, the specimen was cut into four blocks. The division of the 

specimen into the four blocks left the Visible Human Male with three sections of 

missing data. To account for the missing slices and the volume they would have 

occupied, blank sections were left in their place. During model creation, this lost 

data was recreated using the interpolation features of Mimics. The only 

anatomical structure used in this study that was affected by this procedure was 

the left femur. 
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Once the initial step of the modeling was complete, each model was exported as 

a binary stereolithographic file (stl). The stl for each structure was then imported 

into 3-Matic 5.1, also by Materialise, for analysis, quality control and remeshing. 

In this program the 3-D anatomy was cleaned up and converted to a volumetric 

mesh. The initial model clean up began with a wrapping procedure to ensure 

each model was one solid object. This step was followed by a Triangle Reduction 

filter which had a flip threshold angle of 15˚ and a geometrical error of 0.05 mm. 

Model cleanup continued by applying a smoothing factor of 0.7 to the object. 

Once these steps were complete, the model was then inspected for any 

intersecting or overlapping triangles. Any errors were quickly fixed before moving 

onto the creation of a volumetric mesh. To create a volume mesh the structures 

were combined using the “Create Non-Manifold” mesh option. Surfaces on the 

mesh were assigned at this step to ensure at a standardized shape and location 

was maintained through the process.  

 

For Phase 1, the model underwent a series of processing steps involving: 

autoremeshing and quality reduction of triangles of the gluteus minimus. The 

overall model was inspected for intersecting or overlapping triangles and finally, 

converted to a volumetric mesh. The simplification of the gluteus minimus took 

place in the autoremeshing and quality reduce triangles procedures. The level of 

mesh complexity was reduced by increasing the maximum geometric error 

allowed. Nine levels of model complexity were created in this manner. The most 

complex model allowed for a maximum geometric error of 0.01 mm. The model 
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decreased in complexity as the maximum geometric error was increased in a 

stepwise fashion. The levels of geometric error were included in this study were 

0.01 mm, 0.04 mm, 0.05 mm, 0.1 mm, 0.11 mm, 0.15 mm, 0.25 mm, 0.75 mm, 

and 1 mm. Intermediate steps were made, but the resulting percentage of 

reduction  were not dramatically different. The 1 mm geometric error was chosen 

as the stopping point for model simplification as it resulted with a 90% reduction 

in the number of elements. After the finial simplification step was completed, the 

models were then converted into volume meshes of tetrahedral elements. The 

surface and volume meshes were then exported as MPHTXT files, the COMSOL 

ready mesh format. The resulting models consist of a non-manifold mesh of the 

left innominate bone, left femur, ligamentum teres and the left gluteus minimus at 

different levels of simplification. 

 

Phase 2 of this study examined the importance of the muscle geometry as 

compared to the interaction with the origin and insertion. For this model the 

bones and the ligamentum teres remained unchanged. The gluteus minimus was 

removed and a curved cylinder stretching from the center of the muscle’s origin 

and insertion was created in its place to represent the muscles line of action. The 

surface of the origin and insertion of the original gluteus minimus geometry was 

left in place. 
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COMSOL 

 

Each decimated iteration of the gluteus minimus mesh was imported into 

COMSOL 3.5a and run on an individual basis under the 3-D structural mechanics 

module native to the program. The material properties were the same for every 

model. The bones were given a Young’s modulus of 1.0 x 1010 Pa, a Poisson’s 

ratio of 0.3 and a density of 2570 kg/m.43 The gluteus minimus was given a 

Young’s modulus of 1.162 x 106 Pa, a Poisson’s ratio of 0.4 and a density of 

1200 kg/m3.44 The ligamentum teres was given a Young’s modulus of 3.66 x 108 

Pa, a Poisson’s ratio of 0.40 and a density of 1200 kg/m3.44 The Poisson’s ratio 

and density for ligament tissue were not available so the respective values were 

filled with the equivalent for muscle tissue. The pubic sympheseal surface was 

constrained in the X, Y and Z directions to lock the pelvis in place. A point central 

to the distal end of the femur was selected and used as the b asis for each 

measurement comparisons. 

 

For the first phase, a force of -5.0 x 105 N/m2 was applied to the interface 

between the gluteus minimus and the os coxa in the X direction and a force of 

5.0 x 105 N/m2 was applied in the Z direction. No force was applied in the Y 

direction. The model was then solved to determine the amount of displacement 

that occurred at the designated point of measurement. 
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For Phase 2, the model containing the representative arm of the gluteus minimus 

was run under two different scenarios. Scenario 1 utilized the surface area 

representing the origin of the gluteus minimus and received the same amount of 

force as Model 1. Scenario 2 utilized only the surface areas where the arm or 

arms made contact with the innominate bone. The amount of force needed to be 

adjusted proportionally to the surface area of the interface between the arm. The 

proportionally adjusted applied force was of -5.61 x 107 N/m2 in the X direction 

and 5.61 x 107 N/m2 in the Z direction. 

 

The level of displacement was collected in the individual X, Y and Z directions as 

well as the total displacement. It was assumed that the highest level of 

complexity for the first phase was the closest approximation to the actual 

geometry. The results for this model were used as a baseline for comparison.  

The percentage of simplification (based on the decreased in the number of 

elements) and the percentage of error from this baseline model were calculated 

for each decimated version of the gluteus minimus as well as the models for 

Phase 2. 
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CHAPTER 4: 

RESULTS 

Models 

 

In Phase 1, nine FE models of the human hip containing the left femur, 

innominate bone, and a representation of the gluteus minimus and ligamentum 

teres were created from the VHM. The number of elements in the gluteus 

minimus were reduced systematically. The model with the highest level of 

complexity consisted of a total of 468,813 tetrahedral elements with the gluteus 

minimus consisting of 65,960 elements. This model was used as the baseline for 

all model comparisons. The number of elements in the gluteus minimus were 

reduced to 6,995 at its highest level of decimation. The model demographics and 

displacement data can be found in Appendix A. 

 

The gluteus minimus in Phase 2 was replaced with a curved cylinder 

representing the central most path of the muscle. This model consisted of 

411,464 elements with the represented gluteus minimus consisting of 5,832 

elements. A table showing the number of elements for each iteration of the 

Phase 1 models and the percentage of element reduction can be seen in Table 
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4.1. A visual representation of the models for Phase 1 and Phase 2 can be seen 

in Figure 4.1. 

Table 4.1 Number of elements and percentage reduction for each level of  
model simplification 

 
 

Total 
Elements 

Total 
Reduction 

Gluteus 
Minimus 
Elements 

Gluteus 
Minimus 

Reduction 

468,813 0% 65,960 0% 
457,258 2% 56,933 14% 
449,382 4% 51,903 21% 
445,351 5% 43,946 33% 
423,665 10% 32,370 51% 
414,914 11% 26,040 61% 
402,416 14% 17,299 74% 
388,337 17% 8,049 88% 
387,148 17% 6,995 89% 

 

 

 

Figure 4.1 Image of Phase 1 model (A) and image of Phase 2 model (B). 
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COMSOL 

 

A structure analysis for the degree of displacement was run in COMSOL 3.5a of 

each model for Phase 1 and Phase 2. Figure 4.2 contains a representative visual 

plot of the displacement using the most complex model of Phase 1. 

 

 

Figure 4.2 Displacement plot of the most complex model of Phase 1. 
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Displacement 

 

The overall displacement of the distal end of the femur was calculated for each 

model. The gluteus minimus model with the highest number of elements was 

used as a baseline for comparison in calculating the percentage of element 

reduction and percentage of error in displacement. Table 4.2 shows the 

breakdown of the percentage of element reduction, the distances for the direction 

and total movement, the percentage error of displacement and the solution 

speed for each level of simplification for Phase 1. Figure 4.3 shows a plot 

comparing the element reduction percentage versus the total displacement error 

as well as the individual X, Y and Z directions. Figure 4.4 provides a plot of the 

actual displacement in millimeters for each iteration of simplification in Phase 1.  
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Table 4.2 Displacement for Phase 1 
 

Percent of 
Reduction 

X 
Movement 

Y 
Movement

Z 
Movement

Total 
Movement

X Error Y Error Z Error 
Total 
Error 

Solution 
Time 

0.00% 155.19 44.91 39.46 166.31 0.00% 0.00% 0.00% 0.00% 1121 
2.86% 155.14 44.88 39.44 166.25 0.03% 0.07% 0.05% 0.04% 896 
3.63% 155.15 44.86 39.44 166.26 0.03% 0.11% 0.05% 0.03%   942 
0.15% 155.17 44.87 39.45 166.27 0.01% 0.09% 0.03% 0.02% 904 
2.54% 155.17 44.92 39.45 166.29 0.01% 0.02% 0.03%   0.01% 689 
3.80% 155.19 44.91 39.46 166.31 0.00% 0.00% 0.00% 0.00% 641 

7.91% 155.2 44.9 39.46 166.32 0.01% 0.02% 0.00% 0.01% 600 
8.59% 155.2 44.92 39.46 166.32 0.01% 0.02% 0.00% 0.01% 576 

11.56% 155.22 44.93 39.47 166.34 0.02% 0.04% 0.03% 0.02% 539 

a) All movement in mm. 
b) Solution time in seconds. 
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Figure 4.3 Plot of element reduction versus displacement error. 

 

 

Figure 4.4 Plot of displacement in millimeters for Phase 1. 
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For Phase 2, the displacement of the distal end of the femur using the gluteus 

minimus muscle was compared against the single-arm model. The degree of 

displacement was determined with and without using the origin and insertion for 

the gluteus minimus. The gluteus minimus muscle with the highest number of 

elements was used as a baseline for comparison in calculating the percentage of 

element reduction and percentage of error in displacement. Figure 4.5 shows a 

plot comparing the displacement with and without using the geometry of the 

gluteus minimus’ origin and insertion. Table 4.3 shows the breakdown of the 

distances for the direction and total movement, the percentage error of 

displacement and the solution speed for Phase 2.  

 

 

Figure 4.5 Plot of displacement with and without utilizing the origin and insertion. 
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Table 4.3 Displacement for Phase 2  
 

Iteration 

X 
Movement

Y 
Movement

Z 
Movement

Total 
Movement

X Error Y Error Z Error 
Total 
Error 

Solution 
Time 

Original 155.19 44.91 39.46 166.31 0% 0% 0% 0% 1121 
With Origin 155.05 44.83 39.43 166.15 0.09% 0.18% 0.08% 0.10% 660 

Without Origin 152.68 40.17 38.56 162.52 1.62% 10.55% 2.28% 2.28% 664 

a) All movement in mm. 
b) Solution time in seconds. 
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Visual Comparison of Simplified Models 

 

The alteration to the model’s geometry as the mesh is simplified can be 

appreciated visually as well. Visual representation comparing the high resolution 

hip to the middle resolution hip and a low resolution hip can be seen in Figures 

4.6, 4.7, and 4.8 respectively.  

 

Figure 4.6 High-resolution gluteus minimus model consisting of 65,960 elements. 
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Figure 4.7 Mid-resolution gluteus minimus model consisting of 26,040 elements. 
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Figure 4.8 Low-resolution gluteus minimus model consisting of 6,995 elements. 
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CHAPTER 5: 

DISCUSSION AND CONCLUSIONS 

 

Discussion 

 

The purpose of this study was to determine if the simplification of a 3-D 

anatomical model by reducing its number of elements affects the results of FEA. 

To answer this question, two different phases of analysis were conducted using 

different representations of the human hip. For Phase 1, the gluteus minimus of 

each model was decimated in a similar stepwise manner. The model decimation 

occurred at a rapid rate. The number of elements for the gluteus minimus was 

decimated to 89% of the original quantity. The plot in Figure 4.3 suggests no 

overall trend in the relationship between the percentage error of displacement 

and the percentage of element reduction. The highest error of displacement in a 

coordinate direction for this model occurred in the Y direction at 0.11% after a 

33% reduction in the number of elements. The highest level of error for the total 

displacement was 0.04% after a 14% reduction. Figure 4.4 reflects the 

overwhelming consistency of the model. A linear regression t-test was run for 

each line to determine if the slope was significantly different from 0. With a 99% 

level of confidence, the null hypothesis (the slope is not equal 0) failed to be 
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rejected. The remarkably low percentage error of displacement seen in Phase 1 

suggests that the model remains very stable despite the dramatic reduction in the 

number of elements. It should be noted that the solution speed dramatically 

increased as the complexity of the gluteus minims decreased.  

 

Phase 2 examined the importance of the origin and insertion of the gluteus 

minimus in the solution of the FEA. When the muscle’s origin and insertion were 

used in conjunction with the representative cylinder, the percentage error in the 

total displacement was a low 0.10%. The highest percentage of error in the 

coordinate directions was found in the Y direction with a rate of 0.18%. These 

results further reflect the stability of the overall model.  

 

The influence of the origin and insertion of the gluteus minimus became evident 

when they were removed from the model. Without these anatomical structures, 

the percentage error in the total displacement increased to 2.28%. The highest 

percentage of error in the coordinate directions was found in the Y direction with 

a rate of 10.55%. These results suggest that this model’s behavior will be 

relatively constant as long as the origin and insertion of the gluteus minimus 

remain in intact. 

 

Visually examination of the decimated models reveals that the simplification 

process contributes to the overall loss in finite and gross anatomical detail. 

However, the general shape and volume of the gluteus minimus was maintained. 
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Even at an 89% reduction in the number of elements, the volume of the muscle 

decreased only 0.25%. This preservation in the models’ geometry may have 

contributed to their overall stability. In the end, the data suggests that 3-D 

anatomical models can be highly simplified through element reduction without 

drastically altering the results of FEA as long as the surfaces that receive or 

apply forces are maintained.  

 

Future Directions 

 

Moving forward with this study, our goal is to increase the level of the model 

complexity by adding more structures to the hip model to include all the muscles 

relevant to hip movement as well as a representative joint capsule. It is also the 

goal to improve the representation of the muscle mechanics. The muscles need 

to exert the forces on the bones by contracting and relaxing. Future studies 

should also include the unique biomechanics of tendons. Extending these 3-D 

geometries into simulations like SIMM or LifeModeler would be of interest. 

Building from other studies, the level of muscle geometry detail could be 

examined by taking the individual fiber direction and behavior into account.38 

Another area of interest would be to examine the microstructure and organization 

of skeletal muscle tissue. From this study, the importance of muscle origin and 

insertions could be utilized to create a virtual 3-D skeleton that contained the 

“footprints” of these muscle attachments. Movement arms could then be attached 



37 
 

as needed to the centroid of these attachments to assist in the analysis of 

movement. 

 

Conclusions 

 

Anatomical geometry plays a critical role in the function of the human body. 

When analyzing movement, behavior or even designing medical implants, 

engineers need to account for the 3-D geometry of these structures. The unique 

shapes and the respective function of anatomical features, such as origins and 

insertions, add a level of complexity to any potential virtual model. The FEM 

packages that once only handled the straight lines and standard sets of primitive 

shapes have been expanded to include more complex objects.  

 

The overall purpose of this study was to examine the effect 3-D model 

simplification had on FEA of anatomical models. In order to perform a given 

simulation on an anatomical structure it is often necessary to reduce the overall 

complexity of the model. The results of this study suggest that anatomical 

geometries can withstand high levels of simplification without dramatically 

affecting the results of FEA provided that key anatomical features, such muscle 

origins and insertions, are preserved. By being aware of the affects of model 

simplification, biomedical engineers will be able to create anatomical models with 

the confidence that the results they are capturing accurately reflect the 
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biomechanics of the system. This will in turn allow for more biomechanical 

representations for clinical applications. 
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