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Abstract

Lean distribution networks have been facing an increased exposure to the risk of unpre-

dicted disruptions causing significant economic forfeitures. At the same time, the existing

literature contains very few studies that examine the impact of fortification of facilities for

improving network reliability. This dissertation presents three related classes of models

that support the design of reliable distribution networks. The models extend the uncapac-

itated P-median and fixed-charge location models by considering heterogeneous facility

failure probabilities, supplier backups, and facility fortification within a finite budget.

The first class of models considers binary fortification via linear fortification functions.

The second class of models extends binary fortification to partial (continuous) reliability

improvement with linear fortification. This extension allows a more efficient utilization of

limited fortification resources. The third class of models generalizes linear fortification to

nonlinear to reflect the effect of diminishing marginal reliability improvement from forti-

fication investment. For each of the models, we develop solution algorithms and demon-

strate their computational efficiency. We present a detailed discussion on the novelty of the

proposed models. The models are intended to support corporate decisions on the design of

robust distribution networks using limited fortification resources.

v



Chapter 1: Introduction

As a part of supply chains, distribution networks (DNs) are referred to the entire chain

of intermediaries and transportation logistics for distribution of goods and services from

the suppliers to the consumers. Modern distribution networks are complex engineered

systems due to their size, span, the nature of customer assignation, and the network flow.

At the same time, more and more enterprises have been embracing the philosophy of lean

manufacturing with an ever increasing reliance on consolidated suppliers, outsourcing,

slim inventories, and just-in-time production and delivery. Inasmuch as such reductionism

has boosted the operational efficiency of the companies, it has also elevated their risk

exposure to unpredicted disruptions. Such disruptions, as triggered by forces of nature,

process hazards, and human intervention, can have a potential to entail staggering eco-

nomic ramifications. This is evidenced by the following sample of recent multi-billion

enterprise forfeitures lost to disrupted distribution networks.

In March of 2000, a fire event halted a Philips’s semiconductor fabrication plant in New

Mexico, U.S. for nine months, causing a $40 million direct sales loss to Philips and an

indirect loss of $2.34 billion to Ericsson’s mobile phone division (Sheffi, 2005). In March

of 2001, the U.S. banned the meat import from the European Union in fear of potential

spread of the foot-and-mouth disease originated in the U.K. The ban was applied to 15

countries and affected four percent of the U.S. pork supply (Marquis, 2001; Reuters, 2001).

In September 11, 2001, following the terrorist attack, all U.S. boarders were closed and all

flights canceled for several days. This lockdown forced Ford Motors to idle several assem-

bly lines due to the lack of components supplied from overseas (Sheffi and Rice, 2005;
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Cundari et al., 2008). Two years later, a deadly SARS outbreak disrupted among many

other industries the furniture manufacturing sector of China, which accounted for about

15 percent of all furniture sold in the U.S. (Koncius, 2003b,a). More recently, in 2005, the

aftermath of hurricane Katrina caused a severe disruption to the crude oil production in the

Gulf of Mexico amounting nearly 1.4 million barrels a day (Mouawad and Romero, 2005;

Strahan and Smith, 2005; CNN, 2008; Kotak, 2005).

Snyder and Daskin (2005) illustrated the need for reliable distribution network design in

the following example. For a supply network that serves 49 cities, consisting of all state

capitals of the United States and Washington DC., the optimal design of an undisrupted

network is shown in Figure 1.1. This solution yielded a fixed cost of $348,000 and a trans-

portation cost of $509,000.

Figure 1.1: A schematic of the optimal undisrupted distribution network (Snyder and
Daskin, 2005)

The authors also studied the impact of disruptions on the optimal network design. If the

facility in Sacramento, CA became unavailable due to disruptions (see Figure 1.2), cus-

tomers assigned to this facility would have to seek their demand from the facilities in

Springfield, IL and Austin, TX. As a result, the transportation cost increased to $1,081,000

(112% increase). The authors also studied several disruption scenarios, failing one facility

at a time. The transportation costs associated with each scenario are shown in Table 1.1.

2



Figure 1.2: A schematic of the resulting optimal network with a failed facility in Sacra-
mento (Snyder and Daskin, 2005)

Table 1.1: Transportation costs in the disrupted scenarios (Snyder and Daskin, 2005)
Location Failure cost % increase

Sacramento, CA 1,081,229 112%
Harrisburg, PA 917,332 80%
Springfield, IL 696,947 37%

Montgomery, AL 639,631 26%
Austin, TX 636,858 25%

Transportation cost without failures 508,858 0%

The above and some other examples (Sheffi, 2001; Christopher and Peck, 2004; Wilson,

2005; Glionna and Rotella, 2009; Carpenter, 2010) reveal the acute need for distribution

networks designed to effectively balance the lean and robust requirements.

Enhancing the reliability of distribution networks can be achieved by implementation and

integration of both proactive and reactive mitigation options, including incorporation of

backup and redundancy measures, investment in reliability improvement of existing facili-

ties (fortification), and assuring rapid post-disruption recovery. In our work, we implement

disruption hedging in the form of both facility backup and fortification.

The objective of this dissertation is to contribute to addressing the issue of designing ro-

bust and agile distribution networks. To this end, we have developed three classes of math-

ematical models for optimal facility location, assignment of customers, and allocation of

limited fortification resources for DNs exposed to facility disruptions.

3



The remainder of this dissertation is organized as follows. In Chapter 2, we reviewed the

existing related literature on reliable network design and identified some significant lim-

itations. We first reviewed the papers which considered localized supply rate disruptions,

which were one of the most common types of disruptions found in the literature. We then

explored the papers on localized production rate disruptions and disruptions caused by

temporary price changes. Finally, we reviewed the literature on network-wide disruptions

and network design.

In Chapter 3, we presented two related models for design of reliable distribution networks:

a reliable P-median problem with binary fortification (RPMP-BF) and a reliable uncapac-

itated fixed-charge location problem with binary fortification (RUFL-BF). Both models

consider heterogeneous facility failure probabilities, one layer of supplier backup, and

facility fortification within a finite budget. We assumed that once fortified, a facility would

become totally reliable (this is called binary fortification). For both models, we developed

Lagrangian relaxation-based (LR) solution algorithms and demonstrated their computa-

tional efficiency. We compared the effectiveness of the LR-based solutions to that of the

solutions obtained by a myopic policy which aimed to first fortify most reliable facilities

regardless of the network demand topology. Finally, we discussed an alternative way to

assess the effectiveness of the design solutions by using the rate of return on fortification

investment.

In Chapter 4, we extended the RUFL-BF and RPMP-BF models with fortification devel-

oped in Chapter 3 by considering partial fortification whereby reliability improvements of

fortified facilities were defined as continuous variables. The problems were formulated as

nonlinear mixed integer programming models, RUFL-PF and RPMP-PF. For both models,

we developed Lagrangian relaxation-based heuristic solution algorithms and demonstrated

their computational efficiency for solving large-scale problems.

Chapter 5 extends the RUFL-PF with linear fortification to the case when the amount of

reliability improvement is a nonlinear function of fortification investment. The approach
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developed below can also be applied to the RPMP-PF model. Finally, Chapter 6 presents a

summary of main results, main contributions, and directions for future research.
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Chapter 2: Literature Review

In this chapter, we review the existing relevant literature on reliable network design. We

classify the literature based on the type of disruptions (supply rate, production rate, and

price changes) as well as their scope (localized and network-wide). Papers which consider

localized supply rate disruptions are discussed in §2.1, followed by a review of the litera-

ture on localized production rate disruptions in §2.2 and disruptions due to price changes

in §2.3. Papers considering localized disruptions establish a foundation for the literature

on network-wide disruptions which is discussed in detail in §2.4.

2.1 Supply Rate Disruptions

One of the most common types of disruption appearing in the production/inventory control

and supply chain literature is that of supply rate changes. The work was pioneered by

Meyer et al. (1979) who offered a model of a single-stage production with a constant de-

mand where the supply was subject to a random failure. Under the assumption of Poisson

machine failures, a fixed storage capacity and no setup time and/or setup cost, the authors

derived performance measures, such as average inventory level and the fraction of time de-

mand was met, for either exponentially distributed or constant repair times. Backordering

was not allowed and the issue of cost minimization was not addressed. Posner and Berg

(1989) extended this work to the case where demand followed a compound Poisson distri-

bution. An explicit closed form solution for the steady-state distribution of the inventory
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level was derived, and this result was then used to compute system performance indices of

interest related to service level to customers and machine utilization.

More recently, Arreola-Risa and DeCroix (1998) explored the management of inventory

for stochastic-demand systems, where the product’s supply was randomly disrupted for

periods of random duration. The source of supply disruptions could be process-related or

market-related. Demands that arrived when the inventory system was temporarily out of

stock became a mix of backorders and lost sales. The stock was managed according to a

modified (s,S) policy. The analysis yielded the optimal values of the policy parameters,

explored the impact on the optimal values of the policy parameters of variations in the

average frequency and duration of supply disruptions, and of variations in the fraction of

stockouts that were backordered, and provided insight into the optimal inventory strategy

when there were changes in the severity of supply disruptions or in the behavior of unfilled

demands. Weiss and Rosenthal (1992) determined the optimal inventory policy when the

timing (but not the duration) of supply disruptions was known in advance.

Parlar and Berkin (1991) studied the classic economic order quantity (EOQ) problem

with supply disruptions, and Parlar and Perry (1996) considered a order-quantity/reorder-

point inventory models with two suppliers subject to independent disruptions. Concepts

from renewal reward processes were used to develop average cost objective function. In

the case of two suppliers, spectral theory was used to derive explicit expressions for the

transient probabilities of a four-state continuous-time Markov chain representing the status

of the system. These probabilities were used to compute the exact form of the average cost

expression. For the multiple-supplier problem, assuming that all the suppliers had similar

availability characteristics, the authors developed a simple model and showed that as the

number of suppliers became large, the model reduced to the classical EOQ model.

Mohebbi (2003) presented an analytical model for computing the stationary distribution

of the on-hand inventory in a continuous-review inventory system with compound Poisson

demand, Erlang distributed lead time, and lost sales, where the supplier can assume one of
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the two ”available” and ”unavailable” states at any point in time according to a continuous-

time Markov chain. Exact analytical expressions were derived for the special case where

demand sizes were exponentially distributed, and some cost minimization numerical re-

sults were presented. A similar approach was used in Gurler and Parlar (1997) who con-

sidered deterministic demand with two suppliers where both of them could experience

disruptions with on and off periods. The on periods had an Erlang distribution while the

off periods were generally distributed.

Papers addressing both supply disruptions and random demand include Chao (1987);

Parlar (1997); Song and Zipkin (1996). Chao (1987) proposed a dynamic model concern-

ing optimal inventory policies in the presence of market disruptions, which were often

characterized by events with uncertain arrival time, severity and duration. The model al-

lowed the rate of inventory accumulation or reduction to be continuously adjusted. Under

a linear cost structure and the framework of a continuous-time Markov decision process

with a finite state space the author developed a formulation that characterized the opti-

mal control policy using a single inventory target. Parlar (1997) considered a continuous-

review stochastic inventory problem with random demand and random lead-time with the

supplier availability modeled as a semi-Markov process. The standard (q, r) policy was

used when the supplier was available. The form of the policy changed when the supplier

became unavailable in which case orders cannot be placed when the reorder point was

reached. Parlar constructed the average cost per time objective function using the renewal

reward theorem. Finally, Song and Zipkin (1996) explored an inventory-control model

which included a detailed Markovian model of the resupply system. A number of papers

on supply and demand changes have been developed in the field of oil stockpiling, as

there has been grave concern over the oil supply from the Middle East. For examples, see

Teisberg (1981); Chap and Manne (1982); Murphy et al. (1987).
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2.2 Production Rate Disruptions

Modeling production rate disruptions (like machine failures) challenged many researchers

for several decades, and numerous research efforts have been devoted to extending classi-

cal economic manufacturing quantity (EMQ) models. Rosenblatt and Lee (1986) derived

an EMQ model when the production process was subject to a random deterioration from

an in-control state to an out-of control state. A somewhat similar approach was taken in

Porteus (1986) who proposed a model to determine an optimal lot size under the follow-

ing assumptions: while producing a lot, the process could go out-of control with a given

probability, and the process continued to produce defective items until the entire lot was

produced. The process was presumed to be in control before starting production of a new

lot. Lee (1992) modeled the defect-generating process in the semiconductor wafer probe

process to determine an optimal lot size, which reduced the average processing time on a

critical resource.

Abboud (1997) presented a simple approximation of the EMQ model with Poisson ma-

chine breakdowns and low failure rate. Groenevelt et al. (1992b) studied an unreliable

production system with constant demand and random breakdowns, with the focus on the

effects of machine failure and repair on optimal lot-sizing decisions. Assuming expo-

nentially distributed time between failures and instantaneous repair of the machine, the

authors derived some unique properties of their model compared to the classical EMQ

model. Since it was assumed that machine restoration times were negligible, Groenevelt

et al. (1992b) only addressed the lot-sizing problem. Groenevelt et al. (1992a) extended

their earlier work in Groenevelt et al. (1992b) to the case where repair times were ran-

domly distributed and excess demand was lost.

Kim and Hong (1997) presented an extended EMQ model which determined an opti-

mal lot size for a failure prone machine. It was assumed that time between failures of a

machine was generally distributed, and a machine was repaired instantaneously when it
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failed. Variations of an EMQ depending on repair cost were also examined. Extensive

numerical investigations were carried out on the effects of repair cost and setup cost to

an EMQ as well as average cost. Hopp et al. (1989) presented a model that assumed the

(s,S) control policy. With Poisson failures and exponential repair times, a cost function

was derived when backordering was not allowed. Among other notable examples of such

works are Henig and Gerchak (1990) and Buzacott and Shantikumar (1993).

Nearly all the work done in this area follows the traditional operations management ap-

proach: 1) identify and characterize the disruption, and 2) formulate the situation that

was caused by it in a model that would prescribe optimal policies to the situation that was

modeled originally. In contrast, there was a proposed methodology which took a different

approach to such situations. Rather than optimize the system using the pre-disruption ob-

jective function, the methodology attempted to preserve, as much as possible, the original

operational plan even if this meant non-optimal solutions to the original objective function.

The rationale behind this approach was that in many cases there were significant implicit

costs that were involved in breaking away from the original plan. These implicit costs

were difficult to formulate and estimate, and naturally, they were not represented in the

original model. The literature on the approach is still rather scant (Golany et al., 2002; Xia

et al., 2001; Yang et al., 2004).

2.3 Temporary Price Changes and Financial Metrics

Temporary price changes (disruptions) have also attracted interest among operations man-

agement researchers. Basic price discount models were formulated in the 1960s (e.g.,

Naddor (1966)). Taylor and Bradley (1985) extended the basic model to situations in which

the price change became effective at any time in the future (originally - at the end of the

next cycle). Aull-Hyde (1992) extended the model to situations in which there were limits

on the quantities that could be purchased at the discounted price. Arcelus and Srinivasan
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(1995) analyzed the price disruption interval by looking at a minimal order quantity on

discounted purchases and determined optimal policies for various cases. Tersine and Bar-

man (1995) focused on a short disruption period that allowed only one special purchase.

Ardalan (1995) emphasized the differences between a net present value model as opposed

to a no-discount model for temporary price reduction.

The risk of supply chain disruptions, as an indication of an enterprise’s inability to match

demand and supply, has been receiving increased attention. Recent supply chain woes

at Cisco, Sony, Nike, and Ericsson and others have been written about (see, for example

Thurm (2001); Tran (2000); Latour (2001); Engardio (2001)). A number of researchers

proposed some financial metrics in an attempt to empirically estimate the economic impact

of unreliable and unresponsive supply chains, in particular the impact of supply chain dis-

ruptions on the shareholder value lost; the rationale was that unreliable and unresponsive

supply chains were more prone to be affected by supply and demand disruptions (glitches),

and if supply chains were more reliable and responsive they would not have experienced

the glitches, and hence, would not have experienced the loss in shareholder value. Hen-

dricks and Singhal (2003) suggested an estimate of the effect of supply chain disruptions

on shareholder wealth (abnormal stock returns) and long-run stock price performance

and equity risk. Among others, Radjou (2002); Billington et al. (2001); Lee et al. (1997);

Fisher (1997) contributed to widespread recognition that supply chain disruptions had the

potential to trigger significant economic impacts.

2.4 Network-Wide Disruptions and Network Reliability

The topic of system unreliability in the production/inventory context has also attracted

interest among operations management researchers as represented in the sample of works

we describe here. Gallego (1988a,b) examined the classical economic lot-sizing model

with single and multiple disruptions. Posner and Berg (1989) superimposed the reliability
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feature comprising the machine failure process and the ensuing repair actions. Bielecki

and Kumar (1988) investigated the optimality of zero-inventory policies in production

systems with uncertain manufacturing capacity. They showed that under constant demand

rate there were ranges of parameter values describing an unreliable manufacturing system

for which zero-inventory policies were exactly optimal even when there was uncertainty in

manufacturing capacity.

Gallego (1990) investigated the problem of scheduling the production of several items in

a single facility where demands were random with constant expected rates. Items were

produced at continuous constant rates. With demands replaced by their expectations an

optimal or near-optimal target cyclic schedule was computed, and the problem of schedul-

ing the facility after a single perturbation was analyzed. Moinzadeh and Aggarwal (1997)

analyzed a single localized unreliable bottleneck facility with a constant production and

demand rate that was subject to random disruptions. The time between breakdowns was

assumed to be exponentially distributed while the restoration times were constant. The

authors employed an (s,S) production policy and developed expressions for evaluating the

probability distribution of the number of production runs in a cycle together with its first

two moments, the average cycle time, the average on-hand inventory and backorder levels,

and the expected total cost rate of the system. They also investigated the properties of

the average total cost rate and the policy parameters with changes in reliability and other

system parameters. However, the authors left to future work the case of random demand

and/or production rates and a stochastic duration of the disruption period.

Abboud (2001) examined a single machine production and inventory system with a deter-

ministic production and demand rate, when the machine was subject to random failures.

The machine times to failure and repair times were random, and during repairs, demand

was backordered as long as the backordering level does not exceed a prescribed amount,

after which demand was lost. Considering time in discrete units and the times to failure

and repair times to be geometrically distributed, the author modeled the production/in-
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ventory system as a Markov chain and developed an algorithm to compute the potentials

that were used to formulate the cost function. Later, Rahim (1994) presented a model for

determining an economic manufacturing quantity, inspection schedule and control chart

design of an imperfect production process, where he assumed that the process was subject

to the occurrence of a non-Markovian shock having an increasing failure rate.

More recently, there have been some efforts on expanding the classical P-median problem

and uncapacitated fixed-charge facility location problem. In what follows, we first give a

short description of the two models. The P-median problem is to locate up to P facilities

in order to satisfy the demand of the customers so as to minimize the total transportation

cost. The costs for opening facilities are disregarded (Narula et al., 1977). The uncapaci-

tated fixed charge problem is different from the P-median problem in that it additionally

considers a fixed facility construction cost in the objective function and relaxes the stip-

ulation that dictates the number of facilities to be located (Owen and Daskin, 1998). The

resulted problem seeks to determine the number of facilities to locate so as to minimize

total (construction plus transportation) costs.

The recent literature features a number of studies on facility location problem in the pres-

ence of random disruptions. A comprehensive review of these works can be found in Sny-

der (2006). Below we present an up-to-date summary of the most relevant papers in this

area (see also Table 2.1). The rest of the section follows a literature review summary pre-

sented in our work (Li et al., 2011).

Snyder and Daskin (2005) presented two reliability models for facility location: a reliable

P-median and a reliable uncapacitated fixed-charge location model. Facility failure proba-

bilities were assumed to be equal and mutually independent. Simultaneous failure of mul-

tiple facilities was allowed. Each customer had a constant demand. In both models, each

customer was assigned a primary supplier and a number of backup suppliers, of which at

least one was required to be totally reliable. If the current supplier failed, the customer was

served by the next available backup supplier. The objective was to minimize the expected
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total cost. The main contribution of this paper is that the models not only determine the

optimal facility locations but also assign r levels of backup facilities to each demand node.

The main limitation of this paper, however, is the assumption that each facility fails with

the same probability.

Cui et al. (2010) relaxed the assumption of homogeneous failure probabilities in Sny-

der and Daskin (2005) to the case of location specific probabilities. The authors built a

mixed integer program formulation and a continuum approximation model to minimize

the network initial setup costs and expected transportation costs under normal and failure

scenarios. Li and Ouyang (2010) further expanded this direction by considering correlated

and site specific failure probabilities.

A few recent papers have taken the analysis one step further and examined the impact

of facility fortification for reliability improvement of the network. Church et al. (2004)

examined two related network interdiction problems: the r-interdiction median and the

r-interdiction covering problem. Both models were based on the P-median problem. The

r-interdiction median problem sought to find a subset of r ≤ P facilities, which if removed

from the network, would cause the highest loss of the network throughput. Whereas, the r-

interdiction covering problem aimed to find such a subset which would result in the maxi-

mal network coverage loss. In both models, once the critical subset was identified, some of

its members could be fortified, as was done in later papers by Church and Scaparra (2007);

Scaparra and Church (2008a,b).

So far, to the best of our knowledge, the only effort discussing the problem of network

design with fortification is by Lim et al. (2010), see Table 2.1. The authors analyzed the

uncapacitated fixed-charge facility location model with two types of facilities: unreliable

and totally reliable or “hardened”. The facility failure probabilities were assumed to be in-

dependent and location specific. The model assumed one primary supplier and one totally

reliable backup supplier for each customer. The objective of the model was to determine

the optimal number and location of both types of facilities as well as the customer assig-

14



Table 2.1: Summary of the reliable facility location literature (Li and Savachkin, 2011)
Research component Snyder & Daskin Cui et al. Li & Ouyang Church et al. Lim et al.

(2005) (2010) (2010) (2004-2008) (2010)
Modeling approach RPMP, RFLP RUFL RUFL RIM, RIMF FRP
Failure events independent independent correlated - independent
Failure probability homogeneous SS SS - SS
Layers of backup multiple multiple - - one
Fortification budget - - - - -
Solution approach LR CA CA IE LR

RPMP - reliable P-median problem; RFLP - reliable fixed charge location problem; RUFL - reliable
uncapacitated facility location; RIM - r-interdiction median; RIMF - RIM with fortification; FRP - facility
reliability problem; SS - site-specific; LR - Lagrangian relaxation; CA - continuum approximation; IE -
implicit enumeration

nation. The model was formulated as an integer programming model and a Lagrangian

relaxation-based solution algorithm was developed. Although the authors incorporated the

fixed cost of locating a reliable facility in the objective function, the available fortification

budget was not considered. As such, the formulation essentially assumed an unlimited

budget. Since this assumption does not restrict the number of reliable facilities, the opti-

mal solution may not fit available fortification resources.

To summarize, the literature addressing the impact of random disruptions on distribu-

tion networks and supply chains is still rather scant but is growing. A significant body of

works that explicitly considers random disruptions is on traditional issues of inventory

management, production lot sizing, production scheduling, ordering policies, and cost

management of inventory, setup, and backorder costs. A handful of papers that analyzes

network-wide disruptions have a number of limitations including the following: (i) in

most cases, failure scenarios are somewhat simplified; (ii) the discussion on fortifica-

tion strategies is very limited and does not analyze the efficiency of the strategies; (iii)

the distribution centers are considered to have unlimited capacity and hence, customer

assignation is virtually unrestricted; (iv) customer demands are deterministic; (v) most

models consider only single-commodity networks. It therefore appears that there exist

some gap in the decision support capabilities that the existing literature can provide for

design of modern distribution networks. This dissertation attempts to fill some of the vac-
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uum, particularly in integration of facility fortification into network design decisions. The

developed models are intended to provide more realistic solutions to the existing issues

and ultimately support corporate decision makers in the design of reliable distribution

networks using limited fortification resources.

16



Chapter 3: Reliable Distribution Networks with Binary Fortification

In this chapter, we develop two related models for facility location design under the risk

of disruptions: a reliable P-median problem with binary fortification (RPMP-BF, Sec-

tion 3.1) and a reliable uncapacitated fixed-charge location problem with binary forti-

fication (RUFL-BF, Section 3.2). Similar to Cui et al. (2010); Lim et al. (2010), in both

our models, we assume that the facility failure probabilities are independent and location

specific. As in Lim et al. (2010), we also assume one layer of supplier backup. To further

enhance the network reliability, we incorporate fortification of selected facilities. As a

result of fortification, the facility reliability is improved at some cost. The cost of facility

fortification is considered to be location specific and made up of two components: a fixed

setup cost and a variable cost for reliability improvement. In both models, we assume that

if fortified, the facility becomes totally reliable. Both models incorporate a finite forti-

fication budget constraint. Both models seek to choose the optimal facility location and

fortification strategy as well as the assignment of customers.

Both the RPMP-BF and RUFL-BF problems are formulated as nonlinear integer program-

ming models which are shown to be N P-hard. For both models, we develop Lagrangian

relaxation-based solution algorithms (Sections 3.1.2 and 3.2.2). We present computa-

tional results demonstrating the efficiency of the developed algorithms (Sections 3.3.2 and

3.3.3). We compare the effectiveness of the LR-based solutions to that of the solutions

generated by a myopic policy which aims to fortify most reliable facilities regardless of

the demand topology (Section 3.3.4). The comparison is done at different levels of the for-
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tification budget. We also discuss a way to assess the effectiveness of the design solutions

by determining the rate of return on fortification investments (Section 3.3.5).

Comparing to Lim et al. (2010), our work presents the following main advances:

(i) Our model incorporates the fortification budget constraint. As a result, the model pro-

vides a more realistic decision support for network design where the optimal solution

is matched to the available reliability improvement resources, no matter how scarce or

abundant they are.

(ii) Our formulation enables a decision maker to assess the rate of return on fortification

investment and compare it to that of alternative investment opportunities. For example, a

company may choose to invest in network fortification only if the rate of return exceeds

the minimum acceptable rate of return (MARR, Rogers (2001)).

(iii) Our model allows periodic fortification upgrades whereby reliability of an existing

network can be improved as additional fortification budget becomes available. Examples

include gradual release of fortification resources or availability of excess cash flow which

can be channeled into fortification. To allocate additional fortification budget for an exist-

ing network, the model has to be re-solved with fixed facility location decision variables.

This ability to support gradual fortification results from incorporation of the budget con-

straint and separation of the location selection and fortification decision variables, which

are combined in Lim et al. (2010).

3.1 The Reliable P-Median Problem with Binary Fortification (RPMP-BF)

The model extends the reliable P-median facility location problem introduced in Snyder

and Daskin (2005) by considering heterogeneous facility failure probabilities and facil-

ity fortification. The model seeks to minimize the total expected transportation cost by

optimally locating P facilities, allocating a finite fortification budget, and assigning the

customers. We first formulate this problem as a nonlinear integer programming model and
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then develop a Lagrangian relaxation-based solution algorithm. The rest of the section

follows our work in Li et al. (2011).

3.1.1 Problem Formulation

We define I to be the set of customers, J the set of potential facility locations, and P the

number of facilities to open. Each customer i ∈ I has demand hi. Let di j ≥ 0 be the cost

of transporting one unit of demand from facility location j ∈ J to customer i (with the

convention that dii = 0 ∀i). Associated with each facility j is the failure probability 0 ≤

q j ≤ 1. The events of facility failures are assumed to be independent, as in Snyder and

Daskin (2005); Cui et al. (2010); Lim et al. (2010). Once a facility fails, it becomes un-

available. Each customer is assigned a primary supplier and a different backup supplier (as

in Lim et al. (2010)). While Lim et al. (2010) required each backup facility to be “totally

reliable” (i.e., available at all times), we stipulate that for any customer, the probability of

a simultaneous failure of its primary and backup supplier is negligible. Hence, we assume

that for any customer, if its primary supplier fails, the backup supplier is available.

Our model incorporates facility fortification whereby reliability of facilities can be im-

proved at some cost. We assume that if a facility is fortified, it becomes non-failable. The

total cost of fortifying facility j includes the setup cost and the variable cost components.

The setup cost S j is a fixed cost required to implement facility fortification (examples

include the costs of R&D, contract negotiation, overhead, personnel training, etc.). The

variable fortification cost varies with the amount of reliability improvement of the facility.

Examples include the cost of acquiring and installing the units of protective measures, the

cost of procurement and storage of backup inventory, and the cost of hiring extra work-

force. We define r j as the cost associated with the unit reduction in the failure probability

of facility j. Our model incorporates a total available fortification budget B. Finally, the
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facilities are assumed to have unlimited capacity to guarantee that all demands will be met

(as in Snyder and Daskin (2005); Cui et al. (2010); Lim et al. (2010)).

Our model incorporates the following decision variables:

X j =

 1, if a facility is opened at location j;

0, otherwise,

Yi j0 =

 1, if customer i has facility j as its primary supplier;

0, otherwise,

Yi j1 =

 1, if customer i has facility j as its backup supplier;

0, otherwise,

Z j =

 1, if facility j is fortified;

0, otherwise.

We formulate the problem as follows.

(RPMP-BF)

minimize ∑
i∈I

∑
j∈J

[
hidi jYi j0(1−q j(1−Z j))+hidi jYi j1 ∑

r∈J, r 6= j
qrYir0(1−Zr)

]
subject to

∑
j∈J

Yi j0 = 1, ∀i ∈ I (3.1a)

∑
j∈J

Yi j1 = 1, ∀i ∈ I (3.1b)

Yi j0 +Yi j1 ≤ X j, ∀i ∈ I, j ∈ J (3.1c)

∑
j∈J

X j = P (3.1d)

∑
j∈J

(S j + r jq j)Z j ≤ B (3.1e)

X j,Z j ∈ {0,1}, ∀ j ∈ J (3.1f)
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Yi j0,Yi j1 ∈ {0,1}, ∀i ∈ I, j ∈ J. (3.1g)

The objective function above is the expected total transportation cost associated with satis-

fying the demands of all customers. The term ∑ j∈J hidi jYi j0(1−q j(1−Z j)) represents the

part of the expected transportation cost associated with customer i served by its primary

supplier, where (1− q j(1−Z j)) is the probability that the supplier is available. The term

∑ j∈J hidi jYi j1 ∑r 6= j qrYir0(1− Zr) is the cost of customer i served by its backup supplier,

where ∑r 6= j qrYir0(1−Zr) is the probability that the primary supplier failed (recall that in

this case, the backup facility is assumed to be available).

Constraints (3.1a) and (3.1b) respectively assure that each customer is assigned only one

primary and one backup supplier. Constraint (3.1c) serves two purposes. First, it guar-

antees that only an open facility can serve as a supplier. It also assures that for each cus-

tomer, its primary and backup suppliers are different facilities. Constraint (3.1d) demands

P facilities to be opened. Constraint (3.1e) is the total fortification budget constraint. Fi-

nally, (3.1f) and (3.1g) are the integrality constraints.

The next theorem shows that the model above is N P-hard.

Theorem 1 The RPMP-BF is N P-hard.

Proof. We prove this by showing that a special case of the RPMP-BF is N P-hard. Con-

sider I = J and P = ||I||. It then follows that there will be a facility open at each customer

location. Assume that one of the facilities is totally reliable; assign index s to it (i.e., qs =

0). We also assume that for each customer location i 6= s, dis < ∞ and di j = ∞ for j 6= s

(recall that dii = 0 ∀i).

Note that since qs = 0 and dss = 0, customer s is assigned facility s as the primary supplier

and no backup supplier is needed in this case. Also note that for each customer i 6= s, its

primary and backup supplier will be assigned as facility i or facility s. In the case when

facility i is chosen as the primary supplier and facility s as the backup, the expected trans-

portation cost associated with customer i becomes hidisqi. In the other case, the cost is
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hidis. Since hidisqi ≤ hidis, supplier i and s will be chosen as the primary and backup

supplier, respectively.

At this point, since facility locations and customer assignations are determined, the prob-

lem reduces to selecting facilities for fortification. Note that fortification of facility i elim-

inates the need for its backup supplier, which results in the expected reward hi dis qi. The

problem then is to maximize the total expected reward gained from fortification subject to

the fortification budget availability:

max
{

∑
i∈I

hi dis qi Zi : ∑
i∈I
(Si + ri qi)Zi 6 B,Zi ∈ {0,1}

}
, which is the 0-1 knapsack problem.

3.1.2 RPMP-BF: Lagrangian Relaxation

As shown above, the RPMP-BF is N P-hard and has a nonlinear objective function. One

possible solution is to linearize the model by introducing new variables, Ui j0 = Yi j0 Z j,

Vi jr = Yi j1Yir0, and Wi jr = Vi jr Z j = Yi j1Yir0 Z j, with necessary constraints. However, the

resultant problem becomes excessively large even for moderately sized networks, which

makes solving such cases using commercial solvers challenging (see also § 3.3). This

motivates us to develop a Lagrangian relaxation-based algorithm.

Lagrangian relaxation is considered an important computational technique in mathemat-

ical programming. The main idea is to relax the hard constraints of a mathematical pro-

gramming problem and put them into the objective function with assigned weights (the

Lagrangian multipliers) . The relaxed problem provides a lower bound (for minimization

problem) on the optimal value of original problem. Integrated with other techniques (e.g.,

subgradient optimization), Lagrangian relaxation approach has led to dramatically im-

proved algorithms for a number of operations research problems (Fisher, 2004).
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3.1.2.1 Lower Bound

Relaxing the set of constraints (3.1c) using Lagrange multipliers ui j yields the following

subproblem.

(RPMP-BF-LG)

min∑
i

∑
j

[
hidi jYi j0(1−q j(1−Z j))+hidi jYi j1 ∑

r 6= j
qrYir0(1−Zr)

]
+∑

i
∑
j

ui j(Yi j0 +Yi j1−X j)

subject to (3.1a), (3.1b), (3.1d) – (3.1g), and Yi j0 +Yi j1 ≤ 1.

The objective function above can be rewritten as follows.

∑
i

∑
j

[
hidi jYi j0(1−q j(1−Z j))+hidi jYi j1 ∑

r 6= j
qrYir0(1−Zr)

]
+∑

i
∑

j
ui j(Yi j0 +Yi j1−X j)

= ∑
i

∑
j

[
hidi jYi j0(1−q j(1−Z j))+hidi jYi j1 ∑

r 6= j
qrYir0(1−Zr)+ui j(Yi j0 +Yi j1)

]
−∑

j
∑

i
ui jX j

= ∑
i

∑
j

{[
hidi j(1−q j(1−Z j))+ui j

]
Yi j0 +

[
hidi j ∑

r 6= j
qrYir0(1−Zr)+ui j

]
Yi j1
}
−∑

j
∑

i
ui jX j.

For a given u, the optimal value of X can be found by ranking the values of (−∑
i

ui j) for

all j and setting X j = 1 if (−∑
i

ui j) is among the P smallest ranked values, and setting X j =

0 otherwise.

To solve the rest of the problem, we first consider the case B = 0. Then Z = 0 and con-

straint (3.1e) can be eliminated. The simplified problem is shown below.

(M1)

min ∑
i

∑
j

{[
hidi j(1−q j)+ui j

]
Yi j0 +

[
hidi j ∑

r 6= j
qrYir0 +ui j

]
Yi j1
}

subject to (3.1a), (3.1b), (3.1g).

Note that relaxing constraints (3.1c) allows a customer to be assigned to a facility which

is not open. Constraints (3.1a) and (3.1b) still assure that each customer is assigned only

one primary and one backup supplier. Note that (M1) is separable in i, so that in order to

solve the problem, it suffices to optimally assign a primary and a backup supplier to each

customer. For a given customer i, if facility v and w are selected as the primary and backup

supplier, respectively, the objective function of (M1) associated with customer i becomes
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Φi(v,w) = hidiv(1−qv)+uiv+hidiwqv+uiw. To find the optimal assignment, we enumerate

the values of Φi(v,w) for all v,w ∈ J to find Φ∗i = min
v,w
{Φi(v,w)}.

Now we consider the case B > 0. Suppose again that customer i is assigned facility v

and w as the primary and backup supplier, respectively. Suppose now that facility v is

fortified (i.e., Zv = 1). The objective function of the simplified problem (for customer i)

then becomes Ψi(v,w) = hidiv +uiv +uiw. Let Ψ∗i (v) = min
w
{Ψi(v,w)}.

We now let Ei(v) = max{Φ∗i −Ψ
∗
i (v),0}. In other words, Ei(v) is an improvement, if

any, gained from fortifying facility v, for customer i. Then the objective is to maximize

the utilization of the fortification budget over all v ∈ J, for all customers i ∈ I. For this

purpose, we first introduce a new variable Ki j as follows.

Ki j =

{ 1, if customer i is assigned a fortified primary supplier j;

0, otherwise.

Then the problem becomes as following.

(M2)

max ∑
i

∑
j

Ei( j)Ki j

subject to

Ki j ≤ Z j ∀i ∈ I, ∀ j ∈ J (3.2a)

∑
j

Ki j ≤ 1 ∀i ∈ I (3.2b)

∑
j
(S j + r jq j)Z j 6 B (3.2c)

Ki j ∈ {0,1} ∀i ∈ I, ∀ j ∈ J (3.2d)

Z j ∈ {0,1} ∀ j ∈ J. (3.2e)

The objective function of (M2) is to maximize the total improvement from fortification

when compared to the optimal objective function value of (M1). Subtracting the optimal
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objective function value of (M2) from the optimal objective function value of (M1) gives

the optimal objective function value of the (RPMP-BF-LG). The set of constraints (3.2a)

assures that facility j, as the primary supplier of customer i, must be fortified in order to

realize improvement Ei( j). The set of constraints (3.2b) guarantees that customer i gets

assigned to no more than one fortified supplier. Constraint (3.2c) is the fortification budget

constraint. Constraints (3.2d) and (3.2e) are standard integrality constraints. (M2) can be

solved by using CPLEX.

3.1.2.2 Upper Bound

At each iteration of the Lagrangian procedure, a lower bound and an upper bound for

(RPMP-BF) are obtained. The solution to (RPMP-BF-LG) provides a lower bound. If the

solution is feasible, it also provides an upper bound, which is then optimal for (RPMP-

BF). Otherwise, if the solution is infeasible, we construct a feasible solution which be-

comes an upper bound. We apply the following heuristic.

In the solution of (RPMP-BF-LG), exactly P facilities are open. For each customer, we

select the closest and second closest open facility as the primary and backup supplier,

respectively. To decide which facilities to fortify, we let G( j) be the set of customers who

have facility j as the primary supplier.

For each customer i ∈ G( j), if facility j is not fortified, the corresponding expected trans-

portation cost is hidi j(1− q j)+ hidirq j, where r represents its backup supplier. If facility

j is fortified, the expected cost becomes hidi j. The total expected cost reduction from

fortifying facility j is then ϕ j = ∑ i∈G( j) hi(dir−di j)q j. Thus, the objective is to maximize

the utilization of the fortification budget over P open facilities. The problem becomes:

max
{

∑
j

ϕ jZ j : ∑
j
(S j + r jq j)Z j 6 B,Z j ∈ {0,1}

}
.

This is a knapsack problem which can be solved by CPLEX rather easily. The described

heuristic performed well in the computational tests (see § 3.3.2).
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3.1.2.3 Multiplier Initiation and Updating

As discussed in Snyder and Daskin (2005), the performance of Lagrangian relaxation

algorithms can be sensitive to the choice of initial multipliers. In order to obtain a good

initial multiplier, we examined the final multipliers of the cases where (RPMP-BF) was

solved to optimality. We found that the formula ui j = hi/‖I‖ generated efficient initial

multipliers for our problem.

Once the algorithm starts running, at each iteration k, we use subgradient optimization

Fisher (2004) to update u by setting

uk+1
i j = uk

i j + tk (Yi j0 +Yi j1−X j),

where tk is a step size, tk =
λk(z∗− z(uk))

‖ Yi j0 +Yi j1−X j ‖2 .

In the formula above, λk is a constant at iteration k, initially set to λ0 = 2, as in Fisher

(2004). We divide the values of λk by 2 when every 60 consecutive iterations fail to im-

prove the lower bound. Also, z∗ is the best known upper bound, and z(uk) is the lower

bound when the multipliers are equal to uk.

The algorithm terminates when any of the following criteria are met:

• (z∗− z(uk))/z∗ ≤ ε , for some optimality tolerance ε , specified by the user,

• k > kmax, for some iteration limit kmax.

3.2 The Reliable Uncapacitated Fixed-Charge Facility Location Model with Binary

Fortification (RUFL-BF)

The RUFL-BF model can increase the network reliability of the RPMP-BF-based solutions

by relaxing the restriction on the number of open facilities. Our RUFL-BF model extends

the reliable fixed-charge facility location problem introduced by Snyder and Daskin (2005)

by considering heterogeneous facility failure probabilities and facility fortification. The

model seeks to minimize the sum of the total facility construction cost and the expected
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transportation cost by optimally selecting facility locations, allocating a finite fortification

budget, and assigning the customers. RUFL-BF is formulated as a nonlinear integer pro-

gramming model.

3.2.1 Problem Formulation

The formulation is similar to RPMP-BF but adding cost f j of constructing facility j.

(RUFL-BF)

minimize ∑
j∈J

f jX j + ∑
i∈I

∑
j∈J

[
hidi jYi j0(1−q j(1−Z j))+hidi jYi j1 ∑

r∈J, r 6= j
qrYir0(1−Zr)

]
subject to

∑
j

Yi j0 = 1, ∀i ∈ I (3.3a)

∑
j

Yi j1 = 1, ∀i ∈ I (3.3b)

Yi j0 +Yi j1 ≤ X j, ∀i ∈ I, j ∈ J (3.3c)

∑
j
(S j + r jq j)Z j 6 B, (3.3d)

X j,Z j ∈ {0,1}, ∀ j ∈ J (3.3e)

Yi j0,Yi j1 ∈ {0,1}, ∀i ∈ I, j ∈ J. (3.3f)

The formulation is similar to (RPMP-BF) except that in (RUFL-BF), the total construction

cost is included in the objective function and the number of facilities to be opened is not

restricted to P. Similar to Snyder and Daskin (2005); Cui et al. (2010); Lim et al. (2010),

our formulation does not consider a construction budget.

Theorem 2 The RUFL-BF is N P-hard.

Proof: Note that when B = 0 and q j = 0 for all j ∈ J, the RUFL-BF becomes the classical

uncapacitated fixed-charge location problem.
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3.2.2 Solution Method

Lower bound. We relax constraints (3.3c) to obtain the following subproblem.

(RUFL-BF-LG)

min ∑
j

f jX j +∑
i

∑
j

[
hidi jYi j0(1−q j(1−Z j))+hidi jYi j1 ∑

r 6= j
qrYir0(1−Zr)

]
+∑

i
∑

j
ui j(Yi j0 +Yi j1−X j)

subject to (3.3a), (3.3b), (3.3d) – (3.3f), and Yi j0 +Yi j1 ≤ 1.

The objective function can be rewritten as follows.

min ∑
j
( f j−∑

i
ui j)X j +∑

i
∑

j

([
hidi j(1−q j(1−Z j))+ui j

]
Yi j0 +

[
hidi j ∑

r 6= j
qrYir0(1−Zr)+ui j

]
Yi j1
)

For a given u, the optimal value of X is found by setting X j = 1, if ( f j −∑
i

ui j) < 0 and

X j = 0 otherwise. Customer assignation and facility fortification are solved as in §3.1.2.1.

A simple heuristic is used to obtain an initial upper bound. Starting with facilities opened

at all locations, an iterative procedure is used to drop one facility at a time in a greedy

manner. At each dropping iteration, customer assignation and facility fortification are

done as in §3.1.2.2. The solution with the minimum objective function value is then used

as the initial upper bound. Once the Lagrangian procedure starts, at each iteration, an

upper bound is obtained using the same heuristic as in §3.1.2.2. The multiplier updating

is conducted in a manner described in §3.1.2.3.
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3.3 Computational Results

3.3.1 Experimental Design

We tested the performance of both the RPMP-BF and RUFL-BF solution algorithms on

four datasets containing 30, 49, 100, and 150 nodes, respectively. The last three datasets

were adapted from Snyder and Daskin (2005) whereas the 30-node dataset was generated

by arbitrarily selecting 30 nodes from the 49-node dataset. Demands hi were taken from

Snyder and Daskin (2005). The Euclidean distance between nodes i and j was used as the

transportation cost di j. We let the sets I and J be equal. The failure probabilities q j were

randomly generated from U ∼ [0,0.05]. The fortification setup cost S j was set to 30. The

variable fortification cost r j (associated with the unit reduction in the failure probability)

was randomly generated from U ∼ [0,3000]. We tested the RPMP-BF algorithm for P = 5

and P = 8. To test the RUFL-BF algorithm, the facility construction cost f j was randomly

drawn from U ∼ [500,1500]. Both algorithms were tested for the values of fortification

budget B ranging between 0 and 360. A fragment of the 30-node dataset is shown in in

Table 3.1. The full 30-node dataset can be found in Table A.1 of Appendix A.

The algorithms were coded in C++ and were run on a Windows XP SP3 PC with a 2.2

GHz Duo core CPU and 2.0 GB of physical RAM. The gap tolerance and the maximum

number of iterations were set to 0.5% and 3000, respectively.

Table 3.1: A fragment of the 30-node dataset (see also appendix A)
Nodes 1 2 3 · · · 29 30

Demand 297.60021 179.90455 169.8651 · · · 43.75099 42.19973
Longitude 38.56685 42.66575 30.30588 · · · 44.947744 30.448967
Latitude 121.46736 73.799017 97.750522 · · · 93.103686 91.126043

q j 0.014 0.045 0.015 · · · 0.026 0.005
r j 620.79 459.02 325.73 · · · 44.23 546.00
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3.3.2 Performance of the RPMP-BF and RUFL-BF Algorithms

Results for the RPMP-BF algorithm for P = 5 and P = 8 using four datasets are listed

in Table 3.2 and Table 3.3, respectively. Results for the RUFL-BF algorithm using four

datasets are listed in Table 3.4. The abbreviations LB and UB stand for the lower and

upper bound, respectively. The gap is the difference between the upper and lower bounds.

The algorithms solved 87 out of a total of 96 cases to 0.5% optimality. For both algo-

rithms, the computing time increases substantially with the size of the problem. This can

be partially explained by noting that at each iteration, the number of enumerations required

for solving M1 increases quadratically with size of the problem and so does the size of the

resulted M2. In general, solving the RUFL-BF model is more time demanding which can

be attributed to the fact that its underlying fixed-charge facility location problem is harder

to solve. This can also be the reason that the gaps for the 150-node cases did not improve

after the algorithm exhausted 3,000 iterations.

3.3.3 Comparison with CPLEX Solver

To compare the performance of our algorithms to the that of the CPLEX solver, the RPMP-

BF and RUFL-BF models were linearized using the method described in §3.1.2. The

CPLEX code was written in C++ using the CPLEX Concert Technology. For the purpose

of comparison, only the CPLEX solver CPU time was measured. The comparison of the

performance of both algorithms and the CPLEX solver was done on the same computer

with version 10.1 of CPLEX.

We used a total of fourteen 30-node cases solvable by CPLEX (CPLEX failed to solve

larger size cases due to insufficient memory). The comparison of the computation times

between CPLEX and both algorithms is shown in Table 3.5. It can be observed that both

algorithms are significantly faster than CPLEX where the total computation time for all
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Table 3.2: Testbed performance results for the RPMP-BF algorithm (P=5)
P=5

Nodes B LB UB Gap, % Time, s
30 0 3694.2 3694.2 0.00 0.70
30 30 3694.2 3694.2 0.00 0.71
30 60 3573.8 3573.8 0.00 0.80
30 120 3502.5 3502.5 0.00 0.67
30 180 3366.1 3382.1 0.47 0.78
30 240 3327.9 3344.4 0.50 0.97
30 300 3309.7 3309.7 0.00 0.94
30 360 3283.5 3299.2 0.48 0.46
49 0 8826.3 8870.4 0.50 3.47
49 30 8826.3 8870.4 0.50 3.36
49 60 8704.7 8736.3 0.36 8.80
49 120 8625.0 8653.5 0.33 4.94
49 180 8538.4 8538.5 0.00 29.31
49 240 8417.0 8459.0 0.50 45.11
49 300 8360.0 8401.9 0.50 24.35
49 360 8325.4 8366.9 0.50 10.20

100 0 17594.4 17682.8 0.49 56.37
100 30 17594.4 17682.8 0.49 59.79
100 60 17328.8 17380.3 0.30 27.10
100 120 17086.4 17172.2 0.50 146.43
100 180 16977.0 17061.6 0.50 64.17
100 240 16897.5 16927.0 0.17 66.72
100 300 16847.2 16847.2 0.00 48.7
100 360 16810.0 16886.6 0.45 31.10
150 0 20136.7 20237.0 0.49 98.37
150 30 20136.7 20237.0 0.49 104.40
150 60 19881.7 19968.5 0.43 120.80
150 120 19760.8 19829.1 0.34 208.42
150 180 19653.5 19747.2 0.47 221.30
150 240 19494.4 19592.3 0.50 188.95
150 300 19451.0 19547.3 0.49 189.21
150 360 19512.0 19589.9 0.40 171.70

fourteen cases is 20 seconds versus 4344 seconds. Compared to the optimal solutions ob-

tained by CPLEX, the final feasible solutions yielded by our algorithms are also optimal.
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Table 3.3: Testbed performance results for the RPMP-BF algorithm (P=8)
P=8

Nodes B LB UB Gap, % Time, s
30 0 2192.5 2201.0 0.33 0.50
30 30 2192.5 2201.0 0.33 0.51
30 60 2144.1 2150.1 0.28 0.91
30 120 2096.8 2102.7 0.28 1.63
30 180 2044.4 2053.7 0.45 0.64
30 240 2014.8 2024.7 0.49 3.02
30 300 1980.5 1990.5 0.50 1.39
30 360 1981.4 1991.3 0.49 1.22
49 0 5874.6 5903.2 0.48 2.14
49 30 5874.6 5903.2 0.48 2.06
49 60 5772.2 5801.1 0.50 3.10
49 120 5724.6 5752.8 0.49 2.36
49 180 5678.3 5705.6 0.48 3.59
49 240 5638.9 5647.3 0.14 5.26
49 300 5625.1 5627.0 0.03 8.08
49 360 5580.9 5608.1 0.48 27.07

100 0 12711.3 12775.1 0.49 27.34
100 30 12711.3 12775.1 0.49 30.39
100 60 12571.7 12593.1 0.16 32.31
100 120 12431.5 12491.3 0.47 96.43
100 180 12311.3 12372.8 0.49 27.62
100 240 12283.6 12339.3 0.45 63.90
100 300 12230.6 12252.4 0.17 44.96
100 360 12198.9 12198.9 0.00 46.85
150 0 14682.7 14755.9 0.49 143.22
150 30 14682.7 14755.9 0.49 151.71
150 60 14659.3 14685.7 0.17 190.43
150 120 14494.1 14566.7 0.49 263.91
150 180 14436.3 14508.8 0.49 406.90
150 240 14389.3 14462.3 0.50 783.34
150 300 14385.3 14440.8 0.38 159.03
150 360 14389.7 14401.5 0.66 872.23

3.3.4 Comparison with a Myopic Policy

To illustrate the effectiveness of the LR-based design solutions, we compared them to the

solutions obtained by using a myopic policy which allocates the available fortification
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Table 3.4: Testbed performance results for the RUFL-BF algorithm
Nodes B LB UB Gap, % Time, s

30 0 7963.9 8003.9 0.50 0.93
30 30 7963.9 8003.9 0.50 1.41
30 60 7854.1 7886.3 0.41 1.01
30 120 7751.5 7789.8 0.49 2.45
30 180 7713.3 7751.1 0.49 2.40
30 240 7701.0 7734.3 0.43 2.92
30 300 7697.7 7734.3 0.47 2.24
30 360 7696.0 7734.3 0.50 1.70
49 0 12090.9 12151.1 0.50 4.64
49 30 12090.9 12151.1 0.50 4.98
49 60 11983.0 12042.5 0.49 5.99
49 120 11933.2 11992.4 0.49 11.62
49 180 11899.6 11959.3 0.50 12.19
49 240 11884.4 11943.3 0.49 18.12
49 300 11846.5 11903.0 0.47 13.31
49 360 11837.2 11896.6 0.50 19.87

100 0 17295.3 17380.3 0.49 62.82
100 30 17295.3 17380.3 0.49 66.31
100 60 17185.6 17271.4 0.50 63.60
100 120 17084.9 17178.5 0.54 98.99
100 180 17056.0 17140.5 0.49 187.87
100 240 17031.0 17116.8 0.50 198.63
100 300 16999.8 17082.6 0.48 246.78
100 360 16971.0 17056.0 0.50 281.32
150 0 18953.7 19117.4 0.85 810.33
150 30 18953.7 19117.4 0.85 819.90
150 60 18840.4 19021.6 0.95 1199.64
150 120 18838.9 19000.3 0.84 906.48
150 180 18763.9 18916.9 0.80 1732.63
150 240 18586.8 18907.5 1.70 587.79
150 300 18600.2 18841.3 1.28 747.83
150 360 18545.7 18853.0 1.63 885.97

budget to the most reliable facilities first. By doing so, the policy does not account for the

demand topology, hence is the name myopic.

Two myopic policies were implemented for a separate comparison with the RPMP-BF and

RUFL-BF optimal (within 0.5% gap) strategies. For a RPMP-BF-type myopic policy, P

most reliable facilities were open. For each customer, the closest and the second closest
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Table 3.5: Computation time comparison
Algorithm P B CPLEX Algorithm

time, s time, s

RPMP-BF

5 20 243.1 0.8
5 120 623.1 0.6
5 180 282.8 0.7
8 60 687.7 0.9
8 120 948.1 1.1
8 180 807.2 0.5

RUFL-BF

30 93.5 1.4
60 126.1 1.0
90 151.6 2.5

120 148.3 2.4
180 97.1 2.4
240 70.4 2.9
300 50.2 2.2
360 108.9 1.7

open facility were assigned as the primary and the backup supplier, respectively. Facilities

were fortified starting from the most reliable until either the fortification budget was used

up or all open facilities were fortified. For a RUFL-BF-type myopic policy, for each level

of B, the number of facilities to open N was not fixed but varied from one to |J|. For each

value of N, facility fortification and customer assignation were done in the same way as

for the RPMP-BF-type myopic policy. For a fixed B, the value of the RUFL-BF myopic

policy was set as the minimum of the total expected cost over the range of values of N.

Figures 3.1(a) and 3.1(b) show the results of the performance comparison of the optimal

RPMP-BF and RUFL-BF strategies to that of their respective myopic policies. In both

cases, the comparison was done for the values of B ranging between 0 and 360. The total

expected cost was used as the measure of policy performance. As expected, in both cases,

the curves for both optimal and myopic policies generally exhibit a downward trend as the

fortification budget increases. For all curves, the presence of “flat” regions for the values

of B between 0 and 30 is due to the fact that no facility can be fortified as the budget is

consumed by the fixed fortification cost S j = 30. For RPMP-BF- and RUFL-BF-type

myopic policy curves, the presence of “flat” regions for the values of B exceeding 180 and
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(a) RPMP-BF case (P = 5, 49 nodes)

(b) RUFL-BF case (49 nodes)

Figure 3.1: Comparison of the optimal RPMP-BF and RUFL-BF and their respective
myopic policies

240, respectively is attributed to the fact that all facilities have been fortified and no further

improvement can be made.

It can be observed that for both RPMP-BF and RUFL-BF optimal policies, the marginal

reduction in the policy values diminishes with B. This can be explained by noting that in

order to attain optimality, the model allocates the fortification budget to the facilities in the

decreasing order of reduction in the total expected cost realized from fortification.

It can also be observed that in both cases, the optimal policies outperform the respective

myopic policies over the entire range of B. Moreover, in both cases, the difference in pol-

icy performance widens as B increases. This can be explained as follows. As mentioned
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Table 3.6: Optimal locations (RPMP-BF)
B Locations
30 0, 2, 3, 4, 5
60 0, 2, 4, 5, 10

120 0, 2, 4, 5, 10
180 0, 2, 4, 5, 10
240 0, 1, 2, 5, 10
300 0, 2, 5, 8, 10
360 0, 2, 5, 8, 10

earlier, for both myopic policies, the curves flatten starting at certain levels of B as all

facilities get fortified. This “rapid” total fortification is possible because myopic policies

select most reliable facilities to open and fortify. In the case of the optimal policies, se-

lection of facilities for fortification is governed not only by facility reliability but also by

topology of demand. As a result, total fortification generally requires larger levels of B.

(a) B = 30

(b) B = 360

Figure 3.2: The optimal solution to RPMP-BF (P = 5, 49 nodes)
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Analyzing optimal solutions for both the RPMP-BF and RUFL-BF policies we can notice

that facility locations were chosen from among demand-heavy nodes. Table 3.6 shows an

example of optimal facility locations for the case of RPMP-BF (numbering of facilities

was done in the decreasing order of demand).

Figures 3.2(a) and 3.2(b) show the topology of the optimal solutions for the cases B = 30

and B = 360, respectively. We observe that optimal locations were chosen from among

the top ten demand nodes. This can be explained by noting that in our testbed, customer

sites also serve as candidates for facility locations. Since the values of facility reliabilities

are chosen from a uniform distribution, the selection of facilities is primarily driven by

demand topology.

3.3.5 Rate of Return on Fortification Investment

Calculation of the rate of return (ROR) on fortification investment allows a decision maker

to assess the effectiveness of such investment when compared to alternative investment

opportunities. For instance, a decision maker may choose to invest in network fortification

only if the ROR exceeds the minimum acceptable rate of return (MARR) Rogers (2001).

We illustrate such analysis for both RPMP-BF and RUFL-BF by considering the 49-node

case with the values of fortification budget ranging between 0 and 360.

The optimal objective function value for B = 0 was used as the baseline. For each B > 0,

the value of ROR (in %) was calculated as the overall reduction in the optimal objective

function value (compared to the baseline) minus B, all divided by B.

Figures 3.3(a) and 3.3(b) depict the values of the ROR for RPMP-BF and RUFL-BF op-

timal policies, respectively. We can observe that for both policies, the ROR is negative

for small values of B. This is due to the fact that no facility can be fortified as the budget

is consumed by the fixed fortification cost. For both policies, the curves exhibit a sharp

rise until reaching the maximum at B = 60, followed by a gradual decrease for higher
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(a) RPMP-BF optimal policy (P = 5, 49 nodes)

(b) RUFL-BF optimal policy (49 nodes)

Figure 3.3: Rate of return (ROR) on fortification investment

values of B. The downward trend can be attributed to the fact that both models allocate

the fortification budget to the facilities in the decreasing order of reduction in the optimal

objective function value. Note that in the case of our study, for an arbitrarily chosen level

of MARR, the RPMP-BF optimal policy has a broader range of attractive fortification

investment opportunities.
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Chapter 4: Reliable Distribution Networks Models with Partial Fortification

In this chapter, we extend both the RUFL and RPMP models developed in Chapter 3 to

allow partial (continuous) as opposed to binary fortification of facilities. The models are

called RUFL-PF and RPMP-PF, respectively. By allowing partial fortification, the reliabil-

ity of fortified facilities is not only limited to “totally reliable”. Instead, a facility can be

fortified to any reliability level up to becoming totally reliable, if necessary. This option

allows a more efficient utilization of limited fortification resources.

As in the case of binary fortification, both RUFL and RPMP models seek to obtain optimal

facility location, fortification, and customer assignment. We again assume that events of

facility failures are mutually independent and occur with location specific probabilities.

We also assume one layer of supplier backup. The formulation considers continuous relia-

bility improvement, a finite fortification budget constraint, and the facility fortification cost

which is site specific.

Both models are formulated as nonlinear mixed integer programming models. The RUFL

model is shown to be N P-hard (see Section 4.1). For both models, we develop Lagrangian

relaxation-based heuristic solution algorithms (Section 4.1.2 and 4.2.2). We present com-

putational results demonstrating the efficiency of the developed heuristic for different size

problems and different levels of fortification budget (Section 4.3). The rest of the section

follows our work in Li and Savachkin (2011).
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4.1 The RUFL Model with Partial Fortification (RUFL-PF)

4.1.1 Model Formulation

The formulation of the RUFL-PF mostly follows that of the RUFL model developed in

Chapter 3. For the sake of completeness, we opted to present the description of the model

in its entirety.

We define I to be the set of customers and J the set of potential facility locations. Each

customer i ∈ I has demand hi. Let di j > 0 be the cost of transporting one unit of demand

from facility location j ∈ J to customer i (with the convention that dii = 0 for all i). Let

f j denote the facility construction cost at location j. Associated with each facility j is the

failure probability 0 6 q j 6 1. We assume that the events of facility failures are mutually

independent. Once a facility fails, it becomes unavailable. Each customer is assigned a

primary supplier and a different backup supplier. We consider that the probability of a

simultaneous failure of its primary and backup supplier is negligible. Hence, we assume

that for any customer, if its primary supplier fails, the backup supplier will be available.

For each facility j, we introduce u j as the maximum reliability improvement obtainable

with available technology (ideally, u j = q j). The cost of facility fortification is considered

to be a function of reliability improvement. We define r j as the cost associated with a

unit reduction in the failure probability of facility j. We let B denote the total available

fortification budget. Similar to the previous models, we assume unlimited capacities for all

facilities to ensure that all demands are met.

Our model incorporates the following decision variables:

X j =

 1, if a facility is opened at location j;

0, otherwise.
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Yi j0 =

 1, if customer i has facility j as the primary supplier;

0, otherwise.

Yi j1 =

 1, if customer i has facility j as the backup supplier;

0, otherwise.

∆ j = reliability improvement gained from fortification of facility j (∆ j ∈ R).

Note that as opposed to the formulations in Chapter 3, reliability improvement takes its

values in the continuum of the reals for all facilities. We formulate the problem as follows:

(RUFL-PF)

min ∑
j∈J

f jX j + ∑
i∈I

∑
j∈J

[hidi j(1− (q j−∆ j))Yir0 +hidi jYi j1 ∑
r∈J, r 6= j

(qr−∆r)Yir0]

subject to

∑
j

Yi j0 = 1, ∀i ∈ I (4.1a)

∑
j

Yi j1 = 1, ∀i ∈ I (4.1b)

Yi j0 +Yi j1 6 X j, ∀i ∈ I, j ∈ J (4.1c)

0 6 ∆ j 6 u j, ∀ j ∈ J (4.1d)

∑
j

r j∆ j 6 B (4.1e)

X j ∈ {0,1}, ∀ j ∈ J, (4.1f)

Yi j0,Yi j1 ∈ {0,1}, ∀i ∈ I, j ∈ J. (4.1g)

The objective function of the RUFL-PF is the expected total construction and transporta-

tion cost associated with satisfying the demands of all customers. The term ∑ j∈J hidi jYi j0(1−

(q j−∆ j)) represents the part of the expected transportation cost associated with customer

i served by its primary suppler, where (1− (q j−∆ j)) is the probability that the supplier is
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available. The term ∑ j∈J hidi jYi j1 ∑ r 6= j(qr−∆r)Yir0 is the part of the cost when customer

i is served by its backup supplier, where ∑ r 6= j(qr−∆r)Yir0 is the probability that the pri-

mary supplier is unavailable.

Constraints (4.1a) and (4.1b) respectively ensure that each customer is assigned only one

primary and one backup supplier. Constraint (4.1c) serves two purposes. It guarantees that

only an open facility can serve as a supplier. It also ensures that for each customer, the

primary and backup suppliers are different facilities. Constraint (4.1d) specifies the range

of reliability improvement of facility j. Constraint (4.1e) is the total fortification budget

constraint. Constraints (4.1f) and (4.1g) are standard integrality constraints.

The next theorem shows that the model above is N P-hard.

Theorem 3 The RUFL-PF is N P-hard.

Proof: Note that when B = 0 and q j = 0 for all j ∈ J, the RUFL-PF becomes the classical

uncapacitated fixed-charge location problem.

4.1.2 Lagrangian Relaxation-Based Heuristic

As shown above, RUFL-PF is N P-hard and has a nonlinear objective function. One

possible solution is to linearize the model by introducing new variables, say Ui j0 = Yi j0 ∆ j,

Vi jr = Yi j1Yir0, and Wi jr = Vi jr ∆ j = Yi j1Yir0 ∆ j, with necessary constraints. However, the

resultant problem becomes excessively large even for networks of moderate size, which

makes solving such problems using commercial solvers very time-consuming. This moti-

vated us to develop a Lagrangian relaxation-based solution heuristic.

4.1.2.1 Heuristic for Lower Bounds

In this section, we develop a heuristic to find a solution to a relaxed model which serves

as an approximated lower bound for RUFL-PF. To relax the original model, we select
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constraint (4.1c) as it is the only constraint that links the location variables X j with assig-

nation variables Yi j0 and Yi j1. Relaxing this set of constraints using Lagrange multipliers

λi j yields the following subproblem.

(LR-λ )

min ∑
j∈J

f jX j +∑
i∈I

∑
j∈J

[hidi j(1− (q j−∆ j))Yir0 +hidi jYi j1 ∑
r 6= j

(qr−∆r)Yir0]+

∑
i

∑
j

λi j(Yi j0 +Yi j1−X j)

subject to (4.1a), (4.1b), (4.1d)–(4.1g).

The objective function can be rewritten as follows to separate the decision variables.

min ∑
j
( f j−∑

i
λi j)X j +∑

i
∑

j

([
hidi j(1− (q j−∆ j))+λi j

]
Yi j0 +

[
hidi j ∑

r 6= j
(qr−∆r)Yir0 +λi j

]
Yi j1
)

(i) Solving LR-λ for X

For a given λ , the optimal value of X is found by setting X j = 1, if ( f j−∑
i

λi j) < 0; else

X j = 0.

(ii) Solving LR-λ for Y and ∆

We proceed in two steps. We first solve a special case when fortification budget is zero.

We then use the solution to approach the case when fortification budget is positive.

Case 1: B=0

If B = 0, then ∆ = 0, and constraints (4.1d) and (4.1e) can be eliminated. The problem

simplifies to:

(M1)

min ∑
i

∑
j

{[
hidi j(1−q j)+λi j

]
Yi j0 +

[
hidi j ∑

r 6= j
qrYir0 +λi j

]
Yi j1
}

subject to (4.1a), (4.1b), (4.1f), (4.1g).

Observe that relaxing constraint (4.1c) can result in a customer being assigned to a facility

which is not open. Constraints (4.1a) and (4.1b) still assure that each customer is assigned

43



only one primary and one backup supplier. Note that (M1) is separable in i, so that in order

to solve the problem, it suffices to optimally assign a primary and a backup supplier to

each customer. For a given customer i, if facility v and w are selected as the primary and

backup supplier, respectively, the objective function of (M1) associated with customer i

becomes Φi(v,w) = hidiv(1− qv) + λiv + hidiwqv + λiw. To find the optimal assignment

of suppliers for customer i, we enumerate the values of Φi(v,w) for all v,w ∈ J to find

min
v,w
{Φi(v,w)}. Once we obtain the optimal assignment of suppliers for all customers i ∈ I,

we let G( j) be the set of customers who have facility j as their primary supplier.

Case 2: B>0

Consider customer i and let j and k denote its primary and backup supplier, respectively,

obtained from the case B = 0 (i.e., Φi( j,k) = min
v,w
{Φi(v,w)}, i ∈ G( j)). Suppose that the

primary supplier j is fortified and c is the amount of reliability improvement. Then the

part of the objective function associated with customer i becomes Ψi( j,k) = hidi j(1−

(q j− c))+λi j + hidik(q j− c)+λik. Hence, the improvement gained for customer i from

fortifying supplier j is Φi( j,k)−Ψi( j,k). Then the overall improvement gained from

fortifying supplier j is ∑i∈G( j)(Φi( j, ·)−Ψi( j, ·)).

Let E = { j : q j > 0}. For each j ∈ E, we introduce the following measure of fortification

efficiency.

δ ( j) =
∑i∈G( j)(Φi( j, ·)−Ψi( j, ·))

r j c
=

∑i∈G( j) hic(di·−di j)

r j c
=

∑i∈G( j) hi(di·−di j)

r j
· (4.2)

We then find s such that δ (s) = max j∈E δ ( j). We allocate the fortification budget B > 0

starting with facility s. Note that fortification of facility s may change the current assig-

nation of customers as some of them switch to supplier s and thus join the set G(s). Also

note that fortifying s will not change the assignation of customers already in G(s) since

improving the reliability of s decreases Φi(s, ·). We implement the fortification process in

an iterative fashion as described in the algorithm below.
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Step 1. For all j ∈ E, set ∆ j = 0.

Step 2. Find facility s such that δ (s) = max
j∈E

δ ( j). In steps 3-5 below, we determine the

level of fortification of facility s which we denote by ∆s. Note that ∆s 6 min{us,B/rs}.

Step 3. For each customer i /∈ G(s), let j and k denote its current primary and backup

supplier, respectively (i.e., Φi( j,k) = min
v,w
{Φi(v,w)}). We want to determine ∆i

s, the min-

imal fortification level of s that causes re-assignment of i. Suppose that s is chosen as the

primary supplier of i. Let Φi(s, t) = min
w
{Φi(s,w)}, where t denotes the backup supplier

of i when s is chosen as the primary one. Now if the reliability of s was improved by c,

then Φi(s, t) would decrease by c·hi(dit − dis). As the reliability of s increases, if Φi(s, t)

becomes smaller than Φi( j,k), then re-assigning customer i to suppliers s and t will result

in an improved objective function. We have that ∆i
s =

Φi(s, t)−Φi( j,k)
hi(dit−dis)

.

Step 4. Let ∆̃s = min
i/∈G(s)

∆̃
i
s. Then ∆s = min{∆̃s,min{us,B/rs}}.

Step 5. Update G(s), if needed. Set B = B− rs∆s, qs = qs−∆s, us = us−∆s. If us = 0,

E←E\{s}.

Step 6. If B > 0 and E 6=∅, recalculate δ j for all j ∈ E, and proceed to Step 1. Else, stop.

4.1.2.2 Heuristic for Upper Bounds

At each iteration of the Lagrangian relaxation process, the solution to (LR-λ ) provides a

lower bound to (RUFL-PF). If the solution is also feasible, it provides an upper bound as

well. Else, if the solution is infeasible, we need to construct a feasible solution which will

serve as an upper bound.

A feasible solution can be obtained by using the solution to (LR-λ ). We first select the

facilities opened in the solution to (LR-λ ). For each customer, we assign the nearest and

the second nearest open facility as the primary and backup supplier, respectively. To de-

cide which facilities to fortify, we proceed in the following way. For customer i, let j and
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k respectively denote its primary and backup supplier. The expected transportation cost

associated with i amounts to hidi j(1− q j) + hidik q j. If facility j is fortified by ∆ j, the

resulting cost improvement equals to ϕ j = ∑i∈G( j) hi(dik− di j)∆ j. Thus, the objective is

to maximize the utilization of the fortification budget over all open facilities. The problem

is formulated as follows:

max ∑
j∈E

ϕ j s.t. ∑
j

r j∆ j 6 B,∆ j ∈ [0,u j].

This is a continuous knapsack problem which can be solved in a greedy manner.

4.1.2.3 Multiplier Initiation and Updating

From empirical analysis we found that the formula λi j = hi/‖I‖ generated efficient initial

multipliers for our problem.

Once the algorithm commences, at each iteration k, we use subgradient optimization Fisher

(2004) to update λ by setting

λ
k+1
i j = λ k

i j + tk(Yi j0 +Yi j1−X j),

where tk is a step size, tk =
βk(z∗− z(λ k))

‖ Yi j0 +Yi j1−X j ‖2 ·

In the formula above, βk is a constant at iteration k, which is initially set to β0 = 2, as in

Fisher (2004). We divide the values of βk by 2 if every 60 consecutive iterations fail to

improve the lower bound. In the formula above, z∗ is the best known upper bound, and

z(λ k) is the lower bound when the multipliers are fixed to λ
k. The algorithm terminates

when one of the following criteria is met:

• (z∗− z(λ k))/z∗ 6 ε , for some prespecified tolerance ε;

• k > kmax, for some iteration limit kmax.

The Lagrangian relaxation-based heuristic algorithm for RUFL-PF is presented below.
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Step 0 Set k = 0. Initialize multipliers λi j = hi/‖I‖.
Set lower bound LB = 0; set z∗ =+∞.

Step 1 Solve (LR-λ ) for z(λ k) (§ 4.1.2.1).
Obtain a feasible solution ẑk using the heuristic in § 4.1.2.2.

Step 2 Set LB = max{LB,z(λ k)}; set z∗ = min{z∗, ẑk}.

If (z∗− z(λ k))/z∗ 6 ε or k > kmax, then STOP; else go to Step 3.

Step 3 Update multipliers:

tk =
βk(z∗− z(λ k))

‖ Yi j0 +Yi j1−X j ‖2 ,

λ
k+1
i j = max{λ k

i j + tk(Yi j0 +Yi j1−X j),0}.
Step 4 Set k = k+1 and go to Step 1.

In the computational results section (§ 4.3), we evaluate the performance of the developed

heuristic-based solution approach by comparing it to optimal solutions. The performance

is evaluated based on the optimality gap and the computation time.

4.2 The RPMP Model with Partial Fortification (RPMP-PF)

The model seeks to minimize the total expected transportation cost by optimally selecting

facility locations, allocating a finite fortification budget, and assigning the customers. We

formulate this problem as a nonlinear mixed integer programming model and develop a

Lagrangian relaxation based solution heuristic.

4.2.1 Problem Formulation

The formulation is similar to that of the RUFL-PF with an addition of the total number of

facilities to open P. We formulate the problem as follows:

(RPMP-PF)

minimize ∑
i∈I

∑
j∈J

[hidi j(1− (q j−∆ j))Yir0 +hidi jYi j1 ∑
r∈J, r 6= j

(qr−∆r)Yir0]
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subject to

∑
j∈J

Yi j0 = 1, ∀i ∈ I (4.3a)

∑
j∈J

Yi j1 = 1, ∀i ∈ I (4.3b)

Yi j0 +Yi j1 ≤ X j, ∀i ∈ I, j ∈ J (4.3c)

∑
j∈J

X j = P (4.3d)

∑
j

r j∆ j ≤ B (4.3e)

∆ j ∈ [0,u j], ∀ j ∈ J (4.3f)

X j ∈ {0,1}, ∀ j ∈ J (4.3g)

Yi j0,Yi j1 ∈ {0,1}, ∀i ∈ I, j ∈ J. (4.3h)

The objective function of the RPMP-PF is the expected total transportation cost associated

with satisfying the demands of all customers. The term ∑ j∈J hidi jYi j0(1− (q j−∆ j)) rep-

resents the part of the expected transportation cost associated with customer i served by

its primary suppler, where (1− (q j−∆ j)) is the probability that the supplier is available.

The term hidi jYi j1 ∑ r 6= j(qr−∆r)Yir0 is the cost of customer i served by its backup supplier,

where ∑ r 6= j(qr−∆r)Yir0 is the probability that the primary supplier is failed (recall that in

this case, the backup facility is assumed to be available).

Constraint (4.3a) and (4.3b) respectively assures that each customer is assigned only one

primary and one backup supplier. Constraint (4.3c) serves two purposes. First, it guaran-

tees that only open facility can serve as a supplier. It also assures that for each customer,

the primary and backup suppliers are different facilities. Constraint (4.3d) demands P

facilities to be opened. Constraint (4.3e) is the total fortification budget constraint. Finally,

constraint (4.3f) specifies the continuity and the range of ∆ j, and (4.3g) and (4.3h) are the

standard integrality constraints.
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4.2.2 Solution Method

In this section, we develop a Lagrangian relaxation based heuristic for the RPMP-PF.

Lower bound. Relaxing the set of constraints (4.3c) and using Lagrange multipliers ui j

yield the following subproblem.

min ∑
i∈I

∑
j∈J

[hidi j(1− (q j−∆ j))Yir0+hidi jYi j1 ∑
r∈J, r 6= j

(qr−∆r)Yir0]+∑
i

∑
j

ui j(Yi j0 +Yi j1−X j)

subject to (4.3a), (4.3b), (4.3d) – (4.3h).

The objective function above can be rewritten as follows

∑
i∈I

∑
j∈J

[hidi j(1− (q j−∆ j))Yir0 +hidi jYi j1 ∑
r∈J, r 6= j

(qr−∆r)Yir0]+∑
i

∑
j

ui j(Yi j0 +Yi j1−X j)

= ∑
i

∑
j

[
hidi j(1− (q j−∆ j))Yi j0 +hidi jYi j1 ∑

r 6= j
(qr−∆r)Yir0 +ui j(Yi j0 +Yi j1)

]
−∑

j
∑

i
ui jX j

= ∑
i

∑
j

{[
hidi j(1− (q j−∆ j))+ui j]Yi j0 +[hidi j ∑

r 6= j
(qr−∆r)Yir0 +ui j

]
Yi j1
}
−∑

j
∑

i
ui jX j.

For a given u, the optimal value of X can be found by ranking the values of (−∑
i

ui j) for

all j and setting X j = 1 if (−∑
i

ui j) is among the P smallest ranked values, and setting

X j = 0 otherwise. Customer assignation and facility fortification are solved as described

in §4.1.2.1. Once the Lagrangian procedure starts, at each iteration, an upper bound is

obtained using the same heuristic as in §4.1.2.2. The multiplier updating is conducted in

a manner described in §4.1.2.3.

4.3 Computational Results

4.3.1 Experimental Design

We tested the performance of both the RUFL-PF and RPMP-PF solution algorithms on

seven datasets containing 25, 30, 50, 60, 70, 100, and 150 nodes, respectively. The datasets

were adapted from Snyder and Daskin (2005) and so were demands hi. Transportation

49



cost di j was taken as the Euclidean distance between nodes i and j. For the purpose of

this testbed, we let sets I and J be equal. The facility failure probabilities q j were ran-

domly generated from Uni(0,0.05). The variable fortification costs r j were generated

from Uni(0,3000). The upper bounds for reliability improvement u j were generated from

Uni(0,q j). The facility construction cost f j was drawn from Uni(500,1500). The algo-

rithms were tested for the values of fortification budget B ranging between 0 and 210. The

algorithms were coded in C++ and run on a 64-bit Linux machine with a 2.8 GHz Duo

core CPU and 4.0 GB of physical RAM. The gap tolerance and the maximum number of

iterations were set to 0.01% and 1000, respectively.

4.3.2 Comparison with CPLEX Solver

To compare the performance of our algorithms to the that of the CPLEX solver, the RUFL-

PF and RPMP-PF models were linearized using the method described at the beginning of

Section 4.1.2. The CPLEX code was written in C++ using the CPLEX Concert Technol-

ogy. The comparison of the performance of the algorithm and the CPLEX solver was done

on the same machine with version 12.1 of CPLEX. We used a total of 80 cases containing

up to n = 70 (for RUFL-PF) and n = 50 (for RPMP-PF) nodes solvable by CPLEX. The

solver failed to handle larger size cases due to insufficient memory. The performance com-

parison results are shown in Tables 4.1 and 4.3. Tables 4.4 and 4.5 also show performance

results for our algorithms for 100 and 150 nodes. The abbreviations LB and UB stand

for the lower bound and the upper bound, respectively. The gap is the difference (in %)

between the upper and lower bounds.
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It can be observed from Tables 4.1 and 4.3 that our algorithms are significantly faster than

CPLEX where the total computation time for 80 cases is 1,774 seconds versus 344,541

seconds. The gaps between the values obtained by our algorithms and CPLEX are very

small in all cases. This suggests that the solution quality of our algorithms is likely to be

very good for small to medium sized problems. It can also be noted from Tables 4.4 and

4.5 that the heuristics are able to solve larger scale problems relatively fast.

(a) RUFL-PF algorithm (b) CPLEX solver
Figure 4.1: Relationship between network size and computation time

It can be observed from Figures 4.1(a) and 4.1(b) that in general, for both the RUFL-PF al-

gorithm and CPLEX, the computation time increases with the network size. However, the

rate of increase is significantly smaller for our algorithm. Table 4.6 compares the percent-

age of computation time increase from the case of n= 25 to the case of n= 70 (RUFL-PF).

It can be seen that for each of the three levels of fortification budget, our algorithm takes

relatively less time to solve larger sized case. Similar conclusions hold for the RPMP-PF

algorithm.

It can also be noted from Figure 4.1(a) that for the RUFL-PF algorithm, for a fixed net-

work size, the computation time increases substantially with fortification budget. The

increase is particularly noticeable for larger sized networks. This can be explained by

noting that the iterative fortification algorithm presented on page 49 uses the available

fortification budget as a stopping criterion (see Step 6). From Figure 4.1(b), it also appears

that CPLEX takes longer to find solutions to the cases with medium (B = 90) fortification
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Table 4.1: Comparison results for RUFL-PF algorithm and CPLEX solver

Nodes B Alg. value CPLEX value Gap, % Algorithm CPLEX
time, s time, s

25 0 7762.68 7762.68 0.00 0.25 6.92
25 30 7669.79 7669.79 0.00 0.51 11.76
25 60 7643.00 7643.00 0.00 0.75 10.28
25 90 7641.76 7641.76 0.00 1.01 10.80
25 120 7641.76 7641.76 0.00 0.85 12.33
25 150 7641.76 7641.76 0.00 1.34 12.33
25 180 7641.76 7641.76 0.00 1.54 12.34
25 210 7641.76 7641.76 0.00 2.22 12.44
30 0 7408.25 7408.25 0.00 1.31 8.63
30 30 7383.22 7383.22 0.00 3.31 110.64
30 60 7367.63 7367.63 0.00 3.13 114.73
30 90 7362.21 7362.14 0.00 5.19 120.81
30 120 7357.57 7357.57 0.00 4.50 117.45
30 150 7353.00 7353.00 0.00 1.38 22.44
30 180 7350.26 7350.26 0.00 1.34 20.84
30 210 7350.26 7350.26 0.00 1.30 22.27
40 0 13696.5 13696.5 0.00 0.93 89.74
40 30 13623.2 13623.2 0.00 3.26 444.6
40 60 13577.2 13576.5 0.01 3.53 2197.6
40 90 13558.3 13558.3 0.00 5.56 2605.11
40 120 13543 13543 0.00 5.79 1687.92
40 150 13534.3 13529.2 0.04 7.46 627.08
40 180 13519.4 13519.4 0.00 9.95 202.56
40 210 13519.4 13519.4 0.00 8.48 206.72
50 0 12151.10 12151.10 0.00 2.97 196.05
50 30 12023.80 12023.92 0.00 10.96 11662.46
50 60 11958.50 11958.52 0.00 8.47 14720.90
50 90 11936.70 11936.70 0.00 7.92 8900.40
50 120 11923.00 11923.00 0.00 9.06 6801.64
50 150 11916.00 11916.00 0.00 9.57 1673.88
50 180 11916.00 11916.00 0.00 12.84 603.10
50 210 11916.00 11916.00 0.00 14.30 1958.54
60 0 15262.40 15262.40 0.00 3.21 753.34
60 30 15200.50 15200.50 0.00 54.44 9430.63
60 60 15174.30 15174.30 0.00 65.22 10921.94
60 90 15148.10 15148.10 0.00 59.95 16308.94
60 120 15121.90 15121.90 0.00 38.90 7217.47
60 150 15107.11 15107.11 0.00 60.85 9484.54
60 180 15098.40 15098.35 0.00 70.09 14837.70
60 210 15091.70 15091.70 0.00 85.18 2816.82
70 0 15882.90 15882.00 0.01 10.42 2369.27
70 30 15814.90 15814.93 0.00 43.38 20998.00
70 60 15787.40 15787.40 0.00 88.02 22276.35
70 90 15759.80 15759.81 0.00 100.00 17681.44
70 120 15732.30 15732.25 0.00 67.00 22609.63
70 150 15712.30 15712.26 0.00 110.41 62501.62
70 180 15701.40 15701.38 0.00 107.63 17025.76
70 210 15693.20 15693.16 0.00 133.20 14054.24

52



Table 4.3: Comparison results for RPMP-PF algorithm (P = 5) and CPLEX solver
Nodes B Alg. value CPLEX value Gap, % Algorithm CPLEX

time, s time, s
25 0 3488.25 3488.25 0.00 0.38 26.14
25 30 3380.31 3380.31 0.00 0.59 60.65
25 60 3360.55 3360.55 0.00 1.06 82.16
25 90 3345.43 3345.43 0.00 1.73 86.24
25 120 3337.22 3337.22 0.00 1.87 29.63
25 150 3337.22 3337.22 0.00 2.50 27.74
25 180 3337.22 3337.22 0.00 2.93 26.87
25 210 3337.22 3337.22 0.00 3.00 24.18
30 0 3694.26 3694.26 0.00 1.48 40.91
30 30 3583.91 3583.91 0.00 0.48 60.03
30 60 3564.04 3564.04 0.00 0.29 391.98
30 90 3548.92 3548.92 0.00 0.46 63.73
30 120 3540.71 3540.71 0.00 0.69 66.25
30 150 3541.71 3541.71 0.00 0.80 35.14
30 180 3542.71 3542.71 0.00 1.23 44.46
30 210 3543.71 3543.71 0.00 1.00 29.85
40 0 10828.30 10828.30 0.00 5.30 136.08
40 30 10691.40 10691.40 0.00 12.50 624.49
40 60 10581.20 10581.20 0.00 19.77 2994.91
40 90 10578.90 10523.50 0.52 30.31 283.49
40 120 10569.40 10503.30 0.63 15.69 319.40
40 150 10515.60 10497.70 0.17 21.06 349.66
40 180 10515.60 10497.70 0.17 50.27 357.07
40 210 10515.60 10497.70 0.17 28.25 294.01
50 0 8853.17 8853.24 0.00 5.85 2031.44
50 30 8683.62 8633.20 0.58 10.70 14542.66
50 60 8485.74 8485.73 0.00 27.56 4169.52
50 90 8442.81 8442.81 0.00 39.83 4952.99
50 120 8442.81 8442.81 0.00 47.14 2332.90
50 150 8442.81 8442.81 0.00 55.83 1479.38
50 180 8442.81 8442.81 0.00 67.36 1230.21
50 210 8442.81 8442.81 0.00 68.62 854.64

budget than to the cases with low (B = 0) and high (B = 210) budget. Similar conclusions

hold for the RPMP-PF algorithm.

Figures 4.2(a) and 4.2(b) show how the total expected cost changes with fortification bud-

get (for n = 50 and n = 150, RUFL-PF model). The relationship is shown for values of
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Table 4.4: Performance results for RUFL-PF algorithm (n = 100 and n = 150)
Nodes B LB UB Gap, % Alg. time, s

100 0 17303.10 17444.70 0.81 69.60
100 30 17201.30 17299.10 0.57 642.20
100 60 17204.30 17255.90 0.30 625.20
100 90 17142.10 17220.30 0.45 700.70
100 120 17110.60 17187.30 0.45 666.20
100 150 17111.80 17157.60 0.27 961.10
100 180 17056.10 17127.80 0.42 800.70
100 210 17023.00 17095.20 0.42 900.30
150 0 18903.9 19390.6 2.51 115.92
150 30 18861.01 19123.36 1.37 1278.5
150 60 18810.51 18872.54 0.33 2123.83
150 90 18808.42 18811.21 0.01 2058.84
150 120 18775 18787.61 0.07 2965.55
150 150 18740.41 18770.4 0.16 3034.89
150 180 18738.4 18760.3 0.12 3510.13
150 210 18738.4 18760.5 0.12 3679.1

Table 4.5: Performance results for RPMP-PF algorithm (n = 100 and n = 150)
Nodes B LB UB Gap, % Alg. time, s

100 0 12408.40 13143.20 5.59 35.17
100 15 12393.50 12849.90 3.55 283.82
100 30 12506.00 12602.80 0.77 407.59
100 45 12528.90 12732.80 1.60 455.23
100 60 12337.20 12555.70 1.74 535.29
100 75 12503.60 12514.60 0.09 539.85
100 90 12345.70 12465.70 0.96 601.80
100 105 12342.90 12426.10 0.67 758.19
150 0 14833.6 15166.1 2.19 97.97
150 15 14102.7 14978.3 5.85 1183.74
150 30 14445.8 14622.3 1.21 3521.99
150 45 14422.8 14615.3 1.32 4101.28
150 60 14504 14607.9 0.71 4242.63
150 75 14475 14604.3 0.89 5843.83
150 90 14473.1 14600.3 0.87 5884.77
150 105 14423.6 14600.3 1.21 6328.26

B ranging between 0 and 210. As expected, in both cases, the curves exhibit a downward

trend as fortification budget increases. It can be observed that the marginal reduction in

the expected total cost diminishes with B. This effect can be explained by noting that the
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Table 4.6: Percentage of computation time increase from n = 25 to n = 70, in thousands %
(RUFL-PF)

B 0 90 210
Algorithm 4.06 9.80 5.90
CPLEX 34.13 163.61 112.87

(a) n = 50

(b) n = 150
Figure 4.2: Relationship between fortification budget and expected total cost (RUFL-PF)

algorithm allocates fortification budget to the facilities in the decreasing order of reduction

in the total expected cost gained from fortification.
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Chapter 5: Incorporation of Nonlinear Fortification Functions

In most real-life environments, the reliability of a system can be improved at some cost but

the marginal improvement generally decreases as the system becomes more reliable and

ultimately reaches its maximum attainable reliability (McEachern, 2008). In this chapter,

we extend the RUFL-PF with linear fortification model and handle the case when the

amount of reliability improvement is a nonlinear function of fortification investment. We

call this model RUFL-NF. The developed approach is also applicable to RPMP-PF.

5.1 Model Formulation

We use the same notation as for RUFL-PF (see § 4.1.1). Similar to RUFL-PF, for each

facility j, we let u j and B respectively denote the maximum obtainable reliability improve-

ment and the total available fortification budget. With each facility j, we associate a func-

tion g j(·) which maps the fortification investment onto the facility reliability. Without the

loss of generality and to reflect the effect of diminishing marginal reliability improvement,

we consider that functions {g j} are concave in the range of fortification investment under

study (e.g., see Fig. 5.1).

The formulation of RUFL-NF is similar to that of the RUFL-PF with the exception that the

constraint ∑
j

r j∆ j 6 B is replaced with the constraint ∑
j

g j(∆ j)6 B, as shown below.

(RUFL-NF)

minimize ∑
j∈J

f jX j + ∑
i∈I

∑
j∈J

[hidi j(1− (q j−∆ j))Yir0 +hidi jYi j1 ∑
r∈J, r 6= j

(qr−∆r)Yir0]
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subject to

∑
j

Yi j0 = 1, ∀i ∈ I (5.1a)

∑
j

Yi j1 = 1, ∀i ∈ I (5.1b)

Yi j0 +Yi j1 6 X j, ∀i ∈ I, j ∈ J (5.1c)

0 6 ∆ j 6 u j, ∀ j ∈ J (5.1d)

∑
j

g j(∆ j)6 B (5.1e)

X j ∈ {0,1}, ∀ j ∈ J (5.1f)

Yi j0,Yi j1 ∈ {0,1}, ∀i ∈ I, j ∈ J. (5.1g)

5.2 Lagrangian Relaxation-Based Heuristic

In this section, we develop a Lagrangian relaxation-based heuristic solution by approxi-

mating the functions {g j} in the constraint (5.1e) by using piecewise linear functions. The

developed heuristic is based on the algorithms presented in Chapter 4.

Figure 5.1: A piecewise linear approximation of a nonlinear fortification function

To approximate the nonlinear functions by piecewise linear functions, we have adopted the

approach discussed in detail by Nemhauser and Wolsey (1988). As illustrated in Figure
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5.1, we let {b1,b2, . . . ,bN} be the set of breakpoints connecting the linear segments of

the approximating function (blue dotted line). We let αn denote the slope of the segment

between breakpoints bn and bn+1 (relative to the vertical axis). In other words, αn can

be interpreted as the cost associated with the unit reduction in the failure probability of

facility j in the range of fortification investment between bn and bn+1. From this point, we

will use the piecewise linear function to develop our heuristic solution.

5.2.1 Heuristic for Lower Bound

The process of developing a heuristic for the lower bounds is somewhat similar to the

approach used in §4.1.2.1. We proceed by relaxing the constraint (5.1c) by using Lagrange

multipliers λi j (the relaxed model is called RUFL-NF-λ ).

We solve RUFL-NF-λ for facility location variables X as we did in §4.1.2.1. To solve for

the customer assignment variables Y and fortification variables ∆, we proceed in two steps.

We first solve a special case when fortification budget is zero. We then use this solution to

handle the case when fortification budget is positive.

We solve the case B = 0 as in §4.1.2.1. We then let Φi( j,k) denote the part of the objective

function of the resulting solution associated with customer i, where j and k denote its

primary and backup suppliers, respectively. Once we obtain the optimal assignment of

suppliers for all customers i ∈ I, we let G( j) be the set of customers who have facility j as

their primary supplier.

To solve the case when B > 0, suppose that supplier j is fortified and c is the amount of

reliability improvement. We denote the corresponding objective function as Ψi( j,k). For

customer i, the improvement gained from fortifying supplier j is then Φi( j,k)−Ψi( j,k).

Hence, the overall improvement gained from fortifying supplier j is ∑i∈G( j)(Φi( j, ·)−

Ψi( j, ·)). We let r̄ j denote the cost associated with the unit reduction in the failure proba-
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bility of supplier j at its current reliability level. The value of r̄ j can be found by locating

the current reliability level on the vertical axis of the approximating function (see Fig. 5.1.

We now let E = { j : q j > 0}. For each j ∈ E, we introduce the following measure of

fortification efficiency.

δ ( j) =
∑i∈G( j)(Φi( j, ·)−Ψi( j, ·))

r̄ j · c
=

∑i∈G( j) hic(di·−di j)

r̄ j · c
=

∑i∈G( j) hi(di·−di j)

r̄ j
· (5.2)

We aim to find s such that δ (s) = max j∈E δ ( j) and allocate fortification budget B > 0

starting with this supplier. Note that since the value of δ ( j) depends on the current relia-

bility level of j, the solution algorithm will need to update the value of δ ( j) whenever the

fortification process improves the reliability of facility j to the next level (linear segment).

We implement the fortification process as described in the algorithm below.

Step 1. For all j ∈ E, set ∆ j = 0.

Step 2. Find facility s such that δ (s) = max
j∈E

δ ( j). Select n such that bn 6 (1− qs) 6 bn+1.

In steps 3-5 below, we determine the level of fortification of facility s which we denote by

∆s. Note that ∆s 6 min{us,B/r̄s, [bn− (1−qs)]}.

Step 3. For each customer i /∈ G(s), let j and k denote its current primary and backup

supplier, respectively (i.e., Φi( j,k) = min
v,w
{Φi(v,w)}). We want to determine ∆i

s, the min-

imal fortification level of s that causes re-assignment of i. Suppose that s is chosen as the

primary supplier of i. Let Φi(s, t) = min
w
{Φi(s,w)}, where t denotes the backup supplier

of i when s is chosen as the primary one. Now if the reliability of s was improved by c,

then Φi(s, t) would decrease by c·hi(dit − dis). As the reliability of s increases, if Φi(s, t)

becomes smaller than Φi( j,k), then re-assigning customer i to suppliers s and t will result

in an improved objective function. We have that ∆i
s =

Φi(s, t)−Φi( j,k)
hi(dit−dis)

.

Step 4. Let ∆̃s = min
i/∈G(s)

∆̃
i
s. Then ∆s = min{∆̃s,min{us,B/r̄s, [bn− (1−qs)]}}.
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Step 5. Update G(s), if needed. Set B = B− r̄s∆s, qs = qs−∆s, us = us−∆s. If us = 0,

E←E\{s}.

Step 6. If B > 0 and E 6=∅, recalculate δ j for all j ∈ E, and proceed to Step 1. Else, stop.

5.2.2 Heuristic for Upper Bound

A feasible solution can be obtained by using the solution to (RUFL-NF-λ ). We first se-

lect the facilities opened in the solution to (RUFL-NF-λ ). For each customer, we assign

the nearest and the second nearest open facility as the primary and backup supplier, re-

spectively. To decide which facilities to fortify, we proceed in the following way. For

customer i, let j and k respectively denote its primary and backup supplier. The expected

transportation cost associated with i amounts to hidi j(1−q j)+hidik q j. If the reliability of

facility j is increased by c, the resulting cost improvement equals to ϕ j = ∑i∈G( j) hi(dik−

di j) · c. Next we determine r̄ j, the cost associated with the unit reduction in the failure

probability of supplier j, by locating its current reliability level of on the vertical axis of

the approximating function. We then fortify opened facilities in a greedy manner, one at

a time, in the decreasing order of ϕ j/r̄ j values. Updating of the Lagrangian multipliers is

conducted in a manner described in §4.1.2.3.

5.3 Computational Results

We tested the performance of the RUFL-NF solution algorithm using seven datasets con-

taining 25, 30, 50, 60 and 70 nodes. The values for all the parameters were the same as in

Section 4.3.1. In the testbed examples, we generated nonlinear fortification functions of

the form y(x) = a0 + a1x+ a2x2 + a3x3 + a4x4, where the values of the coefficients were

site specific (see Fig. 5.2). We used 3-piecewise linear functions to approximate each g j.

Since the failure probabilities of the facilities were randomly drawn from Uni(0,0.05),
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we set the first breakpoint b1 to 0.95 for all facilities. For each facility j, the choice of the

second breakpoint was done so that the value of α1 (see Fig. 5.1) was equal to the value of

r j in § 4.3.1. The choice of b3 was arbitrary; b4 was set to 1.0 for all facilities.

6

Figure 5.2: A sample nonlinear fortification function

We compared the solutions obtained using the RUFL-NF algorithm with optimal objective

function values for RUFL-PF for the cases when r j = α1 and r j = α3. The solutions to

these cases provide the respective lower and upper bounds for RUFL-NF based solutions

(see Fig. 5.2). The results of the comparison are shown in Table 5.1.

As it can be seen from the table, the developed algorithm performed well in terms of the

computational time. As expected, the computation time increased with the size of the

problem. Comparing the computational time to that of the RUFL-PF heuristic (see Table

4.1), the RUFL-NF algorithm performs somewhat slower. This can be explained by not-

ing that at each iteration, the “nonlinear” fortification process is more complex and thus

takes longer. The objective function values obtained by the algorithm were consistently in

between the respective lower and upper RUFL-PF bounds.

61



Table 5.1: Results of RUFL-NF algorithm

Nodes B RUFL-PF RUFL-NF RUFL-PF RUFL-NF
lower bound value upper bound time, s

25 0 7762.68 7762.68 7762.68 0.08
25 30 7669.79 7676.42 7687.77 1.00
25 60 7643.00 7649.32 7678.78 0.67
25 90 7641.76 7641.76 7669.79 0.56
25 120 7641.76 7641.76 7660.80 0.62
25 150 7641.76 7641.76 7651.80 0.73
25 180 7641.76 7641.76 7643.81 0.84
25 210 7641.76 7641.76 7641.76 1.10
30 0 7408.25 7408.25 7408.25 0.38
30 30 7383.22 7390.03 7395.00 1.43
30 60 7367.63 7379.80 7388.53 1.37
30 90 7362.14 7371.83 7383.22 1.78
30 120 7357.57 7365.24 7377.90 2.09
30 150 7353.00 7360.60 7372.59 2.38
30 180 7350.26 7356.01 7367.63 3.82
30 210 7350.26 7353.05 7365.31 1.30
40 0 13696.50 13696.50 13696.50 1.44
40 30 13623.20 13664.40 13670.00 5.89
40 60 13576.50 13623.20 13650.70 3.51
40 90 13558.30 13595.40 13623.20 4.53
40 120 13543.00 13574.10 13597.70 7.53
40 150 13529.20 13559.40 13583.30 7.46
40 180 13519.40 13547.20 13575.40 5.79
40 210 13519.40 13536.90 13569.90 34.48
50 0 12151.10 12151.10 12151.10 2.97
50 30 12023.92 12051.90 12102.50 12.64
50 60 11958.52 11998.90 12057.00 40.43
50 90 11936.70 11973.50 12023.90 46.48
50 120 11923.00 11953.70 11997.60 94.02
50 150 11916.00 11943.60 11975.10 54.87
50 180 11916.00 11933.60 11958.50 53.81
50 210 11916.00 11926.40 11950.10 171.39
60 0 15262.40 15262.40 15262.40 3.86
60 30 15200.50 15209.60 15221.40 402.00
60 60 15174.30 15183.40 15209.30 355.37
60 90 15148.10 15163.50 15200.50 1332.20
60 120 15121.90 15149.80 15191.80 277.90
60 150 15107.11 15136.70 15183.00 404.52
60 180 15098.35 15123.60 15174.30 511.49
60 210 15091.70 15112.40 15165.60 188.46
70 0 15882.00 15882.00 15882.00 5.53
70 30 15814.93 15827.30 15838.50 630.82
70 60 15787.40 15799.70 15824.50 455.00
70 90 15759.81 15779.40 15814.90 479.36
70 120 15732.25 15764.50 15805.80 555.61
70 150 15712.26 15750.80 15796.60 522.92
70 180 15701.38 15737.00 15787.40 662.86
70 210 15693.16 15723.60 15778.20 483.16
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Chapter 6: Summary of Main Results, Contributions and Future Research

This dissertation presents the development of three related classes of models which are

intended to aid in the design of robust distribution networks and improve the utilization of

limited fortification resources. The developed models extend the uncapacitated P-median

and fixed-charge location models by considering random facility failures, incorporation

of supplier backups, and integration of facility fortification within a finite budget. The

development of the models proceeded progressively from binary fortification via linear

fortification functions to partial fortification using nonlinear functions. For each of the

models, we developed solution algorithms and demonstrated their computational efficiency

for solving large-scale problems.

Summary of the main results is as follows. Both RPMP-BF and RUFL-BF were formu-

lated as nonlinear integer programming models which were proven to be N P-hard. Our

testbed results showed that the developed Lagrangian relaxation-based algorithms were

computationally efficient, demonstrating a distinctively better performance than CPLEX,

particularly for solving large scale problems. Our comparison study revealed that both

RPMP-BF and RUFL-BF based policies outperformed their respective myopic counter-

parts over the examined range of fortification budget. Both RPMP-BF and RUFL-BF

based policies exhibited a diminishing marginal reduction in the total expected cost as

fortification budget increased. It was also shown that facility locations were generally

selected from among demand-heavy nodes. In the testbed case, when compared to RUFL-

BF, the RPMP-BF based policy had a broader range of attractive fortification investment

opportunities.
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Both RPMP-PF and RUFL-PF were formulated as nonlinear integer programming models.

The RUFL-PF model was proven to be N P-hard. The developed heuristic based algo-

rithms performed better than CPLEX for small and medium sized problems solvable by

the solver. The heuristics were also found to be efficient for solving large-scale problems.

For both algorithms, the computation time increased significantly with the network size

but the rate of increase was substantially smaller for the algorithms than for CPLEX. For

both algorithms, the computation time increased with fortification budget, especially for

larger sized networks. We have also observed a diminishing marginal reduction in the total

expected cost as fortification budget increased. The developed RUFL-NF solution algo-

rithm performed relatively fast for small and medium sized networks. RUFL-NF solutions

were always in between the respective lower and upper RUFL-PF based bounds.

Our main contributions are as the following. Comparing to the existing relevant literature,

namely Lim et al. (2010), our models feature a number of distinguishing advances: (i)

our models incorporate a finite fortification budget which enables a decision maker to

match solutions to available reliability improvement resources; (ii) our formulation makes

it possible to assess the effectiveness of fortification investments (by using ROR) and

compare it to that of alternative investment opportunities; (iii) in our model, a facility can

be fortified to any reliability level which allows a more efficient utilization of limited for-

tification resources; (iv) by using nonlinear fortification functions, our formulation is able

to capture the effect of diminishing marginal reliability improvement from fortification

investment; and (v) our formulation allows to analyze periodic fortification upgrades as

additional fortification resources become available. The models are intended to support

corporate decision makers in the design of robust distribution networks using constrained

fortification resources.

Future research directions are discussed as the following. Our models assumed that the

facilities had unlimited capacity. Although this assumption prevails in reliable facility

location literature, it may be unrealistic, particularly in the case of lean manufacturing. On
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the other hand, the practical significance of the capacitated case is also associated with its

very significant modeling complexity. Capacitated models constitute an entirely different

class of methodologies since the assumption of restricted capacity requires an overhaul of

backup mechanisms and customer assignation. This makes the capacitated case worthy of

future study. In addition, we plan to investigate the effect of correlated and simultaneous

facility failures which may be of particular importance when modeling certain types of

disruptions, such as labor strikes, political unrest, and disruptions due to forces of nature.
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Appendix A: The 30-Node Dataset

Table A.1: 30-Node Dataset
Nodes Demand Longitude Latitude q j r j f j

1 297.60021 38.56685 121.46736 0.014 620.79 977
2 179.90455 42.66575 73.799017 0.045 459.02 1059
3 169.8651 30.30588 97.750522 0.015 325.73 1379
4 47.81468 38.97165 76.503033 0.035 979.00 1353
5 43.75099 44.947744 93.103686 0.026 44.23 1072
6 42.19973 30.448967 91.126043 0.005 546.00 975
7 40.40587 32.3544 86.284287 0.042 543.86 1203
8 36.85296 38.19077 84.865203 0.048 603.27 1496
9 36.65228 33.54255 112.071399 0.044 707.18 800
10 34.86703 34.039236 80.886341 0.017 486.47 618
11 32.94394 39.768035 104.872655 0.035 566.86 676
12 32.87116 41.7657 72.683866 0.038 192.05 535
13 31.45585 35.46705 97.513491 0.009 711.89 730
14 28.42321 44.9245 123.022057 0.039 204.26 1051
15 27.76755 41.576738 93.617405 0.046 506.80 1142
16 25.73216 32.3205 90.207591 0.009 444.00 828
17 24.77574 39.0379 95.691999 0.022 889.00 881
18 23.50725 34.7224 92.354076 0.035 815.14 1034
19 17.93477 38.35055 81.630439 0.014 157.07 738
20 17.2285 40.777267 111.929921 0.021 181.76 1208
21 15.78385 40.8164 96.688171 0.009 233.33 699
22 15.15069 35.678502 105.954149 0.025 608.40 1355
23 12.27928 44.330647 69.729714 0.021 940.00 597
24 12.01833 39.148328 119.743243 0.006 146.00 1467
25 11.09252 43.231594 71.560077 0.029 472.76 702
26 10.06749 43.606651 116.2261 0.025 977.84 1219
27 6.388 46.805467 100.767298 0.029 648.41 902
28 6.069 38.90505 77.016167 0.029 756.41 1173
29 5.62758 44.266482 72.571854 0.028 763.18 575
30 4.53588 41.14545 104.792349 0.017 676.29 930
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