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Abstract

Cap-and-trade is the most discussed CO2 emissions control scheme in the U.S. It is a

market-based mechanism that has been used previously to successfully reduce the levels

of SO2 and NOx emitted by power generators. Since electricity generators are responsible

for about 40% of the CO2 emissions in the U.S., the implementation of CO2 cap-and-

trade will have a significant impact on electric power generation systems. In particular,

cap-and-trade will influence the investment decisions made by power generators. These

decisions in turn, will affect electricity prices and demand. If the allowances (or emission

permits) created by a cap-and-trade program are auctioned, the government will collect

a significant amount of money that can be redistributed back to the electricity market

participants to mitigate increases on electricity prices due to cap-and-trade and also, to

increase the market share of low-emission generators.

In this dissertation, we develop two models to analyze the impact of CO2 cap-and-

trade on electric power generation systems. The first model is intended to be used by

power generators in a restructured market to evaluate investment decisions under different

CO2 cap-and-trade programs for a given time horizon and a given forecast in demand

growth. The second model is intended to aid policymakers in developing optimal CO2

revenue redistribution policies via subsidies for low-emission generators.

Through the development of these two models, our underlying objective is to provide

analysis tools for policymakers and market participants so that they can make informed

vii



decisions about the design of cap-and-trade programs and about the market actions they

can take if such programs are implemented.

viii



Chapter 1: Introduction

In the last ten years, serious concerns regarding the climate change phenomenon have

spurred the implementation of emissions control schemes, particularly for CO2, in the

U.S. and countries around the world. A CO2 emissions control scheme will significantly

impact the future power generation landscape in the U.S. since the power sector is respon-

sible for a sizable share (about 40%) of the CO2 emissions [1].

The two most commonly debated CO2 emissions control schemes are a cap-and-trade

program and a carbon tax. In the past, cap-and-trade programs have been used effectively

in the U.S. to limit NOX and SO2 emissions [2]. More recently, the European Union, New

Zealand, and Australia, have implemented or considered the implementation of CO2 cap-

and-trade programs [3–5]. In the U.S., several states in the Northeast have signed on to

the Regional Greenhouse Gas Initiative (RGGI), a cap-and-trade program for CO2 emis-

sions. California is also about to implement a cap-and-trade program [6]. A CO2 cap-and-

trade program, in its most general form, will establish a cap for the total quantity of CO2

emitted in a geographic region. A certain number of pollution permits or allowances, con-

sistent with the cap, will then be issued. Individuals and companies will need to procure

allowances in order to emit CO2 and avoid fines. If allowances are auctioned, part of the

revenue raised can be recycled to households and/or used to subsidize green generation

technologies. Allowances can be traded among individuals and companies. In contrast, a

carbon tax scheme levies a tax on the production, distribution, and use of fossil fuels. The

government sets a price per ton of carbon emitted, and the tax is expected to encourage

1



the utilities, businesses, and individuals to reduce the use of carbon-intensive energy. The

revenue raised from the tax can also be recycled. In this dissertation, we focus on cap-

and-trade programs though this should not be interpreted as an endorsement of cap-and-

trade programs over carbon tax programs.

In Figure 1.1, the relationship between a cap-and-trade program and carbon revenue

redistribution (recycling) can be observed in the context of reducing CO2 emissions in the

power electricity sector.

Figure 1.1: Framework for Reducing CO2 Emissions from the Power Electricity Sector

1.1 Cap-and-Trade Overview and History

Cap-and-trade is a market-based tool designed to control and reduce externalities,

such as greenhouse gas emissions, at a reduced cost. It is an approach that has been long

favored by economists as an alternative to command-and-control government regulation.

Due to its market-based nature, it allows polluting companies to choose: a) if they will

reduce greenhouse gas emissions (or pay penalties for failing to do so) and b) how emis-

sions reductions will be achieved (as opposed to the government telling the companies

how).
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As noted earlier, there are three key elements in a cap-and-trade program: cap, al-

lowances, and trade. Successful companies under a cap-and-trade regime will either re-

strict output or switch to a cleaner fuel, thus reducing the number of allowances they

need. This reduction will allow these successful companies to sell allowances to less

efficient companies, obtaining additional profits. Since the number of allowances issued

is commensurate with the size of the cap and the penalties for failing to surrender enough

allowances can be hefty, it is expected that the total number of emissions will fall below

the cap.

The theoretical work that serves as basis for cap-and-trade was developed by the British

eco- nomist Arthur Cecil Pigou (1877 - 1959), who introduced the concept of externalities

i.e., costs that are not included in the price of a product. Pigou proposed that companies

should be responsible for these costs. It was not until the 1980s that cap-and-trade was

seriously considered as a practical means for controlling externalities. Under President

George H. W. Bush, a group of conservative economists and environmentalists, proposed

a cap-and-trade program to reduce the emissions of pollutants responsible for acid rain,

NOX and SO2. The program was implemented as part of the Clean Air Act of 1990. After

20 years of its implementation, the program had reduced emissions of NOX and SO2 by

half, at a reduced cost for utilities, and also has generated health benefits for the popula-

tion.

Despite this success story, the current economic and political situations in the U.S.

and several countries have proven to be formidable obstacles for the implementation of a

similar program to reduce greenhouse gas emissions, CO2 chiefly among them.

It may be noted that in the rest of this document we will focus only on power gen-

erators as the entities potentially subjected to a CO2 cap-and-trade program, despite the

fact that other economic sectors, such as transportation, could also be regulated by the

program.
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1.2 Cap-and-Trade Design Features

In addition to the concepts of cap, allowance, and trade, cap-and-trade is a framework

comprising multiple features. These features are an important source of debate among

policymakers that are involved in the design of cap-and-trade programs. The choices

made on each of these features are likely to play a significant role in the environmental

effectiveness of the program as well as on the economic consequences of the program’s

implementation.

1.2.1 Point of Regulation

The debate about the point of regulation in a cap-and-trade program is mainly cen-

tered on upstream and downstream approaches. In the upstream approach, a cap is placed

on primary fuel distributors, whereas in the downstream approach a cap is placed on

fuel users, particularly large-point sources such as electricity generators. If an upstream

approach is considered, electricity generators do not need to procure allowances to pro-

duce electricity. However, they will face higher production costs since the primary fuel

distributors will pass the allowance cost on to them. On the other hand, in a downstream

approach, the generators will have to procure allowances in order to produce electricity.

In [7], a comparison between the upstream and downstream approaches in the electricity

markets context can be found.

1.2.2 Auction vs Free Distribution of Allowances

In a downstream approach, a free distribution of allowances can result in large gen-

erator profits since generators will pass on to the consumer the market price of the al-

lowances. For example, under the European Union Emissions Trading Scheme, the UK
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electric sector received free allowances based on historic emissions and enjoyed wind-

fall profits of £500 million in the first year of the program [8]. On the other hand, if all

allowances are auctioned right from the beginning of the program, generators can be

negatively impacted due to new financial and administrative burdens. Most of the cap-

and-trade programs implemented or under consideration in the U.S. include the adoption

of a hybrid approach with a gradual increase in the proportion of allowances auctioned.

For instance, the Regional Greenhouse Gas Initiative (RGGI) mandates the auction of

at least 25% of the allowances using a uniform price auction mechanism [9]. If all or a

portion of the allowances are auctioned, generators will have to develop allowance bid

strategies for the auction. A study comparing the above allowance allocation approaches

in the electricity markets context is presented in [10].

1.2.3 Gradual Stringency of Cap

All CO2 cap-and-trade plans include this feature, yet there is no agreement as to how

stringent the cap reduction should be. For instance, the EU ETS has reduced the cap for

the 2008-2012 period by 7% [3]. RGGI is considering a fixed cap for the period 2009-

2014 before initiating an emissions decline of 2.5% per year for the years 2015 through

2018 [9]. This is a key feature since inadequate cap stringency levels can lead to over-

compliance but failure to achieve environmental goals [11].

1.2.4 Banking

If banking of allowances is permitted, generators will be able to use allowances for

later periods. Thus, generators with excess allowances at the end of a period will have two

alternatives: sell them in a secondary market or keep them for the later periods. Banking

offers interesting possibilities to generators, particularly in stringent programs, since the
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value of banked allowances increases with the stringency of the cap (this also stimulates

early emissions reductions) [12].

1.2.5 Safety Valve

A safety valve has been proposed by economists with the objective of limiting the

potential volatility in the price of allowances. In this way, the cost of meeting the cap can

be limited [13]. Critics of including safety valves in cap-and-trade programs argue that

they are intended to relax emission target reductions by limiting the cost of emissions.

1.2.6 Revenue Recycling

If all (or, a portion) of the allowances are auctioned, the collected revenue may be

redistributed by the government back to consumers, low-emission generators, and other

market participants. Several economists have argued in favor of this redistribution. We

formulate a mathematical model to obtain carbon revenue redistribution strategies in

Chapter 4.

1.3 Features of Implemented CO2 Cap-and-Trade Programs

Table 1.1 presents a compilation of the significant attributes of some proposed and

implemented cap-and-trade programs in the U.S. and abroad. The columns titled “2020

Reduction Target” and “2050 Reduction Target” are included to illustrate the level of

stringency of each cap-and-trade design. From the table, it can be clearly seen that there

is no standard cap-and-trade design i.e., the setting of each cap-and-trade attribute varies

from design to design.
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Table 1.1: Attributes of Some Implemented and Proposed Cap-and-Trade Designs

Design Point of Allowances 2020 Reduction 2050 Reduction Banking Revenue Safety
Regulation Auctioned Target Target Allowances Recycling Valve

Waxman - Downstream/ 15% Cut 17% using Cut 83% Unlimited Yes. No $10 floor
Markey Upstream 2005 baseline details

Boxer - Downstream/ 25% Cut 20% using Cut 83% Unlimited 15% of $11 floor
Kerry Upstream 2005 baseline revenue

Cantwell - Upstream 100% Cut 20% using Cut 83% Limited 75% back to $7 floor
Collins 2005 baseline consumers $21 ceiling

Kerry - Lieber- Downstream 15% Cut 17% using Cut 80% No info Yes. Up to Yes. No
man Graham 2005 baseline each state details

EU ETS Downstream 0% Cut 21% using Cut 80% Unlimited No revenue No
2005 baseline

CPRS Upstream Majority Cut 5% using Cut 60% Unlimited Yes. No A$40
2000 baseline details ceiling

RGGI Downstream 25% or more Up to each State Up to each State Unlimited Yes. Up to $7 or $10
e.g., MD cuts e.g., MD cuts each state ceiling

50% (2006 baseline) 90%

EU ETS: European Union Emissions Trading Scheme, CPRS: Carbon Pollution Reduction Scheme (Australia), RGGI: Regional
Greenhouse Gas Initiative
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The existence of multiple cap-and-trade designs (or, in other words, the lack of a

standard design) is one of the main motivations for the models presented later in this

dissertation.

1.4 Research Contributions

The notion of using a cap-and-trade program to control the amount of greenhouse

gases in the atmosphere is relatively recent. As such, there are several open research ques-

tions about the design of these programs and the resulting impact of their implementation.

This dissertation presents models that can be used to obtain answers to two of these ques-

tions. These models can be identified as the main contributions of the dissertation. The

two questions that we address with our models are:

• What would be the impact of a CO2 cap-and-trade program (with a particular de-

sign) on the capacity expansion decisions of electricity generators in a restructured

power market?

• How should the revenue collected through selling allowances in a cap-and-trade

program (or via a carbon tax) be redistributed back to market participants to miti-

gate electricity price hikes and to increase low-emission generation?

The game theoretic model we present in Chapter 3 addresses the first question. The

model considers multiple electricity generators, closed-loop information structures, and a

planning horizon. Each generator considers a set of multiple expansion plans with multi-

ple features, namely technology, location, and construction lead-times. This is in contrast

to previous models in the literature that only include technology and location. The expan-

sion plans are evaluated based on the profit they accrue to the generators in the electricity

and allowance markets. We model the allowance market considering players that submit

strategic bids to an auction whose settlement provides the allowance allocation. Previous
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capacity expansion models in the literature have assumed the allowance market as per-

fectly competitive. We model the electricity spot market considering the strategic bids

of players and the network transmission constraints. The consideration of transmission

contraints is absent in previous capacity expansion models (in both, those that do not

consider the impact of cap-and-trade and in those that do consider it) with the exception

of [14]. We acknowledge that there is a trade-off in considering all of the above features:

the state-space of the variables in our model is discrete and thus, our solutions are local

equilibria (with respect to the other elements in the state-space).

The nonlinear nonconvex optimization model we present in Chapter 4 addresses the

second question. This model is new since most of the literature on carbon revenue redis-

tribution is addressed from a micro-economics perspective, without specific considera-

tion of power generators and the power network. We believe it is important to consider

the generators and the network since the expected electricity price increases due to cap-

and-trade will depend on the location of generators and consumers in the network (i.e.,

consumers located in regions that depend more on coal-based generators will experience

higher average electricity prices). In addition, we believe that cap-and-trade alone will not

be sufficient to reduce emissions from the electricity sector; to achieve emissions reduc-

tions at a reduced cost for the economy, an increase in market share of low-emission gen-

erators will also be required. The novel carbon revenue redestribution model we develop,

thus, has a twofold objective, mitigating electricity price increases due to cap-and-trade

and increasing the market-share of low-emission generators. The revenue redistribution in

our model is achieved via subsidies that are allocated to low-emission generators taking

into consideration their R & D learning curves. To our knowledge, a model with these

characteristics has not been developed before in the literature.
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1.5 Research Objectives

The overall objective of this dissertation is:

• Provide analysis tools for policymakers and market participants so that they can

make informed decisions about the design of cap-and-trade programs and about the

market actions they can take if such programs are implemented.

The specific objectives of this dissertation are:

• Develop a framework to evaluate multi-year capacity expansion plan alternatives

for power generators in restructured markets under different cap-and-trade designs.

• Formulate and implement a solution algorithm for the above framework to derive

equilibrium expansion plan strategies for the generators.

• Develop a welfare maximization mathematical model to obtain optimal redistribu-

tion policies for the revenue collected through a cap-and-trade program or a carbon

tax via subsidies.

• Incorporate the impact of R & D subsidies on reduction of production cost for low-

emission generators in the carbon revenue redistribution mathematical model.

• Find a solution for the nonlinear nonconvex revenue redistribution mathematical

model by using piece-wise linear approximations.

• Demonstrate the use of the capacity expansion framework and the revenue redistri-

bution model on sample problems and draw potentially generalizable insights from

the results in each case.
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1.6 Dissertation Outline

In the next chapter, we present an overview of spot (or day-ahead) electricity and

allowance markets, their settlements, and the relationship between both markets. We note

that the market settlements presented in Chapter 2 are used throughout the remaining

chapters of the dissertation. In Chapter 3, we present a game theoretic model to analyze

the impact of CO2 cap-and-trade on capacity expansion decisions of power generators

in restructured markets. This chapter also includes a review of the capacity expansion

literature, a solution methodology for the game theoretic model, a case study from the

Illinois electricity market, and conclusions and findings from the case study. In Chapter

4, a mathematical model for developing optimal redistribution policies for the revenue

collected by a CO2 cap and trade or a carbon tax program is presented. A review of the

literature, a solution methodology, an example application, and conclusion/findings are

also presented. Finally, in Chapter 5, future work and research opportunities are dis-

cussed.
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Chapter 2: CO2 Cap-and-Trade - Joint Electricity and Allowance Markets

In this chapter we first describe how the generators bid in spot electricity markets

and how the system operator dispatches power in a network and obtains the locational

marginal prices. Later in the chapter, we describe the CO2 allowance market and show

how it is connected to the electricity market. The description and settlement of these

markets are used in the models presented in Chapters 3 and 4.

2.1 Electricity Markets

Participants of an electricity market maximize their benefits by seeking optimal bid-

ding strategies. Strategic bidding behavior of the participants results in different mar-

ket outcomes (e.g., nodal electricity prices and generation quantity allocations) under

different auction mechanisms used by the system operator [15]. Two forms of auctions

commonly used in deregulated electricity markets are uniform price auction and discrimi-

natory auction [16].

• In a uniform price auction, all selected suppliers are paid a uniform price, equal to

the market clearing price. The selection process starts by distributing the requested

electricity generation units to the highest bidder, then to the second highest bidder,

and so forth until all generation needs (in MWh) are allocated. The market clearing

price corresponds to the bid offered by the last selected bidder.
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• In a discriminatory auction, the suppliers are selected in a manner similar to the

uniform auction, but are paid according to their own bids instead of the market

clearing price.

A game theoretic model in [17] compares uniform-price and discriminatory auction. It

is shown that the equilibrium revenues of the generators under uniform price auction and

discriminatory auction are different, in particular, that the expected total auction revenue

of a network with market power is higher under uniform price auction when compared to

discriminatory auction (pay-as-bid type). Market power is defined in the microeconomics

literature as the ability of a seller to maintain prices above competitive levels for a sus-

tained period of time. Commonly used market power indices are Herfindahl-Hirschmann

index, Lerner index, quantity modulated price index (QPMI), and revenue-based market

power index (RPMI) [15].

In the process of developing bids for the day-ahead and real-time electricity markets,

generators and loads consider market forecasts for the power network. The forecasts

provide information regarding expected prices, transmission network conditions, demand,

among other parameters. Generators and loads then submit their bids to the system oper-

ator which in turn solves an optimal power flow (OPF) problem to determine the quantity

allocations and the prices in the network. The solution of the OPF, thus, serves as the

basis to compute the profits that generators and loads make in the day-ahead and real-time

markets. Since all market participants develop bids with the objective of maximizing their

respective profits, the competition in a deregulated electricity market can be modeled as a

multi-player matrix game.

Let zi = (zi1,zi2, ...,ziNi
) denote a supply bid vector submitted by generator i. Each

element of the vector represents the supply bid for each of the Ni power plants generator i

owns in the network. Each individual supply bid zik is defined by the pair (aik ,bik), where

the first element is the intercept and the second is the slope of the supply curve. Hence,

each supply bid curve is characterized by p = aik + bikq, where p and q denote the price

13



and quantity, respectively. Let z−i denote the supply bids of the rest of the generators in

the network. When the range of values of the supply bid vector elements are suitably dis-

cretized, the total number of action choices for each bidder is finite. Then the cardinality

of the supply bid vector of bidder i for each power plant k is given as follows,

|zik |= |aik |× |bik |. (2.1)

The cardinality of the total action space for generator i in the electricity market can be

written as

|zi|=
Ni

∏
k=1
|zik |. (2.2)

It is assumed that the loads submit linear demand bids. The payoff for generator i in a

single instance of the electricity day-ahead or spot market can be written as follows,

ri[zi] =
Ni

∑
k=1

qik ph−
Ni

∑
k=1

(a0
ikqik +

1
2

b0
ikq2

ik), (2.3)

where qik is the quantity of electricity produced by plant k of generator i, ph is the loca-

tional marginal price (LMP) at node h where plant k is located, and ∑
Ni
k=1(a

0
ikqik +

1
2b0

ikq2
ik)

is the total cost for each generator i (thus, a0
ik , b0

ik are the true marginal cost parameters).

The values for qik and ph in (2.3) are obtained by solving the following Optimal Power
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Flow (OPF) problem as presented in [18],

max∑
h

Bh[ph]−∑
h

Ch[ph], (2.4)

subject to:

∑
i∈i(h)

qi[ph]− ∑
θ∈θ(h)

dθ [ph]− ∑
l∈l(h)

(mhl−mlh) = 0 ∀ node h,

∑
hl∈V (ρ)

Rhl(mhl−mlh) = 0 ∀ voltage loop ρ,

mhl ≤Mhl ∀ arc hl,

mhl ≥ 0 ∀ arc hl,

where Bh[ph] is the total benefit to consumers at node h, Ch[ph] is the total cost to pro-

ducers at node h. If consumers and producers are assumed to submit linear demand bids

and linear supply bids, respectively, the benefit/cost for a single consumer/producer can

be computer by integrating its linear demand/supply with respect to d/q. For instance,

if a consumer θ submits a demand bid p = eθ − fθ d, then the benefit function is B =

eθ d− fθ
2 d2.

The rest of the notation in (2.4) is as follows: i(h) is the set of generators at node

h, θ(h) is the set of consumers at node h, qi[ph] is the quantity supplied by generator

i located at node h, dθ [ph] is the quantity demanded by consumer θ at node h, l(h) is

the set of nodes directly connected through a transmission line with node h, mhl is the

power flow between nodes h and l, V (ρ) is the set of arcs that define loop ρ , Rhl is the

reactance of arc hl, and Mhl is the fixed capacity of arc hl. The formulation is a quadratic

convex problem whose solution provides the quantities supplied, quantities demanded,

and power flows in the network. The locational marginal prices (LMPs) at each node in

the network are obtained from the shadow prices of the first set of constraints in the above

formulation.
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2.2 Allowance Market

Under a CO2 cap-and-trade program, fossil fuel generators need to procure a sufficient

number of allowances to compensate for the emissions caused by electricity generation

and thus avoid costly penalties. We note that the procurement of allowances is not re-

stricted to fossil fuel generators only. Excess allowances procured by the generators can

be traded in secondary markets.

2.2.1 Allowance Allocation

Allowances are distributed among generators and other entities either via auction,

or for free based on historic emissions (grandfathering), or by using a hybrid approach.

Per the auction or the hybrid approaches, generators submit strategic allowance bids. For

example, in the Regional Greenhouse Gas Initiative (RGGI), a cap-and-trade program

implemented in the Northeast U.S., generators submit bids indicating price and quantity

of allowances required. The auction is cleared using a uniform price scheme [9].

Generators bid in the allowance market considering their strategies in the electricity

market for an allowance bidding period (e.g. six months). Generators determine the num-

ber of allowances to procure based on the fossil fuel-driven capacity that they offer to the

market. The price that the generators pay for the allowances impact their supply bids in

the electricity market. When generators are not able to surrender allowances commensu-

rate with the emissions resulting from their electricity production, they are subjected to

hefty fines.

In this dissertation, it is assumed that allowances are distributed via auction to which

each generator i submits bids yi indicating price (ωi) and quantity (ζi). Similar to the

situation described earlier for the spot electricity market, generators can develop multiple

bids by varying discretized parameters for price and quantity.
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If the entity in charge of the allowance auction has the objective of maximizing the

allowance auction revenue, then allowance allocations can be developed by solving the

following linear optimation problem,

max∑
i

ωioi, (2.5)

subject to:

∑
i

oi ≤ A (2.6)

oi ≤ ζi ∀ generator i

oi ≥ 0 ∀ generator i

where oi is the number of allowances allocated to generator i, A is the total amount of

allowances available in the auction, ωi and ζi are the price and quantity elements of the

allowance bid submitted by generator i, respectively. We consider a uniform market clear-

ing price auction where the auction price P is obtained from the shadow price of con-

straint 2.6. If the sum of the quantity bid elements of the generators (∑i ζi) is less than

A, the allowance is cleared at a reserve price.

2.2.2 Relationship Between Electricity and Allowance Markets

We assume that the allowance cost is incorporated into the supply bids of the genera-

tors as presented in [19] by increasing the intercept term aik ,

âik = aik +δP, (2.7)

where δ is the emissions factor (which indicates the amount of CO2 (in tons) generated

per MWh of electricity production, depending on the technology) and P is the allowance

price obtained from the allowance auction settlement. This is equivalent to shift a supply
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curve to the left (similar to the effect of a tax) as shown in Figure 2.1. Let P′ be the price

Figure 2.1: Effect of Allowance Cost on Supply Bids

at which a generator trades unused allowances in the secondary market. Assuming there

is sufficient supply and demand in the secondary market, the allowance revenue/loss Si for

generator i during an entire allowance bid period can be obtained as

Si = P′(oi−oc
i ), (2.8)

where oc
i is the number of allowances consumed. It may be noted that oc

i is a function

of the supply bids submitted by generator i for each instance of the day-ahead (or spot)

electricity market during the allowance bidding period. This relationship is explained in

detail in the next chapter.
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Chapter 3: Impact of CO2 Cap-and-Trade on Investment Decisions of Power

Generators

According to the U.S. Department of Energy’s Annual Energy Outlook [20], electric-

ity demand in the U.S. is expected to increase at an average rate of 1.1 % per year from

3,659 billion KWh in 2006 to 4,705 billion in 2030. In regulated markets, system oper-

ators coordinate generation expansion decisions among the generators. In restructured

markets, competition among generators guides the expansion decisions of when, where,

and what type of capacity to add that maximize the profits. Our focus in this chapter is

on the restructured markets. In recent years, the process of making capacity expansion

decisions has become more challenging due to the implemention/consideration of CO2

emissions control policies such as ca-and-trade. In this chapter we present a game the-

oretic model that the generators can use to develop their long term capacity expansion

plans in restructured electricity markets subjected to CO2 cap-and-trade.

Capacity expansion investments made by generators impact their strategic trading be-

havior in the electricity markets (forward, day-ahead, and spot), and also in other related

markets including trading for CO2 allowances, financial transmission rights, generation

capacity, and ancillary services. For instance, adding a large nuclear generator (with lower

marginal cost) to a network will likely lower the current locational marginal prices and

reduce the present demand and price for CO2 allowances. Clearly, the profitability of an

expansion plan is impacted by the changes the plan itself imparts on the trading condi-

tions in the electricity and related markets. Hence, these changes must be accounted for in

the economic assessment of a capacity expansion investment plan.
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In the last decades the real options theory [21] has been applied to assess capacity ex-

pansion investments in electricity markets [22–27]. Real options theory gives the opportu-

nity to analyze the effect of delaying an irreversible investment (as opposed to considering

the case where the only option for making an investment is now or never) or abandon

an investment plan. This is of particular importance in capacity expansion since, in the

presence of uncertainty introduced by the competing interests of the generators, the ability

to delay an irreversible capacity expansion investment or abandon an investment plan can

profoundly affect the generators’ profit. Most of the real options literature on generation

expansion considers the uncertainty in electricity price and demand as known stochastic

processes. These studies do not explicitly model the interactions of the generators’ strate-

gies in electricity and related markets that are at the root of the above uncertainties. In this

chapter, we present a model that explicitly considers the competition in the allowance and

electricity markets, interaction between these markets, and how they impact the capacity

expansion decisions.

As noted earlier in this dissertation, in recent years power markets have been sub-

jected to new environmental regulations. The current climate change legislation debate is

centered around the implementation of a cap-and-trade program to reduce the CO2 levels

in the atmosphere and encourage greener electricity generation. Since electricity gener-

ators are responsible for about 40% of the CO2 emissions in the U.S. [1], any program

aimed at reducing CO2 emissions will have a significant impact on the power generation

sector. In fact, if an emissions control program is to achieve its goals, there will have to be

a shift from the current fossil-fuel technologies to nuclear power and renewable sources.

Thus, power generators need to assess the potential implications of a CO2 emissions

control plan when making generation expansion decisions. Thus far, the only CO2 emis-

sions control program implemented in the U.S. is the Regional Greenhouse Gas Initiative

(RGGI), which is a regional cap-and-trade program. In this research, we develop a game
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theoretic model to obtain capacity expansion plans for generators in a restructured market

under a CO2 cap-and-trade program.

In general, the implemented and proposed cap-and-trade programs have common

elements such as the cap, a limited number of allowances (commensurate with the size

of the cap), and the possibility of trading allowances. Albeit this common framework,

the programs may differ as to how they treat various of the design attributes presented in

Section 1.2 including stringency of the cap, upstream or downstream point of regulation,

method of allowance distribution (sold via auction, free grandfathering, or a combination

of both), and banking of allowances. The choice of these attributes continues to be a

source of debate among the policymakers. The capacity expansion model presented in

this chapter provides an effective instrument for policymakers to assess various alterna-

tives. This is exemplified in the case study presented in Section 3.4.

3.1 Literature Review

We first offer a short overview of the literature on capacity expansion in regulated

electricity markets. Later in the section, we discuss capacity expansion models for re-

structured electricity markets focusing on those developed using game theory and real

options theory.

3.1.1 Capacity Expansion in Regulated Markets

Restructuring of electricity markets began in the early 1990s. All the capacity expan-

sion literature during most of that decade and prior to it addressed the expansion problem

in regulated markets. These papers [28–30], to cite a few, present optimization models

where a central planning authority solves a cost minimization problem subject to trans-

mission constraints. In restructured electricity markets, capacity expansion decisions are
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not coordinated by a central authority, but instead made independently and non-cooperatively

by competing generators in a network. Consequently, the expansion models developed for

regulated markets are not applicable in the restructured settings. The dynamic noncoop-

erative interactions of the generators, retailers, and investors in restructured electricity

market are best represented by game-theoretic models.

3.1.2 Game Theoretic Models for Capacity Expansion

One of the first game-theoretic models for capacity expansion in restructured power

markets is presented in [31]. The competition is modeled using Cournot theory of oligopoly.

Generators decide on how much capacity to expand, new entries are not allowed, and the

expansion decisions are made simultaneously by all competitors. Each player seeks to

maximize its profit subject to operational and physical constraints. The Cournot equilibria

is obtained using an iterative search procedure that maximizes the profit of each player,

one at a time, while keeping all other players’ actions fixed. The state spaces of the ex-

pansion quantity variables are considered to be continuous for each generator. In [32],

two imperfect competition models for capacity expansion are presented: 1) an open-loop

Cournot model similar to the model in [31], in which each generator selects its capacity

and generation plans at the same time assuming the generation levels of its competitors

are known; 2) a closed-loop Cournot model where capacity decisions are made in the first

stage and operation decisions are made in the second stage. Equilibrium conditions in

both of these models are established resulting in a quadratic programming and an MPEC

model, respectively.

A different approach to model the capacity expansion problem was taken in [14] where

a two-tier matrix game model is presented. The upper tier game models the competition

in generation investment, while the lower tier is a supply function game that captures the

competition at the power network operational level. Each matrix game is solved using
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a reinforcement learning algorithm. Risk due to volatilities in profits is incorporated in

the payoffs via a conditional value at risk (CVaR) measure. A game theoretic model that

incorporates CO2 emissions in the expansion problem is presented in [33]. Their model

is similar to the open-loop Cournot in [32] but the operational decision variables are not

only restricted to the electricity market but also to the allowance and green certificate

markets. Competition in the electricity market is modeled using the conjectural variations

approach and the allowances and green certificate markets are assumed to be perfectly

competitive. Prices of allowances and green certificates are obtained endogenously.

Our approach is different from those presented in [31], [32], and [33] in that we con-

sider a discrete set of feasible expansion plans for each generator, for a time horizon and

a forecasted growth in demand. The expansion plans take into account the constraints

of capital availability, network location, lead time, and technology. We assess the finan-

cial performance of these plans by assuming that all generators implement their plans

simultaneously at the beginning of the time horizon (i.e., no leader-follower dynamics

are present). This performance assessment is based on the outcome of the competition be-

tween the generators in both the electricity market and the CO2 allowance market during

each period of a planning horizon. The competition in the electricity market is modeled

assuming that each generator has a discrete set of supply function bids that is consistent

with its mix of available capacity and technology. We consider transmission constraints

and resulting congestion to accurately assess the performance of each of the expansion

plans (these features are not considered in [31], [32], and [33]). The CO2 allowance mar-

ket is also modeled assuming that generators have a discrete set of allowance bids com-

prising price and quantity. As in [33], equilibrium allowance prices are determined en-

dogenously by our model. Our approach considers discrete sets of expansion plans and

supply function bids as in [14]. However, we also model the competition among the gen-

erators in the allowance market. Additionally, we consider a multi-year time horizon with

construction lead times for new plants.
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Papers that discuss the implications of a CO2 cap-and-trade program, but that are

not particularly focused on capacity expansion, are [34, 35]. In [34], an economy-wide

analysis of different cap-and-trade proposals considered by the U.S. Congress in spring

2007 is presented. The analysis is performed using the MIT Emissions Prediction and

Policy Analysis (EPPA) model. EPPA simulates the world economy through time with

special emphasis on creating scenarios of greenhouse gas emissions [36]. Allowance

prices and expected emissions reductions are presented for each cap-and-trade proposal.

In [35], the energy and economic implications of the State of Maryland joining RGGI

are presented. The analysis is performed by integrating three components: a simulation

model for interregional trade among regional electricity markets, a market equilibrium

model that incorporates market power in regional electricity markets, and a software

system to assess economic impacts by industrial sector. Some of the findings of the study

include distinct but modest emissions reductions, and reduced profits for coal generator,

though coal plants are not retired. Other studies analyzing the implications of cap-and-

trade programs can be found in [37, 38].

3.1.3 Real Options Models for Capacity Expansion

As alluded to earlier, real options theory has been applied to evaluate generation ex-

pansion plans in electricity markets. In [22], a set of investment alternatives are evaluated

using real options analysis taking into consideration the learning curve information of

renewable power generation technologies. Uncertainties in the price of fossil fuels and the

price of electricity are modeled via geometric Brownian motion (GBM) processes. The

stochastic investment model presented in [24] addresses the problem of power genera-

tion capacity adequacy in restructured markets. An explicit model of the power market

is included to obtain the future electricity spot prices. Demand is modeled through a

stochastic process. The impact of two potential regulatory mechanisms on the expansion
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investments are analyzed with the model. Real options theory is also used in [23] to ex-

amine the effect that lower electricity prices in a network, caused by increased capacity

due to generation investments, has on the timing of the investments themselves. Elec-

tricity prices are modeled via geometric Brownian motion (GBM) processes. In [26], an

expansion investment model under uncertainty is presented. The future price of electric-

ity is obtained by considering a supply curve modeled as an exponential function and a

equilibrium quantity that follows a geometric mean-reverting process. A model that uses

real options to analyze the effect of an allowance market on generation investments is

presented in [27]. Uncertainty in the allowance and electricity prices is modeled through

discrete-time continuous-state processes. The model is applied to the Finnish power mar-

ket.

3.1.4 Chapter Outline

In summary, this chapter presents a game theoretic model for capacity expansion in

restructured electricity markets that incorporates CO2 emissions trading. We consider

transmission constraints and the effect of congestion in the electricity market. The model

allows for the consideration of different design attributes of a CO2 cap-and-trade program.

The expansion plans derived from our model provide information regarding capacity,

location, technology, and the time of expansion. The model is intended to be used by the

generators to evaluate expansion plans under different CO2 cap-and-trade programs for a

given time horizon and a given forecast in demand growth. The expansion plan options

of the generators can be adapted to include the possibilities of postponement and aban-

donment of specific investments. The rest of the chapter is organized as follows. Section

3.2 presents the components of the game theoretic model: expansion game, allowance

game, and electricity game, and how the markets they represent interact with each other.

In Section 3.3 we present an algorithm to solve the model and discuss its computational
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implementation. An application of the model to a sample network representing the north-

ern Illinois power market is presented in Section 3.4. Section 3.5 presents the concluding

remarks.

3.2 Game Theoretic Model

We consider a planning horizon T and a network with H nodes, L transmission lines,

and n generators. Each generator owns an array of plants based on different technologies

at one or more nodes in the network. We assume that the region served by the power

network operates under a CO2 cap-and-trade program, where the generators are required

to obtain allowances allocated via auction. The generators bid for allowances with price

and quantity, and surrender the acquired allowances at the end of the production period

commensurate with their emissions. It is assumed that the generators pass the cost of the

allowances on to the consumers in the electricity market.

3.2.1 Schematic Representation of the Game Theoretic Modeling Framework

A schematic of the game theoretic modeling framework (for a hypothetical scenario

with 3 players) is presented in Figure 3.1. The expansion game represents all possible

combinations of the multi-year expansion plans of the generators. An expansion plan

comprises a set of yearly actions to add generation capacity (or to do nothing) over the

planning horizon. The attributes of an action include location of the new capacity and its

size, technology, construction lead times, and cost. Each of the combinations in the ex-

pansion game (e.g., the shaded section) represents a specific network generation portfolio

(in terms of nodal capacities and technology mix), which evolves as new capacities are

added over the planning horizon T . With the change in the network generation portfolio,

the need for allowances change, and hence the allowance game is solved each year of
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Figure 3.1: A Schematic for the Game Theoretic Framework

the planning horizon T with new allowance bids by the generators. Each of the yearly

allowance games consider multiple bidding strategies for each generator (represented by

the cubes in the middle tier of Figure 3.1). Each combination of the allowance bids (e.g.,

the shaded section), when settled, results in a specific allowance allocation and clearing

price. These parameters influence the generators’ supply function bids in the electricity

game as presented in Figure 2.1, since the generators attempt to maximize their revenue

while recovering the costs of allowances and potential penalty for emissions violation.

Hence, for each bid strategy combination of the yearly allowance game, we solve an

electricity game. Though electricity games are played in day-ahead and spot markets over

the whole year, for computational simplicity, we assume a single game representing the

whole year. Clearly, the action choices of the generators in the expansion, allowance,

and electricity games, collectively determine the profit from the electricity market. The

equilibrium payoff from the electricity game is used to construct the payoff matrix of the
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allowance game, and the equilibrium payoff of the allowance game is used to construct

the payoff matrix of the expansion game. The solution of the expansion game provides

the equilibrium expansion plan combination. Consequently, the solution methodology for

the game theoretic framework must begin by solving the electricity game, followed by the

allowance and expansion games. Note that the inherent chronological order for selecting

actions in the expansion, allowance, and electricity markets requires a tiered modeling

framework and a solution methodology based on the method of backward induction that

we present later.

3.2.2 Expansion-Allowance-Electricity Games

Let xi = (x1
i , · · · ,xT

i ) denote an expansion plan for the entire planning horizon for the

ith generator, of which each element xt
i is also a vector comprising expansion capacity and

technology for each node location of the network. Let yt
i and zt

i denote the allowance bid

and the supply function bid, respectively, where, for any period (stage) t, yt
i is a 2-tuple

comprising allowance price and quantity, and zt
i is also a 2-tuple comprising the intercept

and the slope of the supply function. Similarly, let x−i denote the expansion plans of

the rest of the generators for the entire planning horizon and let yt
−i, and zt

−i denote the

allowance bids, and supply function bid vectors, respectively, of the rest of the generators

for each period (stage) t. Each generator, i = 1, ...,n, selects an equilibrium expansion

plan x∗i for the planning horizon, and equilibrium strategies y∗
t

i , z∗
t

i for each period t via

the following discrete maximization problem,

max
xi

F(xi,x−i)−
T

∑
t=1

σ(xt
i)

(1+π)t +
ς(xi)

(1+π)T , (3.1)

s.t. max
yt

i ,z
t
i

G(yt
i,z

t
i,y

t
−i,z

t
−i), ∀ t

xi ∈ Ξi, yt
i ∈ ϒ

t
i, zt

i ∈Ψ
t
i
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where F(xi,x−i) = ∑
T
t=1

G(y∗
t

i ,z∗
t

i ,y∗
t
−i,z
∗t
−i)

(1+π)t is the present value of the total joint profit from

the allowance and electricity markets for generator i from year 1 to T if expansion plans

xi and x−i are implemented. The discount rate is denoted by π , ∑
T
t=1

σ(xt
i)

(1+π)t is the cost of

investment of plan xi, and ς(xi)
(1+π)T is the residual value of the installed capacity at the end

of year T . Ξi = {xi1,xi2, ...,xix̂i} denotes a set of x̂i feasible alternative expansion plans

for each generator i. ϒt
i denotes a finite discrete set of CO2 allowance bid strategies and

Ψt
i denotes a finite discrete set of supply function bid strategies, respectively, for each

generator i for period t. The sets ϒt
i and Ψt

i depend both on the expansion plan xi (which

determines the generation portfolio of each generator for each period t) and the equi-

librium bidding strategies of the previous period, y∗
t−1

i and z∗
t−1

i . The initial equilibrium

bidding strategies y∗
0

i , z∗
0

i are assumed to be known. Hence, the information structure used

by the players at each stage (period) of the game theoretic modeling framework can be

called a memoryless perfect state for all the players [39] i.e., the bidding strategies are a

function of the initial state and the current state of the system only. This is in contrast to

use constant bidding strategies at each stage, as in the open-loop information structure

pattern, and to use bidding strategies that are a function of the entire history of the system,

as in the closed-loop information structure pattern. The equilibrium expansion plan com-

bination resulting from our model, thus, can be referred to as a closed-loop no memory

Nash equilibrium solution.

We assume that each generator develops a finite number of expansion plans in Ξi

considering an installed capacity target for year T based on the network demand growth

forecast and other real life constraints on location, timing, and budget. This bounds the

state-space of the game. Each expansion plan xi ∈ Ξi explicitly describes type of technol-

ogy, capacity, location, the year in which construction of the new capacity begins, and

the construction lead time. An expansion plan is composed of one or more expansion

actions e.g., expansion plan 1 = (nuclear plant with capacity 1,221 MW, located in node

A, beginning of construction on 2009, lead time 5 years; coal plant with capacity 320
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MW, located in node B, beginning of construction on 2014, lead time 2 years). By char-

acterizing an expansion plan in these terms we are able to incorporate the postponement

option (e.g., by having an alternate expansion plan that delays the year of beginning of

construction of a plant) or the abandonment option (e.g., by having an alternate expansion

plan with only the nuclear plant and not the coal plant). Note that, since an expansion

plan is composed of expansion actions throughout the planning horizon, the solution

of the expansion game accounts for the entire planning horizon as opposed to finding

expansion plans for one year at a time, see [14]. A limitation of the year-by-year approach

is that it fails to account for the impact of any future capacity additions to the network on

the current action.

A unique feature of modeling the competition in the allowance and the electricity

markets is that same payoffs are used in solving the corresponding games, though the

settlement of electricity markets occur after the settlement of the allowance markets. In

this regard, without loss of generalization, we assume that allowances are auctioned once

a year followed by the electricity auction in the day-ahead and spot markets throughout

the year. For each bid combination (yt
i ∈ ϒt

i,∀i) that is considered in the allowance market,

the corresponding electricity market bids choices (zt
i ∈ Ψt

i,∀i) are formulated. Then for

each allowance and electricity bid combination, a joint payoff G(yt
i, · · · ,yt

n;zt
i, · · · ,zt

n)

is formulated. This joint payoff is used to first solve the electricity game (i.e., to find

z∗
t

i ,∀i) whose equilibrium joint payoff G(yt
i, · · · ,yt

n;z∗
t

i , · · · ,z∗
t

n ) is then used to solve the

allowance game (i.e., to find y∗
t

i ,∀i).

Following the formulation presented in (3.1), the allowance and the electricity games

can be jointly presented as follows. For each generator i and period t,

max
yi,zi

G(yt
i,z

t
i,y

t
−i,z

t
−i) (3.2)

s.t. yt
i ∈ ϒ

t
i, zt

i ∈Ψ
t
i,
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where g(yt
i,z

t
i,y

t
−i,z

t
−i) is the joint payoff from the allowance and electricity games, given

as

G(yt
i,z

t
i,y

t
−i,z

t
−i) = R(yt

i,z
t
i,y

t
−i,z

t
−i)+S(yt

i,z
t
i,y

t
−i,z

t
−i), (3.3)

where R(·) and S(·) represent the payoffs from the electricity and the allowance markets,

respectively. We explain how to compute the payoffs next.

3.2.2.1 Electricity Market Payoff

Generators are assumed to compete in the electricity market by submitting a supply

bid vector zt
i = (zt

i1 ,z
t
i2 , ...,z

t
iNi
) ∈ Ψt

i. Each element of the vector represents the supply

bid for each of the Ni power plants generator i owns in the network. Each individual sup-

ply bid zt
ik is defined by the pair (at

ik ,b
t
ik), where the first element is the intercept and the

second is the slope of the supply curve, given as p = aik + bikq, where p and q are price

and quantity, respectively. The payoff for generator i in the electricity market in year t is

computed as follows,

R(yt
i,z

t
i,y

t
−i,z

t
−i) =

Ni

∑
k=1

qikLMPik−
Ni

∑
k=1

(a0
ikqik +

1
2

b0
ikq2

ik), (3.4)

where qik is the quantity of electricity produced by plant k, LMPik is the locational marginal

price at the node where plant k is located, and ∑
Ni
k=1(a

0
ikqik +

1
2b0

ikq2
ik) is the total cost for

each generator i (thus, a0
ik , b0

ik are the true marginal cost parameters). The values for qik

and LMPik in (3.4) are obtained by solving the Optimal Power Flow (OPF) formulation

(2.4) presented in Section 2.1,

31



3.2.2.2 Allowance Market Payoff

Let ϒt
i the set of allowance bids that generator i chooses from on year t, where each

bid consists of unit price and desired number of allowances. Though the type of auction

used to allocate the allowances depends on the design of the CO2 cap-and-trade program,

without loss of generality, we adopt a uniform-price sealed-bid auction (as in RGGI [9]).

Uniform-price sealed-bid auction is modeled as in the formulation (2.5). The market

clearing price of the allowance auction, Pt , corresponds to the price of the last accepted

bid. Let ot
i denote the number of allowances allocated to generator i in year t as a function

of the allowance bid yi, ot
ic is the number of allowances consumed by generator i during

year t as a function of the electricity bid zi, and P′t is the price at which allowances are

traded in the secondary market (an exogenous quantity). The profit (loss) from the al-

lowance market is computed as in (2.8)

S(yt
i,z

t
i,y

t
−i,z

t
−i) = P′t(ot

i−ot
ic). (3.5)

We have assumed that the auction allocates allowances for the current vintage year

only (not for future years). Thus, if the generators do not have enough allowances to

surrender at the end of each electricity production period (i.e., to compensate for the emis-

sions) they are subjected to penalties. Such a situation arises when a generator fails to

procure sufficient number of allowances from the auction and the secondary market. RGGI,

for instance, considers a penalty of 3 times the outstanding balance of allowances.

3.3 Solution Procedure

A schematic of the solution algorithm is presented in Figure 3.2. In step 1, the fol-

lowing indices are initialized: t = {1,2, · · · ,T} for years in the planning horizon T , j1 =

{1,2, · · · , |Ξ|} for set of expansion plan combination Ξ = Ξ1×·· ·×Ξn, j2 = {1, · · · , |ϒ|}
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Figure 3.2: Solution Algorithm Flow Diagram

for set of allowance bid combination on any given period ϒ = ϒ1×ϒ2× ·· · ×ϒn, and

j3 = {1,2, · · · , |Ψ|} for set of supply bid combination on any given period Ψ = Ψ1×

Ψ2× ·· · ×Ψn. Steps 2 and 3 ensure that each expansion plan combination is evaluated,

while step 4 ensures that this evaluation is made for each year of the planning horizon.

In step 5, the set of allowances bid strategies ϒt
i is developed for each generator i with an

expansion plan xi for year t. Steps 6 and 7 ensure that each allowance bid combination is

evaluated. In step 8, the allowance auction is cleared, which gives the allowance market

clearing price and allowance quantities. In step 9, the set of supply function bid strategies

Ψt
i is developed for each generator i. Steps 10 and 11 ensure that each supply function

bid combination of the generators is evaluated. The profit from the allowance and the

electricity markets for year t, as given in (3.3), is computed in step 12. These profits are

used to form the electricity game payoff matrix. In step 13, we check if all the supply bid

function combinations have been evaluated. If so, the electricity game is solved in step

14, using the reinforcement learning (RL) algorithm (explained below). The solution of
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the game provides the equilibrium supply function bid combination. Step 15 checks if all

the allowance bid combinations have been evaluated. Note that, the payoff matrix for the

allowance game is constituted by the equilibrium profits from the electricity games. The

allowance game is solved in step 16, which yields the equilibrium allowance bid com-

bination. Steps 17 and 4 together ensures that the loop comprising steps 5 through 16 is

repeated for each year of the planning horizon. The value of the objective function (given

by the present value of profit from the years in planning horizon, minus the overnight

cost, plus the residual value of the installed capacity), as defined in (3.1), is computed

in step 18. This completes the evaluation of an expansion plan combination. Steps 19

and 20 ensure that all expansion plan combinations are evaluated. Finally, in step 21 the

expansion game is solved using the RL algorithm and the equilibrium expansion plan

combination is obtained.

3.3.1 Reinforcement Learning Algorithm

We use the reinforcement learning (RL) algorithm developed in [40] in steps 14, 16,

and 21. The following are the main steps of the RL algorithm, presented in the context of

the expansion game.

• Step 1: Let iteration count p̂ = 0. Initialize r-values for each generator i with x̂i

expansion plan choices (r0(i,1), ...r0(i, x̂i)) to an identical small positive number.

Also initialize the learning parameter ε0, exploration parameter φ0, and parameters

ετ and φτ needed to obtain suitable decay rates of learning and exploration. Let

Maxsteps denote the maximum iteration count.

• Step 2: If p̂ < Maxsteps, continue learning of the r-values through the following

steps:

– Action Selection:
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Greedy action selection:

Each generator i, with probability (1− φp̂), chooses an action xi for which

rp̂(i,xi)≥ rp̂(i,xi) where xi stands for all the other expansion actions excepting

xi. A tie is broken arbitrarily.

Exploratory action selection:

With probability φp̂, a generator chooses an action xi from the possible expan-

sion actions choices (excluding the greedy action), where each action can be

chosen with equal probability.

– r-value Updating:

Update the specific r-values for each generator i corresponding to the chosen

action xi using the learning scheme given below.

rp̂+1(i,xi)← (1− ε p̂)rp̂(i,xi)+ ε p̂(κi(xi,x−i)), (3.6)

where κi(xi,x−i) is the payoff of generator i for choosing expansion plan com-

bination xi when the other generators choose actions x−i. Note that κi(xi,x−i)=

F(xi,x−i)−∑
T
t=1

σ(xt
i)

(1+π)t +
ς(xi)

(1+π)T (see the objective function in (3.1)).

– Set p̂← p̂+1.

– Update the learning parameter ε p̂ and exploration parameter φp̂ as in [40].

– If p̂ < MaxSteps, go back to beginning of Step 2, else go to Step 3.

• Step 3: From the set of r-values, select the expansion action x∗i for each generator i

as follows.

x∗i = argmax
xi

rp̂(i,xi) (3.7)

The RL algorithm is applied in a similar way to solve the allowance and electricity

games.
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It is well known that matrix games, with or without pure strategy Nash equilibrium,

always have one or more mixed strategy Nash equilibria. However, in energy markets,

it is practically impossible to implement mixed strategies. Hence, while solving matrix

game models, the RL algorithm considers only pure strategy solutions. As shown in [40],

the value based reinforcement learning (RL) algorithm, that we have used in our method-

ology, finds a pure strategy solution which almost always coincides with a Nash equilib-

rium, when one exists. When multiple pure strategy NE exist, the RL algorithm finds the

one with the highest values (as computed in equation (3.6)) for the players. For games

without a pure strategy NE, an out-of-equilibrium solution [41] provides a practical al-

ternative. For such games, the greedy action selection approach of the RL algorithm (that

prevails after the exploration ends) drives each player to choose the highest-value action.

The resulting action combination of the players and the corresponding payoffs constitute

the out-of-equilibrium solution for the game. It may be noted that the RL algorithm is

not equipped to determine the uniqueness of a NE solution. However, the nature of the

solution (NE or out-of-equilibrium) can be easily determined.

3.3.2 Computational Issues

The computational challenges of the solution procedure stem from the large number

of OPFs that need to be solved when the sets Ξ, ϒ, and Ψ have large cardinalities. Since

an OPF problem is solved each time the step 12 of the procedure is visited (see Figure

3.2), the total number times an OPF solution is invoked is given by the product |Ξ|× |ϒ|×

|Ψ|. However, since the payoffs of the expansion plan combinations (of the expansion

game) can be evaluated independently, the loop comprising steps 2 through 20 can be run

in parallel using a distributed computing framework. Moreover, this model is intended

to support the long term strategic planning process of the generators and regulators, and,

hence, it is not a real time tool.
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3.4 A Case Study from Illinois Electricity Market

In this section we demonstrate the use of our model on a 9-node network representing

the northern region of the Illinois power network. We assume a RGGI type cap-and-trade

program in operation for the network. The planning horizon considered is from 2007

through 2030, which is supported by a complete set of market data (demand, installed

capacity, transmission capacity, generation allocation, and LMPs) for the year 2007. We

obtain equilibrium expansion plans for the generators and the resulting mix of generation

technology (between coal, gas, and nuclear), nodal electricity prices, generator profits,

emissions, and allowance prices, for each year of the planning horizon. We contrast these

outcomes for three cap-and-trade scenarios with different allowance prices.

3.4.1 Background

Market data was simulated by the Argonne National Laboratory(ANL) for a report

submitted to the Illinois Commerce Commission, [42]. According to the report, the Illi-

nois electricity market, in 2007, had 4 main producers of electricity (henceforth referred

to as Generators 1 through 4), whose combined market share was approximately 90%.

The capacity of Generator 1 was predominantly nuclear, whereas the other 3 generators

owned mostly coal and natural gas-fueled power plants. The report also indicated that

most of the electricity consumed in the state was produced by nuclear and coal plants,

with natural gas plants producing only a marginal quantity. More details about the net-

work, as reported in [42], are presented in Table 3.1. We constructed a 9-node model

network (see Figure 3.3) replicating the electricity market conditions reported in [42].

Seven of the nine nodes represent different zones of the power network (each node being

an aggregation of the actual nodes). One of the two remaining nodes aggregates the rest
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of the nodes in the Illinois network, while the other aggregates the nodes outside of the

state that interact with the Illinois network.

Figure 3.3: Nine-Node Model for Illinois Network

3.4.2 Capacity Expansion Scenario

We consider four choices of expansion plans for each of the four generators (see Table

3.2). Consideration of a small number of alternative plans for the generators was made to

limit the size of the case study. The plant capacities in the expansion plans were chosen in

line with the current plant capacities of the generators. Options for new nuclear plants

were considered only in those nodes that currently host nuclear plants to account for

environmental and other restrictions. Construction lead times were obtained from a study

presented in [43]. The costs of adding capacity with different generation technologies are

assumed as given in Table 3.3. It is considered that generators make the capacity available

in the electricity market after the construction lead time has lapsed (lead times for each

38



Table 3.1: Installed Capacity in the Model Network

Company Node Type Cap. (MW) Company Node Type Cap. (MW)

Gen 1 NI-B Gas 540 Gen 3 IN Coal 3,160
Gen 1 IN Gas 1,455 Gen 4 NI-C Gas 212
Gen 1 IN Coal 4,711 Gen 4 NI-D Gas 414
Gen 2 NI-A Nuclear 4,154 Gen 4 NI-E Gas 141
Gen 2 NI-F Nuclear 4,156 Gen 4 NI-F Gas 1,638
Gen 2 NI-G Nuclear 2,305 Gen 4 NI-B Coal 789
Gen 2 IN Nuclear 944 Gen 4 NI-D Coal 868
Gen 2 NI-D Gas 328 Gen 4 NI-E Coal 2,140
Gen 3 NI-B Gas 398 Gen 4 NI-G Coal 1,538
Gen 3 IN Gas 484

plant are presented in Table 3.4). The time required to obtain permits for new plants was

not considered.

Table 3.2: Sample Expansion Plan Choices in Northern Illinois Electricity Market

...

Cap. Construction Cap. Construction
Plan Type (MW) Node Begins Plan Type (MW) Node Begins

Gen 1 Plan 1 Nuclear 1,221 NI-A 2007 Gen 3 Plan 1 Nuclear 1,221 NI-A 2007
Nuclear 867 NI-A 2013 Plan 2 Nuclear 1,221 NI-A 2024

Plan 2 Nuclear 1,221 NI-A 2018 Plan 3 Gas 67 NI-B 2007
Nuclear 867 NI-A 2024 Gas 67 NI-B 2009

Plan 3 Nuclear 1,221 NI-A 2007 Gas 67 NI-B 2011
Coal 320 IN 2013 Coal 320 IN 2013

Plan 4 Nuclear 1,221 NI-A 2024 Plan 4 Gas 67 NI-B 2024
Coal 320 IN 2021 Gas 67 NI-B 2026

Gen 2 Plan 1 Nuclear 1,221 NI-A 2007 Gas 67 NI-B 2028
Nuclear 1,221 NI-A 2013 Coal 320 IN 2021

Gas 554 NI-D 2019 Gen 4 Plan 1 Nuclear 1,221 NI-A 2007
Plan 2 Nuclear 1,221 NI-A 2018 Nuclear 867 NI-A 2013

Nuclear 1,221 NI-A 2024 Plan 2 Nuclear 1,221 NI-A 2018
Gas 554 NI-D 2015 Nuclear 867 NI-A 2024

Plan 3 Nuclear 1,221 NI-A 2007 Plan 3 Coal 769 NI-B 2007
Nuclear 867 NI-A 2013 Coal 769 NI-B 2011
Nuclear 867 NI-A 2019 Coal 320 NI-B 2015

Plan 4 Nuclear 1,221 NI-A 2024 Plan 4 Coal 769 NI-B 2022
Nuclear 867 NI-A 2012 Coal 769 NI-B 2026
Nuclear 867 NI-A 2018 Coal 320 NI-B 2019

39



Table 3.3: Capital Cost of Each Technology

Overnight
Technology Cost ($/KWh)

Nuclear 1,975
Coal 1,213
Gas 558

Table 3.4: Lead Times for Each Considered Power Plant

Capacity Lead Time
Technology (MW) (years)

Nuclear 1,221 6
Nuclear 867 6

Gas 554 3
Gas 67 2
Coal 769 4
Coal 320 3

3.4.3 Allowance Market Scenario

We consider a cap that is held constant for the period 2007-2015, which is then re-

duced on a yearly basis by 2.5 % until 2030. We assume that 100% of the allowances are

auctioned. Each generator bids for allowances indicating price and quantity. The auction

is assumed to be sealed-bid uniform-price with a reserve price (the minimum acceptable

bid in the allowance auction) and a restriction on the maximum number of allowances

(40%) that a single generator can receive. We formulated the case study to examine the

impact of allowance reserve prices on the equilibrium expansion plans. Therefore, we

considered three different scenarios for reserve prices: $ 3.38 based on the clearing prices

obtained in the first RGGI auctions [44] (SC1), and two other scenarios (SC2 and SC3)

with higher reserve prices of $5 and $6, respectively. We consider that the reserve price

acts as a base price for allowance bids for the generators, and hence, the minimum auction

clearing price. In order to limit the computation required for the case study, we assumed
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each generator to have a single allowance bid derived based on generation portfolio of

the year, reserve price, and any penalty incurred from emissions violation in the previous

year. These bids were incorporated into a linear program (2.5) with an objective function

of maximizing the auction revenue subject to the constraints of availability of allowances,

reserve price, and maximum allocation to a single generator. The market clearing price

corresponds to the shadow price of the constraint for availability of allowances.

It was considered that Generators 1, 3, and 4, which own only coal and natural gas

plants at the beginning of the planning horizon (see Table 3.1), bid 1.5 times the reserve

price, while generator 2 with no coal capacity and small natural gas plants bids the re-

serve price. When a generator incurs emissions penalty, it is considered that the generator

increases its original bid price for the next period by 1.2 times. The quantity compo-

nent of a generator’s allowance bid is guided by the likely total amount of fossil-fuel

based power supply to the network. This amount is obtained by summing the products

of the fossil-fuel based plant capacities available to each generator and the respective

plant capacity factors from the previous year. The capacity factors for the first year of

the planning horizon are obtained from [42] while the capacity factors for the first year of

operation of new plants is considered to be equal to the capacity factor of similar plants

(in technology and capacity) for the previous year. When emissions penalty is incurred by

a generator due to a negative allowance balance at the end of a period, it is considered

that the generator increases its quantity bid by the outstanding allowance balance (as

explained below) in the next period.

We also consider that generators trade any unused allowances at the end of each pe-

riod in the secondary market. However, the majority of the allowance procurement is

assumed to occur through the primary auction. Our assumption here is different from

what has been seen in the EU ETS, where the allowances are distributed for free (not

auctioned), and hence, allowance trading occurs only in the secondary market. The trad-

ing price of the allowances in the secondary market is considered to be 1.2 times the
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auction clearing price of the period. This consideration is based on the fact that secondary

trading occurs only when allowances are scarce during a period and consequently trade at

a higher price. We also assume that the generators bank any surplus allowance, remaining

after the end-of-period secondary trading, for the next period. If the overall balance of

allowances at the end of a secondary trading is negative, a 150% penalty is applied to the

generator with negative balance. For example, if a generator falls short of 100 allowances

for a period, then the outstanding balance for the generator at the beginning of the next

period is considered to be 150. The generators pass on the additional cost of penalty to

the consumers through an increase in their electricity supply bids. It is considered that at

the end of the planning horizon the generators pay off any outstanding allowance balance.

An allowance surplus at the end of a planning horizon is considered to have a positive

cash value.

3.4.4 Electricity Market Scenario

The 9-node network is depicted in Figure 3.3. We focus on the northern region of the

state since most of the generation and peak loads are located in this area. Seven nodes

that represent the electricity production and consumption in this area are named: NI-A,

NI-B, NI-C, NI-D, NI-E, NI-F, and NI-G. Two other nodes are named: IN (which is a

super node representing all the remaining nodes in the state) and OUT (which is a super

node representing the out of state nodes that trade electricity with Illinois). Demand bid

curves were constructed for each node for year zero of the planning horizon based on

the results in [42]. Subsequently, to represent a demand increase for each year of the

planning horizon, the demand bid curves were shifted to the right as shown in Figure

3.4. The nodal capacities of each generator, by fuel type, in year zero are presented in

Table 3.1. Note from table that, 4154 MW in nuclear-based generation for generator 2 in

node NI-A is obtained by adding the capacities of four different nuclear plants (1221 MW,
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Figure 3.4: A Schematic Representation of Yearly Demand Increase

1199 MW, 867 MW, 867 MW) in the NI-A zone. Supply bid curves for year zero were

constructed for each combination of the generator, node, and fuel type using the results in

[42]. Throughout the planning horizon the supply bid curves are adjusted endogenously

on a yearly basis to accommodate the total cost of allowances (including penalty) incurred

by the generators. Fuel costs are assumed to remain same as year zero throughout the

planning horizon.

3.4.5 Results

We coded our capacity expansion model for the 9-node network in C, which was

implemented using an Intel Core Duo 2.20 GHz processor. The embedded optimization

problems (OPFs and allowance auctions) were modeled in C through a callable CPLEX

library and solved using ILOG CPLEX version 10.1.

The equilibrium expansion plans selected by the generators in scenarios SC1, SC2,

and SC3 discussed earlier in this section, are presented in Table 3.5. It can be observed
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that, for the three scenarios considered, the equilibrium expansion plans chosen by the

generators are similar. This similarity is in part due to the limited number of action choices

that were considered for the generators. However, as we discuss below, the chosen plans

have different impacts on the market prices, demand for electricity, emissions reductions,

and market share of generation technologies.

For the average weighted LMP, in Figure 3.5, we observe an upward trend. Though an

increase in LMPs is expected from the implementation of an emissions control scheme,

we note that it is also a result of the expected increase in demand over the planning hori-

zon, which we have modeled as shown in Figure 3.4. It can also be seen that there are

three distinct segments in the weighted LMP plot. In the first segment, between years

2007 and approximately 2012, the weighted LMPs increases steadily (the increase of

the LMPs at each node is at the same rate, not shown in the figure) as the new generation

capacities of the chosen expansion plans are still in construction, the CO2 cap has not yet

been lowered, and the allowance price is at its lowest level (see the allowance curve on the

same figure). The second segment, between 2012 and 2020 (in SC1), 2024 (in SC2) and

2026 (in SC3), exhibits a fluctuating weighted LMP (that are somewhat identical across

the network nodes, not shown in figure). We note that the identical nature of the LMPs

is caused by the excess capacity in the network brought about by the new nuclear plants

that start operating in 2013. The LMP fluctuation, on the other hand, is triggered by both

the excess capacity and the cap reduction, which can be further elaborated as follows.

As the cap reduction begins and less allowances are made available, the generators find

themselves in emissions violation and subjected to penalty. In the following year, the

generators try to pass on the cost of penalty by increasing the supply bid prices, which

causes the coal generation to be less competitive, supplying less power to the network,

and producing less emissions.
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Table 3.5: Selected Expansion Plans of the Generators for Each Scenario

SC1 SC2 SC3

Const. Const. Const.
Plan Type Cap. Node Begins Plan Type Cap. Node Begins Plan Type Cap. Node Begins

Gen 1 Plan 3 Nuclear 1,221 NI-A 2007 Plan 3 Nuclear 1,221 NI-A 2007 Plan 3 Nuclear 1,221 NI-A 2007
Coal 320 IN 2013 Coal 320 IN 2013 Coal 320 IN 2013

Gen 2 Plan 1 Nuclear 1,221 NI-A 2007 Plan 1 Nuclear 1,221 NI-A 2007 Plan 1 Nuclear 1,221 NI-A 2007
Nuclear 1,221 NI-A 2013 Nuclear 1,221 NI-A 2013 Nuclear 1,221 NI-A 2013

Gas 554 NI-D 2019 Gas 554 NI-D 2019 Gas 554 NI-D 2019
Gen 3 Plan 3 Gas 67 NI-B 2007 Plan 4 Gas 67 NI-B 2024 Plan 3 Gas 67 NI-B 2007

Gas 67 NI-B 2009 Gas 67 NI-B 2026 Gas 67 NI-B 2009
Gas 67 NI-B 2011 Gas 67 NI-B 2028 Gas 67 NI-B 2011
Coal 320 IN 2013 Coal 320 IN 2021 Coal 320 IN 2013

Gen 4 Plan 1 Nuclear 1,221 NI-A 2007 Plan 1 Nuclear 1,221 NI-A 2007 Plan 1 Nuclear 1,221 NI-A 2007
Nuclear 867 NI-A 2013 Nuclear 867 NI-A 2013 Nuclear 867 NI-A 2013
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Figure 3.5: Model Results for the Sample Network Under Three Cap-and-Trade Scenarios

This, in the subsequent year, reduces the cap violation penalty and the generator sup-

ply bid prices, which results in coal generators supplying more power and violating the

cap again. This cycle repeats until demand grows to a point where excess generation ca-

pacity is reduced and so is the fluctuation in coal generation from year to year, thereby re-

ducing the fluctuations in the LMPs (as observed in the third segment of the LMP plots).

A similar but complimentary fluctuation can be seen in the demand and emissions

values, where both demand and emissions are lower in years when the LMPs are higher

and vice versa. It may be noted, as evident from the last segment of the emissions and

market share plots, that the capacity mix of the network and the increased demand result
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Figure 3.6: Aggregated Cap and Emissions for the Planning Horizon (2007-2030) (Left) -
CO2 Emissions per MWh (Right)

in a steady selection of coal-based generation and increasing emissions cap violation

under continuing cap reduction. As expected, the smallest violation of the cap is observed

for SC3. It can also be seen from the demand plot that the demand elasticity (modeled

via demand side bidding in the OPF) causes the network demand to be generally lower in

SC3 than in SC2, and lower in SC2 than in SC1.

As to the market share by technology, Figure 3.5 shows that nuclear and coal gener-

ation undergo a similar fluctuation, whereby the nuclear generation peaks in years when

supply bids for coal plants attempt to recover penalties due to cap violation in the pre-

vious year. Overall, for the period 2007-2030, the market share of nuclear generation

exhibits a net increase of around 10%, natural gas-based generation exhibits a negligible

net increase, while the coal generation decreases around 10%.

Figure 3.6 shows the overall effect of the cap-and-trade design on emissions reduction

in each scenario. The line graph presents the emissions per MWh of electricity produced

revealing the emissions reduction trend due to cap-and-trade in all three scenarios. Note

that, this reduction trend is in contrast to the increasing trend for total emissions that

we observe in Figure 3.5, which is caused in part by the increase in demand over the

planning horizon. It can also be observed that emissions per MWh in SC3 are reduced
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approximately 20 % over the period 2007-2030. The bar graph in Figure 3.6 depicts the

aggregated cap (i.e., the total allowed emissions during 2007-2030) and the aggregated

emissions in each of the scenarios. It can be seen that in SC3, contrary to the other sce-

narios, the aggregated emission is below the aggregated cap, which attests to the higher

effectiveness of the pricing scheme in SC3.

3.5 Concluding Remarks

Cap-and-trade is the most discussed scheme to control CO2 emissions in the U.S.

In recent years, the European Union and a group of Northeastern states in the U.S. have

implemented such programs. Generation expansion decisions will need to be made taking

into account any such regulation. In fact, if a cap-and-trade program is to succeed there

will have to be a shift from dominant fossil-fuel technologies to low-emission technolo-

gies such as renewables or nuclear power.

In this chapter, we develop a game theoretic model for generation capacity expan-

sion that is able to accommodate different designs of a cap-and-trade program to assess

their impact on expansion decisions. The model incorporates the competition among the

generators in the allowance and electricity markets. We develop a solution algorithm for

the game theoretic model that provides the equilibrium expansion plans, allowance bid

strategies, and supply function bid strategies of the generators for a specific planning

horizon. The model can be used to assess the impact that different features of a cap-and-

trade program can have on expansion decisions of the generators and their implications

for total emissions, electricity prices, and electricity demand. For instance, besides as-

sessing the impact of the allowance reserve price (as presented in the case study), we

can use the model to analyze the impact of other cap-and-trade features including the

maximum number of allowances that a generator can procure in the auction, not allowing
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the banking of allowances, changing the type of auction used to distribute the allowance

(such as using a pay-as-go scheme), considering different allowance penalties.

The chapter also presents a case-study based on the northern Illinois power network,

which is subjected to a hypothetical cap-and-trade program (with features similar to those

considered in RGGI). We can draw the following insights from the results.

• Allowance price is a key factor to achieve emissions reductions. As shown in the

results from scenarios SC1, SC2, and SC3, the higher the allowance price, the lower

the amount of emissions. An increase of $2.02 in the average allowance price dur-

ing the planning horizon triggers a 9.35% decrease in CO2 emissions. A further

increase of $1.41 in the average allowance price triggers a further 5.28% decrease

in emissions.

• An increase of $2.02 in the average allowance price during the planning horizon

decreases demand by 5.4%. A further increase of $1.41 in the average allowance

price triggers a further 3.9% decrease in demand.

• Fossil-fuel based plans, coal in particular, preserve a sizable market share (not

lower that 25%) throughout the planning horizon. In SC1, the average market share

of coal-based plants is 41.9% whereas in SC3 is 37.47% (as noted above, demand

in lower under SC3).

• The initial phase through which the cap gets tightened can cause instability in emis-

sions, prices, and demand in the electricity market since generators will take time in

settling their supply bid strategies. The variance of prices and demand tends to be

similar across the 3 scenarios while the variance of emissions tends to be higher in

SC3 than in the other two scenarios.

• Even if expansion plans that are 80% free of emissions are implemented, there are

still issues of overall cap compliance when allowance prices are comparatively

lower (as shown by the results from SC1 and SC2).
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• Overall emissions reductions is a valid metric to assess the effectiveness of a cap-

and-trade program as shown in Figure 3.6. This metric complements the year-by-

year cap violation assessment.

• Generators integrating penalties for cap violations is a feasible scenario that occurs

when there is neither enough low-emission generation nor network transmission

capacity in the network.

• Allowance scarcity can become an issue if the penalties for cap violation are set at a

high level of allowances.

We did not consider other elements of future electricity markets under emissions

regulation, such as renewable power, offsets, recycling of CO2 revenue, and demand side

efficiency incentives. With regards to these elements, we offer the following comments.

• We did not include renewables because we did not have any data for this type of

generation for the Illinois network. From an emissions perspective, renewable power

is comparable to nuclear power. However, other aspects are different such as con-

struction lead times and the level of capacity offered to the market.

• Offset is another type of financial instrument within an emissions control scheme,

which is used to compensate for emissions. Common offset mechanisms include

supporting forestation, carbon sequestration, renewable energy and energy effi-

ciency projects. As with allowances, the level of offsets in a cap-and-trade program

is limited. In our model, consideration of offsets (which are generally cheaper than

penalties) would have allowed generators a cheaper means to comply with the cap.

• Recycling the revenue, collected from allowance auctions, among the consumers

could mitigate the effect of the observed increase in electricity prices due to the

cap-and-trade implementation. On the other hand, part of the revenue could be
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recycled to low-emission generators so that they can improve their competitive-

ness against fossil-fuel generators. One of the recent emissions control bills in

the U.S. Congress ([45]) considers recycling 75% of the cap-and-trade revenue

to consumers. We present a model to develop optimal carbon revenue recycling

policies in the next chapter.

• Demand side management (DSM) strategies (e.g., smart meters, efficiency and

consumption incentives) are intended to have an impact on the level and patterns

of energy consumption, thereby, impacting total emissions. However, the inclusion

of DSM strategies in our methodology would significantly increase the modeling

challenge.
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Chapter 4: Optimal Policies for CO2 Cap-and-Trade Revenue Redistribution

A design feature that is common to both market-based emissions control schemes,

cap-and-trade and carbon tax, is the possibility of returning to the market participants the

revenue raised by selling allowances (in the cap-and-trade case) or by collecting the tax

(in the carbon tax case). This chapter is concerned with developing strategies to redis-

tribute this carbon revenue.

4.1 Relevance

The amount of revenue collected by CO2 emissions control schemes can be signifi-

cant. Metcalf et al. in [46] compile estimates of the potential revenue that could be col-

lected through several carbon tax bills proposed in the U.S. Congress. The estimates

range from $69 billion to $126 billion in the first period of a carbon tax program, grad-

ually increasing throughout the years. Paltsev et al. in [34] estimates that the revenue col-

lected by auctioning allowances in some cap-and-trade proposals for the U.S. range from

$130 to $366 billion during the first period of implementation. It may be noted that the

revenue collected in a cap-and-trade program depends on the number of allowances that

are auctioned (in some designs, such as the initial stage of the European Union Emission

Trading System, all allowances can be given away for free and no revenue is collected).

The only CO2 cap-and-trade program currently functioning in the U.S., the Regional

Greenhouse Gas Initiative (RGGI), has collected proceeds that range from $38 million

to $117 million in the auctions run so far [44].
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4.2 Revenue Recipients

Several economists [47–49] are in favor of redistributing (recycling) the carbon rev-

enue, in other words, of developing emissions control schemes that are revenue neutral.

The market participants that are most often mentioned as the potential recipients for the

revenue are households and low-emission companies. Some of the means to achieve

the redistribution of revenue include lump-sum distribution to households [47], reduc-

ing labor or capital taxes, and spending the funds for other purposes such as R & D in

low-carbon technologies and energy efficiency [48]. The case for redistributing carbon

revenue back to households is based on the assumption that electricity companies will

pass on to the consumers the cost of allowances or carbon tax, therefore increasing the

electricity prices. In [47], it is estimated that households will spend an additional $1,158

to $4,119 annually (in 1999 dollars) if a carbon tax is implemented. The case for redis-

tributing part of the revenue to low-emission companies, on the other hand, is based on

the need to increase the market share of low-emission generation. The European Union,

for instance, have set targets for renewable-based generation (21 %) for the next decade

[50]. This will demand a great deal of innovation from renewable-based generation com-

panies which could potentially be achieved through R & D investment (according to [51],

emissions pricing alone might not be enough to improve renewable technologies).

4.3 Chapter Outline

In this chapter, we present a mathematical model to develop revenue redistribution

strategies for a cap-and-trade or a carbon tax program among market participants in a

power market. The model is a multi-year version of the DC-based Optimal Power Flow

(OPF) problem modified to accommodate carbon revenue constraints and subsidies. We

focus on electricity markets that are subjected to emissions control schemes, similar to
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the case of several existing markets under the Regional Greenhouse Gas Initiative (RGGI)

[9].

In the next section we present a review of the current literature on the topic. We present

the model and variations of it in Section 4.6. In Section 4.7 some numerical examples are

presented. Section 4.9 deals with the conclusions and future work.

4.4 Background

The implementation of a carbon tax or a cap-and-trade program that considers the

auction of allowances will represent an important new source of revenue for the gov-

ernment. Economists have argued in favor of using this revenue to mitigate some of the

distributional impacts of such programs, in particular, the fact that low-income house-

holds will be hit harder in terms of percentage of total expenditures by the new carbon

charges. However, there are disagreements with regards to the best way of redistributing

the revenue.

4.4.1 Literature Review

Two are the most discussed approaches for redistributing the carbon revenue when

considering an economy-wide emissions control scheme: lump-sum redistribution and re-

duction of distortionary taxes (in labor and capital markets). In a lump-sum redistribution

scenario, the revenues will be directly redistributed to consumers via rebates. Barnes and

Breslow [47] suggest a trust fund, the "Sky Trust", that would be in charge of collecting

and administering the revenue for current and future citizens. Each individual would re-

ceive the same annual payout from the trust. Lump-sum redistribution to households was

found to have the most progressive distributional effect in a study by the Congressional

Budget Office [52] (the study considers a cap-and-trade program with all allowances auc-
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tioned). Dinan and Rogers in [53] conclude that lump-sum redistribution would be more

helpful for low-income households though the cost for the economy would be greater than

if the government would use the revenue to reduce pre-existing distortionary taxes. Using

carbon revenue to reduce pre-existing distortionary taxes is espoused by several authors in

the literature due to the possibility of obtaining a double dividend i.e. achieving environ-

mental benefits and at the same time reducing the economic costs of the tax system [49].

The double dividend hypothesis has been widely discussed in the literature. Goulder in

[54] identifies different versions of the hypothesis (weak, intermediate, and strong) and

concludes that the weak version (returning revenues through cuts in distortionary taxes

leads to cost savings in comparison with lump sum redistribution) is easily defended

on theoretical grounds whereas this is not the case for the strong version (returning tax

revenues through cuts in distortionary taxes leads to negative gross costs). Parry et al.

in [49] argue that a strong double dividend can be obtained for a scenario where part of

consumer spending is deductible from labor taxes. Other papers that cover the double

dividend hypothesis include [55–57]. The main argument against both, the lump-sum

redistribution and the redistribution via reduction of distortionary taxes, is that the two

approaches are likely to have little impact on environmental effectiveness of an emissions

control scheme.

Other options through which revenue recycling can be achieved include output-based

rebates to emitters, investments in energy efficiency, and investments in R & D [58]. In

the case of investments in R & D, the redistribution can be implemented via subsidies.

The use of subsidies to carry out revenue recycling has a precedent in transport networks

where congestion revenue has been used to subsidize public transportation [59, 60] (as in

the London’s congestion charging scheme). The allocation of subsidies for low-emission

technologies (biofuels, in particular) from revenue collected by a carbon tax is discussed

in [61]: ’if the state (Washington) chooses to provide direct support for the biofuel in-

dustry based on carbon tax revenues, it can do so by providing tax credits (subsidies)
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to low-carbon renewable fuels, and/or it can invest carbon tax revenues in research and

development into advanced biofuels. The tax/subsidy combination will reduce the price

increase of blended fuels due to the carbon tax and reduce the price of biofuels relative to

all other goods in the economy.’ Subsidies for R & D are common in several parts of the

world with major programs implemented in the United Kingdom, Denmark, Ireland, Ger-

many, Japan, and The Netherlands [51]. Subsidies for R & D, as part of carbon revenue

redistribution strategies, have been included in recent emission control bills introduced

in the U.S. Congress. In [45], for example, a portion of the 25% of revenue collected

in the allowance auction is targeted for investments in clean energy. The only imple-

mented cap-and-trade program in the U.S., the Regional Greenhouse Gas Initiative, also

includes provisions for investment of allowance auction proceeds in R & D. For instance,

Connecticut, one of the states members of RGGI, assign 23 % of proceeds to support

renewable energy programs administered by the Connecticut Clean Energy Fund (CCEF)

[62]. In Europe, Denmark recycle part of the carbon revenue to industry through energy

efficiency incentives [63]. There are criticisms to the use of subsidies, R & D subsidies in

particular, to redistribute carbon revenue. It is argued that in some cases these subsidies

often pay for technologies that would have been installed even without the subsidy [58].

Also, another criticism is that the goverment, by allocating subsidies, is picking winners

and losers.

We develop our revenue redistribution models based on the allocation of subsidies for

low-emission generators as discussed next. In considering this approach, we expect to:

• improve the environmental effectiveness of an emisisions control scheme via im-

proving the competitive position of low-emission generators against fossil-fuel

generators and

• mitigate some of the distributional impacts of an emissions control scheme via

lowering electricity prices.
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4.5 Types of Subsidies

We focus on the revenue redistribution problem of a utilities-only cap-and-trade or

carbon tax program. We analyze two types of subsidies through which the carbon revenue

redistribution is accomplished: bid subsidies for low-emission generators and R & D

subsidies for low-emission generators. The objective of the first type of subsidy (bid

subsidies) is to increase the market share of low-emission generators during a particular

electricity auction and, in some cases, lower LMPs in the network. This would allow

customers to pay lower prices for electricity (in comparison with the case where no bid

subsidies are allocated) and have more money at their disposal for other activities.

The second type of subsidy that we consider, R & D subsidies for low-emission gen-

erators, have a comparable objective (to the bid subsidies): to increase market share of

low-emission generators and to lower LMPs in the network. However, the emphasis in

the allocation of these subsidies is in the long run. There is empirical evidence that shows

how new technologies are able to reduce their production costs based on their cumulative

stock of R & D [51]. Thus, it can be expected that low-emission generators (based on new

technologies such as solar, wind, biomass) will achieve desired reductions of production

cost if they receive subsidies targeted for R & D during a planning horizon.

The optimization models that we propose in this chapter are built to allocate these

two types of subsidies. In addition, by considering the OPF as the basis for our model

formulations, we intend to address some of the regional (locational) equity concerns that

may arise if an equal per capita revenue redistribution rule (as proposed in [45, 47]) is

implemented. Such concerns are rooted in the fact that, due to different patterns of con-

gestion and load, the electricity prices in some regions can be higher than in others.

57



4.6 Mathematical Models

The mathematical formulations that we present next are developed from the perspec-

tive of the government (or any other entity in charge of collecting and redistributing the

revenue), which aims at distributing the revenue in order to maximize a social welfare

function defined as the benefit to consumers minus the cost to producers.

We consider a CO2 cap-and-trade program (or a carbon tax program) implemented

on a defined geographical region covering emissions from power companies during a

planning horizon T . The government makes 100% of the carbon revenue available for

redistribution via bid subsidies for low-emission generators and R & D subsidies. We

assume that there is a forecast for the amount of revenue collected W t for each period t

of the planning horizon based on an expected allowance price Pt and a certain amount of

allowances At .

Generators (high-emission and low-emission) are assumed to have a quadratic cost

function based on which a linear supply bid can be derived. If the marginal cost for a

generator j is given by C j = (a0
jq+

1
2b0

jq
2), then a linear supply bid can be derived as

p = a0
j +b0

jq. We model the effect of a subsidy on a supply bid of a generator as shown in

Figure 4.1.

In Figure 4.1, the original equilibrium of the market occurs at the intersection of the

supply (S) and demand (D) curves. A subsidy of size α ∗ s ( 1
MWh ∗ $) shifts the supply

curve to the right (see curve S’). Now, the equilibrium occurs at a point where consump-

tion is larger and consumer’s price is lower than in the original equilibrium.

4.6.1 Subsidy Modeling

As mentioned earlier, we consider two types of subsidies for low-emission generators

through which the revenue redistribution is carried out: bid subsidies and R & D subsi-
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Figure 4.1: Supply Curve Before and After Subsidy αs

dies. The bid subsidies are allocated during an electricity auction and have the purpose of

decreasing the supply bid intercept of a low-emission generator only during the auction.

Thus, the bid subsidies are not modeled to have a long-term effect. For this type of sub-

sidy, the subsidy coefficient α of a low-emission generator j is computed as α j = 1/Q j,

where Q j is the maximum amount of power that low-emission generator j can offer in the

auction. This computation implies that the total subsidy quantity s (in $) is prorated over

the total amount of power offered to the market by the low-emission generator to obtain

how much the supply curve of the generator is shifted.

The R & D subsidies are also allocated during an electricity auction, however, in

contrast with the bid subsidies, the R & D subsidies are cumulative and thus, have a long-

term effect on reduction of production costs. This long-term effect is modeled based on

the cumulative stock of R & D (U t) concept that is presented in [51].

In [51], U t is introduced as part of another expression called knowledge stock de-

fined as K(U ,U) = (U t−1

U 0 )v1(U t−1

U0 )v2 with U t denoting the cumulative production of

the generator up to year t, and v1, v2 estimated learning elasticities. The impact of K on

the production cost C of a generator is given by K−1C.
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In our model, we focus on the second part of the expression for K, thus we assume

that the knowledge stock depends only on the cumulative stock of R & D at the beginning

of year t i.e., K(U) = (U t−1

U0 )v. Such mathematical relationship has also been explored

in [64, 65]. It may be noted that the impact of K on reducing production cost is realized

in year t yet the value of K is a function of the cumulative stock of R & D at the end of

year t − 1. For fixed values of elasticity (v) and initial stock of R & D (U0), we define

the reduction on unit production cost due to cumulative stock of R & D for a year t as

Rt =Ct −K−1Ct . Using the least squares method (see Appendix A), we approximate Rt

to R̂t = γU t−1, where γ is the regression coefficient. In economics, it has been established

that R & D investment shifts supply curves to the right. Therefore, the equivalent effect of

αs, in the case of R & D subsidies (during a single electricity auction at time t), is given

by γU t−1.

4.6.2 Mathematical Formulations

We present two mathematical formulations, one for each type of subsidy, based on

the DC Optimal Power Flow (OPF) formulation published in [18]. We modify the for-

mulation to accomodate the subsidies in the objective function and add a contraint for the

amount of carbon revenue available for redistribution. For the R & D subsidy formulation,

we also consider a multi-year planning horizon.

In both formulations, we consider that generators have supply curves p= a+bq where

a and b are the intercept and slope, respectively and and loads have demand curves p =

e− f d where e and f are the intercept and slope, respectively.

The rationale for considering the OPF formulation as the basis for the allocation of

subsidies is to ensure that the resulting revenue redistribution strategy is optimal with

respect to the way power will be allocated in the actual market. This will also allow pol-
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icymakers to assess the performance of the redistribution policy once is implemented

against what was expected to occur.

4.6.2.1 Mathematical Formulation to Allocate Bid Subsidies

The mathematical formulation to allocate the bid subsidies is as follows,

max∑
h

∑
θ

(eθh−
fθh

2
dθh)dθh−∑

h
∑

i
(aih +

bih
2

qih)qih (4.1)

−∑
h

∑
j
(a jh−α jhs jh +

b jh
2

q jh)q jh,

subject to:

∑
i

qih +∑
j

q jh−∑
θ

dθh− ∑
l∈l(h)

(mhl−mlh) = 0 ∀ node h (4.2)

∑
hl∈V (ρ)

Rhl(mhl−mlh) = 0 ∀ voltage loop ρ (4.3)

∑
h

∑
j

s jh ≤W (4.4)

mhl ≤Mhl ∀ arc hl (4.5)

mhl ≥ 0 ∀ arc hl (4.6)

qih ≤ Qih ∀ i,h, q jh ≤ Q jh ∀ j,h (4.7)

qih ,q jh ≥ 0 ∀ i, j,h (4.8)

where
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dθh quantity demanded by load θ at node h (decision variable)

qih quantity of electricity (in MW) produced by fossil-fuel

generator i located at node h (decision variable)

s jh bid subsidy (per MW produced) for low-emission generator j

at node h (decision variable)

q jh quantity of electricity (in MW) produced by low-emission

generator j located at node h (decision variable)

eθh , fθh intercept and slope of demand bid curve submitted by load θ

located at node h

aih , bih intercept and slope of supply bid curve submitted by fossil fuel

generator i located at node h

a jh , b jh intercept and slope of supply bid curve submitted by low-

emission generator j located at node h

α jh learning coefficient due to cumulative stock of R & D of low-

emission generator j located at node h

mhl power flow on arc hl (decision variable)

Rhl reactance of arc hl

W available revenue for redistribution

Mhl transmission limit of arc hl

Qih production limit of fossil-fuel generator i located at node h

Q jh production limit of low-emission generator j located at node h.

The first term in the objective function (4.1) corresponds to the total benefit to con-

sumers, the second term stands for the total cost to the fossil-fuel generators, and the

third term corresponds to the total post bid subsidy cost to the low-emission generators

for a single electricity auction. Constraints (4.2) and (4.3) enforce Kirchhoff’s laws in the

DC linearized load flow model, constraint (4.4) ensures that the amount allocated to the

participants via subsidies is not greater than the total revenue considered for redistribution
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during the electricity auction, and constraints (4.5), (4.6), (4.7), (4.8) enforce transmission

and generation limits. In the case of constraint (4.8), the RHS should reflect the actual

deliverable production limit of low-emission generator j, i.e. the maximum amount of

power generator j can supply given the transmission constraints in the network. This is

of particular importance since the objective of the subsidy allocation is to increase the

supply of low-emission generators in the network while social welfare, the function max-

imized in the mathematical formulation, can be increased via the allocation of subsidies

even if generators cannot supply more power to the network (by making the third term in

the objective function smaller).

In the absence of subsidy terms, the above is a regular DC OPF formulation. The

inclusion of the bid subsidy terms modifies the original solution. If there is enough trans-

mission capacity in the network, there are chances of an increase in overall demand in

the network (with respect to the original solution) due to larger amounts of electricity

supplied by the subsidy recipients. On the other hand, if the network is congested, subsidy

allocations can cause disturbances to the original dispatch solution that might result in

overall network demand reduction or unintended consequences such as increasing the

market share of fossil-fuel generators. It may be noted though that even in these cases of

high congestion the recipient of the bid subsidy will increase supply (provided constraint

(4.8) is not tight).

4.6.2.2 Mathematical Formulation to Allocate R & D Subsidies

In the case of R & D subsidies, the above formulation has to be modified. First of all,

a multiperiod horizon T is considered. Increasing amounts of R & D investment generate

larger reductions in production cost [51] (this relationship is commonly represented via R

& D learning curves), thus the stock of R & D of a generator at a certain point in time

must be treated as a cumulative quantity that depends on the R & D stock at previous
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points in time. In our model (presented below), the difference between the stock of R

& D of a generator at times t + 1 and t, U t+1 −U t , is represented by the amount of R

& D subsidy allocated to a generator j, u j, at time t. Additionally, we also consider a

stock of R & D target β jh for the final period of the horizon. The rationale for setting this

target is that policymakers cannot allocate subsidies indefinitely and, based on the R &

D learning curves of the generators t, they can estimate the projected stock of R & D that

would leave the low-emission generators in a competitive position against the fossil fuel

generators at the end of the planning horizon. We note that this target must also consider

the network transmission constraints that limit the current and expected future delivery of

power by the low-emission generators.

The mathematical formulation to allocate the R & D subsidies is as follows,

max∑
t

∑
h

∑
θ

(et
θh
−

f t
θh

2
dt

θh
)dt

θh
−∑

t
∑
h

∑
i
(at

ih +
bt

ih
2

qt
ih)q

t
ih (4.9)

−∑
t

∑
h

∑
j
(at

jh− γ jhU
t−1
jh +

bt
jh

2
qt

jh)q
t
jh,

subject to:

∑
i

qt
ih +∑

j
qt

jh−∑
θ

dt
θh
− ∑

l∈l(h)
(mt

hl−mt
lh) = 0 ∀ node h, t (4.10)

∑
hl∈V (ρ)

Rt
hl(m

t
hl−mt

lh) = 0 ∀ voltage loop ρ, t (4.11)

U t
jh−U t−1

jh −ut
jh = 0 ∀ j,h, t (4.12)

UT
jh = β jh ∀ j,h (4.13)

∑
h

∑
j

ut
jh ≤W t ∀ t (4.14)

mt
hl ≤Mt

hl ∀ arc hl, t (4.15)

mt
hl ≥ 0 ∀ arc hl, t (4.16)

qt
ih ≤ Qt

ih ∀ i,h, qt
jh ≤ Qt

jh ∀ j,h (4.17)

qt
ih,q

t
jh ≥ 0 ∀ i, j,h (4.18)
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where most of the terms are the same as in the formulation for bid subsidies but with a

superscript indicating the time period. The new variables and parameters are:

U t−1
jh cumulative stock of R & D of low-emission generator j

located at node h at the beginning of year t (decision variable)

ut
jh R & D subsidy for low-emission generator j located at node h

during year t (decision variable)

U0
jh initial stock of R & D of low-emission generator j located at

node h at the beginning of year t

γ jh regression coefficient for the reduction on unit production cost

due to cumulative stock of R & D of low-emission generator j

located at node h

β jh minimum required amount of cumulative stock of R & D at

end of planning horizon for low-emission generator j located

at node h

W t available revenue for redistribution during year t.

The constraints are the same as in the bid subsidy formulation (though each one of

the constraints is now a set of T elements) with the addition of constraint sets (4.12) and

(4.13). The former constraint set establishes the relationship between the cumulative

stocks of R & D and the yearly subsidies for R & D of each generator while the set (4.13)

ensures that each generator achieves a target of cumulative R & D stock at the end of the

planning horizon.

Note that in this formulation, the parameter at
ih (intercept of supply curve of fossil

fuel generator i at node h), is modified throughout the planning horizon via the following

expression,

at
ih +δPt , (4.19)

65



where δ is the emissions factor (which indicates the amount of CO2 (in tons) generated

per MWh of electricity production, depending on the technology) and Pt is the expected

allowance price during period t. The parameters et
θh

are also modified throughout the

planning horizon to represent an increase in demand from a load θ in node h of the net-

work (this is equivalent to shift a linear demand curve to the right).

4.6.3 Solution Methodology

Both formulations are, in general, nonlinear nonconvex problems. The nonconvexity

is due to the bilinear terms in the objective function: sq (in the bid subsidies formulation)

and U t−1q (in the R & D subsidies formulation). By using suitable transformations [66],

we convert each formulation into a separable model. The resulting quadratic terms that

still render each separable problem nonconvex are approximated using piecewise linear

functions [66].

After implementing these approximations, the first formulation (for the allocation

of bid subsidies) is solved in CPLEX obtaining a local optimum. In the case of the sec-

ond formulation, we adopt a backward induction procedure to find the local optimum.

The procedure is based on the fact that the target stocks of R & D for each low-emission

generator, for the final period of the planning horizon UT
jh , are known. If the elements of

the objective function and constraints that correspond to the last period of the planning

horizon are considered as a new problem and the following constraints are added,

UT−1
jh ≤UT

jh ∀ j,h (4.20)

UT−1
jh ≥UT

jh−W T ∀ j,h (4.21)

∑
h

∑
j

UT−1
jh ≤

T

∑
1

W t (4.22)
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then the resulting optimization problem is similar to the problem formulated to allocate

the bid subsidies (4.1) - (4.8) with the addition of linear constraints (4.20), (4.21), and

(4.22). The solution of this optimization problem provides the values for UT−1
jh (T − 1

is the second to last period) of each low-emission generator which can then be used to

iteratively solve the other optimization problems in a backward fashion. The constraints

above can be generalized for each of the previous periods by substituting T for t and T−1

for t − 1. Constraint (4.20) ensures that the stock of R & D from the previous period is

not higher than in the current period; constraint (4.21) ensures that the stock of R & D at

the end of the current period is achievable with the revenue available from redistribution

during the current period; and constraint (4.22) ensures that there is enough accumulated

revenue available for redistribution up to period t to satisfy the total sum of the stock

of R & D of the low-emission generators at the end of period t − 1. This last constraint

has a greedy effect in that the sum of the cumulative values for the stock of R & D of the

generators during a single period is reduced only if it is strictly necessary (otherwise the

cumulative stock of R & D, U t
jh , would not be reduced since higher values increase the

objective function).

The optimization problems were modeled in C through a callable CPLEX library and

solved using ILOG CPLEX version 12.1. Descriptions and results for a sample applica-

tion of the model are presented next.

4.7 Application

We demonstrate our proposed optimization model on a 4-node sample network (in

Figure 4.2). We consider two different low-emissions generators G2 and G3 (one with a

higher impact of cumulative stock of R & D on cost reductions, i.e. a higher regression

coefficient γ jh), a fossil fuel generator G1 that needs to procure allowances to produce

electricity, and a load L1.
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Figure 4.2: Four-Node Sample Network

4.7.1 Allocation of Bid Subsidies

Initially, we use the first formulation to allocate bid subsidies to the low-emission

generators in the network during a single electricity auction (period). We consider that

the amount of revenue available for redistribution during the electricity auction is W =

50.0. We analyze two scenarios (SC10 and SC20) to show how the subsidy allocation

varies with the parameters of the supply curve of the low-emission generators. Note that

in scenario SC10 the network is not congested while in scenario SC20 the network is

congested. The supply and demand curve parameters of the generators and load for both

scenarios are presented in Table 4.1. The results of the OPF problem for the respective

Table 4.1: Supply/Demand Curve Parameters for Generators and Load in SC1 and SC2

SC10 SC20
Supply/Demand Parameters Supply/Demand Parameters

L1 e1 = 27.6; f1 = 0.05 e1 = 27.6; f1 = 0.05
G1 a1 = 17.0; b1 = 0.05 a1 = 17.0; b1 = 0.05
G2 a2 = 19.047; b2 = 0.05 a2 = 19.047; b2 = 0.002
G3 a3 = 18.48; b3 = 0.05 a3 = 18.48; b3 = 0.05

scenarios with no subsidy allocation (SC10 and SC20) are presented in the first and third

rows, respectively, of Table 4.2. We solve the optimization model (4.1)-(4.8) and obtain

that for a network with supply and demand curves as in SC10 the bid subsidy allocation
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is s12 = 0 and s13 = 50 while for a network with supply and demand curves as in SC20

the bid subsidy allocation is s12 = 50 and s13 = 0.The corresponding scenarios post

allocation of bid subsidies are named SC1 and SC2 and their OPF results (that incorpo-

rate the effect of the bid subsidy allocation) are presented in the second and fourth row

of Table 4.2, respectively. In SC1, the bid subsidy is allocated to G3 which as a result

Table 4.2: Quantity Supplied, Total Demand, Bid Subsidies, and LMP at Load Node for
Scenarios SC10, SC1, SC20, and SC2

d14 q11 q12 q13 s12 s13 LMP 4

SC10 141.365 70.635 29.695 41.035 0 0 20.532
SC1 142.988 68.135 27.634 47.219 0 50 20.451

SC20 142.745 58.723 49.633 34.389 0 0 20.463
SC2 140.755 55.937 50.827 33.991 50 0 20.562

supplies more power to the network than in SC10. Note also that overall generation from

the low-emission generators (G2 and G3) is higher in SC1 than in SC10 (74.853 in SC1

vs 70.730 in SC10) and carbon emissions are reduced since G1 produces less power in

SC1. Furthermore, the bid subsidy allocated to G3 causes a net increase in load demand

(and consequently, LMP 4 to decrease). In SC2, the allocation of the bid subsidy to G2

increases G2’s supply to the network, reduces emissions, and increases total generation

from low-emission generators (84.818 in SC2 vs 84.022 in SC20). However, due to the

congestion already existent in the network in SC20, the allocation of the bid subsidy to

G2 results in a net reduction of load demand and thus, in an increase of LMP 4 in SC2.

The allocation of bid subsidies obtained from solving problem (4.1)-(4.8) in each case

is dictated, to a large extent, by what is observed in Figure 4.3. In SC10, G3 always has

a lower price per MWh than G2 (and thus, a lower cost). Therefore, the bid subsidies are

allocated to G3 regardless of the quantities produced by G2 or G3. In SC20, on the other

hand, the quantity that each generator produces is important to determine the allocation of

bid subsidies since G3 is cheaper than G2 only within a small range of values for q.
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Figure 4.3: Supply Curves of G2 and G3 in Scenarios SC10 and SC20

4.7.2 Allocation of R & D Subsidies

To develop the allocation of R & D subsidies, we consider the same 4-node sample

network (in Figure 4.2). The supply and demand curves of the generators and load are

different than in the previous example and are presented in Table 4.3. In addition, we

Table 4.3: Supply/Demand Curve Parameters for Generators and Load at t = 1

Supply/Demand
parameters

L1 e1
1 = 27.0; e1

1 = 0.05
G1 a1

1 = 10.524; b1
1 = 0.05

G2 a1
2 = 22.0; b1

2 = 0.05
G3 a1

3 = 24.0; b1
3 = 0.05

consider a planning horizon comprising 5 periods (T = 5) and an initial allowance price

of P = $3.38 readjusted annually by 10 % (this is a simplification since, in practice, the

price is obtained in the marketplace for allowances). We assume that the fossil fuel gen-

erator buys all the available allowances and passes the cost on to the consumers through

the supply bids via expression (4.19). We also assume that the cap (in tonnes of CO2)

for the first period of the horizon is set at the maximum level of production of the fossil
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fuel generator (90.25 MW × 1.12 tonnes of CO2/MW) and is reduced by 5 % for each

subsequent period with respect to the previous year. We use the expected allowance price

and the emissions cap to compute the amount of revenue available for redistribution for

each period, W t . Regarding demand, we increase the intercept value et
θh

of the load’s

linear demand curve (i.e., we shift the demand curve to the right) for each period of the

horizon to represent an increase in network demand. Finally, the cumulative R & D stock

regression coefficient for each low-emissions generator, γ jh , is computed using expression

(A.5). Thus, γ12 = 0.0087 (for G2) and γ13 = 0.0083 (for G3). We also consider a target

for the cumulative stock of R & D for each low-emission generator β12 = β13 = 800 and

an initial amount of stock of R & D for each low-emission generator U0
12

= U0
13

= 100.

Note that, when t = 5 (final period), the generators reach their expected target of R & D

stock, the intercept of the fossil fuel generator’s supply curve is a5
11
= 29.85 $

MWh , and the

intercept of the load’s demand curve is e5
14
= 27.8 $

MWh . For this set of supply and demand

curves at t = 5, the low-emission generators are not expected to be generating at their

maximum deliverable capacity (as mentioned earlier, this is a requirement of our model).

The resulting allocation of R & D subsidies for the 5-period planning horizon is pre-

sented in Figure 4.4. It can be seen that G2 reaches the target for stock of R & D earlier

than G3. This is partly due to a higher regression coefficient (γ12 > γ13), which implies

a faster translation of R & D stock into production cost reductions by G3. Figures 4.5
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Figure 4.4: Stock of R & D Throughout the Planning Horizon for Each Low-Emission
Generator
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shows demand and load LMP for the scenario with R & D subsidies implemented and for

the scenario in which subsidies are not considered (a scenario without revenue recycling).

It can be observed that consumers at the load node are expected to greatly benefit via

higher levels of demand and lower prices when R & D subsidies are considered. This

is clearly manifested during the final two periods of the planning horizon where, in the

absence of subsidies, the load would severely curtail demand. The expected market share

Figure 4.5: Demand and Load LMP in the Scenario Post R & D Subsidies Implementa-
tion and the Scenario with No R & D Subsidies

for the scenario post implementation of R & D subsidies and the scenario with no revenue

recycling are presented in Figure 4.6. At t = 2, G2 starts increasing its market share as a

consequence of the R & D subsidy received during the previous period. The most clear

effect of the R & D subsidy is observed at t = 3 when G1 loses a substantial portion of

market share to G2. At t = 4 and t = 5, due to the R & D subsidy received, G3 increases

its generation and almost achieves the same market share as G2. It may also be noted that,

for this particular example,

• An average increase in load electricity price of 6.4% due to a cap-and-trade pro-

gram of the nature considered can be reduced to be less than 1% by redistributing

the carbon revenue to low-emission generators via R & D subsidies.
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Figure 4.6: Market Share of the Generators in the Scenario Post R & D Subsidies
Implementation and the Scenario with No R & D Subsidies

• Total low-emission generation is increased 80% by allocating R & D subsidies to

low-emission generators with respect to the scenario without revenue recycling.

• An equitable redistribution of the revenue is not the optimal way of carrying out the

redistribution during each period when social welfare is maximized.

4.8 Feasibility of Implementation

In general, we consider that the revenue redistribution policies proposed in this chap-

ter seem more applicable for a regulated electricity market setting. In the case of bid

subsidies, their implementation is more straightforward than the R & D subsidies. The

goverment entity in charge of collecting the carbon revenue could simply provide the bid

subsidy to the low-emission generating companies as proposed herein, for each electric-

ity dispatch. The effect of the subsidy would be perceived immediately (increased low-

emission generation and potentially, lower prices). However, the main drawback of the

bid subsidy is that it does not have a lasting effect on the offers submitted by the low-

emission generators. In fact, the low-emission generators can become dependent on the

bid subsidy, discouraging them to reduce costs on their own.
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The procedure whereby the R & D subsidies could be implemented seems more com-

plicated. In the first place, low-emission generation companies should be required to

submit their historic R & D learning curves which the government entity should then

compare with general empirical curves for the corresponding technologies (e.g., wind,

solar, biomass). Since our model to allocate R & D subsidies is supposed to be used as a

planning tool, the government entity in charge of distributing the carbon revenue should

evaluate how well the scheme has worked after a defined period of time (e.g. a year). In

particular, it should verify that the low-emission generators have been able to achieve the

expected reduction in production cost that their R & D learning curves predicted. Ac-

cording to this verification, the R & D learning curves should be updated and the revenue

redistribution model should be run again for the next planning period. The participation

of companies owning the low-emission generation resources in the scheme should be

voluntary and possibly, a premium for participation can be charged. Penalties for under-

performance could be included so that R & D learning curves submitted reflect the real

expected reduction on production costs.

4.9 Concluding Remarks

Redistributing the carbon revenue to market participants is one of the most important

features in the design of an emissions control scheme. Among the potential recipients,

households are the most commonly mentioned by economists due to the possibility of

using the revenue to mitigate the likely increase of electricity prices after the implemen-

tation of an emissions control scheme. Other potential recipients are low-emission gener-

ators, especially renewable-based generators, since subsidies can be used to reduce their

production costs and supply curves and thus, increase their competitiveness against fossil-

fuel generators. In this chapter, we present nonlinear nonconvex optimization models to

obtain carbon revenue redistribution strategies via two types of subsidies for low-emission
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generators: bid subsidies and R & D subsidies. Through the bid subsidies, we aim at re-

ducing electricity prices for households across the network and increase the market share

of low-emission generators during a single electricity auction. The R & D subsidies are

allocated with the same two objectives but their effect is expected to be realized during a

planning horizon by leveraging the relationship between a generator’s cumulative stock of

R & D and reductions in production cost. From the examples presented we can draw the

following conclusions:

• In uncongested networks the benefits of allocating bid subsidies to low-emission

generators include increased power supply by the subsidy recipient, lower emis-

sions, and increased benefit for consumers. In congested networks, not all these

benefits can be reaped.

• R & D subsidies allocated to low-emission generators throughout a planning hori-

zon also achieve the above benefits. The optimal timing to allocate these subsidies

is partly determined by how fast each low-emission generator is able to translate

increasing stocks of R & D into reductions of production cost (in our model, this is

given by the regression coefficient γ jh).

• The allocation of both types of subsidies also depends on the supply curve of each

low-emission generator as shown in Figure 4.3.

• The maximum dispatchable capacity of each low-emission generators needs to be

carefully considered when solving the subsidy allocation models since social wel-

fare can be increased by cost reductions that do not result in increased production.
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Chapter 5: Future Work

The Great Recession wreaked havoc in the global economy and, at the same time,

created a political scenario in the U.S. (and several other countries) where the passage

of meaningful legislation to limit the amount of greenhouse gas emissions seems a very

distant possibility. This is certainly bad news for those of us who believe that something

needs to be done to cap emissions. If anything positive can be drawn from this situation,

it is that we, researchers, have some additional time to study and perfect the design of

emissions control schemes so that when policy-makers are finally ready to take action,

they have all the analysis tools they need.

With the exception of the success story of the acid rain cap-and-trade, there is not

much empirical evidence as to how a cap-and-trade (or carbon tax) program should be de-

signed such that CO2 emissions are effectively decreased at a reduced cost for the world

(or a country’s) economy. Furthermore, the acid rain problem was significantly smaller

in scale than the greenhouse gas emission problem and solutions that allowed utilities to

comply with the program were readily available (e.g., scrubbers, catalytic converters).

Thus, the same exact program design is probably not the best approach to cap greenhouse

gas emissions.

As noted in previous chapters, there are some CO2 cap-and-trade programs fully func-

tioning around the world. However, they are in their early stages and policy-makers are

still learning from them. The implementation of emissions control schemes is, for the

most part, a work-in-progress with several open questions/research opportunities, some

of which I discuss next.
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5.1 Analysis of Generation Investment Decisions Including Revenue Recycling

Policies

Considering the models that we have presented in this dissertation, this is the most im-

mediate research question that we can tackle in the near future. It involves incorporating

a revenue recycling module (similar to that presented in Chapter 4) into the investment

decision framework of Chapter 3. This will entail computational difficulties though, since

the revenue redistribution model assumes ex-ante allowance prices whereas the invest-

ment decision framework computes actual allowance prices. A more straightforward

approach would be to include and analyze a particular revenue recycling policy, as op-

posed to computing optimal revenue recycling policies, within the investment decision

framework.

5.2 Penalties for Violation of Cap

In the event that market participants cannot surrender an amount of allowances com-

mensurate with their emissions at the end of a determined period, they will be subjected

to penalties. In the EU ETS cap-and-trade program, the penalty is calculated as the amount

in tonnes of carbon dioxide equivalent by which the annual reportable emissions exceeded

the number of allowances surrendered multiplied by 100 euros [67]. In the RGGI case,

the penalty is in allowances using a ratio of 3 to 1 (i.e., the penalty is 3 times the amount

of outstanding allowances) [9]. In the model presented in Chapter 3, we considered a

penalty of 1.5 times the outstanding balance of allowances. Critics have argued that penal-

ties in dollars (euros) basically give polluters the opportunity to ’pay their way out’ with-

out consideration of the emissions cap. On the other hand, if the penalties are set in al-

lowances, the overall emissions cap will be respected, but there can be scarcity of al-

lowances in the market, as polluting companies hoard allowances to pay penalties (this
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is a phenomenon we observed in the Illinois case study). Some experts have pointed out

that in the RGGI case, the penalty multiplier (3 to 1) is set too high, and will cause high

allowance prices [68]. We believe that penalties should be set in allowances yet the multi-

plier is a key element that needs to be obtained based on considerations such as expected

demand increase, gradual stringency of the cap, and expected growth of low-emission

generation within a region. To find the optimal penalty multiplier, we envision a mathe-

matical model that minimizes the expected number of allowances used to pay penalties

and includes the above considerations as constraints.

5.3 Demand Side Management Concepts: Consumers as Electricity ’Producers’

Even if revenue recycling strategies are implemented alongside a cap-and-trade or a

carbon tax program, electricity prices will most certainly increase. This will demand more

efficiency on the consumer’s end. Several demand side management (DSM) concepts

have started to be implemented by consumers, especially large electricity consumers, to

shed load, become more energy efficient, and simultaneously, profit from this increased

efficiency (by selling back to the network the energy not consumed). Examples of these

DSM concepts are smart meters included in household appliances, power tools, photo-

voltaic systems, combined heat and power generators, space heating and cooling equip-

ment, and electric vehicles chargers. As the practical use of these concepts becomes more

profitable for consumers, they will need to consider investments in smart buildings and in

comprehensive IT platforms that allow then to coordinate real-time (and possibly, ahead-

of-time) responses to changes in electricity prices. These DSM concepts will also allow

customers to compete strategically in allowance markets. We envision a game theoretic

model along the lines of the investment decision model presented in Chapter 3 that can

be used by large electricity consumers to analyze investment decisions and coordination

strategies on DSM concepts. The model will be based on evaluating the profits that elec-
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tricity customers can make in the allowance and electricity markets based on investment/-

coordination on DSM concepts.

5.4 Integration of Different Cap-and-Trade Schemes

Ideally, an emissions control scheme should be implemented at a global level. This

will prevent trade distortions among countries and foster the creation of a global market-

place for allowances (in the case a cap-and-trade program is the scheme chosen). How-

ever, due to varying levels of importance assigned to the emissions reduction problem and

also, due to different financial and political scenarios, the implementation of emissions

control is happening in some countries (or regions in a country) earlier than in others.

Since the greenhouse gas emissions problem is not confined to a particular region, the

different emissions control programs should, at some point, be integrated. This can be

a difficult matter, especially if the design of the programs differ significantly. For in-

stance, if two cap-and-trade programs start with different cap levels, work for some time

separately allowing participants to bank allowances for future periods, and then, after a

few years, are integrated: should the banked allowances (purchased when the programs

were not integrated) be worth the same now in the integrated program? If there are goods

and services exchanged between the two regions under the two different cap-and-trade

program, should the products from the region with the previously less stringent cap be

subject to tariffs in the region with the previously more stringent cap to compensate for

the use of banked allowances in future periods in the integrated program? How would

the two regions settle on the cap for the integrated program considering the different

trajectories of the allowance market before integration? All these are questions for which

the limited practical experience does not offer an answer.
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Appendix A: Approximation Using Least-Squares Method

For any period t, let Rt the reduction of production cost due to the effect of the cumu-

lative stock of R & D of a given low-emission generator,

Rt =Ct−K−1Ct (A.1)

with Ct , the production cost, and K = (U t−1

U0 )v, the knowledge stock, defined as a function

of the cumulative stock of R & D at the beginning of period t, U t−1. Since U0v is a con-

stant (v is the estimated learning elasticity), we rewrite R as (from here on in we remove

the superindex t since the results are independent of the time period)

R =C−U−vA (A.2)

with A = C
U−v

0
. We want to approximate R to

R̂ = γU (A.3)

writing the least-square function L as,

L =
∫ Uub

Ulb

R− γU dU (A.4)

with Ulb and Uub the minimum and maximum values that U can take in the optimization

problem (2.4), respectively. The minimum value Ulb is the stock of R & D a generator

owns at the beginning of the horizon while the maximum value Uub corresponds to the

target of R & D stock β jh considered for each low-emission generator. After differenti-

ating with respect to γ , making the resulting expression equal to 0, and substituting the
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Appendix A: (continued)

limits of the integral, we obtain the following expression for γ ,

γ =
C(

U2
ub
2 −

U2
lb
2 )−A (

U2−v
ub

2−v −
U2−v

lb
2−v )

U3
ub
3 −

U3
lb
3

(A.5)

We compute a γ value for each of the low-emission generators and then we use these

values in the objective function in (4.9).
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Appendix B: Least-Squares Approximation for Example Problem in 4.7

Figure B.1 shows the plots for the reduction of production cost function R = C−

U−vA and the least-squares approximation R̂ = γU (with γ computed as described in the

previous section) for G2 and G3 in the example problem from Chapter 4. In the figure, the

Figure B.1: Reduction of Production Cost Function and Least-Squares Approximation for
G2 and G3 in Example Problem in 4.7.2

straight lines represent the least square approximation R̂ while the curved lines represent

the actual reduction of production cost function R.
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