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Abstract

Pandemic outbreaks are unpredictable as to their virus strain, transmissibility, and impact on

our quality of life. Hence, the decision support models for mitigation of pandemic outbreaks

must be user-friendly and operational, and also incorporate valid estimates of disease trans-

missibility and severity. This dissertation research is aimed at 1) reviewing the existing pan-

demic simulation models to identify their implementation gaps with regard to usability and

operability, and suggesting research remedies, 2) increasing operability of simulation models

by calibrating them via an epidemiological model that estimates infection probabilities using

viral shedding profiles of concurrent pandemic and seasonal influenza, and 3) developing

a testing strategy for the state laboratories, with their limited capacities, to improve their

ability to estimate evolving transmissibility parameters. Our review of literature (Aim 1)

indicates the need to continue model enhancements in critical areas including updating of

epidemiological data during a pandemic, smooth handling of large demographical databases,

incorporation of a broader spectrum of social-behavioral aspects, and improvement of com-

putational efficiency and accessibility. As regards the ease of calibration (Aim 2), we demon-

strate that the simulation models, when driven by the infection probabilities obtained from

our epidemiological model, accurately reproduce the disease transmissibility parameters.

Assuming the availability of sufficient disease reporting infrastructure and strong compliance

by both infected population and healthcare providers, our testing strategy (Aim 3) adequately

supports characterization of real-time epidemiological parameters. Future research on this

topic will be aimed at integrating the laboratory testing strategy with our modeling and simu-

lation approach to develop dynamic mitigation strategies for pandemic outbreaks.

vi



Chapter 1: Introduction

Pandemic influenza (PI) has been one of the major causes of illness and death in humans in

the 20th century. In 1918, the Spanish influenza inflicted 2-5 new infections per each infected

case and approximately 675,000 deaths in the United States [1, 2]. The 1957 and 1968 pan-

demic outbreaks were milder than the Spanish flu, but more severe than modern seasonal

outbreaks (see Table 1.1). Early in the 21st century, with the concern that the H5N1 influenza

virus might escalate to pandemic proportions, many countries initiated their preparedness

efforts for scenarios of low transmissibility and high severity [3]. In 2009, much of the world

experienced a pandemic outbreak, though with a milder H1N1 virus strain comparable to

seasonal flu. The above historical perspective suggests that the course and potential impact

of an emergent pandemic influenza remain uncertain.

Table 1.1: Impact of pandemic and seasonal influenza outbreaks.

Features/ Outbreaks
[References]

1918-1919
[1, 2]

1957-1958
[3, 4]

1968-1969
[5, 6]

2009-2010
[7, 8]

Seasonal Outbreaks
[9, 10]

Strain A/H1N1 A/H2N2 A/H3N2 A/H1N1 e.g., A/H3N2, A/H1N1
Transmissibility† 2-5 1.5-1.7 1.06-2.06 1.4-1.6 1.3
Severity‡ 675000 69800 33800 12470 3000-49000

†Transmissibility: number of cases attributable to a single established one. ‡Severity: number of deaths in
the U.S. in a year.

To minimize the risk of making pandemic mitigation decisions under uncertainty, decision

support tools can be used to evaluate the impact of strategies during an evolving emergency.

Recent research on pandemic mitigation have created models that consider the social and

viral dynamics in a population and a variety of mitigation strategies to analyze the best course
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of action during a pandemic outbreak [11–15]. But these models still have significant limita-

tions. Modeling approaches are built assuming a known virus epidemiology and, as a result,

they are not able to adapt to the evolving characteristics of pandemics and mould effective

mitigation strategies [3]. Moreover, the existing models do not provide interactive feedback

during pandemic outbreaks, and thus lack the ability to support operational decisions that

need knowledge of disease progression. Examples of these decisions include optimal allo-

cation of vaccines and antivirals, enforcement of social distancing, and school/workplace

closure options.

The Institute of Medicine, in its report on Modeling Community Containment for Pandemic

Influenza [3], recommended the research community to take steps on building “decision-aid

models that can be readily linked to surveillance data to provide real-time feedback during an

epidemic" and to develop, approve, and put in place “research protocols to generate the infor-

mation needed during an outbreak to inform models, and improve their disease sub-models."

A recent report from the Yale New Haven Center for Emergency Preparedness and Disaster

Response stated that “resources need to be assigned for the development of models that are

specifically intended for use in operational environments and are potentially customizable to

meet the decision making needs of the user"[16].

This dissertation is aimed at 1) conducting a major review of the existing pandemic models,

to identify the areas of weakness with regard to their usability and operability, and suggest

remedial research needs, 2) developing an epidemiological model for calibration of pandemic

simulation models, and 3) developing a testing strategy for the state laboratories, with their

limited capacity, to improve their ability to assess evolving epidemiological parameters.

The following are the specific deliverables of this dissertation.

1. A systematic review of literature to identify areas of enhancements of pandemic simulation

models for higher practical usability. In this review, we conducted a survey of the available
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research literature on simulation models for influenza pandemic preparedness. The contribu-

tions include a set of areas of enhancement that will enable models to be used in operational

environments.

2. An epidemiological model for calibrating simulation models of concurrent pandemic and

seasonal influenza outbreaks. The epidemiological model uses the viral shedding profiles of

the concurrent viral strains to assess the probabilities of infection that yield the prevailing

reproduction behavior. This model allows the user to avoid the time consuming trial-and-error

approach commonly used for simulation model calibration.

3. A strategy for statistical sampling and testing of field Influenza-like-illness (ILI) samples at

the test laboratories and a Bayesian model to estimate the epidemiological parameters in real-

time. The strategy helps to allocate limited testing capacity to the samples received based on

ILI information collected by the healthcare providers. The number of confirmed cases from

the laboratory testing serves as input to the Bayesian model that infers the actual number of

pandemic ILI cases. The strategy and the Bayesian model are evaluated for different reporting

rates in a given concurrent outbreak scenario involving one million population and reproduc-

tion numbers of 1.8 and 1.3 for pandemic and seasonal, respectively.
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Chapter 2: A Systematic Review of Areas of Enhancements of Pandemic Simulation

Models

The ability of computer simulation models to “better frame problems and opportunities, in-

tegrate data sources, quantify the impact of specific events or outcomes, and improve multi-

stakeholder decision making," has motivated their use in public health preparedness (PHP)

[17]. In 2006, one such initiative was the creation of the Preparedness Modeling Unit by the

Centers for Disease Control and Prevention (CDC) in the U.S. The purpose of this unit is to

coordinate, develop, and promote “problem-appropriate and data-centric" computer models

that substantiate PHP decision making [18].

Of the existing computer simulation models addressing PHP, those focused on disease spread

and mitigation of pandemic influenza (PI) have been recognized by the public health officials

as useful decision support tools for preparedness planning [17]. In recent years, computer

simulation models were used by the Centers for Disease Control and Prevention (CDC),

Department of Health and Human Services (HHS), and other federal agencies to formulate

the “U.S. Community Containment Guidance for Pandemic Influenza" [19].

Although the potential of the existing PI models is well acknowledged, it is perceived that

the models are not yet usable by the state and local public health practitioners [3, 17, 20]. To

identify the challenges associated with the practical implementation of the PI models, the

National Network of Public Health Institutes, at the request of CDC, conducted a national
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survey of the practitioners [17]. The challenges identified by the survey are summarized in

Table 2.1.

Table 2.1: A summary of the survey results on the challenges of practical use of PI models, as
perceived by public health practitioners.

Challenge Description of the challenge
A1. Validity of data support Model parameters need to be derived from updated demograph-

ical and epidemiological data
A2. Credibility and validity of
assumptions

Models need to use credible and valid assumptions

A3. Represent human behavior Models need to incorporate human behavior
A4. Accessibility Models need to be easily accessible and run on personal

computers
A5. Scalability Models need to be scalable to population specific data from

regions of all sizes
A6. Awareness Available models and best practices need to be disseminated

among the practitioners
A7. Action plan Need to translate models into uniform preparedness and

response action plans
A8. Lack of resources Need to fund staff allocation and specialized training for model

implementation
A9. Political implications Models need to consider second and third tier social

implications of containment strategies
A10. Lack of mandates for models State and federal agencies need to develop mandates for use of

model-based strategies

We divided the challenges (labeled A1 through A10 in Table 2.1) into two categories: those

(A1 through A5) that are related to model design and implementation and can potentially

be addressed by adaptation of the existing models and their supporting databases, and those

(A6 through A10) that are related to resource and policy issues, and can only be addressed

by changing public health resource management approaches and enforcing new policies.

Although it is important to address the challenges A6 through A10, we consider this a pre-

rogative of the public health administrators. Hence, the challenges A6 to A10 will not be

discussed in this review.

The challenges A1 through A5 reflect the perspectives of the public health officials, the end

users of the PI models, on the practical usability of the existing PI models and databases

in supporting decision making. Addressing these challenges would require a broad set of
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enhancements to the existing PI models and associated databases, which have not been fully

attempted in the literature. In this chapter, we conduct a review of the PI mitigation models

available in the published research literature with an objective of answering the question:

“how to enhance the pandemic simulation models and the associated databases for higher

practical usability?" We believe that our review accomplishes its objective in two steps. First,

it exposes the differences between the perspectives of the public health practitioners and

the developers of models and databases on the required model capabilities. Second, it de-

rives recommendations for enhancing practical usability of the PI models and the associated

databases.

2.1 Design and Implementation Challenges of Pandemic Models and Databases

In this section, we examine each of the design and implementation challenges of the existing

PI models (A1-A5) and develop specific recommendations to address them.

2.1.1 A1. Validity of Data Support

Public health policy makers advocate that the model parameters be derived from up to date

demographical and epidemiological data during an outbreak [17]. In this paper we examine

some of the key aspects of data support, such as data availability, data access, data retrieve,

and data translation.

To ensure data availability, a process must be in place for collection and archival of both

demographical and epidemiological data during an outbreak. The data must be temporally

consistent, i.e., it must represent the actual state of the outbreak. Availability of temporally

6



consistent demographical data is currently supported by governmental databases including

the decennial census and the national household travel survey [21, 22]. To ensure temporal

consistency of epidemiological data, the Institute of Medicine (IOM) has recommended en-

hancing the data collection protocols to support real-time decision making [3]. The interpre-

tation of the term “real-time" in the context of pandemic influenza can be inferred from recent

studies for the H1N1, where the information used to estimate real-time epidemiological pa-

rameters was obtained daily, and the real-time parameter estimates were calculated day by

day [8].

Archival of data must allow expedited access for model developers and users. In addition,

mechanisms should be available for manual or automatic retrieval of data and its translation

into model parameter values in a timely manner.

In our review of the existing PI models, we examined the validity of data that was used in

supporting major model parameters including basic reproduction number, illness attack rate,

disease natural history, and fractions of symptomatic and asymptomatic individuals. The first

row of Table 2.2 summarizes our approach to examine data validity. For each reviewed PI

model, and, for each of the major model parameters, we examined the source and the age of

data used (A1a, A1b), the type of interface used for data access and retrieval (A1c), and the

technique used for translating data into the parameter values (A1d).

2.1.2 A2. Credibility and Validity of Model Assumptions

Public health practitioners have emphasized the need for models with credible and valid as-

sumptions [17]. Credibility and validity of model assumptions generally refer to how closely

the assumptions represent reality. However, for modeling purposes, assumptions are often

made to balance the analytical tractability and computational feasibility of the models with

7



Table 2.2: A plan for examination of the challenges for practical use of the existing pandemic
models.

Challenges for
Practical Use

Examined Elements of the Models

Model parameter

A1a. Data source for parameter values (actual,
simulated, assumed)
A1b. Age of data

Validity of data
support (A1)

(demographical or epidemiological;
e.g., basic

A1c. Type of interface for data access and
extraction (manual, automatic)

reproduction number) A1d. Technique to translate raw data into
model parameter values (e.g., arithmetic
conversion, Bayesian estimation)

Credibility and
validity of model
assumptions (A2)

See Section 2.2 “Credibility and validity of modeling assumptions (A2)".
Assumptions analyzed belong to the contact and disease transmission dynamics

Represent human
behavior (A3)

Social-behavioral parameter (e.g.,
vaccination compliance)

A1a-d

- Is the model software available to general public (open source or closed source
code
- Presence of end user support (user manuals, e-mail/phone technical support)
- Information on the number of replicates
- Information on the running time

Accessibility
and scalability
(A4,A5)

- Information on the ways to manage the computational load for implementing large-
scale scenarios (e.g., the use of distributed and parallel computing)

- Use of replicate minimization techniques
- Type of interface for data access, extraction, and translation (manual, automatic).
See A1 c,d

their ability to support timely and correct decisions [20]. Making strong assumptions may

produce results that are timely but with limited or no decision support value. On the other

hand, relaxing the simplifying assumptions to the point of analytical intractability or compu-

tational infeasibility may seriously compromise the fundamental purpose of the models.

As indicated in row 2 of Table 2.2, we review and analyze two most significant areas of model

assumptions concerning contact dynamics and disease transmission. We limit our examina-

tion of these assumptions to two of the most widely referenced PI models in the pandemic

literature [11, 12].
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2.1.3 A3. Ability to Represent Human Behavior

It has been observed in [17] that the existing PI models fall short of capturing relevant aspects

of human behavior. This observation naturally evokes the following questions. What are

the relevant behavioral aspects that must be considered in PI models? Are there scientific

evidences that establish the relative importance of these aspects? What temporal consistency

is required for data support of the aspects of human behavior? Finally, what are possible

reasons that have refrained researchers from incorporating behavioral aspects in PI models?

The third row of Table 2.2 summarizes our plan to examine how the existing models capture

human behavior. For each reviewed PI model, we first identify the behavioral aspects that

were considered, and then for each aspect we examine the source and the age of data used,

the type of interface used for data access and retrieval, and the technique used for translating

data into model parameter values (A1 a-d). We also attempt to answer the questions raised

above, with a particular focus on the question of why behavioral aspects have not been ade-

quately addressed in the current PI models.

2.1.4 A4 and A5. Accessibility and Scalability

Public health practitioners have indicated the need for openly available models and popu-

lation specific data that can be downloaded and synthesized using personal computers [17].

While the ability to access the models is essential for end users, executing the PI models on

personal computers, in most cases, may not be feasible due to the computational complexities

of the models. Some of the existing models feature highly granular description of disease

spread dynamics and mitigation via consideration of scenarios involving millions of individ-

uals and refined time scales. While such details might increase credibility and validity of the
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models, this can also result in a substantial computational burden, sometimes, beyond the

capabilities of personal computers.

There are several factors which contribute to the computational burden of the PI models, the

primary of which is the population size. Higher population size of the affected region requires

larger datasets to be accessed, retrieved, and downloaded to populate the models. Other crit-

ical issues that add to the computational burden are: data interface with a limited bandwidth,

the frequency of updating of data during a pandemic progress, pre-processing (filtering and

quality assurance) requirement for raw data, and the need for data translation into parameter

values using methods, like maximum likelihood estimation and other arithmetic conversions.

The choice of the PI model itself can also have a significant influence on the computational

burden. For example, differential equation (DE) models divide population members into

compartments, where in each compartment every member makes the same number of con-

tacts (homogeneous mixing) and a contact can be any member in the compartment (perfect

mixing). In contrast, agent-based (AB) models track each individual of the population where

an individual contacts only the members in his/her relationship network (e.g., neighbors,

co-workers, household members, etc.) [23]. The refined traceability of individual members

offered by AB models increases the usage of computational resources. Further increases in

the computational needs are brought on by the need for running multiple replicates of the

models and generating reliable output summaries.

As summarized in the last row of Table 2.2, we examine which models have been made avail-

able to general public and whether they are offered as an open or closed source code. We

also check for the documentation of model implementation as well as for existence of user

support, if any. In addition, we look for the ways that researchers have attempted to address

the computational feasibility of their models, including data access, retrieval and translation,

model execution, and generation of model outputs.
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Initial set of articles filtered 
from PubMed using keyword 

search (n = 640)

Remaining articles (n = 28)

Exclusion of articles that do not examine 
pandemic influenza spread under a 

comprehensive set of mitigation strategies 
(n = 612)

Exclusion of articles that examine 
global pandemic spread (n = 7)

Remaining articles (n = 21)

Remaining articles (n = 17)

Inclusion of articles that meet the above  
criteria but are obtained using snowball 

search outside PubMed 
(n = 5)

Exclusion of articles that do not provide 
a comprehensive support for data 
collection and parameterization 

methods (n = 4)

Articles reviewed (n = 22)

Figure 2.1: Selection criteria for PI models for systematic review.

2.2 Methods

The initial set of articles for our review was selected using the methodology used by Lee

et al. [24]. We used the PubMed search engine with the keyword string “influenza" AND

“pandemic" AND “model" in English language. A total of 640 papers were found which were

published between 1990 and 2010. We filtered those using the following selection criteria

(depicted in Figure 2.1):
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- We considered the quantitative and comparative studies that evaluate a comprehensive set

of mitigation strategies including social distancing, vaccine, and antiviral application. We

selected only those models that evaluate at least three different mitigation options.

- We chose only those articles with single-region simulation models. We excluded the articles

that consider of set of single-region simulations linked together to cover an extended geo-

graphic area.

- Models that include data sources for most parameter values and,when possible, specify the

methods for parameter estimation.

Using the above filtering criteria, an additional snowball search was implemented outside

PubMed, which yielded 5 additional papers bringing the total number of papers reviewed to

twenty-two. We grouped the twenty-two selected articles in ten different clusters based on

their model (see Table 2.3). The clusters are named either by the name used in the literature

or by the first author name(s). For example, all three papers in the Imperial-Pitt cluster use

the model introduced initially by Ferguson et al. [25]. In each cluster, to review the criteria

for the design and implementation challenge (A1), we selected the article with the largest and

most detailed testbed (marked in bold in Table 3). As stated earlier, credibility and validity

of model assumptions (A2), were examined via two most commonly cited models in the

pandemic literature [11, 12]. The challenges A3-A5 were examined separately for each of

the selected articles.

Out of the ten model clusters presented in Table 2.3, seven are agent-based simulation mod-

els, while the rest are differential equation models. Also, while most of the models use purely

epidemiological measures (e.g., infection attack rates and reproduction numbers) to assess the

effectiveness of mitigation strategies, only a few use economic measures [26–28].

12



In our review, we examined epidemiological, demographical, and social-behavioral parame-

ters of the pandemic models. We did not examine the parameters of the mitigation strategies

as a separate category since those are functions of the epidemiological, demographical, and

social-behavioral parameters. For example, the risk groups for vaccine and antiviral (which

are mitigation parameters) are functions of epidemiological parameters such as susceptibility

to infection and susceptibility to death, respectively. Another example is the compliance to

non-pharmaceutical interventions, a mitigation strategy parameter, which can be achieved by

altering the social behavioral parameters of the model.

Table 2.3: Clustering of selected review articles based on model type.

Model cluster Selected articles for review
Imperial-Pitt Ferguson et al. 2005 [25], Ferguson et al. 2006 [12], Halloran et al. 2008 [29]
Wu Wu et al. 2006 [30]
Arino Arino et al. 2006 [31], Arino et al. 2008 [32]
UW - LANL Longini et al. 2004 [33], Longini et al. 2005 [34], Germann et al. 2006 [11], Sander

et al. 2009 [26], Chao et al. 2010 [35], Halloran et al. 2008 [29]
Gojovic Gojovic et al. 2009 [36]
LOKI - INFECT Glass et al. 2006 [13], Davey et al. 2008 [37], Davey et al. 2008 [38], Perlroth et al.

2010 [27]
Nuno - Gumel Nuno et al. 2007 [39], Gumel et al. 2008 [40]
Roberts Roberts et al. 2007 [41]
InfluSim Eichner et al. 2007 [42]
USF Das et al. 2008 [15], Uribe et al. 2010 [28]

2.3 Results and Discussion

In this section, we present the results of our review of the models from the selected articles.

We also identify areas of enhancements of the simulation based PI models for higher practical

usability.
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2.3.1 A1. Validity of Data Support

Our discussion on validity of data support includes both epidemiological and demographic

data. Appendix A summarizes the most common epidemiological parameters used in the

selected models along with their data sources, interface for data access and retrieval, and

techniques used in translating raw data into parameter values. Appendix B presents infor-

mation similar to above for demographic parameters.

Support for epidemiological data. The most commonly used epidemiological parameters

are reproduction number (R), illness attack rate (IAR), disease natural history parameters,

and fraction of asymptomatic infected cases. In the models that we have examined, esti-

mates of reproduction numbers have been obtained by fitting case/mortality time series data

from the past pandemics into models using differential equations [1], cumulative exponential

growth equations [25], and Bayesian likelihood expressions [25]. IARs have been estimated

primarily using household sampling studies [33], epidemic surveys [30, 43], and case time

series reported for 2009 H1N1 [8, 36]. The parameters of the disease natural history, which

is modeled using either a continuous or phase-partitioned time scale (see Appendix A), have

been estimated from household random sampling data [25, 33, 44], viral shedding profiles

from experimental control studies [35, 42, 45, 46], and case time series reported for 2009

H1N1[8, 36]. Bayesian likelihood estimation methods were used in translating 2009 case

time series data [8, 25]. Fraction of asymptomatic infected cases has been estimated using

data sources and translation techniques similar to the ones used for natural history.

We note that the parameters R and IAR, that are used to measure disease spread, are affected

by changes in social dynamics during a pandemic. These parameters are critical to support

decisions for initiation and scope of the interventions. Hence, a close monitoring of these

parameters throughout the pandemic evolution is essential. This need has been acknowledged
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in recent publications [47]. Real-time monitoring of parameters describing disease natural

history and fraction of asymptomatic cases is generally not necessary since influenza viruses

usually evolve between seasons of the year [48]. These parameters are estimated every time a

viral evolution is confirmed through laboratory surveillance. Estimation of new values can be

done by surveys (e.g., surveys of household members of index cases [49, 50]) or laboratory

experiments that inoculate pandemic strains into human volunteers [51].

Current pandemic research literature shows the existence of estimation methodologies for

IAR and R that can be readily used provided that raw data is available [8, 47]. However, as

our survey reveals, there is no evidence showing that reliable estimates can be obtained in the

critical early pandemic stages to support mitigation decisions. Examples of such decisions

include school closures and mass gathering cancellations. Similarly, there is also no evidence

that IAR and R estimates can be properly updated in the course of a pandemic. We believe

that the limited ability to obtain prompt and reliable estimates of these pandemic impact

parameters constitutes an area of enhancement.

We believe that the above enhancement can be achieved by developing a method for statisti-

cal sampling of specimens and conducting confirmatory testing in the public laboratories. In

addition, new scheduling protocols will have to be developed for testing the specimens, given

limited laboratory testing resources, in order to better assess the epidemiological parameters

of an outbreak.

To assure that the above sampling covers the entire population, lab specimens should not

only be collected from suspected cases seeking health care services, but also from those who

may not seek medical assistance (e.g., uninsured). In addition, cost-effective strategies for

dynamic data collection should also consider active surveillance. At present, most of the data

collection occurs through passive surveillance.
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Our review indicates that currently all of the tasks relating to the access and retrieval of epi-

demiological data are being done manually. Techniques for translation of data into model pa-

rameter values range from relatively simple arithmetic conversions to more time-consuming

methods of fitting mathematical and statistical models (Appendix A). In the ideal case when

epidemiological data are automatically accessed and retrieved in real-time, complex transla-

tion techniques might delay execution of the model. We believe that model developers should

consider building (semi)automatic interfaces for epidemiological data access and retrieval and

develop translation algorithms that can balance the run time and accuracy.

Support for demographic data. Appendix B shows the most common demographic parame-

ters that are used in the selected models. The parameters are population size/density, distri-

bution of household size, peer-group size, age, commuting travel, and long-distance travel.

Estimation of these parameters has traditionally relied on comprehensive public databases,

such as U.S. Census, National Household Travel Survey, and Landscan. Our literature re-

view shows that access and retrieval of these data are currently limited to manual procedures.

Moreover, there have not been any attempts to create methods for ready translation of such

data into model parameters. Hence, the main opportunity for improvement lies on the devel-

opment of strategies for (semi)automatic data access, retrieval, and translation.

2.3.2 A2. Credibility and Validity of Model Assumptions

As discussed in the background section, the issue of credibility and validity of the model

assumptions should be viewed from the perspective of the balance between the analytical

tractability and computational complexity of the model and its ability to provide accurate and

timely decision support. In this section, we examine this balance for two of the commonly

adopted model assumptions - contact probability and the frequency of new infection updates
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(e.g., daily, quarterly, hourly). For this purpose, we selected the Imperial-Pitt [12] and the

UW-LANL models [11], since they are among the most cited in the research literature on

pandemic influenza mitigation. These models were also used for developing the CDC and

HHS “Community Containment Guidance for Pandemic Influenza" [19]. The selection of

the Imperial-Pitt and the UW-LANL models was also motivated by the similarities in their

mixing groups and the infection transmission processes.

We first examine assumptions that influence the contact probabilities within different mixing

groups. Within each mixing group, contact probability is a function of proximity and dura-

tion. Clearly, considering the impact of small variations in proximity and duration on the

contact probability may add significantly to the computational burden. Both the Imperial-

Pitt and the UW-LANL models considered a common set of mixing groups (see Table 2.4).

However, the models considered different contact patterns for different mixing groups. The

contact probabilities within the mixing groups were considered to be either constant, or age

dependent [11], or proximity dependent (for community only, [12]). Duration of the contact

events was not considered in either of the models. It can be inferred that the mitigation strate-

gies studied in these models, such as vaccination, antiviral application, and contact reduction,

did not explicitly require consideration of contact duration. For example, Ferguson et al. stud-

ied the effectiveness of applying antiviral prophylaxis to individuals within a ring of a certain

radius centered around each detected case. Prophylaxis was administered considering the

distance or proximity factor and not the contact duration [25]. It can also be observed from

the pandemic preparedness plans offered by the agencies like CDC and HHS that the existing

mitigation strategies are generally not aimed at reducing the contact duration [19]. We believe

that a limited consideration of contact duration in the above models is a consequence of the

lack of data support and the desire to minimize computational needs.

We also examined the assumptions regarding the frequency of infection updates. The fre-

quency of update dictates how often the infection status of the contacted individuals is evalu-
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ated. In reality, infection transmission occurs (or does not occur) whenever there is a contact

event between a susceptible and an infected subject. But the Imperial-Pitt and the UW-LANL

models do not evaluate infection after each contact event, since this would require consid-

eration of refined daily schedules to determine the times of the contact events. Instead, the

models evaluate infection status every six hours [12] or at the end of the day [11] by aggre-

gating the contact events. While such simplifications do not allow the determination of the

exact source and time of infection for each susceptible, they offer a significant computational

reduction. Moreover, in a real-life situation, it will be nearly impossible to determine the

exact source and time of infection, and hence no practical mitigation strategy should rely on

it.

The above analysis reveals how the nature of mitigation strategies drives the the modeling

assumptions and the computational burden. We therefore believe that there should be a con-

sensus between policymakers and modelers whereby the degree of model abstractions is

dictated by the mitigation needs of the policymakers.

Table 2.4: Factors that influence contact probabilities within mixing groups

Mixing group Factors that influence contact probabilities
Imperial-Pitt (Ferguson, 2006) UW-LANL (Germann, 2007)

Household Contact probabilities are constant Contact probabilities vary with age
Neighborhood Mixing group is not considered Contact probabilities vary with age
Workplace 75% percent of all workplace contacts

occur within a workgroup of close
colleagues and the remaining 25% of
contacts occur outside the workgroup.
Contact probabilities in both cases are
constant.

Contact probabilities are constant

School (pre-school,
elementary, middle,
high, university)

As in workplace Contact probabilities are constant

Community places,
e.g., churches,
banks, supermarkets,
afterschool

Contact probability between two members
varies according to proximity

Contact probabilities vary with age
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2.3.3 A3. Represent Human Behavior

Contact rate is the most common social-behavioral aspect considered by the models that

we have examined. In these models, except for Eichner et al. [42], the values of the contact

rates were assumed due to the unavailability of reliable data required to describe the mobility

and connectivity of modern human networks [13, 37, 38]. However, some recent surveys

conducted in Europe provide “fresh" estimates of the types, frequency, and duration of human

contacts [52].

Other social-behavioral parameters that are considered by the models include reactive with-

drawal from work or school due to appearance of symptoms [25], work absenteeism to care

for sick relatives or children at home due to school closure [25, 36, 38, 42], and compliance

to social distancing, vaccination, and antiviral prophylaxis [29, 37]. Once again, due to the

lack of data support, the values of most of these parameters were assumed and their sensitivi-

ties were studied to assess the best and worst case scenarios.

A recent survey [53] has explored many additional social-behavioral aspects that were not

considered in the models we examined. These include perceived severity, perceived suscep-

tibility, fear, general compliance intentions, compliance to wearing face masks, role of infor-

mation, wishful thinking, fatalistic thinking, intentions to fly away, stocking, stay indoors,

avoid social contact, avoid health care professionals, keep children at home and stay at home,

go to work despite being advised to stay at home, and antiviral use [53].

We believe that there is a need for further studies to establish the relative influence of all of

the above mentioned social-behavioral factors on pandemic spread and mitigation strategies.

Subsequently, the influential factors need to be analyzed to determine how relevant informa-

tion about those factors should be collected (e.g., in real-time or through surveys before an

outbreak), accessed, retrieved, and translated into the final model parameter values.
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2.3.4 A4 and A5. Accessibility and Scalability

With regards to accessibility and scalability of the selected models, we first attempted to

determine which of the simulation models were made available to general public, either as

an open or closed source code. We also checked for available documentation for model im-

plementation and user support, if any. Most importantly, we looked into how the researchers

attempted to achieve the computational feasibility of their models. Computational feasibility

of a model refers to its ability to provide timely and accurate decision. For the purpose of

this review, we identified several computational features affecting feasibility, such as need for

replicates, run time per replicate, use of distributed and parallel computing approaches, and

statistical means of minimizing the need for replicates (see Appendix C).

Two of the models that make their source codes accessible to general public are InfluSim

[42] and FluTE [35]. InfluSim is a closed source differential equation-based model with a

graphical user interface (GUI) which allows the evaluation of a variety of mitigation strate-

gies, including school closure, place closure, antiviral application to infected cases, and iso-

lation. FluTE is an open source model, which is an updated version of the UW-LANL [34]

agent-based model. The source code for FluTE is also available as a parallelized version

that supports simulation of large populations on multiple processors. Among these two soft-

wares, InfluSim’s GUI seems to be more user friendly for healthcare policymakers. FluTE,

on the other hand, offers more options for mitigation strategies, but requires the knowledge

of C/C++ programming language and the communication protocols for parallelization. We

note that the policy makers would greatly benefit if the FluTE software can be made available

through a cyber-enabled computing infrastructure, such as TeraGrid [54]. This will provide

the policy makers access to the program through an web based GUI without having to cope

with the issues of software parallelization and equipment availability. This will also eliminate

the need to hire and train specialized personnel.
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The need for replicates for accurate assessment of the model output measures and the run

time per replicate are major scalability issues for pandemic simulation models. Large-scale

simulations of the U.S. population reported running times of up to 6 hours per replicate, de-

pending on the number of parallel threads used [35] (see Appendix C for further details).

It would then take a run time of one week to execute 28 replicates of only one pandemic

scenario. Note that, most of the modeling approaches have reported between 100 to 1000

replicates per scenario [13, 27, 36–40], with the exception of [12, 29] which implemented

between 5 to 10 replicates. Clearly, it would take about one month to run 100 replicates for a

single scenario involving the entire U.S. population.

While it may not be necessary to simulate the entire U.S. population to address mitigation

related questions, the issue of the computation burden is daunting nonetheless. We therefore

believe that the modeling community should actively seek to develop innovative methodolo-

gies to reduce the computational requirements associated with obtaining reliable outputs.

One possible solution is the use of replicate minimization techniques. In principle, these

techniques suggest running the replicates, one more at a time, until the confidence intervals

for the output variables become acceptable [12, 28]. Use of such techniques would be crucial

to provide timely decision support during the evolution of an actual outbreak.

2.4 Conclusions

Though the literature on pandemic models is rich and contains analysis and results that are

valuable for public health preparedness, policy makers have raised several questions regard-

ing practical use of these models. The questions are as follows. Is the data support adequate

and valid? How credible and valid are the model assumptions? Is human behavior repre-

sented appropriately in these models? How accessible and scalable are these models? This
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chapter attempts to determine to what extent the current literature addresses the above ques-

tions and what the areas of possible enhancements are. The findings with regards to the areas

of enhancements are summarized below.

- Enhance the availability of real-time epidemiological data, the access and retrieval of demo-

graphical and epidemiological data, and the translation of data into model parameter values.

We analyzed the most common epidemiological and demographical parameters that are used

in pandemic models, and discussed the need for adequate updating of these parameters during

an outbreak. As regards the epidemiological parameters, we have noted the need to obtain

prompt and reliable estimates for the IAR and R, which we believe can be obtained by en-

hancing protocols for expedited and representative specimen collection and testing. During a

pandemic, the estimates for IAR and R should also be obtained as often as possible to update

simulation models. For the disease natural history and the fraction of asymptomatic cases,

estimation should occur every time viral evolution is confirmed by the public health labora-

tories. For periodic updating of the simulation models, there is a need to develop interfaces

for (semi)automatic data access and retrieval. Algorithms for translating data into model

parameters should not delay model execution and decision making. Demographic data are

generally available. But most of the models that we examined are not capable of performing

(semi)automatic access, retrieval, and translation of demographic data into model parameter

values.

- Examine the validity of modeling assumptions from the point of view of the decisions that

are supported by the model. By referring to two of the most commonly cited pandemic pre-

paredness models [11, 25], we discussed how simplifying model assumptions are made to

reduce computational burden, as long as the assumptions do not interfere with the perfor-

mance evaluation of the mitigation strategies. Some mitigation strategies require more re-

alistic model assumptions (e.g., location based antiviral prophylaxis would require models

that track geographic coordinates of individuals so that those within a radius of an infected
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individual can be identified). Whereas other mitigation strategies might be well supported by

coarser models (e.g.,’antiviral prophylaxis for household members’ would require models that

track household membership). Therefore, whenever validity of the modeling assumptions is

examined, the criteria chosen for the examination should depend on the decisions supported

by the model.

- Incorporate a broader spectrum of social behavioral aspects in modeling disease spread and

mitigation. Some of the social behavioral factors that have been considered in the examined

models are social distancing and vaccination compliance, natural withdraw from work when

symptoms appear, and work absenteeism to care for sick family members. Although some of

the examined models attempt to capture social-behavioral issues, it appears that the literature

lacks adequate consideration of many of the social behavioral factors and evaluation of their

impact on disease spread and intervention effectiveness. Hence, there is a need for research

studies or expert opinion analysis to identify which social-behavioral factors are significant

for disease spread. It is also essential to determine how the social behavioral data should be

collected (in real-time or through surveys), archived for easy access, retrieved, and translated

into model parameters.

- Enhance computational efficiency of the solution algorithms. Our review indicates that

some of the models have reached a reasonable running time of up to 6 hours per replicate for

a large region, such as the entire U.S. [12, 35]. However, reliable decision making requires

running much more than one replicate, a task that might be difficult to accomplish in real-

time if replicate minimization techniques are not used. We have also discussed the question

whether the public health decision makers should be burdened with the task of downloading

and running models using local computers (laptops). This task can be far more complex than

how it is perceived by the public health decision makers. We believe that models should

be housed in a cyber computing environment with an easy user interface for the decision

makers.
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Chapter 3: A Viral Count Driven Calibration Approach for Simulation Models of

Concurrent Pandemic and Seasonal Influenza Outbreaks

Influenza viruses imply major preparedness challenges for public health policymakers (PHP).

With the uncertain epidemiology of these viruses, decision making often involves a trade-

off between the social costs resulting from the implementation of a mitigation strategy (e.g.,

school closure) and the harm caused by the uncontrolled spread of an influenza virus [48].

To minimize the trade-off, PHP often need to re-evaluate mitigation strategies as the disease

progresses.

Simulations are useful tools to model disease spread and support re-evaluation of strategies.

Simulations are usually Differential Equation (DE) or Agent Based (AB) models. Differential

equation (DE) models divide population members into compartments, where in each com-

partment, every member makes the same number of contacts (homogeneous mixing) and a

contact can be any member in the compartment (perfect mixing). They are generally fast to

run, and, without the presence of stochastic components, they require a single replicate. Sim-

ple DE models such as SIR (Susceptible-Infected-Recovered) or SEIR (Susceptible-Exposed-

Infected-Recovered) are often used to grasp a basic understanding of the disease spread, and

facilitate the analysis of sensitivity with several disease-related parameters. Therefore, simple

DE models are the first choice for usage in progressing pandemic outbreaks [31, 42]. How-

ever, DE models lack of traceability features to recreate certain individual-based strategies
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for the efficient use of limited resources (e.g., quarantine of the household members of an

infected case, antiviral prophilaxis for the contacts of an infected case [11]).

Agent Based models are suitable for individual-based strategies, since the population is rep-

resented by individual members where contacts occur only with members of the same rela-

tionship network (e.g., neighbors, co-workers, household members, etc) [23]. Agent-based

models have been previously used to inform preparedness guidelines [11–13], but there are

yet challenges to support public health operational response in progressing pandemic out-

breaks, since AB models may take long in their replication and calibration processes. As a

result, they provide limited support when decisions are to be made by a close deadline. [17].

Replication guarantees statistically confident results. But the time expense in running repli-

cates increases as the observed population grows larger. As an example, as discussed in Chap-

ter 2, running 100 replicates of a simulation of the U.S. might take about one month with the

running times reported in the literature. While it may not be necessary to simulate the entire

U.S. population to address mitigation related questions, techniques to reduce replication

time need to be considered. The issue of replication time is being recently addressed through

high performance computing (HPC) and parallelization, by the Models of Infectious Disease

Agent Study (MIDAS) network and other groups, as reported by the MIDAS software survey

[55].

In the calibration process, internal parameters of a simulation are adjusted until obtaining the

desired value for a standard epidemiological parameter. A key epidemiological parameter to

characterize the disease transmission potential is the basic reproduction number R0. Most of

the existing simulation models refer to the R0 since it is widely accepted by the community

of theoretical epidemiologists [56], and previous pandemic outbreaks have been characterized

through this parameter [1, 8, 25]. Deterministic compartmental models use R0 as an input

parameter and there is no need to calibrate [31, 39, 42]. Several AB simulations calibrate the
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R0 by re-running the model and adjusting internal parameters such as the infection proba-

bilities and contact ratios [13, 33, 34, 57–59]. Some few approaches address calibration by

deriving expressions of the R0 in terms of the internal model parameters, and fitting values

for the internal parameters through sampling techniques [12, 25], or nonlinear numerical

techniques [30]. In either case, calibration and fitting times might be prohibitively large, and

model outputs might become obsolete to support a decision in a progressing outbreak.

The objective of this Chapter is to present an epidemiological model for fast calibration of

agent-based simulation of concurrent pandemic and seasonal influenza viruses. This feature

increases the operability of simulation models during evolving pandemic outbreaks.

Our approach is unique since it uses a straightforward derivation of the infection probability

based on the Reproduction Number and influenza viral shedding profiles in humans. This

derivation enables both the calculation of a final Ro, similar to the reproduction number ini-

tially introduced in the model, and the inclusion of an alternate virus strain in the population.

Both are features that, to our knowledge, have not been previously implemented in agent-

based models for pandemic influenza.

This Chapter proceeds as follows. In Section 3.1 we present the epidemiological model used

by the simulation. Section 3.2 describes the simulation model. Finally, Section 3.3 presents

the results and advantages of the implementation.

3.1 Epidemiological Model

Let Ni
t denote the number of individuals infected by a single infectious individual i between

time t and t + 1. Thus, Ri = ∑
∞
t=0 Ni

t is the total number of infected cases produced by the

ith individual, which is referred to as the reproduction number [56]. We use Nt to denote the
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random variable for the number of new infections created by an individual between time t and

t+1 and R to denote the random variable for the total number of infections by an individual.

Note that Nt and R are defined over the sample spaces of Ni
t and Ri over all i, respectively, in

the population.

Let Ik denote the set of infected cases in the kth generation. Then, I0 would denote the first

set of infected cases that begin an outbreak when the entire population is susceptible. Note

that I1 would include all cases infected by those belonging to I0. Let Rk denote the random

variable defined over the sample space of Ri, for all i ∈ Ik.

Then E[R0], for generation k = 0, is called the basic reproduction number and is commonly

denoted in the literature by Ro [60]. For the subsequent generations k = 1,2, ..., the suscepti-

ble population continues to decrease. If the value of E[Rk] is higher than one, the outbreak is

in the expansion phase, whereas a value of less than one indicates a contracting phase and the

outbreak is considered under control.

Let T i denote the disease generation interval of infected individual i, i.e., the time interval

between the infection of individual i and the infection of a secondary case produced by that

individual. We use T to denote the random variable for the disease generation interval. Note

that T is defined over the sample space of T i over all i in the population. With the notation

established above, the probability of creating a secondary infection by the ith infected indi-

vidual between time t and t + 1 can be written as Ni
t

Ri . Let w(t) denote the probability mass

function for the disease generation interval T . Then we have that

w(t) =
E[Nt ]

E[R]
. (3.1)

Also, it has been empirically shown in [25, 51] that w(t) can also be expressed in terms of the

absolute (not logarithmic) viral titer count V i
t for individual i between time t and t + 1. Let
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the viral titer count random variable be Vt defined over the sample space of V i
t . Then we can

write that

w(t) =
E[Vt ]

E[∑∞
t=0 Vt ]

. (3.2)

Calculating w(t) from (3.1) is impractical due to the difficulty of collecting data to estimate

expected values. However, since aggregated values for viral shedding profiles of human vol-

unteers are available for influenza [51], (3.2) offers a better method to calculate w(t). From

(3.1) and (3.2), it follows that

E[Nt ] = E[R]
E[Vt ]

E[∑∞
t=0 Vt ]

. (3.3)

In what follows, we use (3.3) to obtain an expression for the probability of a contact getting

infected.

We assume that Nt is binomially distributed with parameters ct and pt (denoted henceforth

as Nt ∼ bin[ct , pt ]), where ct is the number of contact events that an infected case i makes

between time t and t + 1, and pt is the probability that an individual becomes infected af-

ter being contacted by an infected case. From the binomial assumption, we can write that

E[Nt ] = ct pt , which using (3.3) yields

pt =
E[R] E[Vt ]

E[∑∞
t=0 Vt ]

ct
. (3.4)

Note from the expression in (3.4) that the value of pt can be easily obtained within the sim-

ulation model if the reproduction number E[R] is known. As stated earlier, information re-

garding the viral shedding profile is available [51], and ct is a parameter that is generated
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by simulation. In what follows, we extend (3.4) to account for the effect of different contact

groups and asymptomatic infection on the probability of infection pt .

In the simulation model, individuals interact within their contact groups such as households,

workplaces, schools, and other open places (e.g., stores and restaurants). To account for dif-

ferences in the closeness of interactions of these contact groups and their relative influence

on the infection probability, we consider that Nt = Nt,h +Nt,w +Nt,o, where h, w and o are

indices for household, work, school and open places, respectively. We assume that Nt,h ∼

bin[ct,h, pt,h], Nt,w ∼ bin[ct,w, pt,w], and Nt,o ∼ bin[ct,o, pt,o], where ct,h is the number of

contact events that an infected case makes in the household between t and t + 1, and pt,h is

the probability that an individual becomes infected after being contacted by an infected case

in the household. Expressions ct,w, pt,w, ct,o and pt,o can be interpreted similarly. Thus we

can write from (3.4) that

E[Nt,h +Nt,w +Nt,o] = E[R]
E[Vt ]

E[∑∞
t=0 Vt ]

.

Using the binomial assumption, we can rewrite the above as

ct,h pt,h + ct,w pt,w + ct,o pt,o = E[R]
E[Vt ]

E[∑∞
t=0 Vt ]

.

We assume that pt,w = κw pt,h and pt,o = κo pt,h, where κw,κo < 1.0 and κw > κo. The use

of κw and κo can be argued from the fact that the duration and closeness of interactions at

the households are maximum followed by those for workplaces/schools and open places. We

then have that
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pt,h[ct,h +κ
wct,w +κ

oct,o] = E[R]
E[Vt ]

E[∑∞
t=0 Vt ]

.

which yields

pt,h =
E[R] E[Vt ]

E[∑∞
t=0 Vt ]

ct,h +κwct,w +κoct,o
(3.5)

From the above, we get estimates of infection probabilities for an infected individual belong-

ing to contact groups h, w and o, during time interval t and t +1.

We can further extend the probability model to account for the fact that some asymptomatic

cases could be symptomatic. Presence of asymptomatic cases would naturally lower E[Nt ],

since their viral shedding is lower compared to the symptomatic cases [51]. We incorporate

the probability (1−πs) of asymptomatic cases as follows.

E[R] = πs ∗E[Rs]+ (1−πs)∗E[Ra] (3.6)

and

E[Ra] = γ ∗E[Rs]. (3.7)

where γ < 1 and E[Ra] and E[Rs] denote the reproduction numbers for asymptomatic and

symptomatic cases, respectively.

From (3.6) and (3.7)

E[Rs] =
E[R]

(1− γ)πs + γ
. (3.8)
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With (3.7) and (3.8) we can extend the expression for pt,h in (3.5) for symptomatic and asymp-

tomatic cases as follows

ps
t,h =

E[R]
(1−γ)πs+γ

E[V s
t ]

E[∑∞
t=0 V s

t ]

ct,h +κwct,w +κoct,o
. (3.9)

and

pa
t,h =

γ
E[R]

(1−γ)πs+γ

E[V a
t ]

E[∑∞
t=0 V a

t ]

ct,h +κwct,w +κoct,o
. (3.10)

The expressions for ps
t,w, pa

t,w, ps
t,o and pa

t,o can be derived and interpreted similarly.

3.1.1 Modeling Co-Circulating Pandemic and Seasonal Influenza Viruses

We now extend our model to account for two co-circulating influenza viruses: pandemic

(PI), and seasonal (SI). The PI virus has a high transmission potential, and a high value of

the expected reproduction number E[RPI]. Conversely, The SI virus has a low transmission

potential and a low value for the E[RSI]. The infection probabilities for the two circulating

viruses can then be given from 3.4 as follows.

pt,PI =
E[RPI]

E[Vt ]
E[∑∞

t=0 Vt ]

ct
. (3.11)

pt,SI =
E[RSI]

E[Vt ]
E[∑∞

t=0 Vt ]

ct
. (3.12)
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Considering the variations for contact groups and asymptomatic infection, the infection prob-

abilities can be given from 3.9 and 3.10 as

ps
t,h,PI =

E[RPI ]
(1−γ)πs+γ

E[V s
t ]

E[∑∞
t=0 V s

t ]

ct,h +κwct,w +κoct,o
. (3.13)

pa
t,h,PI =

γ
E[RPI ]

(1−γ)πs+γ

E[V a
t ]

E[∑∞
t=0 V a

t ]

ct,h +κwct,w +κoct,o
. (3.14)

ps
t,h,SI =

E[RSI ]
(1−γ)πs+γ

E[V s
t ]

E[∑∞
t=0 V s

t ]

ct,h +κwct,w +κoct,o
. (3.15)

pa
t,h,SI =

γ
E[RSI ]

(1−γ)πs+γ

E[V a
t

E[∑∞
t=0 V a

t ]

ct,h +κwct,w +κoct,o
. (3.16)

Equations for ps
t,w,PI , pa

t,w,PI , ps
t,w,SI , pa

t,w,SI , ps
t,o,PI , pa

t,o,PI , ps
t,o,SI and pa

t,o,SI can be derived

similarly. These probabilities are evaluated once an infected case contacts another individual

in the population. Table 3.1 shows the six possible outcomes resulting from the contact. If

the contacting individual is only infected with PI (column named "Strains in the contact-

ing person", row 1, Table 3.1), the contacted individual can only receive PI (column named

“Strains transmitted", row 1, Table 3.1). If the contacting individual is infected with SI, the

infected individual can only receive SI (columns named “Strains in the contacting person"

and “Strains transmitted", row 2, Table 3.1). But if the contacting individual is infected with

both viruses, she can transmit either PI or SI or both (columns named “Strains in the contact-

ing person" and “Strains transmitted", rows 3,4 and 5, Table 3.1).
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Table 3.1: Types of infection when a pandemic and a seasonal virus co-circulate in the
simulation model.

Strains
in the
contacting
person

Strains
transmit-
ted

Strains in the
contacted person

Possible infection in the
contacted person

Cross-
immunity
factor

PI PI
None Infection PI None
Recovered from SI Sequential infection PI εpr
Ongoing SI Co-infection SI, PI εp

SI SI
None Infection SI None
Recovered from PI Sequential infection SI εsr
Ongoing PI Co-infection PI, SI εs

PI , SI PI
None Infection PI None
Recovered from SI Sequential infection PI εpr
Ongoing SI Co-infection SI, PI εp

PI , SI SI
None Infection SI None
Recovered from PI Sequential infection SI εsr
Ongoing PI Co-infection PI, SI εs

PI , SI PI , SI

None Simultaneous Co-infection εps
Recovered from SI Sequential infection PI εpr
Ongoing SI Co-infection SI, PI εp
Recovered from PI Sequential infection SI εsr
Ongoing PI Co-infection PI, SI εs
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Once the virus(es) enter(s) the body of the contacted individual, based on the viral strains in

the contacting person and the infection probabilities, the internal body infection can occur in

many different ways, depending on the viral strains currently infecting the contacted person

(column 3 in the Table 3.1). In our model, we consider the three ways that are observed more

frequently, and are also shown in Table 3.1:

1. The first way is when only one strain, either PI or SI (in the column “Strains transmitted"

in the table), is transmitted to a contacted individual without the PI or the SI strain in her

body (denoted as “none" in the column “Strains in the contacted person"). In this case, the

possible infection in the contacted person is either SI or PI (denoted as “Infection PI" or “In-

fection SI" in “Possible infection in the contacted person").

2. The second way is when an individual, once recovered from one virus, gets infected with

the other in a process called “sequential infection". Two types of sequential infection are

allowed in our model: The first type is sequential infection with PI (“Sequential infection

PI", in the column “Possible infection in the contacted person"), which only occurs after the

individual recovers from a SI infection (“Recovered from SI" in the column “strains in the

contacted person"). The second type is sequential infection with SI (“Sequential infection

SI"), which only occurs after the individual recovers from a PI infection (“Recovered from

PI"). When an individual i is sequentially infected with PI, we assume that the reproduction

number Ri of this individual will be reduced by a cross-immunity factor εpr, to account for

the CD8 T-cell mediated immunity built by the SI virus [61]. When an individual i is sequen-

tially infected with SI, we assume that the Ri of this individual will be reduced by a cross-

immunity factor εsr.

3. The third way is when an individual gets infected with a new virus while still sick from the

other virus in a process called "co-infection" [62]. Three types of co-infection may occur in

the model: Simultaneous co-infection, which occurs when both viruses infect an individual
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at the same time (“Simultaneous Co-infection"); co-infection with PI (“Co-infection SI, PI"),

which occurs while an individual is infected with SI (“Ongoing SI"), and co-infection with SI

(“Co-infection PI, SI"), which occurs while an individual is infected with PI (“Ongoing PI").

For last the two types of co-infection, we implemented the cross-immunity factors εp and εs.

We assume that re-infection (Sequential infection with the same virus) or co-infection with

the same virus does not occur since these are not typical ways of infection and there is yet the

need of research that describes the progression of these two mechanisms in the human body.

3.2 The Simulation

The simulation recreates the daily interactions of urban citizens (individuals) from a single

region, and the spread of the influenza viruses through the citizens of the region.

3.2.1 Daily Interactions of Urban Citizens

At the beginning of the simulation, each individual is created and assigned to an age group,

a household, a school or work place. In addition, she is assigned to a set of errand places that

she will visit during weekdays and weekends. The assignments are based on the distributions

shown in Tables 3.2, 3.3 and 3.4 which were calculated based on data obtained from the 2002

Economic Census, the 2001 American Community Survey and the 2001 National Household

Travel Survey.

Individuals are set to attend these locations by following an hour by hour schedule. Table 3.5

shows the four types of schedules assumed (weekday-employed-adult, weekday-unemployed-
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adult, weekday-children and weekend-everyone). These schedules were adapted from [15]

and [63].

Table 3.2: Distribution of population in the Hillsborough County by age.

Age School type Cumulative distribution
<5 Pre-school 0.07459
9 Elementary 0.14729
14 Middle-school 0.22422
17 High-school 0.26464
22 University 0.31308
29 0.42222
64 0.88457

>64 1

Data for the age distribution were obtained
from [64].

Table 3.3: Distribution of population based on the number of adults and children living in the
same household.

Number of adults Number of children Cumulative distribution
1 0 0.279
1 1 0.319
2 0 0.628
1 2 0.671
2 1 0.8
1 3 0.812
2 2 0.939
1 4 0.944
2 3 1

Data for the household distribution in the Unites States were
obtained from [65].

The simulation runs day by day. Each day, individuals are hourly placed in a location follow-

ing their corresponding schedule. Once they are in the location, individuals randomly make

a specific number of contacts. The number of contacts in the location was extracted from

a recent survey on mixing patterns and contact characteristics during the seven days of the

week [52]. Table 3.6 shows in column 4 the number of contacts that each individual makes

per location setting. Details on the calculation of these numbers can be found in the footnote

of the table.
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Table 3.4: Features of household, work, school and errand places in the United States.

Location
type

Number of
locations per
type (100000
inhabitants)

Number of
locations
per type
(1000000
inhabitants)

Percentage
of
individuals
in the
location

Percentage
of trips
made during
weekdays

Percentage
of trips
made during
weekends

Household 100 1 0.06586 † 0
Factory 700 613 0.05802 † 0
Office 240 2266 0.30227 † 0
Pre-school 30 224 0.0048 † 0
Elementary 10 66 0.00997 † 0
Middle 20 134 0.203 † 0
High 10 59 0.09736 † 0
University 10 46 0.10598 † 0
After-school 30 256 0.00681 † 0
Grocery 50 390 0.02599 0.61919 0.51493
Restaurant 30 223 0.08749 0.27812 0.25586
Entertainment 40 360 0.03181 0.06601 0.1162
Church 10 86 0.00064 0.03668 0.113

Workplace features. The type of location and the number of locations per type (columns
2, 3 and 4) were obtained from [66]. The percentage of trips made during weekdays
(column 5) and percentage of trips made during weekends (column 6) are based on the
total number of trips made to all the location types during a weekday/weekend. Data
for these percentages were obtained from [22]. †Indicates that all this location are for
mandatory attendance if they are included in the daily weekday schedule of the individual.

3.2.2 Spread of the Influenza Viruses

At the beginning of the simulation, a set of M = MPI +MSI randomly selected cases are intro-

duced in the simulation. For these M initial cases and for any other subsequent case, the sim-

ulation randomly determines whether a case is symptomatic or asymptomatic. Of the cases

in the simulation, 66.9% present symptomatic infection and 33.1% present asymptomatic

infection, consistent with recent review studies on controlled groups of influenza volunteers

[51]. To each case i, the simulation randomly assigns a probability mass function for the viral

shedding profile E[V s
t ]

E[∑∞
t=0 V s

t ]
, when the case is symptomatic, and E[V a

t ]
E[∑∞

t=0 V a
t ] when the case is

asymptomatic. For the symptomatic group, we considered three probability mass functions:

1) Lognormal with shape parameter, a = 3.98098 and scale parameter b = 0.286479, 2)

Gamma with a = 11.7534 and b = 4.75874, and 3) Weibull with a = 62.1897 and b =
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Table 3.5: Schedules assumed in the simulation model.

Hour Weekday employed Weekday unemployed Weekday children Weekend everyone
1 household household household household
2 household household household household
3 household household household household
4 household household household household
5 household household household household
6 household household household household
7 household household household household
8 workplace errands workplace household
9 workplace household workplace household
10 workplace household workplace errands
11 workplace household workplace errands
12 workplace errands workplace household
13 workplace household workplace household
14 workplace household workplace errands
15 workplace household workplace household
16 workplace errands after-school household
17 workplace household after-school household
18 errands household after-school household
19 errands household household household
20 household household household household
21 household household household household
22 household household household household
23 household household household household
24 household household household household

The four types of schedules assumed. Employed adults and children follow a fixed routine
during weekdays. Unemployed adults are allowed to go to errand places for three randomly
selected hours/day, between the 8th and the 19th hour. The table presents an example of a
weekday schedule for an unemployed adult. During weekends, all individuals are allowed
three randomly selected hours of errand, between the 10th and the 20th hour. The table
presents an example of a weekend schedule.

2.93571. For the asymptomatic group we also considered three probability mass functions: 1)

Lognormal with shape parameter, a = 4.11187 and scale parameter b = 0.491289, 2) Gamma

with a = 4.23216 and b = 16.3124, and 3) Weibull with a = 78.3308 and b = 2.01736. These

functions were derived from the data in [51]. Table 3.7, columns 3 and 4 show the data used

to fit the probability mass functions.

Infected cases contact other individuals in the region as described in Subsection 3.2.1. The

contacts an infected case i makes per location are recorded and aggregated to compute the

values of ci
t,h, ci

t,w and ci
t,o, in the interval between the beginning of day t and the beginning of

day t + 1 (see Section 3.1). Before the beginning of day t + 1, a new set of infected cases is
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Table 3.6: Number of contacts an individual makes per day and per location setting.

Location type Number of contacts in
the location per day

Proportion of contacts
occurring in the location

Number of contacts in
the location per day

Home 13.4 0.23 3
Factory 14 0.21 3
Office 14 0.21 3
Pre-school 10.21 0.14 2
Elementary 14.81 0.14 2
Middle school 18.22 0.14 3
High school 17.6 0.14 3
University 15.98 0.14 2
Afterschool 13.4 0.14 2
Grocery 13.4 0.16 2
Restaurant 13.4 0.16 2
Entertainment 13.4 0.16 2
Church 13.4 0.16 2

Data for the contacts was extracted from [52], which is a survey on contact patterns in eight
European countries. To our knowledge, no such studies exist for the American society and we
consider the European social behavior as the best existing proxy for a developed country, since
the contact features are remarkably similar across the eight countries included in the sample.
In the table, column 2 "Number of contacts in the location per day" and column 3 "Proportion
of contacts occurring in the location" show the information provided by the survey. Column 4
(Number of contacts in the location per day) results from multiplying the number of contacts
in a location per day and the proportion of contacts occurring in the location.

Table 3.7: Daily viral titer count in symptomatic and asymptomatic volunteers inoculated
with influenza A/H1N1.

Days Hours Viral titer in a symptomatic
individual (log scale)

Viral titer in an asymp-
tomatic individual (log scale)

0-1 0-24 0.1 0.05
1-2 24-48 1.75 0.875
2-3 48-72 3 1.5
3-4 72-96 2.5 1.25
4-5 96-120 1.8 0.9
5-6 120-144 1.2 0.6
6-7 144-168 0.7 0.35
7-8 168-192 0.5 0.25
8-9 192-216 0.2 0.1

Column3. Daily viral titer count in symptomatic volunteers inoculated with influenza
A/H1N1. Column 4. Calculated daily viral titer count in asymptomatic volunteers
inoculated with influenza A/H1N1. These values were obtained by assuming that
the daily quantity of virus from symptomatic volunteers who shed virus and develop
illness was two log10 times higher than individuals who did not develop illness. This
assumption is supported by studies of influenza A/H3N2 on volunteers with and
without clinical illness. In those studies, the mean quantity of virus from volunteers
who shed virus and develop illness was from two log10 to three log10 times higher than
individuals who did not develop illness.
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selected from the individuals contacted by case i during day t. If the i is a case of pandemic

flu, the equation 3.11 is used to calculate the infection probability pi
t,PI . If i is a case of sea-

sonal flu, the equation 3.12 is used for pi
t,SI

When using the extended version of the model to account for contact groups and asymp-

tomatic infection, the following set of rules are used to determine the new set of infected

cases from the individuals contacted by case i. If the individuals are contacted in the house-

hold, and i is a symptomatic case of pandemic influenza, the equation 3.13 is used to cal-

culate pi,s
t,h,PI , the probability of infecting the household contacts of case i. If i is an asymp-

tomatic case of seasonal influenza, the equation 3.15 is used to calculate pi,s
t,h,SI . Subsection

3.1 enumerates the remaining probabilities that are used in the determination of the new in-

fected cases. Table 3.8 shows the parameter values used to calculate the probabilities.

Table 3.8: Parameter values used to calculate the infection probabilities

Parameter Value Reference
E[Ri

PI ] 3,2.5,2.0,1.8 [11, 25, 25]
E[Ri

SI ] 1.3 [10]
E[V i,s

t ]

E[∑∞
t=0 V i,s

t ]
Refer to this subsection and table 3.7 [51]

γ 0.22† [51]
πs 0.669‡ [51]
κw 0.67 [52]
κo 0.44 [52]

† This value represents ratio between the average viral shedding of a symptomatic individual
(average of the values in column 3, Table 3.7) and the average viral shedding of an asymptomatic
individual (average of the values in column 4, Table 3.7). The ratio is then converted to absolute
scale. ‡ This value is derived from the proportion of symptomatic individuals produced by an
influenza virus. For this parameter, we interpreted the proportion as a probability.

3.3 Results

In this section, we illustrate how the epidemiological model derived in Section 3.1, and em-

bedded in the simulation described in Section 3.2 attains the objective of avoiding calibration

of Ro, the basic reproduction number.
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The parameter Ro is mathematically defined in Section 3.1 as the number of infected cases

per each case in generation zero, just before it begins the depletion of susceptible population.

However, observing the value of this parameter in generation zero is not the case for all the

simulation replicates, since the initial number of infected cases is generally small to provide

enough information to determine the true value of Ro. When the number of infected cases in

a generation k ≥ 0 is significant, an estimation of the Ro can also be observed from an E[Rk]

that peaks and then decreases in the subsequent generation [13].

For a population of around 100000 inhabitants and 10 cases in generation zero, Table 3.9,

shows the average R̂o obtained when different expected reproduction numbers E[R] are intro-

duced in the simulation and (3.11) is used to model the infection probability. For an E[R] =

2.0 (first sub-table), 48 replicates expressed a peak of 2.17292 in generation k = 0, and 35,

24, 17, 11 and 8 replicates peaked on k = 1, k = 2, k = 3, k = 4 and k = 5 with a value of

2.07876, 2.07226, 2.00232, 1.94093, 1.96075 and 2.08306, respectively. Averaging the peaks

of the 143 replicates, an average R̂o of 2.08306 is obtained, with a lower confidence interval

(CI) of 2.04431, just slightly above the value of two. For an E[R] = 2.5, (first sub-table), an

average of the peaks of 135 replicates provides an estimation of 2.50199, with a lower CI of

2.45367 and an upper CI of 2.55032. For an E[R] = 3.0, (third sub-table), an average of the

peaks of 150 replicates provides an estimation of 2.92014, with an upper confidence interval

(CI) of 2.96379, just slightly below the value of three. For a population of around 1000000

inhabitants and 10 cases in generation zero, Table 3.9 presents the results for the average R̂o

obtained when E[R] = 2.0, E[R] = 2.5 and E[R] = 3.0 are introduced in the simulation.

These results indicate that it is possible to achieve an average R̂o similar to the expected re-

production number E[R] introduced in the simulation. This conclusion holds for different

population levels. The slight variations between the initial E[R] and the average R̂o can be

attributed to the stochastic disease spread process embedded in the simulation and possible

instabilities that simulations normally present at their initial stages.

41



Graphs 3.1(a) and 3.1(b) show the features of an outbreak with an average R̂o = 2 expressed

in generation zero. For a population of around 100000 inhabitants, the outbreaks peak around

day 44 with 3674 cases (read using the right scale "Daily number of individuals", Figure

3.1(a)) and last around 100 days, leaving a total of 36147 susceptible and 81479 recovered

cases (cumulative susceptible and cumulative recovered cases are read using the left scale

"cumulative number of individuals" in graph 3.1(a)). Graph 3.1(b) shows the average R̂0 in

generation zero and the decreasing values for the average E[Rk] for generations k > 0. For a

population of around 1000000 inhabitants (Graph 3.1(c)), the outbreaks peaks around day 55

with 34473 cases and last around 120 days, with 315618 susceptible individuals and 719914

recovered cases. The average R̂o = 2.2 is observed in generation zero in the graph 3.1(d).

Table 3.9: Values for the R̂0 obtained for an outbreak region with population 100000
inhabitants.

E[R] = 2.0 E[R0] E[R1] E[R2] E[R3] E[R4] E[R5] Average
Number of replicates with the
peak on the generation

48 35 24 17 11 8 143 (replicates)

Average R̂o over the replicates 2.17292 2.07876 2.07226 2.00232 1.94093 1.96075 2.08306
Standard deviation 0.29589 0.19610 0.25352 0.12903 0.14155 0.15082 0.24017
Lower 95% CI 2.08700 2.0114 1.96520 1.93598 1.84583 1.83466 2.04431
Upper 95% CI 2.25883 2.14612 2.17931 2.06866 2.03602 2.08684 2.12181
E[R] = 2.5 E[R0] E[R1] E[R2] E[R3] E[R4] E[R5] Average
Number of replicates with the
peak on the generation

48 35 18 16 11 7 135 (replicates)

Average R̂o over the replicates 2.73958 2.50242 2.37344 2.37237 2.317093 2.33657 2.50199
Standard deviation 0.370589 0.18789 0.15814 0.09495 0.08997 0.060369 0.29951
Lower 95% CI 2.631976 2.43788 2.29480 2.32177 2.25665 2.280741 2.45367
Upper 95% CI 2.847191 2.56696 2.45208 2.42297 2.37754 2.392404 2.55032
E[R] = 3.0 E[R0] E[R1] E[R2] E[R3] E[R4] E[R5] Average
Number of replicates with the
peak on the generation

49 31 15 19 19 17 150 (replicates)

Average R̂o over the replicates 3.14898 2.93232 2.85789 2.79178 2.71286 2.66838 2.92014
Standard deviation 0.30285 0.14774 0.21743 0.10441 0.08294 0.05809 0.27056
Lower 95% CI 3.06199 2.87813 2.73748 2.74145 2.67289 2.63851 2.87649
Upper 95% CI 3.23597 2.98651 2.97829 2.8421 2.75284 2.69824 2.96379

Besides the average Ro, another measure of disease transmissibility is the Infection Attack

Rate (IAR). The infection attack rate is defined as the ratio between the final number of in-

fected cases and the initial number susceptible cases. With both the average Ro and the IAR,

42



(a) Population size = 100000 inhabitants (b) Population size = 100000 inhabitants

(c) Population size = 1000000 inhabitants (d) Population size = 1000000 inhabitants

Figure 3.1: Disease spread behavior and expected reproduction number per generation for a
PI outbreak with an R̂o = 2 expressed in generation zero.
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Table 3.10: Values for the R̂o obtained for an outbreak region with population 1000000
inhabitants.

E[R] = 2.0 E[R0] E[R1] E[R2] E[R3] E[R4] E[R5] Average
Number of replicates with the
peak on the generation

41 32 18 24 12 8 135 (replicates)

Average R̂o over the replicates 2.22927 2.16272 2.11159 1.98649 1.92760 1.94942 2.11124
Standard deviation 0.25124 0.24888 0.26396 0.12306 0.11900 0.13722 0.24295
Lower 95% CI 2.14997 2.07298 1.98032 1.93453 1.85199 1.83470 2.06993
Upper 95% CI 2.30857 2.25245 2.24285 2.03846 2.00321 2.06414 2.15256
E[R] = 2.5 E[R0] E[R1] E[R2] E[R3] E[R4] E[R5] Average
Number of replicates with the
peak on the generation

46 37 24 14 10 6 137 (replicates)

Average R̂o over the replicates 2.64130 2.58423 2.47563 2.36186 2.34260 2.34506 2.53353
Standard deviation 0.24274 0.22850 0.14634 0.10948 0.11887 0.06663 0.22734
Lower 95% CI 2.56922 2.50805 2.41384 2.29865 2.25757 2.27513 2.49515
Upper 95% CI 2.71339 2.66042 2.53743 2.42507 2.42764 2.41499 2.57191
E[R] = 3.0 E[R0] E[R1] E[R2] E[R3] E[R4] E[R5] Average
Number of replicates with the
peak on the generation

43 29 19 10 6 7 114 (replicates)

Average R̂o over the replicates 3.12791 2.94846 2.82230 2.73569 2.71901 2.71981 2.95034
Standard deviation 0.28894 0.22926 0.08772 0.08461 0.04867 0.08942 0.26711
Lower 95% CI 3.03898 2.86125 2.78002 2.67516 2.66793 2.63711 2.90090
Upper 95% CI 3.21683 3.03566 2.86458 2.79622 2.77009 2.80250 2.99977

a simulated outbreak can be compared to other modeling approaches to guarantee the valid-

ity of the results. But the average Ro and the IAR of most modeling approaches are highly

dependent on the demographical, epidemiological and behavioral assumptions of each ap-

proach, and in many cases a comparison might not provide a good evidence of quality. In our

case, we followed the methodology proposed in [67], where the comparisons are made with

the Kermack-McKendrick Susceptible-Infected-Recovered (SIR) model. The SIR model is a

a set of three differential equations that assume homogeneous and perfect mixing of the pop-

ulation modeled (refer to Chapter 2, for a definition of both terms). It is analytically tractable,

and the relationship between average Ro and the IAR can be easily obtained through the final

size equation

ln(IAR) = Ro(IAR−1). (3.17)
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Table 3.11 shows the IARs obtained for all the scenarios presented in Tables 3.9 and 3.10.

These IARs are always lower to the ones obtained through (3.17), a logical result when the

assumptions of homogeneous and perfect mixing are relaxed, as is the case of our model.

Table 3.11: Infection attack rates for different simulation scenarios.

Population R̂o Mean IAR from
simulation

Upper
95% CI

Lower
95% CI

IAR from Kermack-
McKendrick model

100000 2 0.69338 0.69056 0.69620 0.84
100000 2.5 0.82577 0.82386 0.82768 0.895
100000 3 0.89529 0.89402 0.89656 0.935
1000000 2 0.68823 0.68538 0.69108 0.84
1000000 2.5 0.81852 0.81657 0.82048 0.895
1000000 3 0.88730 0.88599 0.88862 0.935

For co-circulating outbreaks, we simulated two scenarios assuming there is no cross-immunity

(all the ε factors in Table 3.1 and column 5 are equal to 1). The first scenario considered both

outbreaks with E[R] = 1.8, and infection probabilities (3.11) and (3.12). For a population of

100000 inhabitants and 30 replicates, we obtained an average R̂o = 1.7725 with CI (1.7281,

1.8169) for the first outbreak, and a R̂o = 1.7724 with CI (1.7237, 1.8212) for the second

outbreak. The corresponding IAR values were 0.6090 with CI (0.5928, 0.6253), and 0.608

with CI (0.5917, 0.6242), respectively. Figure 3.2 shows the daily number of infected cases

for a typical replicate, which peaks at day 49 and finishes around day 120. Figure 3.3 shows

the inmediate depletion of the E[Rk] after the second generation. The instabilities occuring

after the 27th generation are due to the small number of infected cases used to calculate the

reproduction number, creating inconsistent values that disappear when the total extinction of

the outbreaks occurs at generations 36 and 42.

The second scenario is set with a pandemic outbreak with E[RPI] = 1.8, a seasonal outbreak

with E[RSI] = 1.3, and infection probabilities (3.14), (3.13), (3.16) and (3.15). For 100000 in-

habitants and 146 replicates, The average R̂o for PI was equal to 1.67 with CI(1.6432,1.6948),

and the average R̂o for SI was equal to 1.39 with CI(1.3633,1.4251). The corresponding IAR

values were 0.5373 with CI (0.534,0.541), and 0.0672 with CI (0.0663, 0.068), respectively.
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Figure 3.2: Disease spread behavior and expected reproduction number per generation for
two outbreaks with R̂o = 1.8 expressed in generation two.
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Note that the IAR obtained with E[RPI] = 1.8 is lower than the IAR obtained while using

infection probabilities (3.11) and (3.12). This reduction results from the assumption that

interaction within households are higher than those in workplaces/schools and other places

(κw,κo < 1.0 in equations 3.14, 3.13,3.16 and 3.15). The households are the contact groups

with less members, and once all the members are infected and trying to infect each other,

many opportunities of infection are wasted, reducing the IAR. Figure 3.3 shows the disease

spread and reproduction number of both the pandemic and the seasonal outbreaks. Note in

Figure 3.3(a) that the pandemic outbreak completely shadows the seasonal outbreak, which

takes 350 days more in disappearing than the pandemic outbreak. This is the natural behavior

of seasonal outbreaks since they remain infecting the population for extended time periods.

It is also interesting to observe in Figure 3.3(a) the fluctuations of the E[Rk] over many gen-

erations until the outbreak disappear after 170 generations, which are attributed to the small

sample sizes that are available for the calculation of the expected reproduction number.

With these results, we have demonstrated how the proposed epidemiological model reduces

the time expense in calibrating the simulation of concurrent pandemic and seasonal influenza

outbreaks. Therefore, the model can be useful for simulations supporting decision making

in real-time. We have proposed a basic probability model with (3.11) and (3.12), which can

be used to understand general disease spread patterns and test novel disease surveillance

surveillance strategies like the one explored in Chapter 4. The extended probability model

described by (3.14), (3.13), (3.16) and (3.15) can be useful to test pharmaceutical and non-

pharmaceutical interventions, aiming at reducing the percentage of symptomatic infection or

reducing contact with the closure of schools, workplaces and public places. Our model can

also useful to understand the effect of cross-immunity in the final size of pandemic and sea-

sonal outbreaks, a future research area that necessitates a better understanding of the internal

interaction of both viruses in the human body.

47



Figure 3.3: Disease spread behavior and expected reproduction number per generation for a
pandemic outbreak with R̂o = 1.8 and a seasonal outbreak with R̂o = 1.3, both expressed in
generation zero.
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Chapter 4: A Testing Strategy of Influenza-Like-Illness Specimens for Real-Time

Characterization of Pandemic Outbreaks

As discussed in Chapter 2, one of the main requirements for the implementation of a model-

based, decision making process for real-time pandemic mitigation, is the availability of data

that can be used to characterize population epidemiological parameters.

Currently, characterizing pandemic outbreaks in real-time constitutes a challenge given the

status of the surveillance networks. The Florida Department of Health (FDOH) monitors

influenza activity through multiple surveillance systems: 1) Electronic Surveillance System

for the Early Notification of Community-based Epidemics (ESSENCE), 2) data from the

Florida Bureau of Laboratories (BOL), 3) county influenza activity levels, 4) the Florida

Pneumonia and Influenza Mortality Surveillance System (FPIMSS), 5) Notifiable disease

reports (Merlin), 6) Florida Outpatient Influenza-like Illness Surveillance Network (ILINet),

7) pediatric influenza-associated mortality, and 8) clusters of influenza-like illness (EpiCom)

[68]. The reported information helps to determine the location, time and type of influenza

viruses that are circulating, and also whether pandemic influenza activity is increasing or

decreasing on a daily basis [69]. However, the reported information cannot be used to directly

determine population estimates for the daily number of pandemic cases with symptoms onset,

which is key to determine transmissibility.

In this Chapter, we address the question of how to estimate the number of pandemic cases

with symptoms onset in real-time. We initially consulted members of the current surveillance
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system in Hillsborough, to understand and evaluate the system. With this information, we

developed a strategy to implement real-time testing and parameter estimation. The strategy

proposes to infer the number of pandemic cases with symptoms onset from the daily cases

confirmed by the BOL, and the daily number of symptomatic cases reported by the healthcare

providers. We evaluate the strategy via simulation, and determine its conditions for imple-

mentation by means of a design of experiments, where the factors include the laboratory

capacity and the reporting rates.

Section 4.1 discusses our findings from the field investigation. The strategy proposed is de-

tailed in Section 4.2 and the details for the analysis of the strategy are discussed in Section

4.3.

4.1 Hillsborough County Surveillance System

4.1.1 Description

We investigated the features of the Hillsborough surveillance system during the 2009 pan-

demic. We initially looked for documentation in institutional websites, with descriptions

of the surveillance programs in place. We searched into the websites of the World Health

Organization (WHO), Centers for Disease Control and Prevention (CDC), the Florida De-

partment of Health (FDOH)and the Hillsborough County Health Department (HCHD). In

addition, we interviewed several representatives from the Hillsborough surveillance system

including members from HCHD, the Bureau of Laboratories (BOL) and Hillsborough medi-

cal providers. A list of our collaborators is provided in Appendix D.
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With this information, we created a diagram showing the flow of an infected individual through

the surveillance system. The complete flow diagram is shown in Appendix E and we de-

scribe the diagram as follows. During the 2009 pandemic outbreak, the surveillance system

was passive, meaning that it only covered a symptomatic individual who decided to look for

medical attention (Appendix E, page 1). If the individual goes to the Emergency Room (ER)

and presents Influenza Like Illness (ILI) symptoms, she is reported in through the ESSENCE

software. The ESSENCE software works almost in real-time, since chief complaints can be

observed by the HCHD one day after they are received in an ER.

If the individual is assisted by a sentinel physician or nurse practitioner, she will be reported

to CDC through the ILINet, and diagnosis will proceed according with the symptoms (Ap-

pendix E page 2). An individual with mild symptoms and with high risk of complications

might be selected for further analysis by the Florida Bureau of Laboratories (BOL), as part

of the 5 (or less) specimens per week that sentinels are recommended to submit to the lab.

Once in the BOL lab, the specimen is tested through a Polymerase Chain Reaction (PCR)

test. In case the PCR is positive, it is reported through the Merlin system at the state level. A

death is always a possibility for any type of symptomatic patient (Appendix E page 4). If a

death occurs, it is reported to the HCHD and the Florida Pneumonia and Influenza Mortality

System (FPIMSS). Symptomatic patients with life threatening illnesses are always reported to

the HCHD.

Individuals with severe symptoms are commonly hospitalized (Appendix E pages 2 and 3).

Some individual’s specimens are PCR tested (at the clinician’s discretion). Deaths, pregnant

hospitalized women and patients with life threatening illnesses are reported to HCHD.

If the physician or nurse practitioner is not a sentinel, the system works as in the sentinel

case. The only difference is that non-sentinels do not receive any recommendation on the

number of samples to send to BOL for PCR diagnosis.

51



4.2 Data Collection and Sampling Strategy

As described before, the BOL determines the strain of circulating viruses. Specimens are

generally collected from the sentinel healthcare providers for routine surveillance. How-

ever, during the recent H1N1 pandemic, the BOL also received specimens from non-sentinel

healthcare providers. Since there is no definite sampling policy to prioritize the specimen to

test, the BOL tested all the specimens received, extending the desired testing timeline. These

delays resulted in a slower pace of publication of confirmed cases, affecting the real-time

assessment of the number of pandemic cases with symptoms onset.

To maximize the use of the lab capacity while achieving the goal of real-time characterization

of symptomatic pandemic cases, we propose a testing strategy in which the lab is recom-

mended to distribute its daily testing capacity considering the arrival behavior of ILI cases

to healthcare providers everyday.

Figure 4.1 presents a schematic of the flow of specimens through the surveillance system on

a daily basis. The solid arrows represent individuals with ILI symptoms onset on day t, who

are assumed to seek healthcare either on day t, t + 1 or t + 2. The dotted arrows represent

symptomatic individuals on day t + 1 having t + 1, t + 2 and t + 3 as possible days to seek

healthcare. The dotted-and-striped arrows represent symptomatic individuals with t +2, t +3

and t +4 as the days to seek for healthcare.

Once ILI symptomatic cases seek for healthcare with probability rh, their specimens can be

submitted to the BOL laboratory with probability rl . This is represented in the diagram with

the box “Healthcare providers sending specimens to the lab".

Finally, the box “The BOL lab processing specimens" represents the final part of the flow

where specimens are tested to confirm the presence of the pandemic virus.
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Figure 4.1: Flow of specimens through the surveillance system on a daily basis
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Let Xt be the number of symptomatic cases seeking healthcare on day t and Xa,b be the num-

ber of symptomatic cases seeking healthcare on day a with symptoms onset on day b. Then

we assume that

Xt = Xt,t +Xt,t−1 +Xt,t−2. (4.1)

We also assume that the terms on the right hand side of (4.1) for any t are known to the lab-

oratory. With this information, the BOL can determine the daily number of specimens to

sample as follows. Let Ya,b denote the number of specimens to test on day a with symptoms

onset on day b. Then we have that

Yt,k = L
Xt,k

Xt
, f or k = t, t−1, t−2, (4.2)

where L denotes the daily testing capacity of the laboratory. The quantities Yt,t , Yt,t−1 and

Yt,t−2 are sampled from Xt,t , Xt,t−1 and Xt,t−2, respectively. From Yt,t , Yt,t−1 and Yt,t−2, the lab-

oratory determines Bt,t , Bt,t−1, and Bt,t−2, which denote the number of confirmed pandemic

cases on day t with symptoms onset on day t, t−1, and t−2, respectively.

4.2.1 Bayesian Inference Engine

Let Aa,b denote the number of pandemic cases seeking healthcare on day a and with symp-

toms onset on day b. Let A0, A1 and A2 denote the random variables defined over outcomes

At,t , At,t−1 and At,t−2, respectively, for all t. Defined similarly are B0, B1, and B2. We can

write that
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P[Ak |Bk] ∝ P[Bk |Ak]P[Ak], f or k = 0, 1, 2. (4.3)

Note that P[Bk | Ak] can be derived from a hypergeometric distribution with parameters

Xt,t−k, At,t−k and Yt,t−k. For example, P[B1 |A1] can be given as

P[B1 |A1] =

(
At,t−1

Bt,t−1

)(
Xt,t−1−At,t−1

Yt,t−1−Bt,t−1

)
(

Xt,t−1

Yt,t−1

)

The prior for Ak is set to be a uniform distribution with parameters Bt,t−k, Xt,t−k.

4.2.2 Symptoms Onset Time Series and Instantaneous Reproduction Number

Let It be the set of pandemic cases with symptoms onset between time interval t and t +1. At

every time t, it is possible to obtain the following estimations.

The first level estimation is

Īt = At,t . (4.4)

The second level estimation is

Īt−1 = At−1,t−1 +At,t−1. (4.5)

And the third level estimation is

Īt−2 = At−2,t−2 +At−1,t−2 +At,t−2. (4.6)
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The time series created by each of the estimation level can be converted into a time series for

the instantaneous reproduction number R(t) [70] by means of the expression

R(t) =
It

∑
∞
j=0 w( j)It− j

(4.7)

where ∑
∞
j=0 w( j) = 1. It is realistic to truncate the function w( j) at a time m such that w( j) =

0 for all j ≥ m. In practice, R(t) represents the number of cases during time interval t and

t +1 that were created by a case infected before and during time interval t and t +1.

4.3 Performance of the Sampling and Testing Strategy

We tested the performance of the strategy by implementing the scenario depicted in Figure

4.1, in the baseline simulation described in Chapter 3. A population of around 1000000 in-

habitants was simulated with all the features of the Hillsborough county, described previously

in Section 3.2.

Individuals were assumed to present symptoms after two or three days of infection with either

pandemic or seasonal influenza [51]. It is assumed that all symptomatic individuals seek

healthcare with probabilty r1
h before the pandemic is regionally declared, and r2

h after the

outbreak is declared. It is also assumed that the healthcare providers submit a specimen to

the BOL with probability r1
l and r2

l .

We evaluated the strategy with L = 1000 specimens per day and under a perfect reporting

scenario, where r1
h, r2

h, r1
l , and r2

l are equal to 1. Figure 4.2 plot the time series for two instan-

taneous reproduction numbers: 1) the reproduction number for the daily cases with symptoms

onset, denoted as R(t), and 3) the reproduction number for the first level estimation of the
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daily cases with symptoms onset, denoted as R̄(t). The time series should be observed after

day ten (vertical striped line) since the instantaneous reproduction numbers need a burning

period to account for enough values of w(t), the disease generation interval probability mass

function (Equation 3.2 provides the formula for w(t)).

The first level R̄(t) time series is meant to follow the R(t) for the symptoms onset series, but

this is poorly achieved during the first 30 days of estimation. The second and third level es-

timations fall closer to R(t). This behavior can be measured in terms of the Sums of Squared

errors SSq = ∑
l
t=k(R(t)− R̄(t))2 where, in this scenario, k = 10 and l = 100. The SSq val-

ues for the first, second and third level estimations are, 2.539195, 0.305079 and 0.000555,

respectively.

The black horizontal line indicates the control limit for R(t) [8]. The second and third level

R̄(t) provide the same information about the time when the outbreak is control(R(t) ≤ 0),

which occurs in day 66 . Note that information for day 66 will be known by days 67 and 68,

when the second and third level R̄(t) can be estimated.

Assuming that the pandemic is declared 10 days after the first infected case, we set r1
h = r1

l =

0.2 and r1
h = r1

l = 0.8, to recreate the increase in reporting due to the fear for the pandemic.

Figure 4.3 shows the effect of the sudden shift in the reporting probabilities. During the first

periods following day 10, the discrepancies between the R(t) and R̄(t) are huge for the first,

second and third level estimations, indicating the negative effect of high variations in the

reporting behavior.

To eliminate the effect of the high variations in the reporting probabilities, we discarded R̄(10),

R̄(11), and R̄(12) from the first level estimation. Note that these values correspond to R̄(11),

R̄(12), and R̄(13) for the second level estimation, and R̄(12), R̄(13), and R̄(14) for the third

level estimation. These value are chosen since they are the most heavily driven by daily counts

for symptoms onset occurring before day 10.
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(a) First level estimation

(b) Second level estimation

(c) Third level estimation

Figure 4.2: Results for the R(t) assuming perfect reporting.
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(a) First level estimation

(b) Second level estimation

(c) Third level estimation

Figure 4.3: Results for the R(t) assuming the pandemic is declared 10 days after the
beginning of the outbreak.
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Once the effect of high variations is discarded, we analyzed the effect of the reporting rates

and the laboratory capacity L in the SSq. We developed a 33 factorial experiment for the first,

second and third estimation level. Table 4.1 presents the description of the experiment.

Table 4.1: Design of experiments for the sampling and testing strategy.

Factor Low level Mid level High level
r2

h 0.2 0.5 0.8
r2

l 0.2 0.5 0.8
L 1000 5500 10000

The analysis of variance for the experiment (Appendix E) indicates that the capacity is not

significant for any of the estimation levels. This confirms our results that the sampling and

testing strategy effectively elevates the restriction of capacity in the laboratory. The contour

plots in Figure 4.4 illustrate the effect of the reporting rates in the SSq for the first, second

and third estimation level (Tables 4.4(a), 4.4(b) and 4.4(c), respectively). From the contour

plots it is observed the proportional increase of the SSq as reporting probabilities increase.

In addition, the second and third level are more robust to lower attack rates than the first

estimation level.

With these results we have demonstrated that it is possible to achieve real-time characteriza-

tion of the transmissibility of pandemic viruses via the three levels of estimation proposed.

The first level estimation is poor, but it rapidly improves as more data is collected in the sub-

sequent days and the second and third level estimations take place. Since these results are ob-

tained under good reporting conditions, there is the need of research that determines actions

to either increase the reporting probabilities, or eliminate their effect through the implemen-

tation of active surveillance (e.g., phone surveys to determine the number of ILI cases in the

poputation).

The strategy assumes that the information about the number of symptomatic cases and their

date of symptoms onset are known by the laboratories. We believe that this assumption is

implementable since there are surveillance networks (e.g., ILINet and ESSENCE) tracking
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the number of symptomatic cases in the population, and these networks that can be integrated

to the laboratories for the sampling of specimens in real-time. A future research need is to

investigate the requirements and associated costs of this integration.
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Figure 4.4: Contour plots for the effect of the reporting rates in the sum of squares.
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Chapter 5: Conclusions and Future Work

Given the uncertain nature of pandemic viruses, public health officials face multiple decision

making challenges whenever a pandemic emerges. Simulation models have provided valid

support for these decisions, and model-driven recommendations have been used to create

guidelines for implementation of strategies to mitigate pandemic outbreaks.

The two common modeling approaches are the differential equation (DE) and the agent-

based (AB). Differential Equation (DE) models can be calibrated and replicated quickly, but

they are only suitable for evaluation of mass-action mitigation strategies (e.g., mass antivi-

ral prophilaxis for children). AB models provide a more comprehensive decision support

since they possess the granularity and traceability features to recreate both mass-action and

individual-based mitigation strategies (e.g., antiviral prophilaxis for the contacts of an in-

fected case).

Ideally, modeling frameworks should be useful not only for preparedness but also for emer-

gency management during the pandemic. However, there exists significant gaps between the

needs of the strategic and tactical decision makers and the support that the current pandemic

AB models provide. There is a current lack of means for access, retrieval and translation

of epidemiological, demographic and social-behavioral data into model parameter values.

Epidemiological data can be obtained through surveillance networks like ESSENCE, ILINet

and Bureau of Laboratories, but their information is not integrated to provide real-time char-

acterization of epidemiological parameters at the population level. Demographic data can

63



be obtained from databases such as the U.S. Census Bureau and the National Household

Travel Survey, but their access, retrieval and translation is not automatic. Social-behavioral

information is scarce and there is the need of research to determine data collection priorities

and methods. Operability and usability of the models is poor since most of the models are

academic, and they are not adapted for public health policymakers.

We focused on the challenges of epidemiological data availability and model operability.

With regards to data availability, we proposed a data collection strategy that suggests the

integration of the ILI case counts from the networks, such as ILINet or ESSENCE, with the

specimen data from the Bureau of Laboratories. This integration would provide estimates

for the daily number of symptoms onset, useful for assessing transmissibility. With regards

to operability, we proposed an epidemiological model for calibrating simulation models of

concurrent pandemic and seasonal influenza outbreaks. The epidemiological model auto-

matically translates basic reproduction numbers and viral shedding profiles into the infection

probabilities of the simulation model, avoiding the need for trial-and-error calibration.

Our future work consists of integrating the testing strategy and the modeling framework to

create a model-based, decision support system for mitigation of pandemic outbreaks in real-

time. Mitigation actions recommended by this system would produce an effect in the real

environment, and this effect can be re-assessed by means of the testing strategy, creating a

feedback loop for continuous observation and mitigation of the outbreak. This system would

require careful study of the implementation gaps of pandemic models, and a strong partner-

ship between modelers and public health decision makers.
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Appendix A   Epidemiological Parameters in Models for Pandemic Influenza Preparedness 

 

 

Epidemiological 
model 

parameter       
(# models using 
the parameter) 

Sources used by the models to 
obtain the parameter value                                  
Author/year (type of study, 
e.g., research paper, survey 

paper) 

Data sources supporting the 
parameter value determination 

Type of 
interface 
for data 
access & 
retrieval 

Techniques to 
translate raw data 

into model 
parameter values 

Basic 
reproduction 

number, R (10) 

Mills et al. 2004  
 (research paper)        

 
Ferguson et al. 2005 

 (research paper)                                                 
 

Ferguson et al. 2006  
(research paper)  

 
Chowell et al. 2006 

 (research paper) 

Excess weekly mortality in UK 
(1918-1919). 
 
Weekly mortality attributed to 
influenza in England and Wales 
(1957-1958). 
 
Daily Case notification data in San 
Francisco, California (1918 – 1919). 
 
Statistical estimates from England 
and Wales (1958-1973) . 
 
Influenza case incidence data for the 
first wave of pandemic influenza A 
starting in July 1968 in Hong Kong. 
 

Manual 

Examples: Fitting a 
SEIR (Susceptible 
Exposed Infectious 
Recovered) 
differential equation 
model.  
 
Fitting an equation 
for cumulative 
exponential growth; 
Bayesian likelihood 
analysis 

 

 

Table A1:  Epidemiological parameters explored in the models 
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Appendix A   Continued 

 

 

Epidemiological 
model 

parameter        
(# models using 
the parameter) 

Sources used by the models to 
obtain the parameter value                                  
Author/year (type of study, 
e.g., research paper, survey 

paper) 

Data sources supporting the 
parameter value determination 

Type of 
interface 
for data 
access & 
retrieval 

Techniques to 
translate raw data 

into model 
parameter values 

Illness attack 
rates, IAR (8) 

Jordan et al. 1927 
(survey paper),  

 
Elveback et al. 1976 

 (research paper)   
 

Longini et al. 1988 
(research paper)  

 
Fraser et al. 2009 
 (research paper) 

Survey on epidemic influenza, 
Chicago, 1927 
 
Attack rates and estimates from  
Long-term data collection from a 
random sample of households, 
Tecumseh study of respiratory 
Illness, 1965-1971, 1976-1981. 
 
Confirmed and suspected deaths in 
Mexico, time series of the Mexican 
reported case numbers, accounting 
for early under-reporting 

Manual 

Examples: 
Arithmetic 
conversion (ratio of 
the number of 
infected over total 
susceptible 
population) 

 

 

 

 

 

Table A1:  Continued 
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Appendix A   Continued 

 

 

Epidemiological 
model 

parameter        
(# models using 
the parameter) 

Sources used by the models to 
obtain the parameter value                                  
Author/year (type of study, 
e.g., research paper, survey 

paper) 

Data sources supporting the 
parameter value determination 

Type of 
interface 
for data 
access & 
retrieval 

Techniques to 
translate raw data 

into model 
parameter values 

Disease Natural 
History: 
Continuous time 
scale (e.g., 
Infectiousness 
profile and its 
parameter, the 
disease 
generation time), 
(8) 

Carrat et al. 2002 
(research paper) 

 
Cauchemez et al. 2004 

(research paper) 
 

Murphy et al. 1980 
(research paper) 

 
Baccam et al. 2006  

(research paper) 

Data from a follow up study of 
influenza infections in households, 
Epigrippe study, France, 2000 
 
Viral titers per day from 
experimentally infected patients, 
1980, 2006 

Manual 

Examples: Fitting a 
likelihood function 
to find the joint 
posterior 
distribution of 
augmented data and 
parameters;  
 
Fitting a distribution 
directly from the 
viral data  

 

 

 

 

 

Table A1:  Continued 
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Appendix A   Continued 

 

 

Epidemiological 
model 

parameter (# 
models using 

the parameter) 

Sources used by the models to 
obtain the parameter value                                  
Author/year (type of study, 
e.g., research paper, survey 

paper) 

Data sources supporting the 
parameter value determination 

Type of 
interface 
for data 
access & 
retrieval 

Techniques to 
translate raw data 

into model 
parameter values 

Disease Natural 
History: Phase-
partitioned time 
scale (e.g., non-
infectious and 
infectious 
periods and 
relative 
infectivity of the 
disease states), 
(2) 

Elveback et al. 1976  
(research paper)  

 
Longini et al. 1988 
 (research paper)  

 
Ferguson et al. 2005  

(research paper)  
 

Fraser et al. 2009 
(research paper)                  

 
Bell et al. 2006  
(research paper)        

 
Hayden et al. 1998 

(research paper) 

Attack rates and estimates from Long-
term data collection from a random 
sample of households, Tecumseh 
study of respiratory Illness, 1966-
1971, 1976-1981. 
Non-infectious period: Human 
influenza data on multiple exposure 
event occurring on an aeroplane, 1979 
Data from a follow up study of 
influenza infections in households, 
Epigrippe study, France, 2000 
 Time series of the Mexican reported 
case numbers, 2009 
Experimental Laboratory study - Viral 
shedding profile of 20 volunteers, 
1979 (From Bell et al. 2006) 
Experimental Laboratory study - Viral 
shedding profile of 20 volunteers 
(Hayden 1998) 

Manual 

Examples: 
Distribution fitting 
from the frequency 
data;  
 
Fitting a likelihood 
function to find the 
posterior 
distribution of 
parameters 

 

Table A1:  Continued 
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Appendix A   Continued 

 

 

Epidemiological 
model 

parameter (# 
models using 

the parameter) 

Sources used by the models to 
obtain the parameter value                                  
Author/year (type of study, 
e.g., research paper, survey 

paper) 

Data sources supporting the 
parameter value determination 

Type of 
interface 
for data 
access & 
retrieval 

Techniques to 
translate raw data 

into model 
parameter values 

Fraction of 
infectious 
population that 
become 
symptomatic/ 
asymptomatic, 
(10) 

Carrat et al. 2002 
(research paper)  

 
Cauchemez et al. 2004 

(research paper)  
 

Fraser et al. 2009 
 (research paper) 

           
 Gani et al. 2005 
(research paper) 

Data from a follow up study of 
influenza infections in households, 
Epigrippe study, France, 2000 
 
Localized outbreak data in La 
Gloria, Mexico, May 30 2009 
 
Five year study of influenza in 
families, London, 1981 

Manual 

Examples: Fitting an 
age stratified 
mathematical model 
to outbreak data 

 

 

 

 

 

Table A1:  Continued 
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Appendix B   Demographic Parameters in Models for Influenza Pandemic Preparedness 

 

 

Demographic model 
parameter                      

(# models using the 
parameter) 

Data sources 

Nature of 
data 

sources: 
database 

(D), survey 
paper (SP), 

official 
document 

(OD)             

Type of 
interface for 
data access 
& retrieval 

Technique to 
translate raw data 

into model 
parameter values 

Population size or density 
(9) 

Landscan dataset (2003)  
US Census data and  number of USA census 
tracts (2000)  
Census of Canada, Ottawa (2006)  

D Manual Direct translation 

Household size 
distribution (6) 

US Census data (2000)  
Census of Canada, Ottawa (2006)  
Hong Kong survey data (2005)  

D, SP Manual Direct translation; 
distribution fitting 

Peer-group size 
distribution (6) 

Establishment size data (Categorical distribution 
of the number of workers versus size) (2003)  
Census tract to tract worker flow data (2000)  
Census of Canada, Ottawa (2006)  
Enrollment by grade, London, Ontario (2008)  

D Manual 

Data converted into 
a power law 

distribution with 
maximum 

likelihood methods; 
  

Direct translation 
 

Table B1:  Demographic parameters explored in the models 
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Appendix B   Continued 

 

 

Demographic model 
parameter (# models 
using the parameter) 

Data sources 

Nature of 
data 

sources: 
database 

(D), survey 
paper (SP), 

official 
document 

(OD)             

Type of 
interface for 
data access 
& retrieval 

Technique to 
translate raw data 

into model 
parameter values 

Age distribution (5) 

US Census data (2000) [1] 
US school geo-referenced database (2004) [7] 
German National Pandemic Preparedness Plan 
(2005) [8] 

D, OD Manual Distribution fitting; 
direct translation 

Distribution of home to 
work commuting 

distances (Number of 
individuals traveling a 
certain distance) (2) 

Census track of work by census track of 
residence (STP64) (2004) [9] 
Census tract to tract worker flow data (2000) [1] 

D Manual Distribution fitting 

 

 

 

 

Table B1:  Continued 
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Appendix B   Continued 

 

 

Demographic model 
parameter (# models 
using the parameter) 

Data sources 

Nature of 
data 

sources: 
database 

(D), survey 
paper (SP), 

official 
document 

(OD)             

Type of 
interface for 
data access 
& retrieval 

Technique to 
translate raw data 

into model 
parameter values 

Long distance traveling 
parameters  (e.g., 
probability of flight from 
an origin to a destination, 
distribution of nights 
spent away, number of 
trips per person, average 
trip duration) (3) 

Origin and destination of each flight included in 
an itinerary (Origin-destination survey of airline 
passenger dataset, BTS) (2005) 
Nights spend away for long distance air and car 
travel, National Household Travel Survey 
(NHTS) (1991) 
Person trips along the USA whole population. 
Long distance travel data (NHTS) (1995) 
Average trip duration. Long distance travel data 
(NHTS), (1995)  

D Manual Distribution fitting; 
direct translation 

 

 

 

Table B1:  Continued 
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Appendix C   Accessibility and Scalability Features Investigated in the Models 

 

 

Model 
name 

Supporting 
papers 

Is the 
model 

software 
available to 

general 
public? 
(open 

source or 
closed 
source 
code) 

Presence of 
end user 
support 

(user 
manuals, e-
mail/phone 
technical 
support) 

Information 
on the 

number of 
replicates 

per 
implemen-

tation 
scenario  

Information 
on the 

running time 
per replicate 
(population 

size) 

Information on 
the ways to 
manage the 

computational 
load for 

implementing 
large-scale 

scenarios (e.g., the 
use of distributed 

and parallel 
computing) 

Use of replicate 
minimization 
techniques? 

Imperial-Pitt Ferguson, 
2005 No N/A At most 

1000  None stated None 

Stop if 50 
replicates 

resulted in a 
failed mitigation 

policy. 

Imperial-Pitt Ferguson, 
2006 No N/A At least 5 

8 CPUs - 1-2 
hour, 16 

CPUs - 2-5 
hour            

(for U.S. 
testbed) 

Implemented on a 
distributed 

environment with 
either 8 or 16 

servers. 

Yes, until the 
average values 
of the variables 

with higher 
dispersion were 

"reasonably" 
determined. 

 

 

Table C1: Accessibility and scalability features investigated in the models 



 

83 
 

 

Appendix C   Continued 

 

 

Model name Supporting 
papers 

Is the 
model 

software 
available to 

general 
public? 
(open 

source or 
closed 
source 
code) 

Presence of 
end user 
support 

(user 
manuals, e-
mail/phone 
technical 
support) 

Information 
on the 

number of 
replicates 

per 
implemen-

tation 
scenario  

Information 
on the 

running time 
per replicate 
(population 

size) 

Information on 
the ways to 
manage the 

computational 
load for 

implementing 
large-scale 

scenarios (e.g., the 
use of distributed 

and parallel 
computing) 

Use of replicate 
minimization 
techniques? 

UW_LANL Longini 
2005 No N/A At least 

1000  None stated N/A None stated 

UW_LANL Germann 
2006 No N/A 200 8-12 hr. (for 

U.S. testbed) 
Yes (no details 

reported) None stated 

UW_LANL Sander 
2009 No N/A 100 None stated N/A None stated 

UW_LANL Chao 2010 Yes (open 
source) 

Instructions 
on the 
model 

inputs and 
outputs 

None  
32 CPUs - 6 
hours (for 

U.S. testbed) 

A parallelized 
version assigns 
population to 

different processors 
and open MPI  to 

update the status of 
the variables on 
different CPUs  

None stated 

Table C1: Continued 
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Appendix C   Continued 

 

 

Model 
name 

Supporting 
papers 

Is the 
model 

software 
available to 

general 
public? 
(open 

source or 
closed 
source 
code) 

Presence of 
end user 
support 

(user 
manuals, e-
mail/phone 
technical 
support) 

Information 
on the 

number of 
replicates 

per 
implemen-

tation 
scenario  

Information 
on the 

running time 
per replicate 
(population 

size) 

Information on 
the ways to 
manage the 

computational 
load for 

implementing 
large-scale 

scenarios (e.g., the 
use of distributed 

and parallel 
computing) 

Use of replicate 
minimization 
techniques? 

LOKI-
INFECT Glass 2006 No N/A 

6 scenarios 
w/ 100 

replicates 
each; 1 

scenario w/ 
1,000 

replicates 

None stated N/A None stated 

LOKI-
INFECT 

Davey 
2008a No N/A 100 None stated N/A None stated 

LOKI-
INFECT 

Davey 
2008b No N/A 100 None stated None None stated 

LOKI-
INFECT 

Pelroth 
2010 No N/A 100 None stated N/A None stated 

Table C1: Continued 



 

85 
 

 

Appendix C   Continued 

 

 

Model 
name 

Supporting 
papers 

Is the 
model 

software 
available to 

general 
public? 
(open 

source or 
closed 
source 
code) 

Presence of 
end user 
support 

(user 
manuals, 

email/phone 
technical 
support) 

Information 
on the 

number of 
replicates 

per 
implemen-

tation 
scenario  

Information 
on the 

running time 
per replicate 
(population 

size) 

Information on 
the ways to 
manage the 

computational 
load for 

implementing 
large-scale 

scenarios (e.g., the 
use of distributed 

and parallel 
computing) 

Use of replicate 
minimization 
techniques? 

Gojovic Gojovic, 
2009 No N/A 100 None stated N/A None stated 

Nuno Nuno, 2007 No N/A 100 None stated None None stated 

Gumel Gumel, 
2008 No N/A 100 None stated None None stated 

InfluSim Eichner, 
2007 

Yes (closed 
source) 

Technical 
paper Not reported None stated None None stated 

 

 

 

Table C1: Continued 
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Appendix C   Continued 

 

 

Model name Supporting 
papers 

Is the 
model 

software 
available to 

general 
public? 
(open 

source or 
closed 
source 
code) 

Presence of 
end user 
support 

(user 
manuals, e-
mail/phone 
technical 
support) 

Information 
on the 

number of 
replicates 

per 
implemen-

tation 
scenario  

Information 
on the 

running time 
per replicate 
(population 

size) 

Information on 
the ways to 
manage the 

computational 
load for 

implementing 
large-scale 

scenarios (e.g., the 
use of distributed 

and parallel 
computing) 

Use of replicate 
minimization 
techniques? 

Imperial-Pitt 
UW_LANL 

Halloran, 
2008 No N/A 

UW_LANL 
- 5,  Imperial 

Pitt - 10 
None stated None See Imperial Pitt 

USF Das08, 
Uribe10 

Yes (closed 
source) 

Manual,     
e-mail 15 

1 CPU - 20 
mins (for 1 

million 
people) 

None 

Yes, until 
confidence 
intervals of 

selected 
parameters 

reached 
prespecified 

width 
 

Table C1: Continued 
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Appendix D   List of Collaborators 

 

- Tapas Das, Professor, Department of Industrial and Management Systems Engineering, 
University of South Florida. 
 
- Alex Savachkin, Assistant Professor, Department of Industrial and Management Systems 
Engineering, University of South Florida. 
 
- Ricardo Izurieta, Assistant Professor, College of Public Health, Global Health, 
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Appendix E   Current Surveillance System at the State Level 

 

 

 Figure E1:  Flow of infected individuals through the surveillance system 
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Appendix E   Continued 

 

 Figure E1:  Continued  
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Appendix E   Continued 

 

 Figure E1:  Continued  
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Appendix E   Continued 

 

 

  

 

 

 

Figure E1:  Continued 
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Appendix F   Effect of the Reporting Rates in Sum of Squares of the Instantaneous 
Reproduction Number R(t) 

 

 

Factor First Second Third 
Probability that a symptomatic individual 
seek for healthcare ( 1

hr ) 
0.2 0.5 0.8 

Probability that a healthcare provider 
submit a specimen to the BOL ( 1

lr ) 
0.2 0.5 0.8 

Lab capacity (L) 1000 5500 10000 
 
The experiment included three responses, namely, the Sum of Squares for the first 
estimation level, the Sum of Squares for the second estimation level, and the Sum of 
squares for the third estimation level 
 
  
 
 

Source DF SS MS F Pr > F 
1
hr  1 33409.14   33409.14    6.765992      0.0160     
1
lr  1 21742.99   21742.99    4.403372      0.0470                                   

L 1 0.07241    0.07241    0.000015      0.9970 
Model 3 55152.2   18384.07    3.723126 0.0256 
Error 23 113569.5   4937.804   
Total 26 168721.7    

 
The uncoded predictive model for the first estimation level is as follows  
Sum of Squares for the first estimation level = 11 8516.1156069.1438986.201 lh rr −−  
 
  
 
 

Source DF SS MS F Pr > F 
1
hr  1 1812.421 1812.421    16.73723 0.0004 
1
lr  1 398.7138   398.7138    3.682018 0.0675 

L 1 0.004667   0.004667    0.000043 0.9948 
Model 3 2211.139   737.0464    6.806432 0.0019 
Error 23 2490.595 108.2868   
Total 26 4701.735    

 
The uncoded predictive model for the second estimation level is as follows  

Table F1: Factors of the experiment 

Table F2: ANOVA for the first estimation level 

Table F3: ANOVA for the second estimation level 
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Appendix F   Continued 

Sum of Squares for the second estimation level = 11 6882.1544814.3381232.34 lh rr −−  
 
 
  
 
 

Source DF SS MS F Pr > F 
1
hr  1 132.5171   132.5171    17.15874      0.0004     
1
lr  1 88.75272   88.75272    11.49199      0.0025 

L 1 0.005416   0.005416    0.000701      0.9791 
Model 3 221.2752    73.7584    9.550478      0.0003 
Error 23 177.6291   7.723006   
Total 26 398.9043    

 
The uncoded predictive model for the second estimation level is as follows  
Sum of Squares for the second estimation level = 11 401731.7044371.958697.13 lh rr −−  
 
 
 
 
 
 
 
 
 
 

Table F4: ANOVA for the third estimation level 
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