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ABSTRACT

This thesis presents an algorithm for classifying packets according to arbitrary (including

noncontiguous) bitmask rules. As its principal novelty, the algorithm is parameterized by the

amount of memory available and can customize its data structures to optimize classification

time without exceeding the given memory bound. The algorithm thus automatically trades

time for space efficiency as needed. The two extremes of this time-space tradeoff (linear search

through the rules versus a single table that maps every possible packet to its class number) are

special cases of the general algorithm we present. Additional features of the algorithm include

its simplicity, its open-source prototype implementation, its good performance even with worst-

case rule sets, and its extendability to handle range rules and dynamic updates to rule sets. The

contributions of this thesis first appeared in [1].
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CHAPTER 1

INTRODUCTION

Packet classifiers are essential components of many network utilities, including routers and

security services like firewalls, packet filters, and intrusion-detection systems. Once a network

utility classifies a packet (or often just the first in a flow of packets), the utility can perform

some actions specific to that class of packets, such as forwarding the packet to a particular

destination, dropping the packet, updating some internal state, or logging information about

the packet.

A packet classifier inputs a list of rules, each specifying a class of packets matched by that

rule. For example, a rule might specify that it matches all TCP packets with any source IP

address, any destination IP address of the form 131.247.*.255, source port 118, and any odd-

numbered destination port greater than 1023. Given a list of such rules, the classifier typically

prepares some data structures that provide a mapping from any incoming packet p to the set

of classes—or more commonly, the highest-priority class—that p matches. Thus, the packet

classifier’s job is to input packets, and for every packet input, output a class number. Typically,

by outputting class number n for input packet p, a classifier indicates that the nth rule in its rule

list is the first one to match p (classifiers normally assume a final “catch-all” rule to ensure that

every input packet matches at least one rule).

1.1 Related Work

Many software algorithms exist for packet classification, and several articles and books

survey the field (e.g., [2, 3, 4, 5]). A large number of algorithms take rules defined by range
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and prefix patterns since these lend themselves to efficient search. For example, Rovniagin and

Wool describe an algorithm they call Geometric Efficient Matching (GEM), which classifies

packets based on range patterns [6]. It works by considering each packet dimension as a sepa-

rate coordinate in a d-dimensional space (where d is the number of packet dimensions the rules

are specified over), and partitions the space into areas where different rules match. GEM has a

dimension dependent classification time that is O(d log n), and a worst case space complexity

that is O(n4). Baboescu and Varghese propose an algorithm called Aggregated Bit Vectors

(ABVs) in [7] that is an improvement of the Lucent bit vector scheme described by Lakshman

and Stiliadis in [8]. These algorithms take prefix and range rules as input and use bitmap in-

tersection of partial matches for each packet field to determine which class a packet belongs

to. ABV claims classification rates capable of handling linespeeds equivalent to OC-48, even

though classification speed is technically linear in the number of rules.

Qi et al. describe in [9] an algorithm called HyperSplit which is based on mapping the

possible packet values into a multi-dimensional space and dividing that space up into regions

so that all points (represented by a packet value) in a region match a specific rule. HyperSplit

is also defined by range and prefix patterns and gains efficiency over the similar strategy of

HiCuts [10]. Both algorithms divide the search space for incoming packets into a heirarchy.

Interestingly, classification time for both HiCuts and HyperSplit is O(d), and their space usage

is O(nd) meaning the classification time is dimension dependent (unlike Grouper, as Chapter 3

discusses).

Unfortunately, handling only range/prefix patterns is problematic for rules that could be

specified more simply with bitmasks—bitmask patterns cannot in general be translated effi-

ciently into range/prefix patterns. For example, to match IP addresses of the form 131.247.*.255

(e.g., all hosts numbered 255 on any subnet in the 131.247 network) would require 256 range/prefix

patterns because the wildcard bits do not appear at the end of the pattern. Similarly, to match

all 16-bit port numbers that are odd and greater than 1023 would require only 6 bitmask pat-

terns but 32, 256 range/prefix patterns. In general, a single b-bit bitmask pattern can require
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up to 2b�1 range/prefix rules in order to match an equivalent set of inputs (specifically when

converting a bitmask pattern of the form *1 or *0 into range/prefix patterns). This is not just a

theoretical problem; Gupta and McKeown found that about 10% of rules they surveyed in real

classifiers contained noncontiguous bitmask patterns [11].

On the other hand, we can convert range/prefix patterns relatively efficiently into bitmask

patterns. Prefix patterns are already bitmask patterns, and every range pattern over b bits can be

automatically converted into at most 2b�2 bitmask/prefix patterns (the worst-case conversion

occurs for ranges of the form 00...01–11...10) [12]. Based on Gupta and McKeown’s survey

of practical pattern usage in classification rules, particularly their finding that about 10% of

rules used a range pattern but about 90% of all range patterns just specified port numbers

greater than 1023 [11], we might expect that converting a range-pattern rule list into a bitmask-

pattern rule list would typically inflate the number of rules by about 50%. Also, the worst-case

linear inflation when converting range to bitmask patterns is tractable, while the worst-case

exponential inflation when converting bitmask to range/prefix patterns is not. Bitmask patterns

are therefore more efficiently expressive, in general, than range/prefix patterns alone.

Some software classification solutions can handle noncontiguous-bitmask patterns, such

as Recursive Flow Classification (RFC) developed by Gupta and McKeown [11]. RFC is a

heuristic that exploits the structure of common rulesets. It uses a feedback mechanism to

recursively classify a packet into smaller and smaller sets of possible rules that can match the

incoming packet. The authors report, however, that RFC uses a prohibitively large amount of

memory for rule sets of more than 6,000 rules. In addition, the memory usage is not tunable

and grows exponentially in the number of dimensions the rule set is defined over.

Ternary content-addressable memories (TCAMs) are specialized hardware that can also

classify packets using bitmask rules [13, 14]. Currently, they are the de facto industry standard

for classfication due to their high throughput because they can compare incoming packets to

all rule patterns in parallel [15]. TCAMS are expensive, however, costing up to $250 per

Mb of memory [15]. They also consume from 15-30 watts per Mb, leading most of the chips
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commercially available to be limited to 128Mb size or less (usually 1-2Mb is common) [15, 16].

Finally, TCAMs are limited in the length of the bitmask rule they can specify. The standard

length is 144 bits [15], but this is inadequate for classifying IPv6 headers which have 320 bits at

a minimum. We will see that not only can Grouper classify rulesets of hundreds of thousands of

rules, it can also handle rules specified over many thousands of bits (i.e., Grouper can classify

packets based on rule sets much larger than 128Mb, even on commodity hardware).

Other classification algorithms handle patterns more expressive than bitmasks, including

full regular expressions (e.g. EFSAs [17], XFAs [18], and BDDs [19] ). However, all al-

gorithms in this category suffer from worst-case exponential (in the number of packet bits

classified) memory requirements and/or classification times, due to the arbitrarily complex set

of packets specifiable in a single rule.

Another group of classifiers that handle more expressive patterns than bitmasks are the

Snort intrusion detection system [20], and the open source firewall iptables [21]. Both of these

have very expressive rule languages, which are convenient for describing complicated firewall

policies. Unfortunately, both of these implementations rely on a linear search through the

rule list to classify each packet. Linear classification time in the number of rules limits their

application in environments where high throughput and large rule sets are required because the

classifier becomes a bottleneck of the system.

All classification algorithms make some time-space tradeoff between two extremes. At one

extreme, a classifier could use no space beyond that of the rule list but have to classify each

packet by performing a linear search through the list of rules. In this case, both the space

used and packet-classification times are O(nb=w), because each of the n rules may specify

b packet bits that have to match the b bits stored in O(b=w) machine words (where w is the

word size in bits; we analyze space usage and classification time in terms of memory words

stored/accessed). At the other extreme, a classifier could maintain a single table that maps

each of the 2b possible input packets to its class number. In this case, the space required for

storing 2b entries of class numbers each having size O((lg n)=w) is O((2b lg n)=w), while the
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classification time is only O((lg n)=w). Linear search is space efficient but runtime inefficient,

while a single table is runtime efficient but space inefficient.

1.2 Contributions

This thesis presents an algorithm called Grouper (described in detail in Chapter 2) for

classifying packets according to bitmask rules. The algorithm partitions the bits being classified

into approximately equal-sized groups and uses each value of grouped bits in a packet to look

up a bitmap of rules matching that group value. It computes the set of rules matching any

packet by intersecting the sets of rules matching each of that packet’s grouped bits. Thus,

Grouper uses the common technique of intersecting sets of matched rules [8, 11, 7], but unlike

any rule-set-intersection algorithms we are aware of, Grouper classifies according to arbitrary

(including noncontiguous) bitmask rules while exhibiting good performance even on large rule

sets (having many thousands of rules).

By controlling the sizes of bit groupings, Grouper can control the amount of memory

needed for its bitmap-lookup tables; larger group sizes imply larger amounts of memory con-

sumed but faster classification times. Thus, the algorithm can customize its data structures to

optimize classification time without exceeding a given memory bound. This ability to auto-

matically trade time for space efficiency is the algorithm’s principal novelty. Besides automat-

ically trading time for space and classifying according to arbitrary bitmask policies, Grouper

features: simplicity, an open-source prototype implementation [22], good performance even

with worst-case rule sets, and extendability to handle range rules and dynamic updates to rule

sets.

As described in Chapter 3, the experiments performed have shown that Grouper is capable,

when implemented in software on a commodity laptop using about 2GB of memory, of classi-

fying entire 320-bit IPv6 headers into one of 1,000 (respectively 100,000) randomly generated

classes at 579,397 (16,774) pps. When classifying according to only 100 randomly generated

rules, but with each rule specifying a bitmask over a full 12,000 bits of Ethernet payload, we
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observed classification throughputs of 25,271 pps (i.e., several hundred Mbps, again in a soft-

ware implementation). Grouper can classify hundreds/thousands of packet bits efficiently, in

part because it operates independently of the number of packet fields/dimensions being classi-

fied.
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CHAPTER 2

THE GROUPER ALGORITHM

Grouper uses t lookup tables to classify b packet bits according to n rules (see Figure 2.1).

Each lookup table maps either bb=tc or db=te (referred to as “floor” and “ceiling” groups re-

spectively) of the b packet bits to an n-length bitmap indicating which of the n rules match

those bb=tc or db=te packet bits. We say the bb=tc or db=te bits used to index a table are

grouped together, with a group size of bb=tc or db=te bits. Every table maps a group of bits to

an n-length bitmap (see Figure 2.2).

Figure 2.1. Layout of the rule sets Grouper operates on

Grouper uses the lookup tables as follows. Given b bits of an input packet to classify,

Grouper divides those b bits into t groups and uses the values of the bits in each group to index

into a table to look up the n-length bitmap of rules matching that group of bits. By intersecting

(i.e., bitwise ANDing) all bitmaps of rules matching every group, Grouper ends up with an

n-length bitmap of rules matching the entire input packet. The first set bit in that final bitmap
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n bits

2 b/t  

rows of
bitmaps

Table #t

"Ceiling" Lookup Tables

Table #[t - (b mod t) + 1]

Table #[t - (b mod t) + 2]

...

b = relevant bits
n = number of rules
t = number of tables

n bits

Note: There are no "Ceiling"
tables if (b mod t) is 0. 

2 b/t  

rows of
bitmaps

Table #1

Table #2

Table #[t - (b mod t)]

"Floor" Lookup Tables

...

Figure 2.2. Diagram of the Grouper classification tables

indicates the lowest-numbered (highest-priority) rule matching the original b input bits. The

algorithm in Figure 2.4 formally describes how Grouper classifies packets.

Because Grouper does not guarantee that it will group any two particular bits together, it

may form groups of arbitrary bits from the b-bit input. One consequence of this arbitrariness in

bit groupings is that Grouper operates independently of packet fields/dimensions; the algorithm

simply views its input as b packet bits, regardless of higher-level categorizing of those bits into

fields. A second consequence of grouping arbitrary bits together is that other packet bits cannot

influence what a particular bit value matches; it is this constraint that limits Grouper (in its basic

version) to classifying according to bitmask rules.
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Grouper does however guarantee that it will partition the b packet bits into t groups having

as equal of size as possible (i.e., either bb=tc or db=te bits). Evening out the group sizes in

this way evens out the number of bits used to index each table, thus preventing (1) space

inefficiencies that arise with disproportionately large tables and (2) time inefficiencies that

arise with disproportionately small tables. Since the bitmap is the same length for each table

(it is proportional to n, not to the number of bits that index the table), disproportionately small

tables incur the same runtime hit as a large table, but provide less information for classification.

The algorithm in Figure 2.3 shows how Grouper constructs its tables.

Input : The number of tables to build, t
Input : The number of relevant bits in a rule, b
Input : The total number of rules, n
Input : Rules, a series of bitmask rules indexable by bits. (Example: Figure 2.1)
Output: A series of tables that can be used by the classification algorithm in Fig. 2.4
begin

Tables a zeroed series of tables with the structure shown in Fig. 2.2
for i = 1! t� (b mod t) do

L (i� 1) � bb=tc+ 1
H L + bb=tc � 1

for j = 0! 2bb=tc � 1 do
for k = 1! n do

if bits L through H of Rules[k] match j then
Set bit k in table i, row j in Tables

offset t� (b mod t)
for i = t� (b mod t)! t do

L (i� offset� 1) � db=te+ offset � bb=tc+ 1
H L + db=te+ 1

for j = 0! 2db=te � 1 do
for k = 1! n do

if bits L through H of Rules[k] match j then
Set bit k in table i, row j in Tables

return Tables

Figure 2.3. Basic Algorithm for table building
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Input : A set of Grouper Tables created by the algorithm in Fig. 2.3
Input : The number of Grouper tables, t
Input : The number of relevant bits in a rule, b
Input : The total number of rules, n
Input : A bitmap p of length b, the incoming packet bits to be classified
Output: The class number the incoming packet p belongs to
begin

OutVector a zeroed bitmap of length n bits
for i = 1! t do

if i � t� (b mod t) then
s bb=tc
i offset 0
b offset 0

else
s db=te
i offset t� (b mod t)
b offset i offset � bb=tc

L (i� i offset� 1) � s + b offset + 1
H L + s� 1
rownum bits L through H (inclusive) of p
OutVector OutVector bitwise ANDed with row rownum, table i in Tables

return Position of the first set bit in OutVector or 0 if no bit is set

Figure 2.4. Algorithm for packet classification

2.1 Possibilities for the Number of Lookup Tables

As a special case, when t = 1, Grouper does not have to perform any bitmap intersections,

so its one lookup table, indexed by all b packet bits, can be optimized to store not bitmaps but

the actual class numbers matching all possible b-bit values. Hence, the special case of t = 1

corresponds to one extreme in the time-space tradeoff of packet classification, in which a single

table maps all possible b-bit values to their class numbers.

As another special case, when t = b, every lookup table maps a single bit of the input

packet to a bitmap indicating which rules match that bit value. In this case Grouper classifies by

iterating through every bit of input and intersecting the bitmap for each input bit to determine

which rules match all input bits. This approach is conceptually the same as a linear-search

classification algorithm: both approaches iterate through all possible pairings of input bits and
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rule numbers to find which rule numbers match all the input bits; both approaches classify in

time O(bn=w) using O(bn=w) space. Hence, the special case of t = b corresponds to the other

extreme in the time-space tradeoff of packet classification in which the algorithm performs a

linear search.

In general, setting t to a lower value causes Grouper to use more space but classify packets

more quickly (fewer tables have to be queried and fewer bitmaps have to be intersected). The

special cases of t = 1 and t = b correspond to extremes of the time-space tradeoff in packet

classification. However, it turns out that it never makes sense to set t > db=2e because any such

t value saves no space compared to setting t = db=2e. To see why, consider the hypothetically

most space-saving setting of t to b; in this case each of the b tables stores two n-length bitmaps.

We can always replace two such tables (consuming a total of 4dn=we space) with a single

table that maps 2 bits of the input packet to four possible n-length bitmaps (also consuming

a total of 4dn=we space). Thus, it only makes sense to use Grouper with t values ranging

from 1 (corresponding to the single-lookup-table algorithm) to db=2e (corresponding to the

linear-search algorithm).

2.2 Memory Use, Table-build Time, and Classification Time

Grouper uses t tables, each havingO(2b=t) entries, with each entry being an n-length bitmap

consuming O(n=w) machine words. The total memory words used is therefore O((2b=ttn)=w),

where again, t can range from 1 to db=2e. More precisely, the following equation gives the

number of bits m required to store Grouper’s tables.

m =

8>>><
>>>:

(t� (b mod t)) � 2bb=tc � n+ (b mod t) � 2db=te � n if 2 � t � db=2e

2b � dlg ne if t = 1

(2.1)

Equation 2.1 partitions the b input bits into t groups such that every group has as uniform

as possible of a size: b mod t groups will contain db=te bits, while t � (b mod t) groups will

contain bb=tc bits. We consequently have b mod t tables of 2db=te entries and t� (b mod t) tables
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of 2bb=tc entries. Building the full lookup tables from scratch may require time proportional to

their size, with Grouper iterating over and setting every table entry.

Grouper’s space requirements are exponential in the number of bits in each group, which is

different from most other comparable classification algorithms whose space usage is defined in

terms of the (fixed) number of packet dimensions its rule set is defined over (usually denoted

d). For example, both the cross-producting technique [12], and RFC [11] use memory that is

O(nd), where N is the number of rules [4].

Classification time for Grouper is O(tn=w) because it queries every one of the t tables

to obtain a bitmap consuming O(n=w) memory words, and as Grouper fetches each of those

bitmaps, they get intersected with any previously fetched bitmaps. Although this classification

time is linear in n (the number of rules), Grouper, like other bitmap-intersection algorithms,

benefits from (1) storing rule information in bitmaps to divide the n factor in the classification

time by the word size, and (2) spatial locality of bits fetched in bitmaps, resulting in good cache

performance. This is in contrast to some other packet classifiers like Snort and iptables whose

best case classification time is linear in the number of rules (i.e. O(n) [20, 21]).

2.3 Optimizing Classification Time without Exceeding a Given Memory Bound

Minimizing Grouper’s O(tn=w) classification time requires minimizing t (number of ta-

bles) and n (number of rules) and maximizing w (word size). The rule set dictates n and

hardware dictates w, making these parameters beyond Grouper’s control. Grouper can how-

ever minimize t such that its tables fit within a given memory constraint. To take advantage

of this ability, we parameterize Grouper by not only a classification policy, but also a mem-

ory constraint; Grouper will automatically (during table preprocessing) trade time for space

efficiency to make its lookup tables as runtime efficient as possible while obeying the given

memory constraint.

Equation 2.1 already shows how to calculate m (the number of bits needed for Grouper’s

lookup tables) when given t, b, and n. To calculate a minimum t when given a maximum m
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and a classification policy (which determines the values of b and n), Grouper simply (1) checks

whether a single lookup table consumes less memory than the given m value; if not then (2)

performs a binary search between all possible t values (from 2 to db=2e) to find the smallest

one that, when plugged into Equation 2.1 with the given b and n values (and rounding n to the

next multiple of 8), produces a memory requirement no greater than the given maximum m

value (see Figure 2.5). This binary-search algorithm produces the optimal t in O(lg b) time.

Input : Maximum memory allowed in bits, m
Input : Number of rules, n
Input : Number of relevant bits, b
Output: Minimum number of tables that fit within the given memory bound, or -1 if

there is no possible value of t that respects this bound
begin

if m < 2 � n � b or n < 1 or b < 1 then
return �1

if m � log n � 2b then
return 1

low db=2e
high 1
while (low-high) > 1 do

mid (low + high)=2
FloorTablesMem (mid� (b mod mid)) � 2bb=midc � n
CeilingTablesMem (b mod mid) � 2db=mide � n
memNeededForTables FloorTablesMem + CeilingTablesMem
if m < memNeededForTables then

high mid
else

low mid

return low

Figure 2.5. Algorithm to determine the minimum tables for a given memory bound

2.4 A Simple Example

In order to better understand how Grouper works, it can be helpful to have an example.

Consider the rule set in Figure 2.6. For simplicity, this rule set has only two rules of seven bits

each (n = 2, b = 7). In addition, the example limits the algorithm to using only 24 bits for
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Figure 2.6. A simple example of how Grouper works

the classification tables (M = 24). With a number of relevant bits, b, this small, there are only

3 values for t that make sense: 1, 2 or 3 tables (see Section 2.1). If we compute the memory

usage with equation 2.1 using these parameters , we get memory requirements of 256, 48 and

16 bits, respectively. Since 16 bits is the only result that fits within the memory limit, t = 3

(with so few possibilities for tables, it is easy to calculate all of their memory requirements, but

the algorithm in Figure 2.5 performs this calculation faster for larger values of b).

Next, Grouper builds the actual classification tables as shown in Figure 2.6. In the diagram,

the numbers along the top of the tables represent the rule numbers. The numbers along the left

side of the tables represent the row number expressed in binary (for ease of comparing with the

bitmask rules).

Figure 2.6 contains two example inputs, (A) 1011110 and (B) 0011111. Grouper breaks

the input into three groups, two of 2 bits and one of 3 bits, and retrieves the bitmap from the

corresponding row of the corresponding classification table. Then it performs a bitwise AND.

In (A), both rules match the input, but Grouper returns only the highest priority rule (the least

14



significant set bit in the bitmap), so rule 1 would be output. In (B), neither rule matches the

input, so Grouper would output the default 0.
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CHAPTER 3

EMPIRICAL ANALYSIS

3.1 Motivation for Implementation

While we can determine the theoretical performance of Grouper, it’s helpful gauge the

real world performance of the algorithm in order to place it in some context. For example,

it is useful to compare the throughput of the algorithm to the maximum throughputs of vari-

ous common network capacities such as 10 gigabit Ethernet. In addition, we also wanted to

measure how Grouper behaves both under realistic conditions and “extreme stress” conditions

both with rule sets concerned with thousands of bits and with rule sets containing very large

numbers of rules.

Finally, while the Grouper algorithm should scale smoothly in performance when chang-

ing the amount of memory available to it, in practice, on real machines there are numerous

complicating factors such as virtual memory, multi-level processor caches, branch prediction,

and OS context switches that can decrease the reliability of Grouper’s performance. In our

implementation and testing, we attempt to minimize or account for these effects as much as

possible, but it’s not possible to eliminate them entirely.

3.2 Implementation

We implemented a prototype of Grouper in 1093 lines of C code. The source code and

benchmarking scripts are available online [22]. We compiled the program for the x86-64 ar-

chitecture, which adheres to the AMD64 specification and includes 16 128-bit multimedia reg-

isters. When compiled with gcc’s -O3 option, our prototype performs bitmap intersections in
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these 128-bit registers. Our prototype also mitigates the inefficiency of addressing individual

bits on a byte-addressable machine by padding all bitmaps to coincide with byte boundaries

(hence using db=8e � 8 bits instead of n bits as the bitmap length).

Our implementation multithreads the table-build (preprocessing) operation to speed this

operation up in proportion to the number of processor cores. Like all bitmap-intersection algo-

rithms, we believe Grouper’s packet-classification operations are amenable to parallelization

(or pipelining). We briefly experimented with performing classifications in two threads (one

for each of the two processor cores on our test machine) but found the context-switching costs

outweighed the benefits of concurrency in this case, so we reverted to a single-thread imple-

mentation.

3.3 Experimental Setup

We tested Grouper’s performance on a Dell Latitude D630 with 2GHz Intel Core 2 Duo

processors, running a minimal version of Arch Linux. Although the laptop had 4GB of mem-

ory, we limited the memory used by Grouper to about 2GB to prevent Grouper from contending

with any system software for memory.

Our experiments had three independent variables (b, n, and t) and two dependent variables

(throughput and table-build times). The b values tested were: 32 (corresponding to classifica-

tion based on and IPv4 address or source plus destination port), 104 (corresponding to classifi-

cation based on an 8-bit protocol number, source and destination port numbers at 16 bits each,

and source and destination IPv4 addresses), 320 (corresponding to classification based on an

entire fixed portion of an IPv6 header), and 12,000 (corresponding to classification based on

the entire contents of a maximum-sized Ethernet v2 payload). The n values tested were: 100,

1K, 10K, 100K, and 1M (in this thesis, K, M, and G refer to 103, 106, and 109). The t values

tested were: every value from the maximum of b=2 tables, down to the minimum number of

tables possible without exceeding about 2GB of memory (the minimum t over all tests was 2,

which was possible with b = 32 and n �100K). The one exception to this universe of indepen-
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dent variables is that we could not test Grouper’s performance classifying 12K bits according

to 1M rules because doing so would require about 3GB of memory, even using the maximum

t value possible. Hence, we report no results for this case of b=12K and n=1M.

For every combination of b, n, and t values, we measured throughput and table-build time

for a randomly generated rule set. We measured the throughput by creating a file of 500K

random b-length packets (the exception being that we only used 10K random packets when b

was 12K), starting a real-time timer just before the first b bits were read from that file, having

Grouper input and classify b-length packets one at a time from the file, and stopping the timer

just after Grouper finished classifying all packets in the file; this process produced a pps mea-

surement based on real (including file I/O) time. In the following section, we calculated all

measurements reported in terms of bps from the original pps measurement using a fixed packet

size of 12K bits. In addition, all the table-build times are wall clock time. We performed all

tests three times (the data points in the graphs here are averages of the three trials).

3.4 Results

The graphs in Figures 3.1–3.2 summarize our experimental results. These figures present

throughputs and table-build times for given values of n and b. The throughputs are represented

in both absolute bits per second on the right axes, and packets per second on the left axes.

For each combination of n and b, the graphs display two points: (1) an upper point corre-

sponding to the throughput (or table-build time) with Grouper using the maximum amount of

memory available to it, up to about 2GB, and (2) a lower point corresponding to the throughput

(or table-build time) with Grouper using the minimum amount of memory possible (i.e., with

t = b=2). For example, with all 2GB of memory available, Grouper’s throughput was 25K pps

(300 Mbps) for b=12K and n=100, 140K pps (1.68 Gbps) for b=320 and n=10K, and 1.1M

pps (13.2 Gbps) for b=104 and n=1K. Figure 3.1 shows that our prototype software implemen-

tation performs well, particularly given that rule sets often have fewer than 1K rules [11, 23].

Figures 3.1–3.2 (whose graphs have log-scale axes) also illustrate that improving classification
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throughput by a constant factor requires exponentially greater memory, implying exponentially

greater table-build times.

Figures 3.3–3.5 fix the number of rules at 1K, 10K, and 100K, so we can view the classi-

fication throughputs in terms of memory consumption. The high throughput when t=2 led us

to break the y-axes in these graphs. Also, the throughput dips that occur in Figure 3.3, even as

the amount of memory used increases, are due to our test machine’s 4MB L2 cache size.
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Figure 3.1. Maximum and minimum classifier throughputs

Finally, Figures 3.6–3.7 depict Grouper’s performance in a couple of extreme cases where

Grouper is classifying either a large number of bits or is classifying using a very large ruleset.

These graphs illustrate the inverse relationship between throughput (y-axis) and number of

tables (x-axis), which results from Grouper’s O(tn=w) classification time per packet.
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CHAPTER 4

FINAL REMARKS

4.1 Discussion of Extensions

We are considering two extensions to Grouper. The first is adding the ability to specify

ranges in the rule sets. Several papers (e.g. [24, 25]) discuss algorithms to expand a classifica-

tion rule specified as a range into a series of bitmask rules (usually in the context of TCAMs).

In the worst case, a single range will require a number of bitmask rules proportional to the

number of bits over which the rule is specified (e.g. sixteen bitmask rules for a range over six-

teen bits of the input). Unfortunately while this is a nice upper bound for a single range, many

common classification rules require specifying more than one range per rule. For example,

this happens when specifying one range for the source port and one range for the destination

port. In this case, we require the Cartesian product of the individual range expansions in order

to correctly match all possible combinations of matches. This means that range expansion is

exponential in the number of ranges specified in the rule.

Fortunately, Grouper offers an additional way to handle range rules. Instead of converting

the range rules directly to a series of bitmask rules, we simply group all bits of each range into

their own table. We can then build the tables by setting the entries in the table that fall within

the range’s bounds. This loses the flexibility of being able to make the group sizes very small

(since all the bits in each the range must be in the same group), but has the advantage that now

the memory required does not scale exponentially with the number of ranges specified. Which

strategy results in less memory usage depends on the details of the rule set, so ideally Grouper

can compare the memory costs before building its tables and adjust its strategy accordingly.
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The second extension would handle dynamic updates to rule sets, for those cases where

rebuilding lookup tables from scratch takes too long (cf. Figure 3.2). To handle dynamic

rule deletions, Grouper could identify rules with internal numbers, which may differ from the

externally defined class numbers. For example, after deleting Rule 0, Grouper could continue

to identify the new Rule 0 internally as Rule 1. This decoupling of internal rule numbers from

external class numbers, combined with a few additional data structures (an extra bitmap with

0s in positions of deleted internal rules and a map from internal to external numbers), enables

Grouper to process rule deletions efficiently. To handle dynamic rule additions, Grouper could

allocate larger bitmaps than it needs initially. If this extra space ever gets exhausted, Grouper

could use another thread to rebuild the tables without taking the classification thread offline.

4.2 Summary

This thesis has presented Grouper, an algorithm for classifying packets according to arbitrary-

bitmask rules. Grouper is parameterized by the amount of memory available for its lookup ta-

bles and automatically trades time for space efficiency as needed to fit within a given memory

bound. Experiments with Grouper’s open-source prototype implementation on a commodity

laptop have demonstrated its good performance, particularly when classifying based on large

numbers of packet bits (e.g., 300 Mbps with b=12K and n=100, 1.68 Gbps with b=320 and

n=10K, and 13.2 Gbps with b=104 and n=1K). Because the bitmasks used in a rule set have

no effect on Grouper’s performance, our experimental results on randomly generated rule sets

demonstrate Grouper’s performance on worst-case rule sets. In addition, Grouper lends itself

to being extended to handle range rules. Given its flexibility and performance, Grouper is a

compelling packet-classification algorithm.

27



LIST OF REFERENCES

[1] Jay Ligatti, Josh Kuhn, and Chris Gage. A packet-classification algorithm for arbitrary
bitmask rules, with automatic time-space tradeoffs. In Proceedings of the International
Conference on Computer Communication Networks (ICCCN), August 2010.

[2] David E. Taylor. Survey and taxonomy of packet classification techniques. ACM Comput.
Surv., 37(3):238–275, 2005.

[3] Sataj Sahni, Kun Suk Kim, and Haibin Lu. IP router tables. In Dinesh Mehta and Sartaj
Sahni, editors, Handbook of Data Structures and Applications, chapter 48. Chapman &
Hall/CRC, 2005.

[4] Pankaj Gupta. Multi-dimensional packet classification. In Dinesh Mehta and Sartaj
Sahni, editors, Handbook of Data Structures and Applications, chapter 49. Chapman &
Hall/CRC, 2005.

[5] Deepankar Medhi and Karthikeyan Ramasamy. Network Routing: Algorithms, Protocols,
and Architectures. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2007.

[6] D. Rovniagin and A. Wool. The geometric efficient matching algorithm for firewalls. In
Proceedings of the IEEE Convention of Electrical and Electronics Engineers in Israel,
2004.

[7] Florin Baboescu and George Varghese. Scalable packet classification. IEEE/ACM Trans.
Netw., 13(1):2–14, 2005.

[8] T. Lakshman and D. Stiliadis. High-speed policy-based packet forwarding using efficient
multi-dimensional range matching. SIGCOMM Comput. Commun. Rev., 28(4):203–214,
1998.

[9] Yaxuan Qi, Lianghong Xu, Baohua Yang, Yibo Xue, and Jun Li. Packet classification
algorithms: From theory to practice. In Proceedings of Infocom, 2009.

[10] Pankaj Gupta, , Pankaj Gupta, and Nick Mckeown. Packet classification using hierarchi-
cal intelligent cuttings. In in Hot Interconnects VII, pages 34–41, 1999.

[11] Pankaj Gupta and Nick McKeown. Packet classification on multiple fields. In Proceed-
ings of SIGCOMM, 1999.

[12] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. Fast and scalable layer four
switching. SIGCOMM Comput. Commun. Rev., 28(4):191–202, 1998.

28



[13] Karthik Lakshminarayanan, Anand Rangarajan, and Srinivasan Venkatachary. Algo-
rithms for advanced packet classification with ternary CAMs. In Proceedings of SIG-
COMM, 2005.

[14] Chad R. Meiners, Alex X. Liu, and Eric Torng. Bit weaving: A non-prefix approach
to compressing packet classifiers in TCAMs. In Proceedings of the IEEE International
Conference on Network Protocols, pages 93–102, October 2009.

[15] Chad R. Meiners, Alex X. Liu, and Eric Torng. Tcam razor: A systematic approach
towards minimizing packet classifiers in tcams. Network Protocols, IEEE International
Conference on, 0:266–275, 2007.

[16] Inc Cisco Systems. Cisco catalyst 6500 series switch.
http://www.cisco.com/en/US/products/hw/switches/ps708/
products white paper09186a00800c9470.shtml#wp39459.

[17] R. Sekar and P. Uppuluri. Synthesizing fast intrusion prevention/detection systems from
high-level specifications. In Proceedings of the USENIX Security Symposium, 1999.

[18] Randy Smith, Cristian Estan, and Somesh Jha. XFA: Faster signature matching with
extended automata. In Proceedings of the IEEE Symposium on Security and Privacy,
pages 187–201, 2008.

[19] Scott Hazelhurst, Adi Attar, and Raymond Sinnappan. Algorithms for improving the de-
pendability of firewall and filter rule lists. In Proceedings of the International Conference
on Dependable Systems and Networks, pages 576–585, 2000.

[20] Sourcefire, Inc. Snort. http://www.snort.org/.

[21] Netfilter Core Team. Iptables webpage. http://www.netfilter.org/projects/iptables/.

[22] Josh Kuhn, Jay Ligatti, and Chris Gage. The grouper webpage.
http://www.cse.usf.edu/ ligatti/projects/grouper/.

[23] Avishai Wool. A quantitative study of firewall configuration errors. Computer, 37(6):62–
67, 2004.

[24] Baruch Schieber, Daniel Geist, and Ayal Zaks. Computing the minimum dnf represen-
tation of boolean functions defined by intervals. Discrete Applied Mathematics, 149(1-
3):154 – 173, 2005. Boolean and Pseudo-Boolean Functions.

[25] O. Rottenstreich and I. Keslassy. Worst-case tcam rule expansion. In INFOCOM, 2010
Proceedings IEEE, pages 1 –5, March 2010.

29


	Grouper: A Packet Classification Algorithm Allowing Time-Space Tradeoffs
	Scholar Commons Citation

	tmp.1323289539.pdf.N0phw

