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ABSTRACT 

 

 

Atrial fibrillation (AF) is the most common type of cardiac arrhythmia encountered in 

clinical practice and is associated with an increased mortality and morbidity. 

Identification of the sources of AF has been a goal of researchers for over 20 years. 

Current treatment procedures such as Cardio version, Radio Frequency Ablation, and 

multiple drugs have reduced the incidence of AF. Nevertheless, the success rate of these 

treatments is only 35-40% of the AF patients as they have limited effect in maintaining 

the patient in normal sinus rhythm. The problem stems from the fact that there are no 

methods developed to analyze the electrical activity generated by the cardiac cells during 

AF and to detect the aberrant atrial tissue that triggers it.  

In clinical practice, the sources triggering AF are generally expected to be at one of the 

four pulmonary veins in the left atrium. Classifying the signals originated from four 

pulmonary veins in left atrium has been the mainstay of signal analysis in this thesis 

which ultimately leads to correctly locating the source triggering AF. Unlike many of the 

current researchers where they use ECG signals for AF signal analysis, we collect intra 

cardiac signals along with ECG signals for AF analysis. AF Signal collected from 

catheters placed inside the heart gives us a better understanding of AF characteristics 

compared to the ECG.  

. 
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In recent years, mechanisms leading to AF induction have begun to be explored but the 

current state of research and diagnosis of AF is mainly about the inspection of 12 lead 

ECG, QRS subtraction methods, spectral analysis to find the fibrillation rate and limited 

to establishment of its presence or absence. The main goal of this thesis research is to 

develop methodology and algorithm for finding the source of AF. Pattern recognition 

techniques were used to classify the AF signals originated from the four pulmonary veins. 

The classification of AF signals recorded by a stationary intra-cardiac catheter was done 

based on dominant frequency, frequency distribution and normalized power. Principal 

Component Analysis was used to reduce the dimensionality and further, Linear 

Discriminant Analysis was used as a classification technique. An algorithm has been 

developed and tested during recorded periods of AF with promising results.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Overview of Atrial Fibrillation 

This research brings into limelight the technical and methodological aspects of using 

signal processing to analyze cardiac signals sans the old school of thoughts which 

concludes from the interpretations of the medical results.  

Atrial fibrillation (AF) is the most common arrhythmia encountered in clinical practice 

and is associated with an increased mortality and morbidity. It currently affects more than 

2.5 million Americans. The occurrence of AF increases with age. The prevalence in 

individuals over the age of 80 is about 8% in developed countries. It is estimated to 

increase drastically due to increase in older population [1]. It is estimated to affect 5.6 

million Americans by the year 2050 [1].  

In a healthy heart, periodic electrical propagation‟s are initiated by the sino–atrial node 

(SAN). SAN also known as pace maker is located at the top of the right atrium. AF 

occurs due to disorders in the genesis or in the conduction of the electrical propagation 

carrying the information of muscular contraction throughout the whole heart.  

Identification of the sources of AF has been a goal of researchers for over 20 years, but 

has been looked at with renewed interest since the advent of curative therapies for AF 

aiming at destroying the sources initiating AF. Medical therapy has reduced the incidence 

of strokes, the most feared consequence of AF, but has limited effect in returning and 
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maintaining the patient in normal sinus rhythm. Radio-frequency ablation (RFA) has 

become a widely used procedure to identify and destroy tissue involved in the initiation 

of AF. In the ablation procedure, a catheter is guided into the heart and the tip of the 

catheter delivers radiofrequency energy that heats and destroys the tissue. In multiple 

clinical trials this procedure has shown to be superior to medical therapy in restoring and 

maintaining sinus rhythm. Nevertheless, success rate of RFA in the treatment of AF is 

well below the success rate of other arrhythmias. The reason is that identifications of 

arrhythmic tissue are far less precise in AF than in the majority of supra-ventricular 

arrhythmias. 

The intra-cardiac or Electrocardiogram (ECG) signals during AF are characterized by 

an apparent randomness and complete disorganization preventing a meaningful 

interpretation with usual methods of analysis. Signals during atrial fibrillation represent 

multiple fronts of activation occurring at the point of recording during a highly 

disorganized rhythm. The recorded signal is, therefore, highly variable in voltage, 

morphology and rate and this prevents the identification of its different components. 

Key to targeting the correct location for ablation is to understand the pathological and 

electrophysiological arrhythmia mechanism. Analysis of the frequency content of the 

signals has been the mainstay of signal analysis in this thesis. Left to right atrium gradient 

of frequencies and the observation of greater activation frequencies or dominant 

frequencies in the former chamber suggests a preferential origin of AF in the left atrium 

(LA). Clinically, the approach of RFA to AF has always been to target the four 

pulmonary veins in the left atrium. Hence, the main objective of the thesis is the 
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processing and characterization of signals from the four pulmonary veins in the LA using 

frequency domain analysis and statistical pattern recognition. 

1.2 Motivation and Goals of this Thesis 

In clinical practice, there is no test available that can predict the source of AF and the 

outcome of treatment. Current treatment plans for AF include (RFA), multiple drugs or 

medical procedures such as pulmonary vein isolation, electrical cardio version or atrial 

pacemaker to restore a normal heart rhythm. During RFA, atrial tissue is destroyed in 

areas felt to be responsible for the induction of AF. This procedure is not guided by clear 

identification of these arrhythmic sources, instead by the probability that specific regions 

of the heart are likely to be involved. The ablation is therefore far less precise than if 

guided by true knowledge of the mechanism of induction of AF. In pulmonary vein 

isolation, a targeted destruction of cardiac tissue is performed using a small catheter 

introduced into the heart.  It is possible that pulmonary vein isolation effectively modify 

AF substrate skin to a surgical maze procedure. Nevertheless, treating all chronic AF 

patients with similar approach has one conspicuous weakness that every patient with AF 

does not have the same characteristics. So, treating every patient to the same ablation set 

is not valid and likely results in many unnecessary lesions. Hence the treatment is only 

successful in approximately 35-40% of patients. The problem stems from the fact that 

there are no methods developed to analyze the electrical activity generated by the cardiac 

cells during AF and to detect the aberrant atrial tissue that triggers it. Intra-cardiac signals 

through catheters are recorded practically from all patients undergoing AF treatment. It is 

desirable, to identify the sources of AF to help physicians in deciding which appropriate 

location in atria is to be burnt by characterizing the AF signal. 
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This study was aimed at developing a novel method and algorithm for identifying the 

sources of AF. The proposed research work includes the following research goals: 

 State of the Art. A comprehensive review of the state of the art of characterization 

of AF signals, frequency tracking of AF and atrial signal processing to navigate 

AF ablation will be carried out. 

 Characterization. Collection of intra-cardiac signals through catheters using a 

particular protocol. Further analysis will be carried out to characterize atrial 

signals generated from different areas of the LA. 

 Classification. To develop a method to classify the signals from four pulmonary 

veins through statistical pattern recognition techniques. Clinically, the sources of 

AF are anticipated to be at the four pulmonary veins. 

 Verification of experimental results. 

1.3 Challenges 

The anticipated challenges towards reaching the goal are 

 Correctly quantifying the characteristics of the AF signal as it propagates through 

the tissue from the four pulmonary veins to the catheters.  

 Identification of AF waveforms due to a single source. 

Identifying signal features or characteristics by applying different signal processing 

techniques to accurately deduce the signal origin. The characteristics of the AF signal 

vary between different patients. They also vary in the same patient over time. One 

important challenge is to track such changes in long-term AF signal recordings. Hence, 

the development of robust signal processing methods is essential. 
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1.4 Contributions and Organization of this Thesis 

Most commonly accepted hypothesis identifies a number of fast discharging arrhythmic 

triggers are mostly located in LA. Clinically, the approach of Radio Frequency Ablation 

to AF has always been to target the four Pulmonary Veins in the LA. Hence, in the main 

body of this thesis, our work primarily focuses on developing a method to characterize 

the signal traveling from pulmonary veins to catheters. Frequency analysis has been the 

mainstay for the characterization of these AF signals. Further, the classification of AF 

signals obtained from pulmonary veins was done based on dominant frequency, 

frequency distribution, normalized power. The feature set dimension was reduced by 

using Principal Component Analysis (PCA). The first component generated by PCA 

accounts for maximum variability in the data, and each succeeding component accounts 

for as much of the remaining variability as possible. Further, AF signals from the four 

pulmonary veins in LA were classified using a statistical pattern recognition technique, 

Linear Discriminant Analysis (LDA).  

This chapter presents the motivation and goal of this thesis along with the challenges to 

achieve those goals. The rest of the thesis is organized as follows: 

Chapter 2 presents the extensive introduction to anatomy of the heart, 

Electrocardiogram (ECG), and AF mechanisms. It also presents recent approaches to 

identifying the sources of AF.  

Chapter 3 covers several widely used ECG signal processing techniques including Fast 

Fourier Transform (FFT), PCA and LDA are discussed. The mathematical derivations of 

the algorithms and their underlying assumptions are presented. This chapter would give 

readers a basic idea of the mentioned techniques and their advantages or disadvantages. 
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Hence this chapter provides the background for understanding the signal processing 

techniques used in this research of identifying AF sources. 

Chapter 4 presents a new methodology for characterization of AF signals. The main 

concept of classification of AF signals from four pulmonary veins and the proposed 

directional algorithm to identify the sources of AF are discussed. This chapter also 

includes data acquisition protocol, summary of proposed new methodology, simulation 

results, verification and discussion.  

Chapter 5 gives the conclusion and proposes suggestions for future research work. 
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CHAPTER 2 

ATRIAL FIBRILLATION 

 

2.1 Anatomy of the Heart 

The human heart is the most essential organ of the human body as it supplies blood to 

all parts of the body. Blood acts as a medium for transporting substances such as oxygen, 

nutrients, enzymes, antibodies, as well as collecting end result of multiple metabolic 

process as toxic byproducts for disposal. The heart is situated in the chest cavity posterior 

to the sternum and costal cartilages and rests on the superior surface of the diaphragm. 

The basic anatomy of the heart is shown in Figure 2.1. 

 
Figure 2.1 Anatomy of the Heart. 
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The heart has four chambers: two upper chambers (atria) and two lower chambers 

(ventricles). A muscular septum divides the heart internally into left half and right half. 

The two upper chambers LA and right atrium (RA) function as collecting chambers. The 

lower two chambers left ventricle (LV) and right ventricle (RV) pump blood. In general, 

de-oxygenated blood in the right atrium collected from all veins of the body (except from 

the veins of the lungs) is pumped into the right ventricle. Contraction of the right 

ventricle pumps the blood to the lungs through the pulmonary arteries. In the lungs 

oxygen is supplied to the blood making it oxygenated blood. Both the left and right 

pulmonary veins carry the oxygenated blood from lungs to LA. Further the blood in the 

LA is pumped into the left ventricle. Upon the contraction of the left ventricle, the blood 

through the aortic artery and its branches is supplied to all tissues in the body. Oxygen is 

used by the cells to produce energy and carbon dioxide is generated as a byproduct. 

Oxygen poor, carbon dioxide rich blood collected by the superior and inferior vena cava 

empties into the right atrium. The direction of the blood flow is controlled by 

atrioventricular valves between the atria and the ventricles, and the pulmonary and aortic 

valves between the ventricles and the arteries.  

During one heart beat or cardiac cycle, a sequence of electrical and mechanical events 

takes place. Under normal conditions, heart contractions are very rhythmic and 

synchronized. The contraction of the heart muscle is due to the electrical impulse 

generated spontaneously by SAN. Hence, SAN is called the “pacemaker” of the heart.  

The electrical stimulus from SAN spreads through both atria and reaches the 

atrioventricular node (AVN). The impulse from AVN will reach ventricles via left and 

right bundles of HIS. In general, bundle of HIS extends into the septum where it 
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forms two branches, giving rise to Purkinje network.  The impulse now spreads rapidly in 

both ventricular chambers as Purkinje fibers conduct impulses faster than ordinary 

cardiac muscles. Hence both the ventricles contract almost simultaneously. The basic 

heart conduction system explained above is shown in Figure 2.2. 

 
Figure 2.2 Heart Conduction System [2]. 

2.2 Atrial Fibrillation  

AF is the most common type of cardiac arrhythmia. It is a problem associated to 

abnormal rate or rhythm of the heartbeat. It currently affects more than 2.5 million 

Americans. The occurrence of AF increases with age. The prevalence in individuals over 

the age of 80 is between 10 to 15% in developed countries and it is estimated to increase 

drastically due to increase in the older population [1]. It is estimated to affect 5.6 million 

Americans by the year 2050. 
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2.2.1 Symptoms of AF 

AF is often asymptomatic and it is not in itself generally life–threatening. AF may 

result in fainting, chest pain, or congestive heart failure. Symptomatic AF is characterized 

by irregular and rapid heartbeat, dizziness, sweating and chest pain, shortness of breath, 

and fatigue while exercising. Patients with AF are therefore at increased risk of stroke 

between two to seven times the age matched individuals in sinus rhythm. AF is therefore 

one of the leading causes of stroke [3]. 

2.2.2 Electrophysiology of AF 

A normal heart rate at rest varies from 60 to 80 beats per minute. A normal heart beat is 

rhythmic as the impulse generated by SAN is very periodic as shown in left figure of 

Figure 2.3. In AF, the impulse is generated from the sinus node and multiple random 

signals „fire off‟ from different abnormal tissues in the atria as shown in the right figure 

of Figure 2.3. 

 
Figure 2.3 Sinus Rhythm and AF in Heart. 
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Due to the presence of multiple disorganized electrical impulses in the heart, the atria 

begin to quiver or fibrillate, so they no longer effectively pump blood into the ventricles. 

Such ineffective contraction induces stagnation of the blood in low flow areas of the atria 

potentially leading to blood clotting. Small pieces of the clot can break off causing 

occlusion of small arteries and hence stroke or peripheral artery occlusion (peripheral 

infront). Hence, during AF, ventricles stimulated by fibrillating atria beat irregularly with 

varying frequencies. Ventricular function becomes impaired causing heart failure. It is 

therefore not surprising that AF is associated with an increased risk of death [4].  

2.2.3 Classification of AF 

Various classifications of AF were made based on ECG pattern, cardiac activity and 

clinical features. The American Heart Association (AHA) classified heart basically into 

three types: Firstly detected AF, recurrent AF, Long standing AF. If the AF episode was 

detected for the first time in a patient, it is called “Firstly Detected AF”. If A-fib appears 

two or more times, then it is considered as “Recurrent AF”. This can be paroxysmal AF 

or persistent AF. In paroxysmal AF, the heart changes from sinus rhythm to AF 

periodically. It returns to the sinus rhythm on its own after lasting for few seconds, hours 

or days. These are therefore self-terminating episodes lasting for variable time. The 

patient
 
may only have one episode a year, but the essential feature is that most episodes 

terminate spontaneously. This is often uncomfortable to the patient as the heart will 

always be switching between regular and irregular rhythm. One in four people suffering 

from paroxysmal AF eventually go to permanent AF. Persistent AF does not stop 

spontaneously, but sinus rhythm
 
can be restored by medication

 
or by applying electrical 

shock to the heart. The first detected AF can be either paroxysmal or persistent AF. The 
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third type is “Long standing AF”, the arrhythmia is sustained for more than one year. In 

some cases, it progresses to permanent AF. Permanent AF is present all the time. In this 

case, restoring sinus rhythm
 
is either not possible or not deemed appropriate. These three 

AF categories are not mutually exclusive.  

2.2.4 Diagnosis and Treatment of AF 

AF is generally diagnosed with the ECG. The medical history of the patient is also 

considered. AF is diagnosed as one of the three types paroxysmal, persistent and 

permanent as discussed in the above section [5]. Treatment options take into 

consideration the history of arrhythmia and the clinical status of the patient. The main 

decision regarding AF treatment is whether to return the patient to sinus rhythm or leave 

AF and control the ventricular rates. Sinus rhythm can be restored by DC cardioversion, 

drugs, RFA or surgery. Anti-arrhythmia medications are drugs which change the 

electrical properties of the heart. Usage of these drugs is often complicated by side effects 

including often more serious cardiac arrhythmias. Cardio-version with direct current is an 

electrical shock delivered across the chest of the patient for terminating AF and restoring 

sinus rhythm. But pharmacological cardio-version is ineffective for AF longer than seven 

days [6]. Major adverse events and deaths occur in patients suffering with permanent AF 

[7]. RFA, atrial pacing and surgical procedures will be employed in case of permanent 

AF [8]. The 3D visual display of burnt tissues in atria during RFA is shown in Figure 

2.4a and surgical maze procedure in Figure 2.4b. 
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Figure 2.4 Burnt Tissues during RFA     Figure 2.5 Surgical Maze Procedure. 

RFA is invasive catheter based procedure where selected atrial tissue is exposed to 

cautery from inside of the heart (endocardiac). This eliminates areas inducing or 

maintaining AF restoring sinus rhythm. Surgical approaches vary from open heart 

compartimentization of the atria to the thorcoscopic ablation of selected atrial regions 

from outside of the heart (epicardially).  

2.3 Electrocardiogram (ECG) 

 The ECG is a diagnostic tool that measures and records the electrical activity of the 

heart. ECG is captured by attaching a number of electrodes to the body surface. A 

graphic representation of the electrical activity can be obtained by using a standard 12 

lead ECG. Six of these leads are known as Limb Leads since they are placed on arms or 

legs. The remaining six leads are Precordial Leads as they are placed on procordium. 

There are two types of leads- unipolar and bipolar. The following are the 12 leads and 

their placements. 

Lead I is placed in between the right arm and left arm electrodes. The left arm is 

referred to be positive. Lead II is placed between the right arm and left leg electrodes, the 

left leg being positive. Lead III is placed between the left arm and left leg electrodes, the 
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left leg being positive. Lead I, II, III are bipolar leads. The chest electrodes V1-V6 are 

unipolar leads, and they are placed as follows (shown in Figure 2.5) 

V1: Fourth intercostal space to the right of the sternum. 

V2: Fourth intercostal space to the Left of the sternum. 

V3: Directly between leads V2 and V4. 

V4: Fifth intercostal space at midclavicular line. 

V5: Level with V4 at left anterior axillary line. 

V6: Level with V5 at left midaxillary line.  

 
Figure 2.6 Schematic Representation of 12 Leads Around the Heart [9]. 

Leads aVR (Augmented Vector Right Arm), aVL (Augmented Vector Left Arm), and 

aVF (Augmented Vector left leg) are known as augmented limb leads. Lead aVR is 

placed between RA and LA  and Left foot (LF)] with RA as positive. Lead aVL is placed 

between LA and [RA & LF] with LA being positive. Lead aVF is placed between LF and 

[RA & LA] with LF as positive. The augmented leads are placed as shown in Figure 2.6. 
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Figure 2.7 Einthoven‟s Triangle. 

2.4 Sinus Rhythm and Arrhythmias 

A typical ECG which records bioelectric currents generated by heart is shown in Figure 

2.7. The peaks of this ideal ECG waveform are named as P, Q, R, S, T, U.  The P wave 

indicates that the atria are stimulated to pump the blood to ventricles. This process is 

called atrial depolarization. It occurs when pacemaker (SAN) produces an action 

potential which depolarizes the atria. In a normal ECG, the P wave should be upright in 

lead II. If this is so, the ECG is said to be “Normal Sinus Rhythm” (NSR). Each P wave 

will be followed by QRS complex.  
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Figure 2.8 Typical ECG signal 

The QRS complex represents the ventricular depolarization. This occurs when the 

signal generated from SA node travels through the AV node to ventricles. The T wave 

which occurs after the QRS complex is a result of the ventricular repolarization. U waves 

are produced by repolarization
 
of the Purkinje cells. T waves are asymmetric and must be 

upright in all leads except the aVR and V1. The PR, QRS and ST intervals are shown in 

Figure 2.7. The atrial rate can be found by measuring the frequency of P-waves. 

2.4.1 Normal Sinus Rhythm 

For normal sinus rhythm (NSR), 

 Atrial rate during NSR is 60-100 beats per minute (bpm). 

 Both atria and ventricles have a regular rhythm. 

 P waves occur before QRS and they are upright and uniform. 

 The length of the PR interval is about 0.12-0.20 secs. 

 All QRS complex will look alike and their length will be less than 0.12 secs. 
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Figure 2.9 ECG of Sinus Rhythm 

 
Figure 2.10 Normal Sinus Rhythm 

The NSR observed by ECG and measured by the catheters placed in the LA of the heart 

at coronary sinus are shown in Figures 2.8. and 2.9, respectively. The signal collected 

through the catheters collects the total activity occurring near the tissue of the catheter. 

This gives us a more detailed view of the signal compared to that of the ECG signal. 

Changes in the normal ECG tracing can represent arrhythmia. The heart can function in 

NSR or might be affected with atrial rhythms. There are three types of atrial rhythms 
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namely Atrial Flutter, AF and supraventricular Tachycardia. Atrial rhythms occur when 

atrial tissue or areas other than SA node start generating impulses. 

2.4.2 Atrial Fibrillation Signal Characteristics 

AF occurs when electricity in atria is flowing in rapid, disorganized way. The atria start 

to quiver and will not be able to pump blood to the ventricles properly. Thereby, The 

conduction of atrial and ventricular rate is not 1:1. It is generally 2:1 or 4:1 and it can 

vary. 

 Atrial rate during AF is 350-450 bpm and the ventricular rate is variable.  

 Atria have an irregularly regular rhythm, this effects ventricular depolarization.  

 Normally P waves are absent and they are replaced with F-waves (saw tooth). 

 The length of the PR interval is not discernable. 

 All QRS complex will look-alike and their length will be usually less than 0.12 

secs. 

Figure 2.11 Atrial Fibrillation Signal in ECG 
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Figure 2.12 Atrial Fibrillation Signal 
 

 

Figures 2.10 and 2.11 show the AF signal observed by ECG and the AF signal 

measured by the catheters placed in the LA of the heart, respectively. 

2.4.3 Atrial Flutter Signal Characteristics 

Atrial Flutter is the abnormal heart beat, in this the atria are depolarizing at an 

extremely rapid rate. The P wave looks like a saw-tooth wave. These P waves are called 

flutter waves.  

 Atrial rate during atrial flutter is 250-300 bpm and the ventricular rate is variable. 

The conduction of atrial and ventricular rate is not 1:1. It is generally 2:1 or 

4:1and it can also vary. 
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 Atria have a regular rhythm where as ventricles can be in either regular or 

irregular rhythm. 

 Normally P waves are absent and they are replaced with F-waves (saw tooth). 

 The length of the PR interval is not measurable. 

 All QRS complex will look-alike and their length will be less than 0.12 secs. 

 
Figure 2.13 Atrial Flutter Signal 

Atrial Flutter signal measured by the catheters placed in the LA of the heart is shown in 

Figure 2.12. 
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2.4.4 Atrial Tachycardia Signal Characteristics 

In Atrial Tachycardia, 

 Atrial rate is 150-250 bpm and the ventricular rate is same as that of the atrial 

rate. 

 Atria have an irregularly regular rhythm. 

 Normally P waves are absent and they are replaced with F-waves (saw tooth). 

 The length of the PR interval is not discernable. 

 All QRS complex will look-alike and their length will be less than 0.12 secs. 

 
Figure 2.13 Atrial Tachycardia Signal 

Atrial Tachycardia signal measured by the catheters placed in the LA of the heart is 

shown in Figure 2.13. 
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2.5 Current State of the Art 

Initial research on AF started with development of signal processing techniques to 

distinguish AF and atrial flutter [10], identify AF among several other rhythms [11]. 

Atrial activation during AF had for a long time been described as random, with no 

particular pattern. Hence, time domain analysis of AF signals was found to be difficult. 

So, researchers employed frequency domain analysis to characterize the AF signal [12]. 

In most studies, spectral analysis techniques were applied to standard 12 lead ECG 

recordings to obtain atrial fibrillatory rate [13]. Waktare et al suggested to analyze lead 

V1 when standard ECG was used. This is because, the accuracy of frequency analysis 

techniques is strongly based on the availability of largest possible atrial activity in ECG 

signal [14]. As the atrial and ventricular activities occur in a very synchronized way, they 

overlap spectrally. Hence, general filtering techniques cannot extract the atrial or 

fibrillatory signal from the surface ECG. Instead, atrial activity extraction was performed 

using various methods, including source separation methods [15], average beat 

subtraction methods [16] and spatiotemporal QRST cancellation [17]. 

Researchers employing spectral analysis techniques demonstrated that certain regions 

of the atria can have higher activation frequencies than other regions. This suggests that 

these areas may be the drivers that maintain AF. They could be sources of AF and hence 

can be target sites for AF ablation [18]. In a study by Konings et al. [19], the right atrium 

was investigated. Three types (I, II, III) of right atrial activation during AF were 

identified. When the analysis was made on these types, the frequency and irregularity of 

AF increased from type I to type III. Also the incidence of continuous electrical activity 

and reentry became higher from type I to type III, [20].  Many other signal processing 
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techniques such as Time-frequency analysis [21], and Hilbert Huang Transform [22], 

were employed by which the second-to-second variations in fundamental frequency and 

waveform morphology of AF can be studied. 

Most of the past AF signal processing researchers use ECG for diagnosis of AF. Also, 

algorithms for extraction of atrial activity and spectral analysis were applied to ECG to 

find the fibrillation rate. Hence, the current state of research is limited to establishment of 

AF presence or absence. This thesis aims at identifying the source of atrial fibrillation 

through intra-cardiac signals rather than ECG. Compared to ECG, intracardiac signals 

collected by the insertion of catheters into the heart provides better signal efficacy at the 

expense of being more invasive. Intra-cardiac signals are more likely to detect silent AF 

episodes as they are close to atrial tissues. These signals can detect PQ and ST segments 

better that ECG signal. They also avoid the risk of false positive and negative readings. 

Hence in this research, better and more accurate AF data compared to ECG was used to 

analyze the AF signals. 
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CHAPTER 3 

SIGNAL PROCESSING METHODS 

 

3.1 Introduction 

In the past, signal processing techniques were used for ECG analysis to remove noise, 

compress data, and to extract basic features to detect diseases in the heart. Frequency 

analysis was employed to get the periodicity of ECG. Dominant frequency (Chapter 4) 

was used for mapping of AF signals, suggesting a rich diversity of frequency components 

in data. Signal processing plays a very important role for AF source identification. In this 

chapter, FFT, PCA and LDA methods will be presented. The main focus is on feature 

extraction, selection and classification methods.  

3.2 Frequency Analysis 

The intracardiac signals during AF represent multiple fronts of activation occurring at 

the point of recording during a highly disorganized rhythm. The recorded signal is, 

therefore, highly variable in voltage, morphology, and rate and this prevents the 

identification of its different components. Because of these features, methods estimating 

the frequency content of the signals have been the mainstay of signal analysis in AF. 

Basically, the frequency domain offers a way to visualize and describe the complex AF 

signals about their rate and rate of activation without the measure in the time domain 

analysis. Dominant frequency analysis is commonly used to find areas of rapid 

activations, estimation of atrial activation rates [23]. Fast Fourier Transform (FFT) is 
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frequent method used for finding the dominant frequency which is the sinusoidal 

waveform with the highest amplitude. Left to right atrium gradient of frequencies and the 

observation of dominant frequencies in the LA suggest a preferential origin of AF in the 

LA. 

The Fourier transform maps a time series signal into series of frequencies. Discrete 

Fourier Transform (DFT) converts the discrete time domain signal into a discrete 

frequency domain representation while Discrete Time Fourier Transform (DTFT) is 

continuous in frequency domain. DTFT is defined as [24]  
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For a fixed-length time series with N samples this becomes: 
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From the expression for the DTFT shown in equation (3.2), it is clear that calculating 

each term for a real time series requires N multiplications of a real number and a complex 

exponential or 2N multiplications.  Now all, N terms require 2N
 2

 operations which is 

reduced to N
 2

 when we remember the symmetry properties of the Fourier transform. The 

FFT is an optimized algorithm for computing DFT.  The DFT is defined as [25] : 

              
                                (3.3) 

The equation (3.3) is the same transform as defined in equation (3.1), but evaluated at 

N equally-spaced points from ω = 0 to (N-1)2π/N. The frequency units are normalized 

with 2π being the angular sample rate.  When N is a power of 2, symmetries in the 
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transform can be exploited to reduce the computational complexity.  FFT can be 

computed in only N log2N operations when the number of samples is a power of 2 (i.e., N 

= 2
M

 where M is an integer).    

3.3 Filtering and Rectification 

In Digital Signal Processing (DSP), the main purpose of the digital filter is to remove 

the noise and obtain the necessary signal by separating the unwanted components. 

Lowpass, highpass, bandpass and bandstop are commonly used finite impulse response 

(FIR) filters. They are classified based on frequency band specifications. In this thesis, 

bandpass FIR and lowpass FIR filters were used. Low pass FIR filters remove the higher 

frequency and allows only the low frequency components. Band pass FIR filter allows 

only certain band of frequencies by attenuating the remaining frequency components. 

Rectification is to change each waveform into a single positive peak. This is done by a 

squaring operation. The squarer always produces peaks and volleys. The signal after 

rectification will generally have low frequency components. Hence rectifier is generally 

followed by a low pass filter.  

3.4 Principal Component Analysis 

PCA is considered as a covariance regularization technique. Moghaddam and Pentland 

were the first to point out that PCA can be used to compute a Gaussian or regularize one 

if reducing the dimensionality of the data by throwing away some of the principal 

components [26]. In computer vision applications, it is rare that one can compute enough 

principal components to prevent dimensionality reduction. There can only be at most 

N−1 non-zero eigen values for a data set [27]. 

Principal Components Analysis (PCA) is a statistical, multivariate procedure used to 
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reduce the size of the data set while retaining most of the information. PCA rotates the 

data such that the data is projected onto the axes with maximum variances. PCA finds a 

projection of the actual data set onto orthogonal axes contained in the space. By 

employing PCA to set of correlated variables, they are transformed into a set of 

uncorrelated variables. The criteria being that the first axis "contains" the combination of 

uncorrelated variables with maximum amount of variance. The second principal 

component containing maximum amount of variation is obtained on the second 

orthogonal axis. The second principal component is independent of the first principal 

component. Similarly, the next highest variance component is obtained on third 

orthogonal axis. This component is orthogonal and independent to the both the higher 

principal components. The data with minimum variance can be removed with very 

minimal loss of information or actual data. 

The first principal component is the combination of variables that has the highest 

variance. The second principal component has the next largest variance and so-on. The 

second component is independent to the first principal component.  

The basic algorithm for applying PCA is as follows: 

 Step 1. Data acquisition 

 Step 2. Subtract the mean from the original data. This gives us a data with mean 

zero. 

 Step 3. Calculate the co-variance of the obtained matrix 

 Step 4. Calculate the eigenvalues and eigenvectors of the covariance matrix. 

 Step 5. Choose the principal components and obtain the feature vector. The new 

data set can be obtained from this vector. 
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The basic assumption for applying PCA to the signal x is a zero-mean random process. 

The signal x is characterized by the correlation         . The principal components 

of x is obtained by applying PCA which is an orthonormal linear transformation   

                to x, [27] 

                         (3.4) 

Hence, the principal component vector elements which become mutually uncorrelated 

are w                 . The first principal component    is       
  , where the 

vector    is chosen which satisfies the condition  [27] 

    
       

          
                 (3.5) 

is maximized, when       . The maximum variance is obtained when    is 

normalized eigenvector corresponding to the largest eigenvalue of   , as denoted   . 

Resulting variance is [27] 

    
     

                           (3.6) 

where    and the second principal component    should be uncorrelated,    is 

obtained by choosing    as the eigenvector corresponding to the second largest 

eigenvalue of    , and so on until the variance of x is completely represented by w. 

Accordingly, to obtain the whole set of N different principal components, the eigenvector 

equation for    needs to be solved. [27] 

                          (3.7) 

where Λ denotes a diagonal matrix with the eigenvalues          . Since    is 

rarely known in practice, the N × N sample correlation matrix, defined by [27] 

    
 

 
                    (3.8) 
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replaces    when the eigenvectors are calculated in (3.8). The eigenvalue associated to 

the first principal component is much larger than those associated with other components. 

3.5 Linear Discriminant Analysis 

Linear Discriminant Analysis (LDA) is a well-known classification method. LDA finds 

a linear transformation of the classes given and maximizes the class variation. It can also 

be used for dimensionality reduction that project high-dimensional data onto a low 

dimensional space where the data achieves maximum class separability [Duda et al. 

2000; Fukunaga 1990; Hastie et al. 2001]. The derived features in LDA are linear 

combinations of the original features, where the coefficients are from the transformation 

matrix. The purpose of LDA in our thesis is to classify AF signals from four pulmonary 

veins based on a set of features that describe the signals from four pulmonary veins. PCA 

can be used to extract features and LDA finds the subspace that best discriminates the 

given 4 groups.  

 In LDA, the dependent variable is the group (1, 2, 3, 4) and the independent 

variables (X) are the object features (Explained in Chapter 4). The assumption for using 

LDA is, the groups are linearly separable. The groups are said to be linearly separable if 

the groups can be distinguished by a linear combination of features that describe the 

objects. The classifier is a plane, if there are three features. In this thesis, five features 

describe the groups, so the separator is a hyper plane.  

 If there are many groups, Bayesian rule is to used minimize the total error in 

classification. This is done by assigning the object to one of the groups which has the 

highest conditional probability. This means   
 

 
     

 

 
  where i and j are two different 
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groups. But, it is very difficult to find   
 

 
 .   

 

 
  is defined as probability of “i- class” 

given the measurement. But we can find the probability of each feature when the 

probability is given which is   
 

 
 .  Further we can use Bayes theorem to find   

 

 
 . 

Bayes equation:   
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Hence for the condition   
 

 
 .   

 

 
   to be true, 

   
 

 
           

 

 
                                     (3.11) 

In real time, it is very usual that data will have many classes and dimensions of 

measurement. Hence, the computation of conditional probability   
 

 
  requires a lot of 

data. So in practicality, we assume that the data come from Multivariate Normal 

distribution. 

Simplifying it further, we get the LDA equation as 

       
    

   
 

 
   

    
             .        (3.12) 

Equation 3.12 gives a function to assign an object   to group   that has maximum value 

of        

 The optimal projection or transformation in classical LDA is obtained by maximizing 

the ratio of the between-class variance to the within class variance as described in 

equation (3.13). 

      
     

     
 ,              (3.13 ) 

where w is the transformation matrix, Sb and Sw are the between-class variance and 

within-class variance, respectively and t represents the transpose operation. 
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CHAPTER 4 

AF SOURCE IDENTIFICATION  

 

4.1 Introduction 

In this thesis, statistical recognition methods were used for description and 

classification of AF signal obtained from four pulmonary veins. The basic block diagram 

for identification of source of AF is shown in Figure 4.1. 

   

                                                              

                                 (f1- f8) 

                  (f1- f7)  

 

Figure 4.1 Block Diagram for Identification of Single Source of AF. 

4.2 Data Acquisition Protocol 

Data was collected from patients referred to the Cardiology Arrhythmia Service or 

Cardio Lab at James Haley Veteran Affairs for RFA of AF. During standard RFA 

procedure, a number of recording catheters are positioned inside the patient‟s heart. as 

shown in Figure 4.2. A catheter shown in Figure 4.3 is defined as small plastic tube that 

can be inserted into the body cavity, duct or vessels.  
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Figure 4.2 Catheter Placement for Data Acquisition 

 

Figure 4.3 Catheters 

The catheter in the coronary sinus (a vein in the back of the heart running along the 

inferior border of the LA) will be selected for study data recording because of its 

stability. The catheter inserted into the coronary sinus is stable as there will not be any 

movement in this catheter during the heartbeat. By considering the LA into four 

segments, the focal activation of AF triggers was stimulated electrically by artificially 

pacing the method at each of these segments. The coronary sinus recordings during 

Coronary Sinus 
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pacing from these different sites will be analyzed using an algorithm with the purpose of 

identifying the direction of provenance of the activation and therefore the site of pacing. 

The AF signals acquired before the ablation procedure were bandpass filtered with 30-

400 Hz and sampled at a frequency rate of 977 Hz by Cardio Lab in VA hospital. The 

data was recorded continuously from catheter. This data collected was stored in digital 

format and analyzed off-line. In this thesis, AF data was recorded from 18 patients. In all 

patients, the AF was stimulated at each pulmonary vein and data was measured by 

catheters. 

 The inracardiac data measured by the catheters is shown in Figure 4.4 

 

Figure 4.4 ECG and Intra-cardiac Data 
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Figure 4.4 contains signals from lead III and V1 which are same as in ECG. Further, it 

contains RA and CS which are data measured by the catheters when placed in right 

atrium and left atrium, respectively. ABL gives us measured signal from the ablation 

catheter. Ablation catheter is used to measure the signals as well as to burn the tissues 

during RFA. The intracardiac signals measured by catheters contain much more atrial 

activity compared to that of the ECG. Hence AF can be analyzed in a better way with 

intracardiac signals compared to ECG signal.  

4.3 Preprocessing 

 The following are the preprocessing steps performed in this research. Consider the 

following notations. Let x be a pattern vector of dimension N, x = [x1, x2, ….xn]. The set 

of original features is the component xi of x.  Sets of features can be compared only when 

all have the same scales. Hence during preprocessing, the AF signals were normalized. 

The following scaling of the data is generally used in such cases: 

   
                , 

where     is the mean and     is the standard deviation of    . 

4.4 Feature Extraction  

Feature extraction is a way of finding the most informative set of features of the signal. 

Finding the important feature vectors is the most common way of data representation for 

classification problems. Each feature is an attribute obtained from a quantitative or 

qualitative measurement [28]. Then each frame of data is represented by these set of 

features. 

Feature extraction is a way of simplifying the amount of data required to describe a 

large set of data accurately. The process is to extract features that characterize the signal 
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and they can be temporal-domain features, spectral domain features and/or parametric 

features [29]. 

The features that were extracted in this thesis are shown in Table 4.1 

Table 4.1 Features Extracted 

f1 Dominant frequency at each pulmonary vein. 

f2 Frequency at which highest amplitude is obtained in Histogram. 

f3 Frequency at which second highest amplitude is obtained in Histogram. 

f4 Frequency at which the amplitude is 20% of the highest amplitude. 

f5 - f8 Normalized power. 

 

4.4.1 Dominant Frequency 

Generally, frequency domain analysis offers an alternative way to visualize AF signals. 

Through frequency analysis, we can estimate the activation rate and regularity without 

measuring the time domain intervals. The Fourier transform is one of the frequently used 

transforms for frequency analysis. FFT is a fast algorithm to compute DFT. As described 

in Chapter 3, all continuous signals are decomposed into sum of weighted sinusoidal 

functions using FFT and thereby converting any discrete time signal to frequency 

spectrum. FFT provides a spectrum with a range between 0 Hz and half the sampling 

rate. The most common application of frequency domain analysis is finding the dominant 

frequency. Dominant frequency analysis is a powerful tool for estimation of atrial rate in 

AF. It is also used to detect rapid activations areas and changes in the rate [30]. The 

dominant frequency is defined as the frequency of the sinusoidal waveform with the 

highest amplitude. Currently, researchers of AF believe that dominant frequency of AF 
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signal will be in the range of 4 to 9 Hz [31]. Dominant Frequency is calculated by using 

the following method whose block diagram is shown in Figure 4.5 [32].  

 Band pass filtering at 40-250 Hz. Each signal (intra cardiac signals) was filtered 

with a tenth order zero phase Butterworth filter. 

 Rectification 

 FFT 

 Low Pass Filtering at 20 Hz 

   

 

 

 

 

Figure 4.5 Block Diagram to find Dominant Frequency. 

Band pass filtering is done to emphasize the signal corresponding to the local 

depolarization. FFT was used to obtain the power spectrum of the intracardiac signal at 

each recording site. Rectification is the critical step that will transform the biphasic 

waveform to a monophasic waveform. Low pass filtered at 20 Hz since the range of AF 

is around 4 to 9 Hz. The AF signal and spectrum with and without rectification are shown 

in Figures 4.6 and 4.7, respectively.  
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Figure 4.6 AF Signal before and after Rectification 

 
Figure 4.7 AF Signal Spectrum before and after Rectification 
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The gradient of frequencies from LA to RA confirmed that the origin is generally from 

LA. In clinical practice, AF is generally believed to have an origin from either one of the 

four pulmonary veins. The dominant frequency of AF signal and NSR signal is shown in 

Figures 4.7 and 4.9, respectively. The dominant frequency (f1) of right superior, right 

inferior, left superior, left inferior pulmonary veins were found to be 5.307, 4.293, 6.053, 

and 4.92 Hz respectively (Figure 4.10). 

 
Figure 4.8 Dominant Frequency of AF 
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Figure 4.9 Dominant Frequency of Normal Sinus Rhythm 

 

Figure 4.10 Dominant Frequency at Each Pulmonary Vein 
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4.4.2 Frequency Distribution 

A histogram is a graphical representation of data analysis for summarizing the 

distributional information of a variable. It gives us the frequency distribution which is 

represented by rectangles or bins whose widths represent class intervals of frequencies. 

The areas of these rectangles are proportional to the corresponding frequencies. The 

number of occurrences of the variable is calculated for each bin. In this work, the 

histogram of band pass filtered AF signal was constructed with 100 bins. In AF, the atrial 

activity and ventricular activity is found to be in the ratio of 4:1. Hence this atrial activity 

can be found with the bins of highest amplitude on the histogram.   

 

Figure 4.11 Histogram of AF Signal at each Pulmonary Vein 

From the histogram of the filtered signal, three features were selected for the 

classifying the signal originating four pulmonary veins. They are as follows: 

 Frequency at which highest amplitude is obtained in the histogram. 

 Frequency at which second highest amplitude is obtained in the histogram  

 Frequency at which the amplitude is 20% of the highest amplitude.  
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 The histograms when AF is stimulated at right superior, right inferior, left superior, 

left inferior pulmonary veins are shown in Figure 4.11. 

4.4.3 Normalized Power 

This section explains how the normalized power is used to classify the AF signals 

obtained from the four pulmonary veins. A signal is stimulated from one of the 

pulmonary vein and data is collected at coronary sinus (CS) through CS catheter as 

explained in the data acquisition protocol. The feature for classifying AF signals is 

extracted by calculating the power loss as the signal travels from origin (stimulated 

pulmonary vein) to the destination or final point (CS catheter). The destination point is 

varied by moving the catheter to other pulmonary veins other than the stimulated 

pulmonary vein. Initially, power of the stimulated signal along with power of the signal 

captured at CS catheter was calculated. Further, the power loss of the signal as it travelled 

from stimulated pulmonary vein to CS catheter can be found by subtracting the power of 

signal at CS from the power at the stimulated pulmonary vein. Then, the destination 

catheter is moved to other pulmonary veins to collect the signal at each pulmonary vein 

(other than the stimulated pulmonary vein). Hence, we can calculate the power at each 

pulmonary vein, and also the power loss of the signal. Further, each power loss obtained 

is normalized by dividing with the total power loss of the signal. This gives a set of four 

features f5 to f8. 

Example: Assume the signal is stimulated at Right Superior Pulmonary Vein (PV1). 

The power of the signal is calculated by measuring the average power under the power 

spectral density curve and assigned as P1. This signal travels through LA and is captured 

at CS catheter. Let the power of the component measured at CS catheter be Pc1. Power 
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loss as the signal travelled from PV1 to CS catheter is calculated. This can be found by 

subtracting Pc1 from P1. Let the power loss be PL1. The power of the signal captured at 

other pulmonary veins as the signal travels from stimulated vein was also calculated (P2, 

P3, P4). Further, the power loss from these pulmonary veins to CS catheter was calculated 

(PL2, PL3, PL4). In real time, every person will not have same heart beat or stimulating 

energy. So the power loss is normalized by PL1/( PL1+ PL2+ PL3+ PL4). The power loss as 

the AF signals which are stimulated from P1, P2, P3, and P4 to CS catheter were found to 

be 3.2, 4.3, 1.6, and 1 respectively. This feature was found to be different for all 

pulmonary veins and same almost for all patients with little variation.  

4.5 Feature Reduction and Classification 

Assume an object is an AF signal obtained from one of the pulmonary vein. In this 

research, LDA is used to classify objects into one of four groups based on a set of 

features that describe the objects. Before classifying the objects, it is important to 

determine a set of features that can best determine a group. It is also equally important to 

find which classification rule or model is best to separate the given groups. These give 

rise to methods called feature selection and classification. Classification of objects can be 

done in two methods: parametric and non-parametric methods. 

Parametric methods rely on a probabilistic model of the process of generating the 

observations in which probability distributions are described in parametric form. 

Learning is, in this case, the process of estimating the model parameters on the basis of 

the available observations.  

There are two types of non-parametric methods. One of these methods determines the 

probabilistic model that has generated the data. These methods do not assume a 



43 
 

functional description of this model. Histogram based methods come under this category, 

whereas, some non parametric methods are based on heuristics. These methods try to 

minimize a criterion that is dependent on the task instead of directly estimating a model 

for the data generation. LDA and support vector machines (SVM) are examples of this 

category. 

The total feature set [f1, f2 …. f8] is used to classify the signal originated from the four 

pulmonary veins. Apart from these features, some other features like mean, standard 

deviation of R-R (R is a part of ECG signal) intervals, and number of zero crossing points 

were observed. These features were found to be same in the signals from all 4 pulmonary 

signals. Hence, these features were not applied to classification. Only features (f1 to f8) 

were applied to PCA. The first principal component contains nearly 52% of the variance. 

The first component and second component together achieved 74%. Further, as the 

principal components were added, the variance increased to 81%, 87%, 92%, 96%, 99% 

and 100%. Data compression can be made by discarding the last feature vector or last 

principal component. This can be achieved by losing only 1% of the variance. Hence 

considering the first seven principal components, LDA was applied to classify the AF 

signals obtained from 4 pulmonary veins. Amongst the AF data recorded from 18 

patients, features extracted from 10 patients were used to train the LDA model. While 

classifying the other 8 patients, LDA was found to have less classification error compared 

to that of Quadratic Discriminant Analysis (QDA) as shown in Table 4.2. The algorithm 

was tested clinically on both stimulated and spontaneously generated AF and the source 

was correctly found. The classification errors for both right and left inferior veins were 

found to be high as the frequency distributions were similar. 
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Table 4.2 Classification Error Comparison 

Pulmonary 

Vein 

Right 

Inferior 

Right 

Superior 

Left  

Inferior 

Left 

Superior 

Classification 

Error of LDA 

 

8.1% 

 

5.4% 

 

7.6% 

 

4.1% 

Classification 

Error of QDA 

 

12.5% 

 

9.1% 

 

13.0% 

 

6.2% 

  

4.6 Transition of AF during RFA 

 In clinical practice, during RFA the AF signals changes to Atrial Tachycardia and atrial 

further to atrial flutter and finally it goes into normal sinus rhythm. This study was made 

to observe whether the flutter and tachycardia were induced later during the process or 

whether they were present from the beginning. The main findings of this were as follows: 

The spectral components were observed at all different stages of RFA. Some spectral 

components were found to be similar in all the three AF, AT and AFL. The spectrum of 

AF and atrial flutter along with their matched components of AF and atrial flutter are 

shown in the Figures 4.9 and 4.10, respectively. The dominant frequency was found to be 

decreasing during the process of RFA but the components of the dominant frequency 

were not completely removed. The amplitude or energy of the signal was found to be 

reduced by a larger extent. This is shown in Figures 4.12 and 4.13. 
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Figure 4.12 Dominant Frequency of AF before RFA 

 

Figure 4.13 Dominant Frequency of AF after RFA 
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resolution. To overcome this method Hilbert Huang Transform (HHT) was used for AF 

signal analysis [33]. 

4.6.1 Methodology of HHT 

HHT has two steps. The first step is to decompose the signal using Emperical Mode 

Decomposition (EMD). This gives us intrinsic mode functions (IMFs). Further HHT is 

applied to the obtained IMF‟s. This transform is particularly applicable for non-linear and 

non-stationary signals. Huang et.al [33] defined IMFs as a class of functions that satisfy 

two conditions:  

 In the whole data set, the number of extrema and the number of zero-crossing must 

be either equal or differ at most by one. 

 At any point, the mean value of the envelope defined by the local maxima and the 

envelope defined by the local minima is zero.  

In the physical world, most signals are not IMFs. So, HHT cannot be applied to 

original data to get the higher resolution frequency content. Hence, the data should be 

decomposed into IMF components. EMD process is actually a sifting process, which 

operates as follows:  

 Identify all the local extrema of the given atrial activity, then connect all the local 

maxima by a cubic spline line. Repeat the same procedure for local minima. 

 The difference between the x(t) and mean of the above envelopes gives us the first 

IMF. 

 The above two steps are repeated till the IMF‟s condition gets satisfied. The 

sifting is considered to be complete when either of the following two conditions is 
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satisfied: The mean squared error, between two consecutive IMFs, is smaller than 

a predefined stopping criteria or the residue becomes monotonic. 

Consider the data x(t). The mean of the upper and lower envelope is   . The first IMF 

is defined as IMF1=        . [33] 

HHT is applied to IMf‟s. HHT is described by the following equation, 

         
 

 
     

    

   

 

  

                                                        

where PV is principal value of singular integral. When HHT is applied to all IMFs 

generated, the analytical signal can be defined as  

                                               .    (4.2) 

After the HHT the original data can be expressed as real function shown in equation 4.3 

                         

 

                                            

The residue is left out as it is a monotonic function. The empirical decomposition of the 

AF signal is shown in the Figure 4.14. The first component represents the shortest time-

scale or high frequency components whereas the last one represents the largest time scale 

or lower frequency components. Hence, the signal is decomposed in time domain giving 

us the components with decreasing order of frequency. In this process, the last 

component c6 (in Figure 4.14) with lesser frequency was found similar to that of the NSR 

into which the AF has been converted.  
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Figure 4.14 IMFs of AF Signal Obtained using EMD 

When the signal converts from flutter to tachycardia, the tachycardia was also seen in 

atrial flutter. Hence, we hypothesize that atrial flutter and atrial tachycardia signals were 

present during the AF. Hence Emperical Mode Decomposition gives us an very important 

observation regarding the conversion of AF to atrial flutter and atrial tachycardia.  

Figure 4.15 shows better resolution of signals compared to that of the FFT shown in the 

Figure 4.7. Figure 4.16 shows the analytical signal and its IMF component. When the 

HHT is applied to IMF‟s, the instantaneous frequency and amplitude, both the function of 

instant time, are calculated, and reflect the various features of atrial activity of patients 

with AF.  HHT provides better time and frequency resolution. It also enables us to 

measure the relationship between peak of the spectrum peak and AF mechanism. Hence, 
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Figure 4.15 Time-Frequency-Energy of AF Signal using HHT 

Figure 4.16 IMF and Analytical Signal 
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We hypothesize that we have developed a multistage algorithm that is able to 

deconstruct the endocardial recording of atrial fibrillation activity by identifying its 

components. The comparison of the FFT and HHT is shown in Table 4.3. 

 

Table 4.3 Comparison of HHT and FFT 

 FFT HHT 

Basis a priori, theory based Adaptive, Emperical 

Results  Energy- Frequency Energy-Time-Frequency 

Non-Linear No Yes 

Non Stationery No Yes 

Number of Computations N logN More than 9N 

Time Taken for simulation Very Less (milli seconds) More (15 minutes) 

Spectral Resolution Acquires 0.01Hz.  Acquires 0.001Hz. 

Time Domain Information No Yes 

 

4.7 Data Analysis 

4.7.1 Dominant Frequency and Ventricular Activity 

In this section, the dominant frequency and its dependence on other factors will be 

explained. The intracardiac activity collected from the coronary sinus is located between 

the left atrium and left ventricle. Hence, the sensors on catheters collect both the atrial 

activity and ventricular activity.  Dominant frequency is calculated to find the atrial 

activation rate. Hence to calculate the dominant frequency, ventricular activity must be 

removed. Figures 4.17 and 4.18 show the effect of ventricular activity on the dominant 
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frequency. As the ventricular activity always has a higher amplitude compared to atrial 

activity, the signal can be clipped a certain amplitude to get atrial activity.  

  

Figure 4.17 AF Signal with Ventricular Activity, Dominant Frequency. 

  

Figure 4.18 Dominant Frequency with AF Signal‟s Ventricular Activity Clipped. 
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clinically by the fact that the fibrosis tissues are present more in the LA.  Fibrosis tissues 

are assumed to be the main cause of the AF. The amplitude was also found to be reduced 

in RA. As signal travels from LA to RA, decrease in frequency and energy was observed. 

The gradient of frequencies from left to right atrium as shown in Figures 4.19 and 4.20 

confirm that the origin of AF is from the left atrium. 

 
Figure 4.19 Dominating Frequency of AF in RA 

 
Figure 4.20 Dominating Frequency of AF in LA 
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4.7.3 Directionality 

 During AF with one source or in normal sinus rhythm, the signals travel in a particular 

direction with some delay (Figure 4.21).  

Figure 4.21 Directionality of AF in LA 
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The main goal of this research is mainly aims to develop methodology and algorithm 

for finding the source of the AF. Clinically, the approach of Radio Frequency Ablation to 

AF has always been to target the four Pulmonary Veins in the LA. Hence the main 

objective of is to characterization and classify signals from the four pulmonary veins in 

LA using frequency domain analysis and statistical pattern recognition techniques. The 

classification of AF signals obtained from pulmonary veins was done based on dominant 

frequency, frequency distribution and normalized power.  

The dominant frequency of PV1, PV2, PV3, and PV4 were found to be 5.307, 4.293, 

6.053, and 4.92 Hz, respectively. The normalized power loss for PV1, PV2, PV3, and 

PV4 were found to be 0.32, 0.43, 0.16, and 0.1 micro watts respectively. The histogram 

was already shown to be different. These features were applied to PCA. The first 

component generated by PCA accounts for maximum variability in the data, and each 

succeeding component accounts for as much of the remaining variability as possible. In 

our results, the first principal component was found to have nearly 52% of the variance. 

The first component and second component together achieved 74%. Further, as the 

principal components were added, the variance increased to 81%, 87%, 92%, 96%, 99% 

and 100%. Data compression can be made by discarding last component. This can be 

achieved by losing only 1% of the variance.  Further, LDA was applied to classify the 

signals obtained from the four pulmonary veins.  
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

 

5.1 Conclusion 

In this research work, AF signals were collected from the bipolar catheter placed at 

coronary sinus during ablation of AF. These signals were specially recorded for the study 

under specific protocol to understand the characteristics of AF. Forming the protocol to 

collect data and understanding the data for the study was one of the main parts of this 

research work. Left to right atrium gradient of frequencies and the observation of 

dominant frequencies in the LA suggests a preferential origin of AF in the LA. Clinically, 

the AF is assumed to be originated from pulmonary veins. Hence, a novel methodology 

has been developed to classify the signals originated from all four pulmonary veins. In 

this thesis, we hypothesize that we are able to identify direction of their activation wave 

front and therefore their anatomical location or site of activation. Extensive research has 

been carried out in the development of synchronous and asynchronous directional. We 

also hypothesize that we have developed an algorithm able to deconstruct the endocardial 

recording of atrial fibrillation activity by identifying its component and locate 

anatomically the origin of these components. 

5.2 Future Work 

This research work presents promising results that can be used in the future for 

developing an algorithm to identify multiple sources of AF. These results are only 

preliminary and need to be confirmed in clinical practice. In future, the initial signal of 
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AF can be deconstructed to ascertain if the organized rhythm observed during ablation is 

identified as one of its components. Most of the ablations are performed during 

spontaneous or induced AF. As atrial tissue is ablated is to observe a reorganization of 

fibrillation into a more organized rhythm and finally, as ablation is directed to the sources 

of these rhythms return to sinus rhythm. 

Our hypothesis is that these rhythms are the triggers of AF. Their fast stimulation of 

atrial tissue or possibly the combination of two or more sources induce break down of 

regular activation into disorganized waves rendering the resultant signal of AF 

impossible to analyze into their initial components. These components are true initiator of 

AF and we speculate that, elimination of these sources will terminate the AF and 

potentially cure it. 

Further, Blind source separation (BSS) algorithm can be used to obtain the signal from 

each source. The number of sources will be applied randomly to the BSS algorithm.  

Atrial flutter is assumed to be one of the signals present in the AF signal. Hence when 

one of the signals obtained from BSS matches/coincides to the atrial flutter, the number 

of sources may be confirmed. Hence the intra cardiac signal is modeled with respect to 

the number of sources. Finally, the number of sources and signals can be obtained. Hence 

treating them as a single source the linear discriminate analysis can be applied to find out 

the number of sources. 
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