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ABSTRACT 

The objective of this study is to compare Bayesian and parametric approaches to 

determine the best for estimating reliability in complex systems. Determining reliability 

is particularly important in business and medical contexts. As expected, the Bayesian 

method showed the best results in assessing the reliability of systems.  

In the first study, the Bayesian reliability function under the Higgins-Tsokos loss 

function using Jeffreys as its prior performs similarly as when the Bayesian reliability 

function is based on the squared-error loss. In addition, the Higgins-Tsokos loss function 

was found to be as robust as the squared-error loss function and slightly more efficient. 

In the second study, we illustrated that—through the power law intensity 

function—Bayesian analysis is applicable in the power law process. The power law 

intensity function is the key entity of the power law process (also called the Weibull 

process or the non-homogeneous Poisson process). It gives the rate of change of a 

system’s reliability as a function of time. First, using real data, we demonstrated that one 

of our two parameters behaves as a random variable. With the generated estimates, we 

obtained a probability density function that characterizes the behavior of this random 

variable. Using this information, under the commonly used squared-error loss function 

and with a proposed adjusted estimate for the second parameter, we obtained a Bayesian 

reliability estimate of the failure probability distribution that is characterized by the 

power law process. Then, using a Monte Carlo simulation, we showed the superiority of 

the Bayesian estimate compared with the maximum likelihood estimate and also the 



 

x  

better performance of the proposed estimate compared with its maximum likelihood 

counterpart.  

 In the next study, a Bayesian sensitivity analysis was performed via Monte Carlo 

simulation, using the same parameter as in the previous study and under the commonly 

used squared-error loss function, using mean square error comparison. The analysis was 

extended to the second parameter as a function of the first, based on the relationship 

between their maximum likelihood estimates. The simulation procedure demonstrated 

that the Bayesian estimates are superior to the maximum likelihood estimates and that the 

selection of the prior distribution was sensitive. Secondly, we found that the proposed 

adjusted estimate for the second parameter has better performance under a 

noninformative prior. 

 In the fourth study, a Bayesian approach was applied to real data from breast 

cancer research. The purpose of the study was to investigate the applicability of a 

Bayesian analysis to survival time of breast cancer data and to justify the applicability of 

the Bayesian approach to this domain. The estimation of one parameter, the survival 

function, and hazard function were analyzed. The simulation analysis showed that the 

Bayesian estimate of the parameter performed better compared with the estimated value 

under the Wheeler procedure. The excellent performance of the Bayesian estimate is 

reflected even for small sample sizes. The Bayesian survival function was also found to 

be more efficient than its parametric counterpart. 

 In the last study, a Bayesian analysis was carried out to investigate the sensitivity 

to the choice of the loss function. One of the parameters of the distribution that 

characterized the survival times for breast cancer data was estimated applying a Bayesian 



 

xi  

approach and under two different loss functions. Also, the estimates of the survival 

function were determined under the same setting. The simulation analysis showed that 

the choice of the squared-error loss function is robust in estimating the parameter and the 

survival function. 



 

1  

  
CHAPTER 1   REVIEW OF LITERATURE AND THE PRESENT STUDIES  

This chapter presents a review of the body of literature related to reliability 

analysis of complex systems that are relevant to the present studies. In particular, an 

overview of reliability and survival theory is presented, along with ordinary and 

empirical Bayesian methods, Bayesian point estimation, and the power law process. 

Finally, we introduce the structure of the problems that we study in the thesis. 

 

1.1 Introduction  
Failure in complex systems can have far-reaching negative effects. For instance, 

failure of mechanical equipment can lead to significant repairs, technical support, and 

loss of employee time, all of which can have a direct impact on productivity and costs 

(Crow, 1974; Tsokos & Shimi, 1977; Singpurwalla, 2006). Even in the field of medicine, 

treatment regiments can be viewed as complex systems, and knowledge of systems and 

their failure behavior can save lives (Tsokos & Shimi, 1977; Singpurwalla, 2006). 

Reliability analysis can aid in the more effective use of resources in the longevity of 

equipment. Its statistical equivalent survival analysis can help clinicians to decide which 

treatments are better for patients in terms of survival time (Crow, 1974). Klein and 

Moeschberger (1997) provide two relevant examples: 1) in bone marrow transplantation, 

survival function can be used to compare the efficacy of autologous transplant methods 

compared with allogenic methods, and 2) in early-stage breast cancer treatment for 
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women, the effectiveness of radiotherapy alone can be compared with that of 

radiotherapy with adjuvant chemotherapy. 

 Reliability can be estimated in a number of ways. Bayesian and parametric 

approaches of estimation are some common methods of estimation. In order to obtain the 

more favorable of the two approaches, we conducted several studies of reliability, using 

both Bayesian and parametric methods in each study to determine which method shown 

to be more efficient in obtaining estimates. In each instance, simulated data was used to 

illustrate the evaluation process. However, in two of the four studies, real data were also 

used to demonstrate the practical implications of reliability and survival analysis. 

 

1.2 Reliability and Survival Theory  
Reliability of a process, product, or system is the probability that it will perform 

as specified, under the specified conditions, for the specified period of time (Blank, 

2004). The purpose of reliability analysis is to evaluate the performance of an item, to 

predict its time to failure (TTF), and to find its failure pattern. 

A reliability analysis must be based on precisely defined concepts in order to 

make comparisons between systems and to provide logical bases for improvement. In a 

reliability analysis, some commonly used statistical concepts to investigate for the subject 

data include TTF, reliability function, hazard rate, and reliable life. The collected data, 

obtained for example from a reliability test of an object or from observations of its use, 

are realizations of random variables. 

TTF, also called failure time, is a random period of operation, after which any 

object or device of interest fails under stated environmental conditions. TTF can be 
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denoted by the random variable X where f(x) is its probability density function (pdf). The 

probability of failure as a function of time can be defined as 

0,)()()(
0

≥=≤= ∫ x       duufxXPxF
x

 

 where )(xF  is the probability that the device will fail by time x. Sometimes, the 

cumulative distribution function (CDF), )(xF , is referred to as the unreliability function 

(Tobias & Trindade, 1986). 

If reliability is defined as the probability of success—that is, the probability that 

the device will perform its intended function for at least a period of time x—then we can 

write 

∫
∞

−==>=
x

xFduufxXPxR )(1)()()(  

 

where )(xR is the reliability function or the survival function commonly used in the life 

sciences and sometimes denoted by )(xS . The mathematical foundations of reliability 

and survival analyses are the same. However, the methodologies may sometimes be 

different (Singpurwalla, 2006).  

Several concepts are relevant to the determination of reliability. Failure rate, the 

rate at which failures occur in a certain time interval ],[
21

xx , can be used to help 

determine failure pattern. It is defined as the probability that a failure occurs in a time 

interval, given that a failure has not occurred prior to the beginning of the interval
1

x . In 

addition, the hazard rate (also referred to as hazard rate function or hazard function) is 

relevant to reliability. It is defined by the limit of the failure rate as the length of the 
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interval ],[
21

xx  approaches zero. Thus, it is the instantaneous failure rate. The hazard 

rate )(xh is defined as 

 

)(

)()(

)(

)(

1

)(

)()(
lim)(

0

xR

xf

dx

xdLnR
        

dx

xdR

xRxxR

xxRxR
xh

x

=−=







−=

∆

∆+−
=

→∆

 

 

since )(
)(

xf
dx

xdR
=− , the TTF pdf. 

The term, dxxh )( , represents the probability that a device that has survived to 

time x will fail in the small interval of time from x to dxx + ; it also can represent the 

probability that a patient who has survived to time x will die in the small interval of time 

represented by [x, dxx + ]. Thus, )(xh  is the rate of change of the conditional 

probability of failure given survival time x. The importance of the hazard rate is that it 

can indicate the change in the failure rate over the lifetime of a population of devices; it 

can also indicate the change in the death rate in the survival time of patients. In addition, 

it is important to note that )(xf  is the rate of change of the ordinary (unconditional) 

probability of failure. If )(xh is increasing in 0≥x , )(xf is said to be a decreasing 

failure rate distribution. 

Reliable life is yet another facet of reliability. It is represented by R and is a 

measure of the reliability of a device or survival of a patient at a given time 
R

x . The 
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reliable life may be thought of as the time 
R

x for which 100R% of the population will 

survive.  

 

1.2.1 Ordinary Bayesian Methods in Reliability and Survival Analysis  
When used to determine reliability, Bayesian methods allow the combination of 

operation data with any other relevant information available for reliability studies (Martz 

& Waller, 1982). Some possible sources of supplemental information are engineering 

design and test data, operating data in different environments, engineering judgments and 

personal experience, operating experiences with similar equipment, or efficiency data on 

a given treatment for a patient. 

A Bayesian reliability analysis consists of the use of statistical methods in 

reliability problems that involve parameter estimation. In the parameter estimation, one 

or more of the parameters are considered to be a random variable with a nondegenerate 

prior probability distribution, which expresses the analyst’s prior degree of belief about 

the parameters.  Several elements are present in a good Bayesian reliability analysis; 

namely, a detailed justification and analysis of the prior distribution selected, with a clear 

understanding of the mathematical implications of this prior and thorough documentation 

of the data sources used in identifying and selecting the prior (Martz & Waller, 1982). 

In the analysis, the selection of the prior must be considered satisfactory. 

Secondly, using the amount of sample test data ultimately expected, the analyst should 

consider a group of simulated sample test results as data. Third, for the tentative prior 

distribution and each of the simulated test results, the analyst should compute the 

resultant posterior distribution via the Bayes Theorem. Fourth, in the posterior analysis, 
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the analyst should study the set of resulting posterior distributions to determine whether 

they seem reasonable in light of the simulated data. If they are reasonable, the prior 

distribution becomes a strong candidate for use. In addition, a Bayesian reliability 

analysis has two more elements: a clearly defined posterior distribution of the 

parameter(s) of interest and an analysis of the sensitivity of the Bayesian inferences to the 

prior model selected. 

Sample data may be expensive or difficult to obtain in areas of application such as 

reliability. A Bayesian method usually requires less sample data to achieve the same 

quality of inferences than the method based on sampling theory. In many cases, this is the 

practical motivation for using a Bayesian method and represents the practical advantage 

in the use of prior information.  

A Bayesian analysis has additional practical and important benefits. One is the 

increased quality of the inferences, provided the prior information accurately reflects the 

time variation in the parameter(s). Another benefit is the reduction in testing 

requirements (i.e., test time or sample size) that often occurs in Bayesian reliability 

demonstration test programs. Both of these are the result of formally including additional 

information in the analysis in the form of the prior distribution. 

It is important to recognize that all statistical inferential theories—whether 

sampling theory, Bayesian, likelihood, or otherwise—require some degree of subjectivity 

in their use. Sampling theory requires assumptions about a sampling model, confidence 

coefficients, which estimator to use, and so on. For example, a sampling analysis of  

∞<<
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proceeds under a priori belief that the data were exactly exponentially distributed, that 

each observation had exactly the same mean life θ, and that each observation was 

distributed exactly independently of every other sample observation. 

The Bayesian method provides a satisfactory way of explicitly introducing and 

organizing assumptions regarding prior knowledge or ignorance. In the Bayes Theorem, 

these assumptions lead to posterior inferences—that is, inferences obtained once the data 

have been incorporated into the analysis of the reliability parameter(s) of interest. 

Bayesian analysis is associated with yet another important advantage—inferences 

that are unacceptable must come from incorrect assumptions and not from inadequacies 

of the method used to provide the inferences. In this regard, the Bayesian procedure 

rectifies many shortcomings of the sampling theory method. Inferences based on the 

deductive arguments inherent in the Bayesian approach are more direct than those based 

on the inductive arguments of sampling theory (Martz & Waller, 1982). 

The philosophical bases of the Bayesian paradigm are founded on the calculus of 

probabilities. However, in reality, with unique situations, the notion of frequency is not 

always relevant. The Bayesian paradigm allows for these kinds of situations and for 

situations in which no previous data exist. In such cases, the study of the uncertainty can 

only be based on background information. In the consideration of prior probabilities, the 

Bayesian paradigm enables the formal incorporation of information from the experts into 

the analysis (Singpurwalla, 2006). Reliability analysis is most credible when subject 

matter experts play a key role throughout the analysis.  
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1.2.2 Empirical Bayesian Methods in Reliability and Survival Analysis  
As explained by Martz and Waller (1982), the empirical Bayes approach to 

reliability analysis is a class of decision theoretical procedures that uses past data as a 

measure for bypassing the necessity of identifying a completely unknown and 

unspecified prior probability distribution that has a frequency interpretation. A main 

difference between ordinary Bayes and empirical Bayes methods is that, unlike in 

empirical Bayes, in ordinary Bayes, an underlying prior probability distribution is 

assumed to exist with a degree of belief or a frequency interpretation. Also with the 

ordinary Bayes method, the parametric form of the prior probability distribution is either 

assumed to be completely known and specified or known except for the values of certain 

parameters that had to be estimated from sampled data. Whereas, in the empirical Bayes 

approach, the distributional form of the prior probability remains unknown. In this case, 

Bayes estimation methods cannot be employed apart from a hit-or-miss assumption about 

the unknown prior. With such an assumption and, further, that the parameter to be 

estimated does indeed follow an unknown prior probability distribution having a 

frequency interpretation, the Bayes estimates based on this assumed prior may or may not 

accurately approximate the true Bayes estimate that could be obtained if the true prior 

probability distribution were known. In such cases, the accuracy of the approximation is 

never really known. One can only demonstrate how well the assumed prior probability 

distribution performs when the true probability distribution departs from the assumption. 

In addition, using the empirical Bayes method is desirable in order to avoid the 

need to identify a prior probability distribution. The assignment of a prior probability 

distribution often represents a practical difficulty in the application of Bayesian methods. 
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When empirical Bayes procedures can be used, it is often desirable to do so, due to their 

greater dependency on empirical data and fewer assumptions than strict Bayesian 

methods. Also, in empirical Bayes procedures, the postulated prior probability 

distribution must have a frequency interpretation, and certain “past” data suitable for 

estimating this probability distribution are assumed to be available (Martz & Waller, 

1982). 

In essence, the difference between empirical Bayes and ordinary Bayes is that 

empirical Bayes does not make explicit the form of the prior information in order to make 

possible a Bayes solution. Instead, the empirical Bayes method depends on the existence 

of prior information in the form of past estimates of either the parameter in question or 

some close variation of it. 

In the case when estimation of reliability is done under data accumulation 

conditions, the analysis can be based on the empirical Bayes approach in the form of 

reliability estimates of all preceding types of the devices and does not require the 

determination of a prior probability distribution in a unique way. In the case that the prior 

probability distribution is known and the availability of data is not met, then the ordinary 

Bayesian approach is the appropriate choice. However, in the case that the prior 

probability distribution is known and the reliability analysis is done under data 

accumulation conditions, either ordinary Bayes or empirical Bayes analysis may be 

employed. In this case, we would use model selection criteria to select the best choice. 
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1.3 Bayesian Point Estimation  
From a Bayesian point of view, a decision function )(x

r
ψ  is considered to search 

for an estimator ζ̂ to approximate the unknown random parameter ζ from the observed 

realizations  x ..., x x xx
n
),,,(

321
=

r
of independent random variables 

n
X... X X X ,,,

321

with a common pdf conditional on ζ . A loss function 0)),(( ≥ζψ xL
r

, represents the 

error of choosing )(x
r

ψ  as the decision function for ζ . The conditional expectation of 

the loss for any )(x
r

ψ  when ζ is the realization of the random variable Ζ is called the risk 

and is defined by the relation  
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=  

whereζ ∈ Ζ ⊆ ℝ is assumed. 

The expected risk, over the entire parameter space Ζ when the estimator )(x
r

ψ  is 

used, is given by the expectation with respect to the prior probability distribution )(ζp  

of ζ , that is, 
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 is the likelihood function and )(ζp  is the prior density function of Ζ. 

Since the integrand is nonnegative, interchanging the order of integration of x
r

and ζ  , 

we obtain 
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where  

∫Ζ= ζζζ dpxLxm )();()(
rr

 

is the marginal probability density function of X
r

, in the case that Ζ is a continuous 

random variable. To minimize the risk )]([ xR
r

ψζ
, the decision function )(x

r
ψ  is chosen 

so that the quantity  

ζζζψ dxhxL∫Ζ );()),((
rr

 

is a minimum. Therefore, the Bayes decision function, or Bayes estimator, for the 

realization ζ  is the decision function ψ  which minimizes the expected loss 

[ ] ζζζψζψ dxhxLxxLE ∫Ζ= );()),((|)),((
rrrr

 

with respect to the prior distribution of Ζ , )(ζp . Moreover, the Bayes solution ψ  

minimizes the expected risk  

[ ]{ })(min][ xRR
r

ψψ ζ
ψ

=  

called the Bayes risk. Clearly, the determination of the Bayes solution and risk depends 

on the form of the prior probability distribution )(ζp . 

 

1.4 Power Law Process 

 

A repairable system is one that can be restored to an operating condition by some 

repair process instead of replacing the entire system. We assume that, in such a system, 

we observe a number of failures. Let ...0
21

<<< TT denote the TTFs of the system 

measured in global time—that is, the times are recorded from the initial start-up of the 

system onward.  
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Let ,...,
21

XX denote the times between failures such that
1−−=

iii
TTX , i=1,2,… . 

Consider a complex repairable system that is tested until it fails, and then corrective 

action is undertaken to identify and remove the cause. The system is tested again until the 

next failure occurs. This process continues toward achieving a desired reliability level. 

This testing procedure is known as reliability growth. 

Duane (1964) proposed the concept of the “learning curve approach” to monitor 

the progress of reliability improvement programs. According to Duane, this learning 

curve is useful in predicting the duration and the end result of such programs. This 

graphical method for displaying data from repairable systems can be used to gain insight 

into the data. It can be used to determine whether there is a trend in the time between 

failures. It consists of plotting the global time 
i

t  along the horizontal axis, and on the 

other axis the ratio of the cumulative number of failures through time 
i

t , that is, )(
i

tN , 

and 
i

t , i=1,2,…,n.  This ratio is often called the cumulative failure rate. 

Let ],( baN denote the number of failures in the interval ],( ba . A counting 

process )(tN is said to be a Poisson process if the following conditions exist: 

1. .0)0( =N  

2. The independent increment property holds; i.e., for any dcba <≤< , the 

random variables ],( baN and ],( dcN are independent. That is, counts in 

nonoverlapping intervals are independent. 

3. There is a function V , called the intensity function of the Poisson process, such 

that 

.
)1],((

lim)(
0 t

tttNP
tV

t ∆

=∆+
=

→∆
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4. 0
)2],((

lim
0

=
∆

=∆+
→∆ t

tttNP

t
; i.e., there are not simultaneous failures. 

 

A consequence of these four conditions presented in the Poisson process definition is that  
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which implies that ],( baN for any ba <
 
has a Poisson probability distribution with 

parameter ∫
b

a
dxxV )( . 

The non-homogeneous Poisson process (NHPP) is a Poisson process whose 

intensity function is nonconstant and is an effective approach to analyzing reliability 

growth. Since for some repairable systems the plots of the cumulative failure rate to time 

were approximately linear on log-log paper, Crow (1974, 1975) proposed a NHPP with 

intensity function given by  

.0 ,0 ,0 ,)(

1

>>>
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

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
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−

t
t

tV θβ
θθ

β
β

                       (1.2.1) 

 

This type of Poisson process is usually called the power law process (PLP), and its 

intensity function is called the power law intensity function. The PLP is also referred to as 

the Weibull process since the power law intensity function has the same form as the 

hazard function of a Weibull distribution with pdf given by 
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even when the TTF does not have a Weibull probability distribution (except for the first 

failure) and neither do the times between failures. 

The PLP reduces to a homogeneous Poisson process (HPP) if β=1. In the case of 

β>1 the intensity function increases, which implies the reliability decreases. For β<1 the 

power law intensity function decreases, implying reliability growth. 

The NHPP is an effective approach to analyze the reliability growth and predict 

the failure behavior of a given system. The following researchers reported on the 

fundamental aspects of reliability growth of repairable systems: Bassin (1969), Higgins 

and Tsokos (1981), Ascher and Feingold (1984), Engelhardt and Bain (1978, 1987), 

Rigdon and Basu (1990), and Ascher, Lin, and Siewiorek (1992) among others. 

 

1.4.1 Review of the Analytical Power Law Process 

 

The probability of achieving n failures in a given system in the time interval (0, t] 

can be written as  
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0  ,

!

)()(exp
);( 00 >

−
==

∫∫
t

n

dxxVdxxV
tnxP

n

tt

                 (1.2.1.1) 

where )(tV is the intensity function given by (1.2.1). The reduced expression  
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represents the NHPP or Weibull process. 

If the PLP is the underlying failure model of the TTF’s ,,...,,,
1321 −n

tttt  and 
n

t , the 

conditional reliability function of 
n

t given 
1321

,...,,, −n
tttt can be written as  

{ }∫
−

−=−

n

n

t

tnn
dxxVtttttR

1

)(exp),...,,,|(
1321

  
,  0

1
>> −nn

tt           (1.2.1.3) 

since it is independent of 
2321

,...,,, −n
tttt . The equation (1.2.1.3) shows the reliability as a 

function of the intensity function. An estimate of the reliability function can be obtained 

using an estimate of the intensity function, where the key entity is the parameter β. 

Therefore, β  affects the reliability function through the intensity function. 

The maximum likelihood estimate (MLE) of β is a function of the largest TTF, 

and the MLE of θ is also a function of the MLE of β as we will show below. Let 

T1,T2,…,Tn denote the first n TTF’s of the NHPP, where Tl < T2 < … <Tn are measured 

in global time, that is, the times are recorded from the initial start-up of the system 

onward. Thus, the truncated conditional probability distribution function, ),...,|(
11 −ii

tttf , 

in the Weibull process and is given by 
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With ),...,,(
21 n

tttt =
r

, the likelihood function for the first n failures for the times of the 

NHPP 
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The MLE for the shape parameter is given by 

∑
=









=

n

i i

n

n

t

t

n

1

log

β̂                                          (1.2.1.6) 

and, for the scale parameter is  
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n β
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The theoretical background presented in the previous sections will be applied to the 

different problems that we will study.  

 

1.5 Overview of the Studies  
The present study is comprised of the investigation of five different problems. In 

the first study, detailed in Chapter 2, a Bayesian sensitivity analysis was performed to 

examine the Bayesian reliability function under the Higgins-Tsokos loss function 

(Higgins & Tsokos, 1980) using several probability priors. In addition, a comparison was 

made between the best Bayesian estimate obtained from the analysis and the Bayesian 

Reliability function based on the squared-error loss function. Robustness of the loss 

function and efficiency will be examined.  

The second study is detailed in Chapter 3. The objective of the study was to 

illustrate the applicability of a Bayesian analysis in the NHPP through the two parameter 

intensity function. We performed a numerical simulation to compare the Bayesian 
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estimates of one of the parameters and the Bayesian estimate of the intensity function 

under the assumption of a squared-error loss function with the maximum likelihood 

estimates. Moreover, we proposed an adjusted maximum likelihood estimate for the 

second parameter and obtained a Bayesian reliability estimate of the PLP.    

 The next study is a logical continuation of the previous and is detailed in Chapter 

4. A Bayesian sensitivity analysis— of the same parameter as in the previous study— 

based on the prior selection was performed via Monte Carlo simulation. The analysis was 

carried out under the assumption of the squared-error loss function using mean square 

error comparison. The study was extended to the second parameter as a function of the 

first, based on the relationship between their maximum likelihood estimates.  

In Chapter 5, we studied Bayesian and parametric survival analysis of real breast 

cancer data. The purpose of the study was twofold: to justify the applicability of the 

Bayesian approach to this domain and to compare the Bayesian and parametric estimates. 

The Bayesian estimation of one parameter, the survival function, and hazard function 

were analyzed and are presented in detail in the present study.  

Chapter 6 is a logical extension of the previous study. A Bayesian sensitivity 

analysis was performed to examine the Bayesian survival function under the squared-

error and the Higgins-Tsokos loss functions. The objective was to find out how robust is 

the selection of the squared-error loss function. Chapter 7 presents future research 

directions in this area of studies.  
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CHAPTER 2   BAYESIAN RELIABILITY ANALYSIS OF THE WEIBULL 

DISTRIBUTION SUBJECT TO SEVERAL PRIORS AND THE HIGGINS-

TSOKOS LOSS FUNCTION  
The objective of the present study is to perform a Bayesian sensitivity analysis of 

the choice of the prior for estimating the reliability function associated with the 3-

parameter Weibull model, where one of the parameters behaves as a random variable. In 

this study, first we calculated the Bayesian estimate of the parameter under the Higgins-

Tsokos loss function for each of the selected priors. Then, we compared the closer 

estimate obtained from the analysis with the Bayesian estimate of the Weibull reliability 

function based on the best choice of the prior now under the commonly used squared-

error loss function.    

The present study is divided into four sections. In the first section, we present the 

background theory to develop a Bayesian analysis for the reliability function of the 3-

parameter Weibull probability distribution as the underlying failure model. We present 

several priors as the different choices for the probabilistic behavior of the parameter 

assumed as a random variable. We proceeded to develop the general form of the 

Bayesian estimate of the parameter and the Weibull reliability function assuming the 

Higgins-Tsokos loss function. In the second section, we introduce the analytical form of 

the reliability function for each of the priors and under the assumption of the Higgins-

Tsokos loss function. We also present the Bayesian estimate of the reliability function 
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under the Jeffreys’ prior and squared-error loss function. A numerical simulation of the 

analytical results is given in the third section. Finally, we summarize the findings in the 

last section.  

 

2.1 Introduction  
In the present study, we consider a Bayesian analysis of the three parameter 

Weibull life testing model whose probability density function is given by 
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τξθ )(

1
exp)(),,|( 1

xxxw ,   ξ > 0, θ > 0, x ≥ τ (2.1) 

 

under the assumption that the guarantee time τ and the shape parameter ξ are known (can 

be estimated) and θ behaves as a random variable. 

A Bayesian analysis implies the use of suitable prior information in association 

with Bayes’ Theorem and rests on the exploitation of such information as well as the 

belief that a parameter is not merely an unknown fixed quantity but rather a random 

variable with some prior probability distribution. 

In life testing, as Barlow and Proschan (1965) pointed out, the exponential family 

has been the best known and most thoroughly explored probability distributions. 

However, it suffers somewhat because its constant failure rate makes it inadequate for 

describing the life-times of various components which wear out through normal use. As a 

result, the Weibull probability distribution, although somewhat more complex, has also 

been used as a failure probability distribution especially if the structure is suspected of 
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having increasing (or decreasing) failure rate. In fact, the Weibull family of distributions 

offers more flexibility than the exponential family for the latter is but a special case of the 

former. Therefore, we shall be concerned with the Bayesian estimation of the associated 

reliability function of (2.1), that is, 
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by considering θ as a random variable and ξ and τ are known or can be estimated. 

When θ is assumed to be a random variable, we shall examine the problem for each 

of the following four prior probability densities of θ: 

 

(i) a general uniform probability density given by 
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which for a = 0 reduces to the uniform density on [α,β], 

 

(ii) the exponential probability density 
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(iii) the inverted gamma probability density 
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and 
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(iv) the Jeffreys’ prior 

  .0   ,
1

)( >∝ θ
θ

θp                                       (2.6) 

The uniform prior probability density of θ  is surely a realistic choice if one 

considers the possibility of some prior information concerning the range of the parameter. 

The inverted gamma prior will give rise to a posterior density that belongs to the same 

family; thus the property of closure under sampling is realized. 

Bhattacharya (1967) considered a Bayesian analysis of the exponential distribution 

with probability density function given by 
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when the parameter θ is treated as a random variable and obtained Bayesian estimates of 

the reliability function 
t

etR θθ
1

)|(
−

= for the three prior densities (2.3)-(2.5).  

The Higgins-Tsokos loss function (1976) is given by  
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where ζ̂  represents the estimate for ζ .  We use this loss function since it places a 

heavier penalty at the extremes (over and underestimation) than in the middle compared 

to the squared-error loss function, which is traditionally used because of its analytical 

tractability (Camara & Tsokos, 2001). 
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The risk using the H-T loss function, with θζ =  and θζ ˆˆ = , is given by 
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Therefore, the Bayesian estimates of � with respect to the Higgins-Tsokos loss function 

is given by 
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and the Bayes estimate of the reliability function given by (2.2) with respect to the 

Higgins-Tsokos loss is obtained by evaluating 
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To measure the robustness of the 
1
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with respect to 
2

)(ˆ tR
B

we use the relative 

efficiency (RE) of the estimate 
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2.2 Stochastic Scale parameter: Development of Bayesian Reliability Model  
We assume θ  is a random variable and consider a random sample of n items whose 

life-times are described by (2.1). The n items are placed on a life test which is terminated 

after observing a predetermined nr ≤ number of failures. Let (
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)= x
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denote the 

observed ordered life times of the test items. The probability of observing r failures at 

times 
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The likelihood of the complete sample is realized for nr = . 
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2.2.1 General Uniform Probability Density and Higgins-Tsokos Loss Function  
Assuming the general uniform density (2.3) as the prior of θ, by invoking Bayes’ 

Theorem, we obtain the posterior density of θ, that is, 
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Then, the posterior density for the general uniform prior is 
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we have  
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Hence, the posterior density of θ for the uniform prior (2.3) is given by 
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Thus, using (2.10), the Bayesian reliability estimate with the general uniform as a prior 

pdf is 
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The series in the previous expression converges for some large mk = . Therefore , for a 

large m, 
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2.2.2 Exponential Probability Density and Higgins-Tsokos Loss Function  
We now examine the problem when the prior density of θ  is given by the 

exponential pdf (2.4). Using the likelihood function (2.1.1) in conjunction with Bayes’ 

Theorem, we obtain the posterior probability density of θ  
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Thus, the posterior density ofθ is given by 
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The denominator can be evaluated by using the relation 
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where )(azKν is the modified Bessel function of the third kind of order ν as given by 
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Similarly, to develop the Bayesian estimate of the reliability function given by (2.2) with 

respect to the Higgins-Tsokos loss (2.10) we have 
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Integrating both sides, we have 
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Then, integrating both sides, we have 
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Therefore, using (2.10), the Bayesian reliability estimate, with the exponential density as 

the prior probability distribution and the Higgins-Tsokos loss function is given by 
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The series in the previous expression converges for some large mk = . Therefore, for a 
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2.2.3 Inverted Gamma Probability Density and Higgins-Tsokos Loss Function  
Now, we proceed to obtain Bayesian Reliability estimate under the inverted 

gamma prior and Higgins-Tsokos loss function. Recall that the prior density of θ  is 

given by the inverted gamma pdf (2.5), then the posterior density of θ is  
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 the denominator in (2.2.3.1) can be evaluated as 
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Thus, the posterior density of θ when the prior density is the inverted gamma is given by 
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which is also an inverted gamma pdf. Therefore, the inverted gamma prior probability 

density is the natural conjugate family of prior densities for the scale parameter θ of the 

Weibull distribution (Raiffa and Schaifer, 1961). 

Now, to develop the Bayesian estimate of the reliability function given by (2.2) 

with respect to Higgins-Tsokos loss function and the inverted gamma prior probability 

density, we have 
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Substituting ( )[ ]
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Therefore, using expression (2.10), the Bayesian estimate of the reliability function (2.2) 

given by (2.10) with respect to the Higgings-Tsokos loss function and inverted gamma 

prior is given by 
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The series in the previous expression converges for some large mk = . Therefore, for a 

large m, 
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2.2.4 Jeffreys’ Prior and Higgins-Tsokos Loss Function 

 

Finally, if the prior density of θ is the Jeffreys’ prior given by (2.6), the posterior 

density of θ can be written as  
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for some constant c . Then, using (2.1.1), we can write  (2.2.4.1 ) as 
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Then, the posterior density of θ is given by 
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Then, integrating both sides, we have 
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Similarly, for the denominator in the Bayesian estimate of the reliability function (2.9) 

with the Jeffreys’ posterior density (2.2.4.3) we can write 
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Therefore, using (2.10), the Bayesian reliability estimate with Jeffreys’ prior and 

Higgins-Tsokos loss function is given by 
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The series in the previous expression converges for some large mk = . Therefore, for a 

large m,  
JHTB

tR )(ˆ can be approximated by 
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2.2.5 Jeffreys’ Prior and Squared-error Loss Function  
The Bayesian estimate of the reliability function given by (2.2) with respect to the 

squared-error loss function and using (2.2.4.3) is obtained by evaluating  

[ ] ∫
∞

=
0

)|()(|)( θθ dxhtRxtRE
J

rr
 

and is given by 

( ) [ ]∫
∞

+


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

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+−−
Γ

=
0 1

)(
1

exp
1

)(
)(ˆ θτ

θθ
ξ

dSt
r

S
tR

rr

r

r

JSQB
.           (2.2.5.1) 

Let ( )[ ]
r

Sty +−=
ξ

τ
θ

1
, then (2.2.5.1) reduces to  

( ) [ ] r

r

r

rJSQB
StStR

−

++=
ξ

τ )()(ˆ ,   τ≥t .                       (2.2.5.2)  
Each Bayesian estimate of the reliability is a decreasing function of time and is 

defined for all t > 0 regardless of the prior density of θ. In addition, the Bayesian estimate 

using inverted gamma prior with respect to Higgins-Tsokos loss function (2.2.3.2) is 

reduced to the Jeffreys’ prior when ν → 0 and µ → 0. 

 

2.3 Numerical Simulation  
2.3.1 Comparison of Bayesian Estimates of the Reliability function under the 

Higgins-Tsokos Loss Function  
Because of the absence of “live” life-times, it is felt that an indication of the 

properties of the Bayesian estimates developed in the previous sections can be best 
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determined through a Monte Carlo simulation. At the same time, a comparison is made 

between the Bayesian estimate and the true reliability function. In the implementation of 

the simulation procedure, a complete sample of 10, 50 and 100 life-times are generated 

where the guarantee time is taken to be zero.  The following schematic diagram displays 

the process of the simulation. 

 

 

Figure 2.1 Numerical Simulation: Comparison of the Bayesian Reliability Functions 

 

For a realization of the stochastic scale parameter θ, random life-times distributed 

according to the three parameter Weibull law were simulated for each of the four prior 

densities discussed, and four distinct values of the shape parameter. In computing the 

A realization for the scale parameter 

 

Set the shape parameter to 1 and the location parameter to 0 

 

Generate sample of size n in {10, 50, 100} from three-

parameter Weibull 

Estimates of reliability function under the differents prior and 

the Higgins-Tsokos loss function 

Compare 

Stop 

Start 
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Bayesian estimates of the reliability according to the equations (2.2.1.3), (2.2.2.4), 

(2.2.3.3), and (2.2.4.5) the numerical answer is allowed to converge by varying the value 

m until no change in the result is noted. The parameters values used for the general 

uniform probability density were(α,β) = (5,50) and a = 2, λ = 30 for the exponential pdf, 

and (µ,ν) = (10,3) for the inverted gamma pdf. We also considered ξ = 1, τ = 0, 

1
21

== ff .  

For a complete sample ( nr = ) with n = 10, we obtained the results summarized 

in Table 2.2 where the subscripts U, E, IG, JHT stand for uniform, exponential, inverted 

gamma, and Jeffreys’ respectively under the Higgins-Tsokos loss function.  

 

Table 2.1  Bayesian Reliability estimates under the Higgins-Tsokos loss function for 

a complete sample r = n = 10 

t  )(tR  UB
tR )(ˆ  

EB
tR )(ˆ  IGB

tR )(ˆ  
JHTB

tR )(ˆ  

0.4 0.9853 0.99987 0.99098 0.979225 0.983312 

1.2 0.9566 0.99966 0.97323 0.939055 0.950847 

2.0 0.9287 0.99942 0.95584 0.900653 0.919556 

2.8 0.9016 0.99919 0.93881 0.863936 0.880394 

3.6 0.8775 0.99894 0.92214 0.828826 0.860316 

 

 

We can observe that these estimates are sensitive to the choice of the prior 

distribution, and that the reliability estimate with respect to the Higgins-Tsokos loss 

function, using Jeffreys’ prior, is closer to the true value. Incrementing the complete 

sample to 50== nr  we obtained the results in Table 2.3.  
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Table 2.2  Bayesian Reliability estimates under the Higgins-Tsokos loss function for 

a complete sample r = n = 50 

 

t  )(tR  JHTB
tR )(ˆ  

0.4 0.9853 0.9882 

1.2 0.9566 0.9652 

2.0 0.9287 0.9426 

2.8 0.9016 0.9261 

3.6 0.8775 0.8991 

 

and for r = n = 100 we obtained results in Table 2.4.  

 

Table 2.3  Bayesian Reliability estimates under the Higgins-Tsokos loss function for 

a complete sample r = n = 100 

t  )(tR  JHTB
tR )(ˆ  

0.4 0.9853 0.9862 

1.2 0.9566 0.9693 

2.0 0.9287 0.9331 

2.8 0.9016 0.9077 

3.6 0.8775 0.8829 

 

 

Therefore, for a large complete sample size, the Bayesian reliability function 

corresponding to Jeffreys’ prior is a good approximation to the true reliability function

)(tR . 
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2.3.2 Comparison of the Best Bayesian Estimates of the Reliability Function under 

the Higgins-Tsokos Loss Function with respect to the Bayesian Estimate of the 

Reliability Function under Squared-error Loss Function 

 

We proceed to study if any difference exists in the estimation of the reliability 

function when we keep the best prior obtained under the assumption of the Higgins-

Tsokos loss function but we choose the squared-error loss function instead. For this new 

setting, we calculated the Bayesian reliability model varying the sample size with the 

three parameter Weibull as the underlying failure distribution. The reliability estimates 

with respect to the squared-error loss function and Jeffreys’ prior,
 JSQB

tR )(ˆ , are 

summarized in the following tables. For a complete sample of 10== nr  we obtained 

the results given in Table 2.5.  

 

Table 2.4  Bayesian Reliability estimates under the Squared-error loss function for a 

complete sample r = n = 10 

t  )(tR  
JSQB

tR )(ˆ  

0.4 0.9853 0.9833 

1.2 0.9566 0.9508 

2.0 0.9287 0.9195 

2.8 0.9016 0.8894 

3.6 0.8775 0.8603 

 

We proceed to increment the sample size to obtain the estimate
JSQB

tR )(ˆ . For a complete 

sample to r = n = 50 we obtained the results detailed in Table 2.6.  
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Table 2.5  Bayesian Reliability estimates under the squared-error loss function for a 

complete sample r = n = 50 

t  )(tR  
JSQB

tR )(ˆ  

0.4 0.9853 0.9882 

1.2 0.9566 0.9652 

2.0 0.9287 0.9426 

2.8 0.9016 0.9206 

3.6 0.8775 0.8992 

 

 

and, for a complete sample to 100== nr  we obtained the results detailed in Table 2.6.  

 

Table 2.6  Bayesian Reliability estimates under the Squared-error loss function for a 

complete sample r = n = 100 

t  )(tR  
JSQB

tR )(ˆ  

0.4 0.9853 0.9862 

1.2 0.9566 0.9593 

2.0 0.9287 0.9331 

2.8 0.9016 0.9077 

3.6 0.8775 0.8829 

 

Under the squared-error loss, in the case of the small sample, we acquired a minor 

underestimate for the reliability function. For a large sample it was found a very small 

overestimate. The estimates under Higgins-Tsokos loss are very similar to the estimates 

using squared-error loss function. 
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Almost negligible differences can be seen when the time are 2.8 and 3.6. In such 

cases, the squared-error loss has less error in the estimation under the assumption ξ = 1. 

For the same samples sizes but assuming ξ = 2, 4, and 6 we obtained the approximated 

values for the reliability with respect to the Higgins-Tsokos and squared-error loss 

functions when Jeffreys’ prior was considered. We followed the numerical simulation as 

displayed in Figure 2.1 with the new assumed values for the shape parameter ξ. Tables 

2.7 to 2.15 shows the comparison of the reliability estimates with respect to the true 

reliability function for different samples sizes. 

 

Table 2.7  Bayesian Reliability Estimate Values for r = n = 10, ξ = 2 

t  )(tR  
JHTB

tR )(ˆ  JSQB
tR )(ˆ  

0.4 0.9941 0.9998 0.9998 

1.2 0.9491 0.9985 0.9985 

2.0 0.8624 0.9957 0.9957 

2.8 0.7482 0.9916 0.9916 

3.6 0.6191 0.9862 0.9862 

 

 

Table 2.8  Bayesian Reliability Estimate Values for r = n = 50, ξ = 2 

t  )(tR  
JHTB

tR )(ˆ  JSQB
tR )(ˆ  

0.4 0.9941 0.9999 0.9999 

1.2 0.9491 0.9994 0.9994 

2.0 0.8624 0.9983 0.9983 

2.8 0.7482 0.9967 0.9967 

3.6 0.6191 0.9946 0.9946 
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Table 2.9  Bayesian Reliability Estimate Values for r = n = 100, ξ = 2 

t  )(tR  
JHTB

tR )(ˆ  JSQB
tR )(ˆ  

0.4 0.9941 0.9999 0.9999 

1.2 0.9491 0.9990 0.9990 

2.0 0.8624 0.9972 0.9972 

2.8 0.7482 0.9944 0.9944 

3.6 0.6191 0.9908 0.9908 

 

 

Table 2.10  Bayesian Reliability Estimate Values for r = n = 10, ξ = 4 

t  )(tR  
JHTB

tR )(ˆ  JSQB
tR )(ˆ  

0.4 0.9905 1 1 

1.2 0.9261 0.9999 0.9999 

2.0 0.5532 0.9999 0.9999 

2.8 0.1029 0.9999 0.9999 

3.6 0.0020 0.9999 0.9999 

 

 

Table 2.11  Bayesian Reliability Estimate Values for r = n = 50, ξ = 4 

t  )(tR  
JHTB

tR )(ˆ  JSQB
tR )(ˆ  

0.4 0.9905 1 1 

1.2 0.9261 1 1 

2.0 0.5532 0.9999 0.9999 

2.8 0.1029 0.9999 0.9999 

3.6 0.0020 0.9999 0.9999 
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Table 2.12  Bayesian Reliability Estimate Values for r = n = 100, ξ = 4 

t  )(tR  
JHTB

tR )(ˆ  JSQB
tR )(ˆ  

0.4 0.9905 0.9999 0.9999 

1.2 0.9261 0.9999 0.9999 

2.0 0.5532 0.9999 0.9999 

2.8 0.1029 0.9999 0.9999 

3.6 0.0020 0.9999 0.9999 

 

 

Table 2.13  Bayesian Reliability Estimate Values for r = n = 10, ξ = 6 

t  )(tR  
JHTB

tR )(ˆ  JSQB
tR )(ˆ  

0.4 0.9998 1 1 

1.2 0.8954 1 1 

2.0 0.0937 1 1 

2.8 -8101.8088⋅  
1 1 

3.6 -35101.0601⋅  
1 1 

 

 

Table 2.14  Bayesian Reliability Estimate Values for r = n = 50, ξ = 6 

t  )(tR  
JHTB

tR )(ˆ  JSQB
tR )(ˆ  

0.4 0.9998 1 1 

1.2 0.8954 1 1 

2.0 0.0937 1 1 

2.8 -8101.8088⋅  
1 1 

3.6 -35101.0601⋅  
1 1 
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Table 2.15  Bayesian Reliability Estimate Values for r = n = 100, ξ = 6 

t  )(tR  
JHTB

tR )(ˆ  JSQB
tR )(ˆ  

0.4 0.9998 1 1 

1.2 0.8954 1 1 

2.0 0.0937 1 1 

2.8 -8101.8088⋅  
1 1 

3.6 -35101.0601⋅  
1 1 

 

Even when we did not obtain good results when ξ = 2, 4, and 6 at different 

sample sizes, we observed that the estimates produced the same approximation. They 

suggest us that 
JHTB

tR )(ˆ using Higgins-Tsokos loss function is robust with respect to 

when it is used the squared-error loss function. In the next graphs it can be observed the 

good approximation for )(tR made by
JHTB

tR )(ˆ . 

 5 10 15
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Figure 2.2 Comparison of 
JHTB

tR )(ˆ  with respect to )(tR  

It can be seen that 
JHTB

tR )(ˆ and 
JSQB

tR )(ˆ  gave nearly the same approximation for )(tR . 

Therefore 
JHTB

tR )(ˆ behaves as
JSQB

tR )(ˆ . 

 

 

 

Figure 2.3 Comparison of 
JHTB

tR )(ˆ  with respect to 
JSQB

tR )(ˆ   

 

Figure 2.4 displays the differences —as a function of time— of the Bayesian estimate of 

the reliability function under the Jeffreys’ prior and the Higgins-Tsokos loss function, 

and the true Weibull reliability function. It shows that there is no differences as the time 

increases. In addition, the differences appear to be at a very small time interval. 

 

JHTB
tR )(ˆ

JSQB
tR )(ˆ

)(tR
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Figure 2.4  Behavior of )()(ˆ tRtR
JHTB

−
 

 

2.3.3 Relative Efficiency of the Reliability Estimates under Higgins-Tsokos Loss 

and Squared-error Loss Function 

 

Recall that the IMSE of an estimate )(ˆ tR
B

of the reliability function is defined as 

∫
∞

−
0

2)]()(ˆ[ dttRtR
B

, and the RE of the estimate 
1

)(ˆ tR
B

compared to the estimate 

2
)(ˆ tR

B
is defined as the ratio of ])(ˆ[

1
tRIMSE

B
 and ])(ˆ[

2
tRIMSE

B
. For a complete 

sample size 100=n , the RE of the Bayesian Reliability estimates under the Higgins-

Tsokos and squared-error loss function is presented in Table 2.16. 

 

 

)()(ˆ tRtR
JHTB

−

)()(ˆ tRtR
JHTB

−
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Table 2.16 Relative Efficiency for the Reliability estimates under the Higgins-Tsokos 

and squared-error loss functions 

ξ  ])(ˆ[
JHTB

tRIMSE  ])(ˆ[
JSQB

tRIMSE  RE  

1 0.00328848 0.00328827 1.00006 

 

The calculation of the RE (Table 2.16) reveals that the reliability function under the 

Higgins-Tsokos loss function is as robust as the squared-error loss function and slightly 

more efficient.  

For 500 simulations a random value of the parameter θ was generated to obtain 

random samples of size n = 10, 50 and 100 for ξ = 1. The average REs were calculated 

and compared pairwise among them for the different choices of the priors and under the 

Higgins-Tsokos loss function. Computations revealed the estimate under Higgins-Tsokos 

loss with Jeffreys’ prior has better performance. The following schematic diagram 

displays the process of the simulation. 
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Figure 2.5 Simulation Process to Compare the Relative Efficiency of the Bayesian 

Reliability Functions 

 

2.4 Conclusions  
We developed the analytical Bayesian form of the reliability function where the 

underlying failure model is the three parameter Weibull probability distribution with the 

scale parameter considered to behave as a random variable and its behavior is being 

characterized by the  general uniform, exponential, inverted gamma, and Jeffreys prior, 

under both the Higgins-Tsokos and the squared-error loss functions. The table below 

gives a summary of the analytical results. 

A realization for the scale parameter 

 

Set the shape parameter to 1 and the location parameter to 0 

 

Generate sample of size n in {10, 50, 100} from three-

parameter Weibull 

Estimates of reliability function under the differents prior and 

the Higgins-Tsokos loss function 

Start 

Calculate the Relative Efficiency (RE)  
Compare 

Stop 
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Table 2.17 Bayesian estimates of the Reliability Function of the Weibull probability 

distribution with stochastic scale parameter 

Prior density Reliability Function Bayesian estimate 

Respect to Higgins-Tsokos loss function 

General Uniform pdf 
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We have identified the best prior —Jeffreys— using the IMSE of the reliability 

function estimate with respect to the Higgins-Tsokos loss function. For a large complete 

sample size, the Bayesian reliability function corresponding to Jeffreys’ prior and 

Higgins-Tsokos loss function is a good approximation to the true reliability function

)(tR . Having identified the best prior, we test for differences using the Higgins-Tsokos 

and the squared-error loss functions for the same prior. We obtained the IMSE of the 

reliability function estimate for the Higgins-Tsokos subject to Jeffreys prior and found 

approximately the same IMSE for the squared-error loss function. This implies the 

robustness with respect to the choice of the loss function. Moreover, it was found that the 

Bayesian estimate of the reliability function under the Higgins-Tsokos loss function and 

Jeffreys’prior is slightly more efficient than under the squared-error loss function.   
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CHAPTER 3   BAYESIAN RELIABILITY APPROACH TO THE 

POWER LAW PROCESS 

 

In this chapter, we illustrate the applicability of a Bayesian analysis for the Power 

Law Process, PLP, through the intensity function. First, we show using real data that one 

of the two parameters in the intensity function behaves as a random variable. We proceed 

to identify a prior probability distribution that characterizes its probabilistic behavior. 

Under the assumption of the squared-error loss function, we obtained the Bayesian 

estimate of the parameter and the intensity function. We compared the estimates with 

their MLE counterpart. In addition, we obtained a better Bayesian estimate of the 

intensity function proposing an adjusted MLE for the second parameter.  

 The first section of the chapter gives a brief review of the general concepts 

concerning the subject area. In addition, it points out the importance of one of the two 

parameters in the intensity function in the PLP. The second section shows the 

applicability of Bayesian analysis for the PLP using real data by demonstrating the 

random behavior of the parameter. Identifying its probability distribution as the prior, we 

proceeded to obtain the analytical form of the Bayesian estimates of the parameters, the 

intensity and the reliability functions. In the third section, we compared the Bayesian 

estimates of the parameters and the intensity function, as well as proposed MLE for the 

second parameter, with their MLE counterparts. In the fourth section, we show the 
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applicability of the analytical results to real data. The fifth section summarizes the 

findings of the study. 

 

3.1 Introduction 

 

The reliability of a repairable system will improve with time as component defects 

and flaws are detected, repaired, or removed. This is the essential pattern of reliability 

growth. After testing several engineering systems, Duane (1964) first reported 

consistency in growth patterns.  

As noted in Chapter 1, Crow (1974, 1975) proposed the Non-homogeneous 

Poisson Process, NHPP, with a failure intensity function given by 

 

0 ,0 ,0   ,)(

1

>>>







=

−

t
t

tV θβ
θθ

β
β

       (3.1) 

 

where β  is the shape parameter and θ the scale parameter, as an effective approach to 

analyzing the reliability growth. This failure intensity function corresponds to the hazard 

rate function of the Weibull distribution of the Weibull process.  

In a test procedure, two types of truncation exist. Time truncation is applied if the 

test is ended at a prespecified time. Failure truncation describes a predetermined number 

of failures. If we assume failure truncation data, the conditional reliability function of the 

time to failure, TTF, 
n

T  given �� = 	�, �� = 	�, �� = 	�, … , ���� = 	���, ���� = 	���	is a 

component of the intensity function. 
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The intensity function is a key entity in the PLP, and β, its key parameter, affects 

how the system improves or deteriorates over time. The PLP inference in terms of the 

Bayesian perspective has received the interest of various researchers, such as Kyparisis 

and Singpurwalla (1985); Bar-Lev, Lavi, and Reiser (1992); Lingham and Sivaganesan 

(1997); Kim and Sun (2000); Kim, Kim, and Kim (2003); and Kim, Choi, and Kim 

(2005). If β = 1, the PLP reduces to the homogeneous Poisson process with intensity
θ

1
. 

When β > 1 the intensity function is increasing, and the failures tend to occur more 

frequently, which implies that the reliability of the system decreases. For β < 1 the power 

law intensity function decreases, implying the system is improving (i.e., the reliability of 

the system grows). Thus, having a good estimate of β gives us good information about 

the quality of a product or system with respect to its reliability behavior. 

In addition to tracking the reliability growth of a system, such modeling can be 

used for predictions. For safety and financial interests, it is quite important to be able to 

determine the next TTF after the system has experienced some failures during the 

developmental process. Recently, Xu and Tsokos (2011), has successfully shown that the 

PLP can be used to evaluate the effectiveness of drug treatment in breast cancer. In the 

current study, we use the Bayesian approach with simulated and available historical data 

to estimate the key parameter β, which has an important role in the analysis of the 

reliability growth for repairable systems. The MLE of θ depends on the MLE of β. Our 

concern is with respect to the sensitivity of β based on the largest TTF given that the 

MLE of β depends on it. To address this issue, we used real data from Crow (1974, 

1975). Furthermore, in the study, we pursue the answers to the following questions: 
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1. Is the Bayesian analysis applicable to the PLP? 

2. If yes, do the Bayesian estimates under the commonly used squared-error loss 

function perform better than those obtained under the parametric approach? 

 

3.2 Development of the Bayesian Reliability Model 

 

To illustrate the random behavior of the parameter β, we use Crow (1974, 1975) 

failure data from a system undergoing developmental testing. The forty successive 

failures of the system under development are given in Table 3.1: 

 

Table 3.1  Sample of failure times of a system under development 

0.7 3.7 13.2 17.6 54.5 99.2 112.2 

120.9 151 163 174.5 191.6 282.8 355.2 

486.3 490.5 513.3 558.4 678.1 688 785.9 

887 1010.7 1029.1 1034.4 1136.1 1178.9 1259.7 

1297.9 1419.7 1571.7 1629.8 1702.4 1928.9 2072.3 

2525.2 2928.5 3016.4 3181 3256.3   

 

 

According to the reliability growth failure data given in Table 3.1, the system 

failed for the first time at 0.7 units of time, t1=0.7, and it failed after the fortieth time at 

3256.3 units of time, t40= 3256.3. The MLE of the parameter β for n = 40 is 

 49.0
3.3256

log

40ˆ

1

40 ≈









=

∑
=

n

i i
t

β .                            (3.1.1) 

If β were treated in a non-Bayesian setting, its MLE would be given by equation (3.1.1).  
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In an experimental process, the largest TTF could occur at any point in the series 

of failures in a given system. Therefore, consider the case where the largest failure is 

t39=3181. In such a case, the estimate is   

 

48.0
3181

log

39ˆ

1

39 ≈









=

∑
=

n

i i
t

β  .      (3.1.2) 

 

Consequently, the value of the largest TTF affects the MLE of β. In order to study 

the sensitivity of the MLE of β based on the largest TTF, we continue this approach using 

the reliability growth data provided in Table 3.1. The sequence of the MLE of β that we 

obtained is recorded in Table 3.2. 

 

Table 3.2  MLE of the key parameter β, in the intensity function of a PLP, based on 

the reliability growth failure data given in Table 3.1 

0.49 0.48 0.48 0.48 0.50 0.53 0.54 

0.56 0.56 0.55 0.56 0.57 0.56 0.56 

0.55 0.56 0.54 0.52 0.53 0.54 0.55 

0.53 0.56 0.55 0.53 0.50 0.55 0.57 

0.66 0.65 0.61 0.58 0.58 0.52 0.48 

0.52 0.79 0.71 1.20    

 

Since differences are observed in the MLEs, we do not consider the parameter β as a 

constant, but as a random variable. This consideration provides the opportunity to apply 

Bayesian analysis in the PLP. 
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An application of a goodness-of-fit test (GOF) to the MLEs of β showed that they 

follow the four-parameter Burr probability distribution ),,,;( κδγαβg , known as 4-

parameter Burr type XII distribution, with pdf given by 
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κα

α

gg
              (3.1.3) 

 

where the hyperparameters κ, α, δ, and γ are being estimated in the GOF test applied to 

the β estimates. 

Some basic characteristics of the identified prior are the expected value of the 

variable β is given by  

( )
γ

κ

αα
κ

δβ +
+Γ









+Γ








−Γ

⋅=
1

1
1

1

][E ,    (3.1.4) 

 

the %100)1( α−  lower confidence limit, LCL, for the parameter β is given by  

LCL=
n

n

2

ˆ
2

2/1

β
χ α ⋅− ,     (3.1.5) 

and the %100)1( α−  upper confidence limit, UCL, for the parameter β is given by  

UCL=
n

n

2

ˆ
2

2/

β
χα ⋅      (3.1.6) 
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where  2

1 αχ − is the α quantile corresponding to a Chi-square distribution with )1(2 −n

degrees of freedom. Thus, %.100)1(
2

ˆ

2

ˆ
2

2

2

21
α

β
χβ

β
χ αα −≥








⋅≤≤⋅−

nn
P nn  

Using the real failure data in Table 3.1, according the equations (3.1.4) to (3.1.6), 

the expected value of the parameter β is approximately 0.5684 with 95% confidence 

limits given by 0.3395 and 0.6386. That is, [ ] %956386.03395.0 ≥≤≤ βP . 
A Bayesian analysis implies the use of suitable prior information in association 

with the Bayes Theorem and rests on the exploitation of such information, as well as the 

belief that a parameter is not merely an unknown fixed quantity but rather a random 

variable with some prior probability distribution. Therefore, to follow a Bayesian 

analysis, since the parameter β behaves as a random variable, we consider the density 

(3.1.3) as its prior, along with the squared-error loss function. 

The Bayesian estimate of β with respect to the squared-error loss function is given 

by 

ββββ dth
B ∫

∞

∞−
⋅= )|(ˆ

r
                              (3.1.7) 

 

where the posterior probability density h of β, using the Bayes Theorem, is given by 

∫
∞

∞−

=
βββ

ββ
β

dgtL

gtL
th

)()|(

)()|(
)|( r

r
r

.                                    (3.1.8) 

Then, the Bayesian estimate of β , under the squared-error loss function, is  
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With the use of equation (1.2.1.3), the conditional reliability of ti, the analytical structure 

of the conditional Bayesian reliability estimate for the PLP that is subject to the above 

information is given by 

  

{ } 0   , )(ˆexp),...,,|(ˆ
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'
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>>−= −− ∫
−

ii

t

t BiiB
ttdxxVttttR

i

i
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0 0,   ,
ˆ

)(ˆ
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' >>
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
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θθ
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β

. 

 

In order to continue our analysis, we proceed to simulate data with the PLP as the 

underlying failure distribution. 
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3.3 Numerical Simulation 

 

A Monte Carlo simulation was used to compare the Bayesian and the MLE 

approaches. The parameter β of the intensity function for the PLP was calculated using 

numerical integration techniques in conjunction with a Monte Carlo simulation to obtain 

its Bayesian estimate. Substituting this estimate in the intensity function, we obtained the 

estimated Bayesian intensity function.  

For a given value of the parameter θ, a stochastic value for the parameter β was 

generated from the identified prior probability density. For a pair of values of θ and β, we 

generated 500 samples of 40 TTFs that follow a NHPP. This procedure was repeated 

1,000 times and for three distinct values of θ. The procedure that we followed is 

summarized in Algorithm 1, below: 

 

 

 

 

 

 

 

 

 

 

 

 



 

65  

Algorithm 1. Simulation to Analyze the Bayesian Estimate of β for a Given Value of θ 

 

 

For each sample of size 40, the Bayesian estimates and MLEs of the parameter 

were calculated when }.4 ,7441.1 ,5.0{∈θ
 The comparison is based on the mean squared 

error (MSE) averaged over the 500,000 repetitions. The results are given in Table 3.3. It 

is observed that 
B

β̂ is superior to β̂  in estimating β . 

 

Start 

Initialize the parameter θ and number of iterations p 

Generate ][ kβ from the Burr distribution 

 

Generate 
][k

t
r

, the vector of observations following a PLP, using ][ kβ  and θ 

Compute 
][ˆ kβ as the MLE of β  

Compute 
][ˆ k

B
β as the Bayesian estimate of β under the squared-error loss function 

Calculate the MSE of 
Bβ̂   

Calculate the MSE of the MLEs of β  

Stop 

k=
1

,…
, 

p
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Table 3.3 MSEs for Bayesian estimates and MLEs of β for n = 40 over 500,000 

repetitions 

θ  MSE of  
B

β̂  MSE of  β̂  

0.5 0.00072 0.013492 

1.7441 0.00077 0.013581 

4 0.00078 0.013712 

 

For different samples sizes, the Bayesian estimates and the MLEs of the 

parameter β  were calculated averaging over 500 repetitions. Table 3.4 displays the 

simulated result of comparing a true value of β with respect to its MLE and Bayesian 

estimate for n = 20, 40, …, 200. The Bayesian estimate of β has smaller error than the 

MLE of β. This is reflected even with the small sample size of 40 (Figure 3.1). 
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Table 3.4 Bayesian estimates and MLEs for the parameter β = 0.7054 averaged over 

500 repetitions 

n  
B

β̂  β̂  

20 0.6982 0.7834 

40 0.7004 0.7472 

60 0.7056 0.7343 

80 0.7054 0.7241 

100 0.7044 0.7220 

120 0.7054 0.7201 

140 0.7053 0.7158 

160 0.7049 0.7142 

180 0.7047 0.7120 

200 0.7056 0.7114 

 

Again, the Bayesian estimate is uniformally closer to the true value of β than its 

MLE, even for a very small sample size of n = 20. A graphical comparison of the true 

estimate of β along with the Bayesian and MLE as a function of sample size is given 

below by Figure 3.1. 
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Figure 3.1 β Estimates vs. Sample Size 

 

For different sample sizes and the same β, the MLE of the parameter θ and the 

corresponding MSE were computed, averaging over the 500 repetitions. Table 3.5 and 

Figure 3.2 show the results for β = 0.7054 and θ = 1.7441 in addition to the inferior 

performance for the MLE of θ and the slow convergence of its MSE values.  

  

Table 3.5 Averaged θ MLE and its MSE over 500 repetitions 

 

n θ  θ̂  MSE of θ̂  

40 1.7441 2.8740 7.3411 

80 1.7441 2.3715 3.6187 

160 1.7441 2.1502 1.9106 

200 1.7441 2.0598 1.4721 
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Since the Bayesian estimate for β is superior to its MLE, we propose to adjust the 

MLE of the parameter θ using equation (1.2.1.6) with 
B

β̂ instead of 
n

β̂ . This proposed 

adjusted estimate, *θ̂ , was averaged over the 500 repetitions. The results for θ = 1.7441 

are shown in Table 3.6. It can be appreciated that, based on the Bayesian influence on β, 

*θ̂  is a better estimate than the MLE, as expected. This can be seen on Figure 3.3, which 

shows the excellent performance of *θ̂ . 

 

 

 

 

 

 

 

 

 

Figure 3.2 MSE of θ Estimates vs. Sample Size 
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Table 3.6 Comparison of the adjusted estimate and MLE of θ with respect to the 

sample size, for θ = 1.7441   

 

N *̂θ  θ̂  MSE of *̂θ  MSE of θ̂  

20 1.5898 3.1491 0.0501 10.6103 

40 1.6802 2.8740 0.0140 7.34106 

60 1.7009 2.5525 0.0077 4.39211 

80 1.7108 2.3715 0.0049 3.61871 

100 1.7207 2.3286 0.0030 2.94527 

120 1.7252 2.2361 0.0022 2.02210 

140 1.7266 2.1569 0.0019 1.91071 

160 1.7286 2.1502 0.0017 1.91061 

180 1.7301 2.0751 0.0013 1.44870 

200 1.7306 2.0598 0.0014 1.47206 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 θ Estimates vs. Sample Size 
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We computed our proposed estimate for the parameter θ and its MSE over 500 

repetitions for different values of θ and sample size n = 160. The results are given in 

Table 3.7. 

 

Table 3.7 MSE of the proposed estimate for different values of θ with n = 160. 

 

θ  *̂θ  MSE of *̂θ  

0.5 0.4955 0.00013 

1.7441 1.7286 0.00172 

4 3.9685 0.00899 

 

 

For a fixed value of θ = 1.7441 and a sample size similar to the size of the collected data, 

n=40, the estimates of the intensity function )(ˆ '
tV and )(ˆ '

tV
B

were obtained when we used 

β̂  and 
B

β̂ , respectively. That is, 
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Their graphs (Figure 3.4) show the superior performance of )(ˆ '
tV

B
. 
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Figure 3.4 Graph for θ = 1.7441 and the corresponding β Bayesian estimates 

and MLEs used in )(ˆ ' tV
B

and )(ˆ ' tV , n = 40 

 

In order to obtain a Bayesian estimate of the intensity function 
B

V̂ , we substituted 

the Bayesian estimate of β and its corresponding MLE of θ: 
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 The MLE of the intensity function, V̂ , is obtained using the MLEs of β and θ. 

That is, 
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 The Bayesian MLE of the intensity function under the influence of the Bayesian 

estimate of β, denoted by
*ˆ

B
V , is obtained by substituting

B
β̂  and *̂θ : 
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To measure the robustness of 
B

V̂ with respect to V̂ , we calculated the relative 

efficiency (RE) of the estimate 
B

V̂ compared with the estimate V̂ defined as 

 

∫

∫
∞

∞−

∞

∞−

−

−
=

dttVtV

dttVtV
VVRE

B

B
2

2

)]()(ˆ[

)]()(ˆ[
)ˆ,ˆ(    (3.2.1) 

If RE = 1, 
B

V̂ and V̂ will be interpreted as equally effective. If RE < 1, 
B

V̂ is more 

efficient than V̂ , contrary to RE > 1, in which case 
B

V̂ is less efficient than V̂ . This 

procedure follows Algorithm 2, given below. Similarly, we compared 
*ˆ

B
V and 

B
V̂ .  
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Algorithm  2. Simulation to Analyze the Bayesian Estimate of the Intensity Function 

 

Using the values from Tables 3.4 through 3.6, for n = 40, we compared 
*ˆ

B
V ,

B
V̂ , and V̂

using equation (3.2.1). The results are given in Table 3.8.  

Give a value to the parameter θ  

 

Generate a value of β  from the Burr distribution 

 

Using β  and θ, generate n TTFs following an NHPP 

 

Compute β̂  Compute 
B

β̂  Compute θ̂  

Insert to obtain V(t) 

Insert to obtain 
B

V̂  Insert to obtain V̂  

)ˆ,ˆ( VVRE
B

 

Stop 

Start 
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Table 3.8 Relative Efficiency of BV̂ with respect to V̂ when β = 0.7054, 7054.0ˆ ====Bββββ , 7472.0ˆ ====ββββ , 6802.1ˆ* ====θθθθ , 8740.2ˆ ====θθθθ , 

7441.1====θθθθ , n = 40 

 

 

)(tV ,  0>t  )(ˆ tV
B

,  0>t  )(ˆ tV ,  0>t  )(ˆ *
tV

B
,  0>t  )ˆ,ˆ( *

VVRE
B

 )ˆ,ˆ( *

BB
VVRE  

2946.04765.0 −
t  

2996.03344.0 −
t  

2528.03395.0 −
t  

2996.04869.0 −
t  1<  1<  
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For the comparison of 
*ˆ

B
V and V̂ , the denominator in equation (3.2.1) dominates the 

numerator. This implies that the intensity function using 
B

β̂ and *̂θ is more efficient than 

the intensity function under β̂ and θ̂ . Comparing 
*ˆ

B
V and 

B
V̂ , we obtained a similar 

result, establishing the superior relative efficiency of *ˆ
B

V . The corresponding graphs for 

the intensity functions are given by Figure 3.5. 

 

Figure 3.5 Estimates of the intensity function for 7054.0====ββββ , 7004.0ˆ ====B
ββββ , 7472.0ˆ ====ββββ , 

7441.1====θθθθ , 6802.1ˆ * ====θθθθ , 8740.2ˆ ====θθθθ , 40====n  
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3.4 Using real data 

Using the reliability growth data from Table 3.1, we computed 
B

β̂ and the better estimate 

*̂θ in order to obtain the Bayesian intensity function. We follow the algorithm that is 

given below to obtain the Bayesian intensity function for the given real data. 

 

Algorithm 3. Estimate of the Intensity Function Using the Real Data       

 

Initialize :  

)ˆ,...,ˆ(ˆ
,,1 MLEmMLEMLE

βββ =
r

as the vector of MLEs of β
 

),...,(
1 n

ttt =
r

as the vector of observations 

n
t as the largest observation in t

r
 

 

Do GOF-test to fit a pdf )(βg for MLE
β
r
ˆ  

Compute the adjusted MLE of θ : 

*θ̂ as the adjusted MLE of θ as a function of 
n

t and 
B

β̂  

Obtain the analytical form of the Bayesian MLE of the intensity function, 
*ˆ

B
V , with 

B
β̂ and 

*θ̂  as its parameters 

Start 

Stop 

Compute the Bayesian estimate of β : 

)|( βtL
r

 as the likelihood function of t
r

 

)|( th
r

β as the posterior distribution using )(βg and )|( βtL
r

 

B
β̂ as the Bayesian estimate of β using )|( th

r
β   
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For the failure data of Crow provided by Tsokos (1995),
B

β̂ is approximately 0.4851, and 

*̂θ is approximately 1.6234. Therefore, with the use of *̂θ , the Bayesian MLE of the 

intensity function for the data is approximately 

0   ,3835.0)(ˆ 5149.0* >⋅= −
tttV

B
. 

A graphical display of )(ˆ *
tV

B
is given below by Figure 3.6. 

 

Figure 3.6 Bayesian MLE of the intensity function, )(ˆ * tV
B

, with 4851.0ˆ ====B
ββββ  and 

6234.1ˆ* ====θθθθ . 

 

To obtain a Bayesian MLE for the reliability function, we use this Bayesian 

estimate for the intensity function. The analytical form for the corresponding Bayesian 

reliability estimate, based on the data, is given by 
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3.5 Conclusions 

 

In the present study, we considered that the key parameter β in the intensity 

function in the NHPP could behave as a random variable, and our analysis showed that its 

prior probabilistic characterization is the Burr type XII probability distribution. We 

developed the analytical structure of the Bayesian reliability estimate of the PLP subject 

to the mentioned prior along with the squared-error loss function.  

We used real data in addition to numerical simulation to illustrate the usefulness 

of having developed the Bayesian analytical procedure. Based on the Monte Carlo 

simulation, the Bayesian estimate is superior to the MLE of β. This is reflected even with 

a small sample size for which the MLE of θ had inferior performance. Moreover, the 

MSE of the MLE for this parameter shows slow convergence. The inferior results in 

estimating the MLE of θ lie in the fact that this estimate depends on the MLE of β.  

Because of the superior performance of 
B

β̂ , the MLE of θ was adjusted, thereby 

producing a better estimate for θ under the mentioned Bayesian influence. In addition, for 

a particular value of θ, the )(tV estimate with β =
B

β̂  is better when compared with )(ˆ '
tV

  

using the MLE of β, β̂ . Moreover, the computation of RE implies that )(ˆ *
tV

B
is more 

efficient when compared with )(ˆ tV  and )(ˆ tV
B

. 

The main contributions of this study, that are expected to have a direct impact in 

future research on Bayesian and parametric approaches to reliability analysis in complex 

systems problems, are: 

• An innovative way to investigate if a Bayesian analysis is applicable to 
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estimate the key parameter of the intensity function in a PLP, taking 

advantage of the dependency of the MLE for this parameter on the last 

TTF which could be less or greater than the largest TTF provided in the 

available data. 

• The derivation of the analytical form of the Bayesian estimate of the key 

parameter in the power law intensity function as a function of the 

Bayesian estimate of the key parameter β and the MLE of the parameter θ.  

• The development of the analytical form of the Bayesian estimate for the 

intensity function as a function of the estimates of the key parameter, 
B

β̂ , 

and θ adjusted, .ˆ*θ   

 All the analytical findings are given in the following table: 
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Table 3.9 Analytical Form of the Estimates  
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CHAPTER 4   BAYESIAN ROBUSTNESS ANALYSIS FOR THE POWER LAW 

PROCESS BASED ON THE PRIOR SELECTION 

 

 The objective of the present study is to perform sensitivity analysis in the 

selection of the prior in the PLP in a Bayesian setting. We compared the Bayesian 

estimates of one of the two parameters that are inherent in the intensity function with its 

MLE. In addition, we compared the corresponding adjusted MLEs of the second 

parameter applying the proposed adjusted MLE that we studied in the previous chapter.  

 In the first section of this chapter we present an overview of the PLP. In the next 

section we define the priors as the probability characterization of one of the parameters in 

the intensity function and using squared-error loss function, we develop the analytical 

form of the Bayesian estimates of the parameter. In the third section, we compared the 

Bayesian estimates of the parameter and with its MLE counterpart. We also compared the 

adjusted MLE of the second parameter defined in the previous chapter. The last section 

presents the conclusions of the study.  

 

4.1 Introduction 

 

 As we mentioned  in Chapter 3, reliability growth β is the key parameter in the 

PLP intensity function. As noted previously, a study of the growth of the reliability of 
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systems is usually centered on the evaluation of the probability of a system failure as a 

function of the age of the system. When the failure intensity of a system changes with 

time, the NHPP with the failure intensity function given by  

 

0 ,0 0,  t,)(

1

>>>







=

−

θβ
θθ

β
β

t
tV             (4.1) 

 

where β  and θ are the shape and scale parameters, respectively, has usually been used as 

the underlying failure distribution of repairable systems. Here, we seek the answer to the 

following question: Is the Bayesian estimate of the key parameter, β, in the PLP sensitive 

to the selection of the prior? In the present study, we assume that the parameter β behaves 

as a random variable and using simulated data governed by a PLP, we proceed to perform 

Bayesian sensitivity analysis subject to prior selection for β and under the commonly 

used squared-error loss function.  

 To measure the robustness of the 
1

β̂
 
with respect to 

2
β̂  we compare their MSE. If 

),ˆMSE()ˆMSE(
21

ββ <
1

β̂ is more efficient than .ˆ
2

β  For the case when 

),ˆMSE()ˆMSE(
21

ββ >  then 
2

β̂
 
is more efficient than

1
β̂  . When ),ˆMSE()ˆMSE(

21
ββ =  we 

conclude that 
1

β̂
 
is equally as efficient as 

2
β̂ .     
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4.2 Maximum Likelihood Estimates in the Power Law Process 

 

 The probability of achieving n failures of a given system in the time interval (0, t] 

can be written as  
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where )(tV is the intensity function given by equation (4.1). 

 Let 
n

TTTT ,...,,,
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 be the first n TTF of the NHPP, where 
n

TTTT <<<< ...
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are recorded from the initial start-up of the system onward. Thus, the truncated 

conditional probability distribution function, ),...,|(
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The likelihood function for 
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The MLE for the shape parameter is 
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log
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and, for the scale parameter is 

β
θ ˆ/1

ˆ
n

t
n

MLE
= .         (4.1.5) 

 Our first interest is to compare the Bayesian estimates for β for each of two 

assumed priors, and with respect to its MLE given by equation (4.1.4), assuming β 

behaves as a random variable and θ as known. Secondly, we compare equation (4.1.5) 

with an adjusted MLE considered as a function of β.  

 

4.3 Bayesian Analytical Form of the Stochastic Parameter β  

  

 Let β be a random variable and the 4-parameter Burr type XII distribution given 

by Burr (1942), 
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as the true probability distribution of β. We shall examine the problem for each of the 

following prior densities of β. 
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i) Jeffreys prior 

,
1

)(
β

β =g  0>β       (4.2.2) 

ii) the Inverted Gamma 
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and we consider the well-known squared-error loss function, given by  

2)ˆ()ˆ,( ββββ −=L         (4.2.4) 

where β̂  is the estimate of β. 

Using the Bayes Theorem, the posterior probability distribution of β is given by  
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The Bayesian estimate of the key parameter β, with respect to the squared-error loss 

function (4.2.4), is obtained by evaluating 

 

.)|(ˆ ββββ dth∫
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r
        (4.2.6) 
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4.3.1 The Jeffreys’ Prior 

Assuming Jeffreys prior (4.2.2) as the prior of β and using the likelihood (4.1.3) and 

(4.2.5), the posterior density of β is given by 
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Thus, the Jeffreys Bayesian estimate of the key parameter β under the squared-error loss 

function, using equations (4.2.6) and (4.3.1.1), we have 
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We can not obtain a close solution for J

B
β̂ and we must rely on a numerical estimate. Also 

note that it depends on knowing or being able to estimate the scale parameter θ.  
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4.3.2 The Inverted Gamma Prior 

The following is an examination of the problem when the prior density of β is given by 

the inverted gamma (4.2.3). Using the likelihood function (4.1.3) and (4.2.5), the 

posterior density of β is given by 
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Thus, the Bayesian estimate of β under the inverted gamma prior and squared-error loss 

function, using (4.2.6) and (4.3.2.1), is given by 
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Here as well, we can not get a close form solution of 
IG

B
β̂ and we will obtain numerical 

estimates. 
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4.3.3 The Burr Probability Distribution as Prior 

 In order to assess the computational procedure, we also consider the Bayesian 

estimate of β  assuming the 4-parameter Burr type XII probability distribution as a prior 

of β . Under this consideration, using (4.1.3), (4.2.1), and (4.2.5), the posterior 

distribution of β  is given by 
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Therefore, the Burr Bayesian estimate of the parameter β can be written as 
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Table 4.1 below provides a summary of the Bayesian estimates of the key parameter β in 

the PLP. 
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Table 4.1 Bayesian Estimates for the Key Parameter β in a PLP 

Prior Density β Bayesian Estimate Under the Squared-Error Loss 
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Below are details of the analysis we conducted using Monte Carlo simulation to generate 

data governed by a PLP. 

 

4.4 Numerical Simulation 

  

 In the implementation of the simulation procedure, we followed the Algorithm 1 

given in Chapter 3 and reproduced here for the reader’s convenience. 
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Algorithm 1. Simulation to Analyze the Bayesian Estimate of β for a Given Value of θ 

 

 Random TTF’s distributed according to the PLP are simulated for a realization of 

the stochastic scale parameter β, which follows a Burr type XII probability distribution. 

Numerical integration techniques were used to compute the Bayesian estimates of the key 

parameter β according to the equations (4.3.1.2), (4.3.2.2), and (4.3.3.2) for each of the 

three prior densities presented in section 4.2 and three distinct values of θ. Samples of 

size 40, 50, 60, 70, 80, 100, 120, 140, 160, and 180 were generated where the parameter θ 

was assumed to be 1.7441. The results, for 500 repetitions, are shown in Table 4.2. It can 

Start 

Initialize the parameter θ and number of iterations p 

Generate ][ kβ from the Burr distribution 

 

Generate 
][k

t
r

, the vector of observations following a PLP, using ][ kβ  and θ 

Compute 
][ˆ kβ as the MLE of β  

Compute 
][ˆ k

B
β as the Bayesian estimate of β under the squared-error loss function 

Calculate the MSE of 
Bβ̂   

Calculate the MSE of the MLEs of β  

Stop 

k=
1

,…
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be observed in Table 4.2 that the Bayesian estimate of the key parameter β under the 

Jeffreys’ prior and squared-error  loss function produces a small error. 

 

Table 4.2  MLE and Bayesian estimates, with Burr, Jeffreys, and Inverted Gamma 

as priors under squared-error loss function, for the parameter β in a PLP with          

θ = 1.7441 and 1,000 samples with different sizes. 

 

n β  Bβ̂  
J
Bβ̂

 
MLEβ̂  

IG
Bβ̂

 
40 0.7054 0.7037 0.7072 0.7378 0.6957 

50 0.7054 0.7041 0.7066 0.7378 0.6984 

60 0.7054 0.7040 0.7058 0.7336 0.6995 

70 0.7054 0.7041 0.7056 0.7214 0.7005 

80 0.7054 0.7046 0.7058 0.7257 0.7017 

100 0.7054 0.7053 0.7062 0.7210 0.7031 

120 0.7054 0.7051 0.7058 0.7173 0.7034 

140 0.7054 0.7052 0.7058 0.7152 0.7039 

160 0.7054 0.7052 0.7057 0.7153 0.7041 

180 0.7054 0.7050 0.7054 0.7153 0.7040 

 

 

The MSE of the Bayesian β estimates with respect to the sample size, shown in Figure 

4.1 below, indicated the poor performance of the MLE of β.  
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Figure 4.1 MSE of the MLE and Bayesian estimates of the parameter β for different 

sample sizes, with θ = 1.7441 

 

Eliminating the MSE of the 
MLE

β̂  to more closely observe the MSE of the Bayesian 

estimates of the key parameter β, we determined that the Bayesian estimates under Burr, 

Jeffreys, and inverted gamma priors have good performance, and they tend to converge to 

the true value beyond the sample size n = 180, as can be observed in Figure 4.2, given 

below. 
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Figure 4.2 MSE of the Bayesian estimates of the parameter β  with respect to the 

sample size, with θ = 1.7441. 

  

Even when the Bayesian estimates for the parameter β are more efficient than those for 

their counterpart MLEs, the Jeffreys and Burr Bayesian estimates are closer than the 

inverted gamma Bayesian estimate, which converges more slowly among them. The 

Bayesian estimate of β under the Burr probability distribution as its prior tends to 

underestimate while the Jeffreys tends to overestimate. This behavior is shown in Figure 

4.3. The conditions of the problem where the estimate is involved may influence the 

selection or preference for one or the other. For example, knowing that a device is needed 

for a patient’s life may influence the selection of the prior when estimating the value of 

the parameter β.  
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Figure 4.3 Bayesian estimates for the key parameter β with respect to sample size. 

 

  

 For each sample of size 40, the Bayesian estimates and MLEs of the parameter 

were calculated when }4,7441.1,5.0{∈θ . The comparison is based on the MSE averaged 

over the 500,000 simulated samples. The results are given in Table 4.3. It can be 

observed that 
B

β̂
 
is superior to 

MLE
β̂  in estimating β, with sample size n = 40, while 

maintaining a consistent behavior for the different values of θ.  For the case in which we 

misleadingly assumed the true probability distribution of the key parameter β, we 

obtained that the Jeffreys Bayesian estimate of β has the best performance when 

compared with the inverted gamma Bayesian estimate of β, indicating that the Bayesian 

estimate of β is sensitive to the choice of its prior. 
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Table 4.3  MSE of β Bayesian estimates with Burr, Jeffreys, and Inverted Gamma as 

priors under squared-error loss function, and MSE of MLE of the parameter β in a 

NHPP for 500,000 samples with n = 40 and different values of the parameter θ. 

 

θ  MSE of 
B

β̂  MSE of 
J

B
β̂  MSE of MSE of 

IG

B
β̂  

0.5 0.001283 0.001292 0.02536 0.007002 

1.7441 0.001323 0.001335 0.02408 0.006991 

4 0.001356 0.001377 0.02364 0.006941 
 

Molinares and Tsokos (2010) proposed an adjusted estimate for the parameter θ, given by 

Bn

t
n

β
θ ˆ/1

*ˆ =         (4.3.1) 

where 
B

β̂  is the Bayesian estimate of the key parameter.  

 Using the different Bayesian estimates obtained in the computation, we used 

equation (4.3.1) to calculate the adjusted value of the parameter θ. The results are shown 

in Table 4.4, where *θ̂ ,
*ˆ
J

θ ,and
*ˆ
IG

θ are the adjusted θ estimates and *θ̂ is used with Burr, 

*ˆ
J

θ
 
is used with Jeffreys, and 

*ˆ
IG

θ is used with inverted gamma Bayesian β estimates. We 

observed the inferior performance of the MLE approach compared with the Bayesian 

approach. Among the adjusted estimates of θ, those corresponding with the β Jeffreys 

estimate outperformed the other adjusted θ estimates, being followed very closely by the 

adjusted θ using Burr Bayesian β estimates. 
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Table 4.4  MSE for the MLE and adjusted estimate for the parameter θ in a NHPP with β = 0.7054 for 1,000 samples 

with different sizes. 

 

n β  θ  *θ̂  *ˆ
J

θ  
MLE

θ̂  
*ˆ
IG

θ  
*ˆ of MSE θ  *ˆ of MSE

J
θ  

MLE
θ̂ of MSE *ˆ of MSE

IG
θ

40 0.7054 1.7441 1.6686 1.7119 2.6353 1.5728 0.0160 0.0113 6.1623 0.0399 

50 0.7054 1.7441 1.6911 1.7240 2.6344 1.6160 0.0097 0.0073 5.8616 0.0232 

60 0.7054 1.7441 1.7023 1.7285 2.5796 1.6412 0.0073 0.0058 4.8583 0.0161 

70 0.7054 1.7441 1.7023 1.7240 2.3650 1.6511 0.0066 0.0053 3.7872 0.0135 

80 0.7054 1.7441 1.7128 1.7313 2.4245 1.6688 0.0047 0.0039 3.8154 0.0094 

100 0.7054 1.7441 1.7189 1.7330 2.2942 1.6848 0.0034 0.0029 2.5909 0.0063 

120 0.7054 1.7441 1.7228 1.7342 2.2201 1.6953 0.0026 0.0022 2.3545 0.0045 

140 0.7054 1.7441 1.7260 1.7355 2.1518 1.7030 0.0020 0.0017 1.8922 0.0033 

160 0.7054 1.7441 1.7292 1.7373 2.1624 1.7095 0.0016 0.0015 2.0208 0.0026 

180 0.7054 1.7441 1.7321 1.7391 2.1398 1.7146 0.0013 0.0012 1.6152 0.0021 
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 The θ MLE behaves poorly in comparison with the adjusted estimates. Its MSE 

converges slowly. Even for a small sample size (n = 40), the adjusted estimates of θ tend 

to converge rapidly. This can be observed in Figures 4.4 and 4.5. 

 

Figure 4.4 MSE of θ adjusted estimates with respect to sample size 

  

 Closely examining the behavior of MSE of the adjusted estimate of θ with respect 

to the sample size (Figure 4.5), we can observe that superior performance is achieved 

with Jeffreys prior, which is the most efficient of the priors regardless of sample size. 

 

Figure 4.5 MSE of θ Estimate versus Sample Size 
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 The adjusted estimate of θ with the β Jeffreys Bayesian estimate tends to be closer 

to the true value, and almost as efficient as the adjusted estimates when the Burr Bayesian 

β estimate is used. In addition, it converges rapidly with sample size as small as n = 40 

(Figure 4.5). 

 

4.5 Conclusions 

 

 In the present study, we considered that the key parameter β in the intensity 

function in the NHPP could behave as a random variable, and we assumed its prior 

probabilistic characterizations as the Burr type XII probability distribution, Jeffreys, and 

the inverted gamma along with the squared-error loss function. We developed the 

analytical structure of the Bayesian β estimate of the PLP subject to the above 

assumptions.  

 We used numerical simulation to illustrate the sensitivity to the selection of the 

prior. On the basis of the Monte Carlo simulation, if the true prior distribution was 

misleadingly chosen among the studied priors, the better selection would be Jeffreys, 

indicating that the Bayesian estimate of β is sensitive to the choice of the prior. However, 

for over 500,000 samples with a small sample size, a lower MSE would be found if the 

assumed prior was a Burr probability density when the key parameter β actually follows a 

Burr distribution, as expected, although the difference between selecting Burr or Jeffreys 

could be considered negligible.  

 In our study, it was shown that the Bayesian estimates are superior to the MLEs of 

β. This is reflected even with a small sample size. The MSE of the Bayesian β estimates 
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with respect to the sample size shows the poor performance of the MLE. The Burr 

Bayesian estimate of β tends to underestimate while the Jeffreys tends to overestimate. 

The Burr, Jeffreys, and inverted gamma Bayesian β estimates gave a good performance, 

and they tend to converge to the true value beyond the sample size n = 180. Even when 

the Bayesian estimates for the key parameter β are more efficient than their counterpart 

MLEs, those corresponding with the Jeffreys and Burr priors are closer than that the 

corresponding with the inverted gamma prior, which converges more slowly among 

them. 

 The adjusted MLE of θ produced a better estimate under the mentioned Bayesian 

influence. The MLE of θ had inferior performance in the case of using the MLE formula 

to estimate the parameter θ. Moreover, the MSE of the parameter θ shows slow 

convergence.  In the case of assuming Burr or Jeffreys priors, we can see that both tend to 

converge to the true value for small sample sizes. 

 Among the adjusted estimates of θ, those corresponding to the β Jeffreys 

Bayesian estimate outperform the other adjusted θ estimates, being followed very closely 

by the adjusted θ using β Burr Bayesian estimates. The adjusted θ estimate when the β 

Jeffreys Bayesian estimate is used tends to be closer to the true value, and almost equally 

efficient as the adjusted estimates of θ when the β Burr Bayesian estimate is used. In 

addition, it converges rapidly for a small sample size. Under close examination of the 

behavior of the MSE of the adjusted estimate of θ with respect to the sample size, we 

observed that superior performance is achieved with Jeffreys prior, which is the most 

efficient regardless the sample size. 
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The main contribution of this study that is expected to have a direct impact in 

future research on Bayesian and parametric approaches to reliability analysis in complex 

systems problems is the proposed estimate for one of the parameters in the PLP with 

better performance under the Bayesian influence than its maximum likelihood 

counterpart given by 

Bn

t
n

β
θ ˆ/1

*ˆ =
 

where 
B

β̂  is the Bayesian estimate of the key parameter in the intensity function, 	� is the 

largest TTF, and n is the sample size.  
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CHAPTER 5   PARAMETRIC AND BAYESIAN SURVIVAL ANALYSIS FOR 

BREAST CANCER 

 

In the present study, we investigated the applicability of performing Bayesian 

analysis for survival times of breast cancer patients assuming an informative prior based 

on the variability exhibited by one parameter of the Johnson SB distribution. In addition, 

we compared the Bayesian estimates of the survival and hazard functions with respect to 

their parametric counterparts. 

The chapter is divided into five main sections. In the first section, we present a 

brief theoretical and literature review for the four parameter Johnson SB model. The next 

section describes a parametric procedure to obtain the approximated estimates of the 

parameter inherited within the subject model. The third section justifies the applicability 

of a Bayesian analysis to the survival time for breast cancer data. A sequence of 40 

samples were extracted from a large database and obtained the four parameter estimates 

for each sequence. A comparison of the approximated estimates of the parameters 

behaves as a random variable rather than a being a fixed value. Thus, we proceeded with 

a Bayesian analysis. We utilized the 40 estimates of the subject parameter to identify 

their probability distribution as the prior. Then, we obtained the analytical form of the 

Bayesian estimate of the parameter, the survival and hazard functions.  

 In the fourth section, we proceeded with the analysis through Monte Carlo 

simulation. Random samples from the Johnson SB model were generated. We compared 
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the estimates of the parameter obtained applying the parametric and Bayesian approaches 

using the MSE as the criteria. In addition, we compared the estimates of the survival and 

hazard functions using the relative efficiency as the measure of robustness. The fifth 

section summarizes the findings of the study.  

We performed our Bayesian analysis and compared results with the parametric 

approach, assuming the data are independent and identically distributed. We used the 

survival time of breast cancer patients provided by the SEER database and performed the 

Kolmogorov-Smirnov (K-S) GOF test. The aforementioned methods were used to answer 

the following questions: 

1. Is the Bayesian analysis applicable to the survival time of breast cancer data? 

2. Is the Bayesian approach applicable to this subject area? 

3. Do the Bayesian estimates of the survival and hazard function perform better 

than their parametric counterparts? 

 

5.1 Parametric Survival Analysis  
Cancer of the breast is ranked as the second highest cause of cancer death among 

women, without considering nonmelanoma skin cancer. According to the Surveillance, 

Epidemiology, and End Results (SEER) database of the US National Cancer Institute 

from 2003 through 2007, the median age at diagnosis for women with breast cancer was 

61 years. On the basis of diagnosis rates from 2005 through 2007, an estimated 12.15% 

of women born today will be diagnosed with breast cancer at some point during their 

lifetime.  



 

105  

The American Cancer Society estimated that 209,060 new cases of invasive breast 

cancer were diagnosed and that 40,230 women died of breast cancer in the United States 

in 2010. In addition, approximately 54,010 women were diagnosed with carcinoma in 

situ of the breast during the same year. The incidence of breast cancer has increased 

steadily in the United States over the past few decades, but breast cancer mortality seems 

to be declining, suggesting a benefit from early detection and more effective treatment.  

Most breast cancers occur in women over the age of 50, and the risk is especially 

high for women over age 60. Detection of breast cancer at an early stage, when the 

disease is less severe, provides a greater chance of survival. The overall 5-year relative 

survival is a measure of net survival that is calculated by comparing the observed overall 

survival with the expected survival from a comparable set of people who do not have 

cancer to measure the excess of mortality that is associated with a cancer diagnosis. 

According to data from 1999 through 2006 obtained from 17 SEER geographic areas, the 

overall 5-year relative survival was 89.0%.  In addition to serving as a predictor for the 

probability of survival, disease severity is also of critical importance in determining an 

individual’s breast cancer treatment (The North Carolina Comprehensive Breast Cancer 

Control Coalition, 1995). Studying the survival rate helps, for instance, in indicating the 

efficacy of new treatments. Therefore, this study is applicable to the medical profession 

and breast cancer patients.  

The present study is based on the survival time of breast cancer extracted from the 

SEER database. The fit of the survival times correspond to a four parameter Johnson SB 

distribution. The four parameter Johnson SB distribution is one of the three types of 
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transformations to normally distributed variables with a range of variation bounded at 

both extremities with pdf defined as   
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The corresponding CDF for the 4-parameter Johnson SB distribution is given by 
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where )(⋅Φ is the CDF of a standard normal distribution. The survival function and the 

hazard function are defined by  
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respectively. 

Because of its flexibility, the Johnson SB distribution has been used to model in 

areas such as forestry (Amaro, Reed, & Soares, 2003; Jerez, Dean, Cao, and Roberts, 

2005; Fonseca, Marques, and Parresol, 2009), airspace simulation (McGovern & Kalish , 

2009), reliability (Takaragi, Sasaki, & Shingai, 1982; Takaragi, Sasaki, & Shingai, 1985), 

epidemiology (Flynn, 2005), quality control (Castagliola, Celano, & Fichera, 2010), 

agriculture (Zhang, & Wang, 2010), and medical science (Ness, Holmes, Klein, & Dittus, 

2000; Roberts, Wang, Klein, Ness, & Dittus, 2007; Mage & Donner, 2009), among 

others. To the best of the authors’ knowledge, this kind of distribution has not been 

applied to model breast cancer data.  

 

5.2 Parametric Estimation 

 

Even when the Johnson SB is known by its flexibility, the estimation process for the 

system becomes difficult without considering the ξ and λ as known, especially when the 

four parameters have to be estimated. In the case when the parameters ξ and λ are known, 

the maximum likelihood approach leads to the following estimates, for γ and δ 

respectively,  
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f

MLE
s

f
−=γ̂ , 

f

MLE
s

1ˆ =δ            (5.2.1) 

where �	̅is the sample mean of the transformations 
x

x
xf

−+

−
=

λξ

ξ
)( of the realizations 

of X, and 
2

f
s is the second central sample moment of these transformed values of X 

(Johnson, 1949). 

Several methods have been developed to focus on the estimation of these 

parameters, i.e. the algorithm to estimate δ and γ presented by Hill, Hill, and Holder 

(1976). The variation on this algorithm for estimating the four parameters of the SB 

distribution is based upon the method-of-moments outlined by Johnson and Kitchen 

(1971) and presented by Flynn (2006), and also on the exploration of the SB distribution 

(Flynn, 2004), the Bayesian estimation of the four parameters assuming non-informative 

priors (Tsionas, 2001), the estimation on sample percentiles reported by Slifker and 

Shapiro (1980) and Mage (1980), and the estimation of δ and γ using a similar procedure 

of the percentile methods presented by Wheeler (1980). The method of maximum 

likelihood, in general, has not being useful when all four parameters have to be estimated 

(Lambert, 1970) and may produce preposterous values for the estimates if the sample is 

small or if the skewness of the distribution is considerable compared with the method 

based on percentiles of a sample (Siekerski, 1992 & Vroon, 1981).  The reason for this 

might be extremely fat tails of the likelihood (Tsionas, 2001).  

Flynn (2006) pointed out that the Wheeler quantile procedure may provide 

performance superior to that of the percentile method. However, Wheeler (1980, p.727) 

indicated that the estimates of δ and γ in practice “should provide good starting values for 
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accurate iterative schemes”. To estimate the parameters δ and γ, Wheeler used the 

relationships  
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x
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m
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in the expression for
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as the value for 
b

t may in practice be better in estimating δ. This value for 
b

t was used in 

our computations. 

Wheeler pointed out that, once the parameters γ and δ are estimated, the 

parameters ξ and λ can be determined by the usually adequate simple linear regression. In 

this approach, the linear regression is given by
w

w
x

+
⋅+=
1

λξ , where 






 −
=

δ

γ
ˆ

ˆ
exp

z
w

and z corresponds to the sample quantile of x. Once we obtained the estimate for the 

parameter, we obtained the analytical form of the estimates of the survival and hazard 

functions by substituting the parameter estimate.  

With the estimate λ̂  of λ  under the Wheeler approach, the analytical structures 

of the parametric estimates of the survival and hazard functions are analyzed substituting 

λ̂  in equations (5.1.3) and (5.1.4):  
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respectively. 
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5.3 Justification for Bayesian Analysis 

 

We used the Wheeler procedure in order to get an idea of the variability in the 

estimation of the four parameters. We took 40 sub-samples of size n=5,000 of survival 

times for breast cancer patients provided by the SEER database of the US National 

Cancer Institute. For each sub-sample, we performed a GOF test, which indicated that 

they followed the Johnson SB distribution. The basic statistics of the estimates for the 

parameters, analyzed with the Wheeler procedure, are in Table 5.1.  

 

Table 5.1 Variance for the estimates of the four parameters of the Johnson SB for 40 

sub-samples with 5,000 survival times for breast cancer patients 

 γ̂  δ̂  ξ̂  λ̂  

Variance 0.00068 0.00065 0.87746 3.10592 

 

From this table, we observed that the parameter λ exhibits variability, implying that it is 

no longer a fixed value but behaves as a random variable. Considering the parameter λ as 

a random variable, we proceeded to perform a GOF test. The result of the test showed a 

Nakagami distribution. The Nakagami distribution has pdf defined as 
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Thus, for the 40 estimates of λ we have the following analytical form of the 

estimate of )(λp  using the estimates of the parameter inherent in (5.3.1) 








−









Γ
= − 21ˆ2

ˆ

ˆ

ˆ
exp

ˆ

ˆ

)ˆ(

2
)(ˆ λ

ω
λ

ω
λ

mm

m
p

m

m

.

 



 

112  

The CDF of the probability density (5.3.1) is given by 
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in terms of the incomplete gamma function, which is defined by  
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1 exp),(γ . 

The expected value of the pdf (5.3.1) is given by 
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5.4 Bayesian Survival Analysis  

 

We have identified the failure probability distribution to be the 4-parameter 

Johnson SB probability distribution and identified the prior probability distribution of λ to 

be the 2-paramenter Nakagami probability distribution. Thus, we proceed to develop the 

Bayesian survival analysis.  

With the assumption that the survival times 
n

XXXX ,...,,,
321

are independent 

and identically distributed following the Johnson SB probability distribution (5.1.1), the 

likelihood function is given by 
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where ),...,,,(
321 n

xxxxx =
r

represents the realizations of .,...,,,
321 n

XXXX  By 

invoking the Bayes Theorem and using the pdf (5.3.1) as the prior for λ, the posterior 

density )|( xh
r

λ of λ is given by 
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where Λ is the parameter space for λ. Then, the Bayesian estimate of λ, under the 

squared-error loss function is given by 
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Therefore, the Bayesian estimates for the survival and hazard functions, substituting 
B

λ̂  

in equations (5.1.3) and (5.1.4), are given by 
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respectively, where 
B

λ̂  is given by equation (5.4.3). 

 

5.5 Numerical Comparison  

5.5.1 Comparison of the Bayesian and Parametric Estimates of the Parameter λ  

 

We performed a simulation study, for samples of size varying from 30 to 300, of the 

estimates of δ and γ using the Wheeler procedure to compare 
n

z corresponding to the 95
th

 

and 99
th

 percentiles in order to obtain more accurate estimates. The best estimates were 

obtained when the 99
th

 percentile was used. 

In order to develop an analysis of the estimates of λ  under the parametric and 

Bayesian approaches, we simulated samples from the Johnson SB distribution with ξ=0 

since the survival times are nonnegatives. The values used for γ and δ were the average of 

the estimates of these parameters obtained from the 40 SEER samples with the use of the 

Wheeler procedure. For a true value for λ , different samples of a given sample size n 

were simulated. Table 5.2 shows the results averaging over 1,000 simulations. 
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Table 5.2 Estimates of the parameter λ and their MSE ξ = 0, γ = 0.048, δ = 0.76 

based on 1,000 simulated samples of size n 

n λ  λ̂  
B

λ̂  MSE( λ̂ ) MSE(
B

λ̂ ) 

10 86.0315 80.4642 85.6026 294.3800 0.1950 

20 86.0315 82.4348 85.6051 100.0006 0.2026 

30 86.0315 83.9228 85.6165 115.9455 0.2042 

40 86.0315 84.3001 85.6067 52.1192 0.2163 

50 86.0315 84.0397 85.6133 34.1327 0.2180 

60 86.0315 84.6173 85.6250 26.5543 0.2177 

70 86.0315 84.6157 85.6226 24.6979 0.2279 

100 86.0315 85.0068 85.6674 16.2845 0.2156 

200 86.0315 85.4841 85.7156 7.6730 0.2135 

300 86.0315 85.7720 85.7523 5.2270 0.2028 

500 86.0315 85.8189995 85.83374 3.0925138 0.1812803

 

Table 5.2 shows that, even with a small sample size, the Bayesian estimate of λ  

performs better than the parametric estimate of λ . Table 5.2 and Figure 5.1 show that the 

convergence occurs for a sample size beyond n = 200 for the parametric estimate of λ .  
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Figure 5.1  Comparison of the true value of λ and its estimates based on 1,000 

simulated samples, with ξ = 0, γ = 0.048, δ = 0.76, with respect to different sample 

sizes 

Figure 5.2 displays the comparison of the behavior for the MSE for both estimates 

of λ . The figure shows that a convergence is reached beyond a sample size n=200, as 

suggested in Figure 5.1. 

 

Figure 5.2  Comparison of MSE of the estimates of λ, with ξ = 0, γ = 0.048, 

δ=0.76, with respect to different sample sizes 
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Figure 5.3 illustrates a closer view of the behavior of the MSE of the estimates of 

λ for small values of the MSE, showing that the convergence for the parametric estimate 

of λ has not been reached at sample size n = 500.  

 

 

Figure 5.3  Comparison of MSE of the estimates of λ, with ξ = 0, γ = 0.048, 

δ = 0.76, with respect to different sample sizes for small values of the MSE 

 

To analyze the overall behavior of the estimation of the parameter λ, we took a 

random value for λ generated from its informative prior, and different samples of a given 

sample size n were simulated from the Johnson SB distribution.  Table 5.3 shows the 

results of the MSE of the parameter λ, averaging over 5,000 simulations for n = 40. 

  

Table 5.3 MSE of the parametric and Bayesian estimates of λ over 5,000 simulations 

of samples with n = 40, γ = 0.048, δ = 0.76, and ξ = 0 
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When comparing the values of the MSEs with the Bayesian estimate of λ and the 

parametric estimate λ̂ , we observed that the former has better performance than the 

latter. 

 

5.5.2 Comparison of the Bayesian and Parametric Estimate of the Survival and 

Hazard Functions  
In order to compare the parametric and Bayesian estimates of the survival and 

hazard functions, we used the same values for the parameter δ, γ and ξ considered in the 

estimation of the parameter λ. The value for λ used to obtain the Bayesian estimate of 

hazard and survival function is the Bayesian estimate of λ, 
B

λ̂ . The value of λ used to 

obtain the parametric estimate of hazard and survival function is the parametric estimate 

of λ, λ̂ , which is obtained applying the Wheeler procedure. 

To measure the robustness of )(ˆ xS with respect to )(ˆ xS
B

, we calculated the RE 

of the estimate )(ˆ xS compared with the estimate )(ˆ xS
B

defined as 
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If RE = 1, )(ˆ xS  and )(ˆ xS
B

 will be interpreted as equally effective. If RE < 1, )(ˆ xS  is 

more efficient than )(ˆ xS
B

, contrary to the case in which RE > 1 and, thus, )(ˆ xS
B

is more 

efficient than )(ˆ xS . For the different samples size, the RE was greater than 1. In 
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particular, for n = 40, RE of )(ˆ xS  compared with )(ˆ xS
B

was equal to 16.7271. This 

result means that )(ˆ xS
B

is more efficient than )(ˆ xS in accordance with the superior 

behavior of the Bayesian estimate of the parameter λ.  

Figure 5.4 shows the comparison of the estimates of the survival function with 

respect to the true survival function for n = 40 and λ = 86.0315. In this case, both of the 

estimates are close to true survival function. 

 

Figure 5.4  Comparison of the survival function estimates for n = 40, with λ = 

86.0315, ξ = 0, γ = 0.048, and δ = 0.76, with respect to the true survival function. 

 

Even when the estimates of the survival functions are close to the true survival function, 

Figures 5.5 to 5.7 show that the Bayesian survival function is closer than the parametric 

survival function estimate. 
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Figure 5.5  Comparison of the survival function estimates with respect to the true 

survival function for n = 40 and λ = 86.0315 in the survival time interval [34, 80] 

 

 

Figure 5.6  Comparison of the survival function estimates with respect to the true 

survival function for n = 40 and λ = 86.0315 in the survival time interval [50, 80] 
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Figure 5.7  Comparison of the survival function estimates with respect to the true 

survival function for n = 40 and λ = 86.0315 in the survival time range [73, 80] 

 

We compared the hazard function estimates with respect to the true hazard 

function for n = 40 and λ = 86.0315.  Figure 5.8 shows that for a survival time greater 

than 60 the Bayesian hazard function becomes closer to the true hazard function. 

 

Figure 5.8  Comparison of the estimates of h(x), for n = 40 and with ξ = 0, γ = 0.048,  

δ = 0.76. 
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Figure 5.9 shows a closer view of the behavior of the survival estimates, for n=40 

and λ = 86.0315, in the survival interval [73, 80]. It can be seen that the Bayesian hazard 

function is closer than the parametric hazard estimate. In addition, it shows that the true 

hazard function is overestimated by both approaches.  

 

 

Figure 5.9  Comparison of the hazard function estimates with respect to the true 

hazard function for n = 40 and λ = 86.0315 in the survival time range [73, 80] 

 

We present comparisons of the survival and hazard functions for two other values 

of the parameter λ randomly generated from the Nakagami distribution.  Figure 5.10 

shows that the Bayesian survival function is closer than the parametric survival estimate. 

In addition, both estimates of the survival function underestimate the true survival 

function for this particular value of the parameter λ.  

73 74 75 76 77 78 79 80

1.4

1

0.8

0.6

0.4

0.2

0

0

1.2

Survival Time x

H
a

za
rd

 V
a

lu
e 

)(xh

)(ˆ xh

)(ˆ xhB

x

h



 

123  

 

Figure 5.10  Comparison of the survival function estimates with respect to the true 

hazard function for n = 40, with ξ = 0, γ = 0.048, δ = 0.76, and λ = 86.8738 

 

Figure 5.11 shows the comparison of the estimates of the hazard function for 

λ=86.8738. It shows the same behavior as in Figure 5.8.  

 

 

Figure 5.11  Comparison of the hazard function estimates with respect to the true 

hazard function for n = 40 and λ = 86.8738 
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For the particular value of the parameter λ = 84.5404, Figure 5.12 shows the 

comparison of the survival function estimates. It can be seen that both approaches 

overestimated the true survival values.  

 

Figure 5.12  Comparison of the survival function estimates with respect to the true 

hazard function for n = 40, with ξ = 0, γ = 0.048, δ = 0.76, and λ = 84.5404 

 

Figure 5.13 shows the comparison of the hazard function estimates for the value 
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Figure 5.13  Comparison of the hazard function estimates with respect to the true 

hazard function for n = 40 and λ = 84.5404 
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Figure 5.14  Survival function estimates for a random sample of size n = 40 

extracted from the breast cancer data provided by the SEER database. 

 

Figure 5.15  Hazard function estimates for a random sample of size n = 40 extracted 

from the breast cancer data provided by the SEER database. 
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5.6 Conclusions 

 

We have shown that the parameter λ of the Johnson SB distribution exhibits 

variability in its estimated values, allowing us to consider it as a random variable with a 

pdf fitted with the K-S test. Therefore, we developed a Bayesian analysis assuming this 

pdf as its prior information and applied the Bayes Theorem in conjunction with the 

squared-error loss function to obtain its Bayesian estimate. 

The simulation analysis showed that the Bayesian estimate of the parameter λ 

performed better than the estimate value under the Wheeler procedure. The excellent 

behavior of the Bayesian estimate is reflected even for small sample sizes for λ= 85.0315. 

Small values of the MSE of the Bayesian estimates for sample size as small as n = 10 

reflected this finding. 

We compared the estimates of the survival function with those of the true survival 

function when n = 40 and for three values of λ: 86.0315, 86.8738 and 84.5404. We 

noticed than under these values for λ, the estimates of the survival function are close to 

the true survival function, but the Bayesian survival function estimate is closer than the 

parametric survival estimate. Among these three values of λ, the survival estimates 

underestimated the survival values when λ = 84.5404. The RE for each sample size was 

greater than 1, implying the Bayesian survival function is more efficient. 

In addition, we compared the estimates of the hazard function with those of the true 

hazard function when n = 40 and for the same values of λ. The hazard values were 

underestimated when λ = 84.5404. 
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The overall analysis reflected that Bayesian estimates for the parameter λ of the 

Johnson SB distribution produced better estimates than those of the Wheeler procedure. 

The survival times documented in breast cancer data used in this analysis followed this 

distribution and, on the basis of our results, applying the Bayesian approach is a good 

choice to obtain estimates of the survival and hazard functions.  

The main contributions of this study are: 

• The demonstration of the applicability of the Bayesian approach to survival 

analysis of breast cancer patient data with survival times following the 

Johnson SB distribution.  

• We developed the analytical Bayesian estimate for one parameter of the 

underlying model.  

• We obtained the analytical form of the Bayesian estimate of the Johnson SB 

survival function which performed better than its parametric counterpart. 

• We obtained the Bayesian estimate of the hazard function of the Johnson SB 

model which performed better than its parametric counterpart. 
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CHAPTER 6   SENSITIVITY OF THE CHOICE OF THE LOSS FUNCTION FOR 

A BAYESIAN SURVIVAL ANALYSIS  
The purpose of the present study was to perform a Bayesian sensitivity analysis to 

the selection of the loss function. We compared the Bayesian estimates of one of the four 

parameters —considered as a random variable— of the Johnson SB distribution. In 

addition, we compared the Bayesian estimates of the survival functions under the 

assumption of the selected loss functions.  

 The chapter is divided into five sections. In the first two sections, we present a 

brief review of the Higgins-Tsokos loss function and the Johnson SB model. The third 

section is a deduction of the Bayesian estimate of the parameter of the underlying model 

under the assumed loss functions. Moreover, we developed the analytical form of the 

Bayesian estimates of the survival function. The fourth section corresponds to the 

comparison of these estimates. The last section summarizes the findings of the study.  

 

6.1 Introduction 

 

This chapter serves as a continuation of the problem presented in the previous 

chapter, in that it examines the sensitivity of the choice of the loss function. We assumed 

that the 4-parameter Johnson SB distribution characterizes the behavior of the survival 

times and that one of the parameters behaves as a random variable. Assuming a 
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Nakagami probability distribution as the parameter prior, the primary objective is to 

answer the following questions within a Bayesian framework: 

1. How robust is the assumption of the squared-error loss function being challenged 

by the assumption of the Higgins-Tsokos loss functions in estimating the 

parameter?  

2. How robust is the assumption of the squared-error loss function being challenged 

by the assumption of the Higgins-Tsokos loss functions in estimating the Johnson 

SB survival function? 

To answer these questions, we performed a Bayesian analysis through simulation. 

To measure the robustness of the choice of the loss function, we computed the RE of the 

Bayesian survival function under the squared-error loss function with respect to the one 

under the Higgins-Tsokos loss function and compared the Bayesian estimates of the 

parameter λ by computing their MSE.  

 

 

6.2 Higgins-Tsokos Loss Function 

 

In a Bayesian decision-theoretic framework, a loss function ),( ⋅⋅L is a nonnegative 

function of the unknown random parameter ζ and a decision function ψ that minimizes 

the conditional expected loss incurring in choosing the estimates of ζ . The minimum ζ̂  

is reached when the quantity ζζζψ dxhxL∫Ζ );()),((
rr

is a minimum. In this expression, 

);( xh
r

ζ is the posterior density function of ζ . 
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In our analysis, we are interested in the Higgins-Tsokos loss function and the well 

known squared-error loss function. The latter has been used since, as long as the error is 

reasonable, the loss is of the same magnitude for both high and low estimates. In 

addition, the loss becomes substantial only when the estimate is grossly off the true value. 

The Higgins-Tsokos loss function (Higgins & Tsokos, 1976) is given by  
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where ζ̂ is the estimate for ζ . The Higgins-Tsokos loss function is useful because it 

places a heavier penalty at the extremes —over and underestimation— than in the middle 

compared to the squared-error loss function (Camara and Tsokos, 2001). The Higgins-

Tsokos loss function has been of interest to develop sensitivity analysis (Camara and 

Tsokos, 1999), to introduce Monte Carlo integration (Camara and Tsokos, 2005), and to 

derive approximate confidence interval for the mean of a normal population (Camara, 

2009). 

 

6.3 Revisiting the 4-parameter Johnson SB Distribution  
The pdf of the 4-parameter Johnson SB distribution is defined as  
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where
λ
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=
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logδγ  is a standard normal 

variable (Johnson, 1949).  The corresponding survival function is defined by  
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where )(⋅Φ is the CDF of a standard normal distribution. 

With the assumption that the survival times 
n

XXXX ,...,,,
321

are independent 

and identically distributed following the Johnson SB distribution (6.2.1), the likelihood 

function is given by 
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where ),...,,,(
321 n

xxxxx =
r

represents the realizations of 
n

XXXX ,...,,,
321

. 

 

6.4 Bayesian Estimates of the Parameter λ and the Corresponding Survival 

function  
Consider the parameter λ as a random variable and the Nakagami distribution as its 

informative pdf defined as 
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By invoking the Bayes Theorem, the posterior );( xh
r

λ of λ is given by 

∫ ∏

∏

Λ
=





















−+

−
+−−

−+

=





















−+

−
+−−

−+

−+−









Γ









−+−









Γ









=
∑

∑

=

=

n

i ii

x

xmmn

mn

n

i ii

x

xmmn

mn

xx
e

m

m

xx
e

m

m
xh

n

i i

i

n

i i

i

1

log
2

1

12

1

log
2

1

12

))((

1

)(

2

2

))((

1

)(

2

2
);(

1

2

2

1

2

2

ξλξωπ

δ
λ

ξλξωπ

δ
λ

λ

ξλ

ξ
δγλ

ω

ξλ

ξ
δγλ

ω

r   (6.3.2) 



 

133  

where Λ is the parameter space for λ. Then, the Bayesian estimate of λ, under the 

squared-error loss function is given by  
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and the Bayesian estimate of λ with respect to the Higgins-Tsokos loss function is 

expressed as 
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Therefore, the Bayesian estimate of the survival function under the squared-error loss 

function is obtained by substituting 
SQ

λ̂  in equation (6.2.2) and is given by 
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The Bayesian estimate of the survival function under the Higgins-Tsokos loss function is  
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obtained by substituting 
HT

λ̂ in equation (6.2.2). 

From a decision-theoretic framework and applying a Bayesian approach, our aim 

is to analyze the differences in the estimation of the parameter λ and the estimates of the 

survival function incurred by applying the Higgins-Tsokos loss function instead of the 

squared-error loss function. We proceed with our analysis through Monte Carlo 

simulation. 

 

6.5 Numerical Comparison 

 

We simulated 1,000 samples of size in {10, 40, 100} from the Johnson SB 

distribution with the parameter λ generated from the Nakagami distribution and taking 

ξ=0, γ = 0.048, and δ = 0.76. We proceeded to calculate the MSE of the Bayesian 

estimate of the parameter under the squared-error loss function ���� and the MSE of the 

Bayesian estimate of the parameter under the Higgins-Tsokos loss function denoted by 

����. The results are given in Table 6.1. Their MSE are approximately equal. 
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Table 6.1 MES of the Bayesian Estimates for the Parameter λ of Johnson SB 

Distribution under the Squared-Error and the Higgins-Tsokos Loss Functions 

Based on 1,000 Simulated Samples of Sizes 10, 40, and 100 

n )ˆ(
SQ

MSE λ  )ˆ(
HT

MSE λ  

10 0.48417 0.48422 

40 0.46485 0.46481 

100 0.39966 0.39971 

 

To compare the corresponding estimates of the survival functions )(ˆ tS
QT

 and 

)(ˆ tS
HT

, their RE were calculated and averaged. The results are in Table 6.2. The 

Bayesian estimates of the survival function under the squared-error and the Higgins-

Tsokos loss functions are approximately equally efficient. However, the Higgins-Tsokos 

loss function is slightly more efficient than the squared-error loss function. 

 

Table 6.2 Average of the RE of the Bayesian Estimate for the Survival Function 

under the Squared-Error Loss Function with respect to the Bayesian Estimate 

under  the Higgins-Tsokos Loss Function based on 1,000 Simulated Samples of Sizes 

10, 40 and 100 

n ))(ˆ),(ˆ( tStSRE
HTSQ

 

10 1.001783246 

40 1.015216086 

100 1.011343741 
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1,000 samples of sizes 10, 40 and 100 were generated from the Johnson SB 

distribution  with λ = 85.6, ξ = 0, γ = 0.048, and δ = 0.76. The MSE of the Bayesian 

estimate 
SQ

λ̂  and the MSE of the Bayesian estimate of 
HT

λ̂  are given in Table 6.3.Their 

MSE are approximately equal. 

 

Table 6.3 MSE of the Bayesian Estimates for the Parameter λ of Johnson SB 

Distribution under the Squared-Error and the Higgins-Tsokos Loss Functions 

Based on 1,000 Simulated Samples of Sizes 10, 40, and 100 with λ = 85.6 

n 
SQ

λ̂  
HT

λ̂  )ˆ(
SQ

MSE λ  )ˆ(
HT

MSE λ  

10 85.58512 85.58588 0.00596 0.00609 

40 85.58670 85.58851 0.02678 0.02730 

100 85.57344 85.57661 0.05385 0.05452 

 

Using these estimates, the Bayesian survival functions were developed under the 

squared-error and the Higgins-Tsokos loss functions. The RE of the Bayesian survival 

function under the squared-error loss function with respect to the one under the Higgins-

Tsokos loss function were calculated for λ = 85.6. The Res are approximately equal 

(Table 6.4). Nevertheless, for this particular value of λ, the Higgins-Tsokos loss function 

is slightly more efficient than the squared-error loss function.  
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Table 6.4 RE of the Bayesian Estimate for the Survival Function under the 

Squared-Error Loss Function with respect to the Bayesian Estimate under the 

Higgins-Tsokos Loss Function for λ = 85.6 based on 1,000 Simulated Samples of 

Sizes 10, 40, and 100 

n λ  ))(ˆ),(ˆ( tStSRE
HTSQ

 

10 85.6 1.11055 

40 85.6 1.33989 

100 85.6 1.28945 

 

 

6.6 Conclusions  
In the present study, we assumed the parameter λ in the underlying Johnson SB 

distribution for survival times could behave as a random variable, and we considered its 

prior probabilistic characterization as the Nakagami probability density function along 

with the squared-error and Higgins-Tsokos loss functions. We developed the Bayesian 

estimates of the parameter λ and the analytical structure of the corresponding survival 

function estimates subject to the above. In addition, we compared the estimates of the 

parameter λ using their MSE as the criteria and the Bayesian estimates of the survival 

functions were compared calculating their RE.  

We used numerical simulation to illustrate the sensitivity to the selection of the 

loss function. On the basis of the Monte Carlo simulation, the Bayesian approach applied 

under either loss functions produced approximately the same estimates for the parameter 

λ. For over 1,000 simulated samples of different sizes, with the parameter λ generated 
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from the Nakagami probability density function —in particular for λ = 85.6— the 

Bayesian estimates of the parameter had approximately equal MSE. 

In addition, for each of the considered sample sizes, the averaged RE of the 

survival functions estimates were approximately equal to 1; implying the robustness of 

the squared-error loss function. The behavior of the RE of these estimates was illustrated 

for the realization λ = 85.6. 

The main contributions of this study can be summarized as: 

• The development of the analytical structure of the Bayesian estimate of one 

of the parameters in the Johnson SB model under the squared-error loss 

function. 

• Development of the analytical structure of the Bayesian estimate of one of 

the parameter in the Johnson SB model under the Higgins-Tsokos loss 

function. 

• Development of the analytical structure of the Bayesian estimate of the 

survival function of the Johnson SB model under the squared-error loss 

function. 

• Development of the analytical structure of the Bayesian estimate of the 

survival function of the Johnson SB model under the Higgins-Tsokos loss 

function. 
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CHAPTER 7   FUTURE RESEARCH 

In chapter 3 we showed that one of the parameters in the intensity function of the 

PLP behaves as a random variable and developed a Bayesian estimate for it. The MLE 

analytical form of the subject parameter depends on the last ordered failure time. This 

dependency produces a sensitivity behavior in the MLE of the parameter. As a future 

study, we are interested in developing an analytical form that is maximum ordered 

statistic free. 

In chapter 5, for the four parameters Johnson SB probability distribution, we 

considered that one of the parameters behaves as a random variable. Although there is 

another parameter that behaves as a random variable, we only developed a Bayesian 

estimate for the parameter with the largest variance. In a future research, we are 

interested in considering a bivariate probability distribution that involves two of the 

parameters that behave as a random variable and to develop Bayesian estimates for them. 

Further research efforts should also focus on the use of the kernel density 

estimation method. Suppose we do not have enough estimates to fit the prior probability 

distribution of the parameter, or parameters, which behave as a random variable. For this 

case, we proceed to investigate the applicability of the kernel density estimation method 

to obtain the pdf of the parameter(s) and use it to develop the analytical form of the 

Bayesian estimate for the subject parameter(s). 
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