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Abstract

This thesis arose from a desire to better understand the structures of automorphism groups and inner

automorphism groups of quandles. We compute and give the structure of the automorphism groups

of all dihedral quandles. In their paper Matrices and Finite Quandles, Ho and Nelson found all

quandles (up to isomorphism) of orders 3, 4, and 5 and determined their automorphism groups. Here

we find the automorphism groups of all quandles of orders 6 and 7. There are, up to isomoprhism,

73 quandles of order 6 and 289 quandles of order 7.

iv



Chapter 1

Review of Quandles and Quandle Colorings

1.1 Introduction

Quandles and racks are algebraic structures whose axiomatization comes from Reidemeister moves

in knot theory. The earliest known work on racks is contained within 1959 correspondence between

John Conway and Gavin Wraith who studied racks in the context of the conjugation operation in

a group. Around 1982, the notion of a quandle was introduced independently by Joyce [15] and

Matveev [17]. In Joyce’s doctoral dissertation he used the name quandle, as quandle was a word

that didn’t mean anything else. They used quandles to construct representations of the braid groups.

Joyce and Matveev associated to each knot a quandle that determines the knot up to isotopy and

mirror image. Since then quandles have been investigated by topologists in order to construct knot

and link invariants and their higher analogues (see for example [5] and references therein).

We compute and give the structure of the automorphism groups of all dihedral quandles. In [13], Ho

and Nelson gave the list of quandles (up to isomorphism) of orders 3, 4 and 5 and determined their

automorphism groups. In this paper, we extend their results to the case of quandles of orders 6 and 7.

This thesis is organized in the following way. Chapter 1 reviews the background information needed

for our main results. It explains quandles and knot colorings. Then Chapter 2, computes and gives

the structure of automorphism and inner automorphism groups of the dihedral quandles. Chapter 2

also includes a list of the automorphism and inner automorphism groups of all quandles of order

6 and 7. Finally, Chapter 3 is a conclusion to provide a description of how all automorphism and

inner automorphism groups of all quandles of order 6 and 7 were found.
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1.2 Background

The fundamental question in knot theory is determining whether two knots are equivalent or not.

Many invariants have been found to help answer this question. A knot is an embedding of the circle

S1 into the 3-dimensional Euclidean space R3. In order to manipulate knots and work with knot

invariants, it is convenient to work with knot diagrams. A knot diagram is a projection of a knot

into the 2-dimensional Euclidean space R2 with transverse double points where one of the two arcs

is broken to indicate that it is an under-arc. Since we can rotate the knot and move strands at will,

there are infinitely many knot diagrams that represent the same knot. This makes distinguishing one

knot from another a difficult task. Figure 1 shows two different knot diagrams of the trefoil knot.

Figure 1.: Knot Diagrams of the Trefoil Knot
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The Reidemeister theorem states that

THEOREM 1.1 [3] Two knot diagrams, D1 and D2, represent the same knot if and only if D1 can

be transformed into D2 by a sequence of Reidmeister moves I, II, III and planar isotopy.

See Figure 2 for the Reidmeister moves.

Figure 2.: Reidmeister Moves

It is easy to check that the two knot diagrams in Figure 1 are equivalent. The first diagram of the

trefoil can be turned into the other by a finite number of Reidmeister moves.
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1.3 Definitions

DEFINITION 1.3.1 [15] A quandle is a set X with a binary operation (a, b) 7→ a ∗ b such that

1. For any a ∈ X , a ∗ a = a.

2. For any a, b ∈ X , there is a unique x ∈ X such that a = x ∗ b.

3. For any a, b, c ∈ X , we have (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c).

The axioms for a quandle correspond respectively to the Reidemeister moves of type I, II, and III.

Figure 3 shows the relation of the quandle axioms to the Reidmeister moves.

Figure 3.: Correspondence Between Quandle Axioms and Reidmeister Moves
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Axiom (2) states that for each u ∈ X , the map Su : X → X with Su(x) := x ∗ u is a bijec-

tion. Its inverse will be denoted by the mapping S̄u : X → X with S̄u (x) = x ∗̄ u, so that

(x ∗ u) ∗̄ u = x = (x ∗̄ u) ∗ u.

Figure 4.: Positive and Negative Crossings

DEFINITION 1.3.2 A rack is a set with a binary operation that satisfies (2) and (3).

Racks and quandles have been studied in, for example, [9, 15, 17].

DEFINITION 1.3.3 [19] Given two quandles (X, ∗) and (Y, /), a map f : (X, ∗) −→ (Y, /) is a

quandle homomorphism if f(a ∗ b) = f(a) / f(b) for any a, b ∈ X . If f is a bijection, then f is

called an isomorphism, and we say (X, ∗) and (Y, /) are isomorphic quandles.

REMARK 1 Unlike the group case, there is no identity in a quandle. So there is no notion of a kernel

for quandle homomorphisms, but there is a notion of an equalizer. Let f : X −→ Y be a quandle

homomorphism. For y ∈ Y , let Ey = {x ∈ X; f(x) = y}. Then Ey is a subquandle of X .

DEFINITION 1.3.4 [19] The automorphism group of a quandle (X, ∗), denoted Aut(X), is the

group of all isomorphisms ρ : X −→ X . The elements of Aut(X) act on those of X by right action.

DEFINITION 1.3.5 [19] The inner automorphism group of a quandle (X, ∗), denoted Inn(X), is

the subgroup of Aut(X) generated by all Sx, where Sx(y) := y ∗ x, for any x, y ∈ X . The map

Sx: X −→ X that maps u to u ∗ x defines a right action of X on X , so that we obtain a map

X −→ Inn(X).
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DEFINITION 1.3.6 [16] The transvection group of a quandle (X, ∗), denoted Trans(X), is the sub-

group of Inn(X) generated by the elements of the form SxS
−1
y for x ∈ X and y ∈ X .

It is important to note that the Trans(X) is a normal subgroup of Inn(X) which itself is a normal

subgroup of Aut(X). The quotient group Inn(X)/Trans(X) is a cyclic group since any two generators

Sx and Sy are congruent modulo Trans(X).

DEFINITION 1.3.7 A quandle (X, ∗) is Latin when for any x ∈ X and for any z ∈ X , there exists

exactly one y such that x ∗ y = z. In other words, we can define left action, for any x ∈ X define

a mapping Lx: X −→ X that maps u to x ∗ u. That is, for finite Latin quandles, the mappings Lx

are bijections for all x.

DEFINITION 1.3.8 Consider the map S : X −→ Inn(X) sending u to Su, where Su is the map

Su : X −→ X is a bijection and quandle homomorphism. The quandle (X, ∗) is called faithful

when the map S is injective. If (X,*) is faithful, then the center of Inn(X) is trivial.

DEFINITION 1.3.9 [19] The orbit of x ∈ X is the subset of elements y ∈ X such that there exists

some f ∈ Inn(X) satisfying f(x) = y.

DEFINITION 1.3.10 [19] A quandle (X, ∗) is connected when there exists exactly one orbit in X .

That is, for any ∈ X , the orbit of x is all of X .

DEFINITION 1.3.11 A quandle (X, ∗) is abelian if it satisfies the identity (w ∗ x) ∗ (y ∗ z) = (w ∗

y) ∗ (x ∗ z), for any w, x, y, z ∈ X , not to be confused with a communative quandle.

DEFINITION 1.3.12 A quandle (X, ∗) is commutative if it satisfies the identity x ∗ y = y ∗ x, for

any x, y ∈ X .

1.4 Examples of Quandles

EXAMPLE 1 Any setX with the operation x∗y = x for any x, y ∈ X is a quandle called the trivial

quandle. The trivial quandle of n elements is denoted by Tn.
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EXAMPLE 2 Let G be a group. The binary operation (conjugation) a ∗ b = b−1ab for any a, b ∈ G

gives a quandle structure on G. This quandle is called a conjugation quandle, denoted Conj(G). An

n-fold conjugation quandle is the group G with n-fold conjugation as the operation a∗ b = b−nabn.

This is interesting when G is non-abelian. It is easy to check that the following three properties

hold:

1. a ∗ a = a

2. x ∗ a = b⇐⇒ a−nxan = b⇐⇒ x = anba−n =⇒ x is unique.

3.

(a ∗ b) ∗ c = (b−nabn) ∗ c

= c−nb−nabncn

(a ∗ c) ∗ (b ∗ c) = (c−nacn) ∗ (c−nbcn)

= (c−nbcn)−n(c−nacn)(c−nbcn)n

= c−nb−ncnc−nacnc−nbncn

= c−nb−nabncn

EXAMPLE 3 Let n be a positive integer. For elements i, j ∈ Zn, define i ∗ j ≡ 2j − i (mod n).

Then ∗ defines a quandle structure called the dihedral quandle, Rn. This set can be identified with

the set of reflections of a regular n-gon with conjugation as the quandle operation.

EXAMPLE 4 Let Λ be the ring of Laurent polynomials in the one variable T . Any Λ -module M is

a quandle with a ∗ b = Ta + (1 − T )b; a, b ∈ M . This quandle is called an Alexander quandle.

Furthermore for a positive integer n, a mod-n Alexander quandle Zn[T, T−1]/(h(T )) is a quandle

for a Laurent polynomial h(T ). The mod-n Alexander quandle is finite if the coefficients of the

highest and lowest degree terms of h are units in Zn.
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1.5 Fundamental Quandle

This is the most important quandle of all and is the raison d’etre of the whole theory.

DEFINITION 1.5.1 [15, 17] Let {x1, x2, ..., xk} be variables assigned to the arcs of a knot diagram

K. Let xl = xi ∗ xj be assigned at each crossing, where xj is the variable assigned to the over-arc

and xi is the variable assigned to the under-arc from which the orientation of the normal vector of

the over-arc points. Then xl is assigned to the other under-arc. The quandle Q(K) determined by

the set of generators {x1, x2, ..., xk} and the set of relations {xl = xi ∗ xj} over all crossings is

called the fundamental quandle of K.

Figure 5 shows over and under crossings.

Figure 5.: Over-Arcs and Under-Arcs

A quandle defined by the set of generators {x1, x2, ..., xk} and relations {r1, r2, ..., rm}, as in Def-

inition 1.5.1, is denoted by < x1, x2, ..., xk | r1, r2, ..., rm >. This is called a presentation of the

quandle [9].

EXAMPLE 5 Consider the trefoil knot. Let {x1, x2, x3} be the variables assigned to the arcs of the

trefoil knot. See Figure 6.
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Figure 6.: Trefoil and Its Relations

The presentation of the fundamental quandle of the trefoil knot is

< x1, x2, x3 | x1 ∗ x2 = x3, x2 ∗ x3 = x1, x3 ∗ x1 = x2 > .

1.6 Coloring of Knots

DEFINITION 1.6.1 [9] Let X be a quandle, let D be an oriented knot diagram and A be the set of

over-arcs. A coloring f is a map f : A −→ X such that at every crossing where the normal to the

over-arc β points from the arc α to the arc γ, the relation f(α) ∗ f(β) = f(γ) holds, see Figure 7.

That is, a coloring is a quandle homorphism that maps the generators of the fundamental quandle

to a fixed quandle. The image f(α) is called a color of the arc α. The colors in the ordered pair

(a, b) are called source colors.

9



Figure 7.: Coloring Relations

Let ColX(D) be the set of colorings of a knot diagram D by a quandle X . There is a one-to-

one correspondence between the set of colorings of two diagrams of the same knot. The set of all

colorings of D by quandle X is the set of quandle homomorphisms from the fundamental quandle

to the quandle X . So the number of colorings by X is the cardinality of this set. It is proved in [9]

that the number of colorings is a knot invariant.

Any knot diagramK has at least one coloring for a given quandleX , the trivial coloring. The trivial

coloring is obtained by letting every arc have the same color. Clearly the reason knot coloring works

so well is that the axioms of quandles correspond to the Reidmeister moves.

DEFINITION 1.6.2 [10] If a knot diagram K can be non-trivially colored by the dihedral quandle

Rn, then K is said to be n-colorable.

EXAMPLE 6 Coloring the trefoil by R3:

LetX be the dihedral quandleR3 and letD be the trefoil knot diagram as shown in Figure 8. Let the

source colors be given by (0, 1) at the top of the knot. Note that this is just one possible coloring of

the trefoil by R3. Any pair (a, b) ∈ Z3 × Z3 colors the trefoil. Then there are a total of 9 colorings

of the trefoil by R3. Of those 9 colorings, 3 are trivial. This example is also called a Fox 3-coloring

of the trefoil. In general a Fox -coloring is a coloring of a knot diagram by the dihedral quandle Rn.
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Figure 8.: Coloring the Trefoil by R3
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Chapter 2

Automorphism Groups of Quandles

2.1 Review of Automorphism Groups of Quandles of Orders 3, 4 and 5

Ho and Nelson’s Matrices and Finite Quandles [13] classify finite quandles with up to five elements

and compute the automorphism group for each of those quandles. The results obtained by Ho and

Nelsen were confirmed by the algorithm used by Elhamdadi and myself. The algorithm we used

to obatin some results in [8] was written with the software Maple with the help of Edwin Clark.

This algorithm finds all quandles of order 9 or less up to isomorphism and finds the order and

order sequence of their automorphism and inner automorphism groups. A brief description of the

algorithm is included in [8].

DEFINITION 2.1.1 The symmetric group, on a finite set of n elements, is the group whose elements

are all the permutations of the n elements. The symmetric group is denoted by Σn. The cardinality

of the symmetric group is n! (factorial n). For example, Σ3 is the symmetric group on a set of 3

elements.

DEFINITION 2.1.2 The alternating group, denoted by An, is the group of even permutations of a

finite set of n elements. The cardinality of the alternating group is n!/2. For example, A4 is the

alternating group on a set of 4 elements.

DEFINITION 2.1.3 The dihedral group, denoted by Dn, is the group of symmetries of a regular n-

gon (including both rotations and reflections). The cardinality of the dihedral group is 2n. For

example, D5 is the group of rotations and reflections of a regular pentagon.

12



Table 1: Quandles of order 3 as disjoint cycles of columns with automorphism groups

Quandle X Disjoint Cycle Notation Inn(X) Aut(X)

Q1 (1), (1), (1) {1} Σ3

Q2 (1), (1), (12) Z2 Z2

Q3 (23), (13), (12) Σ3 Σ3

Table 2: Quandles of order 4 as disjoint cycles of columns with automorphism groups

Quandle X Disjoint Cycle Notation Inn(X) Aut(X)

Q1 (1), (1), (1), (1) {1} Σ4

Q2 (1), (1), (1), (23) Z2 Z2

Q3 (1), (1), (1), (123) Z2 Z3

Q4 (1), (1), (12), (12) Z2 Z2 × Z2

Q5 (1), (34), (24), (23) Σ3 Σ3

Q6 (34), (34), (12), (12) Z2 × Z2 D4

Q7 (234), (143), (124), (132) A4 A4

Since every permutation of a finite set can be written as a product of disjoint cycles we will adopt the

following notation: the identity permutation (x 7→ x) of a finite set of n elements will be denoted

by (1). The permutation σ of the set {1, 2, 3, 4, 5, 6} sending 1 to 1, 2 to 5, 3 to 4, 4 to 3, 5 to 2, and

6 to 6 will be denoted by (25)(34).

First determined by Nelsen and Ho in [13], there are exactly three quandles of order 3 up to isomor-

phism, there are exactly seven quandles of order 4 up to isomorphism, and there are 22 quandles of

order 5 up to isomorphism. See Table 1 and Table 2 for the list of quandles and their automorphism

groups of orders 3 and 4. For a list of quandles of order 5 and their automorphism groups please

refer to Ho and Nelsen’s paper. For any quandle of order 5 the inner automorphism group is one

of the following groups: {1}, Z2, Z3, Z4, Σ3, Z2 × Z2, A4, D5, or Z5 o Z4. Section 2.3 provides

a complete list of the quandles of orders 6 and 7 with their automorphism and inner automorphism

groups. The Maple algorithm generates quandles up to order 9. The 1581 quandles of order 8 and
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11079 quandles of order 9 are too numerous to list here. We do have a list of all automorphism and

inner automorphism groups of quandles of order 8.

2.2 Quandles and Their Automorphism and Inner Automorphism Groups

We will denote the group of automorphisms of a quandle X by Aut(X). Axioms (2) and (3) re-

spectively state that for each u ∈ X , the map Su : X → X with Su(x) = x ∗ u is respectively a

bijection and a quandle homomorphism. We call the subgroup of Aut(X) generated by the sym-

metries Sx, the group of inner automorphism of X denoted by Inn(X). By axiom (3), the map

S : X −→ Inn(X) sending u to Su satisfies the equation Sz Sy = Sy∗z Sz, for any y, z ∈ X ,

which can be written as Sz Sy Sz−1 = Sy∗z. Thus, if the group Inn(X) is considered as a quandle

with conjugation, then the map S becomes a quandle homomorphism.

Now we will characterize the automorphisms of the dihedral quandles. Recall that the affine group

of Zn is the group of all invertible affine transformations of Zn,

Aff(Zn) := {fa,b : Zn → Zn, fa,b(x) = ax+ b, a ∈ Z×
n , b ∈ Z}.

The element fa,b is identified with the pair (a, b) and the group multiplication is given by (a, b)(c, d) =

(ac, ad+ b). The identity is (1, 0) and the inverse is given by (a, b)−1 = (a−1,−a−1b). Usually the

element (a, b) is represented in a matrix notation as

(
a b

0 1

)
so group multiplication corresponds

to multiplication of matrices.

THEOREM 2.1 Let Rn = Zn be the dihedral quandle with the operation i ∗ j = 2j − i(mod n).

Then Aut(Rn) is isomorphic to the affine group Aff(Zn) for any positive integer n.

Proof. It is clear that for a 6= 0, the map fa,b (with fa,b(x) = ax+ b) is a quandle homomorphism.

It is bijective if and only if a is a unit in Zn
×. Now we show that any quandle automorphism of

Zn (with the operation x ∗ y = 2y − x) is an affine transformation fa,b for some invertible a. Let

f ∈ Aut(Zn), then for all x, y ∈ Zn, f(2y − x) = 2f(y) − f(x). Now consider the mapping

g : Zn → Zn given by g(x) = f(x) − f(0). It is clear that g(0) = 0 and g(−a) = −g(a).

We now prove that g(λx) = λg(x) for all λ ∈ Zn. We have g(2b − a) = 2g(b) − g(a), thus

14



g(2b) = 2g(b) and by induction on even integers g(2ka) = 2kg(a). Now we do induction on odd

integers: g[(2k + 1)a] = g[2ka − (−a)] = 2kg(a) − g(−a) = 2kg(a) + g(a) = (2k + 1)g(a).

Now g is a bijection if and only if λ is a unit in Z×
n . �

COROLLARY 2.0.1 The cardinality of Aut(Zn) is nφ(n), where φ denotes the Euler function.

THEOREM 2.2 The inner automorphism group Inn(Rn) of the dihedral quandle Rn is isomorphic

to the dihedral group Dm
2

of order m, where m is the least common multiple of n and 2.

Proof. By definition, the Inn(Rn) is the subgroup of Aut(Rn) generated by all Sx, where Sx(y) :=

y ∗ x = 2x − y (modn), ∀x, y ∈ Rn. We claim that the Inn(Rn) of the dihedral quandle Rn

is generated by two elements of order 2. This is a direct consequence of the relation Si+2 =

Si+1SiS
−1
i+1. It is easy to check that this relation holds. First observe that SiSj = Sj∗iSi. Then

Si+1Si = Si∗(i+1)Si+1 = S2i+2−iSi+1 = Si+2Si+1. That is, Si+2 = Si+1SiS
−1
i+1. By induction,

Si can be obtained from S0 and S1, each of order 2. It is easy to check that Si is of order 2.

Si(Si(j)) = Si(j ∗ i) = Si(2i− j) = (2i− j)∗ i = 2i− (2i− j) = j. We have S0S1 6= S1S0, thus

Inn(Rn) is non-abelian. Then since Inn(Rn) is a finite non-abelian group generated by two elements

of order 2, Inn(Rn) is isomorphic to a dihedral group. Since the cardinality of Inn(R2n) equals 2n,

the Inn(R2n) is the dihedral group Dn. Since the cardinality of Inn(R2n+1) equals 2(2n + 1), the

Inn(R2n+1) is the dihedral group D2n+1. Hence the Inn(Rn) isomorphic to the dihedral group Dm
2

of order m, where m is the least common multiple of n and 2. �

THEOREM 2.3 [1] Let X be the quandle on the set of G with operation x ∗ y = y−1xy. Then the

Inner automorphism group ofX is isomorphic (as a group) to the quotient ofG by the center Z(G).

The quandle X is usually denoted by Conj(G).

Proof. The proof is straightforward from the fact that in this case the surjective map S : X −→

Inn(X) sending a ∈ X to Sa is a quandle homomorphism with kernel equal to the center Z(G) of

G. �

EXAMPLE 7 The symmetric group Σ3 is the smallest group with trivial center then Inn(Conj(Σ3)) ∼=

Σ3.
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The converse of Theorem 2.3 is also true, namely if (X, ∗) is a quandle for which the map S : X −→

Inn(X) is one-to-one and onto then (X, ∗) ∼= Conj(Inn(X)) with Z(Inn(X)) being trivial group.

An interesting project would be to calculate the automorphism groups Aut(Conj(G)). Obviously

for the symmetric group Σ3, we have Aut(Conj(Σ3)) ∼= Inn(Conj(Σ3)) ∼= Σ3.

2.3 Automorphism Groups of Quandles of Orders 6 and 7

In this section, the automorphism and inner automorphism groups of all 73 quandles of order 6 and

all 298 quandles of order 7 are computed. This computation is accomplished with the help of the

software Maple [20], which also allows for the computation of the quandles of order 8. Since there

are 1581 they will not be included in this paper.

We describe each quandle Qj of order 6 for 1 ≤ j ≤ 73 (there are 73 isomorphism classes of

quandles of order 6) by explicitly giving each symmetry Sk (1 ≤ k ≤ 6), in terms of products of

disjoint cycles. The symmetries are the columns in the Cayley table. For example, the quandle Q46

of Table 4 has the following Cayley table (a Cayley table for quandle X is the square matrix such

that the ij entry correspond to i ∗ j).



1 1 1 1 1 1

2 2 5 5 2 5

3 4 3 3 4 4

4 3 4 4 3 3

5 5 2 2 5 2

6 6 6 6 6 6


The quandle Q46 is described by the symmetries S1 = (1), S2 = (34), S3 = (25), S4 = (25),

S5 = (34), S6 = (25)(34). Here and through the rest of the paper, every permutation is written as

a product of transpositions. For example, S1 = (1) means that S1 is the identity permutation. The

permutation S4 = (25) stands for the transposition sending 2 to 5 and S6 = (25)(34) stands for the

product of the two transpositions (25) and (34).
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In this example, Aut(Q46) = D4 is the dihedral group of 8 elements and Inn(Q48) = Z2 × Z2 is

the direct product of two copies of Z2. Another example in Table 6, the Aut(Q49) = Z5 o Z4 is

the semi-direct product of the cyclic group Z5 by Z4 and the Inn(Q49) = D5 is the dihedral group

of 10 elements. The semi-direct product of groups is given by the following:

DEFINITION 2.3.1 Let G, H be groups and let f : H −→ Aut(G) be the map sending u to fu a

group homomorphism. As a set, the semi-direct product is G ×H . The group operation is defined

as follows. For any (g1, h1), (g2, h2) ∈ G×H has the formula (g1 � fh1(g2), h1h2).

With the help of Edwin Clark, we wrote a program using the software Maple to find as much infor-

mation about the automorphism and inner automorphism as possible. The following is a description

of the Maple algorithm we used:

1. A representation of each quandle using the symmetries Sx, recall these are permutations written

as disjoint cycles. The command permgroup from the Maple group package was used.

2. For both inner automorphism and automorphism groups, first calculate the group order using

group order command.

3. Identify abelian or non-abelian using the isabelian command in the Maple group package.

4. Calculate the order sequence. The order sequence is a list of the number of elements of each

order. That is, [1, 1], [2, 1], [4, 2] means there is one element of order 1, 1 element of order 2 and

2 elements of order 4.

Using the Maple output we were left to find all inner automorphism and automorphism groups.

Using the classification of small groups we were able to find most all of them. It is known that

two abelian groups, say G and H, are isomorphic if they have the same order and the same order

sequence [12]. But this is not true for non-abelian groups. That is, there exists two non-isomorphic

non-abelian groups with the same order and the same number of elements of each order. This
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implies that the number of elements of each order is not enough to determine the structure of non-

abelian groups. Fortunately, most of the non-abelian groups for the automorphism and inner auto-

morphism groups of the quandles in this paper were of small enough order that is was possible to

find the groups. A list was made of all the non-abelian groups of the given order with the respective

order sequences. From there we had only one non-abelian group with the desired order sequence.

There were a few cases of non-ableian groups of orders large enough in which listing all possibil-

ities was not an efficient way to obtain the desired group. Knowing that for quandles, the inner

automorphism group is a normal subgroup of the automorphism group and with the software Maple

we were able to find our non-abelian groups of large orders. For example, Z5oZ4, (D3× D3)oZ2,

(Z6 × Z2) o Z2, Z2 × (Z5 o Z4), (Z7 o Z3) o Z2 and (Z6 × Z2) o Z2.

The following is an example of the Maple output a quandle of order 6, specifically Q70.

(70) matrix columns in disjcyc notation:

[[[2, 3], [4, 5]], [[1, 5], [3, 6]], [[1, 4], [2, 6]], [[1, 5], [3, 6]], [[1, 4], [2, 6]], [[2, 3], [4, 5]]]

(70) inner automorphism group order = 6, not abelian, not cyclic, order seq = {[1, 1], [2, 3], [3, 2]}

(70) automorphism group order = 12, not abelian, order sequence = {[1, 1], [2, 7], [3, 2], [6, 2]}

Recall from earlier in this chapter that the quandles are represented as Cayley tables. The output for

the quandle Q70 gives the matrix columns in disjoint cycle notation. The following is the Cayley

table for the quandle Q70.



1 5 4 5 4 1

3 2 6 2 6 3

2 6 3 6 3 2

5 4 1 4 1 5

4 1 5 1 5 4

6 3 2 3 2 6


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Using the Maple output the following steps were taken to find the automorphism and inner auto-

morphism groups of each quandle.

1. For the quandle Q70 the Maple output shows the group order to be 6 and the group to be non-

abelian. The only non-abelian groups of order 6 are the dihedral group D3 and the symmetric

group Σ3. Since D3 is isomorphic to Σ3 it is easy to identify the desired group. It is also im-

portant to note that the order sequence for D3 and Σ3 is the same as the order sequence of the

Maple output.

2. For the automorphism group, the Maple output shows the group order to be 12 and the group

to be non-abelian. A list is then made of the non-ableian groups of order 12. The non-ableian

groups of order 12 are D6
∼= D3 × Z2, A4, and Z3 o Z4. It is easy to check that the order

sequence of D6 is the same as the order sequence of the given output. However since two non-

abelian groups can have the same order sequence but have different structure, the rest of the

groups listed need to be checked. Looking at the order sequence of A4 we see that there are

3 elements of order 2. Since the group we are looking for has 7 elements of order 2 we know

A4 is not the desired group. Finally looking at the order sequence of Z3 o Z4 we see that this

group contains elements of order 3 and order 4. Since our desired group does not contain any

elements of order 4 we know this is not the group. It is now clear that the automorphism group

for Q70 is D6. This should make sense because we know that the inner automorphism group is

a subgroup, in fact a normal subgroup, of the automorphism group of a quandle.
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Table 3: Quandles of order 6 as disjoint cycles of columns: 1–28 of 73

Quandle X Disjoint Cycle Notation

Q1 (1), (1), (1), (1), (1), (1)

Q2 (1), (1), (1), (1), (1), (12)

Q3 (1), (1), (1), (1), (1), (132)

Q4 (1), (1), (1), (1), (1), (1243)

Q5 (1), (1), (1), (1), (1), (12)(34)

Q6 (1), (1), (1), (1), (1), (15234)

Q7 (1), (1), (1), (1), (1), (134)(25)

Q8 (1), (1), (1), (1), (12), (12)

Q9 (1), (1), (1), (1), (12), (12)(34)

Q10 (1), (1), (1), (1), (12), (34)

Q11 (1), (1), (1), (1), (132), (132)

Q12 (1), (1), (1), (1), (132), (123)

Q13 (1), (1), (1), (1), (1243), (1243)

Q14 (1), (1), (1), (1), (1243), (1342)

Q15 (1), (1), (1), (1), (1243), (14)(23)

Q16 (1), (1), (1), (1), (12)(34), (12)(34)

Q17 (1), (1), (1), (1), (12)(34), (13)(24)

Q18 (1), (1), (1), (12), (12), (12)

Q19 (1), (1), (1), (12), (12), (12)(45)

Q20 (1), (1), (1), (12), (12), (45)

Q21 (1), (1), (1), (132), (132), (132)

Q22 (1), (1), (1), (132), (132), (123)

Q23 (1), (1), (1), (132), (132), (45)

Q24 (1), (1), (1), (132), (132), (123)(45)

Q25 (1), (1), (1), (132), (132), (132)(45)

Q26 (1), (1), (12)(56), (12)(46), (12)(45)

Q27 (1), (1), (1), (12)(56), (13)(46), (23)(45)

Q28 (1), (1), (1), (56), (46), (45)
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Table 4: Quandles of order 6 as disjoint cycles of columns: 29–56 of 73

Quandle X Disjoint Cycle Notation

Q29 (1), (1), (1), (123)(56), (123)(46), (123)(45)

Q30 (1), (1), (12), (12), (12), (12)

Q31 (1), (1), (12), (12), (12), (12)(34)

Q32 (1), (1), (12), (12), (12), (34)

Q33 (1), (1), (12), (12), (12), (345)

Q34 (1), (1), (12), (12), (12), (12)(345)

Q35 (1), (1), (12), (12), (12)(34), (12)(34)

Q36 (1), (1), (12), (12), (12)(34), (34)

Q37 (1), (1), (12), (12), (34), (34)

Q38 (1), (1), (12), (12)(56), (12)(46), (12)(45)

Q39 (1), (1), (12), (56), (46), (45)

Q40 (1), (1), (12)(45), (12)(36), (12)(36), (12)(45)

Q41 (1), (1), (12)(45), (36), (36), (12)(45)

Q42 (1), (1), (45), (36), (36), (45)

Q43 (1), (1), (456), (365), (346), (354)

Q44 (1), (1), (12)(456), (12)(365), (12)(346), (12)(354)

Q45 (1), (34), (25), (25), (34), (34)

Q46 (1), (34), (25), (25), (34), (25)(34)

Q47 (1), (34), (256), (256), (34), (34)

Q48 (1), (354), (26)(45), (26)(35), (26)(34), (345)

Q49 (1), (36)(45), (25)(46), (23)(56), (26)(34), (24)(35)

Q50 (1), (3546), (2456), (2365), (2643), (2534)

Q51 (1), (3546), (2564), (2653), (2436), (2345)

Q52 (23), (13), (12), (56), (46), (45)

Q53 (23), (14), (14), (23), (23), (23)

Q54 (23), (14), (14), (23), (23), (14)(23)

Q55 (23), (14), (14), (23), (23), (14)

Q56 (23), (14), (14), (23), (14)(23), (14)(23)
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Table 5: Quandles of order 6 as disjoint cycles of columns: 57–73

Quandle X Disjoint Cycle Notation

Q57 (23), (154), (154), (23), (23), (23)

Q58 (23), (154), (154), (23), (23), (154)(23)

Q59 (23), (154), (154), (23), (23), (154)

Q60 (23), (154), (154), (23), (23), (145)

Q61 (23), (154), (154), (23), (23), (145)(23)

Q62 (23), (45), (45), (16)(23), (16)(23), (23)

Q63 (23), (45), (45), (16), (16), (23)

Q64 (23), (1564), (1564), (23), (23), (23)

Q65 (23), (15)(46), (15)(46), (23), (23), (23)

Q66 (23), (15)(46), (15)(46), (15)(23), (23), (15)(23)

Q67 (243), (165), (165), (165), (243), (243)

Q68 (2354), (1463), (1265), (1562), (1364), (2453)

Q69 (2354), (16)(34), (16)(25), (16)(25), (16)(34), (2453)

Q70 (23)(45), (15)(36), (14)(26), (15)(36), (14)(26), (23)(45)

Q71 (23)(45), (15)(46), (14)(56), (16)(23), (16)(23), (23)(45)

Q72 (23)(45), (13)(46), (12)(56), (15)(26), (14)(36), (24)(35)

Q73 (23)(45), (16)(45), (16)(45), (16)(23), (16)(23), (23)(45)
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Table 6: Quandles of order 6 with their automorphism groups 1–56 of 73

Quandle X Inn(X) Aut(X) Quandle X Inn(X) Aut(X)

Q1 {1} S6 Q29 D3 × Z3 D3 × Z3

Q2 Z2 D3 × Z2 Q30 Z2 S4 × Z2

Q3 Z3 Z6 Q31 Z2 × Z2 Z2 × Z2

Q4 Z4 Z4 Q32 Z2 × Z2 Z2 × Z2

Q5 Z2 D4 Q33 Z6 Z6

Q6 Z5 Z5 Q34 Z6 Z6

Q7 Z6 Z6 Q35 Z2 × Z2 Z2 × Z2 × Z2

Q8 Z2 Z2 × Z2 × Z2 Q36 Z2 × Z2 Z2 × Z2

Q9 Z2 × Z2 Z2 × Z2 Q37 Z2 × Z2 Z2 × Z2 × Z2

Q10 Z2 × Z2 D4 Q38 D3 × Z2 D3 × Z2

Q11 Z3 Z6 Q39 D3 × Z2 D3 × Z2

Q12 Z3 D3 Q40 Z2 × Z2 D4 × Z2

Q13 Z4 Z4 × Z2 Q41 Z2 × Z2 Z2 × Z2 × Z2

Q14 Z4 D4 Q42 Z2 × Z2 D4 × Z2

Q15 Z4 Z4 Q43 A4 A4 × Z2

Q16 Z2 D4 × Z2 Q44 A4 × Z2 A4 × Z2

Q17 Z2 × Z2 D4 Q45 Z2 × Z2 Z2 × Z2

Q18 Z2 D3 × Z2 Q46 Z2 × Z2 D4

Q19 Z2 × Z2 Z2 × Z2 Q47 Z6 Z6

Q20 Z2 × Z2 Z2 × Z2 Q48 D3 D3

Q21 Z3 D3 × Z3 Q49 D5 Z5 o Z4

Q22 Z3 Z6 Q50 Z5 o Z4 Z5 o Z4

Q23 Z6 Z6 Q51 Z5 o Z4 Z5 o Z4

Q24 Z6 Z6 Q52 D3 × D3 (D3 × D3) o Z2

Q25 Z6 Z6 Q53 Z2 × Z2 Z2 × Z2 × Z2

Q26 D3 D3 × Z2 Q54 Z2 × Z2 Z2 × Z2

Q27 D3 D3 Q55 Z2 × Z2 D4

Q28 D3 D3 × D3 Q56 Z2 × Z2 D4 × Z2
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Table 7: Quandles of order 6 with their automorphism groups 57–73

Quandle X Inn(X) Aut(X) Quandle X Inn(X) Aut(X)

Q57 Z6 Z6 Q66 Z2 × Z2 × Z2 Z2 × Z2 × Z2

Q58 Z6 Z6 Q67 Z3 × Z3 D3 × Z3

Q59 Z6 Z6 Q68 S4 S4

Q60 Z6 Z6 Q69 D4 D4

Q61 Z6 Z6 Q70 D3 D3 × Z2

Q62 Z2 × Z2 × Z2 Z2 × Z2 × Z2 Q71 D4 D4

Q63 Z2 × Z2 × Z2 A4 × Z2 Q72 S4 S4

Q64 Z4 × Z2 Z4 × Z2 Q73 Z2 × Z2 S4 × Z2

Q65 Z2 × Z2 D4 × Z2
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Table 8: Quandles of order 7 as disjoint cycles of columns: 1–28 of 298

Quandle X Disjoint Cycle Notation

Q1 (1), (1), (1), (1), (1), (1), (1)

Q2 (1), (1), (1), (1), (1), (1), (12)

Q3 (1), (1), (1), (1), (1), (1), (132)

Q4 (1), (1), (1), (1), (1), (1), (1243)

Q5 (1), (1), (1), (1), (1), (1), (12)(34)

Q6 (1), (1), (1), (1), (1), (1), (15234)

Q7 (1), (1), (1), (1), (1), (1), (134)(25)

Q8 (1), (1), (1), (1), (1), (1), (124365)

Q9 (1), (1), (1), (1), (1), (1), (165)(243)

Q10 (1), (1), (1), (1), (1), (1), (1265)(34)

Q11 (1), (1), (1), (1), (1), (1), (12)(34)(56)

Q12 (1), (1), (1), (1), (1), (12), (12)

Q13 (1), (1), (1), (1), (1), (12), (12)(34)

Q14 (1), (1), (1), (1), (1), (12), (34)

Q15 (1), (1), (1), (1), (1), (12), (345)

Q16 (1), (1), (1), (1), (1), (12), (12)(345)

Q17 (1), (1), (1), (1), (1), (132), (132)

Q18 (1), (1), (1), (1), (1), (132), (123)

Q19 (1), (1), (1), (1), (1), (132), (123)(45)

Q20 (1), (1), (1), (1), (1), (132), (132)(45)

Q21 (1), (1), (1), (1), (1), (1243), (1243)

Q22 (1), (1), (1), (1), (1), (1243), (1342)

Q23 (1), (1), (1), (1), (1), (1243), (14)(23)

Q24 (1), (1), (1), (1), (1), (12)(34), (12)(34)

Q25 (1), (1), (1), (1), (1), (12)(34), (13)(24)

Q26 (1), (1), (1), (1), (1), (15234), (15234)

Q27 (1), (1), (1), (1), (1), (15234), (12453)

Q28 (1), (1), (1), (1), (1), (15234), (14325)
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Table 9: Quandles of order 7 as disjoint cycles of columns: 29–56 of 298

Quandle X Disjoint Cycle Notation

Q29 (1), (1), (1), (1), (1), (134)(25), (134)(25)

Q30 (1), (1), (1), (1), (1), (134)(25), (143)(25)

Q31 (1), (1), (1), (1), (12), (12), (12)

Q32 (1), (1), (1), (1), (12), (12), (12)(34)

Q33 (1), (1), (1), (1), (12), (12), (34)

Q34 (1), (1), (1), (1), (12), (12), (34)(56)

Q35 (1), (1), (1), (1), (12), (12), (12)(34)(56)

Q36 (1), (1), (1), (1), (12), (12), (12)(56)

Q37 (1), (1), (1), (1), (12), (12), (56)

Q38 (1), (1), (1), (1), (12), (12)(34), (12)(34)

Q39 (1), (1), (1), (1), (12), (12)(34), (34)

Q40 (1), (1), (1), (1), (132), (132), (132)

Q41 (1), (1), (1), (1), (132), (132), (123)

Q42 (1), (1), (1), (1), (132), (132), (123)(56)

Q43 (1), (1), (1), (1), (132), (132), (132)(56)

Q44 (1), (1), (1), (1), (132), (132), (56)

Q45 (1), (1), (1), (1), (1243), (1243), (1243)

Q46 (1), (1), (1), (1), (1243), (1243), (1342)

Q47 (1), (1), (1), (1), (1243), (1243), (14)(23)

Q48 (1), (1), (1), (1), (1243), (1243), (1243)(56)

Q49 (1), (1), (1), (1), (1243), (1243), (1342)(56)

Q50 (1), (1), (1), (1), (1243), (1243), (14)(23)(56)

Q51 (1), (1), (1), (1), (1243), (1243), (56)

Q52 (1), (1), (1), (1), (1243), (1342), (14)(23)

Q53 (1), (1), (1), (1), (1243), (14)(23), (14)(23)

Q54 (1), (1), (1), (1), (12)(34), (12)(34), (12)(34)

Q55 (1), (1), (1), (1), (12)(34), (12)(34), (13)(24)

Q56 (1), (1), (1), (1), (12)(34), (12)(34), (34)(56)
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Table 10: Quandles of order 7 as disjoint cycles of columns: 57–84 of 298

Quandle X Disjoint Cycle Notation

Q57 (1), (1), (1), (1), (12)(34), (12)(34), (12)(34)(56)

Q58 (1), (1), (1), (1), (12)(34), (12)(34), (1423)(56)

Q59 (1), (1), (1), (1), (12)(34), (12)(34), (13)(24)(56)

Q60 (1), (1), (1), (1), (12)(34), (12)(34), (56)

Q61 (1), (1), (1), (1), (12)(34), (13)(24), (14)(23)

Q62 (1), (1), (1), (1), (1432)(67), (1432)(57), (1432)(56)

Q63 (1), (1), (1), (1), (243)(67), (243)(57), (243)(56)

Q64 (1), (1), (1), (1), (34)(67), (34)(57), (34)(56)

Q65 (1), (1), (1), (1), (34)(67), (24)(57), (23)(56)

Q66 (1), (1), (1), (1), (12)(34)(67), (12)(34)(57), (12)(34)(56)

Q67 (1), (1), (1), (1), (67), (57), (56)

Q68 (1), (1), (1), (12), (12), (12), (12)

Q69 (1), (1), (1), (12), (12), (12), (12)(45)

Q70 (1), (1), (1), (12), (12), (12), (45)

Q71 (1), (1), (1), (12), (12), (12), (465)

Q72 (1), (1), (1), (12), (12), (12), (12)(465)

Q73 (1), (1), (1), (12), (12), (12)(45), (12)(45)

Q74 (1), (1), (1), (12), (12), (12)(45), (45)

Q75 (1), (1), (1), (12), (12), (45), (45)

Q76 (1), (1), (1), (12), (12)(67), (12)(57), (12)(56)

Q77 (1), (1), (1), (12), (67), (57), (56)

Q78 (1), (1), (1), (132), (132), (132), (132)

Q79 (1), (1), (1), (132), (132), (132), (123)

Q80 (1), (1), (1), (132), (132), (132), (45)

Q81 (1), (1), (1), (132), (132), (132), (123)(45)

Q82 (1), (1), (1), (132), (132), (132), (132)(45)

Q83 (1), (1), (1), (132), (132), (132), (132)(465)

Q84 (1), (1), (1), (132), (132), (132), (123)(465)
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Table 11: Quandles of order 7 as disjoint cycles of columns: 85–112 of 298

Quandle X Disjoint Cycle Notation

Q85 (1), (1), (1), (132), (132), (132), (465)

Q86 (1), (1), (1), (132), (132), (123), (123)

Q87 (1), (1), (1), (132), (132), (123), (45)

Q88 (1), (1), (1), (132), (132), (123), (123)(45)

Q89 (1), (1), (1), (132), (132), (123), (132)(45)

Q90 (1), (1), (1), (132), (132), (45), (45)

Q91 (1), (1), (1), (132), (132), (45), (123)(45)

Q92 (1), (1), (1), (132), (132), (45), (132)(45)

Q93 (1), (1), (1), (132), (132), (123)(45), (123)(45)

Q94 (1), (1), (1), (132), (132), (123)(45), (132)(45)

Q95 (1), (1), (1), (132), (132), (132)(45), (132)(45)

Q96 (1), (1), (1), (132), (123)(67), (123)(57), (123)(56)

Q97 (1), (1), (1), (132), (132)(67), (132)(57), (132)(56)

Q98 (1), (1), (1), (132), (67), (57), (56)

Q99 (1), (1), (1), (12)(56), (12)(47), (12)(47), (12)(56)

Q100 (1), (1), (1), (12)(56), (47), (47), (12)(56)

Q101 (1), (1), (1), (56), (132)(47), (132)(47), (56)

Q102 (1), (1), (1), (56), (47), (47), (56)

Q103 (1), (1), (1), (123)(56), (132)(47), (132)(47), (123)(56)

Q104 (1), (1), (1), (123)(56), (123)(47), (123)(47), (123)(56)

Q105 (1), (1), (1), (132)(576), (132)(467), (132)(475), (132)(456)

Q106 (1), (1), (1), (23)(576), (23)(467), (23)(475), (23)(456)

Q107 (1), (1), (1), (576), (467), (475), (456)

Q108 (1), (1), (12), (12), (12), (12), (12)

Q109 (1), (1), (12), (12), (12), (12), (12)(34)

Q110 (1), (1), (12), (12), (12), (12), (34)

Q111 (1), (1), (12), (12), (12), (12), (345)

Q112 (1), (1), (12), (12), (12), (12), (12)(345)
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Table 12: Quandles of order 7 as disjoint cycles of columns: 113–140 of 298

Quandle X Disjoint Cycle Notation

Q113 (1), (1), (12), (12), (12), (12), (12)(3465)

Q114 (1), (1), (12), (12), (12), (12), (3465)

Q115 (1), (1), (12), (12), (12), (12), (34)(56)

Q116 (1), (1), (12), (12), (12), (12), (12)(34)(56)

Q117 (1), (1), (12), (12), (12), (12)(34), (12)(34)

Q118 (1), (1), (12), (12), (12), (12)(34), (34)

Q119 (1), (1), (12), (12), (12), (34), (34)

Q120 (1), (1), (12), (12), (12), (345), (345)

Q121 (1), (1), (12), (12), (12), (345), (12)(345)

Q122 (1), (1), (12), (12), (12), (345), (354)

Q123 (1), (1), (12), (12), (12), (345), (12)(354)

Q124 (1), (1), (12), (12), (12), (12)(345), (12)(345)

Q125 (1), (1), (12), (12), (12), (12)(345), (12)(354)

Q126 (1), (1), (12), (12), (12)(34), (12)(34), (12)(34)

Q127 (1), (1), (12), (12), (12)(34), (12)(34), (34)

Q128 (1), (1), (12), (12), (12)(34), (12)(34), (34)(56)

Q129 (1), (1), (12), (12), (12)(34), (12)(34), (12)(34)(56)

Q130 (1), (1), (12), (12), (12)(34), (12)(34), (12)(56)

Q131 (1), (1), (12), (12), (12)(34), (12)(34), (56)

Q132 (1), (1), (12), (12), (12)(34), (34), (34)

Q133 (1), (1), (12), (12), (34), (34), (34)

Q134 (1), (1), (12), (12), (34), (34), (34)(56)

Q135 (1), (1), (12), (12), (34), (34), (12)(34)(56)

Q136 (1), (1), (12), (12), (34), (34), (12)(56)

Q137 (1), (1), (12), (12), (34), (34), (56)

Q138 (1), (1), (12), (12), (34)(67), (34)(57), (34)(56)

Q139 (1), (1), (12), (12), (12)(34)(67), (12)(34)(57), (12)(34)(56)

Q140 (1), (1), (12), (12), (12)(67), (12)(57), (12)(56)
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Table 13: Quandles of order 7 as disjoint cycles of columns: 141–168 of 298

Quandle X Disjoint Cycle Notation

Q141 (1), (1), (12), (12), (67), (57), (56)

Q142 (1), (1), (12), (12)(56), (12)(47), (12)(47), (12)(56)

Q143 (1), (1), (12), (12)(56), (47), (47), (12)(56)

Q144 (1), (1), (12), (56), (47), (47), (56)

Q145 (1), (1), (12), (576), (467), (475), (456)

Q146 (1), (1), (12), (12)(576), (12)(467), (12)(475), (12)(456)

Q147 (1), (1), (12)(45), (12)(36), (12)(36), (12)(45), (12)(45)

Q148 (1), (1), (12)(45), (12)(36), (12)(36), (12)(45), (45)

Q149 (1), (1), (12)(45), (12)(36), (12)(36), (12)(45), (36)(45)

Q150 (1), (1), (12)(45), (12)(36), (12)(36), (12)(45), (12)(36)(45)

Q151 (1), (1), (12)(45), (36), (36), (12)(45), (12)(45)

Q152 (1), (1), (12)(45), (36), (36), (12)(45), (45)

Q153 (1), (1), (12)(45), (36), (36), (12)(45), (12)(36)

Q154 (1), (1), (12)(45), (36), (36), (12)(45), (36)

Q155 (1), (1), (12)(45), (36), (36), (12)(45), (36)(45)

Q156 (1), (1), (12)(45), (36), (36), (12)(45), (12)(36)(45)

Q157 (1), (1), (12)(45), (376), (376), (12)(45), (12)(45)

Q158 (1), (1), (12)(45), (12)(376), (12)(376), (12)(45), (12)(45)

Q159 (1), (1), (12)(45), (67), (67), (45), (45)

Q160 (1), (1), (45), (36), (36), (45), (45)

Q161 (1), (1), (45), (36), (36), (45), (36)(45)

Q162 (1), (1), (45), (36), (36), (45), (12)(36)(45)

Q163 (1), (1), (45), (376), (376), (45), (45)

Q164 (1), (1), (45), (12)(376), (12)(376), (45), (45)

Q165 (1), (1), (456), (37)(56), (37)(46), (37)(45), (465)

Q166 (1), (1), (456), (12)(37)(56), (12)(37)(46), (12)(37)(45), (465)

Q167 (1), (1), (12)(456), (37)(56), (37)(46), (37)(45), (12)(465)

Q168 (1), (1), (12)(456), (12)(37)(56), (12)(37)(46), (12)(37)(45), (12)(465)
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Table 14: Quandles of order 7 as disjoint cycles of columns: 169–196 of 298

Quandle X Disjoint Cycle Notation

Q169 (1), (1), (12)(4576), (12)(3567), (12)(3746), (12)(3475), (12)(3654)

Q170 (1), (1), (12)(4576), (12)(3756), (12)(3674), (12)(3547), (12)(3465)

Q171 (1), (1), (4576), (3567), (3746), (3475), (3654)

Q172 (1), (1), (4576), (3756), (3674), (3547), (3465)

Q173 (1), (1), (45)(67), (37)(56), (36)(47), (34)(57), (35)(46)

Q174 (1), (1), (12)(45)(67), (12)(37)(56), (12)(36)(47), (12)(34)(57), (12)(35)(46)

Q175 (27), (56), (27), (1), (13), (13), (56)

Q176 (27), (56), (27), (27), (14), (14), (56)

Q177 (27), (16), (27), (16), (1), (27), (16)

Q178 (27), (16), (27), (27), (1), (27), (16)

Q179 (27), (16), (27), (27), (34), (27), (16)

Q180 (27), (16), (27), (27), (16), (27), (16)

Q181 (27), (16), (27), (27), (27), (27), (16)

Q182 (27), (17), (56), (1), (36), (35), (12)

Q183 (27), (17), (56), (56), (34), (34), (12)

Q184 (27)(46), (35), (27), (35), (27), (35), (35)

Q185 (27)(46), (15), (1), (15), (27)(46), (15), (15)

Q186 (27)(46), (15), (15), (15), (27)(46), (15), (15)

Q187 (27)(46), (15), (27), (15), (27)(46), (15), (15)

Q188 (27)(46), (15), (27)(46), (15), (27)(46), (15), (15)

Q189 (27)(46), (15), (26)(47), (15), (27)(46), (15), (15)

Q190 (27)(46), (13)(46), (27)(46), (13)(27), (1), (13)(27), (13)(46)

Q191 (27)(46), (13)(46), (27)(46), (13)(27), (27), (13)(27), (13)(46)

Q192 (27)(46), (46), (46), (35), (46), (35), (46)

Q193 (27)(46), (46), (27), (35), (27), (35), (46)

Q194 (27)(46), (46), (27), (27), (1), (27), (46)

Q195 (27)(46), (46), (27), (27), (46), (27), (46)

Q196 (27)(46), (46), (27), (27), (27), (27), (46)
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Table 15: Quandles of order 7 as disjoint cycles of columns: 197–224 of 298

Quandle X Disjoint Cycle Notation

Q197 (27)(46), (46), (27)(46), (13), (1), (13), (46)

Q198 (27)(46), (46), (27)(46), (13), (13), (13), (46)

Q199 (27)(46), (46), (27)(46), (13), (46), (13), (46)

Q200 (27)(46), (46), (27)(46), (13), (27), (13), (46)

Q201 (27)(46), (46), (27)(46), (15), (27)(46), (15), (46)

Q202 (27)(46), (46), (27)(46), (27), (1), (27), (46)

Q203 (27)(46), (46), (27)(46), (27), (13), (27), (46)

Q204 (27)(46), (46), (27)(46), (27), (27), (27), (46)

Q205 (27)(46), (46), (27)(46), (27), (27)(46), (27), (46)

Q206 (27)(46), (46), (27)(46), (13)(27), (1), (13)(27), (46)

Q207 (27)(46), (46), (27)(46), (13)(27), (13), (13)(27), (46)

Q208 (27)(46), (46), (27)(46), (13)(27), (46), (13)(27), (46)

Q209 (27)(46), (46), (27)(46), (13)(27), (27), (13)(27), (46)

Q210 (27)(46), (35)(46), (46), (35), (46), (35), (35)(46)

Q211 (27)(46), (35)(46), (46), (27), (46), (27), (35)(46)

Q212 (27)(46), (35)(46), (27), (35), (27), (35), (35)(46)

Q213 (27)(46), (35)(46), (27), (27), (27), (27), (35)(46)

Q214 (27)(46), (35)(46), (27), (27)(35), (27), (27)(35), (35)(46)

Q215 (27)(46), (35)(46), (27)(46), (35), (27)(46), (35), (35)(46)

Q216 (27)(46), (35)(46), (27)(46), (27), (27)(46), (27), (35)(46)

Q217 (27)(46), (35)(46), (27)(46), (27)(35), (27)(46), (27)(35), (35)(46)

Q218 (27)(46), (15)(47), (1), (15)(26), (24)(67), (15)(47), (15)(26)

Q219 (27)(46), (15)(47), (26)(47), (15)(26), (24)(67), (15)(47), (15)(26)

Q220 (27)(46), (17)(36), (27)(46), (17)(36), (1), (12)(34), (12)(34)

Q221 (27)(46), (17)(36), (26)(47), (16)(37), (1), (14)(23), (12)(34)

Q222 (27)(46), (17)(46), (46), (35), (46), (35), (12)(46)

Q223 (27)(35)(46), (46), (27), (35), (27), (35), (46)

Q224 (27)(35)(46), (46), (27), (27), (27), (27), (46)
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Table 16: Quandles of order 7 as disjoint cycles of columns: 225–251 of 298

Quandle X Disjoint Cycle Notation

Q225 (27)(35)(46), (35)(46), (46), (35), (46), (35), (35)(46)

Q226 (27)(35)(46), (35)(46), (27), (35), (27), (35), (35)(46)

Q227 (27)(35)(46), (35)(46), (27), (27), (27), (27), (35)(46)

Q228 (27)(35)(46), (35)(46), (27)(46), (27), (27)(46), (27), (35)(46)

Q229 (27)(35)(46), (35)(46), (27)(46), (27)(35), (27)(46), (27)(35), (35)(46)

Q230 (27)(35)(46), (34)(56), (27), (27), (27), (27), (34)(56)

Q231 (27)(35)(46), (34)(56), (26)(47), (25)(37), (26)(47), (25)(37), (34)(56)

Q232 (27)(35)(46), (16)(34)(57), (12)(45)(67), (15)(26)(37),

(17)(24)(36), (13)(25)(47), (14)(23)(56)

Q233 (27)(35)(46), (17)(35)(46), (46), (35), (46), (35), (12)(35)(46)

Q234 (267)(345), (13)(45), (154)(267), (135)(267), (143)(267), (14)(35), (15)(34)

Q235 (267)(345), (345), (276), (276), (276), (345), (345)

Q236 (267)(345), (345), (267), (267), (267), (345), (345)

Q237 (267)(345), (164)(357), (147)(256), (152)(376), (136)(274), (175)(243), (123)(465)

Q238 (267)(345), (137)(465), (125)(476), (163)(275), (174)(236), (142)(357), (156)(243)

Q239 (245367), (173564), (152746), (126375), (147623), (134257), (165432)

Q240 (245367), (175634), (157426), (123765), (146273), (132547), (164352)

Q241 (25367), (14), (14), (25367), (14), (14), (14)

Q242 (25367), (14)(36)(57), (14)(27)(56), (27635), (14)(23)(67), (14)(25)(37), (14)(26)(35)

Q243 (267)(35), (14), (14), (267)(35), (14), (14), (14)

Q244 (267)(35), (14), (14)(276), (267)(35), (14)(276), (14), (14)

Q245 (267)(35), (14), (276), (267)(35), (276), (14), (14)

Q246 (267)(35), (14), (267), (267)(35), (267), (14), (14)

Q247 (267)(35), (14), (14)(267), (267)(35), (14)(267), (14), (14)

Q248 (267)(35), (35), (14), (267)(35), (14), (35), (35)

Q249 (267)(35), (35), (276), (1), (276), (35), (35)

Q250 (267)(35), (35), (276), (35), (276), (35), (35)

Q251 (267)(35), (35), (276), (276), (276), (35), (35)
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Table 17: Quandles of order 7 as disjoint cycles of columns: 252–279 of 298

Quandle X Disjoint Cycle Notation

Q252 (267)(35), (35), (276), (276)(35), (276), (35), (35)

Q253 (267)(35), (35), (276), (267), (276), (35), (35)

Q254 (267)(35), (35), (276), (267)(35), (276), (35), (35)

Q255 (267)(35), (35), (267), (1), (267), (35), (35)

Q256 (267)(35), (35), (267), (35), (267), (35), (35)

Q257 (267)(35), (35), (267), (276), (267), (35), (35)

Q258 (267)(35), (35), (267), (267), (267), (35), (35)

Q259 (267)(35), (35), (267), (267)(35), (267), (35), (35)

Q260 (267)(35), (14)(35), (14), (267)(35), (14), (14)(35), (14)(35)

Q261 (267)(35), (14)(35), (14)(276), (267)(35), (14)(276), (14)(35), (14)(35)

Q262 (267)(35), (14)(35), (276), (267)(35), (276), (14)(35), (14)(35)

Q263 (267)(35), (14)(35), (267), (267)(35), (267), (14)(35), (14)(35)

Q264 (267)(35), (14)(35), (14)(267), (267)(35), (14)(267), (14)(35), (14)(35)

Q265 (2567), (13), (2567), (1), (13), (13), (13)

Q266 (2567), (13), (2567), (13), (13), (13), (13)

Q267 (2567), (13), (2567), (13)(2765), (13), (13), (13)

Q268 (2567), (13), (2567), (2765), (13), (13), (13)

Q269 (2567), (13), (2567), (2567), (13), (13), (13)

Q270 (2567), (13), (2567), (13)(2567), (13), (13), (13)

Q271 (2567), (13), (2567), (13)(26)(57), (13), (13), (13)

Q272 (2567), (13), (2567), (26)(57), (13), (13), (13)

Q273 (2567), (143), (2567), (2567), (143), (143), (143)

Q274 (2567), (34), (26)(57), (26)(57), (34), (34), (34)

Q275 (2567), (1735), (2765), (1), (1236), (1537), (1632)

Q276 (2567), (13)(57), (2765), (1), (13)(26), (13)(57), (13)(26)

Q277 (2567), (13)(57), (2765), (26)(57), (13)(26), (13)(57), (13)(26)

Q278 (2567)(34), (143), (14)(2567), (13)(2567), (134), (143), (134)

Q279 (2567)(34), (34), (26)(57), (26)(57), (34), (34), (34)
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Table 18: Quandles of order 7 as disjoint cycles of columns: 280–298

Quandle X Disjoint Cycle Notation

Q280 (267), (13), (267), (1), (13), (13), (13)

Q281 (267), (13), (267), (1), (276), (13), (13)

Q282 (267), (13), (267), (1), (267), (13), (13)

Q283 (267), (13), (267), (13), (13), (13), (13)

Q284 (267), (13), (267), (13), (276), (13), (13)

Q285 (267), (13), (267), (13), (267), (13), (13)

Q286 (267), (13), (267), (276), (276), (13), (13)

Q287 (267), (13), (267), (276), (267), (13), (13)

Q288 (267), (13), (267), (267), (267), (13), (13)

Q289 (267), (143), (267), (267), (1), (143), (143)

Q290 (267), (143), (267), (267), (143), (143), (143)

Q291 (267), (143), (267), (267), (134), (143), (143)

Q292 (267), (143), (267), (267), (134)(276), (143), (143)

Q293 (267), (34), (15), (15), (267), (34), (34)

Q294 (267), (13)(45), (267), (13), (13), (13)(45), (13)(45)

Q295 (267), (13)(45), (267), (276), (276), (13)(45), (13)(45)

Q296 (267), (13)(45), (267), (267), (267), (13)(45), (13)(45)

Q297 (267), (176), (45), (35), (34), (127), (162)

Q298 (267), (13)(45)(67), (276), (276), (267), (13)(27)(45), (13)(26)(45)

35



Table 19: Quandles of order 7 with their automorphism groups 1–56 of 298

Quandle X Inn(X) Aut(X) Quandle X Inn(X) Aut(X)

Q1 {1} Σ7 Q29 Z6 Z6 × Z2

Q2 Z2 Z2 × Σ4 Q30 Z6 D6

Q3 Z3 Z3 × Σ3 Q31 Z2 Z2 × Z2 × Σ3

Q4 Z4 Z4 × Z2 Q32 Z2 × Z2 Z2 × Z2 × Z2

Q5 Z2 Z2 × D4 Q33 Z2 × Z2 Z2 × Z2 × Z2

Q6 Z5 Z5 Q34 Z2 × Z2 Z2 × Z2 × Z2

Q7 Z6 Z6 Q35 Z2 × Z2 Z2 × Z2 × Z2

Q8 Z6 Z6 Q36 Z2 × Z2 Z2 × Z2 × Z2

Q9 Z3 Z3 × Σ3 Q37 Z2 × Z2 Z2 × Z2 × Z2

Q10 Z4 Z4 × Z2 Q38 Z2 × Z2 Z2 × Z2 × Z2

Q11 Z2 Z2 × Σ4 Q39 Z2 × Z2 D4

Q12 Z2 Z2 × Z2 × Σ3 Q40 Z3 Z3 × Σ3

Q13 Z2 × Z2 Z2 × Z2 Q41 Z3 Z6

Q14 Z2 × Z2 D4 Q42 Z6 Z6

Q15 Z6 Z6 Q43 Z6 Z6

Q16 Z6 Z6 Q44 Z6 Z6

Q17 Z3 Z6 × Z2 Q45 Z4 Z4 × Σ3

Q18 Z3 D6 Q46 Z4 Z4 × Z2

Q19 Z6 Z6 Q47 Z4 Z4 × Z2

Q20 Z6 Z6 Q48 Z4 × Z2 Z4 × Z2

Q21 Z4 Z4 × Z2 Q49 Z4 × Z2 Z4 × Z2

Q22 Z4 D4 Q50 Z4 × Z2 Z4 × Z2

Q23 Z4 Z4 Q51 Z4 × Z2 Z4 × Z2

Q24 Z2 Z2 × D4 Q52 Z4 D4

Q25 Z5 Z10 Q53 Z4 Z4 × Z2

Q26 D3 D3 × Z2 Q54 Z2 D4 × Σ3

Q27 Z5 Z5 Q55 Z2 × Z2 Z2 × Z2 × Z2

Q28 Z5 D5 Q56 Z2 × Z2 Z2 × Z2 × Z2
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Table 20: Quandles of order 7 with their automorphism groups 57–112 of 298

Quandle X Inn(X) Aut(X) Quandle X Inn(X) Aut(X)

Q57 Z2 × Z2 Z2 × D4 Q85 Z3 × Z3 Z3 × Z3

Q58 Z4 Z4 × Z2 Q86 Z3 (Z6 × Z2) o Z2

Q59 Z2 × Z2 Z2 × Z2 × Z2 Q87 Z6 Z6

Q60 Z2 × Z2 Z2 × D4 Q88 Z6 Z6

Q61 Z2 × Z2 Σ4 Q89 Z6 Z6

Q62 Z3 o Z4 Z4 × Σ3 Q90 Z6 Z6 × Z2

Q63 Z3 × Σ3 Z3 × Σ3 Q91 Z6 Z6

Q64 Σ3 Z2 × Z2 × Σ3 Q92 Z6 Z6

Q65 Σ3 Σ3 Q93 Z6 Z6 × Z2

Q66 Σ3 D4 × Σ3 Q94 Z6 Z6

Q67 Σ3 Σ3 × Σ4 Q95 Z6 Z6 × Z2

Q68 Z2 Z2 × Σ4 Q96 Z3 × Σ3 Z3 × Σ3

Q69 Z2 × Z2 Z2 × Z2 Q97 Z3 × Σ3 Z3 × Σ3

Q70 Z2 × Z2 Z2 × Z2 Q98 Z3 × Σ3 Z3 × Σ3

Q71 Z6 Z6 Q99 Z2 × Z2 Z2 × D4

Q72 Z6 Z6 Q100 Z2 × Z2 Z2 × Z2 × Z2

Q73 Z2 × Z2 Z2 × Z2 × Z2 Q101 Z6 × Z2 Z6 × Z2

Q74 Z2 × Z2 Z2 × Z2 Q102 Z2 × Z2 D4 × Σ3

Q75 Z2 × Z2 Z2 × Z2 × Z2 Q103 Z6 × Z2 (Z6 × Z2) o Z2

Q76 D6 D6 Q104 Z6 × Z2 Z3 × D4

Q77 D6 D6 Q105 A4 Z3 × A4

Q78 Z3 Z3 × Σ4 Q106 A4 × Z2 A4 × Z2

Q79 Z3 Z3 × Σ3 Q107 A4 A4 × Σ3

Q80 Z6 Z6 Q108 Z2 Z2 × Σ5

Q81 Z6 Z6 Q109 Z2 × Z2 Z2 × Z2 × Z2

Q82 Z6 Z6 Q110 Z2 × Z2 Z2 × Z2 × Z2

Q83 Z3 × Z3 Z3 × Z3 Q111 Z6 Z6

Q84 Z3 × Z3 Z3 × Z3 Q112 Z6 Z6
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Table 21: Quandles of order 7 with their automorphism groups 113–168 of 298

Quandle X Inn(X) Aut(X) Quandle X Inn(X) Aut(X)

Q113 Z4 × Z2 Z4 × Z2 Q141 Z2 × Σ3 Z2 × Z2 × Σ3

Q114 Z4 × Z2 Z4 × Z2 Q142 Z2 × Z2 × Z2 Z2 × D4

Q115 Z2 × Z2 Z2 × D4 Q143 Z2 × Z2 × Z2 Z2 × Z2 × Z2

Q116 Z2 × Z2 Z2 × D4 Q144 Z2 × Z2 × Z2 Z2 × D4

Q117 Z2 × Z2 Z2 × Z2 × Z2 Q145 A4 × Z2 A4 × Z2

Q118 Z2 × Z2 Z2 × Z2 Q146 A4 × Z2 A4 × Z2

Q119 Z2 × Z2 Z2 × Z2 × Z2 Q147 Z2 × Z2 Z2 × Z2 × Z2

Q120 Z6 Z6 × Z2 Q148 Z2 × Z2 × Z2 Z2 × Z2 × Z2

Q121 Z6 Z6 Q149 Z2 × Z2 Z2 × D4

Q122 Z6 D6 Q150 Z2 × Z2 × Z2 Z2 × D4

Q123 Z6 Z6 Q151 Z2 × Z2 Z2 × Z2 × Z2

Q124 Z6 Z6 × Z2 Q152 Z2 × Z2 × Z2 Z2 × Z2 × Z2

Q125 Z6 D6 Q153 Z2 × Z2 × Z2 Z2 × Z2 × Z2

Q126 Z2 × Z2 Z2 × Z2 × Σ3 Q154 Z2 × Z2 Z2 × Z2 × Z2

Q127 Z2 × Z2 Z2 × Z2 × Z2 Q155 Z2 × Z2 × Z2 Z2 × Z2 × Z2

Q128 Z2 × Z2 × Z2 Z2 × Z2 × Z2 Q156 Z2 × Z2 Z2 × Z2 × Z2

Q129 Z2 × Z2 × Z2 Z2 × Z2 × Z2 Q157 Z6 Z6 × Z2

Q130 Z2 × Z2 × Z2 Z2 × Z2 × Z2 Q158 Z6 × Z2 Z6 × Z2

Q131 Z2 × Z2 × Z2 Z2 × Z2 × Z2 Q159 Z2 × Z2 × Z2 Z2 × Z2 × Z2

Q132 Z2 × Z2 Z2 × Z2 × Z2 Q160 Z2 × Z2 Z2 × Z2 × Z2

Q133 Z2 × Z2 Z2 × Z2 × Σ3 Q161 Z2 Z2 × D4

Q134 Z2 × Z2 × Z2 Z2 × Z2 × Z2 Q162 Z2 × Z2 × Z2 Z2 × D4

Q135 Z2 × Z2 × Z2 Z2 × Z2 × Z2 Q163 Z6 Z6 × Z2

Q136 Z2 × Z2 × Z2 Z2 × Z2 × Z2 Q164 Z6 × Z2 Z6 × Z2

Q137 Z2 × Z2 × Z2 Z2 × Z2 × Z2 Q165 D3 D6

Q138 Z2 × Σ3 Z2 × Z2 × Σ3 Q166 D3 D6

Q139 Z2 × Σ3 Z2 × Z2 × Σ3 Q167 D6 D6

Q140 Z2 × Σ3 Z2 × Z2 × Σ3 Q168 D6 D6
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Table 22: Quandles of order 7 with their automorphism groups 169–224 of 298

Quandle X Inn(X) Aut(X) Quandle X Inn(X) Aut(X)

Q169 Z5 o Z4 Z2 × (Z5 o Z4) Q197 Z2 × Z2 × Z2 Z2 × Z2 × Z2

Q170 Z5 o Z4 Z2 × (Z5 o Z4) Q198 Z2 × Z2 × Z2 Z2 × Z2 × Z2

Q171 Z5 o Z4 Z2 × (Z5 o Z4) Q199 Z2 × Z2 × Z2 Z2 × Z2 × Z2

Q172 Z5 o Z4 Z2 × (Z5 o Z4) Q200 Z2 × Z2 × Z2 Z2 × Z2 × Z2

Q173 D5 Z2 × (Z5 o Z4) Q201 Z2 × Z2 × Z2 Z2 × Z2 × Z2

Q174 D5 Z2 × (Z5 o Z4) Q202 Z2 × Z2 Z2 × D4

Q175 Z2 × Z2 × Z2 Z2 × A4 Q203 Z2 × Z2 × Z2 Z2 × D4

Q176 Z2 × Z2 × Z2 Z2 × Z2 × Z2 Q204 Z2 × Z2 Z2 × Z2 × Z2

Q177 Z2 × Z2 D4 Q205 Z2 × Z2 D4 × Σ3

Q178 Z2 × Z2 Z2 × Z2 × Z2 Q206 Z2 × Z2 × Z2 Z2 × Z2 × Z2

Q179 Z2 × Z2 × Z2 Z2 × Z2 × Z2 Q207 Z2 × Z2 × Z2 Z2 × Z2 × Z2

Q180 Z2 × Z2 Z2 × Z2 × Z2 Q208 Z2 × Z2 × Z2 Z2 × Z2 × Z2

Q181 Z2 × Z2 Z2 × Z2 × Σ3 Q209 Z2 × Z2 × Z2 Z2 × Z2 × Z2

Q182 Σ3 × Σ3 (Σ3 × Σ3) o Z2 Q210 Z2 × Z2 × Z2 Z2 × Z2 × Z2

Q183 Z2 × Z2 × Σ3 D4 × Σ3 Q211 Z2 × Z2 × Z2 Z2 × Z2 × Z2

Q184 Z2 × Z2 × Z2 Z2 × Z2 × Z2 Q212 Z2 × Z2 × Z2 Z2 × Z2 × Z2

Q185 Z2 × Z2 Z2 × D4 Q213 Z2 × Z2 × Z2 Z2 × Z2 × Z2

Q186 Z2 × Z2 Z2 × D4 Q214 Z2 × Z2 × Z2 Z2 × Z2 × Z2

Q187 Z2 × Z2 × Z2 Z2 × Z2 × Z2 Q215 Z2 × Z2 × Z2 Z2 × Z2 × Z2

Q188 Z2 × Z2 Z2 × D4 Q216 Z2 × Z2 × Z2 Z2 × Z2 × Z2

Q189 Z2 × Z2 × Z2 Z2 × Z2 × Z2 Q217 Z2 × Z2 Z2 × D4

Q190 Z2 × Z2 Z2 × Σ4 Q218 D4 D4

Q191 Z2 × Z2 × Z2 Z2 × D4 Q219 D4 D4

Q192 Z2 × Z2 × Z2 Z2 × Z2 × Z2 Q220 Σ3 D6

Q193 Z2 × Z2 × Z2 Z2 × Z2 × Z2 Q221 Σ4 Σ4

Q194 Z2 × Z2 Z2 × Z2 Q222 Z2 × Z2 × Σ3 Z2 × Z2 × Σ3

Q195 Z2 × Z2 D4 Q223 Z2 × Z2 × Z2 Z2 × A4

Q196 Z2 × Z2 Z2 × Z2 × Z2 Q224 Z2 × Z2 × Z2 Z2 × Z2 × Z2
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Table 23: Quandles of order 7 with their automorphism groups 225–280 of 298

Quandle X Inn(X) Aut(X) Quandle X Inn(X) Aut(X)

Q225 Z2 × Z2 × Z2 Z2 × D4 Q253 Z6 Z6

Q226 Z2 × Z2 × Z2 Z2 × Z2 × Z2 Q254 Z6 Z6 × Z2

Q227 Z2 × Z2 Z2 × D4 Q255 Z6 Z6

Q228 Z2 × Z2 × Z2 Z2 × Z2 × Z2 Q256 Z6 Z6

Q229 Z2 × Z2 × Z2 Z2 × Σ4 Q257 Z6 Z6

Q230 Z2 × Z2 × Z2 Z2 × Z2 × Z2 Q258 Z6 Z6

Q231 D6 D6 Q259 Z6 Z6 × Z2

Q232 D7 (Z7 o Z3) o Z2 Q260 Z6 × Z2 Z6 × Z2

Q233 Z2 × Z2 × Σ3 D4 × Σ3 Q261 Z6 × Z2 (Z6 × Z2) o Z2

Q234 A4 A4 Q262 Z6 × Z2 Z6 × Z2

Q235 Z3 × Z3 Z3 × Z3 Q263 Z6 × Z2 Z6 × Z2

Q236 Z3 × Z3 Z3 × Σ3 Q264 Z6 × Z2 Z3 × D4

Q237 Z7 o Z3 (Z7 o Z3) o Z2 Q265 Z4 × Z2 Z4 × Z2

Q238 Z7 o Z3 (Z7 o Z3) o Z2 Q266 Z4 × Z2 Z4 × Z2

Q239 Z7 o Z3 (Z7 o Z3) o Z2 Q267 Z4 × Z2 Z4 × Z2

Q240 Z7 o Z3 (Z7 o Z3) o Z2 Q268 Z4 × Z2 Z4 × Z2

Q241 Z10 Z10 Q269 Z4 × Z2 Z4 × Z2

Q242 D5 D5 Q270 Z4 × Z2 Z4 × Z2

Q243 Z6 × Z2 Z6 × Z2 Q271 Z4 × Z2 Z4 × Z2

Q244 Z6 × Z2 Z6 × Z2 Q272 Z4 × Z2 Z4 × Z2

Q245 Z6 × Z2 Z6 × Z2 Q273 Z12 Z12

Q246 Z6 × Z2 Z6 × Z2 Q274 Z4 × Z2 Z4 × Z2

Q247 Z6 × Z2 Z6 × Z2 Q275 Σ4 Σ4

Q248 Z6 × Z2 Z6 × Z2 Q276 D4 D4

Q249 Z6 Z6 Q277 D4 D4

Q250 Z6 Z6 Q278 Z3 o Z4 Z3 o Z4

Q251 Z6 Z6 Q279 Z4 × Z2 Z4 × Z2

Q252 Z6 Z6 Q280 Z6 Z6
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Table 24: Quandles of order 7 with their automorphism groups 281–298

Quandle X Inn(X) Aut(X) Quandle X Inn(X) Aut(X)

Q281 Z6 Z6 Q290 Z3 × Z3 Z3 × Z3

Q282 Z6 Z6 Q291 Z3 × Z3 Z3 × Z3

Q283 Z6 Z6 × Z2 Q292 Z3 × Z3 Z3 × Σ3

Q284 Z6 Z6 Q293 Z6 × Z2 Z6 × Z2

Q285 Z6 Z6 Q294 Z6 × Z2 Z6 × Z2

Q286 Z6 Z6 × Z2 Q295 Z6 (Z6 × Z2) o Z2

Q287 Z6 Z6 Q296 Z6 Z3 × D4

Q288 Z6 Z6 × Z2 Q297 A4 × Σ3 A4 × Σ3

Q289 Z3 × Z3 Z3 × Σ3 Q298 Σ3 D6
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Chapter 3

Conclusion

After reading Ho and Nelsen’s Matrices and finite quandles, [13], we thought to continue where

they left off. In 2006, Ricardo Restrepo wrote a program in matlab which generated all quandles up

to eight elements. Then in 2010, Restrepo rewrote the program in C which generates all quandles

up to nine elements. A partial description of this algorithm is in [8]. With the help of Edwin Clark,

we wrote a program using the software Maple to find as much information about the automorphism

and inner automorphism as possible.

Throughout the process of finding these groups we were able to identify certain patterns. Specifi-

cally, we saw that for the dihedral quandle, Rn, of order n the inner automorphism group is isomor-

phic to the dihedral group Dm
2

of order m, where m = lcm(n, 2). Again looking at the dihedral

quandles, we saw that the cardinality of the automorphism group of Rn is nφ(n). These observa-

tions led to the first two theorems of Chapter 2.

After the automorphism groups and the inner automorphism groups of the dihedral quandles of or-

ders 6 and 7 were computed, a discussion between Elhamdadi and Professor Hou occurred. As a re-

sult of that discussion Professor Hou’s attention was drawn to the automorphism group of Alexander

quandles. Hou computes and gives the structure of the automorphism group of Alexander quandles

in [14].
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