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ABSTRACT 
 
 

 As apex predators in coastal systems, bottlenose dolphins (Tursiops truncatus) are 

susceptible to persistent organic pollutant (POP) accumulation and retention over time, 

which has prompted continued interest in understanding the extent to which contaminant 

body burdens or other stressors are sufficient to cause adverse sublethal effects on 

energetic fitness, immune function, or reproduction.  Increasing our knowledge of 

reproductive endocrinology in bottlenose dolphins may provide insight into changes in 

reproductive rates, thereby expanding the capacity to assess conservation status.  This 

study used the Enzyme-Linked ImmunoSorbent Assay (ELISA) technique to examine 

peptide fertility hormones [inhibin A, inhibin B and anti-Müllerian hormone (AMH)] 

measured in serum of free-ranging dolphins (n = 129) of varying age, gender, and 

maturity status from three locations (Sarasota Bay, FL, Indian River Lagoon, FL, and 

southern Georgia).  The primary research objectives were to establish hormone baselines, 

investigate AMH and inhibin use as reproductive biomarkers, and examine the potential 

use of these hormones as biomarkers of toxicant or other stressor effects on reproduction.  

AMH secretion differed significantly with gender (p < 0.001), where levels were 

approximately 1,000-fold higher in males than females (1,122 ± 427 ng mL-1 and 1.15 ± 

1.25 ng mL-1, mean ± SD).  Male AMH levels were related to maturity status, and linear 

regression analysis revealed a significant, negative relationship between male AMH and 

age, body length, body weight, and maximum girth in all populations.  Of the parameters 



 

vi 

assessed, age was the best indicator of AMH levels in males.  AMH concentrations in 

females did not vary significantly over time or with maturity status, but exhibited a 

decrease in some older individuals, potentially indicating an AMH decline in long-lived 

female dolphins.  Inhibins did not differ significantly between age classes in males, but 

appeared to be an estrous cycle indicator in females, where inhibin peaks were likely 

related to follicular and luteal phases.  These data provide new information on circulating 

serum AMH and inhibin levels in bottlenose dolphins, which appear to reflect a degree of 

gonadal function and show promise as reproductive biomarkers.  Our findings suggest the 

possibility of toxicant effects on AMH and inhibin production, but not conclusively.  

Further investigation of mechanism(s) of action for contaminant-related reproductive 

toxicity will elucidate the diagnostic value of these hormones to assess the effects of 

POPs on fertility potential in bottlenose dolphins.  
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INTRODUCTION 
 

Coastal ecosystem health is a topic of great concern, especially as human 

populations expand in coastal regions, where marine organisms are exposed to 

anthropogenic stressors.  Due to their high trophic status and life histories, several marine 

mammal species, specifically bottlenose dolphins (Tursiops truncatus), are considered 

good indicators of stressors impacting coastal systems, as dolphins are increasingly 

exposed to environmental contaminants (Wells et al., 2004).  Bottlenose dolphins are 

common inhabitants of coastal waters of the southeastern U.S. and several long-term, 

longitudinal research efforts have studied dolphin populations within the U.S., providing 

considerable knowledge of this species (Wells et al., 2004; Reif et al., 2008; Mazzoil et 

al., 2008).  

Possible stressors have been identified for marine mammals, but their effects on 

vital biological functions are not fully understood.  For example, it has been well 

established that many marine mammals contain elevated levels of lipophilic persistent 

organic pollutants (POPs), which bioaccumulate in marine food webs and biomagnify in 

top-trophic level species (O’Shea, 1999; Aguilar et al., 2002).  Cetaceans are long-lived 

apex predators with extensive lipid-rich blubber layers, that are susceptible to 

contaminant accumulation and retention over time.  Their limited capacity for pollutant 

degradation or biotransformation serves to heighten toxic effects (Tanabe et al., 1988), 

which has prompted continued interest in understanding the extent to which contaminant 



 

2 

body burdens are sufficient to cause adverse sublethal effects on biological functions, 

such as reproduction, energetic fitness, or immune function.  

 Substantial evidence now links chronic exposure to POPs [specifically 

polychlorinated biphenyls (PCBs)] with adverse effects on immune system function 

(Ross et al., 1995, 1996; De Swart et al., 1996), reproduction (Reijnders, 1986; Béland et 

al., 1993; Schwacke et al., 2002), infectious disease susceptibility (Kannan et al., 1993; 

Aguilar and Borrell, 1994; Schwacke et al., 2011), and skeletal growth (Zakharov and 

Yablokov, 1990; Bergman et al., 1992) in marine mammal populations worldwide.  In 

addition, PCB studies have shown toxicological effects on neurological, developmental, 

immunological, reproductive, and endocrine systems of other mammals (Robertson and 

Hansen, 2001).  Contaminant concentrations in several marine mammal species are 

consistently reported above the threshold PCB level (17 µg g-1 lipid weight) known to 

cause adverse health effects in several other species, determined through experimental 

studies on reproductive and immunological effects in seals, otters, and mink (Kannan et 

al., 2000).  However, there is substantial variation among mammals in sensitivities to 

toxic effects of PCBs, given differences in diet, selective biomagnification of PCB 

congeners, and biotransformation capacities (Kannan et al., 2000). 

 Previous research has shown that aquatic mammals are sensitive to toxicological 

effects of endocrine-disrupting compounds (EDCs), such as PCBs and organochlorine 

pesticides (OCPs), which target the reproductive tract (Fossi and Marsili, 2003).  Dall’s 

porpoise (Phocoenoides dalli) populations in the western north Pacific have demonstrated 

reduced testosterone concentrations with increased organochlorines (PCBs and 1,1-

dichloro-2,2-bis(p-chlorophenyl)ethylene [DDE, a major degradation product of DDT]), 
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which possibly indicated the causative effects of PCBs and DDE in affecting normal 

reproductive hormone concentrations and sexual function (Subramanian et al., 1987).  

Captive harbor seals (Phoca vitulina) harboring higher PCB concentrations have shown 

decreased pup production due to lower estradiol levels and impaired implantation 

(Reijnders, 1986).  In addition, premature births in California sea lions (Zalophus 

californianus) were associated with high organochlorine (OC) levels (DeLong et al., 

1973).  

Reduced reproductive rates and reproductive failure could threaten the 

conservation status of affected populations.  Hormones play key roles in reproductive 

rates and control many functions of the reproductive system.  Measured hormonal 

concentrations may offer a better understanding of factors that might impair a species’ 

reproductive viability or act as early warning signals for changes in reproductive rates 

(Kirby and Ridgway, 1984).  It is difficult to understand the factors (such as potential 

effects of POPs and/or other stressors) that may be influencing reproduction in an 

individual or population, without knowledge of hormone cycling.  A thorough 

understanding of reproductive biology and reproductive cycling will increase the capacity 

for assessing conservation status and possibly support the establishment or 

implementation of effective management and conservation strategies.  

 

Mammalian Reproductive Endocrinology 

 The field of mammalian reproductive endocrinology began early in the 20th 

century, when physiologists started to question the role of the pituitary and gonads 

(Bronson, 1989).  Hormonal identification and quantification have provided insight into 
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the function of the hypothalamic-pituitary-gonadal (HPG) axis, which is critical to 

gonadal differentiation and the development and regulation of the mammalian 

reproductive system.  Ultimately, the HPG forms a functional endocrine axis that controls 

hormone production in the ovary and testes (Figure 1).   

The principal tissues that synthesize polypeptide proteins and steroid hormones, 

which are most directly associated with mammalian reproduction, are the hypothalamus, 

anterior pituitary, ovaries, and testes.  The hypothalamic central nervous system produces 

gonadotropin-releasing hormone (GnRH), which is transported to the anterior pituitary, 

where it induces secretion of follicle stimulating hormone (FSH) and luteinizing hormone 

(LH).  These hormones then stimulate gonadal production of sex steroids (estrogens and 

androgens) and peptide hormones [anti-Müllerian hormone (AMH), inhibins, activins, 

etc.].  The reproductive axis is regulated by a negative feedback system, where increased 

hormone production in the gonads results in a decreased hormonal secretion from the 

hypothalamus and pituitary gland (Figure 1).  

Both FSH and testosterone induce spermatogenesis, the process of male gamete 

production.  LH stimulates the Leydig cells of the testes to produce testosterone, a main 

androgen for spermatogenesis, which affects sperm production and maturation.  FSH 

exerts a direct effect on testicular Sertoli cells by playing a role in their functional 

development, maturation at puberty, and maintenance of their cytoskeleton and cell 

junctions (McLachlan, 2000; Figure 2).  Anti-Müllerian hormone expression and 

secretion are controlled by testosterone and follicle stimulating hormone and are related 

to Sertoli cell function and maturation and spermatogenesis progression (Sinisi et al., 

2008).  In addition, inhibin concentrations are suggested to FSH-stimulated Sertoli cell 
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function (Andersen et al., 1997).  Sertoli cells, also known as sustentacular cells of the 

testis, are commonly used as an indication of reproductive status in mammals (Setchell, 

1978) and play a crucial role in the initiation and maintenance of spermatogenesis. 

 

 

FIGURE 1.  Regulation of the typical mammalian hypothalamic-pituitary-gonadal axis.  
Dashed lines indicate negative feedback and solid lines indicate positive influences.  
GnRH, gonadotropin-releasing hormone; LH, luteinizing hormone; FSH, follicle-
stimulating hormone. 
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FIGURE 2.  Reproductive endocrinology in the male. Dashed lines indicate negative 
feedback and solid lines indicate positive influences. LH, luteinizing hormone; FSH, 
follicle-stimulating hormone; T, testosterone; AMH, anti-Müllerian hormone. 
 

In females, follicle stimulating hormone and luteinizing hormone govern the 

reproductive system and primarily target the granulosa cells within the ovary.  Follicle 

stimulating hormone influences the development of the ovarian follicle, a sac-like 

aggregation of cells within the ovary that contains a single oocyte (an immature ovum or 

egg).  Luteinizing hormone plays a role in final follicular and oocyte maturation, the 

induction of ovulation, and formation of the corpus luteum (CL) post-ovulation; the 

remaining part of the follicle becomes the CL, which secretes progesterone and helps to 

establish and maintain pregnancy.  During folliculogenesis, follicle stimulating hormone 

converts estrogen from androgens within the granulosa cells, and luteinizing hormone 

stimulates androgen production from the ovarian theca cells, which are endocrine cells 
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associated with ovarian follicles.  Under the influence of both gonadotropins, the 

granulosa cells produce several peptide hormones, including inhibins, activin, follistatin, 

and AMH (Figure 3).  Inhibins regulate folliculogenesis through suppression of pituitary 

FSH secretion, whereas activin promotes granulosa cell proliferation, suppresses 

androgen production in the theca cells, enhances oocyte maturation, and increases inhibin 

and follistatin secretion.  AMH modulates primordial follicle recruitment and inhibits 

cyclic follicle recruitment for folliculogenesis, primarily by inhibiting the follicle 

stimulating hormone effect on follicle growth (Roudebush et al., 2008).   

 

 

FIGURE 3.  Reproductive endocrinology in the female. Dashed lines indicate negative 
feedback and solid lines indicate positive influences. LH, luteinizing hormone; FSH, 
follicle-stimulating hormone; AMH, anti-Müllerian hormone. 
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Cetacean Reproductive Endocrinology and Biology 

The cetacean reproductive tract conforms to the general mammalian reproductive 

system centered on the hypothalamic-pituitary-gonadal axis.  There are several 

similarities between the reproductive anatomy of terrestrial animals and cetaceans.  

Females possess paired ovaries, fallopian tubes, a diffuse-type placenta, a bicornuate 

uterus, and a vaginal opening.  Individual males posses a fibroelastic penis, vasa 

deferentia, epididymides, and elongate testes, which perform similar functions to those of 

other mammals: the production of sperm and steroid hormones (Boyd et al., 1999; Pabst 

et al., 1999). 

The earliest findings on cetacean hormone cycling were discovered through 

0captive breeding programs, where reproductive state could be closely monitoring and 

sampling occurred frequently.  Harrison and Ridgway (1971) first described gonadal 

hormone production and testicular maturity in captive bottlenose dolphins by measuring 

serum testosterone concentrations over a two-year period in immature and mature males.  

Their findings indicated higher testosterone levels with increasing testicular size and 

body length.  Levels of progesterone, one of the most common steroids measured in 

female cetaceans, have shown a clear link between gonadal state and sexual maturity, 

where levels are generally very low in immature (or pre-pubertal) bottlenose dolphins, 

and then begin to rise at the onset of sexual maturity and ovulatory activity (Sawyer-

Steffan et al., 1983).  T. truncatus serum progesterone at sustained levels above 3,000 pg 

mL-1  is indicative of pregnancy, whereas ovulation seems to correlate with progesterone 

values > 3,000 pg mL-1 that return to < 1,000 pg mL-1 within one month (Sawyer-Steffan 

et al., 1983).  These concentrations are significantly higher than baseline levels for non-
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cycling females (Sawyer-Steffan and Kirby, 1980; Robeck et al., 1994).  A more recent 

study used urinary luteinizing hormone and estrogen conjugate (EC) concentrations to 

correlate follicular growth and ovulation, which has helped define female T. truncatus 

reproductive endocrinology (Robeck et al., 2005).  

Bottlenose dolphins are spontaneous ovulators (Kirby and Ridgway, 1984; 

Robeck et al., 1994) that breed seasonally in the Northwest Atlantic, with peak 

conception months during spring to June and peak calving between March and June 

(Mead and Potter, 1990).  A second calving peak has been documented in late summer to 

early fall (Scott et al., 1990).  The gestation period is ~12 months, lactation duration is 

~1.6 years, and females typically produce a calf every 3-6 years (Reynolds et al., 2000).  

Reproduction can continue into the late 40s.  Hormone analysis has demonstrated that 

estrous cycles last between 21-42 days (Kirby and Ridgway, 1984; Schroeder, 1990) and 

considerable variation has been observed in the number of estrous cycles per year 

(between 2-7 ovulations; Yoshioka et al., 1986).  T. truncatus show evidence of seasonal 

reproductive activity, including polyestrus, seasonal polyestrus, and one to two year 

periods of anestrus (Cornell et al., 1977; Kirby and Ridgway, 1984; Schroeder, 1990). 

T. truncatus generally exhibit a promiscuous mating system, where mating 

strategies and behavior can include the formation of male alliances and male-male 

competition for females (indicated by scarred bodies and rakes), which is characteristic of 

a polygynous system (Scott et al., 1990).  In addition, the moderately large testicular size 

(relative to body size) of bottlenose dolphins, compared to some delphinids, likely 

indicates sperm competition, which occurs when multiple males compete for access to a 

single estrous female (Kenagy and Trombulak, 1986; Reynolds et al., 2000).  Studies of 
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captive T. truncatus indicate seasonal variations in serum testosterone concentrations, 

total sperm per ejaculate, and sperm density, which reflect seasonal testicular activity 

(Schroeder and Keller, 1989).  Sexually mature males produced testosterone levels 

between 2-5 ng mL-1 and increased up to 10 ng mL-1 during the breeding season.  

Pubescent individuals show fluctuating levels, between 1-10 ng mL-1, whereas immature 

males had concentrations < 1 ng mL-1 (Kirby, 1990).  

 

Endocrinology Techniques 

 The field of endocrinology has progressed as technological advancements have 

enabled accurate and consistent assessment of hormones in a variety of biological 

matrices (serum, saliva, urine, feces, and blubber; Atkinson and Yoshioka, 2007).  

Initially, a sensitive competitive protein-binding assay was used to measure serum 

testosterone levels (Harrison and Ridgway, 1971), but this was replaced by the more 

specific radioimmunoassay (RIA).  In addition to RIA, enzyme immunoassays (EIA) are 

frequently used to measure reproductive hormones.  Both are binding assays that depend 

on the progressive saturation of a specific antibody by a substance and the subsequent 

determination of bound and free phases using antibodies labeled with either a radioactive 

isotope (RIA) or an enzyme (EIA; Chard, 1990).   

 In some cases, RIAs can produce misleading results, as they measure not only 

dimeric forms of a hormone, but also the free subunits (Buzzard et al., 2004).  

Improvements in EIA techniques have resulted in highly specific and sensitive ELISAs 

(Enzyme-Linked ImmunoSorbent Assay) that utilize monoclonal antibodies and allow for 

quantitative measurement of biologically active peptide hormones, such as AMH, inhibin 
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A, and inhibin B in serum of individual mammals for both sexes.  These assays 

demonstrate minimal cross-reactivity and enable the study of hormone secretion, without 

the limited specificity observed in other assays.  

 These methods are practical for assessing hormone levels in captive species, 

where animals are readily accessible and sampling can occur frequently.  However, due 

to its invasive nature, blood collection is not generally performed on a daily basis, which 

limits detailed analyses of daily hormone fluctuations.  Although assessment of 

reproductive hormone levels is possible in wild populations, it is logistically challenging 

and requires full restraint of the animal for blood collection. 

 

Advantages of AMH and Inhibins 

Testosterone, progesterone, estrogens (mainly estradiol-17ß [E2]) and, to some 

extent, gonadotropins have long been measured in captive cetaceans to assess 

reproductive condition, mostly for systematically planned breeding programs (Robeck et 

al., 1994).  Hormone assays have been used to assess breeding condition, reproductive 

status, pregnancy rates, and to differentiate age groups.  Testosterone levels have been 

correlated with testicular weight, spermatocyte density, germ cell density, and used to 

determine maturity status (Kirby and Ridgway, 1971; Kita et al., 1999).  In females, 

progesterone levels have been monitored in captive delphinids to assess ovulation and 

pregnancy (Sawyer-Steffan et al., 1983) and also to establish the onset of sexual maturity 

in free-ranging animals (Atkinson and Yoshioka, 2007).  Estrogens are generally 

measured to indicate the follicular phase of the estrous cycle, and gonadotropins (follicle 

stimulating hormone and luteinizing hormone) are typically measured to assist with 
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advanced reproductive technologies (ART) and the development of artificial reproductive 

management (Robeck et al., 1993).   

Measurement of these reproductive hormones in cetaceans has increased our 

understanding of their reproductive physiology and endocrinology, and provided the 

capacity to assess reproductive state.  However, many of the aforementioned hormones 

exhibit large variations during reproductive cycles and breeding seasons.  Testosterone 

concentrations, for example, exhibit frequent fluctuations, vary among individual 

cetaceans with similar testicular size (Kita et al., 1999), and do not appear to correlate 

with peak sperm production and density in bottlenose dolphins (Schroeder and Keller, 

1989).  In addition, pre-ovulatory estrogen elevations may be variable, typically rising for 

days during the follicular phase, but may rise for only a few hours (Schroeder, 1990). 

Three hormones, among many, yet to be measured in T. truncatus include AMH, 

inhibin A, and inhibin B, which are structurally-related dimeric glycoproteins that belong 

to the transforming growth factor-ß (TGF-ß) superfamily (Cate et al., 1986; Kingsley, 

1994) and are chiefly expressed by the testicular Sertoli cells in males (Figure 2) and the 

ovarian granulosa cells in females (Figure 3).  Initially studied to understand their role in 

reproduction and development in humans (Welt et al., 2002; Knight and Glister, 2006), 

these peptide hormones have also been investigated in several terrestrial mammalian taxa 

(such as rodents [Buzzard et al., 2004; Kevenaar et al., 2006], bovine [Ireland et al., 

2008], ovine [Campbell and Baird, 2001], etc.) to further promote understanding of 

expression and function.  The utility of measuring these hormones in a comprehensive 

evaluation of the conservation status of protected mammalian species has been 

considered (Marsh et al., 2011; Wilson et al., 2011), but seldom employed. 
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AMH expression is closely regulated developmentally in fetal, neonatal, 

prepubertal and adult Sertoli and granulosa cells, is conserved among mammalian 

species, and seems to be produced only in the reproductive organs (Teixeira et al., 2001).  

AMH is an appealing measure of gonadal function, since secretion is not dependent on 

gonadotropins, which are involved in follicular development and atresia, and AMH levels 

experience minor fluctuations during a normal menstrual cycle (Cook et al., 2000).  In 

addition, AMH serum levels may be a more strongly related to ovarian follicular status 

and be a more discriminatory marker of ART outcome than FSH or estradiol (Fréour et 

al., 2007).  Inhibins were first isolated from follicular fluid as a classical endocrine 

hormone by Robertson et al. (1985) and are known to regulate the reproductive system by 

acting on the anterior pituitary gland to block the synthesis of FSH via a negative 

feedback loop (de Kretser & Robertson, 1989; Figure 1).  Therefore, inhibin decisively 

influences the regulation of gonadal function. 

 

Anti-Müllerian Hormone 

AMH is a homodimeric disulfide-linked molecule composed of two 72 kDa 

monomer subunits.  Secretion of AMH from testicular Sertoli cells during embryonic 

development promotes involution of the Müllerian ducts, thus enabling normal 

development and differentiation of the male reproductive tract.  Müllerian ducts are the 

primordium for the uterus, Fallopian tubes, and upper portions of the vagina (Lee and 

Donahoe, 1993).  

The role of AMH secretion in male adults is not fully understood, but previous 

research indicates that seminal AMH concentrations may be a proper marker of the 
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function and maturation of Sertoli cells and, therefore, an indicator of spermatogenesis 

(Fujisawa et al., 2002; Sinisi et al., 2008).  Alteration in Sertoli cell function can possibly 

lead to impaired spermatogenesis, germ cell losses, and male infertility (Monsees et al., 

2000).  AMH expression and secretion is regulated by inhibitory actions of testosterone, 

germ cells, and by FSH stimulation (Josso et al., 1990; Lee et al., 1996; Rajpert-De 

Meyts et al., 1999). 

In males, AMH production commences during embryogenesis and continues well 

into adulthood.  Levels are elevated in prepubertal individuals, and then slowly decline 

until puberty, when lower concentrations are maintained throughout adulthood (Lee et al., 

1996).  The high pre-puberty AMH levels correspond with the onset of testicular 

differentiation until puberty, at which point high testosterone levels take over (Josso et 

al., 1993; Rey et al., 1993).  In several species, AMH expression decreases to trace 

amounts when Sertoli cells reach maturity (Kuroda et al., 1990; Lee et al. 1994), and an 

inverse relationship is observed between postneonatal serum AMH and testosterone 

levels (Josso et al., 1993; Rey et al., 1993; Lee et al., 1996). 

AMH is produced by the ovarian granulosa cells of early developing follicles in 

females (Figure 3), can inhibit the initiation of primordial follicle growth, and is 

considered a negative regulator of follicular development (La Marca and Volpe, 2006).  

AMH is expressed throughout folliculogenesis, from primary to early antral stages; thus, 

serum levels may represent both the quantity and quality of the ovarian follicle pool (La 

Marca and Volpe, 2006).  The mechanisms and precise function of ovarian AMH 

expression are still unclear, but circulating levels should reflect the volume of immature 
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granulosa cells in the ovaries and the combined number of growing follicles (Andersen et 

al., 2010).  

Ovarian AMH expression has been detected as early as 36 weeks gestation in 

human fetal ovaries, though AMH serum levels in females can be nearly undetectable at 

birth (Rajpert-De Meyts et al., 1999).  AMH is secreted in females from birth up to 

menopause, and a slight increase might occur from 2-4 years of age.  Relatively low 

levels are maintained from puberty until menopause, when AMH decreases in correlation 

with a decline in the ovarian follicle pool (Hudson et al., 1990; Lee et al., 1996).  

Previous studies have utilized AMH as a tool for examining ovarian toxicity (Uzumcu et 

al., 2006) and ovarian reserve (Kwee et al., 2008).   

 

Inhibins 

Inhibins are heterodimeric protein hormones that consist of two covalently, 

disulfide linked α (18 kDa) and ß (14 kDa) subunits.  The ß subunit exists in two forms, 

ßA and ßB, where inhibin A consists of an α-subunit and ßA subunit, and inhibin B 

comprises an α-subunit and ßB subunit (Miyamoto et al., 1985; Robertson et al., 1985).  

Several inactive α subunits circulate as inert monomers, but only the dimeric forms of 

inhibin are biologically active (Burger, 1993).  Primarily, inhibins regulate 

gametogenesis by inhibiting the production and/or secretion of follicle stimulating 

hormone from the anterior pituitary.  An understanding of the mechanisms behind inhibin 

signaling is limited, but inhibin may act by suppressing activin action, which stimulates 

rather than inhibits FSH secretion (Ling et al., 1986). 
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  Using specific assays that detect only dimeric inhibins, Anawalt et al. (1996) and 

Illingworth et al. (1996) demonstrated that inhibin B is the major circulating and most 

physiologically relevant inhibin in males; inhibin A has been undetectable in plasma of 

normal men.  Previous research suggests inhibin B as a potential marker for 

spermatogenesis and testicular function (Anawalt et al., 1996; Klingmüller and Haidl, 

1997; Kumanov et al., 2006), and inhibin B concentrations may reflect a degree of 

spermatogenic suppression or damage (Andersen et al., 1997).  The negative feedback 

regulation by inhibin B on FSH appears to coincide with puberty and the maturation of 

the hypothalamic-pituitary-testis axis (Stewart and Turner, 2005), and an inverse 

relationship generally exists between circulating inhibin B and FSH levels in both normal 

men and those with varying degrees of testicular dysfunction (Anawalt et al., 1996; 

Illingworth et al., 1996).  Other studies have shown that post-pubertal inhibin B 

production is directly proportional to the “amount” of spermatogenic activity and is 

correlated to sperm concentration (Pierik et al., 1998). 

Profiles of circulating inhibin B levels in male humans are low but detectable 

throughout childhood, until the onset of puberty when inhibin B increases to relatively 

stable adult concentrations (Andersson et al., 1997; Byrd et al., 1998).  Several studies 

have described a relationship between inhibin B peaks and the proliferation and number 

of Sertoli cells in both humans and rats (Cortes et al., 1987; Sharpe et al., 1999; Buzzard 

et al., 2004), and the stimulatory effect of FSH on inhibin B is the predominant control 

when Sertoli cells proliferate (Cortes et al., 1987). 

Similar to males, inhibin in females is regulated by FSH stimulation, which 

induces proliferation and differentiation of granulosa cells from mammalian follicles, but 



 

17 

the role of inhibin secretion in FSH regulation and follicular development has yet to be 

clarified (Welt et al., 2002).  Both dimeric inhibins are produced and detectable in female 

serum and exhibit unique patterns during the menstrual cycle.  Inhibin B increases during 

the luteal-follicular transition, with peaks in the mid-follicular phase and again at 

ovulation, whereas inhibin A is synthesized during the late follicular phase, peaking 

during mid-luteal phase (Groome et al., 1994, 1996; Welt et al., 1997).  The dominant 

follicle (during estrus) suppresses the development of neighboring small follicles by 

increased secretion of inhibin into blood vessels (Gibbons et al., 1997).  The use of both 

inhibins as markers of follicular development is a well-accepted and established practice.  

 

Toxicant Interactions and Biomarkers 

Endocrine disrupting compounds (including PCBs and OCPs) may damage the 

health of wildlife by interacting with the endocrine system and are known to be 

estrogenic.  Endocrine disruptors can mimic steroid sex hormones by binding to hormone 

receptors, influencing cell pathways, or by blocking hormonal binding to receptors, 

therefore affecting reproductive function (Fossi and Marsili, 2003).  So, how might AMH 

and inhibin secretion by the Sertoli cells and ovarian granulosa cells be affected by a 

toxicant?   

As previously discussed, Sertoli cells play a crucial role in spermatogenesis, and 

their proliferation is mostly stimulated by FSH.  Exposure to xenoestrogens can lead to 

FSH suppression and, therefore, reduce the rate of Sertoli cell proliferation (Sharpe et al., 

1995).  Various toxicants are known to affect Sertoli cells, including chemotherapeutics 

(Wallace et al., 1989), plasticizers (Thomas et al., 1979), and pesticides, such as DDT 
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(Hodgson and Levi, 1996).  Toxicants may cause Sertoli cell disruption by altering germ 

cell attachment or disturbing apical cytoskeletal transport, which can ultimately lead to 

germ cell loss and disruption of seminiferous epithelium (Monsees et al., 2000).  It is also 

known that toxin exposure to antimetabolites can inflict morphological changes in Sertoli 

cells and cause direct cytotoxicity of germ cells during spermatogenesis (Takizawa and 

Horii, 2002).  On the other hand, endocrine disruptors have been shown to affect adult 

ovarian morphology, female fertility, and inhibit folliculogenesis (Uzumcu et al., 2006).  

Exposure to chlorinated pesticides has caused irregular estrous cycle, inhibited ovarian 

development, and reduced fecundity in rats (Chapin et al., 1997).  

The influences of anthropogenic stressors have been difficult to assess in marine 

mammals, given the complex logistics and legal limitations imposed on experimental 

studies for protected species.  Diagnostic biomarkers, substances used to indicate normal 

biologic processes, can be used to suggest anthropogenic impacts and are proposed as a 

prospective and developing field of study to complement more conventional ecologically-

based monitoring methods.  Many biomarker and bioassay responses are readily 

quantifiable and can form a basis of long-term observational series to determine change 

over time (Langston et al., 2007).  In addition, biomarkers strengthen our ability to detect 

the effects of various environmental stressors on the cellular and molecular processes that 

regulate organismal health (Reddy et al., 2001) and, ideally, allow for a correlation 

between causes and effects. 

Baseline studies are becoming increasingly important in view of the potential 

effects that a number of environmental pollutants might have on the endocrine system of 

marine mammals.  It is important to understand whether reproduction is being impaired, 
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especially for endangered and protected taxa.  Policy makers and managers need 

convincing evidence regarding the possible subeffects of environmental and 

anthropogenic stressors on fertility, so effective steps can be taken towards mitigating the 

potentially harmful stressors (O’Hara and O’Shea, 2005).  The utility of enhanced 

knowledge of reproductive capacity for assessing population status may lead to 

significant conservation applications. 
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OBJECTIVES AND STUDY DESIGN 

The specific objectives for the research were to: 

1.  Determine whether AMH, inhibin A, and inhibin B are detectable in bottlenose 

dolphin serum using ELISA techniques, 

2.  Describe AMH and inhibin concentrations in free-ranging dolphins and 

establish baselines for individuals of different gender, age, and maturity 

status, 

3.  Investigate whether AMH and/or inhibins can be utilized as reproductive 

biomarkers in bottlenose dolphins, 

4.  Examine how hormone trends might align with current knowledge of 

bottlenose dolphin reproductive biology, and 

5.  Explore the possibility of utilizing these hormones as a biomarker for the 

impacts of toxicants or other stressors on reproduction in dolphins through a 

comparison of populations that experience different stress levels. 

This research implemented a comparative study design, which included three 

bottlenose populations that may be affected by stressors, including contaminant burdens, 

associated with different geographic locations: Sarasota Bay, FL, Indian River Lagoon, 

FL, and southern Georgia.  Variations in POP patterns have been observed in the 

populations assessed in this study (see detailed description in Approach and Methods).  

Dolphins in our estuarine study sites exhibit high site fidelity as indicated by long-term 

photo-identification data (Scott et al., 1990; Wells and Scott, 1990; Mazzoil et al., 2005; 
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Balmer et al., 2011) and, therefore, contaminant body burdens in these animals should 

reflect the local habitat.  This research aimed to measure fertility hormone concentrations 

in serum from free-ranging bottlenose dolphins individuals of different gender, age, and 

maturity status during summer months (May-August) and peak breeding season, which 

presented a control for potential seasonal hormonal changes and even seasonal 

contaminant fluctuations (Kucklick et al., 2011).  This study represents the first report of 

AMH, inhibin A, and inhibin B detection in cetaceans and, in particular, the bottlenose 

dolphin.  The specific research questions for the study included: 

1. What are the relationships between AMH, inhibin A, and inhibin B hormone 

levels and gender, age, and body size?   Do hormone levels align with known 

reproductive biology and endocrinology of T. truncatus?  

2. Are there population differences in AMH and inhibin concentrations?  

3. Can any inferences be made about toxicant effects on hormone concentrations? 
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APPROACH AND METHODS 
 

Study Design and Populations 

Three bottlenose dolphin populations were targeted based on overall health 

condition and pollutant exposure: Sarasota Bay, FL (SRQ), Indian River Lagoon, FL 

(IRL), and the southern Georgia area (SGA).  Blood, blubber, and other biological 

samples were collected from free-ranging dolphins during annual health assessment 

studies being conducted by the Chicago Zoological Society’s Sarasota Dolphin Research 

Program (SDRP, NMFS Permit No. 522-1785), the Bottlenose Dolphin Health and 

Environmental Risk Assessment (HERA) Program (NMFS Permit No. 14352-01), and 

NOAA-sponsored dolphin health assessments (NMFS Permit No. 932-1905).  These 

multi-disciplinary programs aim to assess the population status, health, and long-term 

viability of dolphins residing in the associated coastal areas, while investigating 

associations between dolphin health and stressors (Wells et al., 2004; Fair et al., 2006). 

Sampling was conducted during the summer months and corresponded with the 

previously mentioned peak breeding and calving seasons for bottlenose dolphins in the 

Northwest Atlantic and the Gulf of Mexico.  

 

Sarasota Bay 

Sarasota Bay (27˚ N, 82˚ W), a high salinity estuary, extends ~40 km along the 

west central coast of Florida and receives limited freshwater inflow.  Stretches of barrier 

islands separate the estuary from the Gulf of Mexico (Figure 4).  In 1989, the US 
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Congress named Sarasota Bay an estuary of national significance (Sarasota Bay National 

Estuary Program, 1995).  The coastline in this region is densely populated, with medium 

to high suburban development and documented pollution stress (Sarasota Bay National 

Estuary Program, 1992; Sherblom et al., 1995; Lipp et al., 2001). 

The Sarasota Bay bottlenose dolphin community, likely the most extensively 

studied cetacean population in the world (over 40 years), is composed of ~160 

identifiable individuals from five generations of resident animals, many of known gender, 

age, reproductive status, and birth order (Scott et al., 1990; 2011, R. Wells, personal 

communication).  The Sarasota Dolphin Research Program has performed physical 

examinations, obtained body condition measurements, and collected blood samples since 

the mid-1980s (Wells et al., 2004).  The Sarasota Bay dolphins are considered to 

represent a healthy and stable population, with relatively low contaminant concentrations, 

in comparison to populations of the same species in other locations (Kucklick et al., 

2011), but the animals do experience occasional threats from disease and red tides (Scott 

et al., 1990; Wells et al., 2005).  

All contaminant concentrations referenced in this section were made on the basis 

of extractable lipids, i.e., lipid weight.  PCB concentrations, the predominant contaminant 

class measured in dolphin blubber samples, in Sarasota Bay dolphins fall toward the 

lower end of the documented range, compared to other populations in the U.S. Atlantic 

and Gulf of Mexico (Kucklick et al., 2011).  Yet, many individuals still exceeded the 

established threshold PCB level known to cause adverse health effects in some 

mammalian species (17,000 ng g-1; Kannan et al., 2000).  Yordy et al. (2010) documented 

∑61PCB concentrations (sum of 61 PCB congeners or congener pairs) in Sarasota Bay 
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adult males, adult females and juveniles at 61,300, 3,420 and 33,900 ng g-1, respectively.  

Chlordane (∑5CHL; sum of five chlordanes) levels were 21,200, 896, and 11,400 ng g-1 

in adult males, adult females and juveniles, respectively.  DDT (∑6DDT; sum of six 

DDTs) concentrations were 29,600, 952, and 16,600 ng g-1 in adult males, adult females, 

and in juveniles, respectively (Yordy et al., 2010). 

 

FIGURE 4.  Study sites in Sarasota Bay, FL, Indian River Lagoon, FL (between 
Titusville and Fort Pierce, FL), and southern Georgia (near Brunswick, GA). 
 
 

Indian River Lagoon 

The Indian River Lagoon system is a 250 km linear estuary located on the east 

central coast of Florida (Figure 4) and is composed of four distinct water bodies: 

Mosquito Lagoon, Indian River, Banana River, and the St. Lucie Estuary.  The shallow 

lagoon, connected to the Atlantic Ocean through five inlets and the Canaveral Lock, is 
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located near a rapidly growing urban and agricultural area.  The Indian River Lagoon was 

designated an estuary of national significance in 1990 and is the most biodiverse estuary 

in North America (Indian River Lagoon National Estuary Program, 2007).  Limited tidal 

exchange and slow flushing rates in the northern/central section create habitats that are 

susceptible to pollutant loading (Sigua et al., 2000).  Freshwater releases from Lake 

Okeechobee and runoff from agriculture watersheds affect water quality in the southern 

section (Sime, 2005) and introduce nutrients, metals, and pesticides (Woodward-Cycle 

Consultants, 1994).  

The Health and Environmental Risk Assessment Program initiated in 2003, and 

the dolphin health assessments operate from two field sites: Titusville, FL (28˚ N, 80˚ W) 

in the northern Indian River Lagoon and Fort Pierce, FL (27˚ N, 80˚ W) in the south.  

Dolphins in the Indian River are experiencing health problems including, but not limited 

to, morbillivirus infection (Bossart et al., 2010), lobomycosis, biotoxins, and acute gastric 

inflammation (Bossart, 2006).  The population size is approximately 1000 (Bossart et al., 

2010). 

Previous research by Fair et al. (2010) reported that many IRL adult male 

dolphins generally exceeded the established threshold PCB level known to cause adverse 

health effects (17,000 ng g-1; Kannan et al., 2000) by a 5-fold order of magnitude.  

∑73PCB concentrations were reported at 79,800 ng g-1, and the highest adult male 

concentration was 227,000 ng g-1 (Fair et al., 2010).  As expected, adult females and 

juveniles harbored lower PCB levels than adult males: 25,500 and 48,400 ng g-1, 

respectively.  Chlordane (∑6CHL) and DDT (∑6DDT) levels were 7,660 and 18,600 ng  
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g-1 in adult males, 1,490 and 4,600 ng g-1 in adult females, and 3,800 and 10,900 ng g-1 in 

juveniles (Fair et al., 2010). 

 

Southern Georgia 

The southern Georgia study area, comprising ~60 km of estuarine shoreline, 

ranges from Sapelo Sound southward to St. Simons Sound (31˚ N, 81˚ W; Figure 4).  The 

Georgia study area was divided into two sampling sites; (1) the Brunswick site, which 

included the Turtle/Brunswick River Estuary (TBRE) and all estuarine waters from St. 

Simons Sound north to Altamaha Sound, and (2) the Sapelo field site which encompassed 

waters near the Sapelo Island National Estuarine Research Reserve (NERR). 

The Turtle/Brunswick River Estuary is known for contamination by highly 

chlorinated (octa- through deca-chlorobiphenyl) PCBs associated with a rare mixture 

known as Aroclor 1268 (Kannan et al., 1997; Maruya and Lee, 1998).  The contamination 

in this estuary resulted from the use of Aroclor 1268 by a chlor-alkali plant in Brunswick, 

GA (USA) from 1955 to 1994, which led to its designation of a National Priority List site 

(i.e., Superfund) in 1996 (Kannan et al., 1997).  Extremely high PCB concentrations, in 

some cases 2,900 ppm (mg kg-1 lipid weight), have been documented in bottlenose 

dolphins along Georgia’s southern coast (Pulster et al., 2009; Balmer et al., 2011).   

A recent study by Balmer et al. (2011) measured POP concentrations for the same 

Georgia dolphins captured and sampled for our research.  The study compared 

concentrations in Brunswick and Sapelo dolphins separately, as the Turtle/Brunswick 

River Estuary area is known for specific contamination of Aroclor 1268.  ∑54PCB 

concentrations in Brunswick males (509,960 ng g-1) were significantly higher than Sapelo 
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males (115,730 ng g-1), and the proportion of Aroclor 1268 was relatively high at both 

sites (77%, Brunswick; 60%, Sapelo).  Female body burdens were generally lower, with 

∑54PCB levels of 116,470 ng g-1 in Brunswick and 48,270 ng g-1 in Sapelo.  ∑6CHL in 

males was 6,300 and 3,830 ng  g-1, and ∑5DDT was 36,770 and 20,490 ng g-1 in 

Brunswick and Sapelo, respectively.  ∑6CHL in females was 630 and 1,310 ng g-1, and 

∑5DDT was 52,450 and 10,030 ng g-1 in Brunswick and Sapelo, respectively.  In addition 

to contaminant exposure, the southern Georgia dolphins suffer from anemia, reduced 

thyroid hormone levels, and increased susceptibility to infectious disease (demonstrated 

by decreased T-lymphocyte indices of innate immunity; Schwacke et al., 2011).   

 

Sample Collection 

Techniques used for the dolphin health assessments are described by Wells et al. 

(2004), Fair et al. (2006), and Schwacke et al. (2011).  Briefly, small groups of dolphins 

were encircled with a seine net in shallow water.  Within the first 10 min of initial 

restraint in the water, blood was collected by venipuncture of the ventral fluke vessels 

with a 19-gauge, 1.9 cm, butterfly catheter into either Vacutainer Serum Separator Tubes 

(Sarasota Bay and Georgia) or green-top lithium heparin Vacutainer tubes (Indian River).  

The dolphins were then transported to a processing vessel for veterinary examination and 

further sample collection.  Either serum or lithium heparin plasma are recommended for 

the assays performed (Beckman Coulter, 2008).  In the field, blood samples were placed 

on ice immediately after collection.  Upon return to the laboratory, blood tubes were 

centrifuged (5 min at 3,000 rpm), and serum was transferred to sterile cryogenic vials and 
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frozen at -80º C until analyzed.  Prior to analysis, samples were vortexed and divided into 

aliquots (~300 µL) to avoid repeated freezing and thawing of serum.   

Sterile, solvent-rinsed instruments were used to surgically remove a full depth 

blubber biopsy (3 cm x 5 cm x 2 cm) from a site approximately 10 cm caudal to the 

dorsal fin and 10 cm ventral to the dorsal ridge.  Lidocaine hydrochloride and 

epinephrine were administered for local anesthesia, and the site was pre-cleaned with a 

chlorhexiderm then methanol scrub, followed by a methanol rinse.  The blubber wedge 

was sub-sampled for various studies, then placed in Teflon vials and stored in liquid 

nitrogen until frozen at -80º C.   

 

Age Class Determination 

 For selected individuals of unknown age, a single tooth was extracted under local 

anesthesia, and Dolphin Health Assessment Programs determined age through 

examination of growth layer groups in teeth (Hohn et al., 1989).  Generally, bottlenose 

dolphins are considered sexually mature between 5-12 years or >220 cm for females and 

10-13 years for males or >240 cm (Mead and Potter, 1990; Wells and Scott, 1999; McFee 

and Hopkins-Murphy, 2002). 

 When available, age was used primarily to categorize juveniles and adults; body 

length was utilized as a secondary index of sexual maturity.  It is important to note that 

onset of sexual maturity in bottlenose dolphins can vary among populations in different 

geographic locations, but for the purposes of this study, females >8 years or ≥220 cm and 

males >10 years or ≥240 cm were classified as adults.  
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ELISA Analysis 

AMH, inhibin A, and inhibin B concentrations were measured in serum and 

plasma with an automated ELISA instrument (Dynex DS2, Dynex Technologies, 

Chantilly, VA).  The ELISAs performed were enzymatically amplified multi-site 

sandwich assays (Beckman Coulter, Inc., Brea, CA) and were programmed individually 

in the DS-Matrix software (Dynex Technologies) according to the manufacturer’s 

instructions.  In all assays, calibrators, controls, and samples were run in duplicate and 

accepted precision (expressed as coefficient of variation [%CV]) was <15%.  All 

incubations were performed with linear microplate shaking (600 - 800 rpm) at ambient 

temperature (~25˚ C).   

For the AMH assay, 20 µL of calibrators, low and high controls, and serum 

samples were incubated with 100 µL of the AMH Gen II assay buffer in microtitration 

wells coated with anti-AMH IgG antibody.  Seven calibrators with AMH concentrations 

of approximately 0, 0.16, 0.4, 1.2, 4.0, 10, and 22.5 ng mL-1 were utilized.  Following the 

first incubation (60 min), a five-cycle washing step was used.  Each cycle comprised an 

aspiration and wash with 400 µL of a wash solution, followed by a final aspiration.  Next, 

the wells were treated with an anti-AMH detection antibody (100 µL) labeled with biotin.  

After a second incubation (60 min) and washing cycle (as described above), the wells 

were incubated with 100 µL of streptavidin-horseradish peroxidase (HRP).  A third 

incubation (30 min) and washing step were employed, and then 100 µL of the substrate 

tetramethylbenzidine (TMB) was added to the wells.  A short incubation (8 - 12 min) 

occurred, during which the colorimetric change was visually observed to optimize the 
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incubation time.  Finally, an acidic stopping solution (100 µL; 0.2 M H2SO4) stopped the 

color formation. 

The highly characterized dual monoclonal antibody pair used in the AMH assay 

bind only to the mature region of AMH and do not detect inhibin A or B, activin A, 

follicle stimulating hormone, or luteinizing hormone.  The assay sensitivity, or limit of 

detection (LOD), for the AMH Gen II assay was 0.8 ng mL-1 (Beckman Coulter Inc., 

2009). 

Variations in the inhibin A method were as follows: 50 µL of calibrators, low and 

high controls, and serum samples were incubated with 50 µL of the inhibin A sample 

buffer A and 50 µL of the sample buffer B in microtitration wells coated with anti-inhibin 

ßA subunit antibody.  Seven calibrators with inhibin A concentrations of 0, 9.5, 26, 92, 

211, 423, and 781 pg mL-1 were utilized.  Following an incubation (3 hr) and six-cycle 

washing step (with 350 µL of wash solution), the wells were treated with an anti-inhibin 

α-subunit detection antibody (100 µL) labeled with the enzyme HRP that was freshly 

diluted 10 min prior to use.  After the second incubation (60 min) and washing, 100 µL of 

tetramethylbenzidine was dispensed into each well, followed by a third incubation (15 

min) and washing cycle.  Lastly, the stopping solution ended the colorimetric change. 

The ACTIVE Inhibin A ELISA kit is highly specific for inhibin A.  Minimal 

cross-reactivity was measured against other hormones: 1) Inhibin B at 1 µg mL-1 = 

0.012% cross-reactivity; 2) Activin A at 1 µg mL-1 = 0.002%; and 3) Activin B at 1 µg 

mL-1 = 0.001%.  The assay sensitivity was 1.0 pg mL-1 (Beckman Coulter Inc., 2008). 

For the inhibin B assay, 50 µL of calibrators, low and high controls, and serum 

samples were incubated with 50 µL of the inhibin B Gen II assay buffer in microtitration 
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wells coated with anti-Activin B antibody.  Six calibrators with inhibin B concentrations 

of approximately 0, 5, 10, 30, 100, and 250 pg mL-1 were utilized.  Following a shaker-

incubation (2 hr) and five-cycle washing step, the wells were incubated (60 min) with a 

biotinylated anti-inhibin α-subunit detection antibody (100 µL), which was freshly 

diluted 10 min prior to use.  After the washing cycle, 100 µL of the streptavidin-enzyme 

conjugate was added to each well, followed by incubation (30 min) and washing.  TMB 

(100 µL) was dispensed into each well, followed by a third incubation (8 - 12 min) and 

washing cycle.  The colorimetric change was visually observed, and the stopping solution 

ended the reaction. 

The Inhibin B Gen II ELISA kit used a highly characterized antibody pair that 

measured 100% inhibin B in human, monkey, and rat.  Inhibin A, activin A, activin B, 

AMH, follicle stimulating hormone, and luteinizing hormone were tested as potential 

cross reactants and found non-detectable.  The limit of detection was 2.6 pg mL-1 

(Beckman Coulter Inc., 2010). 

In all assays, the absorbance in each well was measured within five minutes of the 

reaction termination.  The degree of enzymatic turnover of the substrate was determined 

on a plate reader by dual wavelength absorbance measurement at 450 nm (primary test 

filter) and 620 nm (primary reference filter).  The absorbance measured was directly 

proportional to the concentration of hormone present.  Calibrators were used to plot a 

log-log linear regression calibration curve of optical density versus hormone 

concentration.  The absorbance measured was directly proportional to the hormone 

concentration present in the sera. 
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 Upon arrival, calibrators and controls were divided into appropriate aliquots 

(~200 µL) and frozen at -20˚ C.  To preserve stability, individual aliquots were thawed 

for use only once.  Prior to assay initiation, all calibrators, controls, reagents, and samples 

were mixed by either gentle inversion or vortexed, then brought to room temperature.  

Due to high AMH concentrations in male Tursiops, samples were typically diluted 1:80, 

but in some cases, 1:100 or 1:120 dilutions were necessary.  Trial dilutions performed at 

1:20, 1:40, and 1:60 over-saturated the plate reader.  In all assays, any sample reading 

above the highest calibrator was appropriately diluted and reassayed. 

 Reproducibility was determined for all three ELISAs using five Tursiops serum 

pools.  These samples were run in duplicate in two assay runs on different days, using 

two reagent lots, and the precision was measured for between-run variability.  The AMH 

inter-assay variability calculated on the five samples was 1.1, 7.4, 1.1, 1.3, and 2.9%.  For 

inhibin A, the imprecision was 5.0, 6.6, 0.1, 2.4, and 1.8%, and for inhibin B, 5.7, 6.9, 

4.2, 4.3, and 1.5%.  The percent coefficient of variation was calculated as follows: 

%Coefficient of Variation = Standard deviation of means of duplicates * 100   
          Grand mean of duplicates  
 
 
 

Contaminant Analysis 
 

 Organic pollutant analysis was performed at Mote Marine Laboratory in Sarasota, 

FL.  Blubber samples were collected from 10 Sarasota Bay dolphins.  Individual blubber 

samples (~1 g) were weighed, macerated, then homogenized with diatomaceous earth and 

added to a 66-mL stainless steel accelerated solvent extraction (ASE) cell along with the 

appropriate internal standards.  Using pressurized fluid extraction (PFE), the samples 

were extracted with methylene chloride for three sequential cycles at 100° C and 2000 psi 
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on an ASE 300 (Dionex Corporation, Sunnyvale, CA, USA).  The extracts (~80 mL) 

were reduced to ~1-2 mL using a RapidVap (Labconco Corp., Kansas City, MO, USA), 

then reduced to dryness under purified N2 in pre-cleaned and pre-weighed scintillation 

vials.  Lipid content was determined gravimetrically, and sample extracts were 

reconstituted in 5 mL of hexane.  Lipid removal and sample clean up was performed on a 

multi-column clean up system (Automated Power-Prep System, Fluid Management 

Systems, Watertown, MA, USA).  Targeted analytes were eluted with 50% CH2Cl2 / 

hexane (v/v) through a high capacity acidic silica column (30 g), an ABN (acidic basic 

neutral) silica column (11 g), and an alumina column (11 g) in tandem.  The eluted 

fraction containing compounds of interest was collected and reduced to dryness under 

nitrogen; samples were reconstituted in 200 µL of hexane. 

From this extract (1 µL injection volume), polychlorinated biphenyls (PCBs) and 

polybrominated diphenyl ethers (PBDEs) were analyzed using gas chromatography/mass 

spectrometry (GC/MS; Agilent 7890A/5975C; Agilent Technologies, Inc., Andover, MA, 

USA).  Analyte separation was achieved on a ZB-5MS capillary column (30 m x 0.25 µm 

film thickness x 0.25 mm i.d.; Phenomenex, Torrance, CA, USA) with ultrahigh-purity 

helium as the carrier gas (1 mL min-1).  PCBs were quantified in electron impact selective 

ion-monitoring mode (EI-SIM), and the injector (splitless mode) and transfer line 

temperatures were 280° C.  The oven temperature program was as follows:  60° C (0.55 

min hold), then 72.98° C/min increase to 110° C (1.1 min hold), and then 9.12°C min-1 

increase to 325° C (9.87 min hold) for a total run time of 35.78 min.  The source and 

quadrapole temperatures were 230° C and 150° C, respectively.  PBDEs were identified 

in negative chemical ionization (NCI-SIM) mode with methane as the moderator gas.  
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The GC oven was programmed for PBDE detection as follows: 125 º C (1 min hold) and 

increased to 325º C at 17 ºC min-1 (10 min hold) for a total run time of 22.8 min.  The 

source and quadrapole temperatures were 150° C.   

Concentrations were calculated from the slope and y-intercept generated by a 

seven-point linear calibration curve.  Since only 30 of the 60 PCB congeners were 

detected and quantified in the dolphin blubber, total PCB concentration (∑PCB) in 

blubber was represented as the sum of the 30 detectable congeners, which included: 

28/31, 52, 66, 74, 85, 95, 99, 101, 105/152, 118, 128/167, 137, 138, 146, 149, 151, 153, 

170, 174, 177, 178, 180, 183, 187, 194, 195, 196/203, 200, 206, and 209.  Only five of 

the seven PBDE congeners were detected, therefore total PBDE concentration (∑PBDE) 

was represented as the sum of the five congeners: 47, 99, 100, 153, and 154. 

A performance-based quality-assurance and quality control program, which 

included the parallel analysis of procedural blanks, matrix spikes, and Standard 

Reference Materials (SRM 1945; organics in whale blubber from the National Institute of 

Standards and Technology [NIST]), was implemented to ensure data of the highest 

quality.  The GC response was monitored every 10 to 12 samples with product check 

standards.  Procedural blanks were clear of targeted analytes.  Individual and standard 

mixtures of PCBs and PBDEs were purchased from AccuStandard (New Haven, CT, 

USA).  PBDE concentrations determined in SRM 1945 averaged within 10% (92 ± 12%) 

of the certified values.  Mean recovery of dibromooctofluorobiphenyl (DBOFB) was 90 ± 

7%, and mean recoveries for dolphin blubber spiked with 24 PCB congeners (PCB B) 

and 7 PBDE congeners (PDBE mix) were 97 ± 15% and 93 ± 7, respectively.  Mean 
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recovery of BDE (brominated diphenyl ether) 71 and BDE 172 were 81 ± 11% and 62 ± 

14%, respectively. 

 The method of detection limit (MDL) is defined as the mass of the analyte in the 

lowest detectable calibration solution multiplied by the extract volume and divided by the 

sample mass.  All mass spectral data were compared to spectra produced by authentic 

standards and to previously published library spectra. 

 

Statistical Analysis 

 Concentrations were expressed as ng mL-1 for AMH, pg mL-1 for inhibin A and 

inhibin B, and ng g-1 for contaminants.  Shapiro-Wilk normality tests were performed, 

and data were log transformed when appropriate to meet assumptions of normality.  For 

all tests, α = 0.05.  Statistical differences between hormone concentrations and gender, 

age class, and location were assessed by a series of Student’s t-test or Mann-Whitney-

Wilcoxon (for two categories) and by analysis of variance (ANOVA), Kruskall Wallis 

analysis of variance, or analysis of covariance (ANCOVA) for greater than two 

categories within and among populations.  If significant, pairwise comparisons were 

performed using Tukey’s Honestly Significant Difference (HSD) test.  Linear regression 

analyses examined functional relationships between hormone levels and age and various 

morphometrics (i.e., body length, body weight, and maximum girth), and regression plots 

utilized least square regression equations.  Given the error in x and y variables in this 

biological data set, the geometric mean and 95% confidence limits (CL) were calculated 

and reported for geometric mean regression equations (Ricker, 1973; Laws and Archie, 

1981; McArdle, 1987).  In addition, the predictive relationship between age and body 
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length were assessed.  Data were analyzed using IBM SPSS software (version 19.0; 

SPSS, Inc., Chicago, IL).   
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RESULTS 
 

Comparison of Sample Size, Age and Morphometrics 
 

Serum samples were collected from 129 individual dolphins during spring and 

summer (May, June, and August) of 2009-2011 (41 SRQ; 52 IRL; 26 SGA).  Ages were 

available for only 57% of the individuals sampled, and dolphin demographic and 

morphometric data are provided in Table 1.  In the absence of age data, body length was 

used to infer individual maturity status (juvenile or adult).  Student’s t-tests indicated that 

there was a significant decreasing trend in adult body lengths of both sexes across 

populations, where Sarasota Bay > Indian River Lagoon > Georgia (Table 1).   

 
TABLE 1.  Sample demographics in bottlenose dolphins (Tursiops truncatus) from 
Sarasota Bay, Indian River Lagoon, and southern Georgia. Age, length, and weight 
values are means for each category (mean ± SD). Significant p-values (p ≤ 0.05) of 
comparison of serum concentrations between locations are indicated in bold 
 

Location Category n Age (years) Length (cm) Weight (kg) 
Juvenile male 10 3.6 ± 1.8 208.9 ± 14.3 105.4 ± 25.5 

Adult male 9 18.9 ± 5.9 261.2a ± 8.1 231.6 ± 33.1 
Juvenile female 6 3.7 ± 1.9 207.2 ± 25.3 104.0 ± 35.7 

Sarasota 
 Bay 

Adult female 16 18.0 ± 10.7 242.9b ± 12.0 167.7 ± 24.7 
Juvenile male 17 8.4 ± 2.0 212.3 ± 25.9 118.9 ± 21.2 

Adult male 19 19.0 ± 2.6 257.4c ± 14.4 183.9 ± 28.0 
Juvenile female 0 - - - 

Indian 
 River 

Adult female 9 10.8 ± 0.4 239.0 ± 11.6 137.2 ± 21.0 
Juvenile male 0 - - - 

Adult male 13 19.3 ± 6.6 244.0a,c ± 9.7 - 
Juvenile female 2 - 203.0 ± 21.2 - 

Southern 
Georgia 

Adult female 11 24.3 ± 11.1 230.4b ± 11.6 - 
a Student’s t-test comparing Sarasota and Georgia adult male body lengths (p < 0.001) 
b Student’s t-test comparing Sarasota and Georgia adult female body lengths (p =  0.01) 
c Student’s t-test comparing Indian River and Georgia adult male body lengths (p = 0.01) 
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Linear regression analyses were performed to assess the predictive relationship 

between age and body length in males in all populations (Table 2).  For females, 

regressions were performed only in Sarasota Bay, as the minimal age data available for 

females in Indian River Lagoon and Georgia restricted the sample size.  All regression 

analyses resulted in statistically significant relationships between age and body length. 

 
TABLE 2. Model II linear regression analyses of predictive relationships between age 
and body length in both sexes in Sarasota Bay, Indian River Lagoon, and southern 
Georgia. All relationships were statistically significant (p ≤ 0.002) 

 
Males Sarasota Bay Indian River Southern Georgia 

Regression Equation y = 0.304x – 59.9 y = 0.237x – 42.9 y = 0.676x – 145.1 
n 17 12 9 
r2 0.737 0.650 0.613 

95% Confidence Limit 0.236 – 0.406 0.139 – 0.335 0.3 – 1.05 
Females  

Regression Equation y = 0.486x – 98.6 - - 
n 19 2 4 
r2 0.436 - - 

95% Confidence Limit 0.3 – 0.672 - - 
 

Anti-Müllerian Hormone 

 AMH levels were significantly different (p < 0.001) between males and females 

in all locations.  In Sarasota Bay, AMH ranged from 513 - 2,080 ng mL-1 (1,341 ± 409 ng 

mL-1; mean ± SD) in males (Table 3) and from 0 - 5.4 ng mL-1 (1.6 ± 1.5 ng mL-1) in 

females (Table 5).  The Indian River Lagoon ranges were 359 - 1,851 ng mL-1 (1,128 ± 

370 ng mL-1) and 0.18 - 2.64 (0.97 ± 0.86 ng mL-1) in males and females, respectively, 

and the Georgia AMH concentrations ranged from 65.2 - 1,185 (805 ± 397 ng mL-1) in 

males and from 0.9 - 1.35 (0.45 ± 0.33 ng mL-1) in females.  

 Male AMH levels showed a decrease with age, and comparisons of juvenile and 

adult AMH concentrations were significantly different in Sarasota Bay (p = 0.01) and 
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Indian River (p < 0.01, Table 3).  Linear regression analyses were performed to identify 

predictive relationships between AMH concentrations and age, body length, body weight, 

and maximum girth.  In all populations, the regressions showed a significant relationship 

between male AMH levels and the selected morphometrics, whereby AMH exhibited a 

negative relationship with age (Figure 5), body length (Figure 6), body weight, and 

maximum girth (Table 4). 

 The coefficients of determination (r2) were greatest for the relationships between 

AMH levels and age in all populations (Table 4).  When comparing relationships between 

male AMH levels and age across populations, a separation of regression lines was not 

apparent (Figure 5), and the geometric mean regression slopes varied (Table 4).  An 

ANCOVA was performed to look at differences in male AMH concentrations among 

populations after removing the variance of age, and no statistical difference was observed 

in the unbiased means among populations.  Since body length is commonly used to infer 

maturity status, relationships between male AMH levels and body length were assessed 

across populations (Figure 6).  A separation of Sarasota Bay and Indian River Lagoon 

regression lines was observed, and the slopes of these two populations differed greatly 

from Georgia (Table 4).  ANCOVA results showed a significant difference in male AMH 

levels across populations while controlling for body length (p < 0.01).  However, the 

estimated mean for the Georgia population did not include juveniles. 

 Since samples from Georgia included only adult males, an additional set of 

regressions was performed to assess the relationships between adult male AMH levels 

and either age or body length in all three populations.  For age, the functional relationship 

was not significant in Sarasota Bay (r2 = 0.417, p > 0.05, n = 7), but was significant in 
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Indian River (r2 = 0.756, p = 0.01, n = 8) and Georgia (r2 = 0.926, p < 0.01, n = 7, Figure 

7).  The regressions between adult male AMH and body length showed no significant 

relationships in Sarasota Bay and Indian River (r2 = 0.030, p > 0.05 and r2 = 0.066, p > 

0.05, respectively), whereas the relationship in Georgia was significant and explained a 

greater percentage of the variation (r2 = 0.427, p < 0.01, Figure 8).  ANCOVA results 

showed no significant difference in male adult AMH levels across populations while 

controlling for body length (p > 0.05).   

 
TABLE 3.  Mean (range) serum anti-Müllerian hormone (AMH), inhibin B, and inhibin 
A concentrations in male bottlenose dolphins from Sarasota Bay, Indian River Lagoon, 
and southern Georgia. Significant p-values (p ≤ 0.05) of comparison of serum 
concentrations between locations are indicated in bold 
 

Location Category 
(Males) 

AMH  
(ng mL-1) 

Inhibin B  
(pg mL-1) 

Inhibin A 
(pg mL-1) 

Juveniles 1589a (1122-2080) 7.1 (2.9-13.7) 30c (4.1-113) Sarasota 
 Bay Adults 1030a (513-1397) 5.7 (4.0-6.9) 45 (7.7-84.1) 

Juveniles 1399b (875-1851) 10.7 (3.9-46.6) 52.8c (15.4-184) Indian 
 River Adults 850b (359-1198) 8.6 (2.7-25.0) 34.0d (16.5-72.6) 

Juveniles - - - Southern 
Georgia Adults 805 (65-1184) 17.4 (4.0-74.4) 21.2d (7.4-60) 

a Student’s t-test comparing Sarasota Bay juveniles and adults (p =  0.01) 
b Student’s t-test comparing Indian River juveniles and adults (p = 0.00) 
c Mann-Whitney comparing Sarasota Bay and Indian River juveniles (p = 0.02) 
d Mann-Whitney comparing Indian River and Georgia adult  (p = 0.02) 
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TABLE 4. Model II linear regression analyses relating anti-Müllerian hormone (AMH) 
concentrations and selected morphometrics in male bottlenose dolphins. All relationships 
were statistically significant (p ≤ 0.02) 
 

AMH vs. Age Sarasota Bay Indian River Southern Georgia 
Regression Equation y = -46.2x – 1827.6 y = -57.8x – 2034.9 y = -74.3x – 2393.5 

n 17 12 7 
r2 0.604 0.683 0.926 

95% Confidence Limit -62.2 – -30.2 -80.7 – -34.9 -97.5 – -51.1 
AMH vs. Body length  
Regression Equation y = -14.1x – 4617.2 y = -13.6x – 4377.7 y = -49.9x – 13089.1 

n 18 33 11 
r2 0.485 0.414 0.427 

95% Confidence Limit -19.5 – -8.76 -17.4 – -9.8 -78.4 – -21.4 
AMH vs. Body weight    
Regression Equation y = -5.86x – 2281.5 y = -8.81x –2471.5 - 

n 18 29 - 
r2 0.517 0.51 - 

95% Confidence Limit -8.0 – -3.7 -11.2 – -6.4 - 
AMH vs. Max girth    
Regression Equation y = -19.9x – 3911.1 y = -33.7x – 5090.0 - 

n 18 29 - 
r2 0.530 0.414 - 

95% Confidence Limit -27.1 – -12.66 -43.9 – -23.5 - 
 

 

FIGURE 5.  Relationship between anti-Müllerian hormone (AMH) and age in free-
ranging male bottlenose dolphins (Tursiops truncatus) from all study populations.  = 
Sarasota Bay (SRQ),  = Indian River Lagoon (IRL), and X = Georgia (SGA). 
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FIGURE 6.  Relationships between anti-Mullerian hormone (AMH) and body length in 
male bottlenose dolphins from all study populations.  = Sarasota Bay (SRQ),  = 
Indian River Lagoon (IRL), and X = Georgia (SGA). 
 
 
 

 

FIGURE 7.  Relationships between anti-Müllerian hormone (AMH) and age in adult 
male bottlenose dolphins from all study populations.  = Sarasota Bay (SRQ),  = 
Indian River Lagoon (IRL), and X = Georgia (SGA). 
 



 

43 

 

FIGURE 8.  Relationships between anti-Müllerian hormone (AMH) and body length in 
adult male bottlenose dolphins in all study populations.  = Sarasota Bay (SRQ),  = 
Indian River Lagoon (IRL), and X = Georgia (SGA). 
 
 Mean AMH concentrations were compared among populations for both male 

juveniles and adults.  The comparison between Sarasota Bay and Indian River juveniles 

showed no statistical difference (p > 0.05); no juveniles were available for comparison in 

Georgia.  No statistically significant differences in the mean adult AMH concentrations 

were found among or between populations (p > 0.05). 

 The relationships between female AMH levels and certain morphometrics were 

not as clear.  In Sarasota Bay, a significant relationship was observed between AMH and 

maximum girth (p = 0.05), but no significant relationships were observed between AMH 

and age, body length or body weight.  In the other two populations, no significant 

relationship was found between AMH levels and any selected morphometric. 

 Unlike in males, female AMH concentrations were not significantly different 

between juveniles and adults in any population (Table 5).  However, comparisons of the 
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different age classes among locations resulted in significant findings.  Juvenile mean 

AMH concentrations in females were significantly different between Sarasota Bay and 

Georgia (p = 0.04); no juveniles were available for comparison in Indian River.  In 

addition, a statistically significant difference was found in the mean adult female AMH 

concentrations among all populations (p = 0.04), and AMH was significantly different 

between Sarasota Bay and Georgia (p = 0.04, Figure 9). 

 
 
TABLE 5.  Mean (range) serum anti-Müllerian hormone (AMH), inhibin B, and inhibin 
A concentrations in female bottlenose dolphins from Sarasota Bay, Indian River Lagoon, 
and southern Georgia. Significant p-values (p < 0.05) are indicated in bold 
 

Location Category 
(Females) 

AMH  
(ng mL-1) 

Inhibin B  
(pg mL-1) 

Inhibin A 
(pg mL-1) 

Juveniles 2.01a (0.6-2.9) 10.8 (5.5-19.2) 35.3 (8.5-128) Sarasota 
 Bay Adults 1.5b (0-5.4) 10.7c (2.7-60) 27.8 (3.7-102) 

Juveniles - - - Indian 
 River Adults 1.04 (0.18-2.6) 18.6c (3.6-60.9) 26.5 (9.9-72.5) 

Juveniles 0.38a (0.33-0.42) 8.3 (6.0-10.6) 34.1 (22.9-45.3) Southern 
Georgia Adults 0.46b (0.09-1.35) 9.8 (4.7-26.0) 24.3 (7.9-44.9) 

a Student’s t-test comparing Sarasota Bay and Georgia juveniles (p = 0.04) 
b Tukey’s HSD pairwise comparison of Sarasota Bay and Georgia adults (p = 0.04) 
c Mann-Whitney comparing Sarasota Bay and Indian River Lagoon adults (p = 0.03) 
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FIGURE 9.  Plot of anti-Müllerian hormone (AMH) and body length in adult female 
bottlenose dolphins in all study populations.  = Sarasota Bay (SRQ),  = Indian River 
Lagoon (IRL), and X = Georgia (SGA). No relationships were statistically significant (p 
> 0.05). 

 

Inhibins 

 Inhibin B levels between juveniles and adults were not significantly different 

within sexes in any location.  In Sarasota Bay, inhibin B ranged from 2.9 -13.7 pg mL-1 

(6.4 ± 3.0 pg mL-1) in males and from 2.7 - 59.9 pg mL-1 (10.7 ± 12.7 pg mL-1) in 

females.  The Indian River ranges were 2.7 - 46.6 pg mL-1 (9.9 ± 8.9 pg mL-1) and 2.6 -

60.9 pg mL-1 (15.6 ± 17.9 pg mL-1) in males and females, respectively, and the Georgia 

inhibin B concentrations ranged from 4.0 - 74.4 pg mL-1 (17.4 ± 20.7 pg mL-1) in males 

and from 4.7 - 26.0 pg mL-1 (9.6 ± 7.2 pg mL-1) in females.  In order to minimize 

skewing, outliers were not included in means or comparisons, as discussed in detail in the 

Discussion. 
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 Comparison of the different age classes among sexes showed no significant 

difference in inhibin B in Sarasota Bay or Georgia, but adult male (8.6 pg mL-1) and 

female (15.6 pg mL-1) inhibin B concentrations were significantly different in Indian 

River (p = 0.03).  Inhibin B means were then compared among populations for both sexes 

and age classes.  No significant differences were observed among juveniles for either sex, 

and inhibin B levels in male adults were not statistically different among or between 

populations (p > 0.05).  However, a Mann-Whitney-Wilcoxon test comparing females 

found significantly different mean inhibin B levels between Sarasota Bay and Indian 

River (p = 0.03, Table 5).   

 Inconsistent trends were observed from linear regression analysis used to define 

functional or predictive relationships between inhibin B concentrations and age, body 

length, body weight, and maximum girth.  In males, no significant relationships were 

found between inhibin B levels and the selected morphometrics in any population (Figure 

10, showing body length).  Opposite, but non-significant, relationships were observed in 

females between inhibin B and body length, where the relationship was positive in Indian 

River and negative in Georgia (IRL: r2 = 0.378, p > 0.05, n = 9; SGA: r2 = 0.216, p > 

0.05, n = 13).   

 Inhibin A means were higher than those for inhibin B when comparing similar sex 

and age classes (Tables 3 and 5).  In Sarasota Bay, inhibin A ranged from 4.1 - 113.7 pg 

mL-1 (37.5 ± 34.9 pg mL-1) in males and from 3.7 - 128.4 pg mL-1 (30.0 ± 34.3 pg mL-1) 

in females.  The Indian River ranges were 15.4 - 183.7 pg mL-1 (42.9 ± 38.5 pg mL-1) and 

9.9 -72.5 pg mL-1 (26.5 ± 19.1 pg mL-1) in males and females, respectively, and the 
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Georgia inhibin A concentrations ranged from 7.4 - 60.0 pg mL-1 (21.2 ± 16.5 pg mL-1) in 

males and from 7.9 - 45.3 pg mL-1 (26.5 ± 15.2 pg mL-1) in females (Figure 11). 

 Two-sample test of means (Student’s t-tests or Mann-Whitney-Wilcoxon tests) 

did not show a significant difference for inhibin A levels between age classes or between 

sexes in any population.  Comparisons of mean inhibin A levels among populations for 

both sexes and age classes showed no significant difference in female juveniles, but 

inhibin A levels in male juveniles were significantly different between Sarasota and 

Indian River (p = 0.02, Table 3).  In adult males, a Kruskall Wallis analysis of variance 

found a significant difference in inhibin A among populations (p = 0.03).  No significant 

differences were observed in female adults across populations.   

 No significant relationships were observed using linear regression analysis to 

assess relationships between inhibin A concentrations and morphometrics.  However, two 

marginally significant, positive correlations were found in Sarasota Bay males between 

inhibin A and body length (r2 = 0.206, p > 0.05) and also body weight (r2 = 0.177, p > 

0.05). 
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Contaminants 

Blubber samples from the Sarasota Bay dolphins (n = 10) were analyzed for PCBs 

and PBDEs (Table 6).  Total lipid content averaged 32% wet weight (SD ± 7), with high 

variability between blubber samples (23 to 41%), and contaminant concentrations were 

made on the basis of extractable lipids, i.e., lipid weight.  PCBs found in female dolphins 

ranged from 2,930 to 44,340 ng g-1.  Body burdens found in the males were within the 

same order of magnitude as the females, ranging from 19,820 to 24,270 ng g-1.  PBDE 

levels were up to three orders of magnitude lower than PCBs, and PBDEs ranged from 55 

to 1,000 ng g-1 and 370 to 410 ng g-1 in females and males, respectively (Table 6).  No 

significant correlations were found between male hormone and contaminant 

concentrations, and due to the small sample size and distribution, statistical analyses were 

limited for females.  PCBs in the two females with documented calves (between 2 – 7 

offspring) were significantly different and an order of magnitude lower than PCB levels 

in females with no recorded calves (p = 0.045).  PCB and PBDE levels in males and 

those females without recorded calves were no significantly different (p > 0.05). 
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TABLE 6.  Persistent organic pollutant concentrations (ng g-1 lipid weight), biometrics, 
and percent lipid content for blubber in Sarasota Bay juvenile, adult male, and adult 
female bottlenose dolphins 
 

Individual Gender Age Recorded 
Calves % Lipid 

 
∑PCBa 

 
∑PBDEb 

FB 54 F 39 7 23 2930 55 
FB 151 F 10 0 28 44340 480 
FB 211 F 5 0 36 44020 1000 
FB 223 F 8.5 0 25 34230 660 
FB 227 F 5 0 41 11680 240 
FB 229 F 2 0 31 22080 520 
FB 231 F 26 2 36 3110 65 
FB 20 M 21 - 32 24270 370 
FB 258 M 17 - 24 20720 390 
FB 260 M 2 - 41 19820 410 

a Sum of IUPAC congeners 28/31, 52, 66, 74, 85, 95, 99, 101, 105/152, 118, 128/167, 
137, 138, 146, 149, 151, 153, 170, 174, 177, 178, 180, 183, 187, 194, 195, 196/203, 200, 
206, 209 
b Sum of IUPAC congeners 47, 99, 100, 153, 154 
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DISCUSSION 
 

Previous efforts to define serum hormonal profiles in free-ranging bottlenose 

dolphins have been only moderately successful, as monitoring hormonal levels and 

changes over time is difficult given the challenges involved with sampling wild dolphins 

(i.e., logistical constraints, permitting, access, cost, etc.).  Establishing baseline hormone 

concentrations in wild populations and understanding the relationships between hormone 

trends and reproductive biology will advance our knowledge of cetacean endocrinology 

and provide a basis for investigating potential effects of stressors on population level 

reproductive potential.  Through the use of ELISA techniques, we successfully detected 

AMH, inhibin A, and inhibin B in bottlenose dolphins with reproducible results.  This 

research reports hormone concentrations in free-ranging bottlenose dolphins from three 

locations and describes observed trends and influences of gender, age, location, and 

known Tursiops reproductive biology.    

 

Relationships between Gender, Age, Body Size, and Reproductive Biology 

 This study assessed the relationships between age and body length in both sexes 

and all populations (when data were available) and found statistically significant 

predictive relationships between these parameters in all analyses (p ≤ 0.002, Table 2).  

However, considerable variation in size-at-age has been observed in bottlenose dolphin 

populations, which should provide caution against using length as a precise indicator of 

age (Read at el., 1993). 
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Anti-Müllerian Hormone in Males 

For many mammalian species, AMH production is largely involved in the normal 

development of the male reproductive tract and sex differentiation in utero.  In this study, 

high pre-pubertal circulating AMH levels in male dolphins were significantly greater than 

in adults (Table 3) and can be expressed as a linear decrease with age and body size 

(Figures 5 and 6).  Comparable trends have also been observed in African and Asian 

elephants (Dow et al., 2011), cattle (Rota et al., 2002), and mice (Al-Attar et al., 1997).  

Juvenile dolphin AMH levels (up to 2,080 ng mL-1) are among the highest currently 

reported in any mammalian species.  The elevated concentrations seen in male juvenile 

dolphins are likely related to pre-pubertal testicular development, as high AMH levels are 

secreted in humans by immature Sertoli cells in correspondence with testicular 

differentiation and development (Josso et al., 1993; Rey et al., 1993).  Therefore, AMH 

appears to be a measure of gonadal function and is related to maturity status in male 

bottlenose dolphins. 

Dolphins exhibited an AMH decline with age (Figure 5), where lower AMH 

levels were measured in adult males, compared to juveniles.  Yet, the decline was much 

less abrupt, than that observed in other species, and did not appear to be directly related 

to the onset of sexual maturity.  Gonadal observations document that sexual maturity is 

attained between 10-13 years of age in most male bottlenose dolphins (Perrin and Reilly, 

1984; Cockcroft and Ross, 1990).  Yet, AMH concentrations for dolphins in this age 

category did not differ greatly from those in dolphins a few years younger or older, which 

indicated a lack of a rapid post-pubertal decline.  
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In humans, AMH levels decrease in association with Sertoli cell maturation, as 

AMH is expressed in prepubertal (or immature), but not mature, Sertoli cells (Josso et al., 

1993; Steger et al., 1996).  At puberty, luteinizing hormone stimulates Leydig cell 

maturation resulting in increased testicular volume and testosterone production, which 

induces Sertoli cell maturation and down regulates AMH expression in the seminiferous 

tubules (Rey et al., 1993; Rey et al., 2009).  Post-puberty, AMH levels in adult men 

decline quite rapidly to the low levels observed in females; similar trends are seen in 

mice and cows (Al-Attar et al., 1997; Rota et al., 2002).   However, we measured 

relatively high circulating serum AMH concentrations in post-pubertal male dolphins, 

when mature Sertoli cells should have been present and active. 

In the testes, AMH is secreted bi-directionally: apically into seminiferous tubules 

and basally towards the interstitium and circulation (Josso et al., 1979; Vigier et al., 

1983).  After puberty, the apical pole of the Sertoli cell preferentially releases AMH, 

resulting in higher seminal fluid concentrations than in serum (Fallat et al., 1996; 

Fenichel et al., 1999).   Previous research that measured higher seminal AMH 

concentrations suggests that AMH secretion from the apical aspect of Sertoli cells may be 

involved in sperm production and germ cell proliferation (Fujisawa et al., 2002).  

There is little known about the role of immature or mature Sertoli cells in 

bottlenose dolphin spermatogenesis, and the clinical significance of AMH production in 

adult males is not entirely clear.  Perhaps the elevated serum AMH concentrations 

measured in adult male dolphins during the breeding season, when normal 

spermatogenesis was likely occurring, imply that mature Sertoli cells are more actively 

involved in AMH production during spermatogenesis.  This trend possibly suggests that 



 

55 

the relative roles of AMH, Sertoli cell function and/or directional secretion of AMH by 

Sertoli cells may differ with sexual maturity among species.  However, a comparison of 

AMH levels in dolphin seminal plasma and serum warrants further investigation. 

Dolphins exhibit seasonal breeding behavior, with known peaks in sperm 

production and density, along with testes enlargement during the breeding season 

(Schroeder and Keller, 1989).  Harrison and Ridgway (1971) found seasonal variation in 

testosterone concentrations in captive bottlenose dolphins, and a more recent study 

discovered that sperm production peaks occurred when testosterone concentrations were 

lowest (Schroeder and Keller, 1989).  This phenomenon has been documented in other 

seasonally reproducing species, such as deer (Asher et al., 1987), stallions (Byers et al., 

1983) and monkeys (Matsubayashi et al., 1991).  The delayed peak in sperm production 

may be related the inhibitory effects of high serum testosterone levels on spermatogenesis 

(Matsumoto, 1990).  

Given the seasonal elevations of dolphin testosterone production and the fairly 

high serum AMH levels present in adult males in this study, it is possible that 

testosterone effects on AMH expression during spermatogenesis are not as strong as 

those observed in other species.  Contrary to previous research findings, this may indicate 

that AMH plays a larger role in dolphin spermatogenesis and may also be affected by 

social maturity and status.  In humans, AMH expression is down regulated and germ cells 

undergo meiosis and attain sperm production when testosterone levels increase during 

pubertal development (Rey et al., 2009), where testosterone and serum AMH 

concentrations are inversely correlated (Rey et al., 1993). Interestingly, a recent study on 

elephants showed no change in AMH concentrations, despite a dramatic increase in 
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testosterone during periods of heightened sexual behavior, and there was no significant 

relationship found between AMH and testosterone levels (Dow et al., 2011).  

Testosterone measurements were beyond the scope of this study; therefore, it is difficult 

to interpret the relationship between testosterone and AMH concentrations in dolphins.  

Also, due to our sampling design, it is unclear how AMH levels might change seasonally, 

as testosterone does, and warrants further examination. 

In addition to the relationships assessed between dolphin AMH levels and age, 

linear regressions indicated a significant negative relationship between AMH and body 

length, body weight, and maximum girth (Table 4).  Compared to the selected parameters, 

the functional relationship between AMH and age explained the highest percentage of 

variability in AMH values (60-93%), which suggests that age is the best predictor of 

circulating AMH levels in male dolphins.  This was expected, given the previously 

mentioned patterns observed in humans, cattle, elephants, and mice.  The relationships 

between AMH and body length explained less variation (41-49%) in AMH levels than 

age, but in the absence of age data, which is likely for marine mammal populations, body 

length might be a good alternative as a predictor of AMH levels in male dolphins.  

Read et al. (1993) found that male dolphins generally grow in length, girth, and 

mass well beyond the first 10 years of life and attain only 70% of asymptotic mass when 

approaching sexual maturity at 10 years of age.  Growth continues into the second 

decade, particularly in girth and mass, which suggests that body size may be an important 

factor in mating (Read et al., 1993).  The relationships observed between AMH and these 
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growth parameters might relate to the comparable timing that male dolphins reach body 

length, body weight, and maximum girth asymptotes.  

Interestingly, the AMH trend observed in adult male dolphins is opposite that 

seen in the Florida manatee (Trichechus manatus latirostris).  Wilson et al. (2011) 

documented a significant, positive relationship between AMH and both total length and 

body weight in males.  A study by Reynolds et al. (2004) documented the testicular 

mass:body mass ratio in manatees as 0.19% (on average) during non-winter months when 

spermatogenic activity is most evident.  Given the highly promiscuous behavior of 

manatees, their testicular mass is relatively low.  Bottlenose dolphins, on the other hand, 

have large testes, compared to body size (ratio of 1%), which provides further 

confirmation of their promiscuous mating system (Kenagy and Trombulak, 1986).  Even 

though manatees have a lower body size to testicular size ratio, the increased AMH 

production of manatees during non-winter months may demonstrate that testicular size 

does not necessarily correlate with the amount of AMH production and that the model of 

AMH concentrations varies among marine mammal species. 

 

Anti-Müllerian Hormone in Females   

Female AMH levels in dolphins remained relatively low, regardless of age, and 

did not vary significantly between juveniles and adults.  In addition, there were no 

consistent relationships observed between AMH and age or the selected morphometrics.  

These were expected trends, as minor fluctuations are observed during adulthood or the 

menstrual cycle in humans, consistent with continuous noncyclic growth of small 

follicles (Cook et al., 2000).  Similarly, AMH levels measured in elephants did not differ 
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between phases of the ovarian cycle or between cycling and non-cycling females (Dow et 

al., 2011).  AMH likely plays a role in regulating folliculogenesis in female dolphins, but 

does not appear to be the best gauge of reproductive potential in this species. 

Lower AMH levels were measured in a few older female dolphins, and two 

individuals, a 36- and 39-year old, had AMH levels of 0.25 and 0.11 ng mL-1, 

respectively.  The oldest dolphin sampled (0.70 ng mL-1 AMH) was still of reproductive 

age (41 years old), had eight recorded calves and was potentially nearing senescence, as 

other odontocete species have shown reduced fertility with age (Kasuya and Marsh, 

1986).  Yet, her AMH level was higher than younger individuals.  One dolphin 

population showed a negative relationship between AMH concentration and age (p > 

0.05), but the trends among age classes and populations were inconsistent.   

Typically correlated with antral follicle number, female AMH serum 

concentrations decrease as the follicle pool is depleted with advancing age (de Vet et al., 

2002).  Similar AMH declines have been shown to reflect the size of the primordial 

follicle pool in aging mice and, therefore, were recommended as a marker to assess the 

quantitative aspect of ovarian reserve (Kevenaar et al. 2006), which is essentially the 

number and quality of oocytes available to produce a dominant follicle late in the 

follicular phase.  A study on human ovarian activity suggested a correlation between the 

reduced primordial follicle stock and the declining number of small growing follicles 

(Gougeon et al., 1994).  There may be a natural decline in AMH concentrations over time 

in long-lived dolphins.  However, due to the small sample size of older females in this 

study, evidence for this trend was not clear.  If applied to a greater number of older 
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dolphins, AMH might prove to be a promising marker of declining fertility in female 

cetaceans. 

As seen in other species, this study observed a significant gender difference in 

AMH secretion in dolphins, where concentrations were approximately 1,000-fold higher 

in males than females.  A similar trend was reported in cattle (Rota et al., 2002), 

manatees (Wilson et al., 2011), and elephants (Dow et al., 2011).  The magnitude of 

gender difference is most similar to that found in the Florida manatee, where mean male 

AMH levels were 1,270 ng mL-1 in non-winter months, compared to 0.03 ng mL-1 in 

females.   

 

Inhibins in Males 

The cyclical and diurnal changes observed in inhibins have made interpretation of 

hormone levels challenging, and given the annual sampling of this study design, trends 

have been inferred under these constraints.  Clear diurnal inhibin B rhythms have been 

observed in normal men, with the lowest concentrations expressed during evening or 

night and were similar to that of testosterone (Carlsen et al., 1999).  The regulation of 

inhibin B is complex, and both stimulatory and inhibitory effects of testosterone 

influence its secretion.  

In dolphins, no significant differences were observed in inhibin B concentrations 

between male juveniles and adults, but juveniles had slightly higher levels (Table 3).  

Inhibin B was elevated in several juvenile (between 12-47 pg mL-1) and a few adult 

(ranging between 17-74 pg mL-1) dolphins, compared to other individuals in the 

respective age classes, but no consistent patterns emerged with the elevated 
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concentrations and sexual maturity.  In humans, Sertoli cell proliferation and FSH govern 

inhibin activity during childhood, whereas germ cells are the chief determinant of inhibin 

B synthesis in adults (Meachem et al., 2001).  It is likely that the regulation of inhibin B 

differs in immature dolphins and adults, but given the lack of differences between 

hormone levels and age class or correlations with the selected morphometrics, the 

function of inhibin B at different stages of sexual maturity in male dolphins is not 

apparent. 

With the exception of the few individuals with elevated inhibin B levels, a 

majority of both juveniles and adults had inhibin B levels < 10 pg mL-1, which are among 

the lowest reported in any mammalian species.  Although, two particular dolphins had 

atypical values: a juvenile at 112 pg mL-1 and an adult at 611 pg mL-1.  The testicular 

Sertoli cells are known to be the primary source of inhibins in male circulation 

(Robertson et al., 1988).  In healthy adult men, mean serum inhibin B concentrations 

were ~200 pg mL-1 (Klingmüller and Haidl, 1997; Kumanov et al., 2006), and similar 

levels were observed in mature male rats (~180 pg mL-1; Buzzard et al., 2004).  The vast 

differences among species in male inhibin B secretion suggest that Sertoli cell function 

may differ across species. 

Serum inhibin B levels reflect the functional state of the seminiferous epithelium, 

and production is regulated primarily by spermatogenic status, which has been shown by 

a direct correlation between serum inhibin B levels and sperm count (Pierik et al., 1998).  

When spermatogenesis is damaged, inhibin B decreases while follicle stimulating 

hormone increases (Anawalt et al., 1996), whereas follicle stimulating hormone 

stimulates inhibin B secretion in normal men and is mediated by the presence of germ 
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cells.  A study performed on both normal men (with sperm counts > 20 x 106 mL-1) and 

those with oligozoospermia (with average sperm counts of ~ 4 x 106 mL-1) found that 

inhibin B averaged 223 pg mL-1 in normal men compared to 107 pg mL-1 in those with 

low sperm count (Klingmüller and Haidl, 1997).   

Therefore, the elevated levels observed in mature dolphins are not likely related to 

impaired spermatogenesis, but possibly related to increased sperm count or Sertoli cell 

activity during the breeding season.  Seasonal changes in inhibin were documented in 

Japanese monkeys (Macaca fuscata fuscata), where plasma immunoreactive-inhibin 

levels increased during the breeding season, likely in association with increased Sertoli 

cell activity (Matsubayashi et al., 1991).  Given the timing of our sampling, the adult 

male dolphins were likely near or at sperm concentration peaks and in the midst of 

spermatogenesis.  Since inhibin B in adults is regulated, to some degree, by 

spermatogenic activity, then perhaps the lower inhibin B concentrations in the majority of 

dolphins, compared to those seen in other species, reflect a level of spermatogenesis.  

However, a temporal inhibin profile is necessary to fully understand possible diurnal and 

seasonal fluctuations, which might increase our ability to use inhibin B as a marker of 

reproductive status. 

Interestingly, this study successfully detected inhibin A in dolphins.  Several 

human studies have discovered that inhibin A is undetectable in serum of normal men; 

thus, it has been accepted that inhibin B is the predominant form produced by the testes 

(Anawalt et al., 1996; Illingworth et al., 1996).  The specific assays utilized for inhibin A 

measurement in this study were optimized for humans, rats, and monkeys, with minimal 
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cross-reactivity against inhibin B or activins, and these ELISAs were adapted for 

dolphins with reproducible results.  

Dolphin inhibin A concentrations were higher than inhibin B (Table 3), which 

differs from the trend observed in rats.  Testicular inhibin A concentrations are detectable 

in the rat, but levels are 100-fold lower than those of inhibin B.  Even so, a postnatal 

increase in both inhibin A and inhibin B was observed in these rats, which paralleled 

Sertoli cell activity (Buzzard et al., 2004).  Additionally, a few studies have shown that 

administration of inhibin A suppressed follicle stimulating hormone concentrations in 

both male sheep (Tilbrook et al., 1993) and primates (Ramaswamy et al., 1998), which 

confirm the inhibitory action of inhibins on FSH secretion.   

Similar to inhibin B, no significant differences were observed in inhibin A 

concentrations between male juvenile and adult dolphins (Table 3), and the trends across 

age classes were not consistent among populations.  Inhibin A means were higher in 

Indian River juveniles than adults, but the opposite was observed in Sarasota Bay (Table 

3).  Given the lack of consistent relationships between inhibin A and age class or the 

selected morphometrics, the function of inhibin A at different stages of sexual maturity in 

dolphins is not clear.  The specific role of inhibin A in males has yet to be established and 

limited data are available on the topic; thus, it is difficult to interpret trends in dolphins.  

However, as with inhibin B, more frequent measurements and additional investigation 

into seasonal changes might improve our understanding of inhibin A synthesis and 

function in bottlenose dolphins. 
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Inhibins in Females   

Inhibins exhibit distinct peaks during the follicular and luteal phases of the 

menstrual cycle (Groome et al., 1994, 1996; Welt et al., 1997), and in some mature 

dolphins, similar peaks were observed.  Most of the inhibin levels in adult females were  

< 8 pg mL-1 and < 20 pg mL-1 for inhibin B and inhibin A, respectively.  However, 

peaking hormone levels were significantly different in many cases and ranged from 20 - 

550 pg mL-1 (for inhibin B) and 30 - 580 pg mL-1 (for inhibin A).  With the outliers 

removed, juvenile and adult inhibin B concentrations were quite similar, but inhibin A 

was slightly higher in juveniles compared to adults (Table 5). 

 The estrous cycle in bottlenose dolphins is split evenly between the follicular and 

luteal phases (Yoshioka et al., 1986).  Information about fertility variations that may 

occur during transitional periods in dolphins (i.e., puberty, entering or coming out of 

estrous, or anestrous) is lacking.  Anestrous periods, characterized by little to no 

measurable levels of sex steroids have been documented in captive T. truncatus, lasting 

up to two years (Kirby and Ridgway, 1984; Yoshioka et al., 1986).  Bottlenose dolphins 

are known to enter periods of anestrus, especially after giving birth and during rearing, 

which supports the hypothesis that lower inhibin levels correspond with periods of 

anestrus.  It is likely that the lowest measured inhibin concentrations represent non-

cycling or anestrous females.  With the exception of one individual, lactating females 

also had lower inhibin B levels.  In addition, immature females had similar inhibin levels 

to those individuals assumed to be non-cycling or in anestrus.  

In most cases, the inhibin A peaks in dolphins did not occur simultaneously with 

those of inhibin B.  In humans, inhibin A concentrations are low during the early 
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follicular phase when inhibin B begins to rise, and in contrast, inhibin B declines during 

the luteal phase as inhibin A increases.  The different patterns of circulating inhibin A 

and inhibin B levels during the ovarian cycle indicate different physiological roles in 

follicle recruitment, maturation, and ovulation (Groome et al., 1996).  Even without 

knowing the exact reproductive status of the female dolphins in this study, it appears that 

estrous individuals might exhibit similar inhibin expression patterns as seen in human 

menstrual cycles.  The duration of inhibin peaks in dolphins is unclear, but these 

hormones appear to be an indicator of estrous cycle phases and may be a promising 

marker of follicular development in dolphins.  In addition, inhibins may be a useful 

complement to serum estrogen concentrations, which remain elevated for 5 - 7 days 

during the follicular phase in dolphins (Schroeder and Keller, 1989). 

Certain calves (~2 years of age) observed with their mothers had slightly elevated 

inhibin levels compared to other juveniles, not known to be nursing.  Sex steroids are 

lipophilic, can concentrate in blubber and have been measured in breast milk (West et al., 

2000).  Though primarily secreted by the ovarian granulosa cells, inhibins and activins 

are also produced to a lesser degree by the mammary glands.  Previous research has 

identified activin A in human breast milk (Alvarado et al., 1993; Di Loreto et al., 1999).  

Female cetaceans are known to depurate contaminants through lactation (Cockcroft et al., 

1990; Borrell et al., 1995; Aguilar et al., 1999), so it may be possible that inhibins are 

transferred through milk.  This might explain the elevated inhibin levels seen in some 

nursing juveniles. 
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Population Comparisons 

Anti-Müllerian Hormone   

No significant differences were found in male AMH concentrations across or 

between populations, but mean adult AMH levels expressed a decreasing trend, where 

Sarasota Bay > Indian River > Georgia (Table 3).  Strong population differences were not 

evident based on predictive relationships between AMH concentrations and age.  The 

comparison of linear regressions showed little separation in regression lines (Figure 5), 

and an ANCOVA showed no significant difference in AMH across populations when 

controlling for age effects.  Age appeared to be the strongest predictor of male AMH 

levels over time, compared to other selected morphometrics.   

On the other hand, comparisons of linear regressions for AMH and body length 

revealed a clear separation of regression lines between Sarasota Bay and Indian River, 

even though body lengths were not statistically different.  Still, the difference in AMH 

concentrations between could possibly be an affect of body size.  The regression line 

slope for the Georgia population was considerably steeper than the other two populations 

(Figure 6), which is likely an effect of the smaller body lengths observed in this 

population.  Bottlenose dolphin populations can demonstrate substantial variation in body 

size (Perrin and Reilly, 1984).  When comparing adult male AMH levels among 

populations, an ANCOVA analysis controlling for body length effects showed no 

significant difference.  It is possible that the steep decline in the Georgia population 

resulted from a body length affect, but these dynamics merit further investigation.  

Body lengths were significantly smaller in Georgia dolphins than in Sarasota Bay 

individuals.  The largest Georgia male measured 257 cm, compared to larger dolphins in 
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Sarasota Bay (273 cm) and Indian River (271 cm).  One 11-year old Georgia male 

measured 224 cm, while dolphins of a similar age in Indian River measured 235 - 240 

cm.  No dolphins > 10 years of age in Sarasota Bay measured below 249 cm.  From this 

data set, one might infer that Georgia males reach the onset of sexual maturity at smaller 

body lengths, but given the small sample size, this is not conclusive.   

Comparisons of AMH levels in dolphins of a similar age between locations were 

difficult to perform given the limited age data, but some variations appeared.  For 

example, male dolphins between 15 - 17 years of age averaged 1,350, 1,150, and 1,143 

ng mL-1 in Sarasota Bay, Indian River, and Georgia, respectively.  In addition, two older 

male dolphins expressed considerably different AMH levels, one 30-year old in Sarasota 

Bay (513 ng mL-1) and one 32-year old in Georgia (62 ng mL-1).  Variations in AMH 

levels were evident across populations, but discerning clear trends and population 

differences, while controlling for certain artifacts, such as age or body length, was 

challenging.  The lowest AMH concentrations were observed in adult males in Indian 

River and Georgia, both populations that experience higher evidence of disease and 

contaminant body burdens (especially for PCBs), which might suggest that Sertoli cell 

function is possibly slightly reduced or altered.  

On the other hand, females did show statistically significant differences in AMH 

concentrations among all three populations (p = 0.04), and the Georgia females had, on 

average, lower AMH levels than either Sarasota Bay or Indian River.  The differences in 

AMH levels among populations were minor, but previous research has shown that slight, 

yet significant, decreases in AMH (from 2.1 to 1.3 µg L-1) occur over time in normo-

ovulatory women (de Vet et al., 2002).  The observed variations in AMH between 
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Sarasota Bay and Georgia might indicate a decline in the number of early developing 

follicles that produce AMH and could support the hypothesis that AMH can be used as a 

marker to assess the quantitative aspect of ovarian reserve (Kevenaar et al., 2006).  

 

Inhibins   

It is still unclear how inhibin secretion relates to reproductive status in male 

bottlenose dolphins, so it is difficult to interpret population differences.  An increasing 

trend was observed in mean adult male inhibin B concentrations across populations, 

where levels in Sarasota Bay < Indian River < Georgia.  Interestingly, inhibin A levels 

showed the opposite trend, where concentrations in Sarasota Bay > Indian River > 

Georgia (Table 3).  Inhibin B levels were not significantly different among or between 

populations, but inhibin A levels were significantly different.  Inhibin B levels in 

Sarasota Bay males were relatively stable, and the observed elevations in inhibin B 

means resulted from several individuals with higher inhibin concentrations in the 

populations with higher contaminant body burdens.  However, the majority of adult 

males in all populations had circulating levels < 10 pg mL-1.  Inhibin B levels have been 

shown to decrease with impaired spermatogenic activity, but the majority of dolphins in 

all populations expressed similar inhibin B levels.  Again, it is unclear how inhibins are 

associated with spermatogenesis in dolphins.  So, perhaps with a greater understanding of 

this relationship and an increased sample size, population differences might be clearer.  

All study populations included females that expressed peaking inhibin A and 

inhibin B concentrations, which were likely indicative of the follicular and luteal phases 

of the estrous cycle.  The slight differences observed across populations in mean adult 
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female inhibin B levels, alongside the nearly identical mean inhibin A concentrations 

indicated no strong population differences in female inhibins levels (Table 5).   

 

Toxicant Effects 

Based on the observed hormone trends across populations, what inferences can be 

made regarding possible toxic effects on AMH and inhibin production?  Many research 

efforts have focused on links between contaminant exposure and adverse effects on 

reproduction in marine mammals, but only a few have demonstrated effects on sex 

hormones.  Reduced oestradiol-17ß and testosterone levels have been observed in marine 

mammals in association with high levels of organochlorines, demonstrating that 

organochlorine contamination could cause an imbalance of sex hormones (Reijnders, 

1986; Subramanian et al., 1987). 

Adverse changes in male reproductive health have piqued an interest in detecting 

negative effects on testicular spermatogenesis and identifying testicular toxicity 

biomarkers.  Proteins from the Sertoli cells are of particular interest to toxicologists 

because Sertoli cells are one of the three main target cells of toxicants that disrupt 

spermatogenesis (Boekelheide et al., 2005).  Several studies have investigated the effects 

of various toxicants on Sertoli cells.  Phthalates, such as mono-(2-ethlyhexyl) phthalate, 

can render Sertoli cells dysfunctional and induce testicular germ cell apoptosis (Lee et al., 

1997).  Monsees et al. (2000) assessed the effects of different toxicants, including 

pesticides, heavy metals, and oestrogens on cultured rat Sertoli cells.  Exposure to the 

pesticide lindane and the oestrogens (ethinyloestradiol and bisphenol A) increased levels 

of inhibin B secreted into the cell culture.  In contrast, the heavy metals (mercury [II] and 
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platinum [II]) decreased inhibin B levels, and the metal ions likely had a direct effect on 

inhibin secretion (Monsees et al., 2000).  Human studies have shown that men exposed to 

lead demonstrated significantly lower sperm concentrations and higher serum inhibin B 

levels than normal men with low lead blood levels (Mahmoud et al., 2005). 

 These previous findings provide evidence of toxic effects on Sertoli cells and 

spermatogenesis.  The increase of Sertoli cell inhibin B production in rats and humans 

exposed to certain toxicants aligns with our research findings, where elevated inhibin B 

levels were documented in dolphin populations with elevated contaminant loads 

(especially PCBs).  Individuals in both Indian River and Georgia exhibited higher inhibin 

B levels than the stable concentrations observed in Sarasota Bay.  Prior research suggests 

that Sertoli cells may respond to various stressors by increasing inhibin B production 

(Comhaire and Mahmoud, 2003), and increased inhibin B levels may directly suppress 

spermatogenesis (Bame et al., 1999).  Monsees et al. (2000) suggested that at high 

enough doses, chemicals could have a direct effect on Sertoli cells or may induce 

alteration in enzyme activity involved in the synthesis of AMH or inhibins.   

Conversely, Georgia dolphins had the smallest body sizes and the lowest AMH 

concentrations in males, where ∑PCB concentrations in adult males were significantly 

higher than Sarasota Bay or Indian River.  It may be that endocrine disrupting 

compounds, such as PCBs and pesticides, acting as estrogen mimics can influence the 

expression of the AMH gene in the Sertoli cells, therefore decreasing AMH secretion 

(Toppari et al., 1996).  PCBs are known estrogenic chemicals that elicit estrogenic 

responses, and exposure to xenobiotic estrogens may induce reductions in fertility and are 

correlated with disorders in the male reproductive system (Sharpe et al., 1993). 
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Previous research has examined the toxic effects of methoxychlor (MXC), a 

chlorinated hydrocarbon pesticide, and the effect of HPTE, an active, major metabolite of 

MXC, on the rat ovary.  MXC is a weak estrogenic compound and a known endocrine 

disruptor that has been shown to inhibit early ovarian development, reduce the number of 

antral follicles in the ovary, inhibit follicular development, and stimulate AMH 

production (Uzumcu et al., 2006).  In our study, mean adult female AMH concentrations 

between the three populations varied by only 0.5 ng mL-1, and even though Georgia 

AMH levels were lowest, where ∑PCB concentrations were highest, it is unclear whether 

high contaminant body burdens affected AMH production in females. 

It is possible that male bottlenose dolphins might show the earliest signs of 

adverse health effects.  Contaminant levels in marine mammals can vary among 

individuals as a result of dietary preferences, age, sex, body size, reproductive history, 

and habitat (Aguilar et al., 1999).  Male cetaceans generally harbor higher contaminant 

body burdens, due to life long bioaccumulation, and have no ability to depurate.  On the 

contrary, females can offload toxic compounds to their offspring through gestation and 

lactation (Cockcroft et al., 1990; Borrell et al., 1995; Aguilar et al., 1999), and levels of 

organochlorines typically decline with female reproductive activity, where primiparous 

and multiparous females harbor lower organochlorine concentrations than nulliparous 

females (Wells et al., 2005).  Our results confirm a similar decrease in ∑PCB and 

∑PBDE concentrations with reproductive activity in females (Table 6).  Thus, hormone 

concentrations in males could display the first signs of adverse reproductive effects 

resulting from higher contaminant body burdens.   
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CONCLUSIONS 

 This research successfully detected AMH, inhibin A, and inhibin B in bottlenose 

dolphins and represents the first report of circulating serum AMH and inhibin levels in 

free-ranging bottlenose dolphins from three southeastern U.S. estuaries.  In addition, we 

investigated the use of these hormones as reproductive biomarkers and potential 

biomarkers of toxicant effects on reproduction.  The following conclusions were reached 

through this study: 

 
• AMH and inhibins appear to reflect a degree of gonadal function and allow us to 

assess fertility potential in bottlenose dolphins, to some extent.  This study provides a 

benchmark of breeding season AMH and inhibin levels as a reference to assess 

change over time.   

• AMH expression is related to maturity status in male dolphins and showed a 

significant, negative relationship with age, body length, body weight, and maximum 

girth.  AMH appeared to be a stronger indicator of reproductive status in males than 

females, but with further investigation, might prove to be an indicator of declining 

fertility in females. 

• Of the parameters used in this study, age was the best predictor of AMH levels in 

males, but body length might be a good alternative for individuals of unknown age. 

• Inhibins in female dolphins seem to be an indicator of follicular and luteal estrous 

cycle phases and may therefore be a good marker of follicular development in 
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dolphins.  Inhibins might be a useful complement to estradiol and progesterone 

measurements in females.  The role of inhibins in males is not clear from this research 

and merits further examination.  

• These findings suggest the possibility of toxicant effects on AMH and inhibin 

production in dolphins, but owing to the limited data set it is difficult to conclusively 

link these observations with contaminant exposure, as a host of stressors, not 

accounted for in this study could be affecting fertility.  A better understanding of the 

mechanism(s) of action for contaminant-related reproductive toxicity could elucidate 

the diagnostic value of using these hormones as biomarkers for impacts of toxicant 

effects on reproduction in dolphins. 

 
Further investigation of AMH and inhibins is imperative to advance our 

understanding of cycling patterns, seasonal changes, and relationships with sex steroids 

and gonadotropins (such as testosterone, estradiol, and follicle stimulation hormone).  

These efforts will require long-term and frequent sampling (perhaps with a captive 

population) from individuals of known health and reproductive status.  Using AMH and 

inhibins in adjunct with the commonly measured sex steroids may improve our 

understanding of their synthesis and function in bottlenose dolphins.  The capacity to 

evaluate the reproductive status of individuals and to potentially relate the effects of 

stressors to reproductive potential makes the assessment of AMH and inhibins a 

prospective tool for determining the true conservation of a species or population 

(Reynolds et al., 2009). 
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