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Abstract 

 

As discussed in Chapter 1, although our understanding of the ecology and evolution of 

carnivorous plants has greatly improved in recent years, many fundamental questions 

remain unanswered.  Unfortunately, at the present time, many carnivorous plants are 

increasingly threatened by anthropogenic activities.  Indeed, over half of the carnivorous 

plant species assessed by the International Union for the Conservation of Nature (IUCN) 

are listed as ‘threatened’, but the threats to carnivorous plants have not previously been 

quantified.  In Chapter 2, I quantified the conservation threats to carnivorous plant taxa 

worldwide by searching peer-reviewed literature, and found data on the threats to 48 

species of carnivorous plants from nine genera.  The most common threat was habitat 

loss from agriculture, followed by the collection of wild plants, pollution, and natural 

systems modifications.  As I found in Chapter 2, while agrochemical pollution is thought 

to be an important conservation threat to carnivorous plants, the effects of insecticides in 

particular on these taxa have not previously been quantified.  Therefore in Chapter 3 I 

tested the effects of commercial and technical grades of three widely used insecticides 

(carbaryl, lambda-cyhalothrin, and malathion) on survival and the expression of traits 

associated with carnivory of pink sundews (Drosera capillaris) and Venus flytraps 

(Dionaea muscipula) using a combination of lab- and field-based experiments.  

Commercial grades were generally more harmful than technical grades under lab and 
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field conditions, but all three insecticides were capable of causing negative effects on the 

plants within recommended application rates.  Pink sundews appeared to be more 

susceptible to insecticides than Venus flytraps, perhaps because of larger numbers of 

digestive glands on the leaf surfaces.  Given the effects observed, I suggest that the use of 

insecticides should be carefully managed in areas containing vulnerable carnivorous plant 

species.  For Chapters 4 and 5, I explored the ecological role of carnivorous plants, 

specifically if they could compete with animals for shared prey resources.  In Chapter 4 I 

characterized the ground-surface spider and arthropod assemblages of two mesic 

flatwood habitats in Florida, to resolve what the most likely animal competitor was for 

pink sundews.  I identified 31 spider species from 27 genera in 12 families, with wolf 

spiders (Lycosidae) being the dominant spider family at both sites.  Based on their 

abundance and the behavioral traits they exhibited, I determined that the funnel-web-

building wolf spider Sosippus floridanus was the most likely potential competitor with 

pink sundews.  Collembola and Formicidae were the most abundant arthropod taxa 

present, but ground-surface spiders were not strongly associated with any typical prey 

groups, suggesting that environmental factors might also be important in structuring this 

community.  Subsequently, in Chapter 5 I examined the potential for competition 

between carnivorous plants and animals by studying dietary and microhabitat overlap 

between pink sundews and wolf spiders in the field, and by conducting a lab experiment 

examining the effects of wolf spiders on sundew fitness.  In the field, I found that 

sundews and spiders had high dietary overlap with each other and with the available 

arthropod prey.  Associations between sundews and spiders depended on spatial-scale: 

sundews and spiders were both found more frequently in quadrats with more abundant 
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prey, but within quadrats spiders constructed larger webs and located them further away 

from sundews as the total sundew trapping area increased.  Spiders also constructed 

larger webs when fewer prey were available.  In the lab, my experiment revealed that 

spiders can significantly reduce sundew fitness.  All of these results suggest that members 

of the plant and animal kingdoms can and do compete.  These findings provided 

inspiration for Chapter 6, where I explored if phylogenetic distance was a good predictor 

of the strength of competition between taxa, using a meta-analytical approach.  I 

collected data from studies published from 1998-2008 in eight ecology journals using the 

keyword ‘interspecific competition’, gathering a total of 191 effect sizes.  I found no 

significant relationship between phylogenetic distance and the strength of competition, 

contrary to the long-standing assumption that it should be greatest in strength between 

closely related species.  However, these findings could presently be limited by 

publication bias, and I suggest several directions for future research.  
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Chapter 1: General Introduction 

 

In the late 1800s, Charles Darwin described the Venus flytrap as ‘one of the most 

wonderful plants in the world’, a sentiment regarding this and other carnivorous plant 

species that is shared by many of the general public to this day.  Surprisingly, however, 

scientific interest in carnivorous plants has taken much more time to gain momentum.  

Pioneering work by Charles Darwin (1875) and his son Francis Darwin (1878), was the 

first to demonstrate the nutritional benefits of capturing animals for carnivorous plants.  

Later, Francis Lloyd (1942) completed the first comprehensive text on these plants, 

which was followed by occasional papers on different aspects of their biology and 

ecology (Chandler & Anderson 1976; Eisner & Shepherd 1965; Fish 1976; van 

Achterberg 1973).  However, it wasn’t until the 1980s and early 1990s that interest in the 

ecology of these plants intensified (Givnish 1989; Givnish et al. 1984; Juniper et al. 1989; 

Zamora 1990).  Although recent work has helped to elucidate much of the ecology of 

these plants (Ellison & Gotelli 2001), many questions remain unanswered, particularly 

concerning the evolutionary significance of botanical carnivory.  Unfortunately, at the 

present time, many carnivorous plants are increasingly threatened by anthropogenic 

activities. 
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As a group, carnivorous plants appear to be more threatened than many other taxa (IUCN 

2011), probably because a number of species of these plants are highly endemic and 

known from only one or two locations.  Determining what the threats are to these plants 

is imperative for developing appropriate management strategies.  Consequently, Chapter 

2 of this dissertation provides a detailed review of what the most commonly documented 

threats are to carnivorous plants worldwide.  This review of threats allowed me to narrow 

my focus onto one of the most commonly suggested, but least quantitatively studied, 

threats, agrochemical pollution.  Agrochemicals have been documented as threats to 16 

species of carnivorous plants, and in Chapter 3 I explore the effects that three insecticides 

have on two species of carnivorous plant – pink sundews (Drosera capillaris) and Venus 

flytraps (Dionaea muscipula).   

 

In an attempt to explore the ecological role of carnivorous plants, Chapters 4 and 5 

examine the interactions between arthropod and carnivorous plant communities.  

Carnivorous plants are known to exhibit many different interactions with animals, for 

example as predators, prey, and mutualists.  Indeed, the mechanisms of how carnivorous 

plants attract prey have been thoroughly studied (Bennett & Ellison 2009; Di Giusto et al. 

2010; Di Giusto et al. 2008; Jurgens et al. 2009; Schaefer & Ruxton 2008; Zamora 1995), 

and we also know about herbivory (Eisner & Shepherd 1965; Moon et al. 2008) and 

mutualisms, with many arthropod species known to inhabit the phytotelms of pitcher 

plants (Buckley et al. 2010; Rymal & Folkerts 1982).   Surprisingly however, the 

interaction between carnivorous plants and animals as competitors has only been 

anecdotally suggested (Cresswell 1991), even though small arthropods typically eaten by 
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carnivorous plants are a food source for many arthropod and vertebrate predators.  Before 

exploring specific interactions between carnivorous plants and animals in a given area, 

there is a need to establish what taxa are most likely to be interacting with carnivorous 

plants.  Accordingly, in Chapter 4 I examine the arthropod community of mesic 

flatwoods in Hillsborough County, Florida, and then in Chapter 5, I investigate 

competitive interactions between common wolf spiders (Rabidosa rabida and Sosippus 

floridanus) and pink sundews (D. capillaris). 

 

Finally, I return to Darwin as inspiration for my last research chapter.  In Darwin’s The 

Origin of Species (1859), he suggested that more closely related species should compete 

more strongly with each other because of similarities in their behavior and morphology.   

This assumption has persisted in the ecological literature since The Origin of Species but 

has remained virtually untested.  In Chapter 5, I show that that distantly related 

carnivorous plants and wolf spiders compete for arthropod prey.  While this result belies 

Darwin’s original hypothesis, it certainly does not overturn the hypothesis because the 

test was specific to two species and thus lacked generality.  To more thoroughly address 

Darwin’s hypothesis, I use a meta-analytical approach in Chapter 6 to test whether 

phylogenetic divergence time between species is a negative predictor of the strength of 

their competition.  Examining such a relationship is important for both fundamental 

ecology, in terms of the foundations of competition theory, but also applied ecology, 

where it could help with predictions of the impacts of invasive species. 
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Chapter 2: A Review of the Conservation Threats to Carnivorous Plants 

 

Note to reader 

Portions of this chapter have been previously published (Jennings & Rohr 2011) and are 

utilized with permission of the publisher. 

 

2.1. Introduction 

Identifying the conservation threats for taxa can have important management 

implications.  For example, they can guide policy makers to prioritize certain areas of 

conservation when limited funding is available (Hughey et al. 2003), and also can be used 

to implement precautionary conservation measures for species which threats have not 

been directly assessed.  While the conservation threats for different groups of  mammals 

(Hayward 2009), birds (Feeley & Terborgh 2008), reptiles (Filippi & Luiselli 2000), and 

amphibians (Stuart et al. 2004) have been quantified both regionally and globally, less 

attention has been accorded to other groups, such as flowering plants.  Furthermore, of 

the approximately 268 000 known species of angiosperms, only about three percent have 

been evaluated by the International Union for the Conservation of Nature (IUCN) (2010).  

However, of the relatively small number of angiosperm species that have been evaluated, 

70 percent are listed as threatened (i.e. vulnerable, endangered, or critically endangered) 
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(IUCN 2010).  One such group of angiosperms for which many species are thought to be 

imperiled  are the carnivorous plants (Schnell 2002). 

 

There presently are around 600 described species of carnivorous plants from 17 genera 

(Ellison & Gotelli 2009), with new species frequently being described (Cheek & Jebb 

2009; Clarke et al. 2003; Clarke & Kruger 2006; Mann 2007).  Of the 102 carnivorous 

plant species (from seven genera) that have been evaluated by the IUCN, seven are listed 

as critically endangered, 11 are listed as endangered, and 39 are listed as vulnerable 

(IUCN 2010).  Consequently, of these IUCN-evaluated species, 56 percent are considered 

to be threatened.  Although lower than the value for angiosperms as a whole (70 percent), 

56 percent is still higher than the value for all taxa (33 percent), or for any evaluated 

vertebrate group (IUCN 2010).  While there have been several species-specific studies 

regarding carnivorous plant conservation threats, and their threats as a group are often 

alluded to (Schnell 2002), threats to carnivorous plants have not previously been 

quantified in any systematic way.  In this review, we provide a quantitative description of 

the conservation threats to carnivorous plant taxa worldwide. 

 

2.1.1. Evolution and ecology of carnivorous plants 

Carnivorous plants have arisen from at least six distinct lineages, all having evolved 

modified leaves specialized for capturing animals (predominantly arthropods) and 

digesting this prey to acquire nutrients (Albert et al. 1992; Bayer et al. 1996; Cameron et 

al. 2002; Ellison & Gotelli 2009; Juniper et al. 1989; Rivadavia et al. 2003).  Utilizing 

animals as prey is thought to be an adaptation that carnivorous plants have for living in 
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moist, nutrient-poor soils (Juniper et al. 1989).  Carnivorous plants generally are poor 

competitors for light and nutrients with non-carnivorous plant species, and therefore the 

terrestrial species often require fire to reduce the intensity of competition (Brewer 2001; 

Brewer 2003; Folkerts 1982; Juniper et al. 1989; Kesler et al. 2008).  While in temperate 

regions most carnivorous plants are found in bog and fen habitats, in tropical and 

subtropical regions some species also inhabit forested areas with drier soils and greater 

shade (Juniper et al. 1989).  Throughout all of these regions, many habitats for 

carnivorous plants are threatened by various factors such as agriculture, deforestation, 

drainage, eutrophication, and fire suppression (Brinson & Malvarez 2002; Folkerts 1982; 

Gardner et al. 2010; Moore 2002; Sodhi et al. 2010; van Diggelen et al. 2006). 

 

Conserving carnivorous plants could also benefit many other taxa.  Carnivorous plants 

often have surprising and sometimes complex interactions with animals aside from 

obtaining nutrients from them (Clarke et al. 2009; Jennings et al. 2010; Moon et al. 2010; 

Zamora & Gomez 1996), in some cases forming what are thought to be obligate 

mutualisms (Anderson & Midgley 2002).  For example, pitcher plants are arguably 

foundation species (Ellison et al. 2005), providing habitat for entire communities of 

specialists that completely rely on pitcher plants for their existence (Buckley et al. 2010; 

Rymal & Folkerts 1982).  Some species of pitcher plant can even act as refugia for 

certain amphibians (Das & Haas 2010; Russell 2008).  Hence, the loss of carnivorous 

plants could result in secondary extirpations and extinctions.   
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Carnivorous plants also seem to provide humans with various ecosystem services.  For 

instance, carnivorous  plants consume large quantities of dipterans (Ellison & Gotelli 

2009).  Many dipterans, such as mosquitoes, midges, deerflies, and horseflies, are human 

pests that can transmit human diseases.   In addition, the aquatic carnivorous plant genus, 

Utricularia,  consumes mosquito eggs and larvae (Angerilli & Beirne 1974; Juniper et al. 

1989), and even regularly depredates human schistosome miricidia and cercariae (Gibson 

& Warren 1970).   Human schistosomes infect more than 207 million people worldwide, 

more than 700 million are at risk, and approximately 20 million suffer severe 

consequences annually (Steinmann et al. 2006).  Hence, there is considerable evidence 

that carnivorous plants reduce human bites from insect pests and perhaps even diminish 

human disease risk.  Consequently, the conservation of carnivorous plants could benefit 

humans. 

 

2.2. Methods 

2.2.1. Data collection 

We used three methods to obtain data on threats to carnivorous plants.  First, we searched 

the IUCN Red List database (www.iucnredlist.org) on 5 August 2010 for the presence of 

all carnivorous plant genera (Aldrovanda, Brocchinia, Byblis, Catopsis, Cephalotus, 

Darlingtonia, Dionaea, Drosera, Drosophyllum, Genlisea, Heliamphora, Nepenthes, 

Pinguicula, Roridula, Sarracenia, Triphyophyllum, and Utricularia).  Second, on 10 

August 2010 we conducted a search using Web of Knowledge (www.isiknowledge.com)  

to identify relevant peer-reviewed literature considering the threats to carnivorous plants, 

using ‘carnivorous plants’, ‘conservation’, ‘threats’, and each genus name as key words.  
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As we limited our search to peer-reviewed literature, we included both empirical and 

observational studies that provided an abstract in English.  Third, we searched the 

National Red List database (www.nationalredlist.org) on 7 January 2011 for the presence 

of all carnivorous plant genera.  Once the relevant literature was obtained, we classified 

any documented threats following the unified scheme proposed by Salafsky et al. (2008).  

In this scheme there are three hierarchical levels of threats which increase in specificity 

with each level.  For example, there are 11 1st level categories, consisting of: (1) 

residential and commercial development, (2) agriculture and aquaculture, (3) energy 

production and mining, (4) transportation and service corridors, (5) biological resource 

use, (6) human intrusions and disturbance, (7) natural systems modifications, (8) invasive 

and other problematic species and genes, (9) pollution, (10) geological events, and (11) 

climate change and severe weather.  After threats are assigned to this 1st level, there are 

further 2nd level categories (between three and six for each 1st level category) into which 

they can be classified (Salafsky et al. 2008). 

 

2.2.2. Data analysis 

We conducted a principal coordinate analysis (PCoA) based on Jaccard’s distance to 

determine the relationship among threat categories, among carnivorous plant species, and 

between threat categories and species.  The analysis was conducted on a matrix that 

described whether or not there was any evidence that a species was impacted by each of 

the 11 1st level threats.  The ordination analysis was conducted using CANOCO 4.5 (ter 

Braak and Šmilauer 2002) and the biplot was created using CanoDraw 4.12 to display the 

ordination results (ter Braak and Šmilauer 2002).  The scores were post-transformed so 
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that correlations of the species and threat categories with the ordination axes could be 

inferred by perpendicular projection. 

 

To determine which taxa-threat associations were greater than expected by chance, we 

conducted an ‘‘indicator species analysis’’ in PC-ORD v. 5.01 (McCune & Mefford 

1999), which follows the general guidelines of Dufrene and Legendre (1997).  This 

analysis was conducted at the genus level given that we did not have replication at the 

species level and that species within a genus tended to have similar threats.  We 

conducted the analyses on genera with five or more species in the database (Drosera, 

Nepenthes, Pinguicula, Sarracenia, and Utricularia) and used Monte Carlo permutation 

tests to evaluate the significance of the association for each genus, reassigning the sample 

units to the 11 threat categories 4999 times. 

 

2.3. Results 

We found data on the threats to 48 species of carnivorous plant (Table 2.1).  The data 

available spanned nine genera of different growth forms (Aldrovanda, Darlingtonia, 

Dionaea, Drosera, Drosophyllum, Nepenthes, Pinguicula, Sarracenia, and Utricularia) 

and covered six continents (Africa, Asia, Australia, Europe, North America, and South 

America).  The number of species with documented threats by continent was highly 

variable, with threats found for 19 species in North America, 15 species in Asia, seven 

species in Europe, six species in South America, two species in Africa, and one species in 

Australia (we found threats for two species on multiple continents).  All 11 of the 1st level 

threat categories proposed by Salafsky et al. (2008) were documented as affecting 
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carnivorous plants, as were 17 2nd level categories.  However, 2nd level threats were not 

equally distributed among all 1st level threats, with some 1st level threats, such as natural 

system modifications, having three 2nd level threats (fire and fire suppression, dams and 

water management/use, and other ecosystem modifications), while others, such as 

geological events, only had one 2nd level threat (avalanches/landslides).  Mean number of 

2nd level threats per species was 2.9 (range = 1-8), with one species, the green pitcher 

plant (Sarracenia oreophila), facing eight 2nd level threats.  The most common 1st level 

threats were agriculture and aquaculture, biological resource use, pollution, and natural 

systems modifications (Fig. 2.1A), and consequently they are the only categories we 

discuss in detail.  Human intrusions and disturbance, and geological events were the two 

least common 1st level threats with only one affected species each (Fig. 2.1A).  For 2nd 

level threats, gathering terrestrial plants from the wild was the most common, affecting 

19 species, while recreational activities and avalanches/landslides were the least common 

with only one affected species each (Fig. 2.1B). 

 

2.3.1. Principal coordinate analysis 

The PCoA revealed that species within a genus often faced similar threats (Fig. 2.2).  For 

instance, Sarracenia species were predominantly affected by natural system 

modifications, invasive species, pollution, over-collection, and agriculture; Utricularia 

species were predominantly affected by pollution; Drosera species were predominantly 

affected by agricultural activities; and Nepenthes species were predominantly affected by 

over-collection (Fig. 2.2).  The indicator species analyses revealed positive associations 

among species in the genus Sarracenia and agricultural activities (indicator value [IV] = 
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31.6, p = 0.045), over-collection (IV = 32.0, p = 0.039), invasive species (IV = 46.8, p = 

0.0024), and pollution (IV = 41.5, p = 0.011).  We also detected positive associations 

between Drosera species and agricultural activities (IV = 46.0, p = 0.012; when 

excluding Sarracenia).  Perhaps as a consequence of species within a genus having 

similar threats, some threats were also positively correlated, with residential and 

commercial development, natural systems modifications, invasive species, and pollution 

having positive associations (Fig. 2.2).  However, other threats, such as agriculture and 

aquaculture and biological resource use, did not exhibit close relationships with any other 

threats. 

 

2.3.2. Agriculture and aquaculture 

The most common 1st level threat to carnivorous plants was from agriculture and 

aquaculture, which affected a total of 24 species (Fig. 2.1A).  Agriculture and aquaculture 

generally involved direct habitat loss through the planting of various crops, but also 

covered impacts of grazing by animals, and construction of fish hatcheries (though we 

found no record of any aquacultural threats to carnivorous plant species).  The threats 

were fairly evenly distributed among three 2nd level categories.  Specifically, annual and 

perennial non-timber crops were a threat to 11 species, while wood and pulp plantations 

and livestock grazing were each threats to 10 species (Fig. 2.1B).  Annual and perennial 

non-timber crop threats covered species from all genera in the review except 

Darlingtonia. 
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2.3.3. Biological resource use 

Biological resource use was the second most common 1st level threat to carnivorous 

plants, with 21 species affected (Fig. 2.1A).  This category covered the collection of wild 

plants, and also other activities such as logging and wood harvesting that result in direct 

habitat loss for carnivorous plants.  Collection of plants from the wild was the most 

common 2nd level threat category (affecting 19 species) (Fig. 2.1B), and can exert strong 

negative effects on populations as collectors often remove larger individuals (Luken 

2005).  As many carnivorous plants are relatively slow to mature, the persistent loss of 

older individuals can severely impact the population structure.  Collection of wild plants 

was a particularly common threat for pitcher plants (Darlingtonia, Sarracenia, and 

Nepenthes) and Venus flytraps (Folkerts 1977; Folkerts 1990; Luken 2005), where they 

are generally taken to be sold for profit or for private collections.  Additionally, some 

species, such as Drosera burmanii and D. indica, are often collected for their perceived 

medical benefits (Jayaram & Prasad 2006).   

 

2.3.4. Pollution 

Pollution was the third most common 1st level threat to carnivorous plants, affecting 18 of 

the species examined (Fig. 2.1A).  This category covered different forms of urban waste 

(solid and water-borne), fertilizer and pesticide run-off, and various industrial pollutants.  

Some forms of pollution (such as herbicides) can be lethal to carnivorous plants directly, 

while other forms (such as nutrient addition) have a more indirect effect by degrading the 

habitat and making conditions more conducive for other plants.  Two 2nd level category 

were found to be a threat to carnivorous plants, that of agricultural and forestry effluents, 
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and air-borne pollutants (Fig. 2.1B).  The category of agricultural and forestry effluents 

included nutrient loading from fertilizer run-off, herbicide run-off, and soil erosion, and 

affected 16 of the 18 species.  Air-borne pollutants (in the form of nitrogen deposition), 

were a threat to two other species, Drosera anglica (Huntke 2007) and Sarracenia 

purpurea (Gotelli & Ellison 2002).  Additionally, eutrophication (typically associated 

with fertilizer run-off from agriculture) has been implicated in population declines of 

species such as Pinguicula vulgaris (Eysink & De Bruijn 1997), Utricularia fibrosa 

(Morgan & Philipp 1986), and U. purpurea (Vaithiyanathan & Richardson 1999). 

 

2.3.5. Natural systems modifications 

The fourth most common threat to carnivorous plants was natural systems modifications, 

affecting 17 species (Fig. 2.1A).  The 2nd level threats for this category included fire and 

fire suppression, dams and water management/use, and other modifications of the natural 

environment intended to improve human quality of life (Fig. 2.1B).  These actions will 

typically cause carnivorous plant habitat to be degraded, but they can also result in loss of 

habitat.  Indeed, fire suppression and drainage have been implicated as major causes of 

decline in suitable habitat for many carnivorous plant genera in the southeastern United 

States, such as Sarracenia (Folkerts 1982).  For example, fire suppression can be harmful 

to carnivorous plants as it allows other non-carnivorous plants to encroach and out-

compete them for light and nutrients.  Water management changes are also capable of 

severely degrading the habitat for carnivorous plants, as even small drainage ditches can 

reduce the water level enough so that they are unable to survive.  Other natural system 

modifications found to be threats to carnivorous plants included the addition of lime to 
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watersheds (Mackun et al. 1994), reduced grazing (Hugot 2009), and reduced mowing 

(Folkerts 1977). 

 

2.4. Discussion 

The most commonly documented threats to carnivorous plants were habitat loss from 

agriculture, collection of plants from the wild, and pollution.  While habitat loss is known 

to be a major threat to biodiversity worldwide, over-collection in particular seems to be a 

much greater threat to carnivorous plants when compared with most other taxa 

(Gurevitch & Padilla 2004).  The most common threats to carnivorous plants may also 

differ considerably even from other plants within the same country.  For example, in the 

United States Wilcove et al. (1998) found that habitat loss and degradation, followed by 

invasive species, were the most common threats to plant species.  In comparison, we 

found pollution, followed by habitat modification and over-collection to be the most 

common threats to carnivorous plants in the United States.  It is also interesting to note 

that all of the 11 1st level threat categories proposed by Salafsky et al. (2008) affected 

carnivorous plants, indicating that a wide range of challenges lie ahead for their 

conservation.  Furthermore, multiple threats were also very common for species which 

suggests that a holistic approach, targeted at the habitat-level of carnivorous plants, may 

be required for their successful conservation.   

 

Perhaps unsurprisingly, residential and commercial development, natural systems 

modifications, invasive and other problematic species and genes, and pollution, were 

closely associated with one another and often combined to threaten species.  Natural 
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system modifications, invasive species, and pollution are all likely to be facilitated by 

urbanization, yet the documented pollution threats were almost exclusively from 

agricultural and forestry effluents.  Thus, carnivorous plants may be affected by effluents 

at a considerable distance from the source of the pollution.  Agriculture, and biological 

resource use (predominantly collection of plants from the wild), were not closely 

associated with any other threats.  This suggests that the agricultural activities threatening 

carnivorous plants could be taking place away from urban areas, and additionally 

indicates that the collection of plants may be more common in undisturbed habitats.  

Nonetheless, it was surprising to find that agriculture was not more closely associated 

with natural systems modifications and pollution. 

 

The results from the indicator species analysis suggest that Sarracenia spp. are the best 

indicators of threats from agriculture, over-collection, invasive species, and pollution, 

while Drosera spp. may also be particularly sensitive to agriculture.  It seems unlikely 

that these two genera alone would be indicative of these threats, as they are 

morphologically very different.  Additionally, while our results indicated that Sarracenia 

may be more sensitive to threats than other genera, considerably more research has been 

conducted on this genus and thus it is likely that their threats have been more thoroughly 

documented.  Therefore, until more studies are conducted on a wider range of genera, it 

will be difficult to determine whether Sarracenia truly is a particularly sensitive genus, or 

if the results are simply a reflection of a bias in research effort. 
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Given the available data on carnivorous plant threats, we suggest three areas of further 

study.  First, we recommend more empirical studies quantifying the effects of pollution 

on carnivorous plants.  Pollution is known to be an important threat to many taxa 

(Wilcove & Master 2005), yet very little empirical research has been conducted 

examining its effects on carnivorous plants, even though it was widely documented as a 

threat.  For example, while there has been some research on the effects of an herbicide on 

aquatic carnivorous plants (Smith & Pullman 1997), no studies have examined their 

potential effects on terrestrial carnivorous plants.  Furthermore, we are not aware of any 

studies that have examined the effects of insecticides on carnivorous plants.  Empirical 

studies should elucidate the importance of these types of pollutants in carnivorous plant 

population declines.  Second, we believe that it is worth further exploring the potential 

role of many carnivorous plants as indicator species for ecosystem health.  Our rationale 

is that many species are fairly conspicuous and thus fairly easy to identify, they are often 

sensitive to changes in environmental conditions such as water levels, and some research 

has suggested that carnivorous plants can exhibit negative responses to increased levels 

of nutrients and pollutants (Ellison & Gotelli 2002; Guisande et al. 2000; Moody & 

Green 2010; Vaithiyanathan & Richardson 1999).  Unfortunately, as collection from the 

wild is a major threat to these plants, their use as indicator species could draw attention to 

their locations, which could ultimately be counter-productive.  Third, we recommend 

more research to quantify the extinction vulnerability of these taxa.  While many 

carnivorous plant species have been assessed by the IUCN in recent years, the vast 

majority of species on the Red List are pitcher plants, and there are no representatives 

from the two most speciose carnivorous plant genera, Utricularia and Drosera.  



19 
 

However, quantifying extinction risk for carnivorous plants can be complicated by 

considerable differences in threat statuses at the country-level scale.  For example, using 

the National Red List database (www.nationalredlist.org) we found the threat status of 

Utricularia australis from nine countries ranged from least concern to extinct, and broad 

ranges in threat statuses were also found for other species such as Drosera anglica and 

Pinguicula alpina. 

 

Whilst we are confident that our data collection methods covered the majority of peer-

reviewed literature on carnivorous plant conservation threats, we acknowledge several 

important caveats.  Most importantly, there were undoubtedly biases both in the focal 

species and geographical regions of research, which means that any results extrapolated 

to all carnivorous plants should be interpreted with caution.  For example, while we 

found 19 species with documented threats in North America, we found only two species 

with documented threats in Africa, and only one species with any documented threat in 

Australia.  Considering the high diversity of carnivorous plant species found in parts of 

Africa and Australia, this is almost certainly an underrepresentation of the true threats 

encountered by species there.  Furthermore, there were no documented threats to the 

genera Brocchinia, Byblis, Catopsis, Cephalotus, Genlisea, Heliamphora, Roridula, and 

Triphyophyllum, despite several species from these genera being listed as threatened by 

the IUCN (IUCN 2010).  The biases in focal species and geographical regions of research 

combined with the relatively small sample size of documented threats, means that there 

are likely to be many threats that have thus far gone un-documented.  However, we are 



20 
 

hopeful that the present study will stimulate further research into the conservation of 

these plants. 

 

2.5. Conclusions 

Our results clearly demonstrate a need for more research into the threats facing 

carnivorous plants.  Specific documented threats were found for just 48 species, even 

fewer than the 56 species listed as threatened by the IUCN (2010).  Although many 

carnivorous plants are likely threatened simply because they are highly endemic (often 

inhabiting isolated bogs or forests), more quantitative data are needed on potential threats 

actually affecting the remaining 550 or so species.  In particular, efforts should focus on 

those species from underrepresented genera and regions.  We are hopeful that our 

recommendations may actively assist with carnivorous plant conservation, and the 

present study should draw attention to the dearth of information available for many of 

these species.  Ensuring the conservation of carnivorous plants will not only help 

maintain the important ecosystem services they provide, but also likely prevent secondary 

extinctions of other specialist species that rely on them. 
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Table 2.1: Carnivorous plant species for which documented threats were found. 
Species 1st level threat category* Reference(s) 

1 2 3 4 5 6 7 8 9 10 11 
Aldrovanda vesiculosa x x     x  x   (Adamec 1995; Adamec 2005; Kundu et al. 1996) 
Darlingtonia californica     x       (Folkerts 1977) 
Dionaea muscipula  x  x x  x  x   (Folkerts 1977; Luken 2005) 
Drosera anglica       x  x   (Huntke 2007) 
Drosera brevifolia  x          (Saridakis et al. 2004) 
Drosera burmanii x x  x    x x  x (Jayaram & Prasad 2006) 
Drosera cendeensis  x   x       (Duno de Stefano & dos Santos Silva 2001) 
Drosera communis  x          (Saridakis et al. 2004) 
Drosera filiformis   x         (Freedman et al. 1992; Landry & Cwynar 2005) 
Drosera grievei  x          (Lowrie & Marchant 1992) 
Drosera indica x x  x    x x  x (Jayaram & Prasad 2006) 
Drosera intermedia   x    x     (Mackun et al. 1994; Rassi et al. 2001) 
Drosera montana  x          (Saridakis et al. 2004) 
Drosera sp.  x   x       (Duno de Stefano & dos Santos Silva 2001) 
Drosera villosa  x          (Saridakis et al. 2004) 
Drosophyllum lusitanicum x x  x        (Correia & Freitas 2002; Garrido et al. 2003) 
Nepenthes alata     x       (Simpson 1995) 
Nepenthes ampullaria     x       (Simpson 1995) 
Nepenthes bokor x x          (Cheek & Jebb 2009) 
Nepenthes campanulata x x          (Simpson 1995) 
Nepenthes clipeata     x       (Simpson 1995) 
Nepenthes gracilis     x       (Simpson 1995) 
Nepenthes gracillima x    x       (Simpson 1995) 
Nepenthes khasiana  x x x x  x     (Mao & Kharbuli 2002) 
Nepenthes northiana   x         (Simpson 1995) 
Nepenthes rafflesiana     x       (Simpson 1995) 
Nepenthes thai   x         (Cheek & Jebb 2009) 
Pinguicula alpina   x  x       (Lilleleht 1998) 
Pinguicula corsica      x x x    (Hugot 2009) 
Pinguicula fontiqueriana  x   x       (Rhazi et al. 2007) 
Pinguicula ionantha       x     (Folkerts 1977) 
Pinguicula reichenbachiana x   x x   x    (de Belair & Diadema 2008) 
Pinguicula vulgaris 
 
 

      x  x   (Eysink & De Bruijn 1997) 
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Species 1st level threat category* Reference(s) 
1 2 3 4 5 6 7 8 9 10 11 

Sarracenia alabamensis subsp. alabamensis     x   x x   (Folkerts 1977) 
Sarracenia alabamensis subsp. wherryi  x  x        (Folkerts 1977) 
Sarracenia alata x x   x  x x x   (Schnell et al. 2000a) 
Sarracenia flava x x   x  x x x   (Schnell et al. 2000b) 
Sarracenia jonesii x x   x  x x x   (Folkerts 1977) 
Sarracenia leucophylla x x   x  x x x   (Folkerts 1990; Schnell et al. 2000c) 
Sarracenia minor x x   x  x x x   (Schnell et al. 2000d) 
Sarracenia oreophila x x   x  x x x   (Carter et al. 2006; Govus 1987; Schnell et al. 2000e) 
Sarracenia psittacina x x   x  x x x   (Schnell et al. 2000f) 
Sarracenia purpurea         x   (Gotelli & Ellison 2002) 
Utricularia fibrosa         x   (Morgan & Philipp 1986) 
Utricularia purpurea         x   (Vaithiyanathan & Richardson 1999) 
Utricularia simulans x   x   x     (Schnell 1980) 
Utricularia sp.         x   (David 1996) 
Utricularia striatula          x  (Chaturvedi 2005) 

 
*1st level threat categories correspond to the classification proposed by Salafsky et al. (2008): (1) residential and commercial 
development, (2) agriculture and aquaculture, (3) energy production and mining, (4) transportation and service corridors, (5) 
biological resource use, (6) human intrusions and disturbance, (7) natural systems modifications, (8) invasive and other problematic 
species and genes, (9) pollution, (10) geological events, and (11) climate change and severe weather. 
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Fig. 2.1: Number of species affected by 1st level threat categories (A), and number of species affected by 2nd level threat categories 
(B).  Numbers in parentheses correspond to the classification proposed by Salafsky et al. (2008).
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Fig. 2.2: Results of a principal coordinate analysis (based on Jaccard’s distance) of the 
threats to carnivorous plant species.  The 20 principal coordinates used in the analysis 
have been suppressed and the threat categories have been passively (post-hoc) projected 
into the ordination space.  To reduce clutter in the biplot, we have only displayed species 
with fits of >20% and threat categories with correlation coefficients outside the range of -
0.3 to 0.3.  The distance of species and threat categories from the origin indicate their 
relative importance in the biplot.  Perpendicularly projecting the threat categories to the 
axes provides an estimate of the correlation coefficient of that variable with that axis.  
The angle between threat categories is negatively proportional to the correlation of those 
threats.  Distance among species approximates the dissimilarity of their threats.  Each of 
the numbered 1st level threat categories shown (arrows in the biplot) correspond to the 
classification proposed by Salafsky et al. (2008): (1) residential and commercial 
development, (2) agriculture and aquaculture, (5) biological resource use, (7) natural 
systems modifications, (8) invasive and other problematic species and genes, and (9) 
pollution. 
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Chapter 3: Insecticides Reduce Survival and the Expression of Traits Associated 

with Carnivory of Carnivorous Plants 

 

3.1. Introduction 

Pollution is thought to be one of the main causes of species declines in the United States 

(Wilcove & Master 2005).  Agrochemicals, in particular, are a widespread source of 

pollution, whether through direct application of fertilizers, herbicides, and insecticides, or 

through run-off and drift.  While many studies have examined the indirect effects of 

agrochemicals on non-target organisms (Desneux et al. 2007; Rohr et al. 2006), to the 

best of our knowledge, only one previous study has quantitatively examined the effects of 

any type of pesticide on carnivorous plants (Smith and Pullman (1997) examined the 

effects of an aquatic herbicide on a Utricularia sp., among other freshwater plants).  This 

is surprising given that pollution is often cited as a threat to carnivorous plants (Folkerts 

1977; Folkerts 1990; Jennings & Rohr 2011), ostensibly because these plants are 

commonly found in wetland areas which frequently accumulate agrochemicals (Clark et 

al. 1993; Davis & Froend 1999).  

 

Among the main groups of agrochemicals, herbicides would likely be considered to pose 

the greatest threat to non-target plants.  However, some insecticides also are known to be 

highly phytotoxic and capable of exerting direct negative effects on plants (Gange et al. 
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1992; Murthy & Raghu 1990; Peterson et al. 1994; Straw et al. 1996).  Furthermore, 

insecticides could exert important indirect negative effects for carnivorous plants in 

particular, such as a reduction in the abundance of potential prey.  Carbaryl, lambda-

cyhalothrin, and malathion are three widely used insecticides in the United States (Kiely 

et al. 2004).  Each is used to control adult or larval mosquitoes (Lawler et al. 2007; 

Milam et al. 2000; Suwanchaichinda & Brattsten 2001) and thus they are regularly 

applied either directly on or near wetlands that might contain carnivorous plants.  Using a 

combination of lab- and field-based experiments, we quantified the effects of both 

commercial and technical grades of these insecticides on survival and the expression of 

traits associated with carnivory of two carnivorous plant species: pink sundews (Drosera 

capillaris) and Venus flytraps (Dionaea muscipula).  Pink sundews capture insect prey 

with sticky mucilage secreted from modified leaf trichomes, and they are commonly 

found in wetland habitats throughout the southeastern United States (Schnell 2002).  

Conversely, Venus flytraps are limited to wet pine savannas in the Carolinas and are 

listed as vulnerable by the International Union for the Conservation of Nature (Schnell 

2002; Schnell et al. 2000), with pollution often considered a threat (Jennings & Rohr 

2011).   

 

Along with most carnivorous plant species, pink sundews and Venus flytraps have small, 

fragile roots (Adlassnig et al. 2005) and their leaf surfaces are covered in digestive glands 

(Juniper et al. 1989), both of which could increase their susceptibility to insecticides in 

comparison to most other plants.  Consequently, our hypotheses were as follows: 1) 

insecticides will directly reduce the survival of carnivorous plants, and 2) given that 
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carnivorous plants under stress often reduce their expression of traits associated with 

carnivory (i.e. investment in structures involved in prey capture), surviving pink sundews 

and Venus flytraps will produce fewer leaves with mucilage, and fewer traps 

respectively.  Quantifying the effects of insecticides on the expression of traits associated 

with carnivory has important implications for carnivorous plants at the population-level, 

and at the broader community-level (Clements & Rohr 2009).  For example, if 

insecticides are capable of changing the expression of these traits used by carnivorous 

plants for prey capture, they could be indirectly affecting the abundance of arthropods 

frequently utilized as prey. 

 

3.2. Methods 

Pink sundews were collected from the University of South Florida Ecological Research 

Area (ERA), and Venus flytraps were ordered from www.bugbitingplants.com (Venus 

flytraps are threatened, preventing us from studying them in or collecting them from the 

field).  Plants in all lab experiments were maintained at 23°C under full spectrum lighting 

(14L/10D) and covered with Plexiglas to maintain humidity.  Each experiment (lab- and 

field-based) ran for four weeks, and survival (plants were considered dead when all 

structures had turned black) and the expression of traits associated with carnivory (the 

number of leaves with mucilage and traps for pink sundews and Venus flytraps, 

respectively) were quantified on a weekly basis. 
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3.2.1. Experiment i: effects of commercial grade insecticides on pink sundews in the lab 

Seventy-two pink sundews (mean diameter 2.28 cm ± 0.59 cm) were planted in 

individual 9 cm diameter plastic cups filled to 5 cm with sand, as often they are locally 

found in extremely sandy soils.  Treatments consisted of a de-ionized (DI) water control 

and commercial grades of the insecticides carbaryl (GardenTech® Sevin®), lambda-

cyhalothrin (Spectracide® Triazicide®), and malathion (Spectracide®), with 18 

replicates of each of the four treatments.  At the start of the experiment, 5 ml of the 

appropriate insecticide was applied directly to the sundews using a spray bottle and 

following the recommended application instructions on each product.  This resulted in 

nominal application rates for active ingredient (a.i.) of 9.91 kg/ha (0.126%) for carbaryl, 

0.16 kg/ha (0.002%) for lambda-cyhalothrin, and 5.19 kg/ha (0.003%) for malathion (for 

comparative purposes, percentages of a.i. per 5 ml are provided in parentheses 

throughout).  The rates of insecticide application used for this experiment represented an 

overspray scenario for mosquito control, but were comparable to the rates used for 

control of agricultural pests. 

 

3.2.2. Experiment ii: dose-response of pink sundews to technical grade insecticides in the 

lab 

To each of five randomly chosen sundews, we applied 99.1 (1.26%), 9.91 (0.126%), 

0.991 (0.0126%), or 0.0991 (0.00126%) kg of a.i./ha of carbaryl; 1.6 (0.02%), 0.16 

(0.002%), 0.016 (0.0002%), 0.0016 (0.00002%) kg of a.i./ha of lambda-cyhalothrin; or 

51.9 (0.03%), 5.19 (0.003%), 0.519 (0.0003%), 0.0519 (0.00003%) kg of a.i./ha of 

malathion (based on serial dilutions of the highest concentration).  The rates of 
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insecticide application used in this experiment represented a range of scenarios.  The 

lowest rates were below those typically applied for mosquito control, while the highest 

rates exceeded those typically used for control of agricultural pests.  All insecticides were 

technical grade (purities > 98%, Chemservice, PA).  The highest rate of application of 

each chemical was one order of magnitude higher than the rates of application for the 

commercial forms (i.e. active ingredients) used in Experiment i.  Additionally, we had 

five replicates of both DI water and acetone (10%, solvent used to get chemicals in 

solution) controls, resulting in 14 total treatments and 70 individual plants (mean 

diameter 2.13 cm ± 0.39 cm).  Sundews were planted in individual 9 cm diameter plastic 

cups filled to 5 cm with sand, and at the start of the experiment, 5 ml of the appropriate 

insecticide was applied directly to the sundews using pipettes.  Pipettes were used in this 

experiment for logistical purposes, and we are confident that similar amounts of 

insecticides reached both the plants and the substrate compared to the spray bottles in the 

other experiments. 

 

3.2.3. Experiment iii: effects of commercial and technical grade insecticides on pink 

sundews in the field 

To determine the ecological relevance of Experiments i and ii, we conducted a field 

experiment.  We established 32 10-cm x 10-cm plots at the ERA, with each plot 

containing three sundews (mean diameter 5.07 cm ± 1.38 cm).  To each of four randomly 

chosen plots, we applied one of eight treatments: DI water, acetone (10%), or commercial 

or technical forms of carbaryl, lambda-cyhalothrin, or malathion.  At the start of the 

experiment 5 ml of the appropriate insecticide was applied directly to the sundews using 
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spray bottles, and there were two subsequent applications after 10 and 20 days (within the 

range of recommended application frequency).  The field plots were slightly larger in 

area than the plastic cups used in the lab, and our field rates of application for insecticide 

a.i. per plot were: 6.3 kg/ha (0.126%) for carbaryl, 0.1 kg/ha (0.002%) for lambda-

cyhalothrin, and 3.3 kg/ha (0.003%) for malathion.  The rates of insecticide application 

used for this experiment represented an overspray scenario for mosquito control, but were 

comparable to the rates used for control of agricultural pests. 

 

3.2.4. Experiment iv: effects of commercial and technical grade insecticides on Venus 

flytraps in the lab 

Sixty-four 2-year old Venus flytraps (mean fresh-weight 1.03 g ± 0.41 g) were planted in 

individual 9 cm diameter plastic cups filled to 5 cm with a mixture of 2/3 peat moss and 

1/3 perlite.  We used plants of the same age and similar fresh-weight to minimize 

variation in trap size.  To each of eight randomly chosen plants we then applied 5 ml of 

one of the following treatments using spray bottles: DI water, acetone (10%), or 

commercial or technical forms of carbaryl, lambda-cyhalothrin, or malathion, using the 

same concentrations as in Experiment i.  There were two subsequent applications of each 

treatment after 10 and 20 days (within the range of recommended application frequency). 

 

3.2.5. Statistical analyses 

For each experiment we first tested for differences between water and solvent (acetone) 

controls.  No significant differences between controls were detected for any experiment 

(all p > 0.05) and, consequently, the controls were pooled together.  Survival analyses 
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were conducted using the Cox proportional hazards model (package ‘survival’, function 

‘coxph’) in R 2.11.1 (R Development Core Team 2010), and for the survival dose-

response in Experiment ii we compared each insecticide treatment to the controls 

separately.  In all survival analyses, we then conducted multiple comparisons between 

treatments using log-likelihood ratio tests, controlling for the false discovery rate using 

the Benjamini-Hochberg correction (package ‘multtest’, function ‘mt.rawp2adjp’).  We 

used analysis of covariance (ANCOVA) in Statistica 9.1 to test for the effects of 

treatments on the difference in the number of traps or mucilage-producing leaves (i.e. the 

starting number of trap of mucilage-producing leaves minus the final number) with the 

starting number of traps or mucilage-producing leaves as the covariate.  For the dose-

response in Experiment ii we compared each insecticide treatment to the controls 

separately as continuous predictors, and then in separate tests as categorical predictors.  

All multiple comparisons on the difference in the number of traps or mucilage-producing 

leaves were made using Dunnett’s test in Statistica 9.1. 

 

3.3. Results 

3.3.1. Experiment i: effects of commercial grade insecticides on pink sundews in the lab 

We found significant effects of treatment on survival (χ2
3 = 18.38, p < 0.001) and the 

number of mucilage-producing leaves (F3, 67 = 16.21, p < 0.001).  Relative to controls 

(0% mortality), carbaryl (28% mortality; p = 0.018) and malathion (66.7% mortality; p < 

0.001), but not lambda-cyhalothrin (16.7% mortality; p = 0.056), significantly reduced 

survival (Fig. 3.1A). Carbaryl, malathion, and lambda-cyhalothrin significantly reduced 

the number of mucilage-producing leaves (all p < 0.001) (Table 3.1). 
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3.3.2. Experiment ii: dose-response of pink sundews to technical grade insecticides in the 

lab 

There was a dose-response on survival of carbaryl-treated plants with all but the lowest 

concentration significantly reducing survival relative to controls, but there was no 

detected effect on survival for lambda-cyhalothrin- or malathion-treated plants (Fig. 

3.1B).  Additionally, there were significant dose-responses of carbaryl (F1, 28 = 7.93, p = 

0.009) and lambda-cyhalothrin (F1, 28 = 4.3, p = 0.048) on the difference in mucilage-

producing leaves, but there was no detected effect on the difference in mucilage-

producing leaves for malathion-treated plants (F1, 28 = 1.4, p = 0.246) (Table 3.1). 

 

3.3.3. Experiment iii: effects of commercial and technical grade insecticides on pink 

sundews in the field 

There was a significant effect of treatment on sundew survival (χ2
6 = 20.02, p = 0.003), 

with the commercial grades of lambda-cyhalothrin (41.7% mortality; p = 0.035) and 

malathion (58.3% mortality; p = 0.007) significantly reducing survival relative to controls 

(4.2% mortality) (Fig. 3.1C).  However, there was no significant effect of treatment on 

the number of mucilage-producing leaves of sundews in the field (F6, 24 = 1.28, p = 

0.302) (Table 3.1). 
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3.3.4. Experiment iv: effects of commercial and technical grade insecticides on Venus 

flytraps in the lab 

There were significant effects of treatment on survival (χ2
6 = 23.64, p = 0.001) and the 

number of traps per Venus flytrap (F6, 56 = 19.05, p < 0.001).  Relative to controls (0% 

mortality), only commercial grade lambda-cyhalothrin (83.3% mortality; p = 0.002) 

reduced survival (Fig. 3.1D), but commercial grades of both carbaryl (p = 0.003) and 

lambda-cyhalothrin (p < 0.001) significantly reduced the number of traps per plant (Table 

3.1). 

 

3.4. Discussion 

Our results demonstrate that both commercial and technical grade insecticides above, 

within, and below recommended application levels can be harmful to carnivorous plants, 

justifying agrochemicals as a common threat to these taxa.  Insecticides appeared to act 

on the plants by causing a dieback of mucilage-producing leaves or traps, which in many 

cases resulted in the death of the plant (Fig. 3.2).  Commercial grades of insecticides were 

generally more harmful than technical grades, causing significant reductions in sundew 

and Venus flytrap survival.  The more severe effects of commercial grade insecticides 

could result from their inert ingredients possibly expediting delivery of the insecticide to 

within the leaf.  However, technical grades of insecticide also reduced survival of plants 

under lab conditions, and frequently caused sub-lethal effects by significantly reducing 

the expression of traits associated with carnivory. 
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Pink sundews were generally more susceptible to insecticides than Venus flytraps, 

although it is important to note that the two species were not directly compared in the 

same experiment.  Pink sundews possess larger numbers of digestive glands on their leaf 

surfaces than Venus flytraps (Juniper et al. 1989), which could facilitate faster uptake of 

the insecticides.  Considering the sub-lethal effects of insecticides found in both plants, it 

is possible that there could be long-term consequences of exposure to them.  For 

example, reduced expression of traits associated with carnivory will likely result in fewer 

prey items being captured, which can subsequently reduce growth and fitness in 

carnivorous plants (Krafft & Handel 1991).  Reduced prey abundance could be an 

additional indirect effect of insecticides on carnivorous plants, exacerbating their effects 

on carnivorous traits such as mucilage production.  Furthermore, recent evidence has 

shown that the accumulation of trace metals in invertebrate prey can cause a reduction in 

the biomass of carnivorous plants (Moody & Green 2010), and similar effects could be 

caused by insecticides.  Given the apparent difference in susceptibility to insecticides 

between our study species, it would also be prudent to include representatives from a 

wider-range of carnivorous plant growth forms in future research, such as pitcher plants 

and fully aquatic species (e.g. many Utricularia spp.). 

 

While our results demonstrate that insecticides can be harmful to carnivorous plants, we 

did not determine the mechanism by which they are damaging the plants.  For example, 

our methods did not allow us to determine exactly which part of the plant is being 

affected (i.e. leaves or roots), as the insecticides were applied to both the leaves and the 

substrate.  Future research could examine the effects of insecticides when applied 
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exclusively to either the leaves or the substrate in which the plants are growing, thereby 

isolating their effects on each structure.  Additionally, pesticides have been shown to 

cause damage to the mutualistic mycorrhizae of some plants (Ocampo & Hayman 1980), 

and while these fungi have not been well-studied in carnivorous plants, there is evidence 

that they are associated with some species (Fuchs & Haselwandter 2004; Quilliam & 

Jones 2010).  If the application of insecticides to the substrate is found to be more 

harmful than their application to leaves, then their potential effects on the mycorrhizae 

associated with carnivorous plants should also be investigated.  It could also be beneficial 

to explore the effects of insecticides on these plants at a molecular level, perhaps by 

examining the response of enzymes and other proteins to exposure. 

 

Relatively few peer-reviewed studies have examined the phytotoxic effects of the three 

insecticides used in the present study, making it difficult to generalize our results to other 

plant taxa.  However, there is some evidence that all three insecticides can have negative 

effects on plants.  For example, carbaryl has been shown to reduce the growth of barley 

(Hordeum vulgare) (Murthy & Raghu 1990) and can be phytotoxic to aquatic plants 

(Peterson et al. 1994), lambda-cyhalothrin has been shown to reduce coleoptile growth in 

rice (Oryza sativa) (Moore & Kroger 2010), and malathion has been shown to be 

phytotoxic to Sitka spruce (Picea sitchensis) and cause a reduction in needle size (Straw 

et al. 1996).  In comparison to these previous studies, the more frequently observed lethal 

effects we found with carnivorous plants could therefore be attributed to their digestive 

glands, and possibly their smaller size than some of the previously studied plants.  

Consequently, with a range of organophosphate and pyrethroid insecticides used 
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worldwide, broad application of these chemicals could be threatening carnivorous plant 

species. 

 

3.5. Conclusions 

We found that three widely used insecticides can reduce survival and the expression of 

traits associated with carnivory in carnivorous plants.  Given that many carnivorous plant 

species are found in habitats where insecticides are often directly applied, we recommend 

longer-term studies on these plants under field conditions to determine the consequences 

of insecticide exposure at the population-level.  Future research should also determine the 

effects of insecticides on other growth forms of carnivorous plant, such as pitcher plants 

and aquatic species.  Use of these insecticides should be carefully managed in areas 

containing vulnerable carnivorous plant populations. 
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Table 3.1: Summary of the effects of three insecticides on carnivorous traits in pink 
sundews (PS) and Venus flytraps (VF). 

Treatment Mean difference in mucilage-producing leaves, or traps 

Experiment i Experiment ii Experiment iii Experiment iv 

PS (lab) PS (lab) PS (field) VF (lab) 

Carbaryl     

99.1 kg/ha  -4.2*** (0.84)   

9.91 kg/ha (commercial) -8.23*** (3.43)  -10.25 (3.42) -3.38*** (3.46) 

9.91 kg/ha (technical)  -5.4*** (1.52) -9.08 (2.68) 2 (1.77) 

0.991 kg/ha  -5.2*** (1.3)   

0.0991 kg/ha  -2.4 (2.3)   

Lambda-cyhalothrin     

1.6 kg/ha  -4** (1)   

0.16 kg/ha (commercial) -8.28*** (3.74)  -7.92 (3.06) -9.25*** (3.96) 

0.16 kg/ha (technical)  -3.2** (1.92) -9.25 (2.67) 0.13 (1.89) 

0.016 kg/ha  -2.8* (2.39)   

0.0016 kg/ha  -3* (2.12)   

Malathion     

51.9 kg/ha  -2.4 (2.7)   

5.19 kg/ha (commercial) -9.39*** (1.31)  -5.92 (3.92) 0.25 (2.25) 

5.19 kg/ha (technical)  -3* (3.16) -8.25 (4.54) 0.38 (3.38) 

0.519 kg/ha  -3.6** (2.07)   

0.0519 kg/ha  -2 (2)   

Controls -1.06 (6.44) 0 (2.49) -6.5 (3.66) 0.88 (1.36) 

Shown are means (SEM) (Dunnett’s test: * p < 0.05, ** p < 0.01, *** p < 0.001). 
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Fig. 3.1: Proportion mortality from Experiments i (A), ii (B), iii (C), and iv (D) (* p < 0.05, ** p < 0.01, *** p < 0.001).  Points 
represent means and error bars are derived from proportion mortality.  Curves for B represent logistic regression.
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Fig. 3.2: Comparisons of a pink sundew (Drosera capillaris) (A) and a Venus flytrap 
(Dionaea muscipula) (B) before and after treatment with commercial grades of carbaryl 
and lambda-cyhalothrin, respectively. 
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Chapter 4: Associations between Ground-Surface Spiders and Other Arthropods in 

Mesic Flatwoods 

 

4.1. Introduction 

Mesic (or wet) flatwood habitats are typically dominated by slash pine (Pinus elliottii) or 

longleaf pine (P. palustris), and because of the poor drainage of their soils they 

experience seasonal inundation with water (Harms et al. 1998).  Historically these 

habitats stretched across the Atlantic and Gulf coastal plains of the United States, but 

increasingly they are threatened by anthropogenic activities and, in recent decades, their 

range has been greatly reduced (Harms et al. 1998).  In addition to their importance 

economically as a source of timber and fiber, mesic flatwoods are known to support 

diverse communities of macrofauna (Geneva & Roberts 2009).  However, relatively few 

quantitative data exist on the arthropod assemblages that inhabit mesic flatwoods.   

 

Given that a distinguishing feature of mesic flatwoods is their periodic flooding, the 

arthropod assemblages found in these habitats could be considerably different from those 

in nearby xeric or even hydric habitats.  Indeed, classical intermediate disturbance theory 

(Connell 1978; Grime 1973) suggests that such periodic flooding in mesic flatwoods 

could even lead to higher arthropod diversity than in habitats with more consistent 

hydrological regimes, and thus they may host a relatively unique arthropod community.  
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Collecting baseline data on the arthropod communities in these habitats is therefore 

important for several reasons.  For example, because many arthropod taxa often are 

sensitive to changes in environmental conditions they can be utilized as indicators of 

pollution or other anthropogenic disturbances (Kremen et al. 1993; Schweiger et al. 

2005), which could be useful for the management of mesic flatwoods.  Furthermore, by 

determining the associations between different arthropod groups in a community at a 

coarse taxonomic level, it could also be possible to predict changes in the assemblages 

based on the loss of certain taxa or the type of disturbance. 

 

Spiders in particular have frequently been utilized as indicator taxa because of their 

abundance and the relative ease with which they can be collected (Buchholz 2010; 

Shochat et al. 2004; Wise 1993).  In addition to being utilized as indicator taxa, spiders 

can play an important role in many ecosystems because of the top-down effects they exert 

on their arthropod prey (Riechert & Bishop 1990; Wise 2004), which often includes pest 

species.  Given that exhaustive species surveys of sites often are impractical for taxa such 

as spiders, using species richness estimators to extrapolate the true species richness for a 

site could be more useful (Colwell & Coddington 1994).  Perhaps most importantly the 

species accumulation curves could be useful for informing decisions on sampling effort at 

other sites with similar habitat. 

 

Accordingly, we surveyed arthropods at two relatively undisturbed mesic flatwood sites 

in Hillsborough County, Florida, with a further focus on ground-surface spiders.  Our 

objectives were as follows: 1) to collect baseline data on the richness and abundance of 
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ground-surface spiders and other arthropods, 2) to examine the associations among 

arthropod taxa in the community, and 3) to use species richness estimators to extrapolate 

the true species richness for ground-surface spiders at these sites. 

 

4.2. Methods 

4.2.1. Study sites and sample collection 

Our two study sites were Brooker Creek Headwaters Nature Preserve (BCH) (28° 08.32’ 

N, 82° 33.32’ W) and the University of South Florida Ecological Research Area (ERA) 

(28° 04.24’ N, 82° 23.44’ W).  Common flora at both sites include bald cypress 

(Taxodium distichum) and slash pine, while saw palmetto (Serenoa repens) and 

hardwoods such as laurel oak (Quercus laurifolia) are occasionally found in patches.  

While BCH is open to the public and experiences relatively low-levels of anthropogenic 

disturbance from hiking, the ERA is closed to the public and therefore experiences 

virtually no anthropogenic disturbance.  To collect arthropod samples from these sites, 

we deployed 10 pitfall-traps filled with 100 ml of soapy-water set 2 m apart along a 10 m 

transect (two transects per site).  These transects were surveyed approximately once 

every two weeks between July 1st and September 10th 2008 at BCH, and between 

September 22nd and November 10th 2008 at the ERA, for a total of 16 transect surveys 

and 160 pitfall-trap samples.  Pitfall-traps were left out for 48-hours before the contents 

were collected and returned to the lab for identification.  Spiders were identified to genus 

or species, and voucher specimens have been placed in the Florida State Collection of 

Arthropods.  Other arthropods were identified to the order level or below.  While it would 

have been desirable to obtain a higher taxonomic resolution for all arthropods, a coarse, 
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order-level identification could be more useful for management purposes, as there are 

rarely the funds or expertise to identify many arthropods to genus or species (Rohr et al. 

2007). 

 

4.2.2. Statistical analyses 

We compared the pooled spider richness and abundance of both sites by generating 

species accumulation curves and asymptotic richness estimates using the program 

EstimateS v. 8.0 (Colwell 2005).  The species richness estimators we used were: Chao 2, 

ICE (incidence-coverage based estimator), and Michaelis-Menten means.  Frequently 

there can be considerable variation in the results produced by different estimators, so by 

using multiple estimators we were able to more effectively evaluate the reliability of their 

performance (Rohr et al. 2009).  The Chao 2 and ICE estimators use the number of 

uniques and duplicates (species that occur in only one or two samples respectively) to 

estimate the number of species that were missed in the sampling procedures, while the 

Michaelis-Menten means estimator is based on the same equation used in enzyme 

kinetics (Colwell & Coddington 1994).  All curves were generated based on the mean of 

1000 randomizations of the sample order. 

 

To determine the relationships between the abundances of all arthropod taxa, we 

conducted a principal coordinate analysis (PCoA) based on Hellinger’s distance.  The 

ordination analysis was conducted using CANOCO 4.5 (ter Braak & Šmilauer 2002), and 

we created the biplot using CanoDraw 4.12 to display the results (ter Braak & Šmilauer 
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2002).  We post-transformed the scores so that the relationships between different 

arthropod groups could be inferred based on perpendicular projection. 

 

4.3. Results 

4.3.1. Spider species richness and abundance 

We collected a total of 71 spiders, composed of 31 species from 27 genera in 12 families 

(24 species at BCH, 15 at ERA) (Table 4.1).  Lycosidae was the dominant family at both 

sites (70.4% of the total spiders at BCH, 56.8% at ERA), followed by Salticidae (6.8% at 

BCH, 11.1% at ERA) and Tetragnathidae (6.8% at BCH, 3.7% at ERA).  Eight species 

were common to both sites and the most abundant species overall were Hogna spp., 

Pirata suwaneus, Schizocosa humilis, and Sosippus floridanus, all of which are lycosids.  

To determine guild composition, we followed the general classification of Young & 

Edwards (1990), who proposed five guilds of spiders based on hunting behaviors: 

wandering-active, wandering-ambush, web-matrix, web-orb, and web-sheet.  The guild of 

wandering-active spiders was by far the most abundant, comprising 75% and 92.6% of 

spiders at BCH and the ERA respectively.  We found representatives from only two other 

guilds present: web-sheet spiders (13.6% of spiders at BCH and 3.7% at ERA), and web-

orb spiders (11.4% of spiders at BCH and 3.7% at ERA). 

 

4.3.2. Arthropod richness and abundance 

Including spiders, we collected a total of 3,001 arthropods (1,591 at BCH, 1,510 at ERA) 

from 11 taxonomic groups (Actindedida, Araneae, Coleoptera, Collembola, Diptera, 

Formicidae, Hemiptera, Homoptera, Hymenoptera (excluding Formicidae), Lepidoptera, 
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and Orthoptera) (Fig. 4.1).  Collembola was the most abundant taxa at both sites (58.5% 

of the total arthropods at BCH, 60.3% at ERA), followed by Formicidae (29.5% at BCH, 

21.6% at ERA).  With the exception of Diptera at ERA (9.3%), all other taxa comprised < 

3% of the total number of arthropods each for both sites. 

  

4.3.3. Spider species richness estimators 

None of the species richness estimators we used reached a clear asymptote, however the 

curve generated using Michaelis-Menten means appeared to be closest to approaching 

this (Fig. 4.2).  The Chao 2 estimator yielded the highest number of species (91), almost 

double the number generated by Michaelis-Menten means (53).  The ICE estimator 

produced a species number that was slightly above the Michaelis-Menten means (67).  

We also found that there was always a greater number of uniques than duplicates, with 

uniques steadily increasing while the number of duplicates eventually started to decrease. 

 

4.3.4. Principle coordinate analysis 

PCoA revealed that arthropod assemblages differed at both sites, particularly driven by 

variation in abundance of Diptera and to a lesser extent Orthoptera (Fig. 4.3).  Ground-

surface spiders were strongly negatively associated with Diptera, and only weakly 

associated with other common prey taxa such as Collembola and Homoptera.  Formicidae 

also appeared to be negatively associated with Collembola and Homoptera. 
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4.4. Discussion 

At the family level, ground-surface spider diversity and relative abundance was fairly 

similar to sandhill and xeric or hydric flatwood habitats elsewhere in Florida (Corey et al. 

1998; Corey & Taylor 1988; Muma 1973).  For example, Muma (1973) found Lycosidae 

to be the most dominant ground-surface spider family at a hydric pine flatwoods site in 

central Florida, comprising 64% of the total number of spiders.  At another site in central 

Florida, Corey & Taylor (1988) examined more mesic flatwoods and found that lycosids 

also dominated the habitat (47.2%), although not quite to the same extent as found by 

Muma (1973).  Our results at the family level are even fairly similar to those of Corey et 

al. (1998), who examined ground-surface spider assemblages at several sandhill sites and 

found Lycosidae to be the most dominant family (75.2%).  However, at the species level 

some differences between the communities we examined and those from previously 

published work by Muma (1973) and Corey & Taylor (1988) become apparent.  For 

instance, we identified nine species of lycosids compared to 13 by Muma (1973), with 

only three species common to both studies (Hogna lenta, Pirata suwaneus and Sosippus 

floridanus).  Furthermore, of the 15 most common species found in mesic flatwoods by 

Corey & Taylor (1988), only two were present at our sites (Ctenus captiosus and S. 

floridanus).  These observed patterns could represent true differences between the 

communities, but perhaps more likely result from the less intensive sampling we 

conducted compared to the previous studies of Muma (1973) and Corey & Taylor (1988). 

 

None of our species accumulation curves reached an asymptote, which further suggests 

that we did not sample all of the ground-surface spider species present at our study sites.  
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The overall performance of the estimators used was similar to the results of Toti et al. 

(2000), who examined the species richness of spider assemblages in Appalachian balds 

and found that the Michaelis-Menten means estimator performed best when judged by 

their indirect criteria (that the curve was close to reaching an asymptote with fewer 

samples than the observed species curve, and that the estimates were close to a visual 

extrapolation of the asymptote of the observed species curve).  Based on the performance 

of the three estimators, it appears as though the true spider species richness is at least 50-

70 species (where the ICE and Michaelis-Menten means curves were more closely 

grouped together).  This number seems to be consistent with the more extensive previous 

surveys in flatwoods by Muma (1973) and Corey & Taylor (1988), who found 55 and 48 

species respectively. 

 

We found that ground-surface spiders were not strongly associated with typical prey 

groups, supporting the idea that environmental factors can have an important influence on 

spider distribution (Greenstone 1984).  However, many other studies have found strong 

associations between spiders and their prey (Harwood et al. 2001), somewhat contrary to 

our results.  Indeed, even within the same study sites, we have previously found one 

species of spider (S. floridanus) to track the abundance of their common prey (Jennings et 

al. 2010).  Our results could be explained by the fact that the majority of the spiders we 

collected were lycosids, which generally are not web-builders.  Therefore lycosids tend to 

be more transient (with S. floridanus being a notable exception to this) and might not 

follow their prey as closely. 
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The associations between other groups of arthropods were not particularly surprising.  

Collembola and Formicidae were clearly the two most abundant taxa, as has been found 

in ground-surface habitats elsewhere in Florida (Stiling et al. 2010), and both are known 

to be mobile foragers in the soil and leaf litter.  They were negatively associated with 

each other, which could have been a result of microhabitat differences.  For example, 

standing water was found at our sites on several occasions during our sampling period 

and certain groups of Collembola have a high affinity for these types of conditions, which 

conversely could have been prohibitive to many Formicidae.  Diptera was responsible for 

most of the difference in the arthropod assemblages between our study sites, and the most 

parsimonious explanation for this is because of seasonal differences.  Both study sites are 

close to lentic water-bodies and they have a similar habitat structure, but the sampling at 

the ERA was conducted after BCH and therefore may have coincided with increased 

abundance for certain species, perhaps for breeding events. 

 

4.5. Conclusions 

Our study provides baseline data on the ground-surface spider and other arthropod 

assemblages of mesic flatwoods.  The guild structure of the study sites was similar to 

previous work in other flatwood habitats, being dominated by wandering-active spiders 

(primarily Lycosidae).  The ground-surface spider species accumulation curves indicated 

that more intensive sampling of these habitats would be required to comprehensively 

sample and identify all of the species present, but from a management perspective, our 

results appear to be relatively consistent with previous surveys elsewhere. 
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Table 4.1: Spiders collected at Brooker Creek Headwaters Preserve (BCH) and the 
University of South Florida Ecological Research Area (ERA). 

Family/Species BCH ERA Total 
Agelenidae    

Baronopsis sp. 1  1 
    
Araneidae    

Gea heptagon 2  2 
    
Corinnidae    

Phrurotimpus alarius  1 1 
    
Ctenidae    

Ctenus captiosus  1 1 
    
Gnaphosidae    

Gnaphosa sericata 1  1 
Zelotes sp. 1 1 2 

    
Hahniidae    

Neoantistea magna 2 1 3 
    
Linyphiidae    

Ceratinella sp. 1  1 
Ceratinops crenatus 1  1 
Meioneta sp. 1  1 

    
Lycosidae    

Allocosa mulaiki 1 2 3 
Hogna lenta  1 1 
Hogna sp. 6 5 11 
Pirata insularis  4 4 
Pirata suwaneus 2 5 7 
Rabidosa rabida 3  3 
Schizocosa humilis 6  6 
Schizocosa sp. 2 1 3 
Sosippus floridanus 5 1 6 

    
Oonopidae    

Heteroonops spinimanus 1  1 
    
Pisauridae    

Dolomedes sp. 1  1 
Pisaurina sp. 1  1 

    
Salticidae    

Habronattus sp.  1 1 
Naphrys bufoides  1 1 
Neon sp. 1  1 
Phidippus sp. 1  1 
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Family/Species BCH ERA Total 
Zygoballus rufipes  1 1 

    
Tetragnathidae    

Glenognatha foxi 1  1 
Leucage sp. 1  1 
Pachygnatha autumnalis 1 1 2 

 

 
  



62 
 

 
Fig. 4.1: Percent abundance of different arthropod families at Brooker Creek Headwaters 
Preserve (BCH) and the University of South Florida Ecological Research Area (ERA).  
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Fig. 4.2: Individual-based spider species rarefaction (S observed), estimated true richness 
(Chao 2, ICE, and Michaelis-Menten means), and unique and duplicates.  
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Fig. 4.3: Results of a principal coordinate analysis (based on Hellinger’s distance) of the 
relationships between arthropods at Brooker Creek Headwaters Preserve (BCH) and the 
University of South Florida Ecological Research Area (ERA). 
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Chapter 5: Evidence for Competition between Carnivorous Plants and Spiders 

  

Note to reader 

Portions of this chapter have already been published (Jennings et al. 2010) and are 

utilized with permission of the publisher. 

 

5.1. Introduction 

Competition is a fundamental ecological process in determining the structure of 

communities.  Historically, competition was assumed to be strongest between closely 

related taxa, an idea dating back to Darwin (1859) and persisting into the recent past 

(Connell 1983; Schoener 1983; Gurevitch et al. 1992).  For example, out of 112 

interspecific competition studies in terrestrial and freshwater ecosystems reviewed in 

Schoener (1983) and Gurevitch et al. (1992), the vast majority of those involving animals 

were conducted on closely related taxa, while only one study focused on species from 

different kingdoms (Fig. 5.1).  Nonetheless, competition between disparate taxa is 

frequently found to be strong when examined (Brown & Davidson 1977; Schoener & 

Spiller 1987; Morin et al. 1988; Mokany & Shine 2003).  These findings suggest that 

ecologists might be missing important competitive interactions among distantly related 

species, or those that have few morphological similarities. 
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To the best of our knowledge no previous studies have quantified competitive 

interactions between the plant and animal kingdoms, although carnivorous plants and 

animals seem likely to compete for arthropod prey.  Sundews (Droseraceae: Drosera) are  

carnivorous plants that catch prey using sticky mucilage secreted from glands on the tips 

of modified trichomes found on their leaves, and research suggests that they are 

generalist arthropod predators (van Achterberg 1973; Thum 1986; Porch 1989; Verbeek 

& Boasson 1993).  Spiders are candidate animal competitors with carnivorous plants 

because they are abundant, have considerable spatial overlap with carnivorous plants, and 

are often generalist arthropod predators that can reduce arthropod populations (Riechert 

& Bishop 1990; Buddle 2002; Wise 2004).  

 

We conducted a field census to quantify the microhabitat and dietary overlap of pink 

sundews (D. capillaris, Poiret 1804) and funnel-web building wolf spiders (Lycosidae: 

Sosippus floridanus, Simon 1898), and the plasticity of their phenotypic traits in the 

presence and absence of one another – all of which are potentially indicative of 

competition (Schoener 1983; Goldberg & Barton 1992; Agrawal 2001; Callaway et al. 

2003).  Additionally, we conducted a laboratory experiment to determine if wandering 

wolf spiders (Lycosidae: Rabidosa rabida, Walckenaer 1837) could negatively impact 

growth and fitness of sundews by depleting the availability of a common prey.   

 

D. capillaris is a small perennial carnivorous plant commonly found in mesic habitats 

throughout the southeastern USA.  This species forms basal leaf rosettes with an average 

diameter of 3.5 cm, reaching up to 7 cm (Schnell 2002).  S. floridanus is found in webs 
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on or close to the ground in scrub and mesic habitats throughout Florida and southern 

Georgia (Brady 1972; Muma 1973; Punzo & Haines 2006), while R. rabida inhabits 

grasslands and open woodlands in the central and eastern USA (Brady & McKinley 

1994).  Both species mature at approximately 2 cm in length (Brady 1972; Brady & 

McKinley 1994; Punzo & Haines 2006) and along with various other spiders are 

consistently found on and around sundews (D. Jennings, unpublished data). 

 

We hypothesized that sundews and spiders compete for arthropod prey, generating the 

following six predictions: 1) because both sundews and spiders use relatively 

opportunistic and passive prey capture mechanisms, they will be generalist arthropod 

predators with considerable dietary overlap; 2) on a large spatial-scale, sundews and 

spiders will be positively associated with each other, because both will be more abundant 

where prey resources are abundant, but 3) on a small spatial-scale, spiders will avoid 

building webs near sundews to avoid utilizing the same prey resources.  To compensate 

for competition for prey resources, 4) spider web area will be positively correlated with 

sundew trapping area, and 5) sundew trichome density will be positively correlated with 

spider density.  Finally, 6) sundew fitness will be lower in the presence of spiders. 

 

5.2. Methods 

5.2.1. Censusing procedure 

This research was conducted at Brooker Creek Headwaters Nature Preserve (BCH) in 

Odessa, Florida (28° 08.32’ N, 82° 33.32’ W), and the University of South Florida 

Ecological Research Area (ERA) in Tampa, Florida (28° 04.24’ N, 82° 23.44’ W).  Two 
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20 m transects (30 m apart at BCH and 200 m apart at the ERA) were surveyed at each 

study site, and 0.5 m x 0.5 m quadrats were censused every 2 m along the transects.  

These transects were surveyed approximately once every two weeks between July 1st and 

September 10th 2008 at BCH, and between September 22nd and November 10th 2008 at 

the ERA, for a total of 16 transect surveys and 160 quadrat censuses.  All censuses were 

conducted between 0700 and 1100.  Within each quadrat the following data were 

recorded: number of sundews, leaves per sundew, S. floridanus webs, web area, and prey 

per web.  If applicable, we also recorded distance from webs to the nearest sundew.  One 

leaf was also removed from up to 10 randomly selected sundews per quadrat, for 

subsequent analysis in the lab. 

 

5.2.2. Dietary selectivity and overlap 

To sample arthropod availability, we used 4 cm x 4 cm sticky-traps with no attractants 

(Olson Products, Medina, OH, USA).  These were set approximately 0.5 cm off the 

ground, the height at which sundew leaves and S. floridanus webs are typically found in 

these locations (D. Jennings, unpublished data).  For each quadrat, one sticky-trap was 

placed at least 15 cm away from sundews and webs, and when present, one sticky-trap 

was placed adjacent to a randomly selected sundew and/or a web, and thus there were up 

to three sticky-traps per quadrat.  Traps were left out for 24 hours.  Arthropods caught 

were identified to the order level or below, and measured to the nearest 0.1 mm.  We then 

estimated arthropod biomass using the general formula derived by Rogers et al. (1976): 

W = 0.0305 L2.62 

where W represents the mass in mg and L represents the length in mm. 
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Sundew leaves were examined under a dissecting microscope to record prey items.  Prey 

items were identified to order level or below and measured to the nearest 0.1 mm.  To 

reduce the likelihood of damaging or losing prey items through destructive web 

sampling, we recorded the number, size and order of prey caught in webs or chelicerae in 

the field using a 16 x hand-lens.  The hand lens, however, did not provide adequate 

magnification to detect many smaller arthropods, such as Collembolans.  To adjust for 

this, we examined 24 randomly selected sticky-traps from the quadrat censuses and 

identified and measured arthropods on them using both the 16 x hand-lens and the 

dissecting scope and adjusted the spider diet for these missed prey items.  In no case did 

including these missed prey items change the results, so we present only those results that 

included these prey items. 

 

5.2.3. Phenotypic plasticity in leaf and web traits 

After being examined for prey, sundew leaves were photographed under a dissecting 

microscope to count the number of trichomes per leaf and to calculate individual leaf 

capture area.  All webs were photographed with a 30 cm ruler, and leaf capture area and 

web area were calculated using SigmaScan Pro 4 (SPSS Inc., Chicago, IL, USA).  For 

each quadrat, total trapping area was estimated by multiplying the mean capture area per 

leaf by the mean number of leaves per sundew by the total number of sundews. 

 

5.2.4. Statistical analyses for field census 

To determine if sundews and spiders track arthropod prey in the environment, we used 

the Generalized Linear Model to evaluate whether spider abundance (Poisson error and 
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log link) and sundew presence or absence (binomial error and logit link) could be 

predicted by arthropod biomass in quadrats (cubed-root transformed).  If variation in 

arthropod biomass is high at large spatial-scales (among quadrats) but low at small 

spatial-scales (within quadrats), we would expect the two species to co-occur at large 

spatial-scales in order to track prey biomass but to avoid one another at small spatial-

scales.  To evaluate the level of variation in arthropod biomass within versus among 

quadrats, we compared the among quadrat variation in arthropod biomass to the biomass 

variation among the three types of sticky-traps (next to web or sundew, away from both) 

within quadrats using variance partitioning (Gotelli & Ellison 2004).  To assess whether 

sundews or spiders were depressing local arthropod resources, we conducted a one-way 

ANOVA, blocking by quadrat, to compare arthropod biomass among traps directly next 

to sundews, directly next to webs, and away from both.  Data were log-transformed when 

necessary to meet the assumption of the parametric analyses. 

 

Co-occurrence and dietary overlap were both analyzed using χ2 tests.  Additionally, we 

analyzed co-occurrence, and dietary overlap and selectivity, using EcoSim (Gotelli & 

Entsminger 2001).  To test for sundew and spider co-occurrence, we calculated a C-score 

(Stone & Roberts 1990) from observed data (presence/absence of each species within 

each quadrat) and compared it with C-scores obtained from 5000 randomly generated 

matrices (i.e. a Monte Carlo permutation test).  Dietary overlap was estimated using 

Pianka’s (1973) index (PI), which generates a value between 0 (complete segregation) 

and 1 (complete overlap).  We used the ‘RA3’ algorithm, which retains the niche breadth 

of each species but randomizes the resource states that are actually used, and also 



71 
 

incorporated our arthropod availability data into the resource-state matrix.  The observed 

overlap was then compared to the indices from 1000 randomly generated matrices to test 

for the probability that it would have been generated by chance alone. 

 

We were also interested in how sundew trapping area, arthropod biomass, and other webs 

influenced the distance that spiders constructed their webs from the nearest sundew.  

However, measuring the distance of webs to the nearest sundew within a quadrat has 

clear limitations regarding the inferences that can be made from the results.  For example, 

as the density and/or size of sundews per quadrat increases, the observed distance of 

webs will ultimately decrease because more of the space within the quadrat will be 

occupied by sundews.  Therefore, we calculated the expected distance of a spider web 

from the nearest sundew at a given sundew density using a simulated null model in the 

statistical software R 2.8.1, available at www.r-project.org (R Development Core Team 

2008).  For a given number of sundews, positions of sundews and a single spider web 

were randomly assigned within a simulated 50 cm by 50 cm plot.  Radii of sundews and 

of the spider web were selected from normal distributions with means and standard 

deviations calculated from the observed dataset (sundews: mean = 0.94 cm, SD = 0.54 

cm; spider webs: mean = 2.76 cm, SD = 1.15 cm).  The distance from the edge of each 

spider web to edge of the nearest sundew (0 if they overlapped) was then calculated, and 

this was repeated 10,000 times for each number of sundews to obtain an average 

(expected) distance at that sundew density. 

 

http://www.r-project.org/�
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We used path analysis to evaluate the effects of sundew trapping area, arthropod biomass 

(mean of sticky-traps), and other webs on mean web area and the observed minus 

expected distance of webs from sundews.  We chose to use path analysis because it 

allowed us to evaluate both the indirect and direct effects that each variable has on the 

focal response variable.  All variables were log-transformed except for the observed 

minus expected web distance, and we used a least-trimmed squares regression approach 

and estimated regression coefficients using maximum likelihood estimation (Gotelli & 

Ellison 2004).  The significance of each path was evaluated by comparing the chi-square 

value of the full model to that of the model excluding the given path.  Given that sundews 

are stationary, we assumed that they could depress local arthropod biomass and be 

influenced by local arthropod biomass (bidirectional path) and affect spider traits.  

Conversely, given that spiders are mobile and thus more transient than sundews, we 

assumed that spider webs would not affect the traits of sundews or arthropod biomass at 

the scale of the quadrat.  Path analyses were conducted using the SEPATH module of 

Statistica 8.0 (StatSoft Inc., Tulsa, OK, USA). 

 

5.2.5. Laboratory experiment 

In 2004, immature sundews in winter dormancy and R. rabida nymphs were collected 

from a bog in Liberty County, Florida (30° 02.32’ N, 85° 00.11’ W) and transported to 

the University of Kentucky.  In the laboratory, 40 glass terraria (21 L) with glass tops 

were filled with soil from the Florida bog to a depth of 3 cm, and six young sundews 

(approximately 1 cm diameter with 2 to 8 leaves) were planted in each terrarium.  Eight 

shelves (spatial blocks) each held five terraria, and four florescent bulbs were positioned 
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5 cm above each terrarium to provide a range of light wavelengths.  We simulated winter 

dormancy with a photoperiod of 9D/15N and temperatures of 15 C from January 5th to 

February 1st 2004 and again from November 1st 2004 to February 1st 2005.  During all 

other times, a photoperiod of 14D/10N and temperatures of 24 C was maintained (until 

November 1st 2005). 

 

The 40 terraria were divided into five treatments (spider present + high food; spider 

present + low food; spider absent + high food; spider absent + low food; spider absent + 

no food) with eight replicates per treatment.  Low- and high-food terraria received six 

and 24 pinhead crickets (2 mm in length) twice per week, respectively.  By June 1st 2004, 

one large (12 mm body length) spider nymph, without stored sperm, was added to each of 

the 16 terraria with spiders.  On October 1st, we stopped supplying crickets and removed 

spiders.  For each sundew on five occasions from September 2004 to June 2005, we 

counted the number of: leaves, flower stalks, flowers per stalk, and seeds.  We included 

seed production from the 2005 growing season as sundew reproduction can be influenced 

by the previous growing season (Thum 1989; Krafft & Handel 1993). 

 

5.2.6. Statistical analyses for laboratory experiment 

Because we lacked a complete factorial design (spider + no food treatment was not 

possible), statistical analyses involved a two step, hierarchical approach.  We first tested 

for an effect of spider and a spider x food interaction by ignoring the no spider + no food 

treatment.  This created a complete 2 x 2 factorial design.  The second step was to test for 

the effect of food level (a continuous predictor) by using the three food treatments and 
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controlling for the effect of spiders.  Analyses for both steps involved the use of the 

General Linear Model.  We first tested for multivariate effects using number of flowers, 

stalks and seeds as the responses, and if significant, we then evaluated the univariate 

effects.  These were repeated measures analyses, where the repeated measures variables 

were the five dates when data were collected.   

 

5.3. Results 

5.3.1. Field Census 

For all analyses, the effect of site did not interact with any factors and was non-

significant when arthropod biomass was included as a covariate in the statistical model 

because the sites differed in arthropod biomass.  Consequently, we excluded site from the 

statistical models in favour of arthropod biomass which seemed to account for more 

variation. 

 

5.3.2. Dietary selectivity and overlap: Prediction 1 

A total of 565 arthropods were quantified from 294 sticky-traps, and there were no 

significant differences in their biomass among traps adjacent to sundews, adjacent to S. 

floridanus webs, or located at least 15 cm from both (F2,88 = 1.12, p = 0.331).  Dietary 

analyses of sundews and S. floridanus were calculated from 665 leaves and 45 webs.  

Eighty-one prey items were located on sundew leaves (mean = 1.4 mm, range = 0.1-3.6 

mm, SD = 0.7 mm) and fifty-four prey were identified on S. floridanus webs.  We were 

able to record prey size for only thirty-three S. floridanus prey items (mean = 3.13 mm, 
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range = 1.1-8.7 mm, SD = 1.9 mm) because the remaining prey had been partly 

consumed or damaged. 

 

The results generally supported our first prediction, that both sundews and spiders would 

be generalist arthropod predators with considerable dietary overlap.  Orders Diptera and 

Collembola, and family Formicidae, were the most frequently captured taxa by both 

sundews (33.3, 29.6, and 23.5%, respectively) and S. floridanus (22.1, 26.5, and 20.6%, 

respectively; Fig. 5.2).  When estimating dietary selectivity, we included only arthropods 

captured on sticky-traps within the size range of prey that the sundews (0.1-3.6 mm) and 

S. floridanus catch (<16 mm in size because spiders generally eat prey 50-80% smaller 

than themselves; Nentwig 1987).  The overlap of arthropods available in the environment 

and arthropods captured by sundews (0.93 PI) and S. floridanus (0.92 PI) was greater 

than expected by chance (p = 0.005, p = 0.030, respectively).  As predicted, sundews and 

S. floridanus diets exhibited significant overlap (χ2
5 = 6.99, p = 0.22; 0.76 PI, p = 0.033) 

within the prey size range of 0.1-3.6 mm, which included 100% and 79% of the sundew 

and spider prey, respectively.  

 

5.3.2. Spatial associations on a large spatial-scale: Prediction 2 

The results supported our second prediction, that on a large spatial-scale, sundews and 

spiders would be positively associated with each other because both would be where prey 

were abundant.  At the level of the quadrat, co-occurrence of sundews and S. floridanus 

was highly significant (χ2
1 = 10.78, p < 0.001).  Specifically, in 28 of the 35 quadrats in 

which S. floridanus was present, sundews were also present.  The C-score obtained from 
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the observed data was significantly different from the mean C-score obtained from the 

simulated indices (standardized effect size = -2.95, p < 0.001), indicating that these 

species significantly co-occurred. 

 

As predicted, sundews and S. floridanus significantly tracked arthropod biomass because 

plots with more arthropods were more likely to have sundews (Model deviance = 1.29, 

Coefficient = 1.400, SE = 0.490, Wald1, 158 = 8.17, p = 0.004) and S. floridanus (Model 

deviance = 0.89, Coefficient = 0.850, SE = 0.411, Wald1, 158 = 4.28, p = 0.039).  This 

likely accounts for the positive covariance of these two species among quadrats.  In fact, 

variation among quadrats accounted for 27% of the variation in arthropod biomass, 

whereas variation within a quadrat among the three sticky-traps accounted for only 2% of 

the variation in arthropod biomass.  These results indicate considerable arthropod 

heterogeneity among quadrats, but a relatively homogenous distribution of arthropods 

within quadrats.  This analysis could be conducted only on plots with sundews and 

spiders because they were the only plots with three sticky-traps.  If we could have 

conducted the variance partitioning analyses on plots with and without sundews or S. 

floridanus, we would have seen even greater among quadrat variation in arthropod 

biomass. 

 

5.3.3. Spatial associations on a small spatial-scale: Prediction 3 

The results supported our third prediction, that on a small spatial-scale, spiders would 

avoid building webs near sundews to reduce utilizing the same prey resources.  Within 

each quadrat, S. floridanus located their webs further away from sundews as the total 
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sundew trapping area increased, representing a deviation from the expected distance 

values obtained from the null model (Fig. 5.3A).  Mean arthropod biomass per sticky-

trap, and the presence of other webs within the quadrat, did not significantly affect the 

distance that S. floridanus located their webs from sundews (Fig. 5.3A). 

 

5.3.4. Phenotypic plasticity in web traits: Prediction 4 

Web area was positively correlated with total sundew trapping area (Fig. 5.3B), 

consistent with competition and in support of our fourth prediction.  S. floridanus webs 

had a mean area of 28 cm2 (range = 3.7-98.6 cm2, SD = 23 cm2), and web area was 

negatively correlated with mean arthropod biomass on sticky-traps (Fig. 5.3B).  

However, there was no significant association between web area and the presence of 

other webs (Fig. 5.3B).  

 

 

5.3.5. Phenotypic plasticity in sundew traits: Prediction 5 

We found no support for our fifth prediction, that sundew trichome density would be 

positively associated with spider density or traits (all p > 0.05), likely because spiders are 

transient and do not live near a given sundew long enough to induce phenotypic changes.  

In addition, arthropod biomass on sticky-traps was not associated significantly with mean 

number of leaves per sundew (β = -0.017, SE = 0.075, F1, 85 = 0.05, p = 0.823), mean 

number of trichomes per individual leaf (β = 0.081, SE = 0.063, F1, 84 = 1.68, p = 0.199), 

or mean trichome density per sundew leaf (β = -0.025, SE = 0.055, F1, 83 = 0.020, p = 

0.653).  Mean number of trichomes per individual sundew leaf was 68.7 (range = 14-143, 
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SD = 24.7), and mean trichome density per sundew leaf was 139.2/cm2 (range = 21.8-

1300/cm2, SD = 147.8/cm2). 

 

5.3.6. Laboratory experiment: Prediction 6 

Our laboratory results supported our sixth prediction, that spider presence would reduce 

sundew fitness.  R. rabida had an adverse multivariate effect on sundew fitness (Wilk’s 

F3, 27 = 4.14, p = 0.015) that was independent of food level (spider x food: Wilk’s F3, 27 = 

0.53, p = 0.668; Fig. 5.4A).  R. rabida reduced the production of flower stalks (F1, 29 = 

13.10, p = 0.001), flowers (F1, 29 = 7.87, p = 0.009) and seeds (F1, 29 = 4.18, p = 0.049; 

Fig. 5.4A).  Cricket additions had a significant, positive multivariate effect on sundew 

fitness (Wilk’s F3, 35 = 6.01, p = 0.002; Fig. 5.4B), increasing flower stalks (F1, 37 = 11.81, 

p = 0.001), flowers (F1, 37 = 18.94, p < 0.001) and seeds (F1, 37 = 8.51, p = 0.006; Fig. 

5.4B). 

 

5.4. Discussion 

 The results from our field census indicate that both sundews and S. floridanus are 

generalist predators, consuming arthropods in proportion to their availability in the 

environment, consistent with previous qualitative findings (Porch 1989; Punzo & Haines 

2006).  More importantly for the question of whether these species compete, the diets of 

these two species had a high overlap, which might lead to competition for shared prey.  

 

The high dietary overlap between sundews and S. floridanus might be explained by the 

passive trapping mechanisms used by each species and the similar heights at which the 
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sundew leaves and webs are set above the ground.  Some pitcher plants release certain 

chemicals that are thought to attract prey (Moran 1996; Di Giusto et al. 2008), and it has 

been implied that the red pigmentation common to many carnivorous plants might 

increase rates of prey capture (Schaefer & Ruxton 2008).  In the present study, sundews 

did not appear to attract any arthropod taxa in particular because the diet matched the 

arthropod prey in the environment, and generalist diets appear to be common among 

carnivorous plants (Ellison & Gotelli 2009).  However, the results could change with a 

higher taxonomic resolution of prey. 

 

The spatial associations between sundews and S. floridanus were largely dependent on 

scale.  At a large spatial-scale (i.e. among quadrats) there was a positive correlation 

between the two species, yet at a smaller spatial-scale (i.e. within each quadrat) there was 

a negative correlation between them.  Sundews are sessile predators that are likely to 

have more specific abiotic requirements (particularly light and water) than the relatively 

mobile S. floridanus, and thus the patterns at small spatial-scales are perhaps best 

explained by assuming spiders respond to sundews and not vice versa.  At the scale of the 

entire transects, S. floridanus were predicted to preferentially select areas of high prey 

abundance, a behaviour that has been demonstrated in a number of other spider taxa 

(Sunderland et al. 1986; Harwood et al. 2001).  However, at the smaller scale of each 

individual quadrat, S. floridanus were predicted to locate their webs further away from 

sundews to reduce competition for shared prey resources.  In support of these predictions, 

the variance partitioning results suggested that positive spatial covariance between 

sundews and S. floridanus on a large spatial-scale (among quadrats) was driven by the 
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two species being found where there was high prey biomass, whereas the two species had 

negative spatial covariance within quadrats, probably due to niche partitioning in light of 

the relatively homogeneous distribution of prey at this smaller scale. 

 

Our observation that S. floridanus increased web area in response to a putative competitor 

contrasts with a previous finding that spiders reduced the area of webs they constructed 

when there were higher densities of conspecific competitors, presumably because of 

interference competition (Harwood & Obrycki 2005).  Interference competition is 

unlikely to occur between S. floridanus and sundews, and we found no evidence that 

small S. floridanus were consumed by the carnivorous plants.  Therefore, in the absence 

of interference competition with sundews, S. floridanus near sundews might invest more 

resources into web construction to mitigate the effects of exploitative competition with 

sundews.  Spiders have also been shown to increase web area in response to reduced prey 

abundance (Sherman 1994), suggesting that prey resources were limited in the field. 

 

Some carnivorous plants, such as pitcher plants (Ellison & Gotelli 2002), bladderworts 

(Englund & Harms 2003) and different species of sundew (Thorén et al. 2003), have been 

found to reduce their investment in carnivory (e.g. produce fewer traps) in response to 

increased nutrient levels.  Hence, it was surprising that trichome density per leaf area was 

not negatively associated with the arthropod biomass from sticky-traps.  Further, there 

was no evidence that S. floridanus affected phenotypic traits of sundews at the scales 

studied, possibly because S. floridanus are transient in comparison to sundews and are 

therefore unlikely to remain close to a focal sundew on a small spatial-scale.  
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Additionally, effects on phenotypic traits might not have been detected if competition for 

prey was intense at a large spatial-scale (i.e. among quadrats).  Under such conditions, all 

of the sundews we observed might have been responding to competitive interactions of 

similar strength, and therefore no difference between them would have been detected.  

Although the spatial-scale of our survey seemed too small to detect any detrimental 

effects of S. floridanus on sundews, our laboratory experiment supported the hypothesis 

that spiders adversely affect the fitness of sundews.  Specifically, the presence of R. 

rabida in terraria resulted in a reduced number of flower stalks, flowers, and seeds 

produced by the sundews.  Furthermore, as food levels increased, sundews produced 

more seeds, and grew more leaves.  Sundews are known to invest nutrients obtained from 

prey into reproductive structures (Krafft & Handel 1993; Hanslin & Karlsson 1996) and 

R. rabida were observed consuming many of the crickets offered during feedings.  Thus, 

it appears that R. rabida reduced arthropod prey causing the decrease in sundew fitness. 

 

5.5. Conclusions 

Our field census found a high dietary overlap between these two predatory species, and in 

the presence of greater total sundew trapping area, S. floridanus located their webs 

further away from sundews and increased the area of their webs.  Additionally, our 

laboratory experiment demonstrated that R. rabida can negatively affect sundew fitness 

by depriving them of nutrients normally obtained from prey.  All of this evidence is 

consistent with competition between the plant and animal kingdoms, but more work will 

be necessary to fully understand the implications of these findings.  For example, we 

predict that competitive interactions between sundews and spiders will also reduce spider 
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fitness, and that any competitive effects on sundew and spider traits and fitness will be 

stronger at lower arthropod prey densities.  Future work should test these predictions 

using field experiments with manipulations of sundew, spider, and arthropod prey 

densities.  Quantifying the shapes of sundew and spider functional responses as a 

function of resource availability, and determining the fitness consequences of different 

traits and competitive interactions, will then allow generation of parameters for predictive 

population- and community-level models. 
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Figure 5.1: The relatedness of focal animal, fungal, plant, and protist species from 
terrestrial and freshwater interspecific competition studies considered by Schoener (1983) 
and Gurevitch et al. (1992).  Each level of classification indicates that all focal species 
from the study in question were within that classification (e.g. if two species were from 
different orders but within the same class, the study would be recorded under ‘Class’).  
We used the lowest level of classification possible for all interactions, and we did not 
double-count classifications for any studies.
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Figure 5.2: The relative proportions of arthropods caught by D. capillaris, S. floridanus, and from the environment (sticky-traps). 
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Figure 5.3: Path analysis models using A) distance of web to nearest sundew, and B) web area, as the response variable. None of the 
indirect effects were significant for the models and therefore they are not displayed.  Shown are standardized coefficients, probability 
values for each path, and R2 values for each submodel. 
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Figure 5.4: Effects of spider (presence or absence, A) and food level (0, 12, or 48 crickets/week, B) on the number of stalks, flowers, 
and seeds produced per sundew.  There was no interaction between the spider and food treatments so only main effects are shown.  In 
panel B, we provide best-fit lines, and asterisks represent the significance of the relationship between food level (continuous predictor) 
and the response variable.  Shown are means and standard errors; n = 8.  * p < 0.05, ** p <0.01, *** p <0.005, **** p <0.001.
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Chapter 6: The Importance of Phylogeny in Dictating the Strength of Competition 

  

6.1. Introduction 

Competition has been one of the most extensively studied ecological processes, and yet 

its relative importance in determining the structure of communities remains controversial.  

Furthermore, one of the core tenets of competition theory, that competitive interactions 

should be strongest between closely related species (ostensibly because of similarities in 

behavior and morphology), has remained virtually untested since Darwin (1859) first 

suggested it over 150 years ago.  Although traits can certainly be conserved 

phylogenetically, over large evolutionary timescales, we might expect convergent 

evolution to mitigate any effects this conservatism might have on competitive 

interactions.  Indeed, convergent evolution between distantly related species has often 

been shown to result in strong competition for resources (e.g. Brown & Davidson 1977; 

Mokany & Shine 2003; Polis & McCormick 1986), and while most competition studies 

have chosen to focus on closely related species (Jennings et al. 2010), sufficient data exist 

to enable us to examine the strength of competition between species with a range of 

divergence times.  Understanding how phylogenetic relatedness affects the strength of 

competition is important from a fundamental ecology perspective (Dayan & Simberloff 

2005), and could also inform applied areas of ecology such as invasive species 

management (Strauss et al. 2006). 
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With detailed phylogenies available for an increasing number of taxa, the importance of 

relatedness for interspecific interactions has become more prominent in ecology (Helmus 

et al. 2007; Losos 2008; Webb et al. 2002), including for competitive interactions.  For 

example, Kaplan and Denno (2007) conducted a meta-analysis on the importance of 

competition in phytophagous insects, and found that the importance of phylogenetic 

relatedness in determining the strength of competition was dependent on the insect 

feeding guild.  Specifically, for sap-feeding species, more closely related species did 

compete more strongly, but phylogenetic relatedness was not an important predictor for 

chewing insects.  Similarly, Cahill et al. (2008) investigated the importance of 

phylogenetic relatedness for competition by examining published data on vascular plants 

and found no strong relationship between phylogenetic relatedness and strength of 

competition.  More recently Burns and Strauss (2011) tested the effects of phylogenetic 

relatedness on interspecific interactions experimentally, using 32 native plant species in 

California.  They found that the direction of the interaction depended partly on the soil 

composition, but that phylogeny could indeed be a good predictor of the strength of 

interactions, with plants performing better when grown with distantly related species.  

Violle et al. (2011) also experimentally tested the effects of phylogenetic relatedness on 

interspecific interactions, except using protists in microcosms, and found that closely 

related species did compete more strongly. 

 

With the contrasting results from these studies of different taxonomic groups, it is clear 

that a broader-scale approach is needed if we are to make generalizations regarding the 
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utility of phylogenetic relatedness for predicting the strength and outcome of competitive 

interactions.  Accordingly, we conducted a meta-analysis of published competition 

studies, placing no limits on the relatedness of the species in the study.  Our specific 

objectives were: 1) to determine if phylogenetic distance can predict the strength of 

competitive interactions between two species from any taxonomic group, and 2) because 

the variability in the results of previous studies could be context dependent, we wanted to 

determine the importance of different biotic factors (i.e. habitat type, predation 

presence/absence, resource levels) and the experimental venue (i.e. field, mesocosm, or 

microcosm) in influencing the effect of phylogenetic relatedness on the strength of 

competition. 

 

6.2. Methods 

6.2.1. Data collection 

We used Web of Knowledge to search for the keyword ‘interspecific competition’ in 

studies published from 1998-2008 in eight ecology journals (American Naturalist, 

Ecological Monographs, Ecology, Journal of Animal Ecology, Journal of Ecology, 

Journal of Experimental Marine Biology and Ecology, Oecologia, and Oikos). After 

studies were collected, they were examined to determine if they met a set of six criteria, 

many of which were similar to those used by Gurevitch et al. (1992).  First, the study 

species needed to have phlyogenetic information deposited in the TimeTree database, an 

online resource which has a comprehensive list of estimated divergence times across all 

the major taxonomic groups (Hedges et al. 2006).  If both species were located in the 

TimeTree database, we preferentially used the expert opinion before the averaged value.  
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Second, the density of at least one of the study species must have been manipulated 

experimentally.  Third, appropriate controls must have been used (e.g. non-manipulated 

groups of individuals).  Fourth, the means, variance, and sample size must have been 

reported or displayed, allowing us to calculate effect sizes (studies with sample sizes of 

one were excluded from the analyses).  Fifth, there must have been clear pair-wise 

interactions in the study (e.g. species A and species B were grown together and separately 

as controls).  Sixth, the response variable measured must have been one that was broadly 

applicable across different taxonomic groups (i.e. biomass, survival, growth, or density, 

as opposed to a variable such as time to metamorphosis).  Once studies had been 

examined and determined to meet the criteria for inclusion, we collected data on means, 

variances, sample sizes, experimental venue, habitat, and whether or not the experiment 

manipulated the presence of predators and/or resource levels. 

 

6.2.2. Statistical analyses 

We used the software MetaWin 2.1 to calculate Hedges’ d, which is the standardized 

magnitude of difference between a treatment and control mean (Rosenberg et al. 2000).  

Random-effects models were used because there was significant heterogeneity in the 

effect sizes that could not be explained by sampling error alone.  Between-study variance 

(τ) for the random-effects models was estimated using the DerSimonian-Laird method 

calculated in the metafor package (Viechtbauer 2010) in R 2.12 (R Development Core 

Team 2011), with the appropriate model design (e.g. τ was estimated from an ANCOVA 

with a design: effects vs. log10(relatedness) + type of experiment + type of experiment * 

log10(relatedness)).  This between-study variance (τ) was then added to all the variances 
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of Hedges’ d (var_d + τ), and the inverse of (var_d + τ) was then included in regression 

models as a weighting term to reduce the influence of effect sizes with large variances (as 

required by meta-analysis), using the software jmp.  The sums of squares of each factor 

in the regression models then became the Q-tests, which have a Chi-square distribution 

with the df’s of the model factor.  However, the standard errors of the regression 

parameters reported in jmp are incorrect, and we adjusted these parameters by dividing 

their SE with the square root of the mean-square residual of the regression model (Lipsey 

& Wilson 2001).  Confidence intervals were then calculated with these SE to evaluate 

non-zero effects among regression slopes and pooled effects (d ++) among moderator 

groupings. 

 

6.3. Results 

Our initial search yielded a total of 818 studies (American Naturalist – 94, Ecology – 

147, Ecological Monographs – 22, Journal of Animal Ecology – 100, Journal of Ecology 

– 68, Journal of Experimental Marine Biology and Ecology – 61, Oecologia – 143, Oikos 

– 183).  After being screened against our criteria for inclusion, we gathered a total of 191 

effect sizes from 39 of these studies (Appendix A).  The divergence times of the species 

included in the studies ranged from 0.8 million years ago (MYA) (for two congeneric 

shrew species), to 4200 MYA (for a coral and a blue-green alga), with a median of 159 

MYA. 

 

There was no significant relationship between phylogenetic distance and effect size in our 

full model meta-regression (Q1 = 0.068, p = 0.794), with an extremely small R2 value 
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(Fig. 6.1).  The confidence intervals for d++ did not overlap zero (d++ = -0.86, 95% CI = 

-1.22, -0.53), indicating that the mean effect size was not significant in a positive or 

negative direction. 

 

When comparing the different venues where experiments were conducted, we found a 

significant interaction between experimental venue and phylogenetic distance (Table 

6.1).  This appeared to be driven by experiments conducted in microcosms, in which 

there was a small increase in the strength of competition as species became more 

distantly related (Table 6.2 and Fig. 6.2).  In contrast, experiments conducted in the field 

or in mesocosms showed a slight trend in the opposite direction (Fig. 6.2).   The 

confidence intervals for d++ from field and mesocosm studies did not overlap zero, while 

for microcosm studies they did (Fig. 6.3). 

 

We found no significant interaction between habitat type and phylogenetic distance 

(Table 6.1).  No individual habitat types were significant (Table 6.2), but competition in 

marine and terrestrial habitats tended to be slightly stronger between more distantly 

related species, while the opposite was true for freshwater species (Fig. 6.4).  The 

confidence intervals of d++ for both marine and terrestrial habitats overlapped zero, but 

for freshwater they did not (Fig. 6.5). 

 

There was no significant interaction between predation presence/absence and 

phylogenetic distance (Table 6.1 and Table 6.2).  Although with predators both present 

and absent, the general trend was for competition to be greater in strength between more 
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closely related species (Fig. 6.6).  The confidence intervals of d++ for predators both 

present (d++ = -1.82, 95% CI = -2.65, -0.99) and absent (d++ = -1.11, 95% CI = -1.97, -

0.25) did not overlap zero, indicating that they were significantly negative. 

 

There was no significant interaction between resource level and phylogenetic distance 

(Table 6.1).  However, there was a significant relationship between low resources and 

phylogenetic distance (Table 6.2), and competition tended to be greater in strength 

between more distantly related species under both types of resource conditions (Fig. 6.7).  

The confidence intervals for d++ both high (d++ = -0.34, 95% CI = -1.38, 0.68) and low 

(d++ = -0.30, 95% CI = -1.38, 0.78) resource levels overlapped zero, indicating that they 

were not significantly positive or negative. 

 

A funnel plot of effect size versus the variance of the effect size indicated that there may 

be evidence of publication bias in our results (Fig. 6.8).  Publication bias is the problem 

of studies with non-significant results tending not to be published, and ideally a funnel 

plot should contain more effect sizes with lower variance.  However, because the effect 

sizes used in our models were weighted, the influence of those with larger variances 

should have been reduced. 

 

6.4. Discussion 

The results from our full model meta-regression suggest that phylogenetic relatedness is 

not a significant predictor of the strength of competition, contrary to the assumption that 

it should be greatest in strength between more closely related species.  These results also 
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contrast with some of the recent findings of Burns and Strauss (2011) and Violle et al. 

(2011), but those studies only considered singular taxonomic groups (vascular plants and 

protists, respectively).  However, as the results from those two studies suggest, it does 

appear as though phylogenetic relatedness can still be a good predictor of the strength of 

competition within certain groups of taxa. 

 

Previous work by Skelly (2002) repeated the same experiment under field and mesocosm 

conditions, and found that the intensity of competition was greatest under the more 

manipulated conditions of the mesocosms.  Thus, while it was not surprising that our 

analyses found detected an effect of the venue of an experiment on the strength of 

competition, it was surprising to find that in our analysis field studies had the largest d++ 

and microcosm studies the smallest.  This suggests that the experimental venue could 

have at least some influence on the strength of competition, and possibly explains some 

of the variation in the findings of the previous studies by Cahill et al. (2008) (data from 

mesocosms and microcosms), Burns and Strauss (2011) (data from field and 

mesocosms), and Violle et al. (2011) (data from microcosms). 

 

Habitat type showed no significant pattern with the strength of competition and 

phylogenetic relatedness.  Many of the studies comparing distantly related species were 

conducted in the marine habitat (particularly intertidal habitats), which is likely explained 

by the number of studies conducted there that examine interactions between different 

sessile animals and algae.  The freshwater habitats group was the only one to have a d++ 
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that was significantly different from zero, and this could potentially be explained by 

effect sizes from freshwater studies comprising over half of the data we used. 

 

While we were only able to use a subset of our data (with a much smaller number of 

effect sizes) for exploring the effects of predation compared to experimental venue or 

habitat type, our results were generally consistent with previous work by Gurevitch et al. 

(2000) who conducted a meta-analysis focusing on the interaction between competition 

and predation.  As in the present study, Gurevitch et al. (2000) found that in the presence 

of predators, competition tended to be stronger.  However, Chase et al. (2002) cautioned 

against the use of broadly applying those results, and recommended that more studies on 

this interaction be conducted over larger spatial-scales and under manipulated resource 

levels to improve our understanding of the importance of predation for competitive 

interactions. 

 

There was no significant pattern with resource levels and the strength of competition and 

phylogenetic relatedness.  Additionally, there was surprisingly very little difference in the 

mean effect sizes between high and low resource levels, which is likely attributable to us 

using a subset of our data once again for this predictor.  The lack of a difference in the 

mean effect sizes of high and low resource levels was surprising because traditionally 

theory would predict that under low resource levels, competition should be more intense. 

 

Although our results showed no indication of a significant pattern between phylogenetic 

relatedness and the strength of competition, we suggest several directions for future 
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research.  Firstly, it would be desirable to include a larger sample of studies.  While we 

managed to collect 191 effect sizes, our number of samples was small for examining 

certain predictors such as resource levels and predation presence/absence.  By expanding 

our sample size we might be able to elucidate more about these relationships with greater 

confidence.  Another potential benefit of expanding our sample size would be to include 

more studies that compare pair-wise interactions of three of more species within the same 

study.  This would provide an internal control for each effect size, allowing us to simply 

rank the relatedness of species within individual studies and then compare the results 

between studies.  It could also be beneficial for future work to consider the importance of 

functional traits, such as body size or metabolic rate.  To address the potential publication 

bias in our study, it could also be useful to expand the range of journals included, perhaps 

by searching through more ‘low’ impact ecology journals.  This would allow us to 

examine whether or not lower impact journals are more likely to publish studies with 

extreme effect sizes. 

 

References Cited 

Brown, J. H. & Davidson, D. W. 1977 Competition between seed-eating rodents and ants 
in desert ecosystems. Science 196, 880-882. 

 
Burns, J. H. & Strauss, S. Y. 2011 More closely related species are more ecologically 

similar in an experimental test. Proceedings of the National Academy of Sciences 
of the United States of America 108, 5302-5307. 

 
Cahill, J. F., Kembel, S. W., Lamb, E. G. & Keddy, P. A. 2008 Does phylogenetic 

relatedness influence the strength of competition among vascular plants? 
Perspectives in Plant Ecology Evolution and Systematics 10, 41-50. 

 
Chase, J. M., Abrams, P. A., Grover, J. P., Diehl, S., Chesson, P., Holt, R. D., Richards, 

S. A., Nisbet, R. M. & Case, T. J. 2002 The interaction between predation and 
competition: a review and synthesis. Ecology Letters 5, 302-315. 



100 
 

Darwin, C. 1859 The Origin of Species. London, UK: John Murray. 
 
Dayan, T. & Simberloff, D. 2005 Ecological and community-wide character 

displacement: the next generation. Ecology Letters 8, 875-894. 
 
Gurevitch, J., Morrison, J. A. & Hedges, L. V. 2000 The interaction between competition 

and predation: a meta-analysis of field experiments. American Naturalist 155, 
435-453. 

 
Gurevitch, J., Morrow, L. L., Wallace, A. & Walsh, J. S. 1992 A meta-analysis of 

competition in field experiments. American Naturalist 140, 539-572. 
 
Hedges, S. B., Dudley, J. & Kumar, S. 2006 TimeTree: a public knowledge-base of 

divergence times among organisms. Bioinformatics 22, 2971-2972. 
 
Helmus, M. R., Savage, K., Diebel, M. W., Maxted, J. T. & Ives, A. R. 2007 Separating 

the determinants of phylogenetic community structure. Ecology Letters 10, 917-
925. 

 
Jennings, D. E., Krupa, J. J., Raffel, T. R. & Rohr, J. R. 2010 Evidence for competition 

between carnivorous plants and spiders. Proceedings of the Royal Society B-
Biological Sciences 277, 3001-3008. 

 
Kaplan, I. & Denno, R. F. 2007 Interspecific interactions in phytophagous insects 

revisited: a quantitative assessment of competition theory. Ecology Letters 10, 
977-994. 

 
Lipsey, M. W. & Wilson, D. B. 2001 Practical Meta-Analysis. London: Sage 

Publications, Inc. 
 
Losos, J. B. 2008 Phylogenetic niche conservatism, phylogenetic signal and the 

relationship between phylogenetic relatedness and ecological similarity among 
species. Ecology Letters 11, 995-1003. 

 
Mokany, A. & Shine, R. 2003 Competition between tadpoles and mosquito larvae. 

Oecologia 135, 615-620. 
 
Polis, G. A. & McCormick, S. J. 1986 Scorpions, spiders, and solpugids - predation and 

competition among distantly related taxa. Oecologia 71, 111-116. 
 
R Development Core Team. 2011 R: a language and environment for statistical 

computing. Vienna, Austria: R Foundation for Statistical Computing. Available 
online at: <http://www.r-project.org >. 

 
Rosenberg, M. S., Adams, D. C. & Gurevitch, J. 2000 MetaWin (2.0). Sunderland, MA: 

Sinauer Associates. 

http://www.r-project.org/�


101 
 

Skelly, D. K. 2002 Experimental venue and estimation of interaction strength. Ecology 
83, 2097-2101. 

 
Strauss, S. Y., Webb, C. O. & Salamin, N. 2006 Exotic taxa less related to native species 

are more invasive. Proceedings of the National Academy of Sciences of the United 
States of America 103, 5841-5845. 

 
Viechtbauer, W. 2010 Conducting meta-analyses in R with the metafor package. Journal 

of Statistical Software 36, 1-48. 
 
Violle, C., Nemergut, D. R., Pu, Z. & Jiang, L. 2011 Phylogenetic limiting similarity and 

competitive exclusion. Ecology Letters 14, 782-787. 
 
Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. 2002 Phylogenies and 

community ecology. Annual Review of Ecology and Systematics 33, 475-505. 
 
 
  



102 
 

Table 6.1: Summary of the results from ANCOVA for different predictors. 
Source Q df p 

Experiment type 
Log10 relatedness 
Experiment type * Log10 relatedness 
 
Habitat 
Log10 relatedness 
Habitat * Log10 relatedness 
 
Predation presence/absence 
Log10 relatedness 
Predation presence/absence * Log10 relatedness 
 
Resource level 
Log10 relatedness 
Resource level * Log10 relatedness 

15.20 
2.70 
12.87 

 
4.30 
1.53 
3.15 

 
0.44 
4.68 
0.20 

 
0.58 
5.57 
0.62 

2 
1 
2 
 
2 
1 
2 
 
1 
1 
1 
 
1 
1 
1 

<0.001 
0.100 
0.002 

 
0.118 
0.216 
0.207 

 
0.509 
0.031 
0.652 

 
0.476 
0.018 
0.420 

  



103 
 

Table 6.2: Individual based meta-regressions.  k indicates the number of effect sizes 
calculated. 

Source k Q df p 

Experiment type 
Field 
Mesocosm 
Microcosm 
 
Habitat 
Freshwater 
Marine 
Terrestrial 
 
Predation presence/absence 
Present 
Absent 
 
Resource level 
Low 
High 

 
68 
63 
60 
 
 

101 
35 
55 
 
 

21 
17 
 
 

12 
12 

 
3.52 
0.18 
9.20 

 
 

0.87 
2.12 
0.17 

 
 

4.04 
1.27 

 
 

4.70 
1.31 

 
1 
1 
1 
 
 
1 
1 
1 
 
 
1 
1 
 
 
1 
1 

 
0.061 
0.675 
0.002 

 
 

0.351 
0.145 
0.685 

 
 

0.045 
0.260 

 
 

0.030 
0.253 
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Fig. 6.1: Meta-regression of the full model of the interaction between phylogenetic relatedness and the strength of competitive 
interactions.  The area of each circle (data point) indicates the overall weight of that data point in the model. 
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Fig. 6.2: Meta-regression of the interaction between experimental venue, phylogenetic relatedness and the strength of competitive 
interactions.
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Fig. 6.3: Mean effect size (d++) and 95% CI for experimental venue and the strength of competitive interactions. 
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Fig. 6.4: Meta-regression of the interaction between habitat type, phylogenetic relatedness and the strength of competitive interactions. 
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Fig. 6.5: Mean effect size (d++) and 95% CI for habitat type and the strength of competitive interactions. 
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Fig. 6.6: Meta-regression of the interaction between predation presence/absence, phylogenetic relatedness and the strength of 
competitive interactions. 
  



110 
 

 

Fig. 6.7: Meta-regression of the interaction between resource level, phylogenetic relatedness and the strength of competitive 
interactions. 
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Fig. 6.8: Funnel plot of effect size versus the variance of the effect size. 
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